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Abstract. Real-world machine learning applications must be able to
adapt to systematic changes in the data, e.g. a new subject or sensor
displacement. This can be seen as a form of transfer learning, where the
goal is to reuse the old (source) model by adapting the new (target) data.
This is a challenging task, if no labels for the target data are available.
Here, we propose to use the structure of the source and target data to
find a transformation from the source to target space in an unsupervised
manner. Our preliminary experiments on multivariate time series data
show the feasibility of the approach, but also its limits.
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1 Introduction

In data-driven machine learning, a model is trained on the available training
data and applied to new data. A good model must be able to extract the re-
quired information from the new data, even when systematic changes in the data
distribution occur. For example, if the data contains information from sensors,
a sensor might be replaced with a different calibrated one or the position of the
sensors might change. Another common case is the application of the model to
a new subject, e.g. in gesture recognition.

Problems of this type can be addressed by transfer learning, which considers
transferring knowledge from a source domain and a source learning task to a
learning task in the target domain [10]. Transfer learning has been successfully
applied in diverse scenarios including robotics [2], computer vision [12] and lan-
guage translation [5]. Here, we consider transductive transfer learning or domain
adaptation, where the source and target domains are different, but the source
and target tasks are the same [1, 9]. We assume a difference in the data distri-
bution in the domains and that a linear transformation from source to target
space is possible.

An expensive solution to this problem would be to collect a new dataset in the
target space with supervised information and to train a new model. Since data
labeling is often done manually by experts, this might be time consuming and
impractical. A more efficient solution proposed in [8] is to gather only few labels
and to find a linear transformation from the target space to the source space,



so that the original source model can be applied. Still, this solution requires
sufficient supervised information to find the transformation. Here, we attempt
to use only the temporal structure of the source and target data to find such a
transformation.

More precisely, we propose to build self-predictive reservoir models, which
capture the spatio-temporal relationships in the time series. We then use these
models as surrogates for the transfer learning tasks to find a transformation from
source to target space. In the following, we will formalize this methodology and
present examples, where it enables a transfer without any given labeling. We
will also showcase an example, where a transfer is not possible due to a limited
correlation of the temporal dynamics and the supervised transfer learning task.

2 Unsupervised Transfer Learning via Self-Predictive
Modeling

2.1 A hypothetical example

To illustrate the idea, let us consider a simple, hypothetical classification exam-
ple, as visualized on the left side of Fig. 1. The filled circles represent the source
data with known class labels. The empty circles represent the target data with
unknown class labels. If we assume, that the target data is a linear transforma-
tion of the source data, we can transform the target data back to the source space
preserving aligning their triangle-structure by a simple translation visualized by
the arrow.
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Fig. 1: Hypothetical classification examples. The filled circles represent the la-
beled source data and the empty circles the unlabeled target data. In the case on
the left, there is enough structural information to find the correct linear trans-
formation to the source space, as visualized my the arrow, but not in the case
on the right.



The example on the right visualizes a case, where the structure of the data
does not provide sufficient information to transform the target data back so
that the classes can be correctly estimated. Because of the quadratic structure,
four different rotations are possible, but only one of them will map the classes
correctly.

As these examples show, in order to find the correct transformation from
the target space back to the source space, the data must have a very distinctive
structure and the classes must also have structurally distinctive properties.

Next, we present a general framework for domain adaption using the structure
of the data.

2.2 Unsupervised transfer of structured data via self-predictive
models

The general approach is sketched in Fig.2. Additionally to the supervised learner
(regressor, classifier, etc.), we train a self-predictive model on the source data
using its structure to define a training goal, e.g. to predict the next step in time
series or to predict a nearby pixel in images. No external information is used to
train the predictive model. Then, we try to find a linear transformation from the
target to the source data, minimizing the error of the predictive model applied to
the transformed target data. A small error of a precise predictive model should
indicate a good mapping. After finding such a mapping, the learner, which was
trained on the source data, can be applied to the transformed target data.
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Fig. 2: Approach for unsupervised learning of a linear transformation Q from the
target to source space using a self-predictive model of the structured data.

The approach is based on the assumption that the structure is distinctive
enough to train a precise model and to find the correct transformation from the
target to the source domain. The approach should work the better the more
structural information is contained in the data. We will focus therefore on time
series data, where a very prominent structuring element is available, namely the
temporal progression of the observations. In the next section, we instantiate our
framework for linear domain adaptation of time series.



2.3 Unsupervised transfer of time series via self-predictive reservoir
networks

Given time series from source space S and target space T , we want to find a
linear transformation Q : T → S such that the temporal dynamics match those
of the source domain. Our approach is visualized in Fig. 3. First, we learn a
self-predictive model on the source time series.

Self-Predictive Echo State Network For the self-predictive modeling of
the time series we use Echo State Networks (ESN, [4]). An ESN consists of
a reservoir of recurrently connected neurons and a linear readout (cf. Fig. 3).
The reservoir provides a non-linear fading memory of the inputs u ∈ RI . The
reservoir states x ∈ RN and the readouts y ∈ RO are updated according to

x(k) = (1− λ)x(k−1) + λf(W recx(k−1) + W inu(k)) (1)

y(k) = W outx(k), (2)

where N is the number of neurons, λ the leak rate, f the activation function,
e.g. tanh, Wrec ∈ RNxN the recurrent weight matrix, Win ∈ RNxI the weight
matrix from the inputs to the reservoir neurons and W out ∈ ROxN the weight
matrix from the reservoir neurons to the readouts. Win and Wrec are initialized
randomly, scaled and remain fixed. Wrec is scaled to fulfill the Echo State Prop-
erty (ESP, [4]). The necessary condition for the ESP is typically achieved by
scaling the spectral radius of Wrec to be smaller than one. The readout weights
Wout can be learned with ridge regression: W out = (XTX + αI)−1XTT , where
X are the row-wise collected neuron activations, T the corresponding target val-
ues and α is the regularization strength.

We train the ESN for one-step-ahead-prediction: the readout is trained to pre-
dict the next input value u(t+1) from the current reservoir activation x(t). Thus,
for a time series of length L, X = (x(1); . . . ;x(L−1)) and T = (u(2); . . . ;u(L)).
The resulting model approximates the function P (u(t)) = u(t+ 1).

Learning the linear transfer function Having determined the one-step-
ahead-prediction dynamics P for the source domain, we now learn the linear
transfer function Q(u′) = Ru′ on the target data, such that the source dynam-
ics apply: P (Q(u′(k − 1)) ≈ Q(u′(k)). For this purpose, we evolve the linear
transformation matrix R using the CMA-ES [3] optimization technique by min-
imizing the squared mean error of the previous expression.

After learning the linear transformation Q, we can map the target time series
into the source space and apply the supervised task-specific learner trained in
the source space.

3 Experiments

For our experiments we use ESNs not only for the self-predictive model, but
also for the actual learning task. Since any other learning method suitable for
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Fig. 3: Approach for unsupervised transfer of the target data through the linear
transformation Q by using a self-predictive ESN trained on the source data.

time series learning would work as well, we omit the description of the learner
training.

3.1 Sine wave regression

As first example we consider a synthetic, two-dimensional dataset consisting of
two sine waves u1 = sin(0.2x), u2 = sin(0.25x) with the learning target y =
u1(t−2)+u2(t+2). Fig.4 shows the original data on the left and the same data
after a random linear transformation on the right (regression goal y remains the
same).
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Fig. 4: Synthetic sine regression dataset with source data on the left and target
data on the right.

For both the learner and the self-predictive model, a reservoir with 50 neurons
was used. Fig.5 shows the prediction error and the transfer error (the regression
error of the learner on the transformed target data) during evolution of the



transformation matrix. After approximately 80 iterations of CMA-ES, the target
data is successfully mapped back into the source space.
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Fig. 5: Evolution of the optimization of the transformation matrix. Shown is the
prediction and the regression error on the target data after transformation.

3.2 Time series classification - success

Here, we apply the approach to time series classification of multivariate time
series. The character trajectories dataset [11] obtained from [6] contains 2858
pen tip trajectories (x,y,force) with lengths from 109 to 205 recorded during
writing of twenty characters by a single subject. 300 sequences are used for
training and the rest for testing. Again, we simulate a systematic change in the
data, by transforming the test sequences through multiplication with a random
matrix. We then try to discover the transformation back into the source space
using a self-predictive ESN with 300 neurons trained on the original training
sequences. The goal is to apply the classifier trained on the original training
data to the back-transformed test sequences.

Fig. 6 (top) shows the evolution of the prediction and target classification
error (’Transfer Error’). Initially, the classifier has a high error rate of about
90%. After 140 iterations, both the prediction and classification error are low.

3.3 Time series classification - failure

The uWave[7] dataset consists of 4478 three-dimensional (x,y,z) sequences of
length 315 containing eight different gestures recorded from eight subjects. 200
sequences were used for training and the rest for testing. Fig. 6 (bottom) shows
the evolution of the prediction and target classification error. Here, the transfor-
mation reduces the prediction error, but increases the classification error - the
approach did not work for this dataset.

The hypothetical example in 2.1 showed that a transformation from the tar-
get to source space, which aligns the data distributions in the respective spaces,
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Fig. 6: Evolution of the optimization of the transformation matrix for classifica-
tion of the character trajectories (top) and uWave dataset (bottom). Shown is
the prediction and the classification error on the target test data after transfor-
mation.

may still be wrong semantically. The failed transfer of the uWave target data
may be an example of this problem. Despite a very small prediction error, the
classification results were wrong. We hypothesize that the dynamical invariant
in the time series is not relevant for the classification in this case, hence a trans-
formation based on the preservation of the temporal dynamics cannot be used
as a surrogate for the learner.

Two other possible reasons for a failed unsupervised transfer are:
– Inaccurate predictive model. If the predictive model has a high prediction

error on the source data (due to noisy data, badly chosen basis functions,
etc.), there will be many transformations resulting in similar prediction errors
on the transformed target data. Such an inexact mapping might lead to
misclassifications by the learner.

– Local error minima in the transformation space. Let us again consider the
triangle-data in the hypothetical example visualized in Fig. 1. The linear
transformation from the the target to the source space is a simple translation.
However, a translation together with half a rotation would result in only a
slightly higher prediction, but a complete classification failure. Intermediate



rotation angles might lead to better classification, but would have higher
prediction errors. Thus, finding a global optimum might be more important
here than in other applications.

4 Conclusion

In this paper we presented an unsupervised approach for transfer learning for
structured data and particularly time series. As proof of concept we evaluated
the approach on one synthetic and two real-world datasets. The positive result
on the synthetic and one of the real-world datasets confirm the applicability
of the approach to some data sets. Further work is required to determine the
conditions for a successful application of the approach and to evaluate it on
real-world use cases.
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