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The precise timing of action potentials of sensory neurons relative to the time

of stimulus presentation carries substantial sensory information that is lost

or degraded when these responses are summed over longer time windows.

However, it is unclear whether and how downstream networks can access

information in precise time-varying neural responses. Here, we review

approaches to test the hypothesis that the activity of neural populations pro-

vides the temporal reference frames needed to decode temporal spike

patterns. These approaches are based on comparing the single-trial stimulus

discriminability obtained from neural codes defined with respect to net-

work-intrinsic reference frames to the discriminability obtained from codes

defined relative to the experimenter’s computer clock. Application of this

formalism to auditory, visual and somatosensory data shows that information

carried by millisecond-scale spike times can be decoded robustly even with

little or no independent external knowledge of stimulus time. In cortex,

key components of such intrinsic temporal reference frames include dedicated

neural populations that signal stimulus onset with reliable and precise

latencies, and low-frequency oscillations that can serve as reference for

partitioning extended neuronal responses into informative spike patterns.
1. Introduction
Brain functions such as perception and action are based on neural representations

of the external world. An important question is therefore how the characteristics

of external events, for example sensory stimuli, are represented by patterns of

neural activity in the brain.

Neural responses can vary over short time scales—under 10 ms—and substan-

tial evidence suggests that the temporal structure of neural activity encodes

sensory information. In particular, knowledge of the precise spike times with

respect to the time of stimulus presentation adds information about sensory

stimuli that is irremediably lost if spike times are sampled with insufficient

temporal resolution [1,2]. Evidence that precise spike times carry sensory infor-

mation above and beyond the information contained in spike counts computed

over longer windows has been reported across different brain structures, from

peripheral to cortical areas and across sensory modalities [2–13].

The structure and information content of time-varying spike trains are typi-

cally analysed by aligning spikes and sensory events using a laboratory-based

computer clock that registers stimuli and neural events with supreme accuracy.

However, accessing information contained in the temporally precise relation-

ships between the timing of stimuli and that of the elicited spikes demands

that this temporal precision is preserved in the operations made to read out

these responses. This requires that the decoder perform at least two compu-

tations. First, the decoder must obtain precise knowledge about the timing of

sensory events (e.g. stimulus onset or a reference point during the stimulus
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time course). Second, the decoder must have access to a rep-

resentation of time intervals with some degree of precision.

These two basic operations are used for virtually any analysis

of spike patterns. They are used, for example, when comput-

ing a classical peri-event time-histogram using a division of

time into smaller and equally spaced time bins that are

aligned to stimulus onset.

These considerations raise the important question of how

the brain may succeed in interpreting the information carried

by the temporal variations of neural responses without the

benefit of a computer clock measuring perfect time intervals

and providing the exact time of stimulus presentation [14–16].

In conditions when the motor system actively initiates or

modulates the external event [15,17,18], sensory systems may

possibly receive a motor efference copy that reduces tempo-

ral uncertainty about stimulus timing [19–21]. However,

when sampling is not actively initiated and when the stimulus

appears suddenly and unpredictably, such efference mechan-

isms are not available and the system requires an intrinsic

temporal reference.

How the brain maintains a representation of time intervals

also remains unclear [22]. Some suggest the existence of a

common specialized—and perhaps centralized—mechanism

for all or most timing operations [23]. This view is difficult to

reconcile with the variety of time scales at which spike times

carry information. For example, in cortex, the temporal pre-

cision by which spike trains carry information varies with

the sensory modality: somatosensory stimuli are encoded

with millisecond-scale precision [6], auditory stimuli enco-

ded with precision of 5–10 ms [24,25], and most visual

studies report cortical encoding with precision of the order of

several tens of milliseconds [2]. Furthermore, even within a

sensory modality, the dominant time scale varies with the

dynamics inherent to the stimulus, with more rapidly develop-

ing stimuli requiring a finer temporal resolution for decoding

[24,26]. Given this heterogeneity of time scales, it is likely

that the ability to measure timing and to represent stimulus

time is distributed among different structures [27,28]. In par-

ticular, it is possible that the reference frames needed to

decode spike patterns are provided by the activity of the

local network itself [14,29–32]. Thus, a hypothesis that we

explore here is that sensory networks interpret time-varying

responses using an internally available reference frame.

In this review, we focus on the problem of how decoders

may extract information from spike times using different

reference frames. We first describe relevant analytical

approaches to address this problem and we then review

recent studies investigating intrinsic reference frames derived

from local network activity.
2. Information theoretic metrics to evaluate
different codes and reference frames

To study internal reference frames for sensory decoding, it

is necessary to have quantitative tools to assess the amount

of information carried by different putative coding schemes.

Shannon information, abbreviated hereafter as informa-

tion, offers a rigorous measure to compute single-trial

stimulus discriminability

IðS; RÞ ¼
X

r;s
Pðr; sÞlog2

Pðr; sÞ
PðrÞPðsÞ; ð2:1Þ
where P(r,s) is the joint probability of presenting a stimulus s
and observing a response r, and P(r), P(s) are the respective

marginal probabilities. Information quantifies the reduction

of uncertainty (i.e. the gain in knowledge) about the stimuli

obtained from a single-trial observation of a neuronal

response (averaged over stimuli and responses). Information

is measured in bits (1 bit corresponds to a reduction of uncer-

tainty by a factor of two) and is an upper bound on the

amount of knowledge about stimuli that can be extracted

by any decoding algorithm operating on neural responses.

The fact that mutual information quantifies single-trial stimu-

lus knowledge is particularly appealing because neural

systems usually must discriminate or identify stimuli on a

single encounter.

By evaluating the information carried by neural codes r

based on different response aspects (timing or number of

spikes) and defined relative to different reference frames, one

can evaluate the capacity of different candidate neural codes.

Below, we specifically compare the information obtained

from responses r quantified using the experimenter’s clock

with responses r defined using an internal reference signals.

Owing to the difficulties of computing stimulus–response

probabilities from finite amounts of experimental data [33],

information metrics are sometimes computed using an inter-

mediate decoding step. In this approach, one first computes

for any given response r the most likely stimulus sP that

elicited this response using a decoding procedure (e.g. tem-

plate matching) and cross-validation [34,35]. Then, the

information extracted through the stimulus reconstruction

scheme can be quantified as follows [34]:

IðS; SPÞ ¼
X

s;sp

QðsP; sÞlog2

QðsP; sÞ
QðsPÞQðsÞ; ð2:2Þ

where QðsP; sÞ is the joint probability that in a trial the decod-

ing procedure reports the presence of stimulus sP and the true

presented stimulus is s. The decoded information IðS; SPÞ
quantifies (in bits) the average knowledge gained, per trial,

when predicting the stimulus using a specific algorithm,

and takes into account both the fraction of correct decoding

and the spread of the decoding errors.
3. Decoding first post-stimulus spikes in
somatosensory cortex without knowledge of
stimulus time

We begin by considering how neurons in the whisker ‘barrel’

field of primary somatosensory cortex encode the identity of

a deflected whisker. Knowing which whisker has contacted

an object is thought to be part of the process by which rats

localize objects, and hence a key variable encoded in this

area [18,36–38].

In previous work, we analysed the responses, recorded in

anaesthetized animals from barrel cortex neurons, to discrete

single-whisker deflections. We found that spike times

measured with resolution of 5 ms or finer allowed the extraction

of approximately 50% more information about the identity of

the stimulated whisker than the information obtained when

counting spikes over post-stimulus windows of a few tens of

milliseconds [6,39]. Moreover, almost all the information

about whisker identity provided by the whole train of spikes

emitted after stimulus presentation was carried already by the
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Figure 1. Latency coding of stimulus location in rat somatosensory cortex.
Raster plot of the spike times of one example neuron recorded from
barrel-column D2 in rat somatosensory cortex in response to a sudden whis-
ker deflection applied at time 0. Each dot represents the time of a spike, and
each row represents a different stimulus presentation (trials ordered by
increasing first-spike latency). Responses to deflection of different whiskers
are plotted using different colours. X-axis represents post-stimulus time.
Vibrissae C1-3, D1-3, E1-3 were stimulated in this dataset, but only trials
in response to deflection of the four whiskers that elicited a significant
response are shown. Figure prepared from data published in [6].
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timing (or latency) of the first post-stimulus spike. In other

words, the timing of the first post-stimulus spike carried all

the information about stimulus identity, whereas all successive

spikes carried ‘old news’. This is owing to the extremely precise

whisker-dependent first-spike latency of these neurons (see

example in figure 1). Given that the information-bearing vari-

able (first-spike latency) is not even defined without

knowledge about stimulus timing, this system proves particu-

larly interesting for understanding how information in spike

times may be decoded using an internal reference frame.

The key may be in the relative timing of spikes. To illustrate

this, let us first examine the single-trial response of the

entire population. Figure 2a shows the responses of 100 non-

simultaneously recorded neurons in column D2 to one

deflection of its topographically matching whisker, D2, at

time t ¼ 0. Approximately 10 ms after stimulus onset many

neurons fired nearly simultaneously (grey area in figure 2a).

By 50 ms after stimulus onset, activity had returned to baseline

(figure 2a). Responses of these neurons to deflection of a differ-

ent, non-topographically matching whisker (D1) are shown

in figure 2b, where spikes were fewer and more distributed in

time. We have previously shown that summing the population

activity of neurons located within the same column does not

lead to a loss of information about whisker identity [41]. In

the following, we therefore consider the summed population

activity within a column, which is shown in figure 2c,d. This

summed population activity shows a stronger, shorter latency

response to the topographically matching whisker.

It is tempting to assume that coarse codes, for example spike

count over relatively large time windows, may be more robust

to temporal uncertainty about stimulus timing than codes rely-

ing on precise spike timing. To evaluate this hypothesis, we

investigated how decoding accuracy using the summed spike

count over long windows of the columnar population depends

on knowledge of stimulus timing. A decoder defining the
response r (equation (2.1)) as a columnar population spike

count exploits the fact that in the few tens of milliseconds

following stimulus onset more spikes are emitted in response

to stimulation of the topographically matching whisker than

to any other [6,42]. This suggests that spike counts regist-

ered in some post-stimulus window should discriminate the

stimulated whisker well. For the information analysis, we con-

sidered a population of n sequentially recorded neurons in

column D2 and varied n parametrically from 1 to 100. We

then computed how much information the columnar spike

count encoded about the stimulated whisker (D1 or D2), with

perfect discrimination corresponding to 1 bit of information.

We compared two cases. In the first case, we assumed

that the observer has precise knowledge about the time of

whisker deflection. Therefore, it counted the spikes in the

‘correct’ post-stimulus window ([0 þ50] ms) in which all

post-stimulus spikes are emitted. In this case, the resulting

population spike count carried a relatively high amount

(0.8 bits) of stimulus information. In the second case, we

assumed that the decoder has imprecise knowledge about

whisker deflection time and, as a consequence, observes

both the period of spontaneous activity preceding the stimu-

lus as well as the stimulus-evoked response. This observer

hence quantified the columnar population responses in the

time window [–500 þ 50] ms around stimulus time. As

spike counts are modulated by stimulus identity for only a

short window after whisker deflection, and rates of spon-

taneous spikes vary randomly across trials and stimuli, the

stimulus discriminability by this spike count became much

poorer (0.3 bits). The conclusion, perhaps counterintuitive,

is that integrating columnar spike counts over long windows

is not an effective way to make the neural code robust

to errors in the estimation of the stimulus time. In this

neural system, population spike counts can only be decoded

provided there is sufficiently precise knowledge of the

stimulus time to tell when to count spikes.

An alternative hypothesis is that registering the popu-

lation response with high temporal precision can actually

make the code more robust to errors in estimating the stimu-

lus timing. Figures 1 and 2a,b show that the first spikes

emitted by the 100 neurons in barrel D2 after stimulation of

their topographically matching whisker are much more pre-

cisely timed than second spikes or spikes emitted in

response to a non-topographically matching whisker. This

suggests that one can use the precisely aligned response

latencies of individual neurons to define a ‘columnar syn-

chronous response’ (CSR) event characterized by the firing

of at least a certain fraction f (here 17%) of neurons within a

short window Dt (here 5 ms) (figure 2c). We searched for

CSR events by moving a sliding window of size Dt through-

out the peri-stimulus time. The event occurred only in the

window [þ10 þ15] ms after deflection of the topographically

matching whisker and never during spontaneous activity or

after stimulation of a non-topographically matching whisker

[40]. This result is exemplified in one selected trial in figure

2c,d, but it held perfectly for all trials. To compute the infor-

mation encoded by the columnar latency, we called the time

at which the first CSR event was detected in a given trial the

‘columnar latency’ and we used this as neural code r in

equation (2.1). We then computed information from the

columnar latency and found that it surpassed that of spike

counts and reached the 1 bit value corresponding to perfect

discrimination (figure 2e). Moreover, and unlike the spike
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Figure 2. Extracting clock-free information about the identity of a stimulated whisker from single-trial responses of a barrel column to whisker deflection (a) Raster
plots of the spike times emitted in a single example trial by 100 neurons recorded non-simultaneously in barrel-column D2 around the time of deflection of the
principal whisker D2. The grey area denotes the time window when many neurons synchronously fire their first post-stimulus spike (b) Raster plots of the spike times
emitted in a single example trial by 100 neurons recorded non-simultaneously in barrel-column D2 around the time of deflection of the whisker D1 (c) The time
course (sampled in 5 ms bins) of the summed activity of the whole population of D2 neurons around the time of deflection of D2 whisker in the same trial plotted
in (a). The dashed horizontal line plots the threshold used to detect a ‘CSR’ event. (d ) The time course of the summed activity of the whole population of D2
neurons around the time of deflection of D1 whisker in the same trial plotted in (b). (e,f ) The information about whether whisker D1 or D2 was deflected, obtained
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counts, if enough cells were included in the calculation of CSR

events then the information carried by the columnar latency

was robust to the insertion of long periods of spontaneous

activity in the window to be analysed (figure 2f ).
Columnar latency reflects two aspects: CSR presence and

CSR timing. An interesting question regards the role of these

two aspects in the information advantage of the columnar

latency over the columnar spike count. For small number of

neurons, CSR events are noisy, so CSR timing can add

some information about whisker identity to that carried by

CSR presence. This expectation is compatible with the finding

that for single neurons or pairs the first-spike latency carries

approximately 50% more information about whisker identity

than counting the spikes in the early response part [6,39,40].

When using 100 neurons per column, the detection of CSR
is 100% robust, and so CSR timing cannot add much infor-

mation about whisker identity. However, with 100 neurons

per column the timing of CSR events is reproducible in

each trial with millisecond precision [40], showing that

CSR timing faithfully signals the timing of deflection of the

topographically matched whisker.

These considerations suggest that in this dataset for

large enough numbers of neurons the stimulus-dependent

millisecond-precise latency aligns the spikes of different neur-

ons in the same column to fulfil two information-coding

goals: the presence of a simultaneous co-activation in a

given column signals the stimulation of the topographically

matching whisker (and thus codes whisker identity), whereas

the timing of this co-activation signals the timing of this

stimulation (and thus codes stimulus time).
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These calculations do not take into account the effects

of correlated noise, because they are based on a pseudo-

simultaneous response array. To test for the effect of correlated

variability, we generated simulated correlated spike trains that

matched exactly the true population-averaged time-dependent

firing rate of the neurons (sampled with 1-ms bins) and the true

pairwise cross-correlations of neuronal pairs within the same

column in each bin [39,40]. When the simulated population

of 100 cells per column with realistic correlation values was

tested, performance of the columnar latency difference decoder

was unchanged [40], suggesting that the results presented here

would only be mildly affected by correlated noise.

Here, we presented results on the robustness of the codes

to ‘backwards’ errors in knowledge of stimulus time that led

to including in the analysis periods of prestimulus activity.

This was because we were interested in the robustness of

first-spike detection to spontaneous activity. However, it is

important to bear in mind that ‘forward’ errors in the stimu-

lus time (i.e. when stimulus time is estimated to happen later

than it really does) can also be profoundly detrimental for

reading out the information. For example, for transient

responses as those of the barrel cortex neurons analysed

here (figures 1 and 2), clearly a forward error of as little as

20 ms in detecting the correct stimulus start time would

mean a loss of essentially all information for both spike

times and spike counts.

Interestingly, similar mechanisms based upon short-time

integration of pooled population activity have been found

across different stages of the whisker pathway in a number

of behavioural conditions [43–45]. This suggests that a simi-

lar decoding mechanism may apply at several stages of the

whisker-processing pathway. In conclusion, the above analy-

sis suggests that detecting the millisecond-precise latency of

population activation leads to a reliable and highly informa-

tive decoding of stimuli that can be more robust than spike

counts to uncertainty about stimulus time.
4. Stereotyped neurons as population reference
for stimulus onset in auditory cortex

The above suggests that a neural population event could pro-

vide an estimate of the time of the stimulus, which could then

be used to measure the relative timing of subsequent spikes.

To understand how such a relative coding scheme could be

implemented as a general principle of information coding

in cortex, it is helpful to understand whether and how explicit

stimulus timing signals could be used in other cortical sen-

sory systems. To be a plausible ‘clock’, that signal must be

sufficiently robust to allow the extraction of information

also about complex natural stimulus features, in the alert

animal and without any external predictive clues about

stimulus timing. We investigated the viability of a relative

coding scheme and its robustness with regard to these

requirements in the auditory cortex of awake primates [46].

To this end, we recorded the responses of single neurons

from primary auditory cortex to naturalistic sounds (conspe-

cific vocalizations, vocalizations or noises of other animals)

using a paradigm minimizing predictive cues about stimulus

onset (figure 3a).

We first characterized the response latencies of these neur-

ons. Specifically, we detected the single-trial response latency

using a statistical algorithm and then computed the trial-
to-trial variability of the latency (computed as the standard

deviation of the latency across all trials to each stimulus, and

then averaged across stimuli). This revealed a clear dichotomy

within the population: some neurons achieved very low

latency variability, while most others attained much higher

levels of variability. For analysis, we partitioned the population

into two subpopulations using a single criterion: a threshold

applied to the latency variability (figure 3b). The subpopu-

lation of neurons with low latency variability was termed

‘stereotyped’ neurons to reflect the fact that they all had similar

onset latencies across stimuli. These made up 24% of the

total population. The neurons classified as those with larger

latency variability were termed ‘modulated’ neurons.

This grouping revealed further key differences: stereotyped

neurons responded to all tested sounds, whereas modula-

ted neurons responded only to some sounds, and stereotyped

neurons responded with very short latencies. The mean

latencies of stereotyped neurons (21.7+0.8 ms) were much

shorter than those of modulated neurons (72.0+4.6 ms; two-

sample t-test p , 1027). Example responses of one stereotyped

and one modulated neuron are shown in figure 3b.

The stereotyped neurons stand out because of their rapid,

reliable and invariant early responses. Their fast and non-

specific responses make them natural candidates as an intrinsic

time reference frame, relative to which the time-varying

responses of other stimulus-modulated neurons could be

measured. We tested this hypothesis by constructing two can-

didate codes r based on the spike times of modulated neurons

using two reference frames: the precise stimulus onset time

(external reference) or the latency of a simultaneously recorded

stereotyped neuron (internal reference). We found that the

responses of modulated neurons exhibited temporally precise

stimulus-modulated patterns of spike times relative to the

stimulus onset (figure 3c), emphasizing the high information

content of precise spike timing in auditory cortex [24,47].

These temporal response patterns were partly preserved

when the responses of modulated neurons were aligned to

the single-trial onsets derived from a simultaneously recorded

stereotyped neuron (figure 3c). Owing to the temporal

reliability of stereotyped neurons, little of the information

about sound identity carried by spike times relative to stimulus

onset was lost (figure 3d). Importantly, using another simul-

taneously recorded modulated neuron as an intrinsic

temporal reference proved much worse (figure 3d). This

shows that the selective pooling of stereotyped neurons is

necessary to form a reliable internal indicator of stimulus

timing. Using a modelling approach, we found that pooling

about 25 stereotyped neurons was sufficient to produce a refer-

ence signal that allows extracting more than 95% of the full

information provided by spike times measured relative to the

precise stimulus onset [46]. The relative timing of neural

responses to an intrinsically defined population event can

hence constitute a highly informative code also in the alert

animal and for complex and suddenly appearing stimuli.
5. Network oscillations as intrinsic reference
frame for partitioning spike sequences in
auditory cortex

The problem of temporal reference frames not only includes

the intrinsic detection of stimulus appearance, but also the
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internal representation of time intervals needed to partition

extended neural responses into informative spike patterns

during prolonged stimuli. A relevant example of such con-

tinuous and lasting stimulation comes from the auditory

system, which in real-life conditions is often faced with a

stream of sounds and has to represent individual sound

objects within a continuously evolving environment [48,49].

Examples are individual words in a spoken sentence,

a melody in a song or individual sounds appearing in a

cacophony of environmental noises. We performed a separate

study to test whether signals derived from the cortical

network can serve to define an intrinsic time frame relative

to which longer sequences of spike times can be interpreted.

To this end, we studied the responses of neurons recorded

from monkey primary auditory cortex during the presen-

tation of a 52 s continuous sequences of naturalistic sounds,

such as animal calls and environmental sounds, whose

sound waves are illustrated in figure 4a [25,50].

Figure 4b displays the response of one example neuron to

different chunks of the auditory stimulus (each chunk rep-

resents a different stimulus epoch for computation of

information and is indicated as ‘stim. 1’, ‘stim. 2’, etc. in

figure 4a,b). The raster plots display the spike trains evoked

on individual repeats of the sound sequence. Previous work

showed that partitioning these responses using the laboratory

clock to construct perfectly spaced and stimulus-aligned time

bins (time-partitioned spike trains; figure 4c) reveals spike pat-

terns that carry information with high temporal precision

(here few milliseconds, e.g. [24] and figure 4b).
We then investigated how one could obtain approximate

representations of such time-partitioned responses using a

reference frame defined purely in terms of intrinsic network

activity. In the first attempt, we considered whether neural

responses allow the identification of specific points during

the long stimulus sequence, for example by synchronous

population activity (as we exemplified above for the case of

barrel cortex). However, the responses of different neurons

during this long stimulus sequence proved quite hetero-

geneous, and moments of high firing rate for defining a

population signal were not shared by a sufficiently large

fraction of neurons. Similar heterogeneity has also been

observed in the whisker pathway when using stimuli with

complex dynamics [45,51], suggesting that synchronous

population events (such as the CSR above) are more robust

for isolated stimuli than during prolonged stimulation with

complex dynamics. As an alternative, we then considered

slow oscillatory network activity, which has previously

been suggested as potential reference signal for neural

processing [52]. Specifically, we focused on rhythms with

cycle lengths of 100 ms or longer, such as delta or theta

bands, which are often observed in sensory cortices during

naturalistic stimulation [25,53,54].

We hence asked whether the timing of network oscil-

lations, defined by their phase, allows the partitioning of

longer sequences of spikes. Slow rhythmic network activity

in the auditory cortex entrains to the presentation of natural

sounds [25,48,52,53,55]. This implies that the phase of such

oscillations can indicate salient points along the stimulus

http://rstb.royalsocietypublishing.org/
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trajectory and becomes reliably associated with the time pro-

gression of the continuously varying stimulus [56]. As a

result, phase differences can be used to measure time inter-

vals during stimulation. A temporal ordering of spike times

within an oscillation cycle can be thus achieved simply by

using phase intervals that mimic laboratory-based time inter-

vals. Importantly, such an oscillatory reference frame is

intrinsic to the cortical network. Its specific timing parameter,

namely the oscillatory phase, is likely to be directly accessible

to the local network [57,58]. This is because low-frequency

local field potentials (LFPs) reflect changes in neuronal excit-

ability that are spatially coherent over several millimetres [59]

and often accompanied by coherent fluctuations of neural

membrane potentials [60] whose low-frequency phase pro-

vides an effective reference signal for decoding spike

information [61]. Given that the majority of synapses are

made within local networks [62], pre- and postsynaptic neur-

ons likely have access to the same slow rhythm for the

majority of cortical connections.

We used the theta band (2–6 Hz) of LFP as an oscillatory

reference to construct time-dependent responses that preserve

the sequential order of spikes within the oscillation cycle. In
other words, the phase (i.e. the position within a cycle) of the

rhythm was used as a temporal reference (i.e. as a virtual

‘time axis’) for the temporal grouping of spikes. It should be

noted that given the natural variability of the network rhythm

these epochs are not necessarily equally spaced. In the example

figure, we used colours to represent four phase quadrants of the

oscillation cycle, and we then coloured spikes with the colour of

the phase quadrants at which they were emitted (figure 4b,c).

The phase-partitioned spike train code (abbreviated as phase-
partitioned) was constructed, within each time window T, as

the number of spikes occurring within each phase quadrant

(figure 4c). The temporal organization of the time-partitioned

and the phase-partitioned responses is illustrated for an

example neuron in figure 4b. The stimulus dependence of the

phase-partitioned responses is apparent in these coloured

raster plots. Stimulus information was calculated using differ-

ent epochs of the long sound sequence as stimuli (indicated

as ‘stim. 1’, ‘stim. 2’, etc. in figure 4a,b). We assessed the

efficiency of a phase-partitioned code by comparing its infor-

mation to that of the time-partitioned code and to that of the

code based on spike counts within the stimulus window

(the latter ignores the time structure of spikes altogether).

http://rstb.royalsocietypublishing.org/
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The gain of information in the phase-partitioned code

over the spike count was large (40%; population mean;

figure 4d). Moreover, the phase-partitioned code recovered

mostly (86%; figure 4d) of the information carried by the time-

partitioned code. Importantly, we found that the excess

information in either partitioning scheme over the spike count

was highly correlated across neurons (Spearman’s rank

correlation r¼ 0.87). Thus, good stimulus discrimination

afforded byone partitioning scheme implies good discrimination

performance in the other. Noteworthy, for some neurons the

information recovered by the phase-partitioned code was

higher than that in the time-partitioned code, suggesting that

the phase of firing of these neurons relative to the network

rhythm was more reliable and stimulus specific than the precise

timing to the stimulus itself [50].

These results hence foster the notion that network oscil-

lations may serve as a highly effective, biologically plausible

and purely internal reference frame that can create informative

spike patterns without requiring an external timing signal.
0120467
6. Intrinsic reference frames in visual cortex
It is important to consider whether the intrinsic reference

frames proposed above generalize across sensory modalities.

The existence of internal reference frames has previously been

investigated in visual cortex. Shriki et al. [63] studied the encod-

ing of visual orientation and also reported a subpopulation

of stereotyped neurons with reliable non-stimulus-selective

response latency. Similar to our results in the auditory system,

these visual ‘stereotyped’ neurons could be used to compute

informative spike times from other neurons with longer

and stimulus-selective latencies [63]. In addition, we could

show that slow visual cortical network oscillations also form a

reliable network-intrinsic reference for partitioning extended

neuronal responses into spike patterns that carry considerable

information about natural video clips [50].
7. Discussion
Previous work has accumulated considerable evidence show-

ing that the millisecond-precise timing of spikes may add

important information to that already carried by spike

counts [1]. However, the existence of information encoded

by temporal spike patterns does not guarantee that the ner-

vous system can make use of such temporally precise

codes. One commonly raised criticism is that spike-timing

information cannot possibly be accessed by a downstream

neuron if it is encoded in variables, for example post-stimulus

latency, which are defined with respect to external reference

frames and as such they are not directly accessible to biologi-

cal neural networks. As a result, understanding how spike

sequences may be decoded purely from intrinsic time refer-

ence frames is a key step in linking temporally precise

neural codes with behaviour. Studies over the last few

years began to investigate this problem, and the results

reviewed here provide a series of useful insights.

The first and the most surprising insight is that, differently

from what many investigators may believe, decoding by spike

count rather than spike timing does not make the readout of the

information more robust to imprecisions in the knowledge

about stimulus timing. We found that in somatosensory

cortex a spike count code could prove more fragile to the
uncertainty about stimulus timing than a spike-timing code,

mostly because of the time-dependent transient nature of

neural responses and the presence of spontaneous activity [40].

The second insight is that the population activity of the

network itself can constitute an adequate reference frame

for reconstructing informative spike patterns. Considerable

information can be recovered under challenging conditions,

including natural stimuli with unpredictable onset time [46]

or long stretches of natural stimuli [50]. In some cases, intern-

ally referenced codes may outperform externally referenced

ones [14,30,50]. This may, e.g. happen when variations in

spike timing are coordinated across neurons owing to a

common covarying factor. In this case, spike timing rela-

tive to the stimulus is more adversely affected than the

relative timing between neurons [64].

The third insight is that the encoding of stimulus time and

of stimulus identity seems to some extent to be separated into

distinct populations within a single area [46,63]. While some

neurons show time-dependent stimulus-selective responses,

other neurons with short-latency but stimulus-unselective

responses encoded stimulus time [46]. This draws renewed

attention to apparently unselective neurons that may have

been systematically ignored in previous work. These neurons

could act as ‘saliency detector’ neurons and may have the

function to ensure that the early post-stimulus part of

neural responses (which is the most informative one in many

cases [1,6,10,29]) is not missed out. Future work is required

to elucidate the exact morphological and biophysical proper-

ties and the location within cortical microcircuits of such

putative salience detection neurons. Future work also needs

to elucidate how these neurons interact with slow network

rhythms to collectively form reliable and precise intrinsic

temporal reference frames for neural coding.

It is important to bear in mind that the fact that the timing

of spikes relative to stimulus timing carries information

and that the brain has an effective intrinsic clock to read out

this information do not necessarily imply that the brain actu-

ally extracts information this way. These two conditions are

necessary, rather than sufficient, for spike timing of neurons

post-stimulus to be used in brain function. The brain may

well extract the same information from other features of popu-

lation activity. For example, information may be transmitted by

stereotyped spatio-temporal patterns of population responses

used to tag different stimuli or behavioural conditions and

not necessarily emitted with a precise relationship with the

stimulus presentation time [65–69].

Further work is required to directly link different candidate

neural codes to behaviour. A causal approach to investigate

which neural codes are used for behaviour is to manipulate

the temporal structure of neural activity and examine how

these manipulations cause changes in behaviour. In a series

of such studies, rats were trained to discriminate activity pat-

terns induced by electrical microstimulation in sensory cortex

[70,71]. These studies demonstrated that small time lags

between neural activations, of the order of few to few tens of

milliseconds, and similar in principle to the ones reviewed

here, can indeed be read out by downstream neurons. A stat-

istical approach to investigate which codes are used for

behaviour involves measuring how the information content

of different neural codes correlates on a single-trial basis with

behavioural performance during perceptual discrimination

tasks. This approach would benefit from the ability to record

a large number of neurons participating in the task. For cortical

http://rstb.royalsocietypublishing.org/
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systems, this requires further advances in multi-neuron

recordings enabling the sampling of sufficiently many neurons

with high temporal precision, together with advances

in the development of analytical procedures able to extract

low-dimensional descriptions of the spatio-temporal pattern

of population activity and to relate them to behaviour on a

trial-to-trial basis.

The work reviewed here does not tell us about how the

computations needed for decoding spike-timing information

may be implemented at the biophysical level. Insights about

this can be gained by computational models [72]. Sensitivity

to temporal spike patterns at different scales, for example, can

arise from synaptic mechanisms like short-term depression or

facilitation [73,74]. Recent work has emphasized how down-

stream learning and decoding of temporal patterns of spikes

can be implemented by spike-timing-dependent plasticity

(STDP). Downstream neural networks endowed with STDP

can easily localize a repeating spatio-temporal spike pattern

embedded in equally dense background spike trains, even

in the absence of an explicit time frame [75]. Such plasticity

of decoding mechanisms may be further facilitated by the

fact that internally referenced patterns of neural activity,

though stimulus modulated, show a degree of robustness in

their coarse structure across stimulation conditions and

during spontaneous activity [66]. Model neurons equipped

with STDP robustly detect a pattern of currents encoded by
the phase of a subset of afferents, even so when these patterns

are presented at unpredictable intervals [76]. In this respect,

one particular advantage of using oscillatory, rather than

transient, activity patterns is that learning patterns referenced

to the phase of oscillatory activity facilitates learning even

when only a fraction of afferents are organized according to

the phase [76].

Together, these observations corroborate the notion that bio-

physical mechanisms for transmitting, learning and decoding

spike-timing information based on internal temporal frames

codes exist and may be available within the microcircuitry of

cortical sensory structures [72,77].
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