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Irregular Speech Rate Dissociates Auditory Cortical
Entrainment, Evoked Responses, and Frontal Alpha

Stephanie J. Kayser, “Robin A.A. Ince, Joachim Gross, and “’Christoph Kayser
Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, United Kingdom

The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism
underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded,
but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and
top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering
the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility
and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did
not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation
significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal
alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic
auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is
under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up

encoding of acoustic features.
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ignificance Statement

The entrainment of rhythmic auditory cortical activity to the speech envelope is considered to be critical for hearing. Previous
work has proposed divergent views in which entrainment reflects either early evoked responses related to sound encoding or
high-level processes related to expectation or cognitive selection. Using a manipulation of speech rate, we dissociated auditory
entrainment at different time scales. Specifically, our results suggest that delta entrainment is controlled by frontal alpha mech-
anisms and thus support the notion that rhythmic auditory cortical entrainment is shaped by top-down mechanisms.
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Introduction

Natural sounds are characterized by statistical regularities at the
scale of a few hundreds of milliseconds. For example, the pseu-
dorhythmic structure imposed by syllables plays an important
role for speech parsing and intelligibility (Elliott and Theunissen,
2009; Giraud and Poeppel, 2012; Leong and Goswami, 2014).
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Recent work has shown that auditory cortical activity exhibits
prominent fluctuations at similar time scales (Kayser et al., 2009;
Szymanski et al., 2011; Ng et al., 2013). In particular, activity in
the delta (~1 Hz) and theta (~4 Hz) bands systematically aligns
to acoustic landmarks, a phenomenon known as cortical “en-
trainment” (Luo and Poeppel, 2007; Lakatos et al., 2009; Peelle
and Davis, 2012). Given that rhythmic network activity indexes
the gain of auditory cortex neurons (Lakatos et al., 2005; Kayser et
al.,, 2015), it has been hypothesized that entrainment reflects a key
mechanism underlying hearing, for example, by facilitating the
parsing of individuals syllables through adjusting the sensory
gain relative to fluctuations in the acoustic energy (Giraud and
Poeppel, 2012; Peelle and Davis, 2012; Ding and Simon, 2014).
Entrainment is observed for many types of nonspeech stimuli
and is affected by manipulations of acoustic properties, suggest-
ing that it is partly driven in a bottom-up manner by the auditory
input (Henry and Obleser, 2012; Doelling et al., 2014; Millman et
al., 2013; Ding and Simon, 2014). However, auditory activity at
the same time scales has also been implicated in mediating mech-
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anisms underlying active sensing, such as temporal expectations,
rhythmic predictions, and attentional selection (Besle et al., 2011;
Ding and Simon, 2012; Morillon et al., 2014; Hickok et al., 2015).
For example, higher delta phase concentration is observed
around expected sounds (Stefanics et al., 2010; Arnal et al., 2015;
Wilsch et al., 2015b) and auditory cortex entrains more strongly
to attended than unattended streams (Lakatos et al., 2008; Zion
Golumbic et al., 2013). This suggests that entrainment is at least
partly under top-down control by frontal and premotor cortices
(Saur et al., 2008; Peelle and Davis, 2012; Park et al., 2015). As a
result, current data suggest that entrained activity reflects both
the feedforward tracking of sensory inputs and active mecha-
nisms of sensory selection (Giraud and Poeppel, 2012; Hickok et
al., 2015) and it remains difficult to disentangle these contribu-
tions (Doelling et al., 2014; Ding and Simon, 2014).

To better dissociate rhythmic auditory entrainment and neu-
ral activity reflecting the early encoding of acoustic inputs (e.g.,
evoked responses), we investigated whether and to what degree
unpredictable changes in the temporal pattern of speech affect
different neural indices of auditory function. To this end, we used
an artificial manipulation of the local speech rate. We focused on
the regularity emerging from the alternation of articulation and
pauses (periods of relative silence) between words or syllables
that is important for speech segmentation (Rosen, 1992; Zellner,
1994; Dilley and Pitt, 2010; Geiser and Shattuck-Hufnagel, 2012).
By manipulating the statistical distribution of these pauses, we
systematically rendered the local speech rate irregular while pre-
serving the overall speech rate, the statistical structure of the
overall sound envelope, and intelligibility. Quantifying different
signatures of auditory function in human EEG data, we found:
(1) a dissociation between rhythmic entrainment in the delta
band and left frontal alpha power, which were reduced for ma-
nipulated speech rate; and (2) entrainment in other frequency
bands, perceptual intelligibility, and auditory evoked responses
that were preserved.

Materials and Methods

Study. Nineteen healthy adult participants (age 1837 years) took part in
this study. All had self-reported normal hearing, were briefed about the
nature and goal of this study, and received financial compensation for
their participation. The study was conducted in accordance with the
Declaration of Helsinki and was approved by the local ethics committee
(College of Science and Engineering, University of Glasgow). Written
informed consent was obtained from all participants.

Stimulus material. We presented 8 6-min-long speech samples. The
samples were based on text transcripts taken from publically available
TED talks. Acoustic recordings (at 44.1 kHz sampling rate) of these texts
were obtained while a trained male native English speaker narrated them.
The root mean square (RMS) intensity of each recording was normalized
using 10 s sliding windows to ensure a constant average intensity.

For the present study, we presented sections of the original samples
and manipulations of these with altered speech rate. In brief, this manip-
ulation was performed by detecting periods of relative silence (i.e., low
amplitude) within the original speech (termed pauses), noting the mean
and SD (jitter) of the length of these and subsequently creating manipu-
lated speech by randomly shortening or lengthening pauses to preserve
their overall mean duration but increase their jitter. We performed this
manipulation using three different levels that increased the jitter by 30%,
60%, and 90%. The detection of pauses was performed using an algo-
rithm based on acoustic properties agnostic to linguistic contents (Zell-
ner, 1994; Loukina et al., 2011). The wideband amplitude envelope was
computed following previous studies (Chandrasekaran et al., 2009; Gross
et al., 2013) by band-pass filtering the original speech into 11 logarith-
mically spaced bands between 200 and 6000 Hz (third-order Butterworth
filters), computing the amplitude envelope for each band using the Hil-
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bert transform, down sampling to 1 ms resolution, and averaging across
bands. The resulting envelope was smoothed using a 10 ms sliding Gauss-
ian filter. Periods in which the normalized signal (relative to 1) was <0.1
were considered as pauses and a clustering algorithm was used to identity
continuous pauses of at least 30 ms duration, the beginning and end of
which were at least 60 ms apart from neighboring pauses (see Fig. 1A).
On average, across all eight text samples, we detected 6300 pauses. The
length of each pause was then systematically manipulated to increase the
jitter (i.e., the SD) of the distribution of pause durations (see Fig. 1A4).
This was done by extending (or shrinking) each pause randomly by
adding (or subtracting) a normally distributed silent interval with zero
mean and scaled SD (increasing the overall SD by 0%, 30%, 60%, or
90%), with the additional constraint that the resulting pause must re-
main longer than 20 ms and must not exceed 300% of its original length.
For the 0% condition, we used the original duration of each pause. To
reconstitute the speech material with manipulated pause, we assumed a
zero amplitude during each pause and cosine ramped the onset and offset
of the speech segments around each pause (5 ms ramp). A continuous
white noise background with relative RMS level of 0.05 was added to the
reconstituted speech material to mask minor acoustic artifacts intro-
duced by the manipulation.

We ensured that this manipulation of the local speech rate did not alter
the overall mean duration of pauses, only increased their jitter. To verify
this, we compared the distributions of pause durations in the original
material and manipulated versions of the very same text segments di-
rectly (see Fig. 1C). For statistical comparison, we used the data from the
same sub-blocks for each condition that were also used in the main
experiment (cf. Fig. 2A). We averaged the mean duration and jitter
within each sub-block and compared their distribution between the 12
sub-blocks for each condition. We also ensured that the manipulation
did not induce a significant difference in the overall envelope statistics
across the different conditions (see Fig. 1D). To this end, we computed
the power of the acoustic amplitude envelope in the same frequency
bands used for the analysis of entrainment (below). We then compared
the time-averaged power between the text segments of each experimental
condition as presented in the experiment (i.e., between the 12 sub-blocks
for each condition).

Experimental design. The experiment was based on a block design (see
Fig. 2A). We presented each of the 8 original texts as continuous 6 min
stimuli, but introduced the 4 experimental conditions (0%, 30%, 60%,
and 90% increased jitter) in 1 min sub-blocks. Each 6 min text was
divided into sub-blocks of ~1 min (59.2—61.3 s) and the speech within
this sub-block was manipulated according to the respective condition.
The order of the conditions across texts and sub-blocks was pseudoran-
domized (see Fig. 2A). In total, we obtained 12 continuous 1 min blocks
for each of the 4 conditions. Given that each original sample was used
only once, each condition was based on distinct acoustic material with a
clearly defined distribution of silent periods.

To obtain a behavioral assessment of speech intelligibility and to main-
tain the subject’s attention during EEG recordings, we instructed partic-
ipants to pay attention and to listen carefully to be able to complete a
memory task after each block. At the end of each block, participants were
presented with 12 words (nouns) on a computer monitor and had to
indicate whether they had heard this word or not by pressing one of two
buttons. Two words per block were taken from each sub-block, allowing
us to compute performance separately for each condition (see Fig. 2B).

To judge the quality of auditory evoked responses in each participant,
we also recorded responses to a brief acoustic localizer stimulus during
passive listening (Ding and Simon, 2013). We presented 10 trials, each
consisting of a sequence of 10 500 Hz tones (150 ms duration including a
30 ms on/off cosine ramp) spaced randomly between 400 and 700 ms
apart.

Recording procedures. Experiments were performed in a dimly light
and electrically shielded room. Acoustic stimuli were presented binau-
rally using Sennheiser headphones while stimulus presentation was con-
trolled from MATLAB (The MathWorks) using routines from the
Psychophysics toolbox (Brainard, 1997; Pelli, 1997). Sound levels were
calibrated using a sound level meter (Model 2250; Briiel & Kjer) to an
average of 65 dB RMS level. EEG signals were continuously recorded
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using an active 64 channel BioSemi system using Ag-AgCl electrodes
mounted on an elastic cap (BioSemi) according to the 10/20 system. Four
additional electrodes were placed at the outer canthi and below the eyes
to obtain the electrooculogram. Electrode impedance was kept at
<25 k(). Data were acquired at a sampling rate of 500 Hz using a low-
pass filter of 208 Hz.

General data analysis. Data analysis was performed offline with
MATLAB using the FieldTrip toolbox (Oostenveld et al., 2011) and
custom-written routines. The EEG data from different recording blocks
were preprocessed separately. The data were low-pass filtered at 70 Hz,
resampled to 150 Hz, and subsequently denoised using independent
component analysis. Usually, one or two components reflecting eye-
movement-related artifacts were identified and removed following defi-
nitions provided by Debener et al. (2010). In addition, for some subjects,
highly localized components reflecting muscular artifacts were detected
and removed (O’Beirne and Patuzzi, 1999; Hipp and Siegel, 2013). To
detect potential artifacts pertaining to remaining blinks or eye move-
ments, we computed horizontal, vertical, and radial EOG signals follow-
ing established procedures (Keren et al., 2010; Hipp and Siegel, 2013).

For the analysis of evoked potentials and oscillatory activity, the data
were epoched (—0.8 to +0.8 s) around the end of each pause; that is,
around the syllable onset after each pause. Potential artifacts in the ep-
oched data were removed using an automatic procedure by excluding
epochs if on any electrode the peak amplitude exceeded a level of £110
V. In addition, we removed epochs containing excessive EOG activity
based on the vertical and radial EOGs. Specifically, we removed epochs in
which potential eye movements were detected based on a threshold of 3
SDs above mean of the high-pass-filtered EOGs using the procedures
suggested by Keren et al. (2010). Together, these criteria led to the rejec-
tion of 12 * 8% (mean * SD) of epochs across participants. Evoked
responses for each condition were obtained by epoch averaging after
low-pass (20 Hz, third-order Butterworth filters) and high-pass (1 Hz)
filtering and baseline normalization (—0.8 to 0 s). Complex valued time-
frequency (TF) representations of the epoched data were obtained with
Morlet wavelets using a frequency-dependent cycle widths to allow more
smoothing at higher frequencies (Griffiths et al., 2010), ranging from 3.5
cycles at 2 Hz to 6 cycles at 30 Hz. TF representations were computed at
1 Hz frequency steps between 2 and 16 Hz and 2 Hz frequency steps
between 16 and 30 Hz. The TF power spectrum was obtained by epoch
averaging and Z-scoring the power time series in each band by the mean
and SD over time within this band (Arnal et al., 2015; Wilsch et al.,
2015a). Importantly, before computing the TF representation for power,
we subtracted the trial averaged evoked responses for each condition
from the single trial responses (Griffiths et al., 2010), thereby ensuring
that the analysis of power specifically focused on so-called induced oscil-
lations and therefore activity that is not strictly time locked to the epoch
(Tallon-Baudry and Bertrand, 1999). The intertrial phase coherence
(ITC) was obtained by computing the length of the epoch averaged com-
plex representation of the instantaneous phase. To obtain a better sepa-
ration of syllable onsets and the preceding pauses, we restricted this
analysis to pauses with a minimal duration of 0.05 s. The analysis of
evoked potentials and oscillatory activity was performed separately for
epochs falling in each of the experimental conditions, ensuring that the
same number of epochs was used per condition. As a control, we repeated
these analyses after grouping pauses into four equi-populated groups
defined by their duration (grouping by the 0-25™, 25-50", 5075,
and 75-100 ™ length percentiles). This analysis served as control to verify
that statistical approach was sufficiently sensitive to find potential
changes across experimental conditions. We expected to find significant
changes in evoked responses and ITC with longer pause duration.

For the auditory localizer paradigm, we analyzed the evoked responses
as above using epochs (—0.5 to +0.5) around each individual tone. For
most participants, this resulted in a strong and centrally located auditory
evoked response. We used this to exclude participants not exhibiting a
clear auditory evoked response. For the present study, this was the case
for three of the 19 participants. Therefore, results reported in this study
are from a sample of n = 16 participants.

Analysis of entrainment. To compute the statistical relation between
EEG activity and the acoustic stimulus, we used the framework of mutual
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information (MI) (Quian Quiroga and Panzeri, 2009; Panzeri et al.,
2010). Following previous studies, we computed the MI between band-
limited components extracted from EEG data and from the sound am-
plitude envelope in the same frequency bands (Kayser et al., 2010; Cogan
and Poeppel, 2011; Gross et al., 2013; Ng et al., 2013). The wide-band
speech amplitude envelope was computed using nine equi-spaced fre-
quency bands (100 Hz-10 kHz) at a temporal resolution of 150 Hz fol-
lowing the methods of Gross et al. (2013). Both the wide-band envelope
and the EEG data were then filtered into 10 partly overlapping frequency
bands using Kaiser filters (1 Hz transition bandwidth, 0.01 dB pass-band
ripple and 50 dB stop-band attenuation; forward and backward filtering
was used to prevent phase shifts). The precise bands were 0.25-1, 0.5-2,
1-4,2—-6 Hz, 4-8, 8-12, 12-18, 18-24, 2436, and 30—48 Hz. The MI
was then computed between the Hilbert representation (or the power, or
phase) of the band-limited EEG data on each channel and the Hilbert
representation (or the power or phase) of the band-limited amplitude
envelope (Gross et al., 2013). The calculation was performed twice, once
using the entire data from each block to yield the overall acoustic infor-
mation and once separately for each condition.

The MI was calculated using a binless, rank-based approach based on
statistical copulas. This method greatly reduces the statistical bias that is
inherent to direct information estimates (Panzeri et al., 2007) and is
highly robust to outliers in the EEG data because it relies on ranked rather
than raw data values. The theoretical background is provided by the
observation thata copula expresses the relationship between two random
variables and that the negative entropy of a copula between two variables
is equal to their mutual information (Ma and Sun, 2008; Kumar, 2012).
On this basis, we estimated MI via the entropy of a Gaussian copula fit to
the empirical copula obtained from the observed data. Whereas the use of
a Gaussian copula does impose a parametric assumption on the form of
the interaction between the variables, it does not impose any assump-
tions on the marginal distributions of each variable. Further, because the
Gaussian distribution has maximum entropy for a given mean and co-
variance, this method provides a lower bound of the true information
value. In practice, for a given data vector, we calculated its empirical
cumulative distribution by ranking the data points, scaling the ranks
between 0 and 1, and then obtaining the corresponding standardized
value from the inverse of a standard normal distribution. We then com-
puted the MI between the two time series consisting of standardized
variables using the analytic expressions for the entropy of Gaussian vari-
ables (Cover and Thomas, 1991). Note that this procedure is conceptu-
ally the same as for other approaches to mutual information using a
binning procedure (Panzeri et al., 2007), but rather than associating each
pointin a time series with a bin index (indicating the binned amplitude of
the respective value), we used the standardized rank of each value com-
puted within the entire time series. Conceptually, this can be imagined as
computing correlations between two time series based on a rank corre-
lation rather than a Pearson correlation. For the present analysis, we used
the real and imaginary parts of the Hilbert representation of the dataas a
2D feature vector to compute the MI and each component was standard-
ized separately. We also repeated the analysis by extracting the phase and
power of the Hilbert representation and using these as data representa-
tions (see also Gross et al., 2013). As in previous work (Luo and Poeppel,
2007; Belitski et al., 2010; Gross et al., 2013; Ng et al., 2013), we found that
the majority of the MI was carried by the phase of the band-passed signals
rather than their power (cf. Fig. 34, right). Unless stated otherwise, all
results are based on the full Hilbert representation.

We computed the MI separately for each sub-block and averaged the
resulting values across sub-blocks within each condition. To derive an
estimate of the information value observed due to random variations in
the data, we used a randomization procedure (Montemurro et al., 2007;
Kayser et al., 2009). We estimated the MI after time shifting the acoustic
envelope by a random lag, which destroys the specific relation between
acoustic input and EEG activity but preserves the statistical structure of
each individual signal. Based on a distribution of 1000 randomized val-
ues for each participant, we derived the group-level probability that the
subject-averaged MI values at each electrode exceeded the 99% confi-
dence interval of the null distribution. We corrected for multiple tests
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across electrodes and bands using the maximum statistics (Nichols and
Holmes, 2002; Maris and Oostenveld, 2007).

We also repeated the MI analysis by restricting the calculation to those time
epochs used for the analysis of evoked responses. Specifically, we used the interval
of —0.1 sbefore and 0.4 s after the detected syllable onset following each pause to
calculate MI for each condition. Finally, to quantify the overall signal power
within each of these frequency bands (see Fig. 1D), we averaged the power of the
Hilbert signals over all time points within each sub-block.

Statistical analysis. Our main hypotheses concern changes in MI, evoked po-
tentials, or induced oscillatory power across the experimental conditions. There-
fore, our statistical analysis focused on systematic increases or decreases across
conditions. We implemented a two-level statistical approach using a cluster-
based permutation procedure controlling for multiple comparisons for all re-
gression analyses (Maris and Oostenveld, 2007; Strauss et al., 2015). First-level
contrasts reflecting systematic increases or decreases with conditions were de-
rived using single-subject data based on rank-ordered regression of the observed
data with the condition label (1-4). We used rank-regression rather than linear
regression because the latter carries the implicit assumption of equal differences
between conditions, which may not be justified. In practice, however, we found
little difference between the tests. Beta values for the regression were obtained for
each electrode and TF bin (where applicable). The second-level group statistical
analysis used a cluster-based permutation procedure implemented in Fieldtrip
(Maris and Oostenveld, 2007). This procedure tests the first-level statistics
against zero controlling for multiple comparisons (detailed parameters: 1000
iterations, including only bins with ¢ values exceeding a two-sided p < 0.05 in the
clustering procedure, requiring a cluster size of at least 2 significant neighbors,
performing a two-sided t test at p << 0.05 on the clustered data). For MI, this test
was performed across all electrodes and frequency bins and, for evoked poten-
tials (ITC or power), across all time (TF) points but restricting the analysis to
frontocentral electrodes exhibiting significant overall acoustic information (see
Fig. 4, inset).

Effect sizes for cluster-based -statistics are reported as the summed t value
across all bins (electrode, time, frequency) within a cluster (T,,,) and by
providing the equivalent r value that is bounded between 0 and 1 (Rosenthal
and Rubin, 2003; Strauss et al., 2015). The equivalent r was averaged across

all bins and denoted R. We provide exact p values where possible (for para-
metric tests), but values <10 ~> are abbreviated as such.

Given that potential effects of our experimental conditions may be
more prevalent after a longer compared with a shorter pause, we per-
formed a secondary analysis of interaction. Having identified time or TF
regions of interest based on group-level statistics, we subjected the time
(TF) averaged data to a 2 X 2 ANOVA to test for an interaction of
condition and pause duration. To reduce the number of effective condi-
tions, we only considered two levels of manipulation (grouping 0% and
30% jitter and grouping 60% and 90% jitter, each one category each) and
only two levels of duration (defined by the lowest and highest 30 ™ per-
centiles of the distribution of all durations).

Results
Manipulation of speech rate
We systematically manipulated the rhythmic structure of speech
arising from the alternation of periods of articulation and relative
silence; that is, the speech rate (Tauroza and Allison, 1990; Zell-
ner, 1994). Based on a corpus of 8 6-min-long texts, we first
segmented the speech amplitude envelope into periods of acous-
tic signal and pauses by using a thresholding procedure (Fig. 14,
left). We then manipulated the statistical distribution of these
pauses by randomly shortening or extending their duration in a
manner that preserved their overall mean duration but increased
the jitter (SD). This is illustrated in Figure 1A for one example
segment, showing the pauses in the original segment (top) and
after increasing the jitter by 60% (bottom). Directly comparing
matching pauses (color code) across the two samples illustrates
the local changes in speech rate while the overall rate and text
duration are maintained.

Across the 8 texts, our algorithm recovered 6300 pauses,
with an average duration 0f0.233 s and an SD 0f 0.289 s. Based
on the broad distribution of pause durations (Fig. 1B), these
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Experimental design and behavioral results. 4, Design of the EEG study. Each of the 8 6-min text samples was presented once and the 4 conditions were introduced in 1 min sub-blocks.

The order of conditions was randomized across (sub-) blocks to obtain n = 12 unique 1 min text segments for each condition. B, Behavioral recognition performance across participants (n = 16;

mean and SEM).

include both intrasegmental and interlexical pauses; that is,
periods between syllables within a word as well as periods
between words or sentences (Zellner, 1994; Loukina et al.,
2011). However, the average duration of ~230 ms and the
peak at even shorter durations is consistent with syllable rate
segmentation rather than a word-based segmentation (Tau-
roza and Allison, 1990). Our experimental manipulation thus
altered the regularity of the speech rate largely on the basis of
local syllable-scale manipulations.

For this study, we used four conditions consisting of the orig-
inal rate (0% manipulation) and three conditions with systemat-
ically increased jitter (30%, 60%, and 90%). We verified that our
manipulation increased the jitter without significantly affecting
the mean duration of pauses (i.e., global speech rate). To this end,
we compared directly the distributions of pauses in the original
material and the same text segments after introducing the manip-
ulation (Fig. 1C). Changes in mean duration were <5 ms and did
not differ significantly between conditions (one-way ANOVA
F5,) = 037, p = 0.7). In contrast, changes in jitter differed
significantly between conditions (F, ,,, = 9.9, p = 0.0008) and a
regression of the mean change revealed a significant increase in
jitter with condition (r*=10.95F= 651, p = 0.024). For com-
pleteness, Figure 1B also shows the distribution of the introduced
changes in pause duration across the full corpus.

The sound amplitude envelope is a critical determinant for the
entrainment of auditory cortex activity (Peelle and Davis, 2012;
Doelling et al., 2014; Ding and Simon, 2014) and we verified that
the statistical properties of the amplitude envelope of the manip-
ulated material were comparable across conditions (Fig. 1D). We
computed the power of the speech envelope of each text segment
as it was presented during the experiment and then compared the
power of envelope fluctuations between conditions using the
same frequency bands as for the analysis of cortical entrainment
below. This revealed no significant effect of condition on band-
limited power for any of the frequency bands (one-way ANOVA;
e.g., 0.25 Hz: F5 55y = 0.71, p = 0.55; 0.5 Hz: F = 0.37,p = 0.77;
1 Hz: F = 0.79, p = 0.5 2 Hz: F = 2.0, p = 0.12; Fig. 1D).

During the experiment, we presented the different levels of
manipulation in a block design (Fig. 2A) in which each level of
jitter was present for 1 min and followed by another level in a
pseudorandom sequence. Given the statistical nature of the ma-
nipulation, the transition between conditions was perceptually

continuous rather than discrete. However, because we were not
interested in the perceived rhythmicity of the speech, but rather
the impact of the statistical regularity on brain activity, we pooled
data from the full 1 min segments for analysis.

Behavioral results

The manipulation imposed on the local speech rate affected the
timing of individual words or syllables, but did not distort the
acoustic structure of these. As a result, it did not affect speech
intelligibility. The behavioral reports obtained after each block
confirmed that, across participants (n = 16) words were identi-
fied equally well across conditions: there was no significant effect
of condition on recognition rates (one-way ANOVA, F; 45 =
0.56, p = 0.64; Fig. 2B).

Cortical signatures of auditory entrainment

The entrainment of rhythmic auditory activity to the speech en-
velope can be measured by quantifying the consistency of the
relative timing between brain activity and the envelope, for ex-
ample, by measures of the relative phase locking between changes
in both signals (Luo and Poeppel, 2007; Peelle and Davis, 2012;
Gross, 2014). One approach that has proven to be versatile with
respect to the neural signals of interest and that is robust to data
outliers is the MI between brain activity and sound envelope
(Belitski etal., 2010; Cogan and Poeppel, 2011; Gross et al., 2013).
Following this approach, we separated the EEG data into band-
limited signals between 0.25 and 48 Hz and calculated the MI
between the Hilbert representations of the speech signal and of
the EEG activity separately for each band. We first performed this
analysis across the full 6 min text samples to quantify the overall
acoustic information carried by different electrodes and bands.
Based on group-level randomization statistics controlling for
multiple comparisons, we found significant (p < 0.01) MI over
central and frontal electrodes at frequencies <12 Hz. No signifi-
cant MI was found for any of the bands starting at 12 Hz or above
(Fig. 3A). The highest MI occurred in the two delta bands: 0.25-1
and 0.5-2 Hz. The topographies for these bands reveal a slight
dominance of the right hemisphere, but MI values were signifi-
cant for a large cluster of central and frontal electrodes. Addi-
tional analysis revealed that the MI between EEG activity and the
speech envelope was carried mostly by the phase and not the
power of both signals (Fig. 3A, right); computing MI for power
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Entrainment of EEG activity to the speech envelope. 4, Overall entrainment. For each frequency band, we quantified the Ml between band-limited EEG activity and the speech amplitude

envelope in the same band across the full eight text samples. Left, Topographies displaying the MI values averaged across participants (n = 16) for all bands containing significant clusters (MI
calculated using the Hilbert representation of each signal; p << 0.01 permutation statistics; dark dots). Right, MI within a region of interest (frontocentral electrodes; see inset) across participants
together with the 99% confidence interval (permutation statistics; red). Black, Ml obtained from the Hilbert representation of each signal; cyan, Ml obtained using power; magenta, Ml obtained
using phase (see also Materials and Methods for details). B, Reduction of MI with manipulated speech rate. Left, Group-level statistics for systematicincreases or decreases in Ml (based on the Hilbert
representation) across conditions, frequency bands, and electrodes (sorted according to their label). Right top, Delta band topography (0.5-2 Hz). Dark dots are cluster of electrodes with a significant
decrease in Ml with increasing jitter in speech rate (p << 0.01; permutation statistics). Right bottom, Ml values for the delta cluster across participants (mean and SEM). C, Group-level statistic for
changes in band limited power of EEG activity across conditions. There was no significant effect (at p << 0.05).

only revealed no significant clusters, whereas the MI for phase
was highly significant, an observation that is highly consistent
with previous studies (Gross et al., 2013; Ng et al., 2013).

Speech rate manipulation reduces entrainment

We then calculated MI separately for each sub-block (Fig. 3B).
Using regression statistics on single-subject data, we tested
whether and for which electrodes or frequency bands entrain-
ment significantly and systematically changed across conditions.
Group-level statistics revealed a significant cluster of electrodes
for which MI decreased with increasing jitter in the delta bad
(0.5-2 Hz; p = 0.0025; T§,,,,, = 120, 7 = 0.67), but not in any other
band. The delta cluster was concentrated over frontal and tem-
poral electrodes (Fig. 3B).

We ruled out that this decrease in entrainment was simply the
result of an overall decrease in the power of oscillatory EEG ac-
tivity (but see below for local changes in power). For each condi-
tion, we quantified the time-averaged power for those frequency

bands with significant entrainment (i.e., between 0.25 and 8 Hz).
Group-level regression statistics revealed no cluster in which
power changed significantly across conditions (p < 0.05; see Fig.
3C for t-maps).

Speech rate manipulation does not alter evoked responses

The reduction in delta entrainment with increasingly less predict-
able speech rate could reflect two processes. It could indicate a
reduced fidelity with which slow rhythmic activity tracks the reg-
ularity of the acoustic input in the absence of changes in the
encoding of individual sound tokens by time-localized brain ac-
tivity. Conversely, it could primarily reflect such changes in au-
ditory evoked responses to individual sound tokens, which are
then reflected in reduced entrainment (Ding and Simon, 2014).
To disentangle these possibilities, we quantified transient
changes in brain activity around the pauses and the subsequent
syllable onset. We first focus on responses time-locked to syllable
onsets, quantified by evoked potentials and the intertrial coher-
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Delta Ml decrease

Evoked potentials and changes in oscillatory activity around pauses and syllable onsets. A, Evoked potentials for each condition (left) and for pauses grouped by duration

(right). The top panel displays the epoch-averaged speech amplitude envelope (in peak-normalized units); the bottom panel the epoch- and participant-averaged evoked potentials for
frontocentral electrodes (see inset). Gray lines indicate epochs with a significant group-level effect (p << 0.05). Time 0 corresponds to the detected syllable onset following a pause. B,
TF maps showing the group-level statistics for a systematic effect of condition (or duration) on ITC within the electrode region of interest. Gray lines indicate TF clusters with a significant
group-level effect (p << 0.05). €, Same as in B but for induced oscillatory power. D, Average TF representations for induced power and ITC within the region of interest averaged across
all epochs and participants. Power was z-scored within each frequency band and participant. E, Topographies of the group-level effect for a systematic effect of condition of induced alpha
power separately for each of the two alpha clusters (at —0.1and +0.1s) revealed in C. F, Group-level statistics for a systematic effect of condition (duration) on entrainment for each
frequency band; Ml was calculated using only time epochs around articulation onset (—0.1to 0.4 s). G, Regression of delta band Ml on alpha power. Left, Correlation between changes
in alpha power (regression betas vs jitter level) versus changes in delta Ml across participants separately for each cluster. Results of separate Spearman’s rank correlations are indicated.
Right, Beta values (mean, SEM across participants) for each alpha cluster obtained from a joined regression model of delta Ml on both alpha clusters. The contribution of the early (—0.15)

cluster was significant, but that of the later (+0.1's) cluster was not (see main text).

ence of oscillatory activity. We restricted these analyses to a re-
gion of interest of frontocentral electrodes where we observed the
strongest entrainment (cf. Fig. 44, inset).

If changes in the regularity of speech rate were to affect the
encoding of subsequent syllables, then we would expect to find
changes in evoked responses at syllable onset. As a control anal-
ysis, we compared evoked activity between onsets selected based
on the length of the preceding pause. Based on the adaptive
mechanisms of auditory cortex, one would expect to find signif-
icantly reduced activity during longer pauses and significantly
stronger responses during articulation after longer pauses (Fish-
man, 2014; Pérez-Gonzélez and Malmierca, 2014).

Group-level regression statistics for an effect of condition re-
vealed no cluster with a significant change in evoked potentials
across conditions (p < 0.05; Fig. 4A, left). In contrast, we found
significant changes in evoked potentials with pause duration,
consisting of a reduction of evoked activity during longer pauses
(—=0.1 to 0.08 s: p = 0.0025, T,,, = 2700, r = 0.68) and an
increase in response during stimulation after longer pauses (0.16
t00.24s: p = 0.005, Ty,,,, = 809, 7 = 0.71). To ensure that the null
result for condition was not obscured by a potential interaction

between an effect of condition and pause duration, we subjected
the evoked responses in these 2 time windows to a2 X 2 ANOVA.
This replicated a main effect of duration (—0.1t0 0.08 s: F(, ¢, =
8.91, p = 0.004; 0.16 to 0.24 s: F = 7.68, p = 0.007) and a null
effect of condition (F = 0.2, p = 0.64 and F = 0.03, p = 0.86), but
did not reveal an interaction (F = 0.03, p = 0.87 and F = 0.12,
p=0.73).

Group-level regression statistics on the ITC of oscillatory ac-
tivity revealed no cluster with a significant change in ITC across
conditions (p < 0.05; Fig. 4B, left). Again, there was a significant
effect of duration (Fig. 4B, right) consisting of an increase in ITC
at frequencies <4 Hz with increasing pause duration (—0.1 to
0.5s;2—4 Hz; p = 0.002, Ty,,,, = 4566, r = 0.75). Again, there was
no interaction of condition and duration (effect of duration:
F(1,60) = 12.0,p = 0.001; condition F = 0.1, p = 0.75; interaction:
F = 0.42, p = 0.52). For illustration, Figure 4D displays the
subject- and epoch-averaged ITC TF distribution.

Speech rate manipulation reduces frontal alpha power
We then quantified changes in induced oscillatory power. We
subtracted the trial-averaged response before computing TF rep-



14698 - ). Neurosci., November 4, 2015 - 35(44):14691-14701

resentations of power (Griffiths et al., 2010). For illustration,
Figure 4D displays the subject- and epoch-averaged power for the
frontocentral region of interest. Group-level regression statistics
revealed significant effects of condition on induced power: we
found two TF clusters in the alpha band exhibiting a reduction in
power with increasing jitter (Fig. 4C, left). One cluster was found
during the pause preceding syllable onset (—0.16 to —0.06 s,
8-12Hz, p = 0.002, T,,,,, = 415, r = 0.67) and one cluster during
syllable onset (0.02 to 0.12 s, 12-15 Hz, p = 0.004, T, = 303,
r = 0.68). In contrast, there was no significant effect of duration
on induced oscillatory power (Fig. 4C, right). There was also no
interaction between condition and duration (tested for the com-
bined alpha clusters; F(, o) = 0.67, p = 0.40). To illustrate the
scalp distribution of the changes in alpha power, Figure 4E dis-
plays the topographies of the group-level statistics for each alpha
cluster. Both clusters are centered over left frontal regions.

Alpha power reduction correlates with reduced delta
entrainment

We then investigated whether the reduction in alpha power with
increasing jitter in speech rate correlates with the reduction of
auditory delta entrainment. We first verified that the decrease in
entrainment reported above for the entire text epochs was also
present locally within the epochs around syllable onset. Restrict-
ing the MI analysis to epochs around syllable onsets (—0.1 to
0.4 s), group-level regression statistics confirmed a significant
reduction in MI for the delta band (0.5-2 Hz; p = 0.002, T, =
45, r = 0.67; Fig. 4F) and revealed no significant effect for any
other band (p < 0.05). In addition, there was no significant
change in MI with duration (group-level statistics at p << 0.05).
We then quantified the predictive value of the power in both
alpha clusters on delta entrainment across participants. We first
compared the slope (regression beta vs condition label) of alpha
changes to the slope of entrainment changes across participants
(Fig. 4F, left). This revealed a significant Spearman correlation
for the early alpha cluster (—0.16 to —0.06 s; 7, = 0.61, p = 0.006,
p = 0.012 when Bonferroni corrected) but not for the later cluster
(0.02 to 0.12 s; r, = 0.10, p = 0.35). Further, entering both clus-
ters into a single joined regression of delta MI on alpha power
revealed a significant contribution of the early cluster (¢.,5) = 2.4,
p = 0.03; Fig. 4F, right), but not of the later cluster (5, = 0.38,
p = 0.70). Therefore, the reduction in frontal alpha power dur-
ing pauses is significantly related to the reduction in delta en-
trainment to the speech envelope during the following syllable
onset.

Discussion

We manipulated the rhythmic pattern in speech imposed by the
alternation of pauses and syllables. This pattern sets the time scale
of sound envelope fluctuations, provides a temporal reference for
expectation, and is critical for comprehension (Ghitza and
Greenberg, 2009; Giraud and Poeppel, 2012; Peelle and Davis,
2012; Hickok et al., 2015). We reduced the predictiveness of this
pattern by manipulating the local speech rate while maintaining
the overall rate, the power of the sound envelope, and intelligi-
bility. This provided several results: (1) a dissociation between
delta band (0.5-2 Hz) entrainment to the sound envelope, which
were reduced, and the encoding of sound transients by evoked
responses, which was preserved; (2) a dissociation between en-
trainment at delta (reduced) and higher frequencies (preserved);
and (3) a correlation between left frontal alpha power and subse-
quent delta entrainment. These results foster the notion that delta
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entrainment reflects processes that are under top-down control
rather than reflecting the early encoding of acoustic features.

Auditory entrainment as bottom-up reflection of acoustic
features

Rhythmic sounds induce a series of transient auditory cortical
activity that is time locked with the relevant acoustic features. In
vivo recordings demonstrated correlations between different
neural signatures of auditory encoding, such as population spik-
ing and rhythmic network activity within auditory cortex or be-
tween auditory spiking and human EEG (Kayser et al., 2009;
Szymanski et al., 2011; Ng et al., 2013; Kayser et al., 2015). It has
been suggested that auditory entrainment may to a large extent
reflect the recurring series of transient evoked responses in audi-
tory cortex (Howard and Poeppel, 2010; Szymanski et al., 2011;
Doelling et al., 2014). This hypothesis is also supported by the
observation that entrainment is strongest around sound envelope
transients (Gross et al., 2013) and is reduced when the speech
envelope is artificially flattened (Ghitza, 2011; Doelling et al.,
2014).

However, the notion of entrainment being a bottom-up-
driven process has been challenged based on changes in entrain-
ment with expectations, task relevance, or attention (Lakatos et
al., 2008; Peelle and Davis, 2012; Zion Golumbic et al., 2013;
Arnal etal., 2015; Hickok et al., 2015). Consistent with a view that
top-down mechanisms control entrainment, we demonstrate a
direct dissociation of early evoked responses reflecting the encod-
ing of sound transients in auditory cortices and delta entrain-
ment. We observed reduced entrainment in the absence of
significant changes in delta power or the delta fluctuations in the
speech envelope. Therefore, our results are best explained by a
reduced temporal fidelity with which high-level processes track
the speech envelope in the absence of changes in early auditory
responses. Although this interpretation resonates well with other
data favoring a top-down interpretation (see below), we note that
we cannot rule out bottom-up contributions of speech rhythm to
the observed changes in entrainment because the time scales of
entrained activity and our experimental manipulation partly
overlap.

The observed dissociation of delta entrainment and evoked
responses is also consistent with recent results disentangling the
functional roles of auditory network activity at different time
scales. By modeling the sensory transfer function of auditory cor-
tex neurons relative to the state of rhythmic field potentials, we
suggested that the sensory gain of auditory neurons is linked
more to frequencies >6 Hz, whereas the delta rhythms index
changes in stimulus-unrelated spiking (Kayser et al., 2015). As-
suming that auditory evoked potential reflects activity within au-
ditory cortex (Verkindt et al., 1995), these previous results
directly predict a dissociation of delta entrainment and evoked
potentials as observed here.

The absence of changes in evoked potentials with increasingly
irregular speech rate agrees with other work on the impact of
sentence structure on evoked potentials. Changes in evoked ac-
tivity with rhythmic primes or changes in speech accent were
found mostly later than 300 ms after syllable onset (Cason and
Schén, 2012; Goslin et al., 2012; Roncaglia-Denissen et al., 2013),
consistent with higher level processes relating to lexical integra-
tion (Haupt et al., 2008; Chennu et al., 2013). Our finding of
reduced left frontal alpha power with decreasing speech regular-
ity is consistent with such a hypothesis. Further, the absence of
changes in evoked potentials with condition also unlikely results
from a lack of statistical sensitivity because we observed a signif-
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icant effect of pause duration. The latter effect may reflect signs of
expectancy or adaptation of auditory processes, contributions
that are difficult to dissociate with the present data (Todorovic
and de Lange, 2012; Fishman, 2014; Pérez-Gonzalez and Malm-
ierca, 2014).

Multiple time scales of auditory entrainment

The rhythmic syllable pattern is important for speech segmenta-
tion (Rosen, 1992; Ghitza and Greenberg, 2009; Geiser and
Shattuck-Hufnagel, 2012). For example, phonemes placed at ex-
pected times or presented in concordance with a prominent beat
are detected more efficiently (Meltzer et al., 1976; Cason and
Schon, 2012). Our manipulation mostly concerned pauses of
about 250 ms or longer and thus affected speech regularity at the
scale corresponding to delta and theta frequencies. That speech
intelligibility and theta entrainment were preserved while delta
entrainment was reduced suggests functional differences be-
tween the entrainment at different time scales. Although auditory
entrainment per se has been reported for essentially all frequen-
cies between 0.5 and 10 Hz (Gross et al., 2013; Ng et al., 2013;
Ding and Simon, 2014), there is good evidence to support a dis-
sociation between individual frequencies. For example, acoustic
manipulations such as background noise or noise vocoding affect
theta entrainment and speech intelligibility in similar ways (Ding
and Simon, 2013; Ding et al., 2013; Peelle et al., 2013), whereas
intelligibility across participants tends to correlate with delta en-
trainment (Doelling et al., 2014; Ding and Simon, 2014). One
other previous study also found a dissociation of delta and theta
entrainment (Ding et al., 2013). The previous evidence thus sug-
gests that theta entrainment may more directly reflect the encod-
ing or parsing of acoustic features to guide speech segmentation,
whereas delta entrainment reflects perceived qualities of speech
such as irregular speech rate or top-down control over auditory
cortex.

Top-down control of entrainment
We suggest that the reduction of delta entrainment is induced by
top-down processes that are sensitive to acoustic regularities and
align rhythmic auditory activity to specific points in time (Schr-
oeder and Lakatos, 2009; Lakatos et al., 2013; Hickok et al., 2015).
Our results pinpoint the left frontal alpha activity as one key
player in this top-down control over auditory entrainment.
Consistent with our hypothesis, a recent study on functional
connectivity reported direct top-down influences on auditory
entrainment during speech processing that were stronger for
delta compared with theta entrainment (Park et al., 2015). This
study suggested that left inferior frontal regions modulate en-
trainment over auditory cortex, which is consistent with the an-
atomical connectivity between frontal and temporal cortices
(Hackett et al., 1999; Binder et al., 2004; Saur et al., 2008) and
increases in frontal activation during the processing of degraded
speech (Davis and Johnsrude, 2007; Hervais-Adelman et al.,
2012). Our results further show that delta entrainment correlates
directly with left frontal alpha activity, in particular with changes
in alpha power before the reduction of delta entrainment. Al-
though this correlation does not imply a causal relation, the fact
that alpha before syllable onset had a stronger correlation with
entrainment than alpha during articulation is at least positive
evidence. In addition, a recent study demonstrated the entrain-
ment of perception to speech rhythm in the absence of fluctua-
tions in sound amplitude or spectral content, suggesting a
linguistic driver of entrainment (Zoefel and VanRullen, 2015).
Frontal alpha activity has been implied in inhibitory processes
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and the disengagement of task-relevant regions (Klimesch, 1999;
Jensen and Mazaheri, 2010). Decreases in alpha power occur in
response to increased attention, memory retrieval, and other top-
down regulatory processes (Dockree et al., 2004; Hwang et al.,
2005) and index increased engagement of the respective regions.
Left prefrontal regions such as the inferior frontal gyrus (IFG)
are implicated in verbal tasks such as semantic selection and
interference resolution during memory (D’Esposito et al., 20005
Thompson-Schill et al., 2002; Swick et al., 2008) and their activity
has been shown directly to correlate negatively with frontal alpha
(Goldman et al.,, 2002). In addition, activity in the alpha band
may be directly involved in top-down functional connectivity, as
shown in the visual (Bastos et al., 2015) and auditory systems
(Fontolan et al., 2014). Therefore, the finding of reduced left
frontal alpha power with increasingly irregular speech rate is con-
sistent with an increasing activation of the left IFG, which then
influences auditory delta entrainment directly via top-down con-
nectivity (Park et al., 2015).
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