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Abstract

The amount of digital data increases rapidly as a result of advances in information
and sensor technology. Because the data sets grow with respect to their size, com-
plexity and dimensionality, they are no longer easily accessible to a human user. The
framework of dimensionality reduction addresses this problem by aiming to visualize
complex data sets in two dimensions while preserving the relevant structure. While
these methods can provide significant insights, the problem formulation of structure
preservation is ill-posed in general and can lead to undesired effects.

In this thesis, the concept of discriminative dimensionality reduction is investigated
as a particular promising way to indicate relevant structure by specifying auxiliary
data. The goal is to overcome challenges in data inspection and to investigate in how
far discriminative dimensionality reduction methods can yield an improvement. The
main scientific contributions are the following:
(I) The most popular techniques for discriminative dimensionality reduction are based
on the Fisher metric. However, they are restricted in their applicability as concerns
complex settings: They can only be employed for fixed data sets, i.e. new data cannot
be included in an existing embedding. Only data provided in vectorial representation
can be processed. And they are designed for discrete-valued auxiliary data and cannot
be applied to real-valued ones. We propose solutions to overcome these challenges.
(II) Besides the problem that complex data are not accessible to humans, the same
holds for trained machine learning models which often constitute black box mod-
els. In order to provide an intuitive interface to such models, we propose a general
framework which allows to visualize high-dimensional functions, such as regression
or classification functions, in two dimensions.
(III) Although nonlinear dimensionality reduction techniques illustrate the structure
of the data very well, they suffer from the fact that there is no explicit relationship
between the original features and the obtained projection. We propose a methodology
to create a connection, thus allowing to understand the importance of the features.
(IV) Although linear mappings constitute a very popular tool, a direct interpretation
of their weights as feature relevance can be misleading. We propose a methodology
which enables a valid interpretation by providing relevance bounds for each feature.
(V) The problem of transfer learning without given correspondence information be-
tween the source and target space and without labels is particularly challenging. Here,
we utilize the structure preserving property of dimensionality reduction methods to
transfer knowledge in a latent space given by dimensionality reduction.
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Chapter 1.

Introduction

Chapter overview This chapter provides an informal introduction into the research topics investigated in

this thesis. Consequently the structure and the major contributions are presented.

1.1. Motivation

Due to developments in sensor technology and storing capacity, the availability of
digital data is growing vastly [65], thereby getting bigger as concerns their size, com-
plexity, and dimensionality. Accordingly, big data has been proclaimed as one of
today’s major challenges in the digital society [79, 32]. Computational intelligence and
machine learning techniques offer a fundamental approach to tackle a few of the in-
volved problems [179, 74, 61]. In almost all settings, however, data analysis is not fully
automated, but the human has to decide on the suitability of the used techniques,
often in an interactive way. Hence, it is vital to establish an intuitive access to digital
data and the possible outcomes of algorithmic steps for the practitioner. Since decades,
visual data inspection offers one premier interface in this setting, since it relies on one
of the most powerful human senses as well as the astonishing cognitive capabilities of
instantaneous visual grouping and feature detection [144, 171].

There exists a variety of classical machine learning tools which aim for intuitive
visual data inspection such as the self-organizing map (SOM) [83], generative topo-
graphic map (GTM) [19], Autoencoder [66], independent component analysis (ICA)
[71], or the Oja and Sanger learning rules [113, 139]. At their core, these methods rely
on a low-dimensional representation of the data. In the research branch of visual ana-
lytics, low-dimensional embeddings also constitute one popular mode for data analy-
sis, often realized by techniques such as scatter plots, tour methods or (mostly) linear
projections. Scatter plots offer one of the most prominent techniques to directly in-
spect data visually: here, data are displayed in two or three dimensions such that their
neighborhood relationships can directly be inspected. Phenomena such as clusters,
complex grouping, or outliers can easily be observed. For example, scatter plots con-
stitute an essential part in the pipeline to identify cell populations through gating in
flow cytometry [114]. Another example is the interactive analysis of complex metage-

1



2 Chapter 1. Introduction

nomic data [91]. For higher dimensionality, scatter matrices, parallel coordinates, tour
methods, glyphs and similar approaches have been proposed [144]. The field of visual
analytics employs such techniques, often together with suitable interactive settings,
to visually analyze data [78]. However, their applicability is limited in case of high-
dimensional data, since not all information available in the different dimensions and
their correlation can easily be integrated based on these simple methods.

In this context, dimensionality reduction plays a major role, referring to the task of
mapping high-dimensional vectors to low-dimensional counterparts such that as much
structure as possible is preserved. These techniques have a large history of success-
ful applications in various areas including biomedical analysis, network visualization,
image analysis, text mining, and so on [77, 116, 137, 135]. The abstract concept to pre-
serve the structure of the original data, however, has led to a plethora of mathematical
formalizations and resulting methods [94, 26, 77, 53]. Besides common and popular
linear techniques [16], more complex and nonlinear methods have been developed,
including manifold learning [135, 150] and neighbor embedding algorithms [159, 163].

One problem of unsupervised dimensionality reduction for data visualization con-
sists in the fact that this setting is inherently ill-posed: unless data are intrinsically
low-, i.e. two-dimensional, which is usually not the case for realistic signals, any
smooth embedding of the data into the visual plane necessarily sacrifices some of
the information present in the signals. This observation has been pointed out in the
overview [160]. Fortunately, data inspection and visualization is usually integrated
into a scenario with a specific underlying purpose: as an example, in medical data
visualization, the medical expert is interested in an exploration of the given data con-
cerning important aspects of a given disease, or a response to a specific treatment. In
this setting, there exists a very clear, albeit abstract guideline about which information
contained in the data can be abandoned by a dimensionality reduction technology,
namely all irrelevant aspects of the data regarding the given disease or response to
the treatment, respectively. This identifies a clear objective of what should be visu-
alized by the dimensionality reduction method and what should be discarded, albeit
an exact mathematical realization of this idea is difficult. In dimensionality reduc-
tion this observation has caused a line of research which is often put under the term
of discriminative dimensionality reduction (DiDi): given auxiliary information about
the data specifying which aspects of the data are interesting in a user-centered way,
visualize only those aspects of the data which are of relevance to this user speci-
fied objective. Examples where this principle has been investigated include the work
[35, 94, 103, 8, 50, 163, 26, 27].

Despite many advances in this area, the application of discriminative dimension-
ality reduction in complex settings poses technical challenges, which is one focus in
this thesis. How can these algorithms be reformulated such that they are applicable
to streaming data? These techniques rely on non-parametric projection techniques,
thereby directly assigning low-dimensional coordinates to each data point without us-
ing an explicit parametric function. Hence, a challenging problem is: How can these
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techniques be extend such that they are suitable for subsequently arriving data? An
additional crucial problem is the application to complex data: Currently, most DiDi
approaches are designed for data represented by vectors, only. For complex data,
however, it is often more convenient to define proximity measures on data instances
directly, instead of engineering a feature-based representation [51, 34]. Therefore, it
is unclear how these techniques can be employed for non-vectorial representations.
Another complex setting occurs if auxiliary information is no longer discrete, but con-
tinuous. Nonlinear DiDi approaches usually assume the former, which is the case e.g.
in classification settings. This poses the question: How can continuous auxiliary data
be integrated into successful DiDi techniques, occurring e.g. in regression scenarios?
These questions are addressed in chapter 2 of this thesis.

Apart from using DiDi tools for interactive data exploration, a promising alternative
way is to increase the interpretability of supervised machine learning models. These
are fit to a given data set in order to solve tailored tasks such as classification or
regression. During the optimization process, these models gather knowledge which
allows them to make qualified decisions, but it is often not possible to access the
reasoning behind these decisions. This raises the question of model interpretability.
Several possible remedies have been proposed, including relevance learning, feature
selection techniques, and sparse model descriptions, for example [117, 162, 138, 141,
67]. However, these methods focus on specific properties of the respective models and,
thus, allow to interpret only these aspects. None of them satisfactorily answers the
question: How can we visualize high-dimensional classifiers or regression models,
i.e. the core underlying function of these models? A key question in this context is how
to extend dimensionality reduction techniques such that they can also be employed to
visualize such functions. We target these questions in chapter 3.

Although nonlinear dimensionality reduction techniques constitute powerful tools
to embed high-dimensional data in a low-dimensional space, linear mappings are still
often preferred in practical applications [16]. One major reason for this is that linear
mappings provide information about the importance of the features for the given pro-
jection. However, linear mappings are restricted in their flexibility and, hence, often
yield inferior embeddings as compared to nonlinear non-parametric methods. Thus,
a central question in this context is: How can we determine relevant features for
nonlinear methods? Chapter 4 deals with this question.

Linear mappings constitute a prominent element, not only in the context of dimen-
sionality reduction, but in basically all fields of machine learning including regression,
classification or metric learning. One of the striking properties of linear models is that
they seemingly allow an interpretation of the relevance of input features by inspecting
their corresponding weighting; in a few cases, such techniques have led to striking
semantic insights of the underlying process [5]. Recent results, however, have shown
that the interpretation of linear weights as relevance terms can be extremely mislead-
ing in particular for high-dimensional data [149]. Hence, an important question is:
How can we extract a valid relevance profile from linear mappings? This requires to
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distinguish between strictly required features and features which can be replaced by
others but do carry relevant information. These aspects are addressed in chapter 4.

A core property of dimensionality reduction is that it preserves the intrinsic struc-
ture of the given data while projecting it to a low-dimensional space, thereby removing
noise. This characteristic makes it well suited to transfer knowledge from one domain
to another, i.e. if the same task should be performed in a different domain, e.g. due
to a sensor change. Successful applications in this context exist [20, 120, 143], but
they rely either on correspondence information between the different spaces or label
information. The particularly interesting task of transfer learning without labels and
correspondence information has been barely investigated. Or stated differently: How
can we transfer knowledge in an unsupervised setting without correspondence in-
formation? Chapter 5 of this thesis deals with this question.

1.2. Scientific contributions and structural overview

After having provided a basic motivation and raised relevant questions in the context
of discriminative dimensionality reduction and interpretability, we will address the
latter by proposing novel algorithms. The following gives a summary of the scientific
contributions of this thesis.

Discriminative dimensionality reduction in complex settings For the methodology of
discriminative dimensionality reduction based on the Fisher metric, we propose three
extensions which enable the application of DiDi techniques in more complex scenarios
in chapter 2.

• In section 2.2 we propose a parametric extension for nonlinear dimensionality
reduction. Since most modern DR and DiDi techniques are non-parametric, they
are restricted to a fixed data set and have to be recomputed if additional data
become available. Our contribution allows to process also sequentially arriving
data and to project large parts of a data set in linear time.

• After recalling the basic concepts for DiDi with the Fisher metric in sections 2.3
and 2.4, we propose a reformulation of the Fisher metric based DiDi framework
in section 2.5. It enables applications to complex data provided only by sim-
ilarities. This opens the way towards computing discriminative projections of
structured data for which a vectorial representation is difficult to obtain. Exam-
ples include musical pieces and graphs.

• In section 2.6, we present a novel technique to compute DiDi mappings for real-
valued auxiliary information based on the Fisher metric. This approach is based
on the idea to augment the computation of Fisher distances by allowing also
real-valued auxiliary information. This enables the computation of powerful
nonlinear embeddings of a data set with real-valued information emphasizing
the important structure.



1.2. Scientific contributions and structural overview 5

Visualization of functions in high-dimensional spaces In chapter 3, we propose a
framework to visualize a high-dimensional function together with a data set in two di-
mensions. We apply this scheme to visualize the underlying functions of classification
and regression models. At its core, this framework is based on computation of DR and
inverse DR projections. This framework is general in the sense that it allows to visual-
ize any classification or regression model and to employ any DR technique, including
DiDi methods. In the experiments, we demonstrate that the proposed framework ben-
efits from DiDi methods and that it allows to solve identified user tasks such as: How
complex are the decision boundaries of a classifier or the prediction function of re-
gression model in a specific region of the data space? Does overfitting/underfitting
behavior appear?

Interpretation of data mappings In chapter 4, two concepts for interpretation in the
context of data mappings are proposed.

• In section 4.2, we present a novel technique to estimate interpretable components
for nonlinear DR techniques. This methods creates a connection between the
information provided by the neighborhood structure in a nonlinear embedding
and the role of the original features. We evaluate this approach using data with
known ground truth and demonstrate its suitability for real world data from the
biomedical domain.

• In section 4.3, we propose a method which estimates valid relevance bounds for
a given linear mapping. This provides an estimation of feature relevance even
for high-dimensional and correlated features. We demonstrate this approach for
linear mappings occurring in regression and metric learning.

Dimensionality reduction for transfer learning In chapter 5, we employ the structure
preservation property of DR methods to develop a novel technique for transfer learn-
ing. This method is able to transfer knowledge from a source data space to a target
data space without requiring label or correspondence information. We demonstrate
this approach on artificial data and on a data set consisting of images.
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Chapter 2.

Discriminative dimensionality reduction

Chapter overview This chapter presents the general idea of computing discriminative dimensionality re-

duction mappings with the help of distances computed on a Riemannian manifold. This approach employs concepts

from the information geometry literature to shape the metric of the data space such that it emphasizes directions

important for the auxiliary information. We reformulate this framework such that it is applicable to proximity

data. We extend it for the case of real-valued auxiliary information, and we propose a methodology to compute an

out-of-sample extension.

Parts of this chapter are based on:

[J15b] A. Schulz, A. Gisbrecht, and B. Hammer. Using Discriminative Dimensionality Reduction to Visualize Classifiers.

Neural Processing Letters, 42(1): 27–54, 2015.

[J15a] A. Gisbrecht, A. Schulz, and B. Hammer. Parametric nonlinear dimensionality reduction using kernel t-SNE.

Neurocomputing, 147: 71–82., 2015.

[C16a] A. Schulz, and B. Hammer. Discriminative dimensionality reduction in kernel space. In ESANN 2016, pages

123–128, 2016.

[C15c] A. Schulz, and B. Hammer. Discriminative dimensionality reduction for regression problems using the Fisher

metric. In IJCNN 2015, pages 1–8, 2015.

2.1. Motivation

In the era of big data, efficient tools are required to make many data instances in-
tuitively accessible to the user at the same time. Dimensionality reduction methods
play a major role in this context. Dimensionality reduction (DR) refers to the prob-
lem of mapping high-dimensional data points to few dimensions such that as much
structure as possible is preserved. Starting with classical methods such as principal
component analysis (PCA), multidimensional scaling (MDS), or the self-organizing
map (SOM), it offers a visual data analysis tool which has been successfully used
in diverse areas such as social sciences or bioinformatics since decades [83, 175]. In
the last years, a huge variety of diverse alternative DR techniques has emerged, in-
cluding popular algorithms such as the generative topographic map (GTM), locally
linear embedding (LLE), Isomap, Isotop, maximum variance unfolding (MVU), Lapla-
cian Eigenmaps, neighborhood retrieval visualizer (NeRV), maximum entropy unfold-
ing (MEU), t-distributed stochastic neighbor embedding (t-SNE), and many others

9



10 Chapter 2. Discriminative dimensionality reduction

[135, 150, 173, 9, 159, 163], see e.g. [160, 163, 94, 26] for overviews. These methods
belong to nonlinear DR techniques, enabling the accurate visualization of data which
lie on curved manifolds or which incorporate clusters of complex shape, as is often
the case for real-life examples, thus opening the way towards a visual inspection of
nonlinear phenomena in the given data.

Many classical techniques such as PCA and SOM belong to the class of paramet-
ric methods. These techniques specify an explicit parametric mapping. Most recent
dimensionality reduction methods, on the other side, belong to the class of non-
parametric techniques: they provide a mapping of the given data points only, without
specifying an explicit parametric function. This choice has the benefit that it equips
the techniques with a high degree of flexibility: no constraints have to be met due to a
predefined form of the mapping, rather, depending on the situation at hand, arbitrary
restructuring, tearing, or nonlinear transformation of data is possible. Hence, these
techniques carry the promise to arrive at a very flexible visualization of data such that
also subtle nonlinear structures can be spotted.

Although nonlinear DR methods constitute powerful tools in the context of data
exploration, the general goal of structure preservation is ill-posed: If the intrinsic data
dimensionality is larger then the projection space (which is usually 2 for the purpose
of visualization), the methods have to deal with information loss. Thereby, the decision
which information to preserve can depend on several factors such as the mathemat-
ical formalization or even random aspects of the method. One possible remedy is to
specify auxiliary information indicating which changes of the data are important and
which can be neglected. Thereby, this information reduces the relevant dimensionality
of the data and enables a meaningful visualization. Class labels in a supervised set-
ting can be considered as one example for such auxiliary data. Techniques employing
auxiliary information for data visualization are called discriminative (or sometimes su-
pervised) dimensionality reduction methods. Techniques for discriminative dimension-
ality reduction (DiDi) aim to preserve that structure of the data which is particularly
relevant for the specified auxiliary data.

A variety of different classical discriminative dimensionality reduction techniques
has been proposed, such as the Fisher’s linear discriminant analysis (LDA), partial
least squares regression (PLS), informed projections [35], global linear transformations
of the metric [57, 27], or kernelization of such approaches [103, 8]. More modern
discriminative DR techniques include unsupervised DR based on the Fisher metric
[123], multiple relational embedding (MRE) [107], colored maximum variance unfold-
ing (CMVU or MUHSIC) [148], supervised Isomap (s-isomap) [52], parametric embed-
ding (PE) [72], and neighborhood component analysis (NCA) [57].

The recent paper [163] has conducted a study in order to compare these modern
methods for discriminative dimensionality reduction. They come to the result that
unsupervised neighbor embedding methods together with the discriminative Fisher
metric obtain a superior performance. This approach is based on the general idea to
locally modify the metric [123, 54]. A Riemannian manifold is defined which takes
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into account auxiliary information of the data and which measures the effect of data
dimensions in the feature space on this auxiliary information. Additionally, such a
formulation of DiDi is particularly elegant, since it can be integrated in any unsuper-
vised DR technique which requires distances, only. This can be done by replacing the
commonly used Euclidean distance by the Fisher distances, as has been done for the
SOM, NeRV and t-SNE in [123, 163] [J15a]. In this thesis, we will employ discrimina-
tive dimensionality reduction based on the Fisher metric since (i) it outperforms other
DiDi techniques as concerns their capability to embed the data while focusing on the
specified auxiliary information, (ii) it constitutes a general concept to incorporate aux-
iliary information into any distances based DR technique and such allows to find a
suitable combination for the task at hand, (iii) it is based on the formal mathematical
framework of information geometry, combining the concepts of Riemannian geometry
together with information theory and, such, providing a well founded mathematical
formulation instead of heuristic approaches.

However, the application of DiDi methods in complex domains requires to solve
open questions, such as the application to data given only by similarities or dissimi-
larities, the utilization of auxiliary information in form of a continuous variable and
the computation of an out-of-sample extension mapping. The scientific contributions
to these topics are detailed in the next section.

2.1.1. Scientific contributions and structure of the chapter

In this chapter, we present three core contributions to the methodology of discrimina-
tive dimensionality reduction.

Kernel t-SNE In section 2.2, we present a general approach to compute an out-of-
sample extension for an arbitrary non-parametric DR technique. We demonstrate
its performance for an unsupervised mapping in section 2.2 and for discrimina-
tive projections in section 2.4.

DiDi in kernel space In section 2.5, we reformulate the Fisher metric framework, thus,
allowing to compute Fisher distances from similarity based data, only. This
enables us to compute DiDi projections based on proximity data only, i.e. without
requiring a vectorial representation.

DiDi for regression In section 2.6, we propose a DiDi framework based on the concept
of the Fisher metric for continuous auxiliary data. This technique relies on a
Gaussian process to estimate the conditional density.

This chapter is organized as follows: We start by proposing the method kernel t-SNE
in section 2.2 which allows to compute an out-of-sample extension for a given non-
parametric DR method. For this purpose, we exemplarily introduce the method t-SNE,
recall the state of the art method to evaluate the quality of DR mappings, introduce
the kernel t-SNE methodology and demonstrate it on a benchmark scenario.
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Consecutively, we introduce the central concept of the Fisher metric in section 2.3.
We will use this framework later as a core step to compute discriminative distances
for DiDi projections. This section briefly recaps the information geometrical concepts
required to compute distances based on the Fisher metric and presents the common
approximation schemes to path integrals in this context.

Section 2.4 builds on section 2.3 and recalls a complete scheme to compute DiDi
mappings using the Fisher metric. This requires in particular to estimate the condi-
tional probability density from the data.

Section 2.5 presents the reformulation of DiDi based on Fisher distances, which
allows to apply these techniques to data given by similarities, only. The framework
can be reformulated exactly in terms of inner products.

Finally, section 2.6 presents a new scheme to compute DiDi based on the Fisher
metric for continuous auxiliary information. This approach utilizes a Gaussian process
to estimate the conditional density.

2.2. Kernel t-SNE

In the following, we assume to have N vectorial data xi ∈ X = RD in a D-dimensional
vector space which is potentially high-dimensional. For every point xi, DR methods
determine coefficients ξi ∈ Ξ = Rd with D > d = 2, usually. In cases of other
assumptions, we specify them in the beginning of the corresponding section.

While parametric mappings provide an explicit functional form, non-parametric
mappings such as t-SNE, MVU, or Isomap have in common that no direct out-of-
sample extension is available. However, non-parametric methods seem to be particu-
larly successful in embedding data sets truthfully. This is the result of the evaluation
in the recent review [125]. These methods often take a simple cost function based
approach: the N data points xi ∈ X = RD constitute the starting point; for every point
xi, projections ξi are determined such that the characteristics of these points mimic
the characteristics of their high-dimensional counterpart. Thereby, the characteristics
differ among the various method, they are e.g. pairwise distances of data points, the
overall data variation, locally linear relations of data points, or local probabilities in-
duced by the pairwise distances, to name a few examples [26].

However, one major challenge of non-parametric DR methods is that they do not
provide a direct out-of-sample extension and, hence, are not directly applicable to
streaming data, for instance.

To solve this problem, we present the new method kernel t-SNE which provides a
parametric mapping that allows to compute out-of-sample extensions directly. This
method is applicable to any non-parametric DR technique because it relies on a kernel
projection, trained retrospectively after the original projection. In particular, it is also
applicable to DiDi methods, which will be demonstrated in section 2.4.2. It also allows
to project large data sets by applying the core method to a subset of the data and
projecting the remained with kernel t-SNE in linear time.



2.2. Kernel t-SNE 13

The rest of this section is structured as follows: we exemplarily introduce the
method t-SNE as one of the most popular non-parametric techniques in the follow-
ing subsection 2.2.1, we address the issue of quality assessment in dimensionality
reduction in section 2.2.2 and present our contribution kernel t-SNE in section 2.2.3.
Finally, section 2.2.4 provides a short evaluation of the proposed technique.

2.2.1. T-distributed stochastic neighbor embedding (t-SNE)

The recent review [125] has compared many prominent non-parametric approaches
and the popular method t-distributed stochastic neighbor embedding (t-SNE) [159]
has performed very competitive. In the following, we will explain t-SNE in more
detail since we will use it in our experiments. However, any DR method which works
on distances can be augmented by our proposed kernel approach.

In t-SNE, probabilities in the original space are defined as pij = (p(i|j) + p(j|i))/(2n),
where

pj|i =
exp(−0.5‖xi − xj‖2/σ2

i )

∑k,k 6=i exp(−0.5‖xi − xk‖2/σ2
i )

depends on the pairwise distances of points; the parameter σi is replaced by an other
parameter, the effective number of neighbors, frequently termed perplexity: σi is
adapted such that each data point has this priorly specified number of neighbors.

In the projection space, probabilities are induced by the Student t-distribution

qij =
(1 + ‖ξi − ξ j‖2)−1

∑k ∑l,l 6=k(1 + ‖ξk − ξl‖2)−1

to avoid the crowding problem by using a long tail distribution. The goal is to find
projections ξi such that the difference between pij and qij becomes small as measured
by the Kullback-Leibler divergence

Qt−SNE(X, Ξ) = ∑
i

∑
j 6=i

pj|i log
pj|i
qj|i

. (2.1)

t-SNE relies on optimization of (2.1) using a gradient based technique.

2.2.2. Assessing the quality of dimensionality reduction mappings

A popular tool to evaluate the quality of a given data projections was proposed by
Lee and colleagues [92, 93]. The key idea is to measure the preservations of neighbors
instead of distances. More formally, for each data point xi and its low-dimensional
counterpart ξi, the functions Nk(xi) and Nk(ξ

i) measure the indices of their k nearest
neighbors. Then the average preservation of the k nearest neighbors can be written as

Qnx
k (X, Ξ) =

1
Nk

N

∑
i=1

∣∣∣Nk(xi) ∩Nk(ξ
i)
∣∣∣ , (2.2)
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where we sometimes refer to this quantity simply as quality. This can also be formal-
ized in terms of the co-ranking framework, thereby summarizing alternative evalua-
tion measures [92]. Since it is usually not known which neighborhood size k is most
important, Qnx

k (X, Ξ) is typically evaluated for each possible k ∈ {1, 2, . . . , N − 1}.
For a random projection, the average value of Qnx

k is k/(N − 1), which corresponds
to the diagonal in a quality plot and is usually treated as a baseline. It is possible to
remove this baseline from Qnx

k by subtracting it and rescaling the resulting term such
that it is again between 0 and 1:

Qnx n
k (X, Ξ) =

(N − 1)Qnx
k (X, Ξ)− k

N − 1− k
. (2.3)

This is referred to as RNX in the literature [93] and is often plotted using a logarith-
mic scale on the axis depicting the neighborhood size k. This emphasizes that local
neighborhoods are usually treated as the most important ones.

Using this scheme, it is additionally possible to obtain a scalar quality value by
calculating the area under the Qnx n

k curve plotted with a logarithmic scale. This makes
use of a strong emphasis on local neighborhoods.

2.2.3. Parametric extension of dimensionality reduction

In the paper [J15a], we propose a general way how to extend the prescriptions of
non-parametric DR methods to a parametric form by means of an interpolation by
Gaussian kernels. We specify a functional form πpm of the mapping as follows:

x 7→ πpm(x) =
∑j αjk j(x, xj)

∑l kl(x, xl)
(2.4)

where αj ∈ Ξ are parameters corresponding to points in the projection space and the
data xj are taken as a fixed sample, usually j runs over a small subset X′ sampled from
the data {x1, . . . , xN}. k is the Gaussian kernel parameterized by the bandwidth σx

j :

k j(x, xj) = exp(−0.5‖x− xj‖2/(σx
j )

2) (2.5)

The idea is to determine the parameters of this mapping such that the data xi and their
projections ξi obtained with the considered projection technique are matched as far as
possible. Note that the mapping has a generalized linear form such that training can
be done in a particularly simple way provided a set of samples xi and ξi is available.
The parameters αj can be analytically determined as the least squares solution of the
mapping: Assume A is the matrix of parameters αj, K is the normalized Gram matrix
with entries

(K)i,j = k j(xi, xj)/ ∑
l

kl(xi, xl) (2.6)

and Ξ denotes the matrix of projections ξi. Then, a minimum of the least squares error

∑
i
‖ξi − πpm(xi)‖2 (2.7)
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Figure 2.1.: T-SNE projection of a subset of the usps data set (left) and its out of sample
extension computed with kernel t-SNE (right).

with respect to the parameters αj has the form

A = Ξ ·K−1 (2.8)

where K−1 refers to the pseudo-inverse of K.
The bandwidth σx

i of the mapping constitutes a critical parameter since it determines
the smoothness and flexibility of the resulting kernel mapping. We use a principled
approach to determine this parameter as follows: σx

i is chosen as a multiple of the
distance of xi from its closest neighbor in X′, where the scaling factor is typically taken
as a small positive value. We determine this factor automatically as the smallest value
in such a way that all entries of K are within the range of representable numbers
(respectively a predefined interval). This technique allows us to extend any given
non-parametric mapping to an explicit parametric form.

2.2.4. Illustration

In this section, we briefly demonstrate the performance of kernel t-SNE using one
example. A more thorough evaluation has been performed in the paper [J15a] and
can be looked up there.

For this purpose, we utilize the usps data set [45]. It consists of images of the
handwritten digits 0 to 9, where each image is encoded with 16× 16 gray scale pixels.
The data set contains 1,100 images of each class, resulting in 11,000 images.

We preprocess the data set by projecting it to 30 dimensions with PCA and apply t-
SNE on a subset of size 1,100 to obtain the training set for kernel t-SNE. Then we apply
kernel t-SNE to compute the out-of-sample extension for the remaining data points.
Both projections are displayed in Figure 2.1, where the t-SNE projection is shown on
the left side and the out-of-sample extension on the right.

We evaluate the quality of the out-of-sample extension obtained with kernel t-SNE
using the quantity Qnx n

k detailed in section 2.2.2. We additionally employ a subsam-
ling strategy in order to save computational time and in oder to be able to compare
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Figure 2.2.: Evaluation of a kernel t-SNE and parametric t-SNE projection of the usps
data set.

both results despite their different sample sizes (see [J15a] for more details). The
resulting quality values for each neighborhood k are depicted in Figure 2.2. Fur-
thermore, this Figure also shows the quality values for an out-of-sample projection
obtained with parametric t-SNE [156]. From this evaluation, two results can be con-
cluded: the embedding quality of the training set for kernel t-SNE is higher then
the quality of the training set for parametric t-SNE for local neighborhoods. This is
plausible because, for kernel t-SNE, we utilize the standard non-parametric formula-
tion of t-SNE to compute an embedding of the training set. For parametric t-SNE,
however, the parametrized function is utilized to obtain a projection of the training
set, hence, potentially restricting the mapping. A second observation is that kernel
t-SNE obtains higher quality values for small neighborhoods while parametric t-SNE
obtains higher values for large neighborhoods. A common concept in evaluating the
quality of dimensionality reduction mappings, however, is that the preservation of lo-
cal neighborhoods are usually considered to be more important. One consequence of
this concept, for instance, is that the quality evaluation methodology based on the co-
ranking framework [93] puts an emphasis on local neighbors by using a logarithmic
scaling of the x axis.

A more extensive evaluation, including more comparisons to parametric t-SNE, can
be found in [J15a]. Here it is further demonstrated that, since the deep architecture
used for parametric t-SNE is a powerful model with many parameters, it requires
many training instances to learn the required mapping and fails if these are not avail-
able. In this context, the parametrization of kernel t-SNE seems to be a good compro-
mise between flexibility of the mapping and complexity of the function.

In the following, we can employ t-SNE to project a small part of the data set and
utilize kernel t-SNE to project the remainder. This strategy is particularly useful for
methods, which have a high computational cost, as e.g. for DiDi methods such as
Fisher t-SNE. In order introduce the latter, we require the notion of the Fisher metric
which is illustrated in the following.
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Figure 2.3.: Two-dimensional toy data (left) and three-dimensional ball data (right).

2.3. Definition of the Fisher metric

This section provides some mathematical background on the concept of Fisher metrics
which we employ to compute Fisher distances. It also details common approximation
schemes for path integrals required for distance computations and illustrates the major
steps for computing Fisher distances using an example. We will employ these concepts
as one core step to compute discriminative dimensionality reduction mappings.

In order to discuss Fisher metrics, we will first recap the basic concepts of a metric.

2.3.1. Metrics

A pseudometric d is a distance function defined on a set X with d : X×X 7→ R+ and it
satisfies the following four properties:

d(xi, xj) ≥ 0 non-negativity
d(xi, xi) = 0
d(xi, xj) = d(xj, xi) symmetry
d(xi, xk) ≤ d(xi, xj) + d(xj, xk) triangle inequality

where xi, xj, xk ∈ X. A metric further requires the property d(xi, xj) = 0⇔ xi = xj.
These properties allow to identify metrics in a real vector space. In order to incor-

porate auxiliary information into the metric, we require the concept of Fisher metrics.

2.3.2. Fisher metric as a special case of the Riemannian metric

Concepts from information geometry provide an elegant tool to incorporate auxiliary
information into the metric by making use of probability density functions [123]. The
next paragraph reviews the required concepts of Riemannian metrics and Fisher met-
rics as used widely in the information geometry literature. The second paragraph of
section 2.3.2 illustrates how these concepts can be used to integrate auxiliary informa-
tion into the metric.
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Classical viewpoint in the Information geometry literature

In the field of Information geometry, a family of probability distributions S = {p(x|θ)}
is treated as a statistical model, where p(x|θ) is a probability density function param-
eterized by θ which is defined on an open subset of Rn and x ∈ X is a random
variable. An example for such a function is the probability density of the normal
distribution. In order to measure geometric properties between these distributions,
such as distances, the structure of a Riemannian manifold can be introduced for S. The
Riemannian manifold induced by S consists of a Riemannian metric together with a
differentiable manifold [4]. For reasonable parameterizations θ and sensible choices of
p, S is a differentiable manifold, or short manifold.

A Riemannian metric relies on an inner product gθ, which is defined on element pairs
from the tangent space at position θ on a manifold [4, 3]. This inner product can be
used to compute the length of an element v from the tangent space by

√
gθ(v, v).

Elements from the tangent space are derivatives γ′(t) of curves γ(t) defined on the
manifold, where we write γ′(t) as a short form for ∂

∂t γ(t). Also, for infinitesimal close
points θ and θ+ dθ, dθ is an element from the tangent space.

This notion can be extended to compute the length of a path γ(t) along the manifold
from point θi to θj, where γ : [0, 1] → Rn, γ(0) = θi, γ(1) = θj and γ is differentiable
with respect to its parametrization t. The length of a path can be computed by

‖γ‖ :=
∫ 1

0

√
gγ(t)(γ′(t), γ′(t))dt (2.9)

and the distance between the coordinates θi and θj is then

dR(θi, θj) = inf
γ
‖γ‖, (2.10)

where the minimum is taken over all differentiable paths from θi to θj.
The Fisher metric is a Riemannian metric, which measures distances between in-

finitesimally close points θ and θ+ dθ using the Kullback-Leibler divergence between
their according probability densities:

DKL (p(x|θ), p(x|θ+ dθ)) ∝ dθTJ(θ)dθ. (2.11)

This relations follows from the Taylor expansion of the Kullback-Leibler divergence
with respect to dθ around 0 [90]. The right hand side of equation (2.11) computes the
length of the tangent vector dθ using the inner product

gθ(u, v) = uTJ(θ)v, (2.12)

where u and v are elements from the tangent space of the data manifold at θ and J(θ)
is the local Fisher information matrix

J(θ) = Ep(x|θ)

{(
∂

∂θ
log p(x|θ)

)(
∂

∂θ
log p(x|θ)

)T
}

. (2.13)
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Figure 2.4.: Estimation of p(c = 1|x) (left) and p(c = 2|x) (right) for the toy data set
using the Parzen window estimator.

J(θ) is based on derivatives of p(x|θ) with respect to θ, i.e. it emphasizes directions of
θ along which p(x|θ) changes the strongest. J(θ) is also referred to as a metric tensor.

This is a short and strongly abbreviated summary of the according sections in [4, 3,
96]. More details can be found therein.

The Fisher metric in this thesis

This framework is usually used in the parameter space in the context of parameter
estimation θ. Here we will adopt a different purpose: we follow ideas from [123, 122]
and employ the Fisher metric in the data space. We replace the probability density
function p(x|θ) of a random variable x given certain parameters θ by p(aux|x), where
x is a position in the data space and aux the value of an auxiliary variable. Thereby,
the auxiliary variable aux is supposed to indicate particularly important aspects in the
data. An example for this can be the label in a classification scenario, as utilized in
[123], or the value of a continuous regression variable. In [123], this concept is referred
to as learning metrics because it enables to define a new metric, the Fisher metric, from
the given data and the corresponding auxiliary variable. So it is learned from the data.

In our setting the Fisher Information matrix is given by

J(x) = Ep(aux|x)

{(
∂

∂x
log p(aux|x)

)(
∂

∂x
log p(aux|x)

)T
}

, (2.14)

which again results from the local Kullback-Leibler divergence [137, 145].
Employing this setting has the effect that the local positive semidefinite matrix J

amplifies directions along which the auxiliary variable changes. Dimensions which
are locally irrelevant for aux do not contribute.

Combining these aspects, global distances in the Fisher metric framework are de-
fined by

dM(xi, xj) = inf
γ
‖γ‖ = inf

γ

∫ 1

0

√
γ′(t)TJ(γ(t))γ′(t)dt, (2.15)
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where γ is again a path on the manifold, with γ : [0, 1] → X, γ(0) = xi and γ(1) = xj

are fixed.
Additionally, if the utilized auxiliary information is noisy or other aspects in the data

should not be neglected completely, the Fisher metric can be regularized by combining
it with the Euclidean metric via setting the inner product gx to

gx(u, v) = uT (J(x) + λI) v, (2.16)

where I refers to the identity matrix having ones on the diagonal and zeros elsewhere
and λ is the weighting factor for the Euclidean metric, which is usually small.

This Fisher metric emphasizes changes of the auxiliary variable. It can be used for
interpretable data analysis [115] or to replace the Euclidean metric in dimensionality
reduction methods to obtain discriminative dimensionality techniques.

2.3.3. Approximation of the shortest paths

In order to compute the distance on the Riemannian manifold (we will sometimes
refer to this entity as Fisher distance, in the following) between two points xi and xj

as defined by equation (2.15), minimal path integrals need to be computed. However,
this is usually computationally intractable and, hence, approximations are required.
We repeat the most common ones here for convenience [123].

Local approximation The most simple approximation is to assume that the shortest
path between two points is the straight line and to utilize the inner product gxi :

d1(xi, xj) = gxi(xi − xj, xi − xj) = (xi − xj)
TJ(xi)(xi − xj). (2.17)

This is only exact if xi and xj are infinitesimally close to each other. Since the Fisher
information matrix is only computed on the position xi, it neglects change of the
auxiliary variable in other regions and, hence, constitutes a very crude approximation.

Straight line approximation An extension of this is still to assume that the shortest
path is the straight line and to approximate the length of this line by T piecewise
constant terms induced by equidistant points on the line from xi to xj. Define points
xt on this line as convex combinations of xi and xj: xt = xi + (t− 1)/T · (xj − xi), with
t ∈ {1, . . . , T}. Using the inner product based approximation for consecutive points xt

and xt+1, the exact distance on the manifold dM can be approximated by

dT(xi, xj) =
T

∑
t=1

√
(xt+1 − xt)TJ(xt)(xt+1 − xt). (2.18)

This approximation is accurate if the shortest path is indeed close to the straight line
and a sufficiently large number T is used. This way to compute the length of a straight
line leads to asymmetric distances. These can either be symmetrized after the compu-
tation or by a symmetric sampling along the line.
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Figure 2.5.: Parzen window estimation of max (p(c = 1|x), p(c = 2|x)). The right plot
shows the same figure viewed from above together with the eigenvectors of the Fisher
matrices scaled with their according eigenvalues and the straight path approximation
together with a minimal path.

Graph-based approximation A more precise approximation removes the assumption
of shortest paths being straight lines and searches for the shortest path in a graph:
Assume a fully connected graph where each pair of data points is connected by an
edge. The length of each edge is computed using the straight line approximation dT.
Now, standard graph search algorithms such as Floyd’s algorithm can be employed
to search for the shortest path in this graph. Finding all shortest paths has cubic
complexity in the number of nodes, i.e. data samples in this case.

Although this graph-based approach is the only approximation guaranteed to be a
pseudometric, the results from [163, 123] show that the straight line approximation
dT (2.18) works reasonably well in practice and can be beneficial since it reduces the
computational complexity from cubical to squared.

2.3.4. Example

In order to illustrate the definition of the Fisher information matrix we adopt a classi-
fication scenario, where the auxiliary variables aux take the role of class labels c. For
this purpose we construct a toy data set which is shown on the left of Figure 2.3. This
data set is two-dimensional, class 2 consists of two modes and one of them overlaps
with points of class 1.

Since the Fisher matrix depends on the class-density p(c|x), we show this function
in Figure 2.4. This is a two-class problem and, hence, there exist actually two functions
p(c = 1|x) and p(c = 2|x). For each position in the data space x, the former expresses
the probability of x belonging to class 1 and the latter the probability of x belonging
to class 2. For the visualizations we estimate p(c|x) from the data using the Parzen
window estimator described in section 2.4.1.

For illustrational purposes, we can combine p(c = 1|x) and p(c = 2|x) by plotting
max (p(c = 1|x), p(c = 2|x)) for every position x. This is shown in the left plot of
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Figure 2.5, where the right visualization constitutes the same plot, viewed from above.
Here, the region of highest uncertainty is clearly visible. Further, the right hand side
also displays the Fisher matrices: The black arrows show the eigenvectors of the Fisher
matrices scaled with the according eigenvalues. They are largest where the class-
density changes, corresponding to the derivative of p(c|x).

Further, for every position x in the data space, there is only one direction of change,
i.e. the Fisher matrices are one-dimensional. This is analytically clear because the
Fisher matrix consists of an expectation, which reduces to a sum with as many ele-
ments as the number of classes, i.e. two in this case. Further, since p(c = 1|x) and
p(c = 2|x) are linearly dependent (they sum to 1), the Fisher matrices for two-class
problems have actually rank one.

Figure 2.5 also displays the distance along two paths between two selected points,
using different approximations: the straight line approximation is shown in green
using 5 intermediate points on the line and distances between these line segments are
printed in the same color. The pink curve results from the shortest path search in the
fully connected graph consisting of the data points. The straight line and the graph
search approximations yield the distances 0.578 and 0.562, respectively, i.e. they are
similar in this case. In the worst case, there can exist a large difference. However, as
investigated in [123], the difference is usually not pronounced for real life data and
closer neighborhood sizes, i.e. the straight line approximation constitutes a valuable
choice for the purpose of discriminative dimensionality reduction.

2.4. Discriminative dimensionality reduction for classification

tasks

In this section we will explain how to compute DiDi mappings using the following
general idea: Modify the metric locally [123, 116] by defining a Riemannian manifold.
The latter takes the auxiliary information of the data into account by measuring the
effect of the data dimensions in the feature space for this auxiliary information. Then
we can employ any distance based DR method on top of this modified metric to
obtain a discriminative dimensionality reduction technique. In particular, we replace
the Euclidean metric by the Fisher metric.

We have already introduced the basic concepts of the Fisher metric in section 2.3,
and the relevant modifications to apply them for DiDi in section 2.3.2. This enables us
to compute Fisher distances based on the data X and auxiliary information aux. Now,
we can detail the procedure for the case of discrete auxiliary information, occurring
for instance in classification scenarios. In this case, we can use the Fisher metric by
treating the class labels c of the classification problem as auxiliary data aux. Then we
can, as described before, replace the Euclidean metric by the Fisher metric in distance
based DR methods, and such, obtain discriminative DR techniques. Many popular
dimensionality reduction methods can be extended in such a way to become discrimi-
native dimensionality reduction techniques. These include MDS, SOM, GTM, Isomap,
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MVU, SNE, t-SNE and NeRV just to name the most popular ones. We refer to DiDi
methods based on the Fisher metric by adding the prefix Fisher to their name, e.g.
Fisher t-SNE for t-SNE applied to Fisher distances.

To this end, we need to compute Fisher matrices, which boils down to estimating
a probability density model p(c|x) and computing its gradient with respect to x. In
the following, we will discuss feasible techniques for doing so and demonstrate the
advantage of DiDi tools for a labeled toy data set.

2.4.1. Approximation of the probabilities

A central part of this modified distance computation consists in the estimation of the
probability p(c|x) of information c given a data point x. In the setting of a classi-
fication scenario, there are two essentially different possibilities how to choose this
information:

(a) We can use the given class labels ci := li for data point xi, respectively, as pro-
vided in the training set. This choice emphasizes the given ’ground truth’ of the
data.

(b) We can use the labeling as provided by a trained classifier c := f (x), if such
a model is available. This choice emphasizes aspects of the data which are re-
garded by the classifier as interesting. Hence, those aspects of the data can be
visualized which influence the trained classification.

Apart from the different semantic meaning, this choice has consequences on the
possibilities how to compute the probability p(c|x). The Fisher matrix is based on the
local change of the probability distribution p(c|x), the latter of which is usually un-
known and needs to be approximated. A common way to do this is to use the Parzen
window non-parametric estimator as proposed in [123]. Essentially, computation takes
place by estimating class probabilities as

p̂(c|x) = ∑i δc,ci exp(−0.5‖x− xi‖2/(σp)2)

∑j exp(−0.5‖x− xj‖2/(σp)2)
, (2.19)

where the sum is over all data points and σp constitutes the bandwidth parameter.
The Fisher information matrix based on the Parzen window estimator [123] becomes

J(x) =
1

(σp)4 Ep̂(c|x)

{
b(x, c)b(x, c)T

}
(2.20)

where

b(x, c) = Eζ(i|x,c){xi} −Eζ(i|x){xi} (2.21)

ζ(i|x, c) =
δc,ci exp(−0.5‖x− xi‖2/(σp)2)

∑j δc,cj exp(−0.5‖x− xj‖2/(σp)2)
(2.22)

ζ(i|x) = exp(−0.5‖x− xi‖2/(σp)2)

∑j exp(−0.5‖x− xj‖2/(σp)2)
. (2.23)
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E denotes the empirical expectation, i.e. weighted sums with weights depicted in the
subscript. If large data sets or out-of-sample extensions are dealt with, a subset of the
data only is usually sufficient for the estimation of J(x).

Appendix A.1 details how the definition of the Fisher information matrix (2.14) and
the Parzen window estimator give rise to the result provided by eqs. (2.20) to (2.23).

In principle, any differentiable estimator for p(c|x) can be employed, such as a multi-
layer perceptron [116]. The advantage of the parzen window estimator, however, is that
it yields a correct estimation of the probability density in the limit. A disadvantage is
its computational cost, O(N2) for N data points. In case this is too demanding, a fixed
subset can be used. Suitable choices to estimate the bandwidth parameter from the
data are provided in the literature, e.g. by ĥrot [153].

As an alternative, provided the class labels f (x) given by a classification function are
of interest, it is often possible to rely on the explicit functional form of f as provided
by the classifier if the latter yields a probabilistic output for the class labels.

2.4.2. Example

In this section, we demonstrate a DiDi mapping based on the Fisher metric. We utilize
the scheme from section 2.4.1 to compute Fisher distances and use these together with
t-SNE. We apply this scheme to an artificially generated data set constituting a three-
dimensional filled ball. A non-linear tube is contained inside this ball defining two
classes. This data set is shown in the right image of Figure 2.3.

A projection of this data set to 2 dimensions is shown in Figure 2.6, where t-SNE
using the Fisher metric (top left) and t-SNE together with the Euclidean metric (bottom
left) is applied to a subset. The remaining data set can be projected using kernel t-SNE.
The according out-of-sample extensions are shown in the right column.

While the unsupervised t-SNE projection distorts the structure of class 2 in the
projection, the Fisher t-SNE projection preserves the tube-like structure. Additionally,
a noisy region (on the left) in the projection is visible which is indeed present in the
original data set (there it is visible in the bottom).

2.5. Discriminative dimensionality reduction in kernel space

Although the discriminative dimensionality reduction techniques which are based on
the Fisher metric have shown to perform well in practice [163], they are, like most
DiDi methods, restricted to vectorial data. Hence, they are not applicable whenever
complex, non-vectorial data structures are dealt with. In this section, we propose
an extension of the Fisher metric to kernel spaces, thereby enabling powerful DiDi
technologies for general data structures described in terms of pairwise relations, the
kernel matrix, only. Following section 2.4, we compute DiDi mappings by applying
DR methods on distances computed with the Fisher metric. For this purpose, we rely
on the formalization of Fisher distances presented in section 2.3.2 and estimate the
required densities using the Parzen window estimator, as discussed in section 2.4.1.
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Figure 2.6.: Visualization of the ball data set with t-SNE (left) and out of sample ex-
tension with kernel t-SNE (right). The Fisher metric is utilized in the top row, the
Euclidean metric in the bottom row.

We further employ the straight line approximation for the minimum path integrals as
discussed in section 2.3.3.

We demonstrate the feasibility of the approach for several benchmarks, including
complex structured data from the domains of music and java programming.

2.5.1. Kernelization

We assume that data are characterized in terms of pairwise similarities only, i.e. a
matrix S ∈ RN×N is given with N being the number of data, entries are denoted
as sij. We assume symmetry of S, such that an implicit vectorial embedding exists
[62]. Further, we require non-negativity of the values to guarantee a valid probability
distribution. In particular, this covers the case of structure kernels for complex data
structures [105]. However, we will see in experiments that the Fisher metric also pro-
vides reasonable results for general matrices. We denote data in kernel space as xi

where sij = xT
i xj. Since we utilize the straight line approximation for shortest paths on
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the manifold, we require to calculate coordinates on the line between two points and
compute distances between them. Equidistant points on the line from xi to xj have the
form (1− α)xi + αxj where α = (t− 1)/T for t ∈ {1, . . . , T + 1}, hence, differences of
consecutive points have the form (xj − xi)/T. Thus, denoting x(t) := (1− α)xi + αxj,
distances dT(xi, xj) · (Tσ2) consist of terms of the form

σ4(xi − xj)
TJ(x(t))(xi − xj) = ∑

c
p̂(c|x(t))

(
xT

i b(x(t), c)− xT
j b(x(t), c)

)2
(2.24)

where
xT

i b(x(t), c)) = ∑
l

(
ζ(l|x(t), c) · xT

i xl︸︷︷︸
sil

−ζ(l|x(t)) · xT
i xl︸︷︷︸
sil

)
(2.25)

The terms p̂(c|x(t)), ζ(l|x(t), c), and ζ(l|x(t)) are defined in section 2.4.1 and can be
expressed in terms of Gaussians with the argument

‖x(t)− xl‖2 = (1− α)2sii + α2sjj + sll + 2(1− α)αsij − 2(1− α)sil − 2αsjl , (2.26)

hence, the full computation can be kernelized.

2.5.2. Experiments

Our reformulation of Fisher distance computations in terms of kernels does not rely on
approximations and, hence, is equivalent to the vectorial computation if the similarity
matrix S is given by a standard scalar product. Hence, we do not present comparisons
to the vectorial case, here.

Instead, we evaluate the method for six benchmark data sets that are only given as
similarity matrices and are not necessarily Euclidean.

Aural Sonar [126]: Data consist of 100 returns from a broadband active sonar system,
their similarity is evaluated by human experts. Two classes (target of interest
versus clutter) are distinguished.

Patrol [31]: 241 members of seven patrol units are characterized by (partially faulty)
feedback of unit members naming five colleagues each.

Protein [68]: 226 globin proteins are compared based on their evolutionary distances,
four classes of different protein families result.

Voting [31, 45]: 435 either republican or democrat candidates are characterized by 16
nominal attributes which characterize the key votes identified by the Congres-
sional Quarterly Almanac. The value difference metric is used for comparison.

Java Programs [118, 119]: 64 Java programs which implement bubble sort or inser-
tion sort, respectively, have been retrieved from the internet. They are compiled
with the Oracle Java Compiler API and compared by alignment.
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Sonatas [55]: 1068 sonatas in MIDI format from the online collection Kunst der Fuge
are transformed to graph structures and compared with the normalized com-
pression distance of their paths, labeling is given by one of 5 composers from the
classical / baroque era.

A more detailed description of the data can be found in [31, 55].
Each data set is characterized in terms of a symmetrized similarity matrix S. All data

are projected to two dimensions based on t-distributed stochastic neighbor embedding
(t-SNE), see section 2.2.1 for a description. We compare the result of a projection of
t-SNE, which is directly applied to the dissimilarity matrix as induced by S, and to
the dissimilarity matrix computed from the Fisher metric. We denote the former step
as t-SNE and the latter as Fisher t-SNE, for short. Note that some of the data matrices
S do not relate to valid kernels, i.e. have negative Eigenvalues (EVs). Therefore, we
compare the result achieved with plain data S and its clip-based eigenvalue correction
[31, 62]. Notably, the Fisher metric does not encounter numerical difficulties when
addressing the plain data, while t-SNE does.

Besides the visual impression, we compare the methods by a 1-nearest neighbor
(1-NN) classification in the projection space. Thereby we also report the result which
we obtain when applying Fisher t-SNE to data with randomly permuted labels, which
corresponds to the quality which is merely due to statistical effects of the data. We
refer to the 1-NN error in this setting as a baseline. Note that it is not reasonable to
evaluate the projections by the quality framework [95] since we do not aim to preserve
neighborhoods based on Euclidean distances.

For the computation of distances in the Fisher metric, the parameter σ for the Parzen
window estimate has to be specified. In order to find an appropriate value, we com-
pute bandwidths using the perplexity based idea as in [158], and average those to
obtain a single bandwidth value.

If all data points are utilized for the Parzen window estimator, Fisher t-SNE some-
times tends to overfit the data. Such a behaviour could be monitored by a low baseline
value. In order to prevent such a behaviour, we use 60% - 100% of the data for the
Parzen window estimator.

Since t-SNE is not deterministic, we run the t-SNE algorithm 10 times on the re-
spective distance matrix. The averaged leave-one-out 1-NN errors for the six data sets
are displayed in Table 5.1, with standard deviations depicted in brackets. If clipping
is applied, this is stated behind the method name. For the clipped Eigenspectrum of
S, the 1-NN errors of both t-SNE and Fisher t-SNE are comparably low (see e.g. [31]).
Further, the discriminative projections have an even lower classification error, on aver-
age. The high baseline error indicates that Fisher t-SNE does not neglect the intrinsic
structure of the data when the task is to embed a random class distribution.

Based on the clipped Eigenspectrum, an instance of each embedding is shown in
Fig. 2.7. For each data set, a t-SNE projection is shown in rows one and three, a Fisher
t-SNE mapping in rows two and four.

In addition to the numerical evaluation, these visualizations show that the Fisher
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Figure 2.7.: Unsupervised t-SNE projections in rows one and three of the data sets
Aural Sonar, Patrol, Protein, Voting, Java Programs and Sonatas. Rows two and four
contain the according supervised Fisher t-SNE projection.
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Table 2.1.: Average 1-NN classification errors in percent with standard deviations; sum
of the negative EVs in relation to the summed absolute values of the EVs.

AuralS Patrol Protein Voting Java Sonatas
original data (clip) 17 19 10 6 11 11
t-SNE (clip) 15 (±2) 16 (±1) 8 (±1) 7 (±1) 13 (±2) 9 (±1)
Fisher t-SNE (clip) 9 (±1) 11 (±1) 3 (±1) 4 (±1) 11 (±2) 6 (±1)
original data 21 7 77 6 14 13
t-SNE 18 (±2) 87 (±1) 31 (±6) 7 (±1) 15 (±2) 10 (±1)
Fisher t-SNE 10 (±3) 15 (±1) 4 (±0) 6 (±1) 14 (±2) 6 (±1)
baseline (clip) 40 81 48 43 45 49

perc. negative Eigs 21 50 20 0 8 2

information based projections have a clearer class separability and, hence, enable the
user to get a better understanding of the data. The unsupervised projection of the Pro-
tein data set, for instance, suggests that two classes are strongly overlapping. Here, the
discriminative visualization, which emphasizes local directions that are relevant for
class separation, shows that both classes have only a few overlapping points. Another
example constitutes the Patrol data set, where the Fisher t-SNE embedding shows a
clear class structure with only few noisy points coming from a specific class.

Another interesting aspect in Table 5.1 is the classification performance on the orig-
inal data, without clipping. While t-SNE suffers from a large accuracy loss for the
Patrol and Protein data sets, Fisher t-SNE obtains stable results with only a slight per-
formance decrease. Particularly the Patrol data set has large negative eigenvalues, as
can be seen in Table 5.1.

Fisher t-SNE seems to be particularly robust towards a indefinite similarity matrix.
A reason for this could be that the Fisher metric sets a focus on changes with respect
to the class labels, while neglecting other changes. This can lead to a reduction of the
dimensionality and, hence, to an easier problem for the embedding, in particular, if the
neglected changes are along the negative directions of pseudoeuclidean embedding.

2.5.3. Conclusion

In this section we have reformulated one particularly popular approach for discrimina-
tive dimensionality reduction such that it is applicable to non-vectorial data only given
by kernel values or more general. We evaluated this method with six data sets from
this domain and obtained a clear improvement as compared to unsupervised projec-
tions in many cases. The robustness of Fisher t-SNE towards indefinite proximities
seems interesting and requires further investigation.
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2.6. Discriminative dimensionality reduction for regression

tasks

The current formulation of DiDi based on the Fisher metric is restricted to discrete
auxiliary variables. This restricts the application of these methods and prevents them
from being applied to real-valued auxiliary data. However, such data occur quite
frequently as for instance in the class of regression problems. An example of a real-
valued auxiliary variable can be the continuously measured progress of a disease.

The field of discriminative dimensionality reduction with real-valued auxiliary data
is by far less investigated than it is the case for discrete auxiliary information. In
the literature, there exist basically two families of approaches which are particularly
formulated for the task of regression. These are methods using the concept of inverse
regression (IR) [99, 176, 80, 100, 33] and of kernel dimension reduction (KDR) [50, 110].
The latter rely on a measure of conditional independence between the regression target
and the data conditioned on the projection space, following the idea that the projec-
tion space should contain all relevant information to predict the target. The former
approaches rely on the idea of inverse regression, meaning that they try to predict the
data from the target variable. The image of the resulting function characterizes the
low-dimensional projections space. However, these techniques comprise mostly linear
methods which provide less flexible mappings as compared to nonlinear projections.
One notable exception constitutes the method manifold kernel dimensionality reduc-
tion (mKDR) [110] which combines the linear KDR (the kernel is used to estimate
conditional independence while the DR is performed with a linear mapping) together
with Laplacian eigenmaps. It constitutes a linear DiDi projection applied on top of an
unsupervised nonlinear projection, i.e. the nonlinear part is performed in an unsuper-
vised way. Another interesting exception is the covariance operator inverse regression
(COIR) [80] which uses the IR concept together with the kernel trick, similarly as in
kernel PCA, and the concept of covariance operators in RKHS.

In contrast, in the context of DiDi with discrete auxiliary information, methods that
build on top of the Fisher metric have been shown to perform particularly well [163].
Following this research line, we propose a new DiDi framework in the setting of real-
valued auxiliary variables which enables us to incorporate such auxiliary information
into the metric. This discriminative metric can then be combined with any distance
based DR method to yield a DiDi technique. Essentially, we will answer the question:
How can we use the framework discussed in section 2.3 and reformulate it such that
it is applicable to real-valued auxiliary information? We will employ the methodology
of Gaussian processes for this purpose.

More precisely, we assume that auxiliary information is specified as a real-valued
variable. E.g. the user specifies relevant variation due to prior knowledge, one variable
y is singled out or y constitutes a regression target variable. Then the DiDi task refers
to the goal of visualizing only that information in X which is relevant for y.

We have already discussed in section 2.1 that the incorporation of label information
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effectively reduces the intrinsic data dimensionality, hence the ill-posed DR problem
becomes more well-posed by incorporating this explicit label information. A simi-
lar effect holds when incorporating real-valued data. The relation of the data and the
real-valued auxiliary information can often be phrased in terms of a function y = f (x),
where f is smooth. Hence this equation defines a manifold of co-dimension one, which
means that, locally, all but one dimension of the data x can be neglected as concerns
changes in the value f (x). Hence, taking directions which do influence this manifold
only, data are regularized towards a locally one-dimensional representation. The visu-
alization problem becomes one of visualization a one-dimensional manifold, only! We
will later make this argument more precise by referring to the corresponding Fisher
matrix. Note that, the concept of visualizing only the information in x, which influ-
ences f , preserves important characteristics of the data such as the question whether
there is a pronounced relation of x and y at all, what is the number of modes, do there
exist outliers. etc. Due to this observation, it is apparent that supervised dimension-
ality reduction is a task which is different from a direct prediction of the auxiliary
variable y: aspects in the data x which are relevant for y are visualized, whereby the
auxiliary information is used as a regularization only about which data aspects are of
particular relevance.

In this chapter, we propose to use the concepts from section 2.3 and reformulate
them such that they can be used together with a real-valued auxiliary variable. We
formalize this in section 2.6.2 for the computation of the Fisher matrix. Since we em-
ploy the framework of Gaussian processes in this context, we review this methodology
in advance in section 2.6.1. Having these concepts, we can use the shortest path ap-
proximations from 2.3 to define Fisher distances and plug these into any distances
based DR technique, such as t-SNE.

2.6.1. Gaussian Processes for regression

In the following, we will recall the formal concepts of a Gaussian Process [131]. A
Gaussian process defines a distribution directly over the space of functions; model
inference can be done by conditioning this probability based on observed values. This
abstract concept becomes tractable based on the observation that a distribution over
the space of functions can be linked to a family of distributions over the output values
of finite sets of inputs only.

More formally, assume data points xi ∈ X = RD in a high-dimensional feature space
are given together with observed targets yi ∈ R. The matrix X contains all the data
points xi in the columns and the vector y all the targets.

Following [131], we write a Gaussian Process (GP), a collection of random variables
having a joint Gaussian distribution, as

f (x) ∼ GP(m(x), k(x, x′)) (2.27)
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which is specified by its mean function and covariance function

m(x) = E[ f (x)] (2.28)

k(x, x′) = E[( f (x)−m(x))( f (x′)−m(x′))]. (2.29)

The random variables are the values f (x) in the target space. For the covariance
function we employ the squared exponential (or Gaussian) kernel

k(x, x′) = exp(−β‖x− x′‖2) + σ2
GP, (2.30)

where σ2
GP models the variance of the additive i.i.d. noise ε of the targets, i.e. we

assume y = f (x) + ε.
We can construct the joint Gaussian distribution N of the observed target values y

and the unobserved target value y∗ at the position x∗:[
y
y∗

]
= N

(
0,

[
K + σ2

GPI k∗
kT
∗ k∗

])
, (2.31)

where [K]i,j = k(xi, xj), [k∗]i = k(xi, x∗), k∗ = k(x∗, x∗) and mean 0 is usually assumed
for the targets. The latter is not a restriction of the method, since the mean can easily
be subtracted from the target data.

By a-posteriori conditioning this Gaussian prior distribution on the observed data,
we can obtain the predictive distribution

y∗|X, y, x∗ ∼ N(ȳ∗, cov(y∗)), where (2.32)

ȳ∗ = kT
∗ α, α = (K + σ2

GPI)−1y (2.33)

cov(y∗) = k∗ − kT
∗ (K + σ2

GPI)−1k∗. (2.34)

2.6.2. Estimating the Fisher matrix based on a Gaussian Process

Following the concept of learning metrics based on the Fisher metric in 2.3.2, we
assume for the regression scenario that each observed instance x is accompanied by
auxiliary information in form of a target value y ∈ R. Using the latter to define a
metric tensor, we obtain the Fisher information matrix

J(x) = Ep(y|x)

{(
∂

∂x
log p(y|x)

)(
∂

∂x
log p(y|x)

)T
}

. (2.35)

In order to compute these Fisher matrices, we need (I) to estimate p(y|x), (II) to
compute the derivative thereof and (III) to calculate the expectation.

(I) We assume that p(y∗|x∗) is induced by a Gaussian Process. Formally, we prefer
to write p(y∗|X, y, x∗) in this case. Following equation (2.32), we have

p(y∗|X, y, x∗) =
1√

2πcov(y∗)
exp

(
− (y∗ − ȳ∗)2

2 · cov(y∗)

)
, (2.36)
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where ȳ∗ and cov(y∗) are defined in equations (2.33) and (2.34).
(II) The derivative of p(y∗|X, y, x∗), where both ȳ∗ and cov(y∗) depend on x∗, is

given by:

∂

∂x∗
log p(y∗|X, y, x∗) =

β

cov(y∗)

(
2(y∗ − ȳ∗)t1 +

(
(y∗ − ȳ∗)2

cov(y∗)
− 1
)

t2

)
(2.37)

with auxiliary variables

t1 = ∑
i
(xi − x∗)[k∗]i[α]i (2.38)

t2 = ∑
i
[k∗]i

(
∑

j
(xi + xj − 2x∗)[k∗]j[(K + σ2

GPI)−1]j,i

)
(2.39)

(III) For the continuous case of a regression, the expectation in equation (2.35) is an
integral. It can be solved analytically yielding the following expression for the Fisher
information matrix

J(x∗) =
2β2

cov(y∗)

(
2t1tT

1 +
1

cov(y∗)
t2tT

2

)
. (2.40)

A more detailed derivation is given in Appendix A.2.
As for the case of discrete auxiliary data, it is advisable to regularize the Fisher

information matrix in practice. This can be done by adding a small fraction of the
identity matrix to prevent degeneration. This has the effect that dimensions which are
irrelevant for the prediction are not completely neglected and, such, other dominant
structure can be preserved as well.

2.6.3. Justification for discriminative DR

The aim of unsupervised DR is to project a high-dimensional data set X to a low-
dimensional space while preserving the structure of the data. Such a definition is,
however, ill-posed due to two reasons: 1) the term structure preservation is not a precise
concept and can be formalized in different ways; 2) if the intrinsic dimensionality of
X is higher then the dimensionality of the projection space d, a structure preserving
embedding is not possible and the DR technique has to select which information to
neglect and which to embed.

Aspect 1) is usually addressed in that moment that the user selects an existing
DR technique: Each DR technique is based on a different formalization of structure
preservation [26] and by selection of such a method, the user specifies a mathematical
formalization of structure preservation. However, this choice mainly influences the
visualization result for those parts of the data where the DR is not unique due to
a high intrinsic data dimensionality, i.e. as soon as 2) is addressed, the diverse DR
techniques have much less freedom to provide qualitatively different solutions for 1).

Hence, in this section, we will discuss how the concept of discriminative DR can
help to alleviate aspect 2) (thus, to a large part also 1)): The goal of supervised DR
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is to embed data X in Ξ such that structure which is relevant for the target variable
y = f (x) ∈ R is preserved. Usually, f is smoothly differentiable. Further, specifying
y does usually only make sense if there is a clear relationship of x and y. The Fisher
information relies on the tangent space of f by referring to its derivative ∂ f /∂x. Direc-
tions which are orthogonal to this space, locally, do not affect the function value: this
is obvious if one resorts to the Taylor expansion for linearization at a point a:

f (x) ≈ f (a) + (x− a)T ∂

∂x
f (a). (2.41)

Hence, the function value is not changed if directions orthogonal to the derivative are
added to a. If we assume a deterministic function, the probability p(y|x) is peaked
at the function value y = f (a), i.e. also the Fisher matrix boils down to a matrix of
rank one as determined by the tangential space of f at the considered data point, and
path integrals vanish apart from the direction spanned by this derivative. This implies
that, locally, a linear projection to a one-dimensional subspace, as given by ∂

∂x f (a), is
computed, i.e. only a one-dimensional subspace is relevant for prediction. This is easy
to visualize; thus if f is a deterministic prediction, the problem of discriminative DR is
well posed locally due to a locally only one-dimensional manifold, i.e. local manifold
preservation is possible using DR.

For the full Fisher matrix, a probabilistic view is taken, i.e. J(a) is an infinite sum
over rank one matrices induced by the tangent vector of log p(y|a) for all possible
outcomes y at position a. Provided the relation of a and y is random, this yields a
full rank matrix, hence no regularization of the DR problem takes place. However, as
soon as a relationship of y and a is present such as dimensions which are irrelevant
for y, these do no longer contribute to the Fisher matrix, and DR techniques regard
these directions as invariant. In the limit case of a deterministic relationship (or a
peaked distribution which centres at around this value), the rank of the Fisher matrix
approximates one, and the DR problem becomes more and more regularized.

2.6.4. Experiments

In this section, we evaluate our proposed scheme of computing discriminative dimen-
sionality reduction mappings with various data sets. For each dat set, we apply the
DR method t-SNE and project the data set to two dimensions. In addition, we com-
pute distances on the Riemannian manifold as induced by the Gaussian Process based
on the target variable. For this purpose we employ the straight line approximation
(2.18) with T = 4 on the Riemannian manifold. The results in [123] have shown that
T = 4 is a reasonable choice and that results don’t improve with larger values (in [123],
T = 5 equals T = 4 for our formalization). Finally, we apply t-SNE based on these
supervised distances. Again, we will term the whole procedure Fisher t-SNE.

We utilize t-SNE since it is very popular and achieves often competitive results (see
e.g. [125]). However, any approach that works on distances only, such as for instance
MVU, Isomap, NeRV and so on, can be applied here.
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Figure 2.8.: The three-dimensional sphere data set (left). Evaluation of the preservation
of neighborhoods for the two projections of this data set with t-SNE and Fisher t-SNE
(right). Area under the curve value is shown in the legend.

The remaining of this section discusses an evaluation scheme for the experiments
and shows results obtained on artificial and real life Benchmark data.

Empirical evaluation scheme

In the following, we compare unsupervised visualizations with discriminative visual-
izations for real-valued auxiliary data. For this purpose, we compute the prediction
error in both projections, using a leave-one-out k-nearest neighbor regression scheme:
the prediction of a datum x is the weighted average prediction value of the k nearest
training points. We use k = 5 in the following. Further, we utilize the normalized root
mean squared error

nRMSE =

√
1/n ∑i(yi − fknn(xi))2

std(y)

to measure the prediction error. Here, std(y) refers to the standard deviation of y.
Since the dimensionality reduction technique we employ here is non-deterministic, we
compute it ten times and evaluate the mapping in each run.

Additionally, in some cases it is useful to compare in how far neighborhoods from
the original data space have been preserved in the projection. For this purpose, we
utilize a scaled version of the average agreement Qnx n

k (X, Ξ) from equation (2.3) [93],
which measures in how far the current preservation for each neighborhood k is better
than in a random mapping, as discussed in section 2.2.2.

Artificial data

As a first illustration, we utilize an artificially generated data set which is a three-
dimensional filled sphere (Fig. 2.8). The target function is a second degree polynomial
in the first two dimensions, i.e. feature three is irrelevant for predicting the target. The
latter is encoded in the color of the points.
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Figure 2.9.: Two projections of the sphere data set are shown: the unsupervised pro-
jection (left) and the supervised projection (right).

Obviously, the three-dimensional sphere cannot be embedded accurately in two di-
mensions such that all neighborhood relationships are preserved. However, since the
target mapping depends only on two dimensions, finding an embedding which is
accurate with respect to the supervised information in the data is possible.

We expect that an unsupervised projection has to make compromises between the
three features equally, and such, would distort the continuous structure of the target
variable. This would make a prediction task more difficult and would not show an
accurate visualization of the original structure. A discriminative projection, however,
will emphasize those dimensions that are relevant for the prediction and such yield a
more accurate visualization with respect to the target function.

Fig. 2.9 (left) depicts an unsupervised visualization of the sphere data set and Fig. 2.9
(right) displays a supervised projection. As expected, the discriminative visualization
shows the continuous change in the target variable while the unsupervised mapping
does not. The numerical evaluation based on the nearest neighbor error yields the
same conclusion: the average prediction error decreases from 0.357 to 0.099 in the
discriminative visualization (see Table 2.2). In particular, the error is smaller than in
the original data space.

For this artificial data set, we can employ an additional evaluation since we know
that the first two dimensions contain the discriminative information. We compare the
neighborhoods in the t-SNE and Fisher t-SNE projections to those defined in the first

Table 2.2.: Prediction errors in different data spaces using the nRMSE over 10 runs.
The standard deviation is given in brackets.

orig space t-SNE Fisher t-SNE

sphere 0.255 0.357 (±0.025) 0.099 (±0.013)
housing 0.440 0.471 (±0.004) 0.207 (±0.002)
diabetes 0.785 0.814 (±0.012) 0.506 (±0.006)
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Figure 2.10.: Two embeddings showing the housing data set: unsupervised t-SNE
embedding (left) and discriminative Fisher t-SNE embedding (right).

two dimensions of the data set. The resulting logarithmically scaled curve in Fig. 2.8
(right) shows the values Qnx n

k , which measure how well the neighborhoods of size k
have been preserved. Fisher t-SNE achieves here superior results, as well.

Real world benchmark data

In the following, we employ two real world data sets for the evaluation of our ap-
proach:

• The housing data set [76] consists of 506 instances that describe houses in the
suburbs of Boston. The goal is to predict the housing values based on 13 features.
The data set can be obtained from the UCI Machine Learning Repository [45].

• The diabetes data set consists of 10 features for 442 patients. The goal here is
to predict a measure of the diabetes progression one year after recording the
features. This data set has been used in the original LARS paper [41].

Similarly as in the previous section, we compute unsupervised t-SNE projections
and supervised mappings which are based on Fisher distances and calculate prediction
rates. Repeating this procedure ten times yields the average prediction errors shown in
Table 2.2. In both cases, the error in the discriminative case is lower and the standard
deviation is small.

Exemplarily, an unsupervised and a discriminative embedding of the housing data
set is depicted in Fig. 2.10. While the global structure seems to be similar in both pro-
jections, differences can be observed locally in particular for the target values around
40.

Fig. 2.11 shows a t-SNE and a Fisher t-SNE projection of the diabetes data set. Again,
the global structure agrees while many differences can be observed, locally.
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Figure 2.11.: Two embeddings depicting the diabetes data set: t-SNE embedding (left)
and Fisher t-SNE embedding (right).

Interpretation of feature selection results

One possible application of Fisher t-SNE in the context of regression is to visualize the
correlation of single features with the target variable. For instance if a feature selection
approach has found particular relevant features, it might be of interest to analyze in
which regions of the data space a feature is particularly useful to predict the target
and in which this is not the case.

For the purpose of a short illustration, we utilize the diabetes data set, where it is
known that feature 3 is particularly useful for prediction while this is not the case for
feature 1 [41]. Fig. 2.12 shows three times the same Fisher t-SNE projection, where the
targets (left), feature 1 (middle) and feature 3 (right) are used for labelling.

The bottom left image in Fig. 2.12 shows structural information but it is clearly not
helpful in predicting the target. The bottom right image, however, shows a similar
gradient as the top image in the most regions (except the top left and top right part of
the data).

2.6.5. Conclusion

We have investigated the question of how to shape dissimilarity based dimensionality
reduction techniques for data visualization according to auxiliary information in case
the latter is real valued. Building on the very successful strategy as introduced in
[163, 56] and discussed in section 2.3, we have proposed to change the metric in the
data space according to the given information based on the Fisher information. This
results in an intrinsically low-dimensional manifold for which dimensionality reduc-
tion is much easier (and well-posed) based on standard methods such as t-SNE. Unlike
approaches [163, 137] focusing on auxiliary discrete label information as discussed in
section 2.4, we have addressed the setting of real valued data and we have proposed a
very robust scheme how to approximate the Fisher metric based on a Gaussian process
model of the data. This has the advantage of a highly flexible scheme for which the
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Figure 2.12.: A Fisher t-SNE projection of the diabetes data set with different colorings
according to the target variable (top), feature 1 (bottom left) and feature 3 (bottom
right).

mathematical derivative and the integral can efficiently be computed. Based on artifi-
cial and real life benchmarks, the superiority of the proposed approach in contrast to
a mere unsupervised dimensionality reduction becomes apparent again: the proposed
method opens a very intuitive way to shape the ill-posed problem of data visualiza-
tion according to the aspects which are considered as relevant by the applicant. Since
real labels constitute a universal set in which to embed features or measurements, the
technology comes with a widespread applicability.

2.7. Discussion

In this chapter, we have proposed three contributions to DiDi methods based on the
Fisher metric which enable to apply these techniques in different complex scenarios.
Nevertheless, there are quite a few interesting aspects for further research: So far,
minimum path integrals of the Fisher metric have been approximated by sampling
along a straight line. Albeit this crude approximation yields good results, the question
occurs whether an explicit analytical solution or a variational approximation is possi-
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ble in the context of GPs or for approximations by e.g. piecewise constant or piecewise
linear functions. Further, in particular for big data, the seamless integration of its com-
putation into the Barnes Hut approximation of the dimensionality reduction method
[177, 157] itself could be of great potential as regards computational complexity. We
have proposed a scale up by subsampling and a subsequent extension towards further
data by means of the kernel t-SNE technology as introduced in section 2.2.3; this is
particularly suited in the case of streaming data which arrive over time, but it bears
the risk of loosing information present in the full data. Here, speed-up such as offered
by Barnes-Hut enables a better controllable approximation which is tailored to t-SNE
and similar technologies. Apart from these algorithmic issues, the question occurs
whether the proposed method induces auxiliary semantics which could be of use in
an interactive data exploration scheme. The Fisher information constitutes a natural
way to quantify the local relevance of a given data feature for the task at hand. This
information is usually of high relevance for the user, and its value could be integrated
into the data visualization scheme relying on a suitable display of this information.
Here, ideas from information visualization as well as according studies to investigate
their efficiency and effectiveness could be very valuable.

Having investigated extensions of discriminative dimensionality reduction towards
out-of-sample extensions, non-vectorial data representations in the form of kernels,
and real-valued auxiliary information, we now turn to a first application domain
where DiDi plays a major role: the visualization of classifiers together with the de-
cision boundary instead of a finite data set only.



Chapter 3.

Visualization of functions in

high-dimensional spaces

Chapter overview This chapter presents a novel framework to visualize a high-dimensional function together

with a data set in two dimensions. We employ this concept to visualize classification and regression models, thus,

enabling us to directly inspect characteristics of the trained model such as overfitting/underfitting behavior or the

handling of multi-modal data. We demonstrate this approach for various classification and regression models and

show that it highly benefits from the use of discriminative dimensionality reduction.

Parts of this chapter are based on:

[J15b] A. Schulz, A. Gisbrecht, and B. Hammer. Using Discriminative Dimensionality Reduction to Visualize Classifiers.

Neural Processing Letters, 42(1): 27–54, 2015.

[C15d] A. Schulz, and B. Hammer. Visualization of regression models using discriminative dimensionality reduction.

In CAIP 2015, pages 437–449, 2015.

3.1. Motivation

An increasing complexity of data as concerns its size, dimensionality, or heterogeneity
poses strong challenges on automated data analysis. Often, it is no longer possible
to specify a dedicated learning task in advance. Rather, complex settings cause the
need of an interactive data analysis: humans interactively process and interpret large,
heterogeneous, and high-dimensional data sets, specifying the learning goals and ap-
propriate data analysis tools based on the obtained findings [171, 69, 144, 132]. In this
realm, interpretability of the models and data visualization play a major role since
they offer an intuitive interface to the data and its analysis tools for the human practi-
tioner [162, 94, 138]. Hence a trained classifier is no longer judged by its classification
accuracy only, rather, the question moves into the focus based on which rationale
the classifier makes it decision, what are problematic regions of the classification task
where refinement would be valuable, and which data correspond to outliers or noise.

Possible remedies to the challenge of model interpretability are offered by relevance
learning, feature selection techniques, or sparse model descriptions, for example [117,
162, 138, 141, 67, 11]. Roughly speaking, such techniques aim for a model shape which
is directly interpretable by humans e.g. by means of sparsity. Further, visualization

41
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plays a major role, since it addresses one of the most powerful senses of humans.

Visualization of data constitutes a well-investigated research topic with a plethora
of different visualization techniques having been proposed in the machine learning
context. Besides classical methods such as linear projections and nonlinear extensions,
a variety of (often non-parametric) dimensionality reduction (DR) techniques has been
proposed in the last decade, such as t-SNE, NeRV, or MVU, see section 2.1 for refer-
ences on DR techniques. Often, however, these methods are used to visualize a given
data set in two dimensions only. Such, they do not yet answer the question how to
visualize the relation of these data in connection to a given supervised model, such as
a classification or regression model. The possibility to also visualize decision bound-
aries as provided by a given classifier or the learned function of a regression model
would allow us to extract information beyond the mere accuracy of the model ad-
dressing questions such as: is the model particularly complex in certain regions of the
data space, is it too simplistic in others, how are noisy regions and outliers treated,
how does the model extrapolate, is the data multimodal, etc.

In this chapter we propose a framework to visualize high-dimensional functions to-
gether with a data set in two dimensions. In particular, we will apply it to decision
boundaries of arbitrary classification models and to prediction functions of arbitrary
regression models. Such a visualization then allows us to answer questions such as
formulated above. Since a visualization of these functions basically displays the cen-
tral functionality of the respective models, we will sometimes refer to our concept as
classifier and regression model visualization.

Generally speaking, the general framework for classification and regression model
visualization, as proposed in this chapter, relies on an identification of a given data
manifold and a two-dimensional projection. Note that, for two-dimensional input
data, function or classifier visualization constitutes a classical tool of data analysis: the
plane is sampled, and its function values are directly displayed at the corresponding
position in the plane in terms of a colormap or contour plot. A bijective mapping
between the original data manifold and a low-dimensional projection enables us to di-
rectly transfer this procedure: we can identify points in low and high dimensions, and
display the color or contour of these points in the low-dimensional space according to
their function value in the high-dimensional space.

This naive approach, however, has a few drawbacks: (i) Many powerful DR methods
do not provide an explicit mapping, rather they provide a non-parametric projection
of the given data points only. Here, we will employ the parametric out-of-sample ex-
tension proposed in section 2.2, if necessary. (ii) It is infeasible to sample the usually
high-dimensional feature space; still we have to somehow obtain an explicit descrip-
tion of the high-dimensional function, e.g. of the decision boundaries of an arbitrary
classifier. We solve this problem by a trick: we sample in the low-dimensional projec-
tion space rather than the feature space itself, and use the inverse projection of these
sampled data to determine an explicit description of the high-dimensional function
in the data manifold. (iii) Unless the data manifold is intrinsically two-dimensional,
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however, there cannot exist a bijection of the data manifold and a low-dimensional
projection, hence no valid back-projection. More generally, the question what to vi-
sualize in a reasonable way is not clear due to the usually high data dimensionality.
Hence the task of classifier or regressor visualization is essentially ill-posed. We will
rely on discriminative DR to circumvent this problem.

More precisely, we will point out the necessity to integrate auxiliary information to
the DR technique to make the DR problem well-posed. For classifier visualization,
we do not want to visualize all aspects of the data, rather we are interested in the
positioning of the data as concerns the class boundaries. For the visualization of re-
gression models we are not interested in areas of the data space where the regression
function is constant but where it shows interesting variation. As discussed in chapter
2, there exists a very natural way to enhance many DR techniques with auxiliary in-
formation: instead of the original data and its underlying distance measure, we rely
on a distance measure which is induced by the Fisher information metric for the given
auxiliary variable. This way, those aspects of the data are emphasized which are rele-
vant for the given classifier or the regression model, rather than e.g. directions parallel
to the classifier’s decision boundaries. As discussed in section 2.6.3, the Fisher infor-
mation matrix is low-dimensional in the regression case, making the function under
the Fisher metric locally low-dimensional, as well. Similar holds for the classification
case, because the decision boundary correspond to a one-co-dimensional topological
manifold. Hence the data set measured in the Fisher metric, which essentially restricts
to directions orthogonal to the boundary, is locally approximately one dimensional (in
the vicinity of class boundaries), and the task to visualize such data in two dimensions
is well defined.

We will elaborate on this issue in the following and demonstrate the beneficial ef-
fect of taking auxiliary information into account. Actually, there exist two different
reasonable choices for the auxiliary information: the ground truth which is the aux-
iliary information provided by the data, and the prediction which is provided by the
trained classification or regression model. In particular for models with low accu-
racy, a scenario where inspection might be particularly interesting, these predictions
do not coincide. In such settings, we would like to ‘see’ what causes the problems of
the model. We will discuss that both possible choices provide different visualizations
of the models, focusing on different aspects of the setting and different insights into
the model behavior. We will demonstrate this aspect in the following in examples.
In summary, a powerful high-dimensional function visualization framework results
which we will test for different classifier types, different regression models and for
different DR techniques, including t-SNE, SOM, GTM, and MVU.

Moreover, we identify typical user tasks that can be performed with the help of our
proposed method. These include for the case of classifier visualization the following.

1. Is there multimodality in the data, i.e. are there certain classes which fall into
multiple modes and how does the classifier handle them?

2. How does the classification model deal with potential outliers in the data?
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3. Is there overlap in the data and how do the class boundaries look in those re-
gions?

4. How complex are the class boundaries of the trained model? Do they potentially
overfit the data?

5. If the model contains interpretable components such as data prototypical in-
stances: What is their location in relation to the data and how do they contribute
to the class boundary?

In the case of the visualization of regression models, the user tasks can be slightly
different. We summarize them in the following.

1. How complex is the learned function? Does it overfit/underfit some regions?

2. Is the data multi-modal, i.e. are clusters present in the data and how does the
regression model deal with those? What is the prediction for the regions in-
between the clusters?

3. Are specific aspects of the selected model visible (such as local linear functions)
and are these suited for the data at hand.

4. Are there potential outliers in the data and how does the model treat these?

We address these user tasks in the sections 3.5 and 3.6.

Literature overview for the visualization of classifiers At present, visualization in the
context of classifiers is rather limited: visualization is often restricted to the training
procedure, e.g. providing interfaces to set certain parameters or to inspect the area
under the curve (AUC) results [63]. Other methods analyze the class topology in a
projection space [37] and in the original data space [6]. There exists relatively lit-
tle work to visualize the underlying classification function itself, including interactive
tour methods [29], nomograms [73], linear projection techniques on top of the distance
to the decision boundary [128], or graphs emphasizing those regions where class affil-
iation changes [106]. Very few nonlinear techniques exist, one notable approach being
proposed for the visualization of support vector machine (SVM) using self-organizing
maps (SOM), resulting in a technique dubbed support vector machine visualization
(SVMV) [170].

Literature overview for visualization of regression models Besides approaches to
judge the quality of trained regression models with quantitative estimates [28], there
exists only little work which aims to visualize the regression function itself. For the
special case of Decision Trees, a direct inspection is possible through the special tree
structure of the model. However, these models can get unclear with increasing size
and data complexity. More general approaches such as Breheny and Burchett [21]
try to analyze the relationship between the target and a single explanatory variable



3.2. Dimensionality reduction techniques 45

by visualizing the predictions of the model for different values of this variable while
keeping the others fix. However, this approach treats the explanatory variables inde-
pendently (or a small subset simultaneously) and thus cannot find information that is
present in many dependent features.

In this chapter, we propose a general approach which generalizes the standard dis-
play of two-dimensional classifiers or functions in terms of contour plots towards high-
dimensional data by means of discriminative dimensionality reduction techniques.

3.1.1. Scientific contributions and structure of the chapter

This chapter presents the following core contributions.

Framework for visualizing classification and regression models In section 3.4, we pro-
pose a general framework for the visualization of classification and regression
models enabling to visualize any such model that provides a real valued output
(such as the certainty measure of the decision, in case of a classifier). We demon-
strate this for a support vector machine (SVM), support vector regression (SVR),
learning vector quantization (LVQ) and a decision tree model.

Influence of DiDi In section 3.5, we highlight the necessity and investigate the effect
of using discriminative DR in this context.

User tasks demonstration In sections 3.5 and 3.6, we present how the identified user
tasks can be addressed with our proposed framework.

The remainder of the chapter is structured as follows: Section 3.2 describes the DR
techniques investigated for the task of high-dimensional function visualization. After-
wards, section 3.3 discusses the task of computing an inverse DR mapping, thereby
dealing with the fact that DR is typically many to one. Section 3.4 describes our main
approach for the visualization of classifiers and regression models, by employing the
concepts of DR and inverse DR. Finally, we demonstrate and evaluate the proposed
approach by visualizing classification models in section 3.5 and regression models
in section 3.6. Here, we also show exemplarily how the proposed user tasks can be
addressed. Section 3.7 concludes the chapter.

3.2. Dimensionality reduction techniques

As already mentioned before, dimensionality reduction techniques are concerned with
the following problem: given data points x ∈ X = RD in a high-dimensional feature
space, how to map these points to low-dimensional counterparts π(x) = ξ ∈ Ξ = R2

in the two-dimensional plane such that as much structure as possible is preserved. As
described in the recent overview [53] for example, one can distinguish parametric and
non-parametric DR techniques.

Parametric techniques specify a functional form πpm : X → Ξ, x 7→ ξ = πpm(x)
(we employ the subscript pm to emphasize that the mapping is parametric) with
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free parameters which determine the form of the mapping. Given a set of examples
x1, . . . , xN , training takes place by optimizing these parameters such that the examples
are mapped as accurately as possible. Popular methods include:

• Principle component analysis (PCA) defines πpm(x) = WTx as a linear mapping
with W ∈ RD×2. The linear parameters W are determined such that the squared
reconstruction error of the given data is minimized, resulting in an eigenvalue
problem with an explicit solution. Due to the particularly simple form, an ap-
proximate inverse is offered by the mapping π−1

pm : ξ 7→ π−1
pm(ξ) = Wξ.

• One popular non-linear alternative is offered by the self-organizing map (SOM),
which maps the data to a two-dimensional regular grid (consisting of nodes ck)
by means of a winner-takes-all function, where each position j in the grid is
associated with one position wj ∈ RD in the feature space. Training takes place
by Hebbian learning, thereby also respecting the neighborhood of the lattice.
This way, a locally constant projection of the data to two dimensions, the lattice
position of the winner, is defined: πpm(x) = ck with k = arg minj d(x, wj). By
means of local interpolation, this mapping can easily be turned into a smooth
function. By construction, an inverse mapping is offered by mapping a position
j in the lattice to the position wj of the associated place in the feature space:
π−1

pm(ξ) = wk with k = arg minj d(ξ, cj). Again, this simple function is locally
constant, but can easily be turned into a smooth mapping by means of local
interpolation.

• We will also consider the generative topographic mapping (GTM) as a probabilis-
tic counterpart of SOM. Essentially, GTM relies on data being generated by a
constraint mixture of Gaussians. The centers of the Gaussians are generated
by a smooth mapping from regular lattice positions in a two-dimensional latent
space which can be used for data visualization. GTM training can be derived
from a maximization of the data log likelihood function. Due to its probabilistic
modeling which allows to compute probabilities of lattice points having gener-
ated a given data, a smooth mapping of data to its low-dimensional projection
πpm(x) = ∑k ck p(ck|x) and vice versa π−1

pm(ξ) = ∑j wjφ(ξ) (where the basis func-
tion φ are often Gaussian kernels with predefined centers) is directly provided
by GTM.

In contrast to these parametric techniques, non-parametric mappings rely on a map-
ping of a given set of data xi to their low-dimensional counterparts ξi only, but no
explicit functional form πpm : X→ Ξ is priorly specified. Training takes place by tun-
ing the projections ξi such that a certain criterion is optimized: usually, the structure
in the data space as defined by xi and the structure of the projections ξi are mea-
sured and compared using some suitable cost function. An overview about a generic
formalization of different popular non-parametric DR techniques as cost function op-
timization can be found in [26]. We will exemplarily investigate the following four
popular techniques:
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• The goal of Multidimensional scaling (MDS) is to embed the data such that the
distances in X and in Ξ agree. If these distances are Euclidean, MDS is equivalent
to PCA. However, other metrics can be integrated directly.

• Isomap is based on the objective to preserve distances in the data space and the
projection space as measured in a least squares error. Thereby, the distances in
the original data space are taken along the data manifold as so-called geodesic
distances. Since the exact manifold is not available, a simple numeric approxi-
mation scheme is taken: local neighborhoods of a given data point to its closest k
neighbors are approximated by the euclidean distance; on a global scale, shortest
paths in this neighborhood graph are considered.

• Maximum variance unfolding (MVU) relies on a similar idea, by first constructing
a local neighborhood graph connecting every point to its k closest exemplars.
Then, projection takes place by unfolding the data as much as possible in two
dimensions (i.e. maximizing its covariance) thereby respecting the neighborhood
structure of the constructed graph.

• T-distributed stochastic neighbor embedding (t-SNE) has already been detailed in sec-
tion 2.2.1. For convenience, we recall the core concept in the following. T-SNE
defines local neighborhoods in a probabilistic sense by using Gaussians based
on pairwise distances in the feature space and student-t distributions induced
by euclidean distances in the projection space. Training takes place by a mini-
mization of the error in between these distributions as measured by the Kullback
Leibler divergence. Unlike MVU, the resulting cost function can have local op-
tima resulting in different possible visualizations. See 2.2.1 for more details.

With the exception of PCA, all these methods rely on distances to the data only and,
hence, can be equipped with the Fisher metric, see section 2.3. Employing one of these
methods together with the Fisher metric renders them discriminative and, hence, we
will refer to such a combination with the method name preceded by the prefix Fisher.

3.3. Inverse dimensionality reduction

In addition to projecting data down to two dimensions, we will also require a mapping
to project data back to the original data space. However, note that in general a direct
inversion of a projection mapping π : X → Ξ is not possible since the projection π is
usually many to one. Hence, we are interested in finding a mapping π−1 : Ξ → X

such that
π(π−1(ξ)) = ξ (3.1)

and π−1 maps into the data manifold. Nevertheless, we will use the term inverse
dimensionality reduction for this concept, similarly as the term inverse kinematics is
used in robotics for finding an inverse mapping of a many to one map (this is often
the case e.g. for robot arms having an elbow up and elbow down solution).
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Many parametric techniques nevertheless provide explicit inverse mappings which
find a suitable inverse of the projections to the data manifold, such as discussed for
PCA, SOM, and GTM above. For non-parametric mappings a picewise linear mapping
is developed in [40], where the parameters have to be recomputed for each point. We
propose a similar trick as before which is based on a similar interpolation idea as in
[40] but having a global analytical functional form which is smooth.

We assume that points xi ∈ X and projections π(xi) = ξi ∈ Ξ = R2 are available.
For an inverse projection, we assume the following functional form

π−1 : Ξ→ X, ξ 7→
∑j βjk j(ξ, ξ j)

∑l kl(ξ, ξl)
(3.2)

where βj ∈ X are parameters of the mapping and k j(ξ, ξ j) = exp(−0.5‖ξ− ξ j‖2/(σξ
j )

2)

constitutes a Gaussian kernel with bandwidth determined by σ
ξ
j . The bandwidth

is determined in the same way as in the kernel t-SNE approach, see section 2.2.3.
Summation is over a random subset Y′ of the given data projections ξi = π(xi), or
over codebooks resulting from a previously run vector quantization on the ξi.

One particular problem is given by the fact that the inverse mapping π−1 of π is
not well defined if obtained from minimizing the standard Euclidean error: Since the
intrinsic data dimensionality is usually larger than two, the inverse x of a given projec-
tion ξ is ambiguous. Data dimensions which are not relevant for the projection π can
be treated arbitrarily. Moreover, equation (3.1) cannot be used directly for optimiza-
tion in case that π is non-paramteric. Thus, a challenge is the task to find a suitable
inverse projection of π which tolerates such invariances.

We solve this problem by optimization of the following costs with respect to the
parameters βj

E = ∑
i

(
d1

(
xi, π−1(ξi)

)2
)
= ∑

i

(
xi − π−1(ξi)

)T
J(xi)

(
xi − π−1(ξi)

)
(3.3)

where the matrix J refers to the Fisher information matrix, see section 2.3. In con-
trast to a standard Euclidean error function, this function has the advantage that those
dimensions in X which are locally relevant for the classification are emphasized. In-
variances of the projection π due to the given class labeling are tolerated in the inverse
projection. We utilize the distance dT (2.18) with T = 1 in order to save computational
time. This local approximation works usually well since the points xi and π−1(ξi) will
get close to each other in the course of optimization. Minimization of these costs with
respect to the parameters βj takes place by gradient descent.

3.4. General framework

In this section we present a new general framework for the visualization of classifica-
tion and regression functions. We assume the following scenario: a data set including
points xi ∈ X is given. Every data point is accompanied either with a label li ∈ L
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belonging to a finite set of different labels L or with a target variable yi ∈ R. In ad-
dition, either a classification model f : X → L or a regression model f : X → R has
been trained on the given training set, such as a support vector machine or a decision
tree. For a classifier, we additionally assume that the label f (x) is accompanied by a
nonnegative real value r(x) ∈ R which scales with the distance from the closest class
boundary. As an example, this could be the activation of a linear classifier such as
SVM, or it could be the class probability if a probabilistic classifier such as robust soft
learning vector quantization or a Bayesian classifier is considered. Note that most clas-
sifiers offer a natural way to equip the mere class output with a smooth value which
correlates to the distance to the decision boundary. Since we do not assume a specific
scaling of this output, any such value will do.

A visualization of the given data set and the trained model would offer the possibil-
ity to visually inspect the prediction results and to address user tasks as formulated
in section 3.1. We propose a general framework to visualize a trained classification or
regression model together with a given data set such as the training set of the model.

3.4.1. Naive approach

In the following, we assume that a nonlinear dimensionality reduction method is
given. As already said before, a naive pipeline to directly extend common practice
for two-dimensional classifier visualization to high dimensions could be like follows:

• Sample the full data space X by points zi.

• Project these points nonlinearly to two-dimensional points π(zi) using some
nonlinear dimensionality reduction technique.

• Display the data points π(xi) and the contours induced by the sampled function
(π(zi), r(zi)), the latter approximating the boundaries of the classifier or the
prediction of a regression model.

This method, however, fails unless X is low-dimensional because of two reasons:

• Sufficiently sampling X requires an exponential number of points, hence it is
infeasible for high-dimensional X.

• It is impossible to map a full high-dimensional data set faithfully to low dimen-
sions, hence topological distortions would be unavoidable.

The problem lies in the fact that this procedure tries to visualize the function in the full
data space X. It would be sufficient to visualize only those parts which are relevant
for the given training data xi and the underlying function behavior as measured using
the Fisher metric.
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Figure 3.1.: Principled procedure how to visualize a given data set and a trained clas-
sifier. The example displays a SVM trained in 3D.
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3.4.2. Main procedure

Therefore, we propose to sample in the projection plane instead of the original data
manifold, and we propose to use a discriminative DR technique to make the problem
of data projection well-posed (since the Fisher metric makes the data space locally low-
dimensional the projection can find a compromise, at least locally). Together with the
techniques presented in the last chapter, this leads to the following feasible procedure
for visualization of high-dimensional functions:

Dimensionality reduction Project the data xi using a nonlinear discriminative DR tech-
nique (for instance utilizing Fisher distances calculated with (2.18)) leading to
points π(xi) ∈ Ξ.

Inverse dimensionality reduction Sample the projection space Ξ in a regular grid lead-
ing to points {z′i}n

i=1. Determine points zi in the data space X which are projected
to these points π(zi) ≈ z′i by applying an inverse mapping π−1 (if not provided
by the DR method, it can be obtained by optimizing (3.3)), relying on the Fisher
metric to make it well posed.

Visualization Visualize the training points π(xi) together with the given function
which is induced by (z′i, f (zi)) as contours. In the case of classification, utilize
also (z′i, r(zi)), where the function value r is provided by the classifier f . In this
case, we depict f (zi) as color values and r(zi) as the intensity. For regression, it
can be useful to plot f (zi) over a third axis.

This corresponds to applying the function f ◦ π−1 for every position z′ in the projec-
tion space. An illustration of this procedure is shown exemplarily in Figure 3.1 for
classification and in Figure 3.2 for regression. More information on the data set used
for the latter are detailed in section 3.6.

Unlike the naive approach, sampling takes place in R2 only and, thus, it is feasi-
ble. Further, only those parts of the space X are considered which correspond to the
observed data manifold xi, i.e. the prediction function is displayed only as concerns
these training data.

Parameter choices

The proposed framework is general in the sense that it allows to visualize a large set
of functions, using any DR technique. Hence, there are a few choices which have to
be made. These are illustrated in the following.

Visualized model The most obvious choice is to select the model or functions which
should be visualized. Here, we will often demonstrate our approach using the
support vector machine as a state of the art technique.

Discriminative mapping A principle choice which has to be made is whether the uti-
lized DR technique should make use of auxiliary information or not. We will
investigate this question in the experiments.
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Figure 3.2.: Illustration of our proposed approach to visualize a regression model (in
this case a Decision Tree).

Choice of DR In both supervised and unsupervised DR cases, there is a large pool of
DR techniques from which one can be selected. We will evaluate their suitability
for the task of the visualization of classification and regression models in the
following. The method t-SNE will be a default choice.

Type of auxiliary information Two types of auxiliary data can be used in this context:
the prediction as provided by the function f (i.e. the classification or regression
function), or the auxiliary data directly from the training set, i.e. the ground
truth. Depending on which information is used to determine π and its inverse
π−1, we obtain a visualization of the function which respects invariances of the
underlying ground truth, or which respects invariances of the observed func-
tion, allowing different insights into its behavior as we will demonstrate in the
following. Per default, we will refer to the original labels unless stated otherwise.

3.4.3. Evaluation

In the following we introduce a scheme which allows to evaluate the quality of the
visualized function in the vicinity of the data.

The key idea is to compare the predictions of the visualized function for the visu-
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alized data ( f ◦ π−1 ◦ π)(x) to the predictions of the original function for the original
data f (x).

In the case of a classification model, these two functions f (x) and ( f ◦ π−1 ◦ π)(x)
yield discrete values so a direct comparison is possible. Furthermore, since we assume
that the classifier also provides a function r measuring the certainty of the model, we
can also use this function for evaluation.

More formally, we evaluate the visualization of classification functions with the first
two measures and the visualization of regression models with the third measure.

1. Compute the accordance of the classifications in the projection and in the original
data space by calculating the percentage of points xi for which ( f ◦ π−1 ◦ π)(xi)

and f (xi) agree.

2. Compute the accordance of the certainty values by computing the Pearson cor-
relation between (r ◦ π−1 ◦ π)(xi) and r(xi):

E
{
(r(x)−E (r(x))) ·

(
(r ◦ π−1 ◦ π)(x)−E

(
(r ◦ π−1 ◦ π)(x)

))}√
E
{
(r(x)−E (r(x)))2

}
·E
{
((r ◦ π−1 ◦ π)(x)−E ((r ◦ π−1 ◦ π)(x)))2

} (3.4)

3. Compute the accordance of the predictions by computing the Pearson correlation
between ( f ◦ π−1 ◦ π)(xi) and f (xi), similarly as in equation (3.4).

These criteria do not measure in how far π−1 is the exact inverse of π. Obtaining
an exact inverse mapping is impossible for most data sets. Instead, these measures
evaluate the suitability of π−1 with respect to f (and also r in the classification case),
i.e. errors along directions where f doesn’t change are not accounted as such. This way,
only directions in the data space are considered which are relevant for the prediction.
Or more generally speaking, these measures compare in how far the induced function
( f ◦ π−1) and the original function f agree on the pairs (xi, ξi) as provided by π.

For the computation, we utilize only those points x which were not utilized to train
the mapping π−1. Further, we approximate ( f ◦ π−1 ◦ π)(x) (and for classification
also (r ◦ π−1 ◦ π)(x)) by the prediction value of the closest sampled point z′ of π(x),
simply because we have already computed f ◦ π−1 for these points.

3.5. Experiments with classification functions

In this section we demonstrate our approach for various data sets and scenarios. In
the first experiments, we exemplarily visualize SVMs while later we also apply our
approach to probabilistic LVQ models and classification trees.

In 3.5.1, we utilize two data sets addressing the user cases 2 and 4 and we investi-
gate the influence of DR techniques on the visualization of classifiers. First, we apply
PCA (being the most simple and straight forward method) and show it’s limitations.
Further, we compare the SOM (suggested in the literature [170]) to non-parametric
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projections. In section 3.5.2, we perform a sanity check by visualizing classifiers based
on different labellings of the same data. Furthermore, we also address the previously
specified user cases 1 and 3. In section 3.5.3 we empirically analyze the effect of includ-
ing supervised information and in section 3.5.4 we consider two types of supervision:
given by the original labeling and by the labels assigned to by the classifier. Addition-
ally, we investigate properties of the prototype based classifier, thus addressing user
case 5. In the last section 3.5.5 we visualize two other classifiers: a classification tree
and a Robust Soft LVQ model.

Now follows a short description of the classifiers we utilize in our experiments.

• The Support Vector Machine (SVM) [161] trains a maximal margin linear classi-
fier in feature space. The decision function has the form f (x) = sign

(
wTφ(x) + b

)
,

where w and b are optimized by the method. For the SVM, we can directly com-
pute the distance from the decision boundary by r(x) = (wTφ(x) + b)/

√
wTw.

Originally, the SVM solves only two-class problems. If more classes are available
we employ a “one versus one” classification scheme (i.e. training a two-class SVM
for each pair of two classes) with a subsequent majority vote for classification.
For this approach, the class boundaries of the resulting SVM mostly coincide
with the boundaries of the two-class SVMs, which is not the case for the “one
versus all” scheme (see [87] for more details). Hence, in the case of more then
two classes we specify the overall value r(x) to be the minimum distance of x to
the class boundary of each two-class SVM containing the class of x. The “one
versus one” scheme is also implemented in the LIBSVM toolbox [30] which we
utilize in the following.

• The Robust Soft LVQ (RSLVQ) classification scheme [142] learns a prototype
based probabilistic model for the data such that the likelihood of correct classifi-
cation is optimized. A Gaussian mixture is employed as the probabilistic model,
which directly provides probability estimates for r(x).

• Classification Trees divide the input space into several regions, thereby using axis
aligned decision boundaries. They typically work in a greedy way, subdividing
regions if these contain too many points form different classes. For this splitting
step of cells we use the Gini index. See [84] for an review of Classification Trees.
A probabilistic output for the certainty of the classification can be provided using
the distribution of data points inside such cells.

3.5.1. Toy data examples with different DR mappings

We utilize two three-dimensional artificial data sets in order to provide an example for
our approach and to demonstrate the user tasks 1,2 and 4 as defined in the introduc-
tion. Both data sets consist of two classes and are shown in Fig. 3.3. For both data sets
we train Support Vector Machines.
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Figure 3.3.: Toy data set 1 (left). Note the potential outlier point of class 1 in the upper
right part of the data set. The right image shows toy data set 2.

Data set 1 (left) is intrinsically two-dimensional and consists of a plate surrounded
by a circle. Each object represents a class. Note that one point of class 1 lies apart
from the other samples of that class and close to samples of class 2. We train two SVM
models for this data set: a complex one with small RBF kernels and one with larger
RBF kernels. We apply the proposed framework to visualize these classifiers, thereby
employing π and π−1 as provided by the PCA. In this case, PCA is suitable because
the class-relevant structure of the data is described well by the variance. Indeed, the
evaluation schemes estimate the accordance to 0.99. The visualizations of the data
together with the underlying classifier are shown in Fig. 3.4.

The left image depicts the complex SVM. It can be directly observed that the class
boundaries are rather complex and that the outlier is classified correctly, yielding po-
tential generalization disadvantages. The right hand side of the figure shows the less
complex SVM. Here, the rather smooth class boundaries are directly visible and a
good generalization can be expected due to the large margin - at the cost of one miss-
classification, however. Observing the complexity of the class boundaries might be
very interesting, for instance if one is addressing the bias variance dilemma of the
classifier. This is an example how the user tasks 2 and 4 can be addressed with our
proposed framework.

SVMV [170] uses the SOM for dimensionality reduction and yields a very similar
result as can be seen for both SVMs in Fig. 3.5. The two SVMs can be distinguished
here as well, although, the margin of the classifier is not displayed so well. This is an
effect of the SOM since it is related to vector quantization and, hence, usually doesn’t
place nodes in regions without data (except it has to due to the neighborhood function,
which is the reason for the class boundary being shown in this example at all).

The quality of the visualization as measured by the accordance of the class labels
assigned to points by the classifier and the labeling that would be assigned to by the
visualization of the classifier amounts to 100% for all visualizations shown in Figures
3.4 and 3.5. The evaluation of the contours describing the certainty of the classifier
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Figure 3.4.: Visualization of two different SVMs trained on data set 1 with PCA.

Figure 3.5.: Visualization of two different SVMs trained on data set 1 with SOM.

amounts to over 0.99.
Data set 2 consists of three clusters. One cluster corresponds to class 2 and it is

surrounded by the other two clusters belonging to class one (see Fig. 3.3, right). The
topmost two clusters are flat disks while noise is added to the lowest one, yielding
that the lowest two clusters are closer to each other. Furthermore, for all clusters, the
variance along the first two dimensions is higher then along the third one. This data
set is an example for user task 1.

We use this data set to show the drawbacks of PCA and SOM visualizations. We
train a SVM classifier and visualize it with PCA in Fig. 3.6. The accuracy of this
visualization as concerns the labels amounts only to 42%, accordance of the contours
only to 0.04. As can be verified in Fig. 3.6 (left), PCA maps the three clusters on
top of each other, making a proper visualization of the classifier impossible. In these
visualizations, we mark the points for which the classifier is displayed incorrectly
with white circles. The right image shows the projections of the samples from the two-
dimensional space into the original data space (this image is zoomed in on the Z-axis).
In this case, the points are mapped to the first two principal components showing also
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Figure 3.6.: Visualization of data set 2 with PCA (left) and the according inverse pro-
jected samples (right).

Figure 3.7.: Visualization of data set 2 with SOM (left) and the according SOM map
(right).

how the dimension reduction from three to two dimensions has worked.

The same classifier is visualized by the SOM in Fig. 3.7. Although, the projection is
much better (99% of the data points are assigned to the correct class by the map and
contours agree to the value of 0.98) it fails to show the three distinct clusters. On the
contrary, it suggests that there exist two clusters of class 2. The right hand side of Fig.
3.7 shows again the inverse samples. Due to the fact that the inverse mapping π−1 for
the SOM is the assignment of a point to a high-dimensional prototype, these shown
samples coincide with the location of the self-organizing map. The position of this
SOM grid explains how the projection of the data emerged.

Using t-SNE we obtain the visualization shown in Fig. 3.8. Here, the three distinct
clusters are visible and, further, it is shown that the class boundary between the blue
cluster and one of the red clusters is more complex. The quality of the visualization
of the classifier amounts to 99% and 0.98 for the labels and contours, respectively. The
right hand side of Fig. 3.8 shows again the projected samples. The shown manifold
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Figure 3.8.: Visualization of data set 2 with t-SNE (left) and the according inverse
projected samples (right).

Figure 3.9.: Visualization of data set 2 with Fisher SOM (left) and the according inverse
projected samples (right).

lies smoothly in the data clouds.

Calculating the SOM on the Fisher metric (we use the relational batch SOM [60] in
our experiments for this purpose) we obtain the visualization shown in Fig. 3.9. The
projection displays much better the original data characteristics hence it shows that
two regions of class one are separated by samples from class two. So for this data
set, the integration of the Fisher metric yields a major improvement to the approach
SVMV. However, the margin of the classifier is still not visible. The quality evaluation
yields the values 99% and 0.99 for the accordance of labels and certainty.

Replacing the standard Euclidean metric by the Fisher metric seems to be advanta-
geous for showing the class sensitive properties of the data. Whether this generalizes
also to other data sets and whether it is also beneficial for the visualization of classifiers
is investigated in section 3.5.3.
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Table 3.1.: Classification accuracies of the three SVMs, each trained on a different label
assignment.

l1 l2 l3

training set 100% 96.5% 51.5%
test set 99.2% 95.2% 48.0%

3.5.2. Visualizing classifiers for different class distributions of the same
points

In this section we demonstrate the suitability of our approach for another artificial
setting: We randomly generate data {xi}N

i=1 for N = 500 on a three-dimensional filled
cube and generate three sets of labels for two-class problems. With these experiments,
we address the user tasks 1 and 3. The labels are generated as follows:

1. The first class distribution consists of two clearly separated classes defined by a
linear plane. We refer to the according labels by {l1

i }N
i=1.

2. For the second labeling {l2
i }N

i=1 we employ two parallel separation planes.

3. Here we utilize a random assignment with labels {l3
i }N

i=1. An overlapping class
structure originates, thus addressing user task 3.

One thing that all these scenarios have in common is that this data set is intrinsically
three-dimensional and impossible to visualize adequately in two dimensions. How-
ever, the class relevant structure is locally one-dimensional, i.e. at each position in the
data space only one direction is relevant for classification. This holds for all two-class
problems, as discussed in section 2.3.4.

Additionally, we project this data set with a random matrix to 10 dimensions. In this
10-dimensional data space, we train one SVM for each set of labels. The classification
accuracies of these three classifiers are depicted in Table 3.1.

We utilize our approach to visualize these classifiers. Thereby, we rely on Fisher
t-SNE to project the data set {xi}N

i=1, while each time employing different labels and
hence yielding different visualizations of the data. The three resulting visualizations
of the classifiers are depicted in Figure 3.10.

The accuracy of the three visualizations as measured by the method introduced in
section 3.4.3 based on the labels yields an accordance of 98.6% for the set {l1

i }N
i=1 (the

left visualization), 96.0% for {l2
i }N

i=1 (middle) and 100% for set {l3
i }N

i=1 (right). The
quality based on the certainty yields 0.91 (left), 0.90 (middle) and 0.82 (right).

In addition to the high accordance of the labelling regions, in this case we know the
underlying class structure and, hence, can judge the visualization qualitatively. The
structure of the projected points and of the class regions agrees largely to the labelling
of the asociated case, i.e for case 1 two coherent structures are present, for case 2 there
are 4 coherent regions while for case 3 the labelling does not have any structure.
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Figure 3.10.: Visualization of SVMs trained on the 10-dimensional data set with the
labels l1

i (left), l2
i (middle) and l3

i (right).

3.5.3. Evaluating discriminative dimensionality reduction techniques for
classifier visualization

In this section, we compare the DR techniques t-SNE, Isomap, MVU, SOM and GTM to
visualize classifiers. Exemplarily, we use the SVM here (other classifiers are visualized
in sections 3.5.4 and 3.5.5). We apply these methods on the Euclidean and on the
Fisher metric and we use the prefix “Fisher” in front of the DR name to indicate the
latter.

In order to evaluate the effect this change of the metric has, we utilize three bench-
mark data sets. Similarly as in [163], we use a randomly chosen subsample of 1500
samples for each data set to save computational time.

• The letter recognition data set (referred to as letter) comprises 16 attributes of
randomly distorted images of letters in 20 different fonts. The data set contains
26 classes and is available at the UCI Machine Learning Repository [45].

• The phoneme data set (denoted phoneme in the following) consists of phoneme
samples which are encoded with 20 attributes. 13 classes are available and the
data set is taken from LVQ-PAK [82].

• The U.S. Postal Service data set (abbreviated via usps) contains 16 × 16 images of
handwritten digits, and hence comprises 10 classes. It can be obtained from [134].
This data set has been preprocessed with PCA by projecting all data samples on
the first 30 principal components.

As described previously, we employ SVMs with a “one versus one” classification
scheme for the following data sets with more than two classes.

For each data set we apply the ten DR methods to project all points from that set.
Afterwards, we utilize a ten-fold cross-validation scheme to evaluate the inverse map-
ping π−1: The data set is randomly divided into ten parts, where nine subsets are
used to train π−1 and the remaining subset is used for evaluation with our scheme
proposed in section 3.4.3. This procedure is repeated ten times yielding a mean and
standard deviation shown in Fig. 3.11 for all methods and all data sets.
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Figure 3.11.: Empirical comparison of different DR techniques with and without su-
pervision.

For each data set and each DR projection the supervised variant achieves a bet-
ter performance for the purpose of classifier visualization. This also holds for the
SOM projection, yielding an improvement to the SVMV method. Further, the methods
Fisher t-SNE, Fisher SOM and Fisher GTM yield the best results in our experiments.

Example visualizations of the SVM trained on the phoneme data set are shown in
Fig. 3.12 and 3.13. In both, the left column displays the unsupervised visualizations
and the right one the supervised ones. In the right column, the cluster structure is
better visible and, hence, allows a better visualization of the class boundaries.

3.5.4. Utilizing supervised information based on a trained classifier

In this section we apply supervised projections based on the Fisher information metric
which is induced by different conditional class probabilities p(c|x). We illustrate two
different variants for the estimation of the conditional class probability. Thereby, p(c|x)
is utilized twice in our proposed algorithm: for the calculation of the DiDi projection
and for estimation of its inverse.

More precisely, we investigate the difference between estimating p(c|x) from the
given labeling c := l (i.e. from the ground truth) and estimating p(c|x) from the la-
bels of the classification model c := f (x), i.e. the difference between using p(l|x) and
p( f (x)|x) for the estimation of the local Fisher information matrix. Both can be done
with the Parzen window estimator. If a probabilistic model is available and if it pro-
vides differentiable probabilities p( f (x)|x), however, an alternative for the latter is to
utilize p( f (x)|x) directly to compute the local Fisher information matrices.

In this section we do the latter, and for this purpose utilize the Robust Soft LVQ
(RSLVQ) classifier which has been briefly summarized in the beginning of this sec-
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t−SNE Fisher t−SNE

Isomap Fisher Isomap

MVU Fisher MVU

Figure 3.12.: Visualization of the phoneme data set with the methods t-SNE, Fisher
t-SNE, Isomap, Fisher Isomap, MVU and Fisher MVU.
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SOM Fisher SOM

GTM Fisher GTM

Figure 3.13.: Visualization of the phoneme data set with the methods SOM, Fisher
SOM, GTM and Fisher GTM.
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Figure 3.14.: The three-dimensional data set 3 shown from two different perspectives.

tion. With this classifier, we can demonstrate the user task 5, i.e. how did the RSLVQ
algorithm choose the prototype positions in order to solve the task.

We create an artificial data set (referred to as data set 3) which is intrinsically three-
dimensional and, hence, cannot be projected to two dimensions without information
loss. The data points are uniformly sampled in a filled ball. A posterior labeling is
assigned to them such that a nonlinear class structure emerges. This set is shown in
Fig. 3.14 from two perspectives. Class two (shown in blue) consists of a continuous
tube which is, however, separated by a gap. Further, there is a distinct noisy region.

An unsupervised projection of this data set with t-SNE is shown in the left image of
Fig. 3.15. As expected, the projection distorts the continuous class structure since in an
unsupervised scenario no information about the labeling is available. This illustrates
that unsupervised visualization techniques might not always be well suited if intrinsi-
cally high-dimensional data should be projected to low dimensions. In this example,
the displayed information looks almost arbitrary.

For the training of the classifier, we use only four prototypes per class, which is
a small number considering the complexity of the data set. The trained classifier
achieves a classification accuracy of 90%. Now, a typical use case for the classifier
visualization method occurs: How did the classification method solve this problem?
Which simplifications of the data did the classifier use and which data points are
regarded as similar by the classifier?

In order to answer these questions we visualize the classifier using Fisher t-SNE
built on the original class labels li on the one hand and on the provided classification
f (xi) on the other hand. We build the visualization of the classifier on top of these
two projections. The two resulting visualizations are depicted in Fig. 3.16. The left
visualization is based on the Parzen window estimator for the class labels p(l|x): Ba-
sically, two clusters of points from class blue are shown and these are distinct from
each other. The visualization quality of the classifier amounts to 92%. Interestingly,
albeit this is not yet perfect, the visualization looks much more reasonable than direct
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Figure 3.15.: Projection of data set 3 with t-SNE (left). Data set 3 together with the
prototypes of the trained RSLVQ model (right).

unsupervised t-SNE on the data. The right visualization shows the same classifier, but
this time based on the discriminative projection obtained by using the probabilities
p( f (x)|x) of the classifier itself. The data from class two form again two clusters, but
this time, they are close to each other. The quality is estimated to 95%. Furthermore,
the shape of the class boundaries resembles more the expected shape of the classifier,
the latter usually being related to convex regions. In the visualization based on the
ground truth, the original spherical shape of the data is much more pronounced.

The Parzen window estimator used in the left visualization estimates the probabil-
ity density accurately and finds the gap in the blue class tube. In this part of the
data space, the class distribution changes rapidly and, therefore, the distances in this
region grow large, which can directly be observed in the visualization. The prototype
distribution does not fit very well to the visualized classifier, since in one region of the
blue class there are three prototypes of that class on top of each other and in another
region there are none. But since the visualized class distribution is correct as concerns
a large part of the points, we can see from this visualization that the largest part of the
blue class tube is classified correctly.

In the right visualization which is based on the labeling of the classifier, the two
parts of the tube lie close together. This suggests that the labeling of the classifier
does not change much in this region, i.e. that the data lying in this gap of the tube
are classified incorrectly. This can also be seen directly in the visualization. For few
points, the visualization of the classifier is inaccurate, but these lie close to the class
boundary, i.e. imply only small inaccuracies. The most points (95%) are displayed in
the correct region of the classifier. This time, the location of the prototypes is plausible
in relation to the data: the prototypes of the blue class are surrounded by those of the
red class. Such a constellation is plausible in the original data space.
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Figure 3.16.: Two visualization of the same RSLVQ classification model: The projection
methods Fisher t-SNE based on the original labeling (left) and Fisher t-SNE based on
the labels from the trained classifier (right) are applied.

From the latter visualization we can deduce more information as regards potential
errors as compared to the previous one; we see directly the source of the remaining
classification error: the classifier is not powerful enough and is not able to classify this
gap in the data correctly. Furthermore, there are a few points from the blue class which
lie in the cluster of points from the red class. From the perspective of this visualization
we would deduce that these are either overlapping regions or too complex regions for
our classifier (both aspects are probably correct: in the high-dimensional data we can
see that there is indeed a region of overlapping classes).

For this toy example we can verify our interpretation by visualizing the positions
of the prototypes in the original data space. The right image in Fig. 3.15 depicts
the original data set in conjunction with the prototypes of the classifier. The same
positioning of the prototypes as in the low-dimensional visualization emerges: the
prototypes of the blue class are surrounded by those of the red class.

3.5.5. Visualize different classification models

In this section we apply our approach on the real world benchmark data set USPS for
the two classifiers Robust Soft LVQ and Classification Tree, in order to demonstrate
that it also works for other classifiers than the SVM.

Visualization of a Classification Tree We train a Classification Tree on the USPS
data set used in the previous section. The resulting classifier obtains a classification
accuracy of 89% on the training set and 66% on the test set.

Fig. 3.17 shows two Fisher SOM visualizations of this classifier: For the left we
employ the Fisher information defined by the labels of the classifier and for the right
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Figure 3.17.: Two Fisher SOM visualization of the same Classification Tree classier.
The left visualization is based on labeling provided by the classifier and the right on
the original labels.

one we utilize the original labels for the Fisher information (we use the Parzen window
estimator in both cases). Due to this choice the left visualization rather shows the
’“view of the classifier” on the data while the right one shows the true distribution.
However, the first one can be better suited to interpret the trained classification model.
In this case the quality of the left visualization of the classifier is 92.3% and the quality
of the right one is 87.8%.

In the left visualization we can see that in the region of class 9 some instances of
class 8 are mixed. In the right visualization this is not the case. Therefore, we can
deduce that the separation of class 8 and 9 is particularly hard for the given classifier.
Further, the classes 5 and 3 seem to overlap (left visualization). However, these two
classes only have very little overlap in the right visualization. This indicates that the
classifier is not complex enough in this region of the data space, as well.

Furthermore, we re-plot both visualizations from Fig. 3.17 in Fig. 3.18 with the la-
beling assigned to by the classifier. The visual impression of the two images shown in
Fig. 3.18 agrees with the result of the formal evaluation measure suggesting that the
left one visualizes the classifier more accurately.

Visualization of a Robust Soft LVQ model As a next step, we train a RSLVQ classifier
with two prototypes per class on the USPS data set. The trained model obtains a
classification accuracy of 97,2% on the training and of 87.3% on the test set.

Using the Fisher information as defined by the labels of the classifier and the Fisher
SOM technique, the visualization shown in Fig. 3.19 (left) results. This visualization
of the classifier has an accordance of 97.9%. The high classification accuracy can be
observed in this visualization, as well. In addition, we can see directly which classes
are mixed up the most time. For example, there are a few instances of class 7 classified
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Figure 3.18.: Fisher SOM visualization of the Classification Tree where the data points
are labeled according to the classifier. The same projections as shown in Fig. 3.17 are
utilized.

as class 9. Having this knowledge, we could improve our classifier by increasing the
complexity of the class boundary between these two classes (in this case we could em-
ploy more prototypes for these classes). On the other hand, the visualization suggests
that the classes are unimodal. Furthermore, some prototypes of the same class seem
to be located close to each other (e.g. those of class 0).

In order to obtain another view on the data, we project the classifier also with Fisher
t-SNE (shown on the right of Fig. 3.19). This method tends to show clustering informa-
tion (in contrast to the SOM, which doesn’t show gaps between clusters). The Fisher
t-SNE projection indicates further that the complexity of the model could be reduced
without loosing much accuracy, since many prototypes lie on top of each other. More
precise, for all except three classes (1,3 and 5) the two prototypes are positioned on
top of each other. We examine this hypotheses by training a RSLVQ classifier with
only one prototype per class. Indeed, this model has only a slight accuracy loss: the
model classifies 95,1% of the training set and 86.9% of the test set correct (using the
same training/test set partition as before).

3.6. Experiments with regression functions

In this section we demonstrate our proposed approach with artificial and real life data
sets. We employ the popular Support Vector Machine for regression and the Decision
Tree scheme as the models that we interpret. Furthermore, since we do not assume any
particular property of the regression model, any regression scheme could be visualized
in the same way. A description of the models follows.

• The Support Vector Machine for regression (SVR) [161] employs a linear function
f (x) = φ(x)Tw in the feature space for prediction. Errors are penalized linearly,
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Figure 3.19.: Visualization of the RSLVQ classifier with Fisher SOM (left) and Fisher
t-SNE (right). Both projections are based on the Fisher information as defined by the
labels of the classifier (but the original labeling is shown).

where small errors, i.e. predictions lying in an ε-tube around the target, are not
penalized. Since the whole approach can be formulated using scalar products of
the data only, kernels can be employed. In the experiments, we utilize the Gaus-
sian kernel k(xi, xj) = exp

(
−β‖xi − xi‖2). We use the implementation provided

by the libsvm [30].

• Decision Trees (DecTree) [22] for regression partition the data space X, where the
prediction value in each partition is the mean of the points lying in the according
partition. Splits are optimized such that the mean squared error is minimized.
We utilize the Matlab implementation here.

In the following, we demonstrate how the user tasks described in section 3.1 can
be tackled with our proposed approach, what effects the choice of the employed di-
mensionality reduction can have and we apply our presented approach to a real world
data set. In the following, we briefly characterize the utilized data sets.

• Data set1 is depicted in Fig. 3.20 (left) and consist of three two-dimensional clus-
ters positioned above each other. One of these clusters (the bottom one) has
additional noise in the third dimension. The prediction function is encoded in
the color and is a squared function of dimension three.

• Data set2 consists of two three-dimensional clusters with an outlier in-between
these two clusters. Fig. 3.20 (right) depicts this set, where the color indicates
the target variable of the regression task which is a linear function for the left
cluster and a squared function for the right one. In both cases, the target function
depends only on the first two dimensions.

• The diabetes [41] data set describes 442 patients by the 10 features age, sex, body
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Figure 3.20.: Two toy data sets: data set1 (left) and data set2 (right).

mass index, blood pressure and 6 blood serum measurements. The target vari-
able is a measure of the progression of the diabetes disease one year after feature
acquisition.

We employ our proposed scheme for visualization of high-dimensional functions
in the following. In contrast to the visualization of classifiers, however, we plot the
resulting visualization over the third axis of the plot, such that the curvature of the
visualized function can be observed better.

3.6.1. Effect of the selected dimensionality reduction technique

One key ingredient in our proposed approach is the DR projection. However, since any
DR technique can be applied, we discuss in this section effects of the selected methods.
We take a look at unsupervised DR techniques and we investigate the performance of
DiDi methods in this context. For this purpose, we train a SVR model on data set1
and visualize it with different techniques.

The most common visualization approach is PCA. However, the latter is driven
only by the variance of the data and neglects other structure. Hence, using PCA for
data set1 yields to overlapping clusters and consequently to a bad visualization of the
underlying regression model: the accordance computed by the evaluation procedure
of section 3.4.3 is 0.21, i.e. the visualized model has only a small correlation to the
original one.

In a scenario where the structure of the data is not known, more powerful nonlin-
ear DR methods can be necessary. We investigate here the two methods GTM as a
generative model and t-SNE as a neighborhood embedding technique.

Applying our regression model visualization approach to the trained SVR using the
GTM yields a visualization with a quality of 0.95 (as summed up in Table 3.2). The vi-
sualized model is depicted in the top left corner of Fig. 3.21. Although, the accordance
of the visualized prediction model with the original one is high, the visualization
tears the cluster structure apart. So, more powerful methods for DR can increase the
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Figure 3.21.: Four different visualizations of the same regression model. These are
based on (from top left to bottom right): GTM, Fisher MDS, Fisher GTM, Fisher t-SNE.

visualization quality. However, there still might be undesired effects, especially if the
approaches act in an unsupervised way. Another option, besides choosing more pow-
erful methods, is to utilize supervised ones, as already done for the visualization of
classifiers. This can be done, as discussed earlier with the use of the Fisher metric.

To demonstrate the effect of such a supervised visualization, we apply our regres-
sion model visualization approach using Fisher MDS, Fisher GTM and Fisher t-SNE.
Applying these techniques, we obtain three different visualizations of the same re-
gression model. We evaluate them and obtain a quality of 0.99 for each visualization
(summed up in Table 3.2). The visualizations (in Fig. 3.21) of Fisher MDS (top right)
and Fisher GTM (bottom left) agree largely, while the Fisher GTM based visualization
shows the shape of the squared polynomial target function without any distortions.
In the Fisher t-SNE projection, the squared prediction for the single clusters can be
observed, but it is not so clear as in the Fisher GTM mapping. One reason for this is
that t-SNE often tears clusters apart since it has a high focus on local neighborhood
preservation.
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Figure 3.22.: A Fisher GTM induced visualization of the SVR (left) and Decision Tree
(right) with data set1. The continuous surfaces depict the prediction of the regression
models.

3.6.2. Illustration of potential user tasks

We utilize data set2 to illustrate the identified user tasks. For this purpose, we train a
SVR and a Decision Tree using this data set. For the DR, we employ the supervised
technique Fisher GTM - an unsupervised approach would try to embed this intrin-
sically three-dimensional data set in two dimensions and, hence, might result in an
embedding not well suited to visualize the target function.

Using these ingredients, we can visualize the two regression models with our pro-
posed approach. The numerical evaluation scheme in 3.4.3 implies a quality of 0.99 for
both visualizations, as measured by the Pearson correlation. I.e. the regression model
is shown accurately at least at the positions of the data. The evaluation results for all
experiments are summed up in Table 3.2.

The resulting visualized models are shown in Fig. 3.22. The left plot depicts the SVR
and the right one the Decision Tree. In both cases, the first two coordinate axes encode
the two-dimensional embedding space of the data. The target variable is encoded
both by the third axis and by the coloring. The surface depicts the prediction of the
respective regression model.

We exemplarily address the user tasks for these visualizations. Considering user
task 1, the complexity of the prediction functions can be observed directly in the vi-

Table 3.2.: Visualization qualities for the regression models, as measured by the Pear-
son correlation.

PCA GTM Fisher MDS Fisher GTM Fisher t-SNE

data set1, 0.21 0.95 0.99 0.99 0.99
data set2, SVR – – 0.99 0.99 0.99
data set2, DecTree – – 0.99 0.99 0.99
diabetes – – – 0.94 0.92
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Figure 3.23.: A Fisher GTM (left) and a Fisher t-SNE (right) visualization of a SVR
model trained on the diabetes data set.

sualizations: the SVR instance shows a smooth predictive function while the Decision
Tree instance is very complex. This is particularly the case for the cluster with the
squared function: the trained SVR might be considered underfitted, here.

Dealing with task 2, the user can observe that the complexities of the target functions
are quite different in the two present clusters. The user could prefer to train two
independent local models on these clusters, for instance. The extrapolation between
these clusters is smooth in the left image but very steep in the right one, which might
lead to bad predictions if future data are expected to lie also between the clusters.

In the right visualization, the piecewise constant regions are well visible which is
typical for Decision Tree models (user task 3).

Considering user task 4, the visualizations directly imply how both models treat the
outlier point: the SVR ignores it and the Decision Tree overfits it. Having this insight,
the user can judge which model handles the data point of interest better, depending
on his estimation of the regularity of this point.

3.6.3. Applying the proposed framework to real world data

For the diabetes data set, we train the SVR model by splitting the data set multiple
times randomly in a training and a test set in order to estimate a good parameter value
for the kernel of the SVR.

In the previous subsections we have argued that discriminative nonlinear DR meth-
ods are best suited for the visualization of regression models. Hence, we apply two
such methods, i.e. Fisher GTM and Fisher t-SNE to the SVR model trained on the
diabetes data set.

The evaluation based on 3.4.3 yields a quality value of 0.94 for the visualization
based on Fisher GTM and a value of 0.92 for the Fisher t-SNE induced visualization.
Both are shown in Fig. 3.23.

Interestingly, both visualizations agree in that sense that they show an almost lin-
ear prediction function. We have validated this by training a linear model and have
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obtained a similar error on the test data.

3.7. Discussion

The general framework presented in this chapter allows to visualize nonlinear su-
pervised models trained on potentially high-dimensional data sets. This framework
makes it possible to visualize arbitrary classification and regression models, with the
only restriction that the classifiers have to provide some measure of certainty. In the
case of classification, we demonstrated this for Support Vector Machines, Classification
Trees and probabilistic LVQ classifiers. For regression models, we employed Support
Vector Machines for regression and Decision Trees.

This framework is general, in the sense that it allows to combine arbitrary classifi-
cation and regression models with arbitrary projection methods. In oder to demon-
strate this generality, we utilized ten dimensionality reduction methods to visualize
the models and stated experimentally that among them, supervised DR techniques
are particularly well suited for this task. Due to its generality, this framework also in-
cludes methods from the literature as a special case, for instance the SVMV. We have,
moreover, extended this approach by utilizing the Fisher SOM in this context.

Further, we demonstrated that a visualization of trained supervised models can give
insights into their prediction process. Hence, it could also be used to help improving
the process of fitting models.

The evaluation of these visualized models is currently based on the prediction and
certainty accordance of the projected and original model. Although we also evaluate
the generalization of such visualizations to new points, other properties of the model
are not evaluated, yet. Such properties include the topological structure of the function
and the size of the margin in case of classification [104]. Hence, a more extensive
evaluation of the obtained visualizations constitutes an open problem.



Chapter 4.

Interpretation of data mappings

Chapter overview This chapter presents two methods for improving the interpretability of data mappings.

The first proposal aims to estimate interpretable components for nonlinear dimensionality mapping, such enabling to

access the relevance of the original features for a given mapping. The second approach deals with linear mappings, in

general. Although a direct interpretation seems easily possible for them, it can actually be misleading, in particular

for high-dimensional data. We propose a framework which estimates a valid relevance profile for a given linear data

mapping.

Parts of this chapter are based on:

[C15f] A. Schulz, B. Mokbel, M. Biehl, and B. Hammer. Inferring feature relevances from metric learning. In SSCI

CIDM 2015, pages 41–48, 2015.

[C15a] A. Schulz, and B. Hammer. Metric learning in dimensionality reduction. In ICPRAM 2015, pages 232–239,

2015.

[C14d] B. Frenay, D. Hofmann, A. Schulz, M. Biehl, and B. Hammer. Valid interpretation of feature relevance for

linear data mappings. In SSCI CIDM 2014, pages 149–156, 2014.

[C14a] A. Schulz, A. Gisbrecht, and B. Hammer. Relevance learning for dimensionality reduction. In ESANN 2014,

pages 165–170, 2014.

4.1. Motivation

Machine learning (ML) methods constitute core technologies in the era of big data
[32]: successful applications range from everyday tasks such as spam classification
up to advanced biomedical data analysis. Further, today’s most significant machine
learning models are supported by strong theoretical guarantees such as their universal
approximation capability and generalization ability. Still, it is a long way to enable the
direct use of advanced ML technology in complex industrial applications or settings
where a human has to take responsibility for the results. Most popular ML models
act as black boxes and do not reveal insight into why a decision has been taken [136].
Hence the accuracy on the given data is the sole information based on which practi-
tioners can decide to use a model. Despite strong theoretical results under idealized
assumptions, this can be extremely problematic, since these assumptions are usually
not met in practice. Further, black box models are restricted to a mere functional infer-
ence. Auxiliary information is not extracted, albeit often aimed for e.g. in biomedical

75
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data analysis. These facts have caused a strong interest in interpretable ML mod-
els, with first promising results in specific domains such as biomedical data analysis
[12, 23, 24, 101, 138, 151, 162].

In the last chapters, we have addressed one possibility to inspect data in a human
understandable way, namely visualization of data together with a given classifier. In
this chapter, we would like to take yet another point of view, focusing on the interpre-
tation of a given mapping in terms of its original, usually meaningful input features.

In machine learning models, data mappings constitute a frequent operation. They
appear in basically every algorithm, such as in regression, classification, dimension-
ality reduction or metric learning. These data mappings vary a lot as concerns their
complexity, ranging from linear and locally linear to nonlinear mappings. In this
chapter, we propose tools to improve the interpretability of nonlinear mappings for
dimensionality reduction and of linear mappings in general.

While there exist many complex and successful DR approaches which allow to
project data in a nonlinear way [26, 94, 159, 163, 53], linear methods such as the princi-
pal component analysis (PCA) are often preferred by practitioners. One reason for this
is the lack of interpretability for nonlinear methods: While linear mappings provide
parameters which directly weight the according features, nonlinear methods provide
either parameters which interact in a complex nonlinear way with the features, or
they don’t provide a parametric mapping at all. The latter are usually referred to as
the class of non-parametric DR techniques and these are often particularly flexible and
well suited for data projection, as we have seen in previous chapters. One example
constitutes the class of discriminative dimensionality reduction mappings discussed
in chapter 2. Considering these nonlinear DR methods, we propose an algorithm
which provides an estimation of how relevant the data features are for the obtained
projections in section 4.2 .

Linear mappings constitute a core part in many algorithms, including ridge regres-
sion, metric learning, or principal component analysis. Such methods have a very
broad area of application, while being particularly valuable in the context of high-
dimensional data [147]. In addition to excellent generalization properties and efficient
learning procedures, these methods seem to be especially well suited for interpretabil-
ity since they assign weights to each feature. These weights are then often interpreted
as relevance scores for the according feature. Recent results have, however, shown that
a direct interpretation of the weights of linear mappings can be exceedingly mislead-
ing, in particular for high-dimensional and correlated data. In this context, we propose
a technique to extract valid feature relevance from linear mappings.

4.1.1. Scientific contributions and structure of the chapter

This chapter presents the following contributions:

Interpretation of nonlinear DR In section 4.2, a novel approach is proposed which
estimates the relevance of the original features for a given projection. Thereby, it
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defines a linear mapping on the data, with the goal of making them as similar as
possible to the given, possible nonlinear, projection. This similarity is measured
by a nonlinear function which evaluates the neighbor preservation. The weights
of the linear mapping can then be employed for interpretation.

Valid interpretation of linear mappings Based on the notion of equivalence for linear
mappings, section 4.3 presents a new framework which allows a valid interpre-
tation of feature relevance, closely related to the concepts of strongly and weakly
relevance.

4.2. Estimating interpretable components for nonlinear DR

One very common classical dimensionality reduction method is offered by principal
component analysis (PCA), which constitutes the by far most popular data visualiza-
tion technique in diverse application domains [16]. However, being a linear technique,
it is severely restricted as concerns its capability to capture non-linear structures and
clustering effects. In recent years, a huge variety of non-linear dimensionality reduc-
tion techniques has been proposed, see e.g. the overviews [26, 94, 159, 163, 53]. Many
techniques can be accompanied by guarantees that they are capable of extracting the
true, possibly non-linear underlying data manifold [135, 150, 53]; however, these tech-
niques are not well suited to visualize data provided the underlying manifold structure
cannot be preserved in only two dimensions due to a higher intrinsic data dimension-
ality [160]. A few powerful alternatives rely on the notion of neighborhood structures,
with the neighborhood retrieval visualizer (NeRV), for example, explicitly realizing an
information retrieval perspective, and allowing a suitable compromise of the amount
of information which is preserved in the visualization [159, 163]. These techniques
provide excellent results in application scenarios, and they mirror what is currently
accepted as state of the art as a suitable cost function of non-parametric dimensional-
ity reduction techniques [95, 163]. In this section, we will mostly be concerned with
NeRV as theoretically well-founded method and one of the most powerful nonlin-
ear data visualization techniques available today. Quite a few extensions of NeRV,
or the very similar technique t-SNE proposed in [159] exist to cope with the prob-
lems of efficient implementation, integration of prior knowledge, an extension of the
non-parametric technique to an explicit mapping prescription, or extensions to alter-
native cost measures [177, 93]. We have dealt with the topics of integration of prior
knowledge and extension to an explicit mapping in chapter 2.

One severe problem of techniques such as t-SNE, NeRV and its discriminative coun-
terparts, lies in the fact that they are non-parametric nonlinear techniques for which
the obtained visual data display, unlike linear counterparts such as PCA, cannot easily
be linked to semantically meaningful information: The two-dimensional projection co-
ordinates have no direct meaning and they are not linked to feature dimensions of the
data, unlike linear projections such as PCA, where the projection axes can be expressed
as weighted combinations of the original data dimensions. For non-parametric pro-
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jections, the relative location of data points is the only relevant information preserved
in the mapping. As a consequence, it is not easy to judge which data dimensions
are particularly important for the visual display, and which correlations of the data
dimensions contribute to the mapping. In particular, invariances of a visualization
such as orthogonal transformations cannot easily be dealt with due to this missing
alignment. Since data visualization is an unsupervised and inherently ill-posed task,
this fact leads to a severe risk of interpreting the visual display in a wrong way, if its
interpretation is possible at all [162, 138]. Further, an interactive manipulation of the
data by means of the visual display is not easily possible.

Recently, a few approaches have been proposed which try to overcome this gap
and which accompany visualization techniques with methods to more easily inter-
pret the display and manipulate the data representation based thereon [25, 43, 124].
These techniques propose to change the data metrics based on a given visual display,
whereby different techniques are involved, ranging from heuristic model updates up
to Bayesian learning of the data metric. In this contribution, we will follow these first
steps which change the metric of the data based on a given visual display. By incor-
porating recent insights from the fields of metric learning and supervised machine
learning, we will arrive at a very simple and intuitive metric adaptation scheme which
offers insight into the visual display. Furthermore, this scheme directly provides the
possibility to manipulate the data representation accordingly.

Metric learning constitutes a very powerful scheme which is well-known in machine
learning, and a variety of techniques has been proposed in the context of supervised
learning, see e.g. [13, 27, 57, 108]. Mostly, a global or local general quadratic form of
the distance1 is adapted in these settings, such that the underlying goal (usually classi-
fication) is improved as much as possible. Besides an increased model accuracy, these
techniques enable auxiliary insight into the task by providing a relevance weighting
of the data dimensions, which indicates the contribution of these data dimensions to
the task at hand. Furthermore, by means of the linear transformation underlying the
quadratic form, a new data representation is defined, which can even directly be used
to inspect the data in some cases.

Here, we will transfer a particularly elegant metric learning scheme to the field
of unsupervised dimensionality reduction [17]. This scheme will allow us to learn
a global quadratic form which mirrors the neighborhood relationships as provided
by the visual display. The metric allows a direct interpretation of the relevance of
the feature dimensions for the given mapping; further, since it can be linked to a
linear data transformation, it enables a change of the data representation based on
the visual display. Hence, it makes it possible to impose external information on the
data in a very simple form. We will demonstrate this latter principle by referring to
discriminative dimensionality reduction settings.

In the following subsection 4.2.1, we explain the neighborhood retrieval visualizer
and its relation to a quantitative evaluation of dimensionality reduction techniques.

1Sometimes also referred to as Mahalanobis distance
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Subsequently, we propose three different schemes for estimating the feature relevance
for a given visual data display: In 4.2.2, we describe a simple approach based on ideas
from feature selection. In 4.2.3, we propose a relevance learning scheme and, as an
extension in 4.2.4, a powerful metric learning scheme based on NeRV, which enables
the efficient learning of relevance matrices by a superposition of a cost optimization
and suitable regularization. Thereby, all these schemes can be used independently of
the technique which is underlying the visual display. We demonstrate the suitability
and efficiency of the approaches in several benchmarks.

4.2.1. Neighborhood Retrieval Optimizer

We will exemplarily consider NeRV [163] as a differentiable objective function to mea-
sure the similarity of the original data and a given projection of the former. This cost
function is particularly well suited for our purpose, since it can be linked to neighbor-
hood preservation in an information retrieval sense. NeRV can also be used directly as
a method for DR, but we will mainly utilize it as a cost function measuring the quality
of an embedding. This way, we do not have to make any assumptions on the way the
projected data points have been obtained.

Similarly as t-SNE, NeRV relies on measuring the probability for two points be-
ing neighbors. In order to compute such a measure, we assume the availability of a
distances measure d in the data space X. We define

pj|i =
exp(−0.5d(xi, xj)

2/(σx
i )

2)

∑k 6=i exp(−0.5d(xi, xk)2/(σx
i )

2)
(4.1)

as the probability of two points being neighbors in the data space, and

qj|i =
exp(−0.5‖ξi − ξ j‖2/(σξ

i )
2)

∑k 6=i exp(−0.5‖ξi − ξk‖2/(σξ
i )

2)
(4.2)

as the probability of two projections being neighbors in the projection space. Thereby,
the standard deviation σx

i in the data space is chosen such that a fixed effective number
of neighbors k (with default k = 10) is reached and then the standard deviation σ

ξ
i is

set to the same value. NeRV optimizes the costs

QNeRV
k (X, Ξ) = γ ∑i ∑j 6=i pj|i log

pj|i
qj|i

+ (1− γ)∑i ∑j 6=i qj|i log
qj|i
pj|i

(4.3)

corresponding to the deviation of the two probability distributions. γ ∈ [0, 1] weights
the relevance of obtaining a good recall, corresponding to the first summand, and a
good precision, corresponding to the second summand; per default, a compromise γ =

0.5 is chosen. Optimization is commonly done by a stochastic or conjugate gradient
descent. There exist very similar alternative methods such as t-NeRV, which uses the
student-t distribution instead of Gaussians for the low-dimensional embedding, to
better prevent the so-called crowding problem. Another similar alternative constitutes
the method t-SNE, which has been discussed in section 2.2.1. The single difference to
t-NeRV is that t-SNE optimizes only one summand of these costs [160].
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Interestingly, the NeRV costs can be interpreted as a smoothed version of the crisp
costs which evaluate the degree of neighborhood preservation for a given DR dis-
play, as formalized in the frame of the co-ranking framework proposed in [92] and
discussed in section 2.2.2. Assume a fixed neighborhood range k, the average over-
lap of neighborhoods of size k in the projection space and the original data space are
counted, leading to the quality Qnx

k (X, Ξ) as defined in equation (2.2). The neighbor-
hood degree k is crisp, while the NeRV costs consider a smooth version induced by
the Gaussian, but still emphasizing a certain neighborhood range by means of a fixed
choice of the bandwidth.

Since NeRV is a non-parametric approach, we obtain projection co-ordinates of the
given data only. The axes of the projection are widely arbitrary, and no semantic mean-
ing is attached to the visual display. By incorporating relevance or metric learning, we
aim at complementing the visual display by a link to the original data dimensions,
such that the display can be accompanied by a semantic meaning in terms of the
original (usually interpretable) data dimensions.

4.2.2. Feature selection for DR

Note that nonlinear DR techniques such as t-SNE provide a non-parametric mapping
xi to ξi for which an interpretation is not clear. In particular, it is not clear how relevant
a given feature Xl is for the mapping. We are interested in ways to enhance nonlinear
DR by a relevance weighting for the features l ∈ {1, . . . , D} of X. As a first approach,
we treat this problem as a feature selection problem. That means, we deal with the
question: Which features are particularly relevant for the given DR function (which is
given only implicitly)?

The definition of explicit evaluation functions for nonlinear DR allow us to di-
rectly transfer classical feature selection techniques [39]: We can apply one forward
or backward selection step regarding one feature for these evaluation functions. This
yields our first two relevance determination techniques. Assume a nonlinear projec-
tion X→ Ξ is given.

• λk
forward(l) := Qnx

k (X|l , Ξ) where X|l considers only feature Xl , i.e. the points
(xi)l ∈ R, ∀i. This induces an ascending relevance ranking of the features.

• λk
backward(l) := Qnx

k (X|¬l , Ξ) where points ((xi)1, . . . , (xi)l−1, (xi)l+1, . . . , (xi)D) ∈
RD−1, ∀i are considered. This induces a relevance ranking in descending order.

These techniques provide a suggestion for feature selection based on a fixed neigh-
borhood k. The effect of this parameter is investigated in the experiments. These
measures yield a qualitative evaluation of the relevance since they only consider the
extreme cases of a feature being present or not. Thus, they do not allow a more fine
grained view.
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Figure 4.1.: Left: Data set1. Right: Relevance profile of the Adrenal data set. Green
marks indicate that these 9 dimensions are also the top ones in [17].

4.2.3. Relevance learning for DR

For quantitative measures, we consider the smooth quality function QNeRV
k . The idea is

to change the metric in X such that it takes into account the relevance of the dimension
l: d(xi, xj)

2 = ∑l((xi)l − (xj)l)
2 becomes ∑l λ2

l ((xi)l − (xj)l)
2. This corresponds to a

feature transformation Xλ = {(λ1(xi)1, . . . , λD(xi)D) | i} of X. We are interested in
relevance terms λ such that the transformed feature space Xλ is as close as possible
to the projection Ξ as measured by quality evaluation measures. This yields to the
following objective:

• λk
NeRV(l) := λ2

l where λl optimizes QNeRV
k (Xλ, Ξ) + δ ∑l λ2

l .

δ > 0 weights the sparsity constraint. Since the projection points ξi are fixed, we
set σ in both spaces such that the fixed neighborhood size k is reached. To compute
λk

NeRV(l), we optimize this objective L1 regularized quality QNeRV
k (Xλ, Ξ) + δ ∑ λ2

l with
respect to λ2

l . We use a gradient technique similar to well known algorithms from neu-
ral network optimization [133]. Strictly speaking, the result is not necessarily unique
due to possible local optima; in practice, we did not observe problems.

4.2.4. Metric learning for DR

While feature selection only selects a set of features in a greedy way, relevance learning
aims for a more subtle weighting of the features. Yet, it disregards possible feature
dependencies by its decomposition in terms of a simple linear combination of features.
This drawback can be overcome when considering a full matrix.

Again, assume a fixed data projection X 7→ Ξ is given. A straightforward extension
to the approach from above is to replace λk

NeRV(l) by a more general form of metric.
The idea is to change the metric of the data representation in X such that the chosen
metric best resembles the information which is inherent in this given non-parametric
dimensionality reduction mapping.
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We consider a global quadratic form for X

dΛ(xi, xj)
2 = (xi − xj)

TΛ(xi − xj) (4.4)

with a positive semidefinite matrix

Λ = ΩTΩ (4.5)

The goal is to learn Λ (or equivalently Ω) such that it best resembles the given visual
display. Provided this metric change captures the relevant information of the visual
display, it enables two things:

• It is possible to judge the relevance of the data dimensions for the given display
by inspecting the relevance terms

Λii = ∑
j

Ω2
ji (4.6)

and hence gives a semantic interpretation of the display by linking it to the most
relevant data dimensions (the ones with largest Λii).

• It is possible to transform the data

X 7→ ΩX (4.7)

to obtain data representations which more closely resemble the projections of the
data in two dimensions; this opens the possibility to imprint information on the
data based on the visual interface.

How can we obtain a suitable matrix Λ? Mimicking the successful approach of rel-
evance learning which has been established in supervised machine learning [17], we
optimize Λ such that the objective as imposed by NeRV is optimized by an adjustment
of Λ, together with a suitable regularization:

Ek(Ω) = QNeRV
k (ΩX, Ξ) + δ · trace(Λ) (4.8)

where δ > 0 constitutes a small positive value which enforces solutions with a small
norm for regularization. As before, we set σ in both spaces such that the fixed neigh-
borhood size k is reached. While optimization with a gradient technique is possible,
we again use an adaptive step size similar to well-known algorithms from neural net-
work optimization [133]. Note that the derivatives of the costs E(Ω) can be computed
based on the derivative of NeRV itself [163] using the following equality and symmetry
of NeRV with respect to data points and projections

∂Ek(Ω)

∂Ωij
= ∑

l

QNeRV
k (ΩX, Ξ)

∂(Ωxl)i
· (xl)j + 2 · δ ·Ωij (4.9)

The transformation matrix Ω is not unique since the costs are invariant with respect
to orthonormal transformations of the matrix. This does not affect its trace (and hence
the relevance terms which will be interpreted), however. Further, the result is not
necessarily unique due to possible local optima of the costs which are inherent in
NeRV; in practice, we did not observe problems.
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Figure 4.2.: Artificial multimodal data (left), projection by LDA (middle), projection by
Fisher t-SNE (right)

4.2.5. Experiments

Experiments using feature selection and relevance learning

In this section we evaluate the concepts for estimating the relevance of features for a
given visual display based on feature selection 4.2.2, and on relevance learning 4.2.3.
All relevance measures yield a ranking of the dimensions according to their relevance
for the visualization at hand, but only λNeRV can also be employed as a metric for
the original data. In the following, we i) demonstrate how the methods work for a
simple toy scenario, ii) we compare the rankings of the dimensions qualitatively for
different projection types and iii) we show that the metric induced by λk

NeRV improves
the similarity of the original and projected data. We also compare one of our relevance
profiles to one from the literature and observe a large accordance. In all experiments
we set γ = 0.5 and δ = 1.

We utilize the following data sets in our experiments.

Data set1 contains three clusters with 20 points each in three dimensions, see Fig. 4.1.
The third dimensions does not contain cluster information.

Data set2 contains three two-dimensional Gaussians arranged above each other along
dimension 3. Although this dimension has the smallest variance, it is relevant
for cluster separation.

Data set3 consists of ten features with three classes in the first two dimensions. The
other dimensions contain increasingly noisy copies.

USPS refers to a data set of images [45], as introduced already in section 3.5. These
show the handwritten digits from 0 to 9 and their size is 16× 16. We randomly
select 200 images per class.

Adrenal refers to a data set containing 147 patients characterized by 32 features [17, 5],
which are various steroid markers. The data describe two different kinds of
adrenal tumors.

Proof of concept As stated before, our proposed approaches are not specific to a cer-
tain DR technique which is used for computing the projections. Hence, we exemplarily
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Figure 4.3.: Relevance determination for data set1 using λNeRV (left), λforward (middle)
and λbackward (right).

apply t-SNE in order to project data set1 to two dimensions, yielding well-separated
clusters. Applying our proposed relevance learning approach results in relevance pro-
files λ which are shown in Fig. 4.3 for varying k. As mentioned before, λforward results
in a ascending feature relevance ranking while λbackward produces an descending one.
The ranking of the dimensions induced by λ is identical for all techniques. λNeRV mir-
rors the irrelevance of dimension 3 as soon as the neighborhood exceeds the cluster
size. Locally, all dimensions carry information because of the isotropic cluster shapes.

While the baseline for irrelevant dimensions in case of λNeRV is zero, the baseline for
λforward is given by the diagonal, and the baseline for λbackward depends on the data
and is given by the quality of the projection. As can be seen from Fig. 4.3 (middle
and right), also the forward and backward relevance selection methods clearly mark
dimension 3 as unimportant. Unlike λNeRV, these relevance schemes do not indicate
the local importance of all dimensions.

Qualitative comparison for different mapping characteristics We compare the rele-
vance ranks induced by the three schemes using different data and projection char-
acteristics: We employ data set2 and set3. For the former, PCA and t-SNE lead to
different map characteristics: PCA ignores dimension 3 because of the small variance
while t-SNE emphasizes it. For data set3, projections of PCA, t-SNE and Fisher t-SNE
are similar, with Fisher t-SNE better emphasizing the cluster structure which is mostly
apparent in the first two dimensions.

We report the feature ranking of the most relevant features for different neighbor-
hood sizes k (medium =̂ 0.8 · cluster size, large =̂ 1.2 · cluster size) in Table 4.1. The
features of set2 in case of the PCA projection are ranked equally by all three ap-
proaches: dimension three plays only a minor role. This is plausible, since the PCA
projection almost ignores this dimension. The ranks derived from the t-SNE projection
of set2 also agree. Here the third dimension plays the major role since it separates the
clusters, which is also done by the projection. For set3, the ranks of the dimensions
assigned to by different methods vary. The high redundancy of this data set might
be the reason for this. However, dimensions one and two have the noise-free class in-
formation and should be preferred in a discriminative setting. This is indeed the case
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Table 4.1.: Feature ranking induced by the different techniques for set2 and set3. Fisher
t-SNE is abbreviated via F t-SNE.

neighb. medium large medium large medium large

set2 λNeRV λforward λbackward
PCA (1, 2)� 3 (1, 2)� 3 (1, 2)� 3 (1, 2)� 3 (1, 2)� 3 (1, 2)� 3
t-SNE 3� (1, 2) 3� (1, 2) 3� (1, 2) 3� (1, 2) 3� (1, 2) 3� (1, 2)
set3 λNeRV λforward λbackward
PCA 3 > 2� 1 (2, 3)� 1 1 > 3 > 2 1 > 3 > 2 2 > (1, 3, 4) 2 > (1, 3, 4)
t-SNE 1 > 2� 9 1� 2� 9 1 > (2, 3) 1 > (2, 3) 2 > 9 > 3 2 > (1, 3, 9)
F t-SNE 1 > 2� 3 1 > 2� 3 1 > (2, 3) 1 > (2, 3) 2 > (1, 3, 4) 2 > (1, 3, 4)

for the Fisher-t-SNE projection. This redundancy cannot be accounted for by forward
or backward selection, while λNeRV, optimizing simultaneously for all features, breaks
ties in favor of the less noisy features 1 and 2. This result of forward/backward se-
lection can be explained by its greedy nature which does not allow to take correlation
adequately into account.

So far, we have seen that the proposed schemes can provide an interpretable rele-
vance profile for a given DR projection. I.e. the methods provide a (gradually) sparse
model which includes only few of the original data features, thus providing informa-
tion about the original features. However, a direct interpretation of the coordinate axes
of a low-dimensional projection is still not possible.

Suitability of induced feature transformation Finally, we demonstrate the suitability
of the metric induced by λNeRV to imprint the information of the projection Ξ to X.
We evaluate this property by a comparison of the nearest neighbor (NN) error of the
data in the projection space and the original data space X or its transformation, respec-
tively. Thereby, we learn λNeRV based on a Fisher t-SNE mapping which also takes the
available label information into account. We expect that the NN error improves in the
latter setting for the transformed representation Xλ of X. Further, we expect that the
classification is also improved if standard t-SNE is applied to the data Xλ.

We use the two data sets USPS and Adrenal for this purpose.
The results using λNeRV, which is learned on the Fisher t-SNE mapping, are reported

in Table 4.2. The first three columns display the error in the original data space as well
as in the t-SNE and the Fisher t-SNE projection. In columns four and five, the data
are scaled with λ. The classification error reduces, if X is projected to two dimensions
using t-SNE because of the elimination of noise, and even more so if Fisher t-SNE is
used, i.e. the class information directs what is considered as noise. Interestingly, the
classification improves when transforming the data according to the learned relevance
from λNeRV, albeit only a linear transformation of the data takes place this way. This
behavior is also preserved if a standard t-SNE projection is used on top of the feature
transformation. Hence the results substantiate the possibility to change the data rep-
resentation based on visual information this way, albeit the method is still limited to a
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Table 4.2.: 1-NN errors in various data spaces of the data sets USPS and Adrenal.

neighb. medium large medium large

data sets X t-SNE(X) F-t-SNE(X) Xλ t-SNE(Xλ)
USPS 7.3% 6.7% 0.0% 2.2% 2.7% 3.1% 3.5%
Adrenal 10.9% 8.8% 0.7% 7.5% 6.8% 7.5% 6.8%

global linear weighting.
For the Adrenal data, we compare the relevance profile λNeRV based on our method,

with relevances from [17], obtained differently. Interestingly, there is a large overlap
of these two results as shown in Fig. 4.1 (right). Unlike [17] we can obtain this pro-
file in one run of the algorithm making repetitions and thresholding as used in [17]
superfluous.

Experiments using metric learning

Using the concepts of section 4.2.4, we investigate the possibility to substantiate a given
visual display of data by metric learning, leading to relevance factors which allow a
meaningful insight into the relevance of the data dimensionalities for the display, and
leading to a more suitable representation of the data which imprints the information
as provided by the visual display. While we can evaluate the former with a reference
to the gained semantic insight, we evaluate the latter by the coranking framework
which compares the neighborhood structure induced by the data representation and
the visual display, respectively [93]. We consider the following three data sets:

Multimodal data refers to an artificially generated data set with known ground truth.
Data are three dimensional, belonging to 3 classes, whereby one class is mul-
timodal, see Fig. 4.2 (left). Dimension 1 is irrelevant for the cluster formation,
dimension 2 discriminates the classes, dimension 3 discriminates the two modes
in class 1.

Diabetes data refers to a data set describing 442 patients by 10 features (age, sex,
BMI, blood pressure, 6 measurements taken from blood serum) with a labeling
according to diabetes progression after one year. The data set has been used in
[41], where a modern feature selection technique has marked three of the criteria
as particularly relevant for the prediction task.

Adrenal As described in the previous section.

Artificial multimodal data We project the given data to two dimensions in two dif-
ferent ways: on the one hand, the discriminative linear discriminant analysis (LDA) is
used, which projects the data linearly to the plane, preserving classes as indicated by
the labels as much as possible. Since it relies on a unimodal Gaussian for every class,
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Figure 4.4.: Relevances Ωii obtained by the proposed method for the LDA projection
(left) in dependency of the choice k of the cost function Ek(Ω), for the projection by
Fisher t-SNE (right)
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Figure 4.5.: T-SNE projection of the diabetes data set (left), quality for the t-SNE map-
ping for the standard Euclidean metric versus the transformed data with relevance
matrix for neighborhood range 10 (middle) and 50 (right).

LDA is not capable of preserving the multi modality of class one, resulting in an over-
lap of classes one and two. In comparison, we use the non-linear projection technique
t-SNE which is applied to the data as characterized by the Fisher information metric
to take the label information into account (as discussed in section 2.4). The Fisher
information metric curves the space locally such that the information most relevant
to the given labeling is emphasized. On top of this curvature, t-SNE emphasizes the
cluster structure and finds a corresponding two dimensional projection, displaying all
four modes present in the data set (see Fig. 4.2).

We employ the proposed method from 4.2.4 to learn a global quadratic form, whereby
we report the obtained results for different values of the neighborhood size k for the
cost function Ek. The relevance terms Λii for i ∈ {1, 2, 3} and the two different projec-
tions are depicted in Fig. 4.4. The relevance terms clearly confirm the expectations if
one interprets these two projections: LDA ignores the separation induced by the third
dimension, treating the remaining two dimensions as equally important; this results
in the failure to separate classes one and two. Fisher-t-SNE, in contrast, neglects the
first dimension, which does not contain structure, but emphasizes the other two, such
that all data modes are preserved. The relevance terms mirror this interpretation for
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Figure 4.6.: Projection of the adrenal data using t-SNE (left) and Fisher t-SNE (middle).
The latter can be used to learn the relevant factors for this discriminative visual display
(right).
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Figure 4.7.: Projection of the linearly transformed adrenal data using t-SNE (left). Pro-
jection onto the two main eigenvectors of the learned linear transformation (right).

all but extremal choices of the neighborhood degree k.
This example also elucidates the fact that matrix learning for a given visual display

is different from classical feature selection: rather than emphasizing factors relevant
for a given labeling, the proposed framework identifies factors which best explain
the given visual display. These factors can coincide with the factors identified by
feature selection provided the visual display emphasizes the given class labeling, but
in general, this is not the case.

Diabetes data We project the given data using t-SNE to two dimensions. One can
observe a correlation of the output and one projection axes, which is overlaid by a
two cluster structure orthogonal to the output label (see Fig. 4.5 (left)). The t-SNE
projection displays a reasonable quality as evaluated by the co-ranking framework
(see Fig. 4.5 (middle/right)). In comparison, we transform the data according to the
learned quadratic form for a neighborhood 10 and 50, respectively. As can be seen via
the coranking framework, the transformed data, albeit relying on a linear transform
only, much better resembles the information shown in the visual display. This confirms
the possibility of imprinting information from the visual display to the given data
representation for this medical data set.
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Adrenal data For the adrenal data, we consider a projection of the original data by
Fisher t-SNE, compared to a projection of the data by standard t-SNE (see Fig. 4.6). In-
terestingly, the 1-nearest neighbor classification error of the original data set is 10.9%,
as also mirrored in the t-SNE projection which displays quite some overlap of the data,
while the error drops down to only 0.7% for the Fisher t-SNE projection. We can im-
print the information available in this discriminative projection to the data by means
of relevance learning, as before. We learn a quadratic form with neighborhood range
k = 10 of the costs, resulting in relevance factors which strongly resemble the findings
as described in the publication [18]. This profile is very consistent for different choices
of neighborhood range k (we tested values k ∈ {10, 20, 40} which lead to qualitatively
the same result). As before, we can imprint this information onto the original data
by means of an according data transformation. The t-SNE projection of the linearly
transformed data is depicted in Fig. 4.7, the 1-nearest neighbor error reduces to 3.4%
(as compared to trice as much for the original data). Note that, unlike the Fisher infor-
mation metric, the data are subject to a simple linear data transform only as regards
its representation, followed by the non-parametric t-SNE mapping. Interestingly, the
obtained linear data transformation even suggests a linear data display with almost
the same quality: Fig. 4.7 also displays the linear projection to the first two eigenvec-
tors of the learned data transformation. The 1-nearest neighbor error is 2.7% only,
enabling a very efficient representation of the data which mirrors the underlying la-
bel information. For both cases, one point is clearly indicated as an outlier (possibly
corresponding to a mislabeling of the data point, as also discussed in the publication
[18]). Due to its possibility to follow strong nonlinearities caused by its non-parametric
nature, the Fisher information metric itself tends to overfit in this region, such that this
outlier is much less pronounced in the Fisher t-SNE mapping (Fig. 4.6).

Resumee

We have investigated seven data sets as concerns the possibility to link their visual
displays to explicit relevance terms which link the displayed points to a semantic
meaning, and which open an interface towards imposing this information to the data
representation by means of a linear transform. The tasks at hand being unsupervised,
the evaluation of these possibilities it not straightforward. In our experiments, we
demonstrated the claims in the following way:

• We evaluated the relevance and matrix learning frameworks for artificial data
with known relevances for the given visual displays. The found relevances con-
firm the expectation in these settings.

• We evaluated the possibility to imprint the information shown in the visual dis-
play to the data by means of a linear data transformation by using the co-ranking
framework for data visualization for a real life data set.

• We evaluated the possibility to imprint the information as shown in the visual
display by a reference to the nearest neighbor error in the case of an initial su-
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pervised dimensionality reduction. Here, the transformed data clearly allow
to achieve a better nearest neighbor error, i.e. a data transformation as learned
from the initial discriminative visual display of the data enables us to obtain
an alternative data representation which better resembles this important aspect.
Thereby, due to the linearity of the transformation, a semantic interpretation of
the axes is still possible.

So far, by restricting to a global quadratic form, the induced data transformation is
linear. Note that, similar to proposals in supervised metric learning, a generalization
of the approach to locally quadratic forms (and hence a globally non-linear data pro-
jection) would be possible [13]. However, the choice of the tesselation of the data space
is not trivial.

4.3. Valid interpretation of feature relevance for linear data

mappings

Linear (or locally linear) data transformations constitute a particularly prominent ele-
ment in machine learning which seemingly combines efficient and well founded train-
ing algorithms with interpretable model components. Global linear models such as
ridge regression, linear discriminant analysis, or principal component analysis consti-
tute premier techniques in many application domains in particular if high data dimen-
sionality is involved [147]. Besides, the very active field of metric learning usually aims
for an adaptive quadratic form, which essentially corresponds to a linear transforma-
tion of the data. Many different successful approaches have recently been proposed in
this context, see e.g. [13, 17].

One of the striking properties of linear models is that they seemingly allow an
interpretation of the relevance of input features by inspecting their corresponding
weighting; in a few cases, such techniques have led to striking semantic insights of the
underlying process [5]. Thus, these models carry the promise of fast and flexible learn-
ing algorithms, which directly address a simultaneous, quantitative, and interpretable
weighting of the given features, provided linear data modeling is appropriate.

Recent results, however, have shown that the interpretation of linear weights as
relevance terms can be extremely misleading in particular for high-dimensional data
[149]: those data likely display correlations of the features, hence relevance terms can
be high due to purely statistical effects of the data. Conversely, highly correlated but
very important features can be ranked low due to the fact that they share their impact.
In the contribution [149] a first cure to partially avoid these effect by a L2 regularization
has been proposed. In particular in the case of feature correlations, however, the
approach still fails to provide efficient bounds for the minimum and maximum feature
relevance; hence it offers a partial solution of the problem only. Here, we propose a
L1 regularization instead, which allows an efficient formalization of the minimum and
maximum feature relevance as a linear programming problem. Since many recent
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datasets are characterized by their high dimensionality, this constitutes a crucial step
for feature relevance interpretability in many modern domains.

Very high data dimensionality is becoming more and more prominent. For example,
in omics studies, many genes are simultaneously considered [15, 109]. Even if having
more information may seem beneficial at first glance, this wealth of features can also
be problematic. Indeed, machine learning in high-dimensional space suffers from the
curse of dimensionality [14, 165], also known as the empty space phenomenon. This is
due to the fact that the size of a dataset should scale exponentially with its dimension-
ality, what cannot be achieved in practice. Other counterintuitive phenomena like the
concentration of distances [44] occur, what causes distances to be less useful in high-
dimensional spaces. Eventually, high-dimensional data are harder to analyze and to
visualize for human experts. As argued above, direct feature ranking in linear maps
can easily loose its interpretability in this situation.

Feature selection [59] is a common preprocessing for high-dimensional data, and we
will compare our modeling to classical feature selection. Feature selection consists in
selecting a few relevant features which allow reaching good prediction performances
with easy-to-interpret models. For example, least angle regression (LARS) [41, 64] ob-
tains sparse feature subsets for linear regression. Many methods have been proposed
for non-linear models, based e.g. on mutual information [7, 166, 140, 38, 47, 46, 164].
Such solutions improve the performances of subsequently used machine learning algo-
rithms. In our setting, we are not so much interested in a sparse linear representation,
rather we address the question, given a linear mapping, what is the relevance of fea-
tures for the given mapping, taking into account all possible invariances inherent in
the data. Concerning this question, classical feature selection, though very powerful, is
not entirely satisfying when it comes to interpretability. Indeed, most feature selection
algorithms only provide either a unique subset of features or a path of feature subsets
of increasing size. This leaves out an important part of the information. For example,
if two relevant features are linearly dependent, the LARS algorithm may arbitrarily
include any of them in the feature subset. This may incorrectly suggest that the other
feature is irrelevant. Also, most feature selection methods do not specify which fea-
tures are strictly necessary, what may be interesting to understand the system under
study.

These limitations of feature selection can be alleviated using the concept of strong
and weak relevance [75, 81, 111]. Strongly relevant features provide new information,
even if all other features are already used. Weakly relevant features may provide new
information, but only if certain features (e.g. redundant ones) are not simultaneously
considered. In general, the determination of weakly relevant features requires exhaus-
tive search over all feature subsets [111]. In this paper, we restrict to linear mappings
only, ignoring possible nonlinear effects. We are interested in the relevance of the fea-
tures for the given mapping, aiming at both, strong and weak feature relevance. We do
not strictly follow the formal definition of strong and weak feature relevance for linear
settings, but we will use a different formalization which is inspired by these terms but
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allows efficient modeling. Essentially, we will consider two weight vectors of a given
mapping as equivalent, if they have the same (or a similar) classification behavior and
the same (or similar) length of the weight vector, thus accounting for a similar signal
to noise ratio or generalization ability, respectively. Then we propose a measurement
similar to weak and strong feature relevance by the minimum and maximum weight
of a feature in this equivalence class. These bounds give an interpretable interval for
the feature relevance.

This section is organized as follows. First, section 4.3.1 discusses the problem of
weak and strong relevance for linear relationships. The concept of bounds for feature
relevance is introduced, as well as a simple, generic reference algorithm. Section 4.3.2
proposes a new algorithm to find strongly and weakly relevant features for linear
models (and the corresponding feature relevance bounds), while section 4.3.3 describes
how the concept of metric learning can be reframed in terms of linear mappings.
Experiments are performed in section 4.3.4.

4.3.1. Definition and measure of feature relevance

This section defines the concept of feature relevance and discusses a simple algorithm
to quantify it, aiming at approximations of the formal concept of weak and strong
feature relevance. For linear mappings, a similar mathematical definition is proposed
in section 4.3.2 which resembles the underlying ideas but directly gives rise to an
efficient solution.

Feature relevance

The question what means feature relevance has been extensively discussed, see e.g.
the survey [10] and the approaches [152, 178]. The notion of strong and weak feature
relevance has been defined in [75, 81, 111]. Assume the task is to predict a target Y
based on D features X1 . . . XD, which can be either continuous (regression) or discrete
(classification). A variable Y is conditionally independent of a variable Xj given a set of
variables S, if P(Y|Xj, S) = P(Y|S). This is denoted as Y⊥⊥Xj|S. A feature Xj is strongly
relevant to predict Y iff

Y /⊥⊥Xj|X(j) (4.10)

where X(j) is the set of all features except Xj. Strongly relevant features are strictly
necessary to achieve good prediction, since they contain some information which is
not provided by any other feature. Finding theses features is particularly interesting
to understand the studied process, since these features are likely to play a key role.

A feature Xj is defined as weakly relevant to predict Y iff it is not strongly relevant
and

Y /⊥⊥Xj|S (4.11)

for some feature subset S ⊂ X(j). A weakly relevant feature is not necessarily use-
ful, since it provides information which is also contained in other features. Indeed,
Y⊥⊥Xj|X(j) holds if the feature Xj is not strongly relevant (first part of the definition).
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This can occur if Xj is redundant with other features, for example. Nonetheless, ex-
perts are often still interested in such features: some weakly relevant features are
often necessary for a good model accuracy, albeit the choice is not necessarily unique.
Further, weakly relevant features are often crucial to understand the complex relation-
ships between the features and the target. One example is explained in [111]: in gene
expression analysis, experts ‘are primarily interested in identifying all features (genes) that
are somehow related to the target variable, which may be a biological state such as ”healthy”
vs. ”diseased”’ [58, 146].

Searching for relevant features

Under reasonable assumptions, generic (but potentially time consuming) algorithms
are proposed in [111] to find strongly and weakly relevant features. We recall this
procedures for convenience. Strongly relevant features can be found by selecting all
features whose removal lowers the prediction performance. Assume there is given a
classifier with prediction error c(S) based on the feature set S. Then these features cor-
responds to the subset

{
Xj|c

(
X(j)

)
> c(X) + ε

}
where the parameter ε > 0 controls

the trade-off between prediction and recall [111]. This backward procedure is efficient,
since this criterion must only be estimated D times.

Weakly relevant feature are much harder to find. When directly testing the defini-
tion, one has to consider the O

(
2D) possible feature subsets S ⊂ X(j) for the condi-

tional dependence Y /⊥⊥Xj|S. In practice, such an exhaustive search is not affordable
and one has to rely on heuristics to find weakly relevant features. For example, the
recursive independence test (RIT) algorithm [111] first finds the features Xj satisfying
Y /⊥⊥Xj. Then, it recursively adds all the other features Xj′ which are pairwise depen-
dent with respect to those features, i.e. Xj /⊥⊥Xj′ . For each step, a (specific) statistical
independency test is required.

Bounds for feature relevance

The algorithms described in the previous paragraph find sets of relevant features,
whereby weakly relevant features can only approximately be determined efficiently.
We are interested in a yet different setting: on the one hand, we do not necessarily
consider a clear objective such as the classification error, rather our goal is to interpret
the relevance of features for a given linear mapping and data set. In addition, we are
not only interested in qualitative results, indicating a feature as relevant or irrelevant,
respectively. Rather, we would like to identify an interval for every feature, which
quantifies the minimum and maximum relevance the feature might have for the given
mapping. Thus, such bounds should not only indicate whether features are strongly
or weakly relevant, but also how much they are relevant. A non-zero lower bound
indicates that a feature is strongly relevant, whereas a large upper bound points out
that the feature is at least weakly relevant.
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In the following, we will focus on linear relationships, which are common in bio-
medicine or social sciences, and particularly interesting for the case of high data di-
mensionality, i.e. a potentially large number of correlated features. In the following
paragraph, inspired by the formal notion of strong and weak feature relevance, we
propose a generic approach which is suitable for low dimensionalities and which can
serve as a basic comparison. Afterwards, in section 4.3.2, we propose an efficient
method to compute feature relevance bounds. These are tested in section 4.3.4.

Generic approach to compute feature relevance bounds

Using the same idea as the algorithm in [111] which finds strongly relevant features
(see section 4.3.1), the following algorithm computes lower bounds for the feature
relevance.

Algorithm 1 Compute lower bounds for feature relevance
Input: criterion c and dataset D = {(xi, yi)}i=1...N
Output: lower bound lj for each feature Xj

compute c (D)

for j = 1 . . . D do
lj ← c

(
DX(j)

)
− c (D)

end for

Here, DX(j) is the dataset restricted to the features X(j) and c measures the error of a

feature subset to predict Y. Hence, the difference c
(
DX(j)

)
− c (D) can be interpreted

as the minimum contribution of Xj to the total relevance. This quantity is used as a
lower bound lj to the relevance of feature Xj. It is non-zero if Xj is strongly relevant.

For upper bounds, an exhaustive search would be necessary, but intractable in prac-
tice. Instead, a greedy forward-backward search is used in the following algorithm.
Here, C and S are the subsets of candidate and selected features, respectively. If c
is the mean square error, the quantity c(D∅) is defined as the target variance. Also,
NB FB STEPS is the number of backward and forward steps which are performed.
Using greedy algorithms like the following forward-backward search is a standard
approach in feature selection. Even if it is not optimal, it often gives good results.
The particularity of this greedy search is that the search criterion is the upper bound
itself. In other words, the algorithm searches for the feature subset which allows a
given feature to be as useful as possible. The number of steps is deliberately limited
because (i) weakly relevant features are unlikely to be highly relevant when a lot of
other features are simultaneously considered and (ii) the estimation of c is often less
reliable when the dimensionality increases. Also, computing the upper bounds with
Alg. 2 requires to evaluate O(D2 ×NB FB STEPS) times the criterion c. It is therefore
necessary to use a small value for NB FB STEPS. Here, we use NB FB STEPS = 6 as a
compromise between accuracy and efficiency.
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Algorithm 2 Compute upper bounds for feature relevance
Input: criterion c, dataset D = {(xi, yi)}i=1...N

lower bounds lj for every feature Xj

Output: upper bound uj for each feature Xj

compute c (D∅)

for j = 1 . . . D do
// initialise upper bound
uj ← max

(
lj, c (D∅)− c

(
DXj

))
C← {1 . . . D} \ {j}
S← ∅

// forward search steps
for s = 2 . . . NB FB STEPS do

// find next feature to add to S

for k ∈ C do
∆ck = c

(
DXS∪{k}

)
− c

(
DXS∪{j,k}

)
end for
k∗ ← arg maxk∈C ∆ck

uj ← max
(
uj, ∆ck∗

)
C = C \ {k∗}
S = S∪ {k∗}

end for

// backward search steps
for s = NB FB STEPS . . . 2 do

// find next feature to remove from S

for k ∈ S do
∆ck = c

(
DXS\{k}

)
− c

(
DXS\{k}∪{j}

)
end for
k∗ ← arg maxk∈C ∆ck

uj ← max
(
uj, ∆ck∗

)
S = S \ {k∗}

end for
end for
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Figure 4.8.: Lower and upper bounds of feature relevance given by Alg. 1 and Alg. 2
for the diabetes dataset. c is the mean square error of a linear regression.

Fig. 4.8 shows the lower and upper bounds obtained for the diabetes dataset used
in the original LARS paper [41]. The 10 features for the 442 patients are the age, the
sex, the body mass index (BMI), the blood pressure (BP) and 6 blood serum measure-
ments X5 . . . X10. The goal is to predict a measure Y of diabetes progression one year
after feature acquisition. Fig. 4.8 shows that the BMI X3, the BP X4 and the serum
measurement X9 are particularly informative; this is confirmed by the results of LARS
obtained by Efron et al. [41].

Notes on the error criterion and the generic algorithms

In this paper, c is the mean square error, since we focus on linear regression. However,
the above discussion and the two suggested algorithms remain valid for non-linear
regression using e.g. a kNN like in [111]. Also, other criteria can be used, like the (esti-
mated) conditional entropy c (D) = Ĥ(Y|X). The difference c

(
DX(j)

)
− c (D) becomes

the (estimated) conditional mutual information Î
(

Xj; Y|X(j)

)
= Î

(
X(j) ∪

{
Xj
}

; Y
)
−

Î
(

X(j); Y
)

, i.e. the additional information in Xj about Y. Entropies can be estimated
with the Kozachenko-Leonenko estimator [85, 86, 140, 38]. Similar approaches exist in
feature selection [129, 112], but they do not derive bounds.

The above algorithms have several drawback. First, the criterion c has to be com-
puted for each feature subsets. Second, when the number of features D increases, the
lower bounds tend to zero because of overfitting. Third, the used algorithm for the
upper bounds is a heuristic, since forward-backward search is not exhaustive. Eventu-
ally, the overall computational cost is quadratic w.r.t. the dimensionality D. However,
these two algorithms can still provide excellent points of comparison in section 4.3.4
due to their strong resemblance of the weak and strong relevance of features.

Classical linear feature selection

In the context of a linear or generalized linear mapping f , a popular technology for
feature selection is offered by LASSO and variants [49]. Assume f (x) = ωTx. Then
LASSO relies on a L1-regularized optimization of the mapping parameters

min
1
2
·

N

∑
i=1

( f (xi)− yi)
2 such that

D

∑
j=1
|ωj| ≤ s (4.12)
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for a sparsity constant s > 0. The constraint can be integrated into the objective as a
penalty term with a fixed weighting. Ridge regression penalizes the L2 instead of L1
norm, and Elastic Net addresses a mixture of both objectives [49], where, depending
on the weighting of the penalty, different degrees of sparsity can be enforced. It is
possible to infer the relevance of a given feature Xj from the size of the resulting
weight |ωj|, whereby a varying penalty also can shed some light on the question
whether the feature is weakly / strongly relevant.

Inspired by this observation, we will use L1 regularization for the valid interpreta-
tion of relevance terms of a given mapping. Thereby, we separate the question of how
to train the mapping and how to interpret the feature relevance. This strategy, together
with a slight reformulation of the regularization, enables us to derive intervals for the
possible relevance range of a given feature.

4.3.2. Linear bounds

We are interested in the interpretation of a given linear mapping f (x) = ωTx ∈ R

with ω ∈ RD, which we assume to map to a one-dimensional space, for simplicity.
Generalizations to higher dimensions such as present in metric transformation, for
example, are immediate (i.e. treat each one-dimensional mapping independently and
aggregate the results). We assume that this mapping either comes from a regression or
classification task such as ridge regression, LARS, LASSO, or it arises from a quadratic
metric adaptation method which corresponds to a linear transformation of the data
space (further discussed in 4.3.3). For a given linear mapping, the value |ωj| is often
taken as a direct indicator of the relevance of feature Xj provided the input features
have the same scaling, i.e. the values delivered by a linear mapping are directly in-
terpreted. As pointed out in [149], this is highly problematic: For correlated features,
which is often the case, in particular for high-dimensional data, the absolute value of
ωj can be very misleading. The approach [149] formalizes this observation based on a
mathematical treatment in the form of mapping invariances.

First, we define the central notion of invariance. This concept will serve as criterion
based on which feature ranking will be derived, i.e. it will take the role of the criterion
c from the previous section. Given a mapping f (x) = ωTx and data X consisting of a
matrix with data vectors xi, we define that ω is equivalent to ω′ iff

ωTX = (ω′)TX (4.13)

i.e. the mapping of the data is not changed when substituting ω by ω′. Unlike a pre
specified criterion c such as the accuracy, this notion directly relates to the behavior of
the mapping on the given data only. The approach [149] exactly characterizes under
which condition ω is equivalent to ω′: two vectors ω and ω′ are equivalent iff the
difference vector ω− ω′ is contained in the null space of the data covariance matrix
XXT. The covariance matrix has eigenvectors vi with eigenvalues λ1 ≥ . . . ≥ λI >

λI+1 = . . . = λD = 0 sorted according to their size, whereby I denotes the number of
non zero eigenvalues.
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In [149] it is proposed to choose one canonic representation ω′ of the equivalence
class induced by a given ω before interpreting the values: one considers the vector ω′

which results by dividing the null space of the covariance matrix; ω becomes ω′ = Ψω

where

Ψ = I−
D

∑
i=I+1

vivT
i

denotes the matrix which corresponds to the projection of ω to the eigenvectors with
non zero eigenvalues only induced by the eigenvectors vi of the matrix XXT. Hence the
eigenvectors with eigenvalue zero are divided out. It has been shown in the approach
[149] that this choice of a representative corresponds to the vector in the equivalence
class with smallest L2 norm.

This has the result, that it is no longer possible to assign a high value ωj to an ir-
relevant feature based on random effects of the data, i.e. strongly relevant features are
identified and spurious relevances which are solely due to data correlations are no
longer possible. While providing a unique representative of every equivalence class,
this choice is problematic as concerns the direct interpretability of the values: Weakly
relevant features share the total relevance of the features uniformly. Hence a feature
which is highly correlated to a large number of others is always weighted low, inde-
pendent of the fact that the information provided by this feature (or any equivalent
one) might be of high relevance for the linear mapping prescription. Thus, assuming
a practitioner interprets such a relevance profile, there is a high risk that all such fea-
tures are discarded, albeit they are of high importance, but mutually redundant. In
the following, we propose an alternative to choose representatives which are equiv-
alent to ω but which allow a direct interpretation of the weight vector. Essentially,
we will not consider the representative with smallest L2 norm, but use the L1 norm
instead. Unlike the former, the latter induces a set of equivalent weights which have
minimal L1 norm. We can infer the minimum and maximum relevance of a feature
by looking at the minimum and maximum weighting of the feature within this set.
Then, a practitioner can choose the best suited one among weakly relevant sets based
on additional criteria (such as the costs which arise by measuring this feature).

Formalizing the objective

Given a parameter vector ω of a linear mapping, we are interested in equivalent vec-
tors, i.e. vectors of the form

ω′ = ω +
D

∑
i=I+1

αivi (4.14)

for real valued parameters αi which add the null space of the mapping to the vector
ω. We want to avoid random scaling effects of the null space, therefore we choose
minimum vectors only, similar to the approach [149] . Unlike the L2 norm, however,
we use the L1 norm:

µ← min
α

∥∥∥∥∥ω +
D

∑
i=I+1

αivi

∥∥∥∥∥
1

. (4.15)
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The value of the minimum µ is unique per definition. This is not the case for the
corresponding vector ω + ∑D

i=I+1 αivi. A very simple case illustrates this fact: assume
identical features Xi = Xj and a weighting ωi and ωj. Then any weighting ω′i =

t · ωi + (1− t)ωj and ω′j = (1− t)ωi + tωj yields an equivalent vector with the same
L1 norm.

This observation enables us to formalize a notion of minimum and maximum fea-
ture relevance for a given linear mapping: the minimum feature relevance of feature Xj

is the smallest value of a weight |ω′j| such that ω′ is equivalent to ω and |ω′|1 = µ.
The maximum feature relevance of feature Xj is the largest value of a weight |ω′j| such
that ω′ is equivalent to ω and |ω′|1 = µ. In mathematical terms, this corresponds to
the following optimization problems:

ω j ← min
α

∣∣∣∣∣ωj +
D

∑
i=I+1

αi(vi)j

∣∣∣∣∣ (4.16)

s.t.

∥∥∥∥∥ω +
D

∑
i=I+1

αivi

∥∥∥∥∥
1

= µ

and

ω j ← max
α

∣∣∣∣∣ωj +
D

∑
i=I+1

αi(vi)j

∣∣∣∣∣ (4.17)

s.t.

∥∥∥∥∥ω +
D

∑
i=I+1

αivi

∥∥∥∥∥
1

= µ.

where (vi)j refers to component j of vi. This framework yields a pair (ω j, ω j) for
each feature Xj indicating the minimum and maximum weight of this feature for all
equivalent mappings with the same L1 norm. This strongly resembles the notion
of strong and weak feature relevance in the special case of linear mappings and the
mapping invariance as objective.

Note that this framework does not exactly realize the notion of strong and weak
feature relevance in a strict sense due to the following reason: we aim for scaling
terms as observed in the linear mapping, which are subject to L1 regularization. This
has the consequence that two features which have the same information content but
which are scaled differently are not treated as identical by this formalization. Rather,
the feature with the better signal to noise ratio which corresponds to a smaller scaling
of the corresponding weight is preferred. Qualitative feature selection would treat
such variables identically.

There exist natural relaxations of this problem as follows: In Eq. (4.14), we can
incorporate eigenvectors which correspond to small eigenvalues, thus enabling an
only approximate preservation of mapping equivalence. Further, we can relax the
equality in Eq. (4.15) to allow values which do not exceed µ + ε instead of µ for some
small ε > 0. Such relaxations with small values ε are strongly advisable for practical
applications to take into account noise in the data. We will use these straight-forward
approximations in experiments.
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Reformalization as linear programming problem

For an algorithmic solution, we rephrase these problems as linear optimization prob-
lems (LP). We reformulate problem (4.16) as the following equivalent LP where we
introduce a new variable ω̃k for every k which takes the role of |ωk + ∑D

i=I+1 αi(vi)k|:

ω j ← min
ω̃,α

ω̃j, (4.18)

s.t.
D

∑
i=1

ω̃i ≤ µ

ω̃k ≥ ωk +
D

∑
i=I+1

αi(vi)k, ∀k

ω̃k ≥ −
(

ωk +
D

∑
i=I+1

αi(vi)k

)
, ∀k,

where µ is computed in (4.15) and the variables ω̃i must be non negative due to the
constraints. For the optimum solution, we can assume that equality holds for one of
the two constraints for every k; otherwise, the solution could be improved due to the
weaker constraints and the minimization of the objective. For problem (4.17), we use
the equivalent formulation

max
ω̃,α

∣∣∣∣∣ωj +
D

∑
i=I+1

αi(vi)j

∣∣∣∣∣ , (4.19)

s.t.
D

∑
i=1

ω̃i ≤ µ

ω̃k ≥ ωk +
D

∑
i=I+1

αi(vi)k, ∀k

ω̃k ≥ −
(

ωk +
D

∑
i=I+1

αi(vi)k

)
, ∀k,

where, again, new variables ω̃k are introduced. Again, these take the role of the abso-
lute value |ωk + ∑D

i=I+1 αi(vi)k|: any solution for which equality does not hold for one
of the constraints can be improved due to the weaker constraints and maximization as
the objective. This is not yet a LP since an absolute value is optimized. For its solution,
we can simply solve two LPs where we consider the positive and negative value of the
objective:

ω±j ← max
ω̃,α
±
(

ωj +
D

∑
i=I+1

αi(vi)j

)
,

and we add the corresponding non negativity constraint

±
(

ωj +
D

∑
i=I+1

αi(vi)j

)
≥ 0
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At least one of these LPs has a feasible solution, and the final upper bound can be
derived thereof as the maximum value

ω j = max{ω+
j , ω−j }

This approach requires to solve LP problems containing 2D constraints and I + 1
variables. Standard solver can be applied.

4.3.3. Metric learning as linear data transformation

Metric learning has been introduced in distance based machine learning models as a
means to autonomously adjust the underlying distance measure to the given task at
hand [13, 89]. Here, we focus on two popular metric learning schemes only. Since the
proposed technique for metric interpretation is separated from the metric learning step
itself, the proposed regularization for feature relevance determination can be used for
every metric adjustment scheme which arrives at a general quadratic form, as utilized
in the following. This includes the metric learning for DR scheme which has been
proposed in section 4.2.4.

We rely on a distance measure which is given by a general quadratic form

d : RD ×RD → R, (xi, xj) 7→ (xi − xj)
TΛ(xi − xj) (4.20)

with the positive semi-definite matrix Λ = ΩTΩ. Optimizing Ω increases not only
the performance of metric learning methods, but it also offers an interpretation of the
feature relevance in terms of its diagonal Λii = ∑j Ω2

ji or related terms, since the metric
(4.20) corresponds to the linear data transformation

x 7→ Ωx. (4.21)

Hence interpretation of the matrix relevance terms reduces to the interpretation of this
linear mapping.

Examples of popular metric learners employing such a parametrization are as fol-
lows:

• Large margin nearest neighbor (LMNN) [174] adjusts this matrix in such a way
that the k-NN error induced by this distance is optimized. More precisely, it fixes
the k nearest neighbors for every given data point, and adjusts the matrix Ω such
that points with the same label in this neighborhood are close, while points with
a different label are separated by a distance term with a margin at least one.

• Generalized matrix learning vector quantization (GMLVQ) relies on a prototype-
based winner-takes-all scheme rather than lazy learning [141]. Together with the
prototype locations, the matrix Ω is adjusted such that the distance of a given
data point with correct labeling versus its distance to a prototype with incorrect
labeling is minimized.



102 Chapter 4. Interpretation of data mappings

Figure 4.9.: Lower and upper bounds of feature relevance for the diabetes dataset.
Results are based on Alg. 1 and Alg. 2 (left) and on the linear programming method
(right).

In the following, we will employ the unique eigendecomposition of the matrix Λ

as the linear data mapping Ω, i.e. the eigenvectors scaled with the square root of the
eigenvalues.

Given the parameters Ω that define a linear mapping Ωx of a general quadratic form
(4.20), we are interested in the interpretation of the mapping parameters Ω. First,
we decompose the problem into one-dimensional mappings based on the following
observation: Each row ω of Ω constitutes an independent mapping of the data into a
one-dimensional subspace. Hence we can interpret each of these rows independently.
After having obtained relevance bounds for the individual mappings ω, we can sum
the absolute values of them in order to obtain relevance bounds for the whole mapping
Ω.

4.3.4. Experiments for linear regression

In this section, results accomplished by the linear bounds method and the generic ap-
proach are compared. For both methods, data are normalized beforehand to have zero
expectation and unit variance. Further, we consider a relaxed LP, allowing a bound
of 1.1 · µ instead of µ for numerical reasons. Further we incorporate eigenvectors also
with eigenvalues close to zero into the null space. For the data used in the following,
a natural choice can be made by inspecting the eigenspectrum. We report the used
number of eigenvectors for every data set.

Note that the methods investigated in this experiment do not reveal the strong and
weak relevance, but they rely on the quantitative scaling instead. Still, upper and
lower bounds allow us to distinguish three settings:

1. A feature is irrelevant: this corresponds to a small upper bound.

2. A feature is relevant for the mapping but can be substituted by others: this
corresponds to a small lower bound and large upper bound.

3. A feature is relevant and cannot be substituted: this corresponds to a large lower
bound.

Albeit cases 2) and 3) are not equivalent to weak and strong feature relevance in the
strict sense, we will refer to these setting by these terms in the following. In the
following, we will depict lower bounds as white bars and upper bounds in black.
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Figure 4.10.: Lower and upper bounds of feature relevance for a toy dataset. The left
figure shows the results of the generic approach, the right one for the LP method.

As a first illustration, we display the feature relevances of the LP approach gener-
ated on the diabetes dataset as discussed in Section 4.3.1 in Fig. 4.9. Here, we utilize
the smallest 3 eigenvalues. The features X3 and X9 are indicated as strongly relevant.
Otherwise, features display similar upper bounds as predicted before, with small dif-
ferences: the strongly relevant features X2 and X4, as detected by the baseline, are not
highlighted by the LP technique. This is due to the fact that the resulting map can
slightly be changed since noise due to small eigenvectors is accepted. Under these
conditions, the features are no longer mandatory to explain the mapping. Further, X1

vanishes for the LP method, which can be attributed to the fact that the same effect to
the mapping can be achieved with another feature which has a better signal to noise
ratio, i.e. L1 norm would increase when incorporating X1.

Difference between methods

To show a major advantage of the LP method, a toy dataset was generated: unlike
iterative feature selection, the LP technique simultaneously judges the relevance of all
features. Hence it can better handle settings where a large number of noisy features
masks weakly relevant information. In this example, the first twelve dimensions are
noisy and only slightly correlated with the target, features X13 and X14 are useful
but redundant, and the last two dimensions are necessary and independent. The
objective for the task is to predict the sum of the last three dimensions. We choose the
dimensionality 1 for the approximated null space.

Results for both methods are displayed in Fig. 4.10. The generic method finds the
two necessary and independent dimensions. It does not single out the weak relevance
of the previous two features. Better results can be obtained with the linear program-
ming approach which disregards the first dimensions completely, shows a full lower
bound for the last two features, and correctly indicates the potential relevance of the
other two dimensions.

Benchmarks

We utilize several benchmark data sets from [1, 45].

Boston Housing The Boston Housing dataset [76] concerns housing values in sub-
urbs of Boston with the median value of owner-occupied homes as target. The di-
mensionality of the null space is picked as 3. Like displayed in Fig. 4.11, features
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Figure 4.11.: Lower and upper bounds of feature relevance for a Boston Housing
dataset. The left figure shows the results of the generic approach, the right one for
the LP method.

Figure 4.12.: Lower and upper bounds of feature relevance for a Poland Electricity
Consumption dataset. The left figure shows the results of the generic approach, the
right one for the LP method.

X6 and X13 which correspond to the average number of rooms per dwelling and the
percentage of lower status of the population are identified as most relevant. The same
holds for X4, X11 and X12 but to a lesser degree. Interestingly, the relevance of features
like X9 (index of accessibility to radial highways) can play an important role, but this
information can also be gathered from other features.

Poland Electricity Consumption This dataset [97, 98] is a time series monitoring the
electricity consumption in Poland based on time windows of size 30. We choose the
zero space dimensionality as 3 corresponding to the extremely high correlation ob-
served in this time series data. Fig. 4.12 shows that the last feature is identified by LP
as the most relevant one. This is expected due to the smoothness of the time series.
For the LP technique, the feature is marked as strongly relevant since its substitution
would require a too large weighting. Further, for both methods, the cyclicity of the
time series is clearly observable, whereby the basic method does not identify any fea-
ture as strongly relevant but the last one. Interestingly, the LP technique identifies two
consecutive features as relevant for every cycle, since two values allow the estimation
of the first-order derivative for better time series prognosis [48].

Santa Fe laser This dataset [70, 172] is a time series monitoring the physical process
related to a laser with time windows of size 12; the dimensionality of the null space
is chosen as 2. Interestingly, a result which is very similar to the previous one can be
obtained. The features X6 and X12 as well as their immediate predecessors are picked
by the LP technique as strongly relevant. As can be seen in Fig. 4.13 both methods
identify the last two features as relevant, but the LP method shows a clearer profile as
concerns the past values, which coincides with findings from [48].
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Figure 4.13.: Lower and upper bounds of feature relevance for a Santa Fe Laser dataset.
The left figure shows the results of the generic approach, the right one for the LP
method.

Dim 1

-2 -1 0 1 2

D
im

 4

-2

-1

0

1

2

C 1

C 2

effective dimension

1 2 3 4 5

e
rr

o
r

0

0.1

0.2

0.3

0.4

0.5

0.6
train

test

orig train

orig test

Figure 4.14.: Two relevant features of the xor data set (left). Average classification error
rates of GMLVQ with regularized metrics for the xor data set (right).

4.3.5. Experiments for metric learning

In this section we apply our proposed methods to four data sets from different do-
mains. Thereby we employ two high-dimensional spectral data sets. Due to their
large dimensionality, they constitute particular interesting examples. After describing
the data, we explain the experimental setup and, finally, depict the results. For the
evaluation, we employ the following data sets.

• The xor data set is artificially generated and consists of 4 clusters belonging to 2
classes constituting the XOR problem. One dimension is present 3 times with the
addition of noise (features 1-3) and two identical irrelevant features are included
(5-6). An image with features 1 and 4 is depicted in Fig. 4.14 (left).

• The wine data set consists of 256 features which are near-infrared spectra mea-
suring the alcohol content of 124 wine samples [154]. The set is split into 94
training and 30 test samples, where samples number 34, 35 and 84 are discarded
as outliers, similar to [88]. Additionally, we switch the role of training and test
set to obtain a more challenging problem in terms of interpretation. Since this is
originally a regression problem, we transform it into a classification problem by
binning alcohol levels into 3 classes of similar size.

• The tecator data set [2] consists of 100 features that represent absorbances de-
duced from a spectometer. The goal is to predict the fat content of 215 meat
samples. The set is split into 172 samples for training and 43 samples for evalua-
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Figure 4.15.: Spectra of the data sets wine (left) and tecator (right).

tion, where we again switch the role of training and test set. Similarly as for the
wine data, we bin the target variable into three classes to obtain a classification
problem.

• We employ the adrenal data set [5, 18] as described previously in section 4.2.5.

Experimental setup

As a pre-processing step, we apply a z-score transformation to all our data sets, by
removing the mean and standard deviation of the training data from each data set. It
is important that the features in each data set have the same scaling so that we can
interpret the weights of linear mappings, and in particular the result of our approach.

We train the GMLVQ model always using one prototype per class, except for the xor
data set, where we use two. For the LMNN model, we use the parameters suggested
by a parameter search procedure provided by the original authors.

A crucial parameter in our framework is the size of the assumed null space of the
data. In order to obtain a sensible choice for this parameter, we first train a metric
learning algorithm and then utilize the following scheme:

1. Create a set S of candidate values for the size of the null space. This can simply
be all possible values, or a guess based on the eigenspectrum of the data.

2. For each element in S, apply our proposed interpretation framework to the pre-
viously learned metric, resulting in 2D relevance mappings for each row of the
trained metric.

3. Compute the classification accuracy on the train and test set for each of these 2D
mappings and average them. Select the size of the null space as the one with a
small test error along with the largest null space.

We also employ the term regularized relevance profile when we refer to the resulting
relevance bounds of our approach.

Since the null space is often large, we will recall in the following the size of the
effective dimension which is the number of dimensions minus the size of the null space.
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Figure 4.16.: Results of our proposed approach for the xor data set. The first row shows
the original linear mappings, the second row depicts the resulting upper (in black) and
lower bounds (in white).

Additionally, due to noise, we soften the minimum norm conditions in (4.18) and (4.19)
by allowing solutions smaller then 1.01 · µ, in the following.

As concerns the complexity of the metric learning scheme for high-dimensional
data, the computation of a full rank matrix Λ ∈ RD×D can be costly. However, Λ

can be forced to have a low rank [27]. This can be done by defining Λ = ΩTΩ with
Ω ∈ Rl×D, where l ≤ D restricts the rank.

Synthetic data

In order to demonstrate the problem of directly interpreting linear weights of a trained
metric as relevances, we employ the synthetic data set xor.

We train a GMLVQ method that results in a zero prediction error on the training
and test set. The resulting three mappings of the metric with the largest scaling are
depicted in the first row of Fig. 4.16. Basically, only one of these mappings has a
high scaling so that the classification model uses approximately a one-dimensional
subspace to solve the classification task.

A direct interpretation of this linear vector |ω3| would suggest that feature 4 is the
most important one, features 1 and 3 have only half the relevance and features 2, 5 and
6 are not useful for the task. However, for this data set we know that features 1-3 have
the same explanatory power and if considered alone, each of them is as important as
feature 4. It follows that, for this example, a direct interpretation of the linear weights
is misleading, particularly for the weakly relevant features.
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Figure 4.17.: Employing the xor data set, estimates of the coefficients for different
values of the L1 norm (x-axis) are shown. The methods lasso (left), elastic net (middle)
and ridge regression (right) are utilized.

In order to obtain a valid interpretation for the relevance of the features, we apply
our proposed framework. We estimate the classification accuracy of the regularized
mappings for all possible sizes of the null space as described in subsection 4.3.5. The
resulting curves are depicted in Fig. 4.14 (right). It is apparent from the Figure, that
the smallest effective dimension size with a zero test error is 3, although the test error
for 2 dimensions is only slightly larger. Nevertheless, we employ 3 for our proposed
framework. The resulting relevance bounds are shown in the second row of Fig. 4.16,
where black bars depict weakly and white bars strongly relevant features.

The results show that the bounds for the first two one-dimensional mappings |ω1|
and |ω2| have vanished. Formally speaking, this implies that the same mappings
can be obtain with an almost zero L1 norm, meaning that these two mappings map
the training data to zero. More interestingly are the resulting bounds for |ω3|: The
framework has identified feature 4 as a strongly relevant feature and has found that
features 1-3 can be replaced but that each of them can explain as much of the target
variable as feature 4. This explanation is precisely how we generated the data. Features
5 and 6 have almost 0 upper bounds, merely reflecting noise.

In order to have a comparison to relevance interpretation in literature, we apply
the methods Lasso, Elastic Net and Ridge Regression to our resulting mapping by
defining ŷi = ω>xi. Then, we can apply the formulation in equation (4.12) for Lasso
and according ones for Elastic Net and Ridge Regression to obtain an interpretation
for the feature weights based on these methods. The results are depicted in Fig. 4.17
for the Lasso (left), Elastic Net (middle) and Ridge Regression (right). We interpret
only |ω3| this way, since, as we saw previously, this mapping contains the relevant

Table 4.3.: Classification error rates ranging between 0 and 1 for all data sets. If not
specified differently, the classification model is GMLVQ.

xor wine tecator GMLVQ on adrenal LMNN on adrenal

train error 0.00 0.00 0.07 0.04 0.00
test error 0.00 0.29 0.16 0.03 0.05
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Figure 4.18.: Average classification error rates of GMLVQ with regularized metrics for
the wine (left) and tecator (right) data set, both for set S.

information for discriminating the classes.
The progress of the coefficient weights for all three frameworks implies that feature

4 is particularly relevant. However, the results differ for the three weakly relevant fea-
tures 1-3: Elastic net and Ridge regression require all three features equally weighted
and hence do not show that each of them can actually be neglected. The Lasso identi-
fies feature 1 as particularly important, followed by feature 3 and 2. This order seems
arbitrary and is an artifact of the noise which was added to all three features. Hence,
we argue that these frameworks cannot provide the same information as our formal-
ization.

Near-infrared spectral data

Spectral data have many correlated features and hence a large null space. For such
data, it can be particularly misleading to directly interpret the weights of linear map-
pings. Hence, our method should be well suited in this case.

First of all we train a GMLVQ model for each of the two data sets wine and tecator
where we restrict the rank of the matrix Ω to two since GMLVQ tends to utilize only
a low rank matrix in the end, usually. This does not harm the training accuracy as can
be observed in Table 4.3 but tends to improve the generalization. Subsequently, we
apply our approach to compute relevance bounds for the according learned metric. As
previously, we determine a suitable size of the effective dimension using the scheme
described in subsection 4.3.5. The corresponding images are shown in Fig. 4.18: left
for the wine and right for the tecator data set.

The smallest test error is obtained with an effective dimensionality of 7 for the wine
data set and with an effective dimensionality of 9 for the tecator data set. It is partic-
ularly interesting, that for the wine data set the regularized metric achieves a better
performance then the original metric: while the training error stays the same, the test
error drops from 0.29 to 0.14, which is a factor 2. The resulting relevance bounds for
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Figure 4.19.: Results of our proposed approach for the wine data set. The first row
shows the original linear mapping, while the second row depicts the resulting upper
relevance bounds. The lower bounds are all zero, in this case.
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Figure 4.20.: Results of our proposed approach for the tecator data set. First two
columns: The first row shows the original linear mapping, the second row depicts the
resulting upper and lower relevance bounds. The last column shows the summed lower
and upper bounds.

the wine data set are depicted in Fig. 4.19 and for the tecator data set in Fig. 4.20.
For the wine data, the training procedure of the classifier yielded a rank one matrix,
hence we use only a one-dimensional mapping for interpretation, in this case. For the
tecator data set, both mappings are utilized, and the resulting relevance bounds for
both mappings are displayed in Fig. 4.20 (last column).

Interestingly, the relevance bounds for both data sets contain only very few irre-
placeable features, while the upper bounds are peaked, which implies that a few fea-
tures can already explain the mapping to a large extent. Particularly for the wine data
set, much noise is removed from the original mapping, i.e. many features have a low
upper bound. Fig. 4.21 displays the original mapping (top) and the averaged mapping
over all ω, ω (bottom). Here it is apparent that, while the original mapping has many
non-zero values, the averaged regularized profile is extremely sparse. Furthermore,
the classification error with the averaged map accounts to 0 on the training and to 0.14



4.3. Valid interpretation of feature relevance for linear data mappings 111

0 50 100 150 200 250

Features

0

0.2

0.4

|ω
1
|

0 50 100 150 200 250

Features

0

0.2

0.4

a
v

e
r.

 r
e

l.
 m

a
p

s

Figure 4.21.: Absolute values of the original mapping (top row) together with the
absolute value of the averaged regularized mappings (bottom row).
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Figure 4.22.: Average classification error rates of GMLVQ (left) and LMNN (right) with
regularized metrics for the adrenal data set.

on the test set, which is comparable to the averaged error of the regularized mappings
ω, ω.

Biomedical data

We utilize the adrenal data set to compare two metric learning approaches: The GM-
LVQ and LMNN. Both use the same functional form for computing distances, hence,
we can apply our approach to both trained relevance matrices. First, we train both
models with the restriction to rank two relevance matrices. This restriction did not
harm the classification performance in our experiments, as compared to training with-
out this restriction. The classification errors are depicted in Table 4.3. Both approaches
achieve a comparable performance, where the LMNN model is better on the training
data while GMLVQ is superior on the test data.

For these models, we compute the classification errors based on different sizes of
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Figure 4.23.: Relevance bounds for a GMLVQ model (top) and a LMNN model (bot-
tom), both trained on the adrenal data set.

the effective dimension. These results are depicted in Fig. 4.22. Good performances
are achieved with an effective dimensionality of 15 for the GMLVQ model and of 20
for the LMNN algorithm. The according relevance bounds for both relevance matrices
are shown in Fig. 4.23.

Both trained distance metrics agree on a few features, such as 19, while they empha-
size often different ones. This might explain the different error curves in Fig. 4.22 and
the different classification performance on the training and test set. One explanation
for these different metrics is that the underlying classification models work differently.
While GMLVQ is usually applied with few prototypes, the LMNN model searches
among all stored training points. Hence, the latter acts much more locally in the clas-
sification. Also, the optimized GMLVQ parameters are not deterministic because the
utilized cost function is not convex.

Resumee

We have addressed the question in how far weights which arise from a linear trans-
formation such as a linear classification, regression, or metric learning, allow a direct
interpretation of the weighting terms as relevances. We have discussed that this is
usually not the case in particular for high-dimensional data, a setting with particu-
lar importance e.g. for spectral data analysis or the biomedical domain. Inspired by
previous work which addresses the null space of the observed data, and the notion of
weak and strong feature relevance, we have developed a framework which yields to an
efficient quantitative evaluation of the minimum and maximum feature relevance for
a given linear mapping. This framework is based on the hypothesis that the objective
is the output of the given mapping for the given data, and only weights which are
minimum in L1 norm are of interest. Then, linear programming enables a polynomial
deterministic technique to estimate these relevance intervals.

We have compared the techniques to a corresponding baseline which is directly
based on forward-backward feature selection. It becomes apparent that the techniques
closely resembles the notion of weak and strong feature relevance; unlike iterative
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methods, it does not face problems when dealing with high-dimensional data and
many irrelevant features, still being capable of distinguishing this information from
mere noise. However, this concept is currently restricted to linear mappings.

4.4. Discussion

In the first section, we have introduced relevance learning into dimensionality reduc-
tion as an efficient concept to accompany a given visual display by the possibility to
judge the relevance of data dimensions for the given mapping. Besides a better in-
terpretability of the mapping, we have shown how this framework can be used as an
interface to change data representations by means of visual displays, e.g. by incor-
porating label information into the pipeline. This opens the way for future work in
particular in two aspects: on the one hand, extensions to local matrix variants are pos-
sible, which allow a richer representation of globally non-linear dependencies, and its
corresponding visual display. On the other hand, the proposed framework can be in-
tegrated into an interactive pipeline, where online adaptation of the display according
to a new metric is a central demand.

Following up, we have discussed the interpretability of weights from linear map-
pings. Since a direct interpretation can be misleading, in particular for correlated
features, we have proposed a novel method that allows valid interpretation by provid-
ing relevance bounds for each feature. This way, properties related to the concepts of
strongly and weakly relevance can be investigated. So far, we have demonstrated the
techniques for various benchmarks with very promising results. An interesting op-
portunity for future work is to test the suitability of this technique for interactive data
exploration e.g. in biomedical applications where relevance intervals will be checked
by medical experts.

Having investigated how to enhance dimensionality reduction techniques by inter-
pretable relevance profiles of their features, and having discussed the uniqueness of
such relevance profiles for general linear functions in particular for high-dimensional
data, we now turn to a particularly interesting use of DR techniques for the task of
transfer learning.





Chapter 5.

Dimensionality reduction for transfer

learning

Chapter overview This chapter presents an approach for transfer learning in the particularly difficult sce-

nario of unlabeled data and no available correspondence information between instances in the source and target

space. This approach is based on the central idea of using a low-dimensional representation provided by dimension-

ality reduction techniques, since a core property of the latter is to preserve structure while removing noise.

Parts of this chapter are based on:

[C15b] P. Bloebaum, A. Schulz, and B. Hammer. Unsupervised dimensionality reduction for transfer learning. In

ESANN 2015, pages 507–512, 2015.

[C14b] P. Bloebaum, and A. Schulz. Transfer learning without given correspondences. In NC2 2014, pages 42–51,

2014.

5.1. Motivation

A crucial property of every successful machine learning model is its generalization
ability from the known training data to novel settings, with statistical learning theory
offering powerful mathematical tools for establishing formal guarantees for valid gen-
eralization [167]. One core assumption underlying the classical setting is that of data
being independent and identically distributed (i.i.d.): the training scenario and future
application areas are qualitatively the same, differences result from different sampling
from the same distribution only. Transfer learning addresses the setting that source
and target data are qualitatively different because they follow a different underlying
distribution or they are even contained in different spaces [121].

Models which reliably follow a trend have become increasingly important in the
context of big data, distributed systems, and life-long learning, as demonstrated e.g.
by quite some recent successful approaches [127]. In this contribution, we will focus
on the second problem of data being contained in different spaces. This setting occurs
e.g. when the same objects are measured using sensors with different characteristics,
a sensor is exchanged in a system (e.g. by a more sensitive one), the same objects are
described in different languages, etc. One promise of such transfer consists in a plug-
and-play technology for novel sensors or representations, without the need of costly

115
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retraining of the underlying models.
A few approaches have been proposed in this context, such as a common feature

representation [130, 42], a coupled embedding of data in a low-dimensional space
[20, 120, 143], or a combination of representation learning and classification [102]. In
this contribution, we are interested in the potential of modern unsupervised dimen-
sionality reduction to induce a common representation of data for transfer learning.
For this purpose, we will address two problems: How to linearly embed source and
target in a common domain such that the resulting characteristics are shared as much
as possible? We will rely on a probabilistic modeling of the target domain which
induces an explicit embedding mapping via an expectation maximization (EM) [36]
approach. How to extend this framework to nonlinear mappings by incorporating
modern nonlinear DR techniques which are better capable of capturing nonlinear char-
acteristics of the data? We will rely on t-SNE [159] as a method which is particularly
suited to reliably capture cluster structures, and its recent extensions to kernel map-
pings to allow for an integration into the transfer pipeline, as discussed section 2.2.3.

Unlike our approach, most manifold learners rely on explicit correspondences or
equivalent information [168]. One rare exception is the approach [169], where local
characteristics are directly extracted from the manifold to provide a local fingerprint.
However, it is computationally exponential in the neighborhood size and, further, it
does not resolve ambiguities due to local self similarity.

5.1.1. Scientific contributions and structure of the chapter

This chapter presents the following core contributions.

Linear transfer learning In section 5.2.1, a novel transfer learning technique is pre-
sented which is capable of transferring knowledge from a source space into
a target space without requiring labeled data or correspondence information.
Thereby, it relies on a common linear embedding of both spaces.

Nonlinear transfer learning In section 5.2.2, the previous approach is extended allow-
ing nonlinear transfer learning. A strong regularization is employed for this
purpose.

5.2. Transfer learning without given correspondences

We assume N source data xi ∈ X and K target data zj ∈ Z with different spaces X

and Z but shared underlying information are present. We will model the fact that
these two data sets share their structure by embedding both simultaneously in a low-
dimensional vector space Ξ where we assume a common distribution of the data sets.
This will provide an explicit embedding xi 7→ ξx

i ∈ Ξ of the source data and zj 7→ ξz
j ∈

Ξ of the target data. The question how suitable embeddings can be found will be the
subject of sections 5.2.1 and 5.2.2.
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Provided such an embedding is present, knowledge transfer is immediate: Assume
for instance, source labels l(xi) are present. This enables us to learn a classifier on
the embedding space based on the training data (ξx

i , l(xi)). By means of the mapping
zj 7→ ξz

j , this classifier can be directly extended to the target data.

5.2.1. Shared linear embedding

For simplicity, we first assume that data can be embedded linearly into a low-dimensional
space Ξ. For the mapping xi 7→ ξx

i we can simply rely on a PCA embedding which
captures the most relevant linear structure of the source data. Note that it is easily
possible to exchange this embedding by any other suitable mapping such as LDA in
case of auxiliary labels or a nonlinear map as we will do in section 5.2.2. The target
embedding should aim for a match with the source distribution in the latent space Ξ.
We consider a parametrized linear mapping

fpm : Z→ Ξ, z 7→ ξz = Wz (5.1)

which induces a mixture of Gaussians

p(ξx
i |Z, W) ∼∑

j
θj exp

(
−‖ξx

i −Wzj‖2/(2σ2)
)

(5.2)

in the latent space, where we introduce hidden variables hij and the hi have one non-
zero entry 1. To enforce a shared distribution of source and target distribution in the
latent space, we optimize the expected value of the log likelihood

∑
i

∑
j

E(hij)
(
log θj + logN(ξx

i |Wzj, σ)
)

. (5.3)

Its optimization can rely on an EM approach [36] with the expectation of the hidden
variables (E-step)

γij := E(hij) = exp
(
−‖ξx

i −Wzj‖2/(2σ2)
)

/ ∑
l

exp
(
−‖ξx

i −Wzl‖2/(2σ2)
)

(5.4)

and a direct minimization of the following term with respect to W (M-step):

∑
i,j

γij‖ξx
i −Wzj‖2. (5.5)

It is often useful to apply a standard regularization in this step. In order to initialize
the mapping W, a PCA projection can be utilized. For the bandwidth σ, a deterministic
annealing scheme can be employed [155].

5.2.2. Shared nonlinear embedding

It has been emphasized in [159, 94] that linear DR does not allow a reliable charac-
terization of central data characteristics for many modern data sets; in such cases, a
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Figure 5.1.: Examples of images from the Coil data set: the top row contains images
from the source data while the bottom row shows the according target images.

shared linear representation is clearly not sufficient to provide an informative shared
representation of source and target domain. We are interested in how far modern
nonlinear dimensionality reduction techniques allow us to solve this problem. More
specifically, we will rely on t-SNE as a particularly powerful embedding technique in
case of clustered data [159]. Obviously, it is easily possible to exchange a PCA embed-
ding xi → ξx

i by any given nonlinear embedding such as t-SNE for the source data. For
the target domain, we aim for an explicit mapping and, therefore, rely on the kernel
extension of t-SNE as introduced in section 2.2.3. The linear mapping (5.1) becomes

fpm : Z→ Ξ, z 7→ ξz = ∑
j

wj · k(z, zj)/ ∑
l

k(z, zl) (5.6)

with Gaussian kernel k(z, zj) = exp(−0.5‖z− zj‖2/σ2
j ) where σj is adjusted according

to the effective neighbors of zj, and wj ∈ Ξ comprises the parameters of W. Since, in
our setting, we aim for a match of the target and source distribution, we optimize the
data likelihood by substituting the M-step in equation (5.5) by the optimization of

∑
i,j

γij‖ξx
i − fpm(zj)‖2 + λQt−SNE ((z1, . . . , zK), ( fpm(z1), . . . , fpm(zK))

)
, (5.7)

with respect to parameters W. To better deal with the non-linearity, we add the regu-
larization term Qt−SNE which enforces structure preservation of the target data during
optimization. We utilize the t-SNE cost function to measure the latter.

For an initialization, the parameters W are adjusted such that fpm(zi) approximates
the t-SNE projection of the (target) data zi, i.e. we calculate the kernel t-SNE mapping.
The sum in equation (5.6) can either be over all points or over a subset, only. We use
the latter, mainly for regularization purposes (see 2.2.3 for more details).
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Figure 5.2.: The linear alignment of source and target data for the Iris data set is
shown left. Both data sets are shown individually with their according labeling middle
(source) and right (target after transfer).

5.3. Experiments

In the following, we evaluate the linear and nonlinear transfer learning techniques
exemplarily with two data sets. For transfer learning, we will always assume that
only the source data are accompanied by labels while this is not the case for the
target data. This means, that we cannot use class information for the transfer learning.
However, we will use this information in order to evaluate the quality of the transfer
learning: In the embedding space we utilize the source data (ξx

i , l(xi)) to train a linear
Support Vector Machine (employing the one versus one scheme for data with more
than two classes). Subsequently, we classify the projected target data ξz

i and compute
the accuracy by comparing to the labels l(zi). Note that the latter labels are not used
for the transfer learning but for evaluation purposes, only. The classification accuracy
for the embedded target data allows to judge in how far the transfer of information
was successful.

We employ the following two benchmark data sets in our experiments.

• The Iris data set utilizes four features to describe three classes of iris plants. 150
instances are available in this data set.

• The Coil data set consists of images of objects that are rotated around their own
axes. We employ four items from this data set in our experiments.

We create a transfer learning scenario for the Iris data set utilizing the following
scheme: We split the data set randomly into two parts, using one for the source and
the other for the target data. The latter are additionally mapped with a random matrix
to ten dimensions. Note that for this data set, the source and target data don’t have
any common instances.

For the Coil data set, we cut each image in order to obtain source and target data:
We utilize the top 3/4 of each image for the source data and the lower 3/4 for the
target data. Such, 1/2 of the information overlaps for both sets. One example object
of each class is shown in Fig. 5.1.

Evaluation of TL with linear embeddings: We apply our approach to the Iris data
set. We use a two-dimensional embedding space for the source data created by the
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Figure 5.3.: A linear (top three) and nonlinear (bottom three) alignment of source and
target data for the Coil data set is shown left. Both data sets are shown individually
with their according coloring middle (source) and right (target).

PCA mapping. Fig. 5.2 shows an alignment result of the method. The left image
depicts the source and target data in the embedding space while the middle and right
image show the source and target data individually. This procedure was iterated ten
times yielding the mean classification accuracy of 91% for the source data and of 83%
for the target data.

We also apply our approach to the Coil data set. As previously, we iterate the
procedure ten times yielding the accuracies 70% and 66% for the source and target
domain (see Table 5.1 for an overview). An exemplary alignment is shown in Fig.
5.3 (top). The reason for the drop of the accuracy is visible here: Due to the linear
mapping, the classes overlap and, hence, an accurate classification is not possible.
This holds in particular also for the classification of the source data.

Evaluation of TL with nonlinear embeddings: In order to obtain a nonlinear em-
bedding, we utilize the non-parametric method t-SNE. Applying the scheme from 5.2.2
yields the mean accuracy after ten runs of 92% for the source and 83% for target data.
An exemplary alignment is shown in Fig. 5.3 (bottom). In the middle figure, the ad-
vantage of nonlinear mappings is visible: The classes are well separated which allows
a successful consequent transfer learning.

Table 5.1.: Mean classification accuracies with a linear SVM for the experiments.

Embedding linear nonlinear
Data sets Iris Coil Coil
Error Source 91% 70% 92%
Error Target 83% 66% 83%
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5.4. Discussion

We have introduced an approach to perform Transfer Learning via mapping source
and target data into a common embedding space. For this purpose, we have proposed
the two possibilities to use linear and nonlinear embeddings. The linear embeddings
have proven to be very stable but they do not allow an accurate transfer if linear pro-
jections cannot embed the class structure adequately. Nonlinear methods can improve
the transfer of information in this case.

In this chapter we have utilized only two dimensionality reduction techniques, i.e.
PCA and t-SNE. Other approaches such as DiDi methods or manifold embeddings
could be particularly useful here and the investigation of their applicability is subject
to future work.





Chapter 6.

Conclusion

Summary In this thesis, we discussed the general problem of making large amounts
of digital data accessible for humans. To address this challenge, we focused on di-
mensionality reduction as a particular promising technique for providing an intuitive
interface to such data. Since dimensionality reduction is an ill-posed problem in the
case of intrinsically high-dimensional data, however, we relied on discriminative di-
mensionality reduction, i.e. on incorporating auxiliary data into dimensionality reduc-
tion to provide a clear specification for relevant structure. Inside this frame, we made
use of the Fisher metric as a particularly flexible and mathematically well grounded
concept to enable discriminative dimensionality reduction.

To circumvent the disadvantages of such nonparametric mappings, we proposed a
parametric extension termed kernel t-SNE. This technique enables applying the map-
ping for new data points which have not been available for training. An example for
such a scenario are streaming data. This method also enables to project large parts of
a data set in O(N) time, which can be crucial for large data sets. We have reformu-
lated the computation of distances inside the Fisher metric framework, thus, making
it applicable to data given by similarities, only. This opens the way towards DiDi pro-
jections for complex data where vectorial representations are difficult to obtain. These
include for instance musical pieces, graphs or structured data in general, as demon-
strated in the experiments. Further, we have proposed a definition of the Fisher metric
enabling to integrate also real-valued auxiliary information. This allows to consider
regression targets as auxiliary data. We have demonstrated it in artificial and real
world benchmarks.

In addition to employing DR for data visualization, a valuable tool for accessing
data can be to interpret machine learning models. In this context, we have presented
a framework that allows to visualize high-dimensional functions, such as those of
classification or regression models, in two dimensions. We have performed numerical
evaluations to judge the quality of our embeddings and demonstrated the usefulness
for specified user tasks with various models and data sets. Methods for DiDi have
shown to be particularly useful in this application.

Further, we have proposed a method which gives insights into the relevance of
features for a nonlinear data projection. In addition to the benefits of nonlinear DR
techniques, such as providing intuitive access to the neighborhood structure of a given
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data set, this technique augments nonlinear DR methods by providing information
about the original features. Furthermore, this method enables the user to imprint
structural information on a potentially high-dimensional data set by specifying such
structure in the projection space.

Moreover, we presented a novel technique for valid interpretation of linear map-
pings. In the presence of many or correlated features, this method provides intervals
for the relevance of features. Thereby, it allows to identify whether features are strictly
relevant or can be replaced by others. We demonstrated this approach for linear map-
pings implemented by linear regression and metric learning.

The structure preserving property of DR methods enabled us to tackle the particular
difficult transfer learning problem where no label and correspondence information is
available. Our proposed method uses only the structure of the manifolds to align the
data from the source and the target space in a latent embedding space. We demon-
strated our approach for two data sets and presented the possibility to use nonlinear
transfer functions.

Outlook Although this thesis has addressed challenging questions and presented
solutions, there exist still many open questions, some of which are already under
investigation. We summarize a few of them in the following.

Discriminative dimensionality reduction based on the Fisher metric has proven to be
a powerful approach which is applicable in many scenarios such as with discrete and
real-valued auxiliary information or to data described by similarities, only. However,
the run time complexity is still a problem for large data sets: Currently the imple-
mentations range from O(N3) to O(N2), which makes it impossible to apply these
algorithms to larger data sets. A possible cure might be applying the concepts used
for efficient neighborhood embeddings [177, 158] to distance computation with the
Fisher metric.

In this thesis, we have presented a formulation of the Fisher metric, which allows to
compute Fisher distances from data given only as similarities. However, this concept
is restricted to discrete-valued auxiliary information. An extension would allow to
compute DiDi projections also for similarity data together with real-valued auxiliary
information. Such a method would be relevant in complex data domains where a
vector based representation is not easily found.

Further, we have proposed a framework to visualize high-dimensional functions
such as classification and regression functions. This approach is evaluated by investi-
gating the inverse DR function on the positions of the data points, providing an esti-
mate of the visualization quality on the positions of the data. This evaluation could be
augmented by geometrical properties such as the preservation of curvature or function
specific characteristics such as the margin for classifiers. Even more interesting would
be the incorporation of such aspects directly into the optimization.

A further open question can be found in the context of interpretability of nonlin-
ear DR. The proposed method utilizes a globally linear mapping, which is beneficial
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for interpretation. However, it is possible that the relevance of features depends on
the positions in the data space and that it could change as the position changes. A
locally linear mapping could measure such effects, hence, constituting an interesting
extension.

The concept for the valid interpretation of linear mappings depends heavily on the
chosen notion of equivalence among linear mappings. While the notion introduced in
this thesis presents a rather general formulation, more model specific formalizations
are possible. Such could be for instance given by the constrains of a linear SVM model.

The achievements of this thesis set the stage for further research in the exiting topic
of representation learning and its theoretical foundations.





Appendix A.

Mathematical derivations

A.1. The Fisher information matrix for a discrete auxiliary

variable

We demonstrate in the following how to obtain the analytical form of the Fisher infor-
mation matrix shown in eqs. (2.20) to (2.23), in case of a discrete auxiliary variable and
the Parzen window estimator. This result was already reported in [123]. Nevertheless,
we provide here the derivation for the convenience of the reader.

The Fisher information matrix with a discrete auxiliary variable is defined by

J(x) = Ep(c|x)

{(
∂

∂x
log p(c|x)

)(
∂

∂x
log p(c|x)

)T
}

, (A.1)

where we estimate p(c|x) by

p̂(c|x) = ∑i δc,ci exp(−0.5‖x− xi‖2/(σp)2)

∑j exp(−0.5‖x− xj‖2/(σp)2)
. (A.2)

Then, the derivative can be decomposed into

∂

∂x
log p(c|x) = ∂

∂x
log

(
∑

i
δc,ci exp(−0.5‖x− xi‖2/(σp)2)

)

− ∂

∂x
log

(
∑

j
exp(−0.5‖x− xj‖2/(σp)2)

)
, (A.3)

with

∂

∂x
log

(
∑

i
δc,ci exp(−0.5‖x− xi‖2/(σp)2)

)
=
−1
(σp)2 ∑

i
ζ(i|x, c)(x− xi)

=
−x
(σp)2 +

1
(σp)2 ∑

i
ζ(i|x, c)xi

=
−x
(σp)2 +

1
(σp)2 Eζ(i|x,c){xi} (A.4)
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and

∂

∂x
log

(
∑

j
exp(−0.5‖x− xj‖2/(σp)2)

)
=
−1
(σp)2 ∑

i
ζ(i|x)(x− xi)

=
−x
(σp)2 +

1
(σp)2 ∑

i
ζ(i|x)xi

=
−x
(σp)2 +

1
(σp)2 Eζ(i|x){xi}. (A.5)

Thereby,

ζ(i|x, c) =
δc,ci exp(−0.5‖x− xi‖2/(σp)2)

∑j δc,cj exp(−0.5‖x− xj‖2/(σp)2)
(A.6)

ζ(i|x) = exp(−0.5‖x− xi‖2/(σp)2)

∑j exp(−0.5‖x− xj‖2/(σp)2)
. (A.7)

Then we see that
∂

∂x
log p(c|x) = 1

(σp)2

(
Eζ(i|x,c){xi} −Eζ(i|x){xi}

)
=:

1
(σp)2 b(x, c) (A.8)

and the Fisher information matrix is given by

J(x) =
1

(σp)4 Ep̂(c|x)

{
b(x, c)b(x, c)T

}
. (A.9)

A.2. The Fisher information matrix for a continuous auxiliary

variable

This section depicts the mathematical derivation for computing the Fisher information
matrix in case of a continuous auxiliary variable. In particular, we utilize the Gaussian
Process methodology and show how to obtain the result (2.40) given in section 2.6.2.

Starting from the definition of the Fisher information matrix

J(x∗) = Ep(y∗|X,y,x∗)

{(
∂

∂x∗
log p(y∗|X, y, x∗)

)(
∂

∂x∗
log p(y∗|X, y, x∗)

)T
}

. (A.10)

we need to do three things in order to compute this matrix: (I) estimate p(y∗|X, y, x∗),
(II) compute its derivative with respect to x∗ and (III) calculate the expectation.

(I) For estimating p(y∗|X, y, x∗), we can use a Gaussian Process, as mentioned in
section 2.6.2, giving us

p(y∗|X, y, x∗) =
1√

2πcov(y∗)
exp

(
− (y∗ − ȳ∗)2

2 · cov(y∗)

)
, (A.11)

with

ȳ∗ = kT
∗ α, α = (K + σ2

GPI)−1y (A.12)

cov(y∗) = k∗ − kT
∗ (K + σ2

GPI)−1k∗ (A.13)
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in agreement with the Gaussian Process literature [131].
(II) The derivative can be decomposed into
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1
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with
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where
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Thereby,
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Combining these derivatives, we obtain
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(III) Inserting the result of the derivation into equation (A.10), we obtain
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and José Luis Pons, editors, Converging Clinical and Engineering Research on Neurorehabili-
tation II: Proceedings of the 3rd International Conference on Neural Rehabilitation, ICNR 2016,
Segovia, Spain, October 18-21, 2016, pages 153–157, Cham, 2016. Springer International
Publishing.

[C16a] Alexander Schulz and Barbara Hammer. Discriminative Dimensionality Reduction in
Kernel Space. In Proceedings of the 24th European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, ESANN 2016, Bruges, Belgium, April 27-29,
2016. i6doc.com, 2016.

[C15f] Alexander Schulz, Bassam Mokbel, Michael Biehl, and Barbara Hammer. Inferring
feature relevances from metric learning. In IEEE Symposium Series on Computational
Intelligence, SSCI 2015, Cape Town, South Africa, December 7-10, 2015, pages 1599–1606,
2015.

131



132 Appendix B. Publications in the context of this thesis

[C15e] 1 Bassam Mokbel and Alexander Schulz. Towards Dimensionality Reduction for Smart
Home Sensor Data. In Barbara Hammer, Thomas Martinetz, and Thomas Villmann, ed-
itors, Proceedings of the Workshop New Challenges in Neural Computation, NC2 2015, Aachen,
Germany, October 10, 2015, number 3, pages 41–48, 2015.

[C15d] 2 Alexander Schulz and Barbara Hammer. Computer Analysis of Images and Patterns:
16th International Conference, CAIP 2015, Valletta, Malta, September 2-4, 2015, Proceedings,
Part II, chapter Visualization of Regression Models Using Discriminative Dimensionality
Reduction, pages 437–449. Springer International Publishing, Cham, 2015.

[C15c] Alexander Schulz and Barbara Hammer. Discriminative dimensionality reduction for
regression problems using the fisher metric. In International Joint Conference on Neural
Networks, IJCNN 2015, Killarney, Ireland, July, 12-17, 2015, pages 1–8, July 2015.
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