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Abstract—Babbling is a crucial process in young infants for
acquiring articulatory control. By constantly trying out motor
commands and observing the consequences that they cause
in the environment, they develop an understanding of their
own body and learn to control their articulators in order to
produce meaningful speech. In earlier works, we proposed a
developmental model of speech acquisition that learns to control
a 3-d vocal tract simulation for producing vowel or syllable
sounds. The system self-organizes learning according to speech
it perceives from its environment, so that ambient speech shapes
the learning process. Here, we discuss how the proposed model
could be extended to form a bridge between perception, on the
one end, and semantics, on the other end. The idea is to connect
acoustic perception with other perceptual modalities. As an
example, we discuss how the system could integrate visual input
in its learning loop. By learning associations between acoustic
targets and simultaneous visual perceptions, such an enhanced
model could produce speech not only in reaction to acoustic
input, but also triggered by visual input. Vision, thus, could
help to establish a common ground between learner and tutor
for interactive articulatory learning.

I. A DEVELOPMENTAL MODEL OF SPEECH ACQUISITION

Infants explore in a goal-directed manner from the very
beginning. Studies show that even neonates orient themselves
towards more interesting targets [1] and prenatal exposure
to their native language seems to influence infants’ early
babbling behavior (e.g. [2]).

We combined these ideas in a developmental model of
speech acquisition in which we model the influence of
ambient speech on the learning process [3]. We provide a set
of speech sounds to the system from which it extracts the im-
portant components from a high-dimensional acoustic space
representation via linear discriminant analysis. The resulting
2-d goal space forms a low-dimensional representation of
speech that the system is exposed to in its environment.
Through this dimension reduction, full syllables are projected
onto a single point in goal space. Fig. 1 depicts such a goal
space trained from ambient speech sound sets consisting of
the three syllables /a/, /ba/ and /ma/.
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Fig. 1. A goal space for the three syllables /a/, /ba/ and /ma/.
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Fig. 2. Forward and inverse model map between articulatory parameters
and points in the low-dimensional goal space

Using this goal space, we employ goal babbling, a develop-
mental approach to learning motor coordination [4], [5]. Goal
babbling learns by drawing targets from the goal space and
trying to achieve them. Collected action–outcome pairs are
used to learn an inverse model, mapping from target positions
in goal space to motor commands (see Fig. 2). Whereas
the inverse model is updated with a radial basis function
neural network in an online fashion, the forward model is
available to the system before babbling starts. Executing the
forward model includes two steps. In the generation step, the
articulatory parameters are fed into the speech synthesizer
and a speech sound is produced. In the perception step,
this speech sound is “perceived”, i.e. it is mapped to the
previously trained goal space. This perception step models
that learning is shaped by ambient language exposure.

II. BABBLING A SET OF SYLLABLES

Motor commands are either static vocal tract shapes (for
vowels), or articulatory trajectories modelled with dynamic
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Fig. 3. Competence increase during babbling /a/, /ba/ and /ma/ for 500
iterations (using GBFB features).

movement primitives (for syllables). Because the dimension
reduction step extracts a low-dimensional representation,
arbitrary high-dimensional acoustic features can be applied,
e.g. MFCCs or Gabor Filterbank (GBFB) Features [6].

In the beginning, the inverse model only knows a single
speech sound (in the example in Fig. 3 this is /a/). Then
babbling proceeds: the system draws targets randomly from
the distribution of ambient speech sounds, estimates the
required motor command by executing the inverse model,
adds exploratory noise and observes the actual outcomes by
executing the forward model. Then, the inverse model gets
updated with the new action–outcome pairs (see [3]).

In this way, the system gradually increases its competence.
We measure the system’s competence by testing how well
it can produce the three target sounds that are present in
ambient speech. Competence is computed as the exponential
of the negative distance between the desired and the actually
achieved point in goal space.

Fig. 3 shows how the competence increases during 500
babbling iterations for learning /a/, /ba/ and /ma/.

III. LINKING ACOUSTIC AND VISUAL GOAL SPACE

After learning, our model is capable to produce speech
sounds in two ways, namely via imitation or via self-
production. Imitation means that the system perceives an
(external) speech sound, maps it to its goal space and tries
to achieve this point in goal space by executing its inverse
and forward model in a row. Self-production means that the
system selects its own target in goal space. Computationally,
this target could be drawn randomly from the distribution of
ambient speech. Such spontaneous productions might occur
in young infants from time to time, however, human speech
production is rarely purely random.

The reason is that we learn how to speak in order to interact
with and learn about our environment. Speech sounds are as-
sociated with visual impressions, tactile feedback, emotional
states and various other sensations. Semantic emerges from
an association of speech with multimodal experiences [7].

How could multimodal perception be integrated into our
speech acquisition model? Analogously to how the acoustic
goal space forms a low-dimensional representation of ambi-
ent speech, a dimension reduction on the visual perceptions
could generate a visual goal space. As visual and acoustic
perception occur in parallel, points in both goal spaces
are activated simultaneously, so Hebbian learning, which
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Fig. 4. Associations between visual and acoustic perceptions learned via
Hebbian learning could extend the model towards multimodel perception
and, eventually, towards a better representation of semantics.

strengthens connections between co-occurring events, could
be applied to learn associations between these two modalities
(similar to applications in e.g. [8], [9]).

In consequence, the resulting system could produce speech
sounds not only imitatively or randomly, but also in reaction
to a visual percept. Either the visual percept activates associ-
ated acoustics which then can serve as an imitation target. Or
the visual percept is directly inputted into the inverse model.

Furthermore, such multimodal information could alleviate
the correspondence problem, i.e. the problem of mapping
between speech sounds produced by different individuals.
Currently, this problem is avoided by generating ambient
speech via the same vocal tract model that the learner uses for
babbling. Goal spaces in additional modalities such as vision
are not affected by speaker variations and could help to build
a common ground between learner and tutor. Multimodal
associations, thus, could extend our system towards the
integration of semantic information, eventually connecting
articulatory learning to interactive language learning.
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