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Introduction

Introduction

In this thesis we study the stochastic differential equation (SDE)
XQ = X € H,

in an infinite-dimensional separable Hilbert space H driven by a cylindrical Wiener process
W with a bounded Borel measurable drift f and deterministic initial condition zy € H.

In the above equation (SDE) A: D(A) — H is a positive definite, self-adjoint, closed,
densely defined linear operator such that the trace of its inverse A~! is finite. On the one
hand the operator A pushes the solution X towards zero. On the other hand the drift term
f is only bounded and Borel measurable. Furthermore, we assume the components (f,,)nen
of f to decay quite rapidly as n — oco. However, no assumptions on the drift f with regards
to regularity are required.

We show in this thesis that already these conditions imply the existence of a path-by-path
unique solution (in the sense of A. M. Davie (see [Dav(07])) to the above equation, which
extends Davie’s theory of path-by-path uniqueness to abstract infinite-dimensional Hilbert
spaces.

SDEs have been a very active research topic in the last decades. Several approaches and
notions of solutions were developed. For example the pathwise approach, where a solution
X to the above equation is interpreted as a stochastic process, weak solutions, where one
essentially studies the laws of the solutions, and the mild approach where a solution to the
above equation (SDE) is a function X solving the mild integral equation

t

X (w) = e May + /e_(t_S)Af(s, X, (w)) ds + Z(w), (IE)

w

where

and e ™ for ¢t > 0 denotes the semigroup with generator —A.

In this thesis we consider the so-called path-by-path approach, where equation (SDE) is
not considered as a stochastic differential equation. In the path-by-path picture we first
plug in an w € €2 into the corresponding mild integral equation of (SDE) and try for every
w € Q to find a (unique) continuous function X (w): [0,7] — H satisfying equation (IE,),
which can now be considered as an ordinary integral equation (IE), that is perturbed by an
Ornstein-Uhlenbeck path Z4(w). If such a function can be found for almost all w € Q, the
map w — X (w) is called a path-by-path solution to the equation (SDE). For path-by-path
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Introduction

uniqueness we require that there exists a set g C € with P[Qy] = 1 such that all solutions
coincide on ().

Naturally, this notion of uniqueness is much stronger than the notion of pathwise uniqueness
for solutions to stochastic differential equations. Nevertheless, we prove that equation (SDE)
even admits a path-by-path unique solution. We want to emphasize that pathwise uniqueness
implies that for any two solutions X and Y of equation (SDE) a set € of full measure can
be found such that X and Y coincide on €2y. In general, however, this set €2y will depend on
both X and Y. The notion of uniqueness in the path-by-path approach is much stronger,
i.e. a set Qy of full measure can be found such that all solutions coincide for all w € g,
which is what we shall prove in this thesis.

The main theorem of this thesis states that there exists a unique mild solution to equation
(SDE) in the path-by-path sense.

Theorem (Main result)

Assume that A and f fulfill Assumption in Chapter 1 below. Given any filtered
stochastic basis (€2, F, (F¢)icpo,00[, Py (Wi)icpo,o0f) there exists Qq € F with P[] = 1 such
that for every w € €y we have

#{g€C([0,T],H) | g solves (IE)_} = 1.

Since we obtain a unique solution for almost all Wiener paths W (w), this result can also be
interpreted as a uniqueness theorem for randomly perturbed ordinary differential equations
(ODEs), more precisely integral equations. We refer to [Flall] for an in-depth discussion
about the various notions of uniqueness for SDEs and perturbed ODEs.

The Story in a Nutshell

Let W be a R%-valued Wiener process. The question whether for f € C,(R¢, R?) the integral
equation

z(w) = xo + /f(xs(w)) ds + Wy(w)

has at most one solution for almost all w has been first posed by N. Krylov and was mentioned
by V. Bogachev as an open problem in [Bog95, 7.1.7]. Through I. Gydngy the question
found its way to A. M. Davie, who gave an affirmative answer in |[Dav07]. Indeed, let
f:[0,T] x RY — R? be a bounded, measurable, but not necessarily continuous function.
Then for almost all w the equation

x(w) = o +/f(s,a:5(w)) ds + Wi (w)

has at most one solution.

This result can be understood as a “regularization by noise effect” since in the absence of
noise the above integral equation can admit more than one solution.
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Introduction

In 2011 A. M. Davie even extended upon this and proved that path-by-path uniqueness holds
in the non-degenerate multiplicative noise case (see [Dav11]). Let b: [0,T] x R? —s R%*¢ be
a non-degenerate (i.e. b(t,z) is invertible) map and let the components b;; be differentiable

in x with %Z being locally Holder continuous in (¢, x), then the equation

t

x(w) =z + /f(s,xs(w)) ds + /b(s,xs(w)) dW,(w)

has at most one solution for almost all w. Here, the second integral is defined in the sense
of rough paths.

By virtue of these results, the question arose what kind of stochastic processes have such a
“regularizing property”.

In 2012 R. Catellier and M. Gubinelli answered this question in [CGI12| by proving that
fractional Brownian motion in R? also possesses this “regularizing property”. Let BY be a
fractional Brownian motion with Hurst parameter H. Then the equation

z(w) = x0 + /f(s,xs(w)) ds + B (w)

has for almost all w a unique solution as long as f € B*™! with o > 1 — ﬁ, where B“
denotes the Besov—Holder space of order . Note that for a < 0 elements in B* are no
longer functions. In this case the integral is defined as

tﬁ“”W®:mj@wmmm®,

where p. are suitable mollifiers. This result by R. Catellier and M. Gubinelli does not
generalize Davie’s result, because setting H = % implies that the drift f is required to be in
C'*¢ for an € > 0. However, this suggests that on the one hand there seems to be a tradeoff
between the regularity of the drift f and the regularizing effect of the noise B and on the
other hand fractional Brownian motion becomes more regularizing the smaller H gets. For
example, if H < %, path-by-path uniqueness holds for Schwartz distributions f € C~¢ for
sufficiently small € > 0.
In 2014, by a completely different approach L. Beck, F. Flandoli, M. Gubinelli and M. Mau-
relli prove in [BEGM14] that path-by-path uniqueness does not only hold for SDEs, but also
for SPDEs. If f € L4([0, T], LP(R%, R?)) with

412

p g

(the so-called Krylov—Rockner condition), then the stochastic continuity equation

day + div(f(zy))dt + o(z, 0o dWy) =0

exhibits path-by-path uniqueness. Furthermore, if the Krylov—Rd6ckner condition holds for
div f then the stochastic transport equation

de+ f-Vadt+oVzodWW, =0
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Introduction

exhibits path-by-path uniqueness as well.

Later that year remarkable simplifications to the original proof of A. M. Davie have been
made by A. Shaposhnikov in [Shal4]. One of the most important inequalities ([Dav07,
Proposition 2.2|), which heavily relied on explicit Gaussian calculations, has been proven
in a much more abstract setting using time-reversal as well as H. Follmer, P. Protter and
A. Shiryaev’s Tto-formula for time-reversed Brownian motion. This opened the door to
analyze the question of path-by-path uniqueness for much more complicated noises namely
stochastic processes, that are strong solutions to an SDE as long as the coefficients of the
SDE fulfill some quite mild conditions.

One year later, in 2015, E. Priola proved in [Pril5] that the Brownian motion W of A. M. Davie
can be replaced by a Lévy process L if the Lévy measure v of L fulfills the condition

12|° v(dz) < oo
|z|>1

for some 6 > 0. This shows that continuity of the noise term is not a requirement for
path-by-path uniqueness (or Davie type uniqueness, a term coined by E. Priola) to hold.

Finally, in 2016 O. Butkovsky and L. Mytnik showed in [BM16| that path-by-path uniqueness
holds for the stochastic heat equation

= S pb(a(t, 2) + WL, 2),

where b € B(R,R) is just bounded, measurable and W denotes space-time white noise on
R, x R. In there article it turns out that the smoothing of the Laplace operator and the
“regularization effect” of space-time white noise is sufficient to proof path-by-path uniqueness
if b is only bounded. Furthermore, they showed that the set 2y, on which all solutions
coincide, is independent of the initial condition as long as the initial condition belongs to a
specific class.

In conclusion the initial result of A. M. Davie in [Dav07] has been widely extended. However,

there are still a lot of open questions.

e Does the result hold if the noise is not of Gaussian nature and does not contain a
Gaussian component?

e Is there a tradeoff between the size of the drift and regularizing effect of the noise? If
yes, is the result in [BEGM14| the sub-critical case?

e [s there a concrete counter-example, where pathwise uniqueness holds, but path-by-
path uniqueness fails to hold?

e [s there an explicit analytic description of the null-set of paths, which has to be ex-
cluded?

e Is the regularization phenomenon due to the finite-dimensionality of the state-space or
are there non-trivial examples in infinite-dimensional Hilbert or Banach spaces?

In this thesis we enlarge the set of the results of path-by-path uniqueness by giving an
affirmative answer to the last question.



Introduction

Our Contribution

We present a general framework for the analysis of path-by-path uniqueness for equations
of type (SDE). We introduce the effective dimension (see Definition of a space which,
similarly to the Kolmogorov e-entropy, measures the size of an (infinite-dimensional) totally
bounded set. For a given set Q C RY the effective dimension is a sequence (ed(Q).)men
taking values in N U {oo} that measures the size of the said set.

For a given drift f in equation (SDE) we associate such a set @ to f. Our framework allows
to handle arbitrary sets @) as long as they are of finite effective dimension (see Definition
3.1.2).

Moreover, given a set  C RY as above we introduce regularizing noises (see Deﬁnition.
We define regularizing noises as stochastic processes obeying certain regularity assumptions,
which depend on the set Q C RY. Examples of regularizing noises are Brownian motion in
R? (where @ C R can be any bounded set) and Ornstein—Uhlenbeck processes on a Hilbert
space H.

Given the effective dimension of a set () and a regularization noise X we present estimates
for the map

(k+1)2-m
psi o [ 76X ) 4 a) - Fls X)) ds
k2—n
(and more complicated expressions involving ¢, x) which are essential for our analysis.

On this abstract level we prove that, if the non-linearity f is Q)-valued, every Q)-regularizing
noise X (with certain index and order (as defined in Definition [5.1.1)) depending on the
effective dimension of @) regularizes our SDE in the sense that path-by-path uniqueness
holds.

This means that given the SDE

dY; = AY,dt + f(t,Y;)dt + dZ;,
where Z is some stochastic process, and setting

t
X, = / e~ =94 47,
0

then if the non-linearity f of the SDE is @)-valued and X is a Q)-regularizing noise, the above
SDE admits a path-by-path unique solution as long as h > % and

1—h< 2ay
h 24 o+ 2y

Here, h is the index, « the order of the regularizing noise X and v (see Definition |3.2.1)
measures the effective dimension of Q).

1
< -
~h

On a concrete level, taking H := R? (and hence v = oo since the effective dimension of R?
is trivial see Proposition below), A := 0 and Z to be Brownian motion on R? which
is a regularizing noise with h = % and o = 2, then the above condition is fulfilled and we

therefore recover A. M. Davie’s result of [Dav(7].

9.



Introduction

If H is a separable Hilbert space, A as in the beginning of this introduction (i.e. such that
trace A™! < o) and Z a cylindrical Wiener process, then X is an H-valued Ornstein—
Uhlenbeck process. We prove that such an Ornstein-Uhlenbeck process is a regularizing
noise with h = % and o = 2 (see Corollary . The above condition is, therefore, fulfilled
for every 7 > 2, so that the above equation (SDE) has a path-by-path unique solution for
all @-valued non-linearities f as long as the effective dimension of () is bounded by

ed(Q)m < C(In(m + 1))/,

This improves a result previously obtained by the author in [Wrel7].

Outline of the Proof

First, we observe that the main result would be trivial if f were Lipschitz continuous in the
spatial variable. Let = and y be two solutions of (IE),. We then have

t

2(t) — y(t)] s = / A (f(s,2(s)) — f(s,9(s))) ds| < Lip(f) / 2(s) — y(s)x ds.

0 H
So, by Gronwall’s Inequality we obtain x = y.

In the case when f is not Lipschitz continuous in the second parameter, we have to analyze
the equation more carefully. Introducing the variable u := x — gy, the above expression then
reads

()]s = / e (£ (s, u(s) + y(s)) — F(s.y(s))) ds

In our analysis we show that for z, 2’ € H we have the estimate

/ ([ (s, +y(9)) = fls, 2 + () ds| S o= 2| + 3,
0 H

where §; > 0 is a number which can be made arbitrarily small by letting ¢ — 0 and < means
that the left-hand is bounded by the right-hand up to a multiplicative constant C. on a set
Q. with P[Q¢] < e. This estimate acts as a substitute for the Lipschitz continuity of f.

Since y is a solution to (SDE) in the mild sense we have

t

y(t) = / A (s, y(s)) ds + 22,

0

where Z4 is an H-valued Ornstein-Uhlenbeck process with drift term A driven by a cylindri-
cal Brownian motion and for simplicity we assume the initial condition to be zero. Since f is
bounded, Novikov’s condition is fulfilled so that by Girsanov’s Transformation Theorem we

- 10 -
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can find a new measure v, which is equivalent to our original measure P, so that y becomes
an Ornstein-Uhlenbeck process Z4 := y. Under this measure our equation for u reads

t

)l = | [ € (Flsate) + 28 = 1. Z) ds) [@
0 H

The aim is now to analyze the regularity of the right-hand side in order to obtain an esti-
mate, which can be used to obtain a Gronwall-type estimate. Here, we have to exploit the
effect of the noise Z4. The idea is that the noise not only provides additional regularity
in expectation (which would only be enough to prove merely pathwise uniqueness), but the
path t — ZA(w) itself already regularize the equation enough, so that it is possible to
obtain regularizing behavior for a large class of w € 2.

To see this w-wise regularizing behavior let us consider the one-dimensional case when f is
time-independent and the noise is a standard Brownian motion, i.e.

u(t) = /f(u(s) + Bs(w)) ds.

Since wu is a Lipschitz continuous function and B is only S-Hélder continuous for § < %, we
expect that the oscillations of B are faster than the oscillations of u. Therefore, for small
times it is not unreasonable to expect that

u(t) ~ /f(u—i—Bs(w)) ds,

where u := u(s) for some fixed s € [0,t]. We now rewrite the expression using the occupation
measure L of B as follows

/f(u + z)L([0,t], B(w), dx).

Recall that the occupation measure of a Brownian motion in one dimension has a density «
w.r.t. Lebesgue measure, so that we can simplify the above to

/f(u + z)a([0,t], B(w), z) dz.

Since we integrate over the whole space w.r.t. Lebesgue measure we can identify the integral
as a convolution f * « between f and a. In conclusion we have

u(t) = (f x ([0, 1], B(w), -))(u).

Due to the fact that « is for almost all w Hélder continuous of order 8 for 3 < 5 we
effectively have replaced the original drift f by the much more regular f x . Note that the
entire argument has to be w-wise since we are interested in w-wise regularization. To establish
pathwise uniqueness one could obtain a stronger regularizing effect by using for example that
the probability density function of B is of class C°. However, since we establish path-by-

path uniqueness we have to use the somewhat “deeper” path properties of the noise.

- 11 -
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Let us now go back to equation (/1)

t

Ol = | [ IS sruls) + 22 = 1G5, Z2) ds
0 H
and analyze the right-hand side for small times. For n € N, k € {0,...,2" — 1} and © € H
we set

(k+1)2-7

oslfizw)i= [ N flsa 20 = 15, 2) s
k2
For convenience we usually write ¢, (z) instead of ¢, (f;z,w). We want to prove that the
map © — ¢ r(x) exhibits some kind of regularity due to the noise. We obviously have
|onk(z)|n < 277, however we would like to prove something along the lines of |¢, 1 (z)|n S
|x|g for some 5 > 0. Our approach is the following: First assume that f is continuously
differentiable in the spatial variable with derivative f’. In this case we can consider

We prove that the random variable Y is exponentially square-integrable (see Theorem [4.2.2)),
i.e. there exists @ > 0 such that

E [aY?] < oco. @)

To prove ([2)) we follow A. Shaposhnikov’s approach (see [Shal4]) who proved a similar result
for finite-dimensional Brownian motions. His idea is as follows: Consider the process

0,1] 3t | f'(s,22) ds.
/

This process can be decomposed as the sum of a forward and backward semi-martingale.
Furthermore, these semi-martingales can be identified as forward and backward It6 integrals,
so that we obtain

/ f(5, Z2) d(24), = / f(s, 22y av 24 - / f(s, 72 azZA, B
0 0 0

where dZs denotes the Ito integral and d*ZS the backwards I[to integral w.r.t. Zs. The
backwards integrals can be rewritten as an It6 forward integral by employing the time-
reversed process t — Z;_;. Since an Ornstein-Uhlenbeck process is an Ito diffusion process
with particularly nice coefficients, the time-reversed process is again an [t6 diffusion process
and the coefficients can be explicitly calculated. Using semi-martingale decomposition and
the Burkholder-Davis-Gundy Inequality, we can estimate the right-hand side of by the
bracket processes of the two integrals. Since f is bounded and <Z)t = t we complete the

proof of (2).

Using Chebychev’s Inequality we easily obtain a concentration of measure result, namely

12 -
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t
v / Jr 224 a) = f(r. 22 dr| > nVilelu | < G
0 H

and by using that Z4 is a Markov process we even obtain (see Theorem [5.2.2)

t
P /f(7—7 Z:l +l’) - f(T, Zf) ds > nyVit — 3|x|H gT < Ce—cn?
3 H

for r < s < t, where Z4 is adapted to the filtration (Gr)refo,00[- In conclusion we have

Pl pni(@) > 27" |alu] < Ce.

Here, we see that we lost some time regularity, since we only have 27?2 instead of 27",
however we gained regularity in space.

In order to get a “IP-a.s. version” of this estimate we use this faster than exponential decay
to prove a uniform estimate of the following kind

n—1 )
P U Ullenc@le > a2 2jala} | =50,

neN k=0 =z

where x runs through a countable, dense subset of H. This countable, dense subset will be the
union of nested finite lattices in the space where f takes its values in. These approximating
lattices are fine-tuned, so that we obtain

11 on
Pn k(@) | Sm2tr2 /2 (|o]g +277"), (¢-1)

(see Theorem where v > 0 is a parameter controlling the decay of (f,)nen, i.e. the
components of the drift f of (SDE). Here, by going to a “P-a.s. version” we loose some time
as well as space regularity. The term n22-"/2 seems unavoidable since for just Brownian
motion the increments of length A are, according to Lévy’s modulus of continuity theorem,

of size \/2h1In(1/h), so for h = 27™ we obtain precisely the same. The term n* reflects the
fact that we work in infinite dimensions. This term is only of polynomial order due to the
fact that we assume a very fast decay of (f,)nen (see Assumption below). The term
272" is artificially created. The actual estimate is of order

|z| g In(1 — 1n(|x|H))1/7.

However, it is much easier to estimate this by |z|z+272" and manipulate each term separately
than dealing with iterated logarithms.

Furthermore, we obtain the following estimate (see Theorem [6.2.1)) for two points x and y

—on _9bsn
|Pn k() — Onp(W)|r S VN2 — ylg +2777, (¢-2)

where 0 < § < 1 and 6; depends only on § and 7 (see Theorem for the definition of 65).
However, 05 vanishes when 6 — % and goes to ﬁ for 6 — 0. We therefore have a tradeoff
between the two terms. The reason why this estimate is weaker than the previous one is due
to the fact that we have to consider the event

- 13 -
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U U UU ome@) = ouxl > i2=""[z — glur}

neN k=0 z= y

where both z and y run through a countable, dense set increasing the probability (especially
in infinite dimensions) of the above event vastly.

Since our estimates only hold on a dense subset we have to prove that x —— ¢, x(2) is
continuous in a suitable topology. In fact, we also need to prove that the map

h — /f(3,2f+h(s)) — f(s,Zf) ds
0

is continuous for a sufficiently large class of i (see Theorem [7.2.1). If f were continuous this
would trivially follow from Lebesgue’s Dominated Convergence Theorem. However, since
we do not assume any regularity for f we have to approximate f by continuous functions
(fm)men and estimate

[ 1.7 ) = s 22+ 1)) .

We construct f,, so that the set {f # f,,} is open and of small mass w.r.t. the measure
dt @ P(Z), i.e. the product between the one-dimensional Lebesgue measure and the image
measure of Z/ under P. We, therefore, have to prove that

1
/]lU(s, ZA 4+ h(s) ds<e
0

uniformly for all i (see Lemma [7.1.4). Since U is open, 1y is lower semi-continuous and
hence we are allowed to approximate h from below by piecewise constant functions h,,. For
these h, we can use our previous estimate (¢-2) to obtain the required result and therefore
extend estimates (p-1) as well as (¢-2) to the whole space.

It turns out that in the final part of the proof we have to consider terms of type

N
Z ’@n,k+tI(xQ+17 xQ) ’Hv

q=1

where

Qon,kJrq(x: y) = Son,k+q<x) - Qpn,kJrq(y)

for a sequence of points {z, € H|¢ = 1,..., N}. Using just the estimate (p-2) and obtaining
an estimate of order \/n27°"N for each term under the sum is, unfortunately, insufficient
to prove the final theorem since N will later be chosen to be of order 2". The technique to
overcome this is two-fold:

On the one hand the ¢, ;4,-terms have to “work together” to achieve an expression of order
N. However, since {¢, p14(2,) | ¢ =1, ..., N} are “sufficiently uncorrelated” the law of large
numbers tells us to expect on average an estimate of order v/ V.

-14 -
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On the other hand in later applications (see Lemma z, will be samples from the
solution of the integral equation (IE, ), so that it is reasonable to assume that (2,41 —2z,|g =
|on.k+q(xg) |- Exploiting this enables us to use both of our previous established estimates
for every term |©n kiq(Tgr1, g) 1

Using both techniques, we end up with an estimate of order O(27"N) (see Corollary [8.2.2)).
More precisely, we obtain

N N N
—n —on —3n _9bsn
Z |Pn kg (Tgr1, Tg)|wr < C|2 Z gl + 2 ’ Z |V osq| 1 + 2 ’ /4|5U0|H + N2 (p-3)

q=1 q=0 q=0

Here, v, 1 4 is defined as

Vnka = Tg+1 = Tq = Pnjotq(Tq),
i.e. the error between x,,, and the Euler approximation of x,.1 given z,.

With all this technical machinery at our disposal we can now elaborate the main proof.
Recall that our aim is to prove that given a function u solving

t

u(t) = [ (15, Z20) 4 uls) ~ (5, Z2w)) ds

we have to show that u = 0. First, observe that for integers n € N and &k € {0,...,2" — 1}
we obtain

t

e+ D27 = ukz o | [ e (f(s. Z2w) +ulo) — Fs, Z4w) ds

= [@np(ul-)]m-

Let uy be the sequence of functions, which are constant on the dyadic intervals
[k27¢, (k +1)27], converge to u and fulfill the property

w(k27%) = ug(k27°).
Using the above mentioned approximation result (Theorem [7.2.1)), we obtain that

ul(k+1)27) = u(k2 ") = T k(e -l

Rewriting the limit as a telescoping sum we can express the above by

[k (tn (- D)ar 4 Y lonn(tesa (), ue( )l

{=n
Splitting the integrals and using the property u(k27%) = wu,(k27%) on each of the dyadic
intervals of size 27¢ we can rewrite this is in the somewhat more complicated form (see

Lemma [9.1.9))
00 (k+1)2£+1—n

eni(uk2 N+ D eer (ul(r+ 1277 u(r2™ ) |,

l=n r=k2¢+1-n

- 15 -
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For the first expression we use the estimate (p-1) (see Lemma [9.2.1]) to get an expression of
order (in the sense of <)

n2t3272 (Ju(k2 ") g +272") .
We split the second sum into two cases. If £ is “large” (i.e. £ > N), we use estimate (¢-2)

(see Lemma [9.2.2)) to obtain

00 k+1 2[+1 n

Z Z \/_2 Jé‘u((r_|_1)2 — 1) (7,2_@_1)‘ +2_295z

(=N pr=k2¢(+1—n

and use that u is Lipschitz continuous, which yields an estimate of order (in the sense of <)

00 (k+1)25+1 n

Z Z \/_2622Z<Z\/_2562n<226£/22n_2§N/22n

(=N rop2tti-n
For small ¢ we use the estimate (¢-3) (see Lemma [9.2.3 m ) to obtain

N (h+1)2n (h+1)20—n
Z 9—¢ Z ‘U(TQ_E)‘H + 9—0t Z "Yﬁ,r’H + 2—@/2’u(k2—n>’H + 2_295e
l=n r=k2¢—n r=k2t—n

Here, 7, is the error between u((r + 1)27¢) and the Euler approximation of u((r + 1)27¢)
given u(r27%). We can express this as

Yer = u((r +1)27°) = u(r2™) — o, (u(r2™)).
We note that we have already established that

oo (r+1)2tHi—n

lu((r+1)2~ —u(r2=) g ~ oo, (u( H+Z > ‘w,,( +1)24*1),u(r'24/*1))‘,

=0 p/=p2l+1-n H

so that it is natural to estimate the Euler approximation error in the following way

Verlsr = Jul(r +1)27) = u(r2™) — e, (w(r2™)|u
0o 7,+1 2@+1 n

NZ S (WW (u((r’—i—1)2’5/’1),14(70'24/’1)))H.

=0 p/=p2l+l-n

The right-hand side is similar to the expression we would like to estimate. Hence, by assuming
that n (and therefore ?) is sufficiently large, the term in front of the Euler error 27% can be
made smaller than 1, so that the Error term |y, |y is 3 times a term, that is already on the
left-hand side of the 1nequa11ty From this we deduce that the second term of ( . ) for small
¢ is bounded by

N (k+1)2¢t—"
STl Y 2+ 2 P k2 + 27
l=n r=k2¢-n

We are left with estimating the term

- 16 -
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(k+1)2t—n

> Jur27)a.

r=k2¢—n

For this expression we use the following trick (see Lemma [9.1.7):

(k+1)2¢—n (k+1)2t-1-n (k+1)2¢—n
dour2 <2 > JuEer2 )+ D Jul(r+1)27) = u(r2 ).
r=k2¢—n r=k2¢-1-n r=k2¢—n

The terms in the second sum can be rewritten as |¢,,.(u(r27))|z and estimated in a similar
way as before. For the first sum we can perform the same trick as before (¢ — n)-times until
we are left with a sum containing only the single term |u(k27")|y, which is fine as long as
the growth of the constant in front of this term is controlled.

Altogether we obtain the estimate

where N is the threshold that controls our cases, i.e. if £ > N, we consider ¢ to be “large”,
and ¢ to be “small”, if / < N.

By letting N be of the order In(1/|u(k27™)|y) and using that nition/2 < N (which requires
|u(k27™)| g to be sufficiently small) we establish (see Theorem [9.2.4]) that

u((k +1)27") —w(k27")[r < 27" [u(k27") [ In(1/[u(k27")| ).

From this we use a discrete log-type Grownwall inequality (see Lemma to deduce
that u must vanish at all dyadic points and hence by continuity vanish everywhere. Since
u is defined as the difference of two solutions this established path-by-path uniqueness and
completes the proof of the main result.

We note that for the simplification of the above exposition we have only described the case
when the noise term inside ¢, is an H-valued Ornstein—Uhlenbeck process ZA. In the
following chapters we, of course, consider the general case when Z is replaced by a general
regularizing noise X. The special Ornstein-Uhlenbeck case then follows by setting h = %
and a = 2.

Structure of the Thesis

This thesis consists of three parts. In the first part we introduce the Girsanov transformation
(Proposition used to reduce the problem at hand by a slightly simpler one in Chapter
1.

In Chapter 2 we discuss Gronwall inequalities namely linear (Lemma [2.1.1)) and logarithmic
ones (Lemma [2.2.1). A logarithmic Gronwall inequality is one of the main ingredients used
in the proof of the main result (Corollary [9.2.5).

In Chapter 3 we introduce the effective dimension of cuboids (Definition [3.1.2)), which are
infinite Cartesian products of intervals. Here, we also introduce the set Q)7 (Definition
and calculate its effective dimensions (Lemma [3.2.2).
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In the second part we focus on Hilbert space-valued Ornstein—Uhlenbeck processes. In
Chapter 4 we show the exponential integrability of certain random variables (Theorem
, where a Hilbert space-valued Ornstein—Uhlenbeck process is the source of noise. This
extends the results of A. M. Davie and A. Shaposhnikov (see [Dav07] and [Shald]) from
Brownian motion to Ornstein—Uhlenbeck processes. Here, we first consider one-dimensional
Ornstein—Uhlenbeck processes (Proposition and reduce the Hilbert space case to the
one-dimensional case.

In Chapter 5 we introduce so-called “regularizing noises” (Definition and by using the
results obtained in the previous chapter show that Hilbert space-valued Ornstein—Uhlenbeck
processes are regularizing noises (Corollary [5.2.3)).

In the third part we consider an abstract noise, which is “regularizing” as defined in Chapter
5, and prove the main result.

In Chapter 6 we introduce the maps ,, ; (Definition for a given regularizing noise and
prove two estimates (Theorem [6.1.5(and [6.2.1]) for this map.

We use these estimates in Chapter 7 to show that each ¢, is a continuous map w.r.t. a
certain topology (Theorem . The obtained continuity of ¢, is used to extend the
estimates obtained in Chapter 6 to a larger space (Corollary .

In Chapter 8 we consider sums of terms in ¢, ;. We introduce Euler approximation sequences
and prove an estimate for these kinds of terms if the argument forms an Euler approxima-
tion sequence (Lemma . In the second section of Chapter 8 we approximate general
sequences by an FKuler approximation sequence to obtain a general result for sums of terms
in ¢, (Theorem .

In Chapter 9, the last chapter required to prove the main result of this thesis, we use the
results of Chapter 6 to 8 to prove a logarithmic Gronwall type estimate (Theorem for
the reduced problem, obtained by the Girsanov transformation in Chapter 1 (see Proposi-
tion , and thus a simple application of the results obtained in Chapter 2 (see Corollary
completes the proof of the main result (Corollary [9.2.5).

Finally, we formulate several corollaries of the main result in Chapter 10.
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Chapter 1: Girsanov Transformation

1 Girsanov Transformation

In this chapter we introduce the precise setting, state the main result (Theorem |1.1.3) and
reduce the main result to a slightly simpler problem using a Girsanov transformation (see

Proposition [1.2.1)).

1.1 Framework & Main result

Let H be a separable Hilbert space over R and (€, F, (F¢):c(0,c], P) be a filtered stochastic
basis with sigma-algebra F, a right-continuous, normal filtration F; C F and a probability
measure P. Let (W;)ic0,00; be a cylindrical F-Wiener process taking values in RY. Let
A: D(A) — H be a positive definite, self-adjoint, linear operator such that A~! is trace-
class with trivial kernel. Hence, there exists an orthonormal basis (e,),eny of H and a
sequence of positive numbers (A, ) ey such that

Ae, = \en, A, >0, Vn € N.
Furthermore, we define
d A=A <o (T.1.1)
neN

By fixing this basis (e,),en we identify H with 2 so that H = ¢* C RN
We study the following stochastic differential equation (SDE)

{ do(t) = —Az(t) dt + f(t,2(t)) dt + dW, (SDE)

z(0) = xo,

where f: [0,7]x H — H is a bounded, Borel measurable function and o € H. We consider
the mild form for a given w € Q of the above SDE i.e. a solution x satisfies P-a.s.

t t
z(t) = e g +/e_(t_S)Af(s,:v(s)) ds + /e_(t_S)A dw; | (w), vt e [0,7]. (IE),
0 0
where e~ denotes the semigroup of the operator —A at time ¢ > 0. For a given cylindrical

Wiener process (W;)iepo,0of we define the H (= ¢%)-valued Ornstein—Uhlenbeck (ZtA)te[O,oo[
with drift term A by

t
Zih = / R 1
0

Note that for almost all w € € the sample paths of Z4 are continuous and that we have Z§' =
0. Furthermore, notice that Z4 is a mild solutions to the following stochastic differential
equation.
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AZ4 = —AZAdt + dW,.
Additionally, we define the projections

Wt(f) = f(t)7 \V/f € C([0,00[, H)v le [0700[7

which come with their canonical filtration

Gy = o(mls < 1) (1.1.2)
and we set

Gi = {(Z")"(F)IF € G}

as the initial sigma-algebra of Z4, so that Z# becomes (]t/@—measurable.

Remark 1.1.1 (Existence of weak solutions)

Using Girsanov’s Theorem (see e.g. [LRI5 Theorem 1.0.2]) we can construct a filtered
stochastic basis as above and an (F;)icpo,o[-adapted stochastic process (Xi)icpo,ry with P-
a.s. continuous sample paths in H which solves (SDE). I.e. we have

{ AX, = —AX, dt + f(t, X;) At + dW,

X(): Zg.

On an arbitrary filtered stochastic basis (2, F, (F;)teo,oofs Ps (Wi)tejo,00), as above, it is a
priori not clear whether it carries a solution (X;):co7) as in Remark

Let us now state the assumptions on the drift f and the main result.

Assumption 1.1.2

Let f:[0,1] x H — H be a Borel measurable map with components f = (f,)neny W.I.t. our
fixed basis (e, )nen satisfying the following conditions

1/2
fllooa:=sup | > X fult,x)* ] < oo
tel0,]zeH \ | oy

and

[fallo = sup [ fult, 2)] < exp (—e=™)
tel0,1),ze H

for an v > 2 and ¢, > 0.
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Theorem 1.1.3 (Main result)

Let A and f be as above and assume that f fulfills Assumption Given any filtered
stochastic basis (€2, F, (F¢)tcf0,00[, P, (W)icpp,00) there exists £y € F with P[] = 1 such
that for every w € €}y we have

#{g € C([0,T],H) | g solves (IE)_} =1,

i.e. (SDE) has a path-by-path unique mild solution.

Theorem follows from the following

Proposition 1.1.4

Let Aand f be as in Theorem|1.1.3] Let (Q, F, (F¢)ic(0,00), B, (W4)icpo,00)) be a filtered stochas-
tic basis and (X;)ejo,00] be a solution of (SDE) (as in Remark [1.1.1)). Then path-by-path
uniqueness holds, i.e. there exists Qg € F with P[] = 1 such that

#{g € C([0,T],H) | g solves (IE)_} =1

holds for every w € €.

Proof (of Theorem [1.1.3))

Take an arbitrary filtered probability space and let ((X})ieo,c0[, (Wi)iepo,00]) and
((X2)tep,00l (Wi)tep,00f) be two weak solutions driven by the same cylindrical (F;)seqo,c0f-
Wiener process motion. Then by Proposition it follows that path-by-path unique-
ness, and hence pathwise uniqueness, holds i.e. X! = X? P-a.s. Hence the Yamada-
Watanabe Theorem (see [RSZ08, Theorem 2.1|) implies that there exists even a strong
solution for equation (SDE). In conclusion, by invoking Proposition again, this proves
the existence and path-by-path uniqueness of solutions on ewvery filtered stochastic basis
(Q7 F, (E)tE[O,OO[a P, (Wt>t€[0,00[)'

OJ

Remark 1.1.5

Set Q := L*([0,T], H) and P such that the projection m,(w) := w(t) is a cylindrical Brownian
motion. As in the introduction consider the map

74 LA([0,T), H) — C([0,T), H), w+— [t [ e 94 du(s)

o\ﬁ

Note that due to [DZ92, Theorem 5.2| (P o ZA)_1 equals N (0, K), the Gaussian measure on
L3([0,T], H) with covariance operator K defined by
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where
tAs

k(tas) = /e(tT)A (67(5*7")14)* dr
0

and N(0,K)[Z4(2)] = 1. Note that, since Z4 is injective, Kuratowski’s Theorem (see
[Kal97, Theorem A1.7]) implies that Z4(Q) is a Borel set.

Let f be as in Assumption then path-by-path uniqueness holds for the SDE

Le. there exists Qy C C([0,T], H) with P[y] = 1 such that for every w € Qg there exists a
unique function g € C([0,7], H) solving the above equation.

1.2 Reduction via Girsanov Transformation

Proposition 1.2.1 (Reduction via Girsanov’s Theorem)

Let f:[0,7] x H — H be a bounded Borel measurable function. Assume that for every
process (Zi)ieo.00f 00 (2, F, (Fi)tefo,00]) With Z§' = 0, which is an Ornstein—Uhlenbeck pro-
cess with drift term A w.r.t. some measure P ~ P on (£, F), there exists a set >, C Q with

P[Q,] = 1 such that for all fixed w € €2, the only function u € C([0, T, H) solving

t

ult) = /e—<t—s>A (f(s, ZAW) +u(s)) — f(s, Z;‘(w))) ds [2.1.1)

for all £ € [0,77] is the trivial solution u = 0, then the assertion of Proposition holds
with Qg := Q. ,, where Z/ := X; — e~*42, with X being a solution of (SDE). Recall that X

ZA
is an Ornstein—Uhlenbeck process under a measure P obtained via Girsanov transformation.

Remark 1.2.2 (Dependence of ()

The set of “good omegas” €2y of the main result therefore depends solely on the strong
solution X, the initial condition xq and the drift f.

Proof

Let (X{)tco,r) be a solution to (SDE). We set ZtA .= X, — e 1y so that Z4 is an Ornstein—
Uhlenbeck process with drift term A starting in 0 under a measure P ~ P obtained by
Girsanov’s Theorem as mentioned in Remark [I.1.1l

Then, by assumption there is a set QO , with P[Q2},] = P[Q,] = 1 such that for all w € Q' ,
every solution u to equation (|1.2.1.1)) is trivial.
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Let w € Q, and z € C([0,T1], H) be a solution to (IE),. We then have

t t

zy = e Ay + /e(ts)Af(s, zs) ds + /e(ts)A dW, | (w).
0 0
Setting u; := x; — X¢(w) yields that

t t

up = /e_(t_S)Af(s,:vs) ds — /e_(t_S)Af(s,Xs(w)) ds

0 0
t

= [ I+ X))~ (5 X)) ds

0

By plugging in the definition of Z4 and by setting

fao(t, 2) = f(t, 2+ e aq)
we rewrite the above equation to

t

w= [ oy + Z2w)) = Fals, Zw) ds
0
Since Z4 is an Ornstein-Uhlenbeck process under P starting at zero and w € Q' , we conclude

that « = 0 and henceforth x; = X;(w). Analogously, we obtain for any other solution z’ that

zy = Xi(w) = 2 so that all solutions of (IE), coincide on €, and are therefore unique.
0
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Chapter 2: Gronwall Inequalities

2 Gronwall Inequalities

Recall from the last chapter (see Proposition [1.2.1)) that our main aim is to prove that for
almost all Ornstein—Uhlenbeck paths Z4(w) every function u satisfying

t

u(t) = [ (5,22 + ) ~ 15, Z2w) ds
0
is the trivial function u = 0. If we discretize the problem we expect that

(k+1)2—"

u((k+1)27") —u(k2™) =~ / f(s, Zf(w) +u(k27")) — f(s, Zf(w)) ds
k2"

for all k € {0, ...,2" — 1} and sufficiently large n € N. So that, if we assume f to be Lipschitz
continuous in the spatial variable, we obviously obtain

lu((k+1)27") —w(k27™) |y < Lip(f)27"|u(k27")| 5. (2.1)
We therefore obtain the growth condition

u((k +1)27")|u < (1+ Lip(f)27")Ju(k27")|u

Using a standard linear discrete Gronwall Inequality we obtain

u((k +1)27")[g < [u(0)[m exp(Lip(f)) = 0.

We therefore deduce that « must be the zero function. In the non-Lipschitz case we can not
hope to prove an estimate like (2.1), however, we can prove an estimate along the lines of

u((k +1)27") g < (14 C277)[u(k27")|u log(1/|u(k27") 1), (2.2)

where we, of course, have to impose the somewhat technical condition |u(k27")|g # 0. In
this chapter we develop the necessary tools to establish that « is trivial from an inequality
similar to estimate (2.2).

2.1 Linear Gronwall Inequalities

Lemma 2.1.1 (Gronwall)

Let o > 0, r € N and for every ¢ € {0,...,7 — 1} we have 5, > 0 and z, > 0 satisfying

Ty < (1+a)rg1 + By
We then have

< (14 a)? <x0+25q>
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for every ¢ € {1,...,7}.

Proof

The assertion is trivial for ¢ = 1. For ¢ > 1 the assertion follows via induction in the
following manner

q—1
Tor1 < 1+ )z, + 0, < (14 a)(1+ a)? <x0 + Zﬂq/) + 4

q'=0
q—1 q
= (14 )’ (ZL‘O + Zﬁq/) + B, < (1+a)it! (xo + Z Bq/> .
q/=1 q/:0
O
Corollary 2.1.2 (Gronwall)
If, additionally to the above situation of Lemma , we have a < % We obtain
r—1
Te<e <x0+25q/> .
q'=0
for every q € {1,...,r}, where e := exp(1).
Proof
Using the Lemma and the assumption a < % we obtain
q—1 1 r r—1
2, < (1+a) <x0+25q,) < (1+;> <x0+25q,> .
q= q'=0
Since
1 " T o0
(1 + —) Xe
r
in an increasing way we have the following estimate for z,
r—1
re<e <x0+2ﬂq/> .
q'=0
O

- 98 -



Chapter 2: Gronwall Inequalities

2.2 Log-Linear Gronwall Inequalities

Lemma 2.2.1 (log-Gronwall Inequality cf. [Wrel7, Lemma 6.1])

Let K > 0, m € N “sufficiently big” i.e. K < In(2)2™ and 0 < Sy, ..., fom < 1 and assume
that

ABj < K27 Bjlogy(1/8;), vj € {0,..,2™ — 1}
holds, where AB; := 8,11 — ;. Then, we have

B; < exp (logQ(ﬁg)e_QK_l) , vy €0,...,2"}.

Proof
For every j € {0,...,2™} we define

75 = logy(1/5;).

By assumption we have

Yj+1 = —logy(Bj41) > —logy(B; + K27 B;7;)

-m 1 —-m
= —logy(Bj) —logy(1 + K27™y;) = 7 — mln(l + K27™;).

Using the inequality In(1 + x) < x the above, and hence 7,1, is larger than

1 K 2—m
i In2 '

By induction on j € {0,...,2™} we obtain

K J
C > 1——2""] .
fYJ_fYO( 2 >

Since, by assumption, m is “sufficiently big” the term inside the brackets is in the interval
0,1] so that 7; is bounded from below by

K "
7o <1 - ﬁQm) > fYO@*K/ln@)*l > ’)/0672[(71.
n

Plugging in the definition of 7; implies that

10g2(1/5j) > 10952(1/50)6_2}(_1-

Isolating 3; yields

B < exp (logz(ﬁo)e_QK_l) .
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Corollary 2.2.2

Let f: [0,1] — H be a continuous function with f(0) = 0. If there exist constants mo € N
and K > 0 so that for all m > myg there exist 0 < a,,, < o), < 1 with lim o], = 0 satisfying

m—00

In o, In2

2 ©.2.2.1)

/

for all m > mg and such that for all 3, € [, o,

| we have

fG27)Ne < B = [f(G+D27")|a < Bm(l + K27 logy(1/6m))
for all j € {0,...,2™ — 1} then f =0.

Proof

Let f, oy, and o, be as in the assertion. For sufficiently large m € N (i.e. K <1In(2)2™ and
m > mg) we set

61(73) = Oy

and define

B = B (1 + K2 logy(1/89)
for j € {0,...,2™ — 1}. By the very definition we have

Bt = B = K27 B0 logy(1/8,7)
for every j € {0,...,2™ — 1}. Hence, Lemma is applicable which implies that

BY) < exp (logz(ﬁfg))e_%_l) = exp (logQ(am)e_zK_l)
2K -1

e F221) / /
= eXp ln(am) n 2 < exp (ln(am)) = Qo

Together with the fact that 67(73) is increasing we have

am < BY <ol Vje{o,..,2m). 2-2.2.9)

Since f(0) = 0 we have | £(0)|z < BY. Due to inequality (2.2.2.2) and the assumption for
Jj = 0 we conclude that

£ < B (1 + K27 logy(1/87)) = B,
Via an induction on j and again inequality (2.2.2.2) we obtain

1FG27™) e < BY <al,,  Vje{0,..,2m}.

By letting m — oo and using that lim o/, = 0, we deduce that f vanishes at all dyadic

m—o0

points. By continuity of f it follows f = 0.
O
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3 Approximation Lattices

In this chapter we introduce the effective dimension of a set (see Definition [3.1.2). The
effective dimension measures the size of set in a similar way than Kolmogorov’s e-entropy.
That idea is that given a set B C RN we look at the “size” of the lattices BN2~™Z! for every
m € N. The sets BN2"-™Z" are the so-called approximating lattices of B. For every m € N
we obtain a number describing the “size” of B N2 -™Z". Encapsulating these number in a

sequence yields the effective dimension of the set B. This sequence generalizes the typical
notion of the dimension (see Definition [3.1.5]).

In the second section of this chapter we look at a specific set @” C RY, which is used in the
proof of the main result. Here in this chapter, we estimate the effective dimension of the set

Q.

3.1 The effective Dimension of a Cuboid

Definition 3.1.1 (Cuboid)
Let B C RY if there are sequences (ay)nen, (bn)nen With a, < 0 < b, for all n € N such that

B = [ [lan, bn]

neN

we say that B is a cuboid. If a,, < b,, for only finitely many n € N we say that the cuboid B
has finite dimension. Otherwise we call B an infinite-dimensional cuboid.

Definition 3.1.2 (Effective dimension)

Let B C RY be a cuboid. For points € B we write (z,,)nen for the components of 2. For
every m € N we set

dpn(B):= sup inf{n |z, =0V¥n">n} €N:=NU{oo}.

reBN2—m7ZN

Le. given any point (z,,)ney in the set BN27-™ZN  all components x,, are zero for n > d,,(B)
and d,,,(B) is the smallest integer with this property.

We define the effective dimension of a set B C RN by
ed: {B C RY|B is a cuboid} — N

B+ ed(B) := (dn(B))men-

Furthermore, B is called effectively finite-dimensional if

ed(B),, < o, vm € N.
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Definition 3.1.3 (Effectively equivalent)

Let |-|; and |- |2 be two norm on a cuboid B. |-|; and |- |2 are called effectively equivalent
if for every m € N they are equivalent on the restricted domain B N2 ™ZN. T.e. for every
m € N there exist constants ¢,,, C,, € R such that

|zl < xle < Oz, Vo e BN2 "ZN,

Example 3.1.4 (Hilbert cube)
Let

be the Hilbert cube. We have ed(H),, < 2™, because let m € Nand z = (x,,)pey € HN27™ZN
then for every n > 2™ we can write z,, = k27, where k is an integer, but on the other hand
we have x,, < 1/n. We therefore conclude that k£ < 2™/n < 1 and hence k = 0 which shows
that the sequence (z,)nen is trivial after the 2™-th element.

Proposition 3.1.5

Let B C RY be a cuboid. The following properties holds
(i) B is finite-dimensional iff limed(B) < co.
(ii) B is infinite-dimensional iff limed(B) = oc.

Note that B is finite-dimensional iff there exists a d € N such that there is a bijection B = R?
and B is infinite-dimensional iff there is no such bijection for any d € N.

Proof

(i) Let B € R? C RN be a cuboid. Then for every m € N we obviously have ed(B),, < d
and hence
limed(B) = lim ed(R%) < d.

m—r0o0

On the other hand, if d := limed(B) < oo, then by using that B is a cuboid of the form

B = [ [lan, bn]

neN

the following property holds

Vn >d: Vo € U 277 N [an, by) = {0},

meN

We therefore conclude that for every n > d we have a, = b, = 0. Note that d = limed(B)
is not the dimension of the space B, but merely an upper bound for the dimension of B.

Part (ii) follows by logical contraposition of (i).

-32-



Chapter 3: Approximation Lattices

Proposition 3.1.6 (Cf. [Wrel7, Proposition 2.3])

Let B C RN be an effectively finite-dimensional cuboid then the norm | - |5 and the maximum
norm |- |, are effectively equivalent. More precisely, we have

1zls < Ved(B)m|t|low, meN, z€ BN27"ZN

and
|Z]0o < |22, meN, r € BNn2 7",

Proof
Let m € N. For every z € BN 2 "ZY we have

ed(B)m

oo
jzf5 = Z |z |* = Z |20 < ed(B)mlzl%,
n=1

n=1

and

)
2% <D lzal® = [alo.
n=1

3.2 The effective Dimension of the Set ()7

Definition 3.2.1 (The set Q")

For any v > 0 and ¢, > 0 we define

Q" = {z e R": [z,| <exp (=), = (2n)nen}-

Additionally, for r € N we set

Q) ={reQ: |r|] <27},

so that Q) = Q7. Note that for m € N the lattice Q* N27™Z" is the set of all points z € @7,
where the components x,, of z can be written as

T, = k27"

with certain k, € Z for every n € N.

Lemma 3.2.2 (Cf. [Wrel7, Lemma 2.4])

For r,m € N we have

ed(Q))m, < c;l/v(ln(m + 1),

Note that this implies that )] is effectively finite-dimensional for every r € N.
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Proof

Let z € Q7 N27™ZN. Observe that every component x,, is of the form x,, = k,27™ with
ke € {—2777, .. 2"}
Set

dy = c;l/v(ln(m + 1)
We are going to show that k,, = 0 holds for every n > d,,.

[a] = (a2 < exp (=€) = k] < 27 exp (e,

which implies that
‘kn| < 2m+1 exp (_ecwrﬂ) < eln(2)(m+1) exp (_ exp (C'y(dm)’y)) — 61n(2)('m—O—l)—exp(c,y(dm)'Y)

— 6111(2)(m—‘,—l)—(m—‘,—l) _ e(ln(2)—1)(m+1) < 6111(2)—1 < 1.

In conclusion, |k,| = 0 for all n > d,,, and hence we have

ed(Qum < d < ¢ (In(m + 1)1

Theorem 3.2.3 (Cf. [Wrel7, Theorem 2.5])

Let » € N and m € N. The number of points in the m-lattice of ()7 can be estimated as
follows

#(Q) N 2-m7N) < (2-2m7" 1)ed(Q1)m_

Proof

Let m € Nand z € Q7 N2 ™Z" and note that as in the last proof every component x,, is of
the form z,, = k,27™ with
kn € {—277T 2" T)

k., can take at most 2-2™~" 4 1 different values in the dimensions 1 < n < ed(Q)),, so that
the total number of points x € Q7 N2 ™Z" can be estimated by

(2 . 2m—7“ + 1)ed(Ql)m.
Note that k, = 0 for n > ed(Q7),.
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Proposition 3.2.4

Let @ C RN be a cuboid, Cg € R be a constant and v > 0 such that

ed(Q)m < Co(In(m + 1))1/7.

holds for all m € N then there exists a constant ¢, (dependent on Cg and ) such that

v<xm)m€N € Q: |xm’ < exp (_ecﬂ,m“f) .

Proof

Let @ C RY and Cp € R as above. Since @ is a cuboid there exist two sequences (a,)nen
and (b, )nen such that

B = H[an,bn].

neN

Let m’ € N be arbitrary and let € Q N 27" ZN then by the definition of the effective
dimension we have

x, =0, Vn > ed(Q)ny.

and hence we obtain

la,| < 27™ and |b,| < 27™

for all n > ed(Q),,. Setting

n = [Co(In(m’ +1))7] > ed(Q),w

yields

AUCqupm+1)| <27

Since m’ € N was chosen arbitrary this expression holds for any m’ € N, so that by setting
Y
m
m' = |ex — -1
p Co

|a'm| < 2—Lexp<<m/CQ)’y)—1J < 2—exp((m/CQ)’y>+2

for some m € N we obtain

and hence we can find a 0 < ¢, < Cc? such that

|am| < exp (—exp (¢,m”))

and analogously we obtain the same estimate where a,, is replaced with b,,, which completes
the proof.
O
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Corollary 3.2.5 (Cf. [Wrel?7, Corollary 2.6])

Let B be a cuboid such that BN 2 ™Z" is a finite set for every m € N. Set for every r € N

B, :={zx € B: |r|w <27"}.

Then, for every m € N there exists a map

™. B, — B, n2"mzZ~

with the property that

2 -7 (@) <27

and
2= Ylo < |z — 7 (@) = y=70(2)

holds for all z € B,, y € B, N2""ZY, m € N and r € Z.

Proof

Let » € N and m € N. Since B, N 277N is a finite set we can write

BT N 2—mzN = {yl, ...,yN},

where N € N is some number depending on both » and m. For every x € B, we set

1<j<N

I(x) = {2 €{l,..N}: |z — yilw = min |z — yjloo}.

Furthermore, we define

Wﬁ;) (I) ‘= YminZ(z)-

Observe that the map 7 fulfills all the required properties.

Definition 3.2.6 (Dyadic point)
We set

D := {(xn)neN - RN‘ Vn € N, Hmn c N7 Ty € 2_ngN} ‘
We say that x € RY is a dyadic point if z € D.
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Chapter 4: Probabilistic Regularization by Noise

4 Probabilistic Regularization by Noise

Let b: [0,1] x H — H be a bounded and Borel measurable function, which is smooth in
the spatial variable and Z4 an Hilbert-space valued Ornstein-Uhlenbeck process on a given
filtered stochastic basis. In this chapter we show that the random variable

1
Y = /b’(s,Zf) ds
0 H

is exponentially square-integrable in the sense that there exists an a > 0 such that

E [aY?] < oco. (4.1)
Here, b’ denotes the derivative of b w.r.t. the spatial variable.

We split the proof of the above result into two sections. In the first section we consider the
case of a one-dimensional Ornstein—Uhlenbeck process. In the second section we reduce the
infinite-dimensional case to the one-dimensional case.

In the first section, where Z4 is just a simple one-dimensional Ornstein-Uhlenbeck process
Z*, i.e. a solution to

dZ) = —A\Z)dt + dB,
Z) =o.

with A > 0 and (B}):c[0,00] is @ one-dimensional Brownian motion. We will notice that the o
from inequality (4.1) depends on A (Proposition [4.1.3]). Since we want to extend this to the
infinite-dimensional setting in the second section, we have to control the mapping A\ — «.
We prove that for A approaching infinity we have
ae 2

This enables us to show the above mentioned result in the Hilbert space setting with «
replaced by

inf ay, e\t

neN
where )\, > 0 are the eigenvalues of the operator A, the drift term of the Hilbert space-valued
Ornstein-Uhlenbeck process Z4.

4.1 One-dimensional Ornstein—Uhlenbeck Processes

The following lemma is needed in the one, as well as, the infinite-dimensional case. To
simplify the exposition, we will prove it here solely for the infinite-dimensional case which
directly implies the one-dimensional case.
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Lemma 4.1.1

Let (Z4(),cy be the components of an ¢? 2 H-valued Ornstein-Uhlenbeck process with
drift term A driven by the cylindrical Wiener process (B™),cn. Then, there exists a cylin-
drical Wiener process (B™),cy such that

ZiA’(n) _ (2)\n)—1/2 —An tB(;L,zn, )
holds for every n € N and ¢ > 0, where (\,),en are the eigenvalues of the operator A.

Proof
Let

70 = (7MY, ene P2 H

be the components of (Z;l)te[(),oo[ and (A, )nen be the eigenvalues of A w.r.t. the basis (e,)nen-
Note that every component Z4(™ is a one-dimensional Ornstein—Uhlenbeck process with
drift term A, > 0 driven by the one-dimensional Wiener process B™. Define B™ by

M (¢

/\/ (M) (s) dB" vt € [0,1],

A () = (2M\,) " In(t + 1) and (1) = (2)\,)eP.

where

Observe that

Y 1
OP0O) = T eem)

and, hence, by [Qks10, Theorem 8.5.7] (Bt(n))te[o,oo[ is a Brownian motion for every n € N.
The conclusion now follows from this simple calculation

t t

(20) 2BR,., = mJ“/mJ%ww@iﬁ“MW:ﬁww#

Proposition 4.1.2

Let b: [0,1] x H — H be a Borel measurable function with components b = b(™ w.r.t. our
fixed basis (e,)nen such that

1/2
Iblloc.a == sup (ZAneWb(”)(t,:c)P) < o0
neN

then

1/2
||b||00:: sup (Zw ) < 00,

€[0,1],zeH neN

where (A, )nen are the eigenvalues of the operator A as mentioned in the introduction.
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Proof

Let b be as in the assumption. Set

M :={neN|\,e* <1}

Since \,, — oo for n approaching infinity we obviously have #(M) < oo so that

Ibl|% = sup Z|b

tel0,1],z€H
sup E b sup E )\ e b (¢, ).
te[O 1l,xeH neM te[o,l],er eN\M 1
<oo

Using the assumption on b completes the proof.

Proposition 4.1.3 (Cf. [Wrel6l, Proposition 2.1])

There exists and absolute constant C' € R and a non-increasing map

a: 10, 00 —]0, 00|
A — Q)

with

2 €
Al>—C waso.
ane = 1152’ >0

such that for all one-dimensional Ornstein—Uhlenbeck processes (Z;)e[,00 With drift term
A >0, ie.

dZ} = —\Z}t + dB;,
Zy =0.
where (B):c(o,00[ i a one-dimensional Brownian motion and for all Borel measurable func-

tions b: [0, 1] x R — H, which are in the second component twice continuously differentiable
with

[blloc == sup [b(t, )]s < oo.
te[0,1],zeR
The following inequality
1 2
E exp ”;rgo /b'(t, Zt)‘) dt <(C<3
H

holds, where b’ denotes the first derivative of b w.r.t. the second variable z.
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Proof

Sketch of the proof:

Note that the bracket process (Z*) of an Ornstein—Uhlenbeck process is just (Z*), = t
Hence, we have

1 1

/b’(t, ZY) dt = /b/(t, ZN) d(Z),.

The integral on the right-hand side looks like an Itd correction term and can therefore be
rewritten as the following difference of a backwards and forward It6 integral.

1 1
/b(s, ZN d*Z) — /b(s,Zﬁ) dz2,
0 0

where d* denotes the backwards Ito integral. Let us denote with  the time-reversal operator
of a stochastic process. The above expression can then be expressed as two forward Ito
integrals as follows

1 1
/191—52A dZA /bszA ) dZ2.
0 0

<;
Since Z is an Ito6 diffusion process with a “nice” drift the time-reversed process Z can be
explicitly calculated to be of the form

by g [ e 2\ ~
N =7 +/sz (A — m) ds + W,
0
where T is a new Brownian motion. We can therefore decompose Z* as well as the semi-
martingale E A into a martingale part and a part of bounded variation. Plugging this decom-

position into

1 1 - - 1 -
/b’(t, ZN dt = —/b(l —5,2%) dZ* — /b(s,z*s) dz2
0 0 0

we are left with estimating various integrals. For the stochastic integrals we use the Burkholder—
Davis-Gundy Inequality and for the deterministic integrals we develop a bound by quite
explicit calculations. In the end our bounds are strong enough to deduce that the random
variable

1

OzA/b/tZ)‘

0
is exponentially square-integrable as long as a, > 0 is small enough.
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Beginning of the proof:

Let (Z} )te[o,00] De a one-dimensional Ornstein—-Uhlenbeck process, i.e. a strong solution to

Az} = —\Z)dt + dB,,
where A > 0, Z3 = 0 and let b: [0,1] x R — H be as in the assertion. Define

Y, :=0b(s,2)), Vs€l0,1]

and denote by (Y"),en the components of Y. Then by [BJ97, Remark 2.5] we have for every
neN

1 1
(Y™ ZM, = /b;(s,zA /b s, 72) d
0 0

where b, is the n-th component of b and the quadratic covariation (Y™, Z*); is the uniform
in probability limit of

n n A A
> v [zn -2
tistiy1€Dm
0<t; <t
where D,, is a sequence of partitions of [0,¢] with a mesh converging to 0 as m approaches
infinity.
Moreover, applying [BJ97, Corollary 2.3] results in

1 1 1

/b;(s,zg) ds = (Y™, 2", = /y;” 4z — /Y” dz?2, (4.1.3.7)
0 0 0

where the backward integral is defined as

t 1 . -
/Y: d* 7z = —/YS" dz},  vte|o,1] (4.1.3.9)
0 1-t
and
$—
X=X, Vs € [0, 1]

denotes the time-reversal of a generic stochastic process X. Since identity (4.1.3.1)) holds for
all components n € N we also have

1 1 1

/b’(s,zg) ds = (Y, Z"), = /Y d*z> — /Y dz2, (4.1.3.3)
0 0 0
where (Y, Z) is defined as ((Y™, Z*))en.

In addition to this, Z* is an It6 diffusion process with generator
1 1
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Le. a(t,r) = —Az and o(t,x) = 1. The probability density of Z} w.r.t. Lebesgue measure is

Pn) = T e

Observe that a and o fulfill the condltlons of [MNS89, Theorem 2.3, hence the drift term

@ and diffusion term o of the generator Lt of the time-reversed process Z 2 are given by

a(t2) = —a(l —t,2) + ——V, (o(1 — t,2)p1_4(z)) = <)\ - %) v

p1i(z)
and

o(t,x)=0o(l—tz)=1.
Therefore (see [BROT, Remark 2.4]), we obtain

ZA ZA+W+ 7 P S (4.1.3.4)
t s 1 — e2X\(s-1) ’

-
where W, is a new Brownian motion defined by this equation. Set

Q?::J(VT/S—VT/t7t§s§1>

and let G; be the completion of G°. Define
gt =0 <g~1_t U O‘(Z?))

-
then W, is a G;-Brownian motion (see [Par86]). In conclusion we have by combining equation

(@.1.3.3) with (£.1.3.2)
1 1

1
—/b’(s,Z’\ /b dZA /b s,72) dZ2.
0

0 0
By plugging in (4.1.3.4)) this is equal to

1 1

A 1T / A A 2 A g7
/b(l—s, Zs) dWs+/b(1—S, 5) s ()\—m) dS+/b(S,ZS) dZS
0 0 0

N J/
-~ -~ -~

=1 =: 1> =: 13

J/

:Il—i‘lg—i‘fg = I
Observe that by (4.1.3.4) and the Yamada-Watanabe Theorem (see [RSZ08 Theorem 2.1])

Zt’\ is a strong solution of an SDE driven by the noise Wt, hence, Zt is G,-measurable so
that the stochastic integral I; makes sense. In conclusion we get

. 2
Eexp | ay /b/(t, ZM) dt = Eexp(ay|I|3) = Eexp(ay|l; + I + L3]%), (4.1.3.5)

0 H
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for ay to be defined later. We will estimate the terms Iy, I5 and I3 separately.
Estimate for I;:

Define

t . -
M, = /b(l — s, 7N aw,,  Wteo,1).
0

Observe that (M;)iwcjo1] 18 a (Gi)icpj-martingale with My, = 0. Also note the following
estimate for the quadratic variation of M

0 <|[(M)ln < /HbH2 ds < ||b]|2,, vt € [0,1].

In the next step we use the Burkholder-Davis-Gundy Inequality for time-continuous mar-
tingales with the optimal constant. In the celebrated paper [Dav76, Section 3| it is shown
that the optimal constant in our case is the largest positive root of the Hermite polynomial
of order 2k. We refer to the appendix of [Osel2] for a discussion of the asymptotic of the
largest positive root. See also [Khol4, Appendix BJ|, where a self-contained proof of the
Burkholder-Davis-Gundy Inequality with asymptotically optimal constant can be found for
the one-dimensional case. A proof for H-valued martingales can be obtained by a slight
modification of [Khol4, Theorem B.1| to R%valued martingales and by projecting H onto
R?. The optimal constants in different cases is discussed in the introduction of [Wan91].

Also note that the H-valued case can simply reduced to the two-dimensional case by en-
largement of filtrations. Given an H-valued martingale M one can construct a R2-valued
martingale N such that |M;|y = |V;| and (M), = (N), (see [KS91]).

We have

E|L[5 = E|M|7 < 2% (2k)* E[(M): [ < 2% &2 [Ib]35 < 2°°k![[D]1%.
—_——— ~~

2k
SE S2

Choosing oy = a we obtain

> AFIT, |2k o0

o 2 o |3 E’]l .

Eexp (— 1,12 ) = E _ kg
o (HbH%o’ 1|H) kz_o b]12¢ k! Z RS E : i’

Estimate for I5:

We have for any ag)‘) > (0 to be specified later

oY oM | o < 5
0 H
2
(N 2A(t—1)
oy )\ A 1 + e
0 <||b||c>o
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Z)\ 1 4 2M(t-1) dt
_ Eexp /H Hoo ’ | A (62)\(1—t) . 1) +e

HbH2 Ve -0 _ | 1— e /om0 — 1

:e—2>\(t—l)+1
2

dt
e2A(1-t) _ 1

1z
N t 2X\(1-t)
<Eexp | ay / S 1)\(6 +1)
0

Setting
dt arctan (\/ e — 1)
D)\ = = < OO’
Ve d-t) — 1 A
0
the above term can be written as
1 < 2
7 dt
Eexp aé)‘) 121 A (e”(l_t) + 1) D,

D>\ e2A(1-t) _ 1

N e2A(1-t) 1
0

. , . .. dt
Applying Jensen’s Inequality w.r.t. the probability measure DT W and the convex

function

T — exp (ay) |x|2>

results in the above being bounded by the following

— - 2

A
\) |Zt | 2X(1-t)
OXP | A o2M(1-t) _ 1/\ (e 1) Dy

dt

D}\q /e2A(1-t) _ ]

dt
Dyv/e221-1) — 1

E

ex _a(’\)ﬂ)ﬁ (62>\(1—t) + 1)2 D2
P | Q2 e22(1-t) _ 1 A

=E

/
/

Setting a( ) = /\(e++1)D§ and applying Fubini’s Theorem the above term can be estimated
by

1

o (LA 1112 2 dt T3
p 4 e2A(1-t) _ 1 D/\,/ez\(l—t) 1 =

0
Using Lemma we have

Zi\ = (2A)7 1/267)\(17t)§e2>\(17t)_1,

where B is another Brownian motion. Plugging this into (4.1.3.6)) we get the following bound

for (4.1.3.6])
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<2

1 N —
F ex 1(62)\(1_” + 1)6_2)\(1_t) Bizxu—t),l dt
Pl g e2X (1) _ | Dyve 10 _ |

0

1
1 Boaxa-1_4 dt
< /EGXP ( 162)‘(14) -1 Dy /62)‘(1”‘/) 1
0 N J/
=2

dt
\/_/DA | V2 =:Cy
0

s

~
=1

Estimate for I5:

Recall that
1 2%k

E|I5|5% = /b(s,zg) dz}| . (4.1.3.7)

Plugging in

into Equation (4.1.3.7)) results in
1 2%k
E| 5|7 < 2°*R /b(s,ZQ)AZQ ds +22’“IE / 5,70 d
0 0

For the first term on the right-hand side we use Jensen s Inequality and for the second term
a similar calculation as for the estimate of I; yields that the above is smaller than

Using Fubini’s Theorem we estimate this by

1

22kHngI§)\2k/E‘Z)\’2k ds +22k25kk,' < 22k)\2l<: Hl[aX]E’Z)“Qk +22k25kl€'”bH2k
s€[0,1
0

Again, with the help of Lemma [4.1.1] we have

7N = (2/\)_1/26_/\8§e2m,1,

where B is another Brownian motion. Estimating the 2k-moments yields
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E|Z}|* = (2)\) " ***E | B 2x 1\

1
= (2\) K g A2he }62>\s _ 1|k ok —1/2 (k + 5)

<1

1
< A\ kpmter (k + 5) <XFEL Vs e [0,1].

Therefore, we obtain

E|I5|2% < 228 \2F||p|| 2 max B|Z2 % + 22R25%|1b|* k!
0,1
< 2PPNFNTE|B||2ERL + 225257 |[] 25k = 22FNF||] 28 k! 4 2772%F b1 2E .

Choosing " = 26 min (A\~?,272) we obtain

k
( L2 oo ‘ag”( E| ;|2

) o0 oo
Qg
E I E = —_— =4 =: (.
o (HbH“‘ | 3'H> Z rbu%k' Zkzo BB Z ’

Final estimate:

We are now ready to plug in all previous estimates to complete the proof. Setting

1
ay = 9 mln(ozl,ozgk),ozg ))

we conclude

(65
E exp (HbHQ |I\%,> = Eexp (HbH2 |\ + I +13|H)

SEGX ( |Il| |IQ| —|—3 ’[3’ )
||b||2 " HbH2 . ||b||2 "

:Ee"p( Tl '”H) eXp< Tl 'IZ’H) eXp( Tl 'Is'H)

We apply the Young Inequality to split the three terms

3 3 3
Lo (glnl) e (gclBl) e (il
3 * 3 * 3
and using the estimates for I;, Is and I3 results in the following bound

(A) (N
« 2 Qg 2
P (”g‘TlgO!h!?{) EeXp (ubzao ‘I2|H) EeXp <b||%,o |[3|H>
3 * 3 - 3

(01+02+03) —— < 3.

OJI}—t
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We still need to show that the map « fulfills the claimed properties.
Simplification of a:

Recall that

ay = 1min(oz ald oz(/\)) = 1min ! ! !
A9 BRI 9 256" 4X(e2* + 1)D2’ 64

and
arctan (\/ e — 1)

D, = N

First, we want to prove that «, is the same as

1 . /1 1
—min { —— .
9 256" A\(e? + 1) D2

Le. 048) is always larger than o; or ag)‘). Note that for \ € ]0, 4] aé)‘) is obviously larger than

a1, hence it is enough to show that 04:9) > 049) for all A > 4. We have
9 10
2\ +2)\—3—\/16)\+220, VA e R,
s

which implies
1
3—0\/16)\ <2420+ 222 < Ve + 1, VA > 4.
T

Reordering and using that arctan is an increasing function leads us to

3 2
V16X < \/6”‘4—1%: v e2* 4+ 1 arctan <1/1+%>

< Ve?* + 1arctan ( e? — 1) < Ve?* + 1arctan < e — 1)

for all A > 4. Therefore we obtain
16)2 < (62’\ + 1) arctan® ( e — 1) ,
which finally implies

v _ L A )

O{3 - = - a2 .
64N ™ 4 (e2* + 1) arctan? (\/ e — 1)

In conclusion we proved that

1 (1 1
R (% AN(e + 1)D§) |
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Asymptotic behavior of ay:

Let us now analyze ag)‘). Set

2) 2
fO) = afVea Tt = = 2 = g Y '
AN(ePr +1)D5 4(e2 + 1) arctan?(ve2* — 1)

We obviously have
2

¢ oy
er +1
and -
arctan ( e — 1) Az 7
Therefore,

2
€ A—00 1

H —_
4(e? + 1) arctan?(v/e2* — 1) us
holds. We want to show that f is monotonically decreasing and hence the above limit is a
lower bound for f. To this end we calculate the first derivative of f

e2A (62)‘ + 1 — 2arctan <\/€2)‘ — 1> Ve — 1)

4 arctan® <\/62>\ — 1) Ve — 1 (e — 1)2

fA) =

)=~

since the denominator is clearly positive, we have to show that

e 41— 2arctan (\/62’\ - 1) Ve —1>0,  YA>0.

Substituting z := ve?* — 1 leads to
2% + 2 > 2z arctan(x), Vo > 0. (4.1.3.8)

We prove this inequality in two steps. First note that

10
x2—T27T$+2>0, )

holds, so that for all z with 0 <z <2+ V/3 we have the estimate

3
42> 2$1—72T — 2z arctan(2 4 V/3) > 2z arctan(x)

and, on the other hand, for > 2 + /3 we obtain
242> 24+V3)r+2> 24+ V3)z>mr = ng > 2x arctan(zx).
In conclusion holds, so that f’ < 0 and therefore
F) > =, WA>0.

All together this yields

1 1 L !
a,\e”‘)\_l = 9 min (—62/\)\_1>@9)62/\>‘_1> Z g min (%’ F) B 11652‘
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o, is constant on [0, 1]:

Claim:

Let A € [0,1] and set

g has the first derivative
1—(1—4N)et
g/(A) = AQ N
We want to show that 1 — (1 — 4\)e** is non-negative and thus prove that g is an non-
decreasing function. To this end observe that

(1 —4X)e™

is a decreasing function on [0, co[, since the derivative —16\e?* is clearly non-positive, so
that
(1—4)e* <1

holds for all A > 0. This leads to
1—(1—4)Ne* >0, YA > 0.
This proves that g is non-decreasing. Using this we can easily conclude

max g(\) < g(1) = (e +1)(e* — 1) < 64
A€(0,1]

and hence

(e +1)(e** = 1) - 256

A) = — VA e |0,1].
ey ) = vaeh
Taking the reciprocal on both sides yields
N — A > L et 11.3.9
%2 4(e?r +1)(e?r — 1) — 256’ € 10,1: ({139
Note that
arctan(z) < x, Ve e Ry.

This can be proved by calculating the Taylor-polynomial up to the first order and dropping
the remainder term which is always negative on R,. Using this on our above estimate
(4.1.3.9)) we obtain

A 1
> e
4(e?* + 1) arctan? (\/ e — 1) 256

VA € [0,1].

This implies that «, is constant on the interval [0, 1].
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«, is non-increasing:

By the previous part we can assume that A > 1. We have to show that ag)‘) is non-increasing

on the interval [1, 00[. We do this by showing that the derivative of a5

=:n1
=:p1 A

,2/)\\— arctan (\/62’\ - 1) Ver — 1

( (A))/
ay’ ) =—
4 arctan® <\/@2x\ — 1) VeP —1(e2 + 1)?

—. =In = Pps
=:p2 A2 /\p&

~

—~ = 4 ~N
2Xe?* — arctan (\/62’\ — 1) Ve — 1e* 4 2\ arctan (\/62’\ — 1) Ve — 1e?

4 arctan® <\/62,\ — 1) Ve —1(e2 4 1)2

is non-positive. So, to simplify notation we have to show that

P — N1+ ps—no+ p3 >0, VA>1 (4.1.3.10)
holds. Note that for A > 1

P3 — ny — Ny > arctan (\/62)‘ — 1) Ve — 1e2 (22 —2) >0,

so that (4.1.3.10)) holds, which finishes the proof that agk) is non-increasing on [1, 00[. To-
gether with the previous established result that « is constant on [0, 1] this completes the
proof that a, is non-increasing on R,.

O

4.2 Hilbert space-valued Ornstein—Uhlenbeck Processes

In this section we consider an H-valued Ornstein—Uhlenbeck process Z4 with drift term A
and prove in Theorem [£.2.2] a similar result as Proposition [£.1.3]of the previous section. The
key ingredient is the following lemma, which is used to reduce the Hilbert space case to the
one-dimensional case.

Lemma 4.2.1 (Cf. [Wrel6, Lemma 2.2])

Let (Z{*)e[0,00) be an H-valued Ornstein—Uhlenbeck process with drift term 4, i.e. a solution
to

dZA = —AZAdt + dB,,
78 =0.

Let (Ay)nen be the eigenvalues of A. Let C' € R and the map « be as in Proposition
Then for all Borel measurable functions b: [0,1] x H — H, which are in the second
component twice continuously differentiable with

16|oc :== sup  |b(t,z)|g €]0,00[
tel0,1],xz€R
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we have
2
E exp IIZTIQ /&mb(t, Zydt| | <c<3 vieN,

H

where 0,0 denotes the derivative of b w.r.t. the i-th component of the second parameter x.

Proof

Let us define the mapping

wa: C([0,00[, H) — C([0, 00[, H)

I = e (1 (@A) O = 1)), )

@4 is bijective and we have used that C([0,00[, RY) = C([0, 0o[, R)Y as topological spaces.
By definition of the product topology @4 is continuous if and only if 7, o w4 is continuous
for every n € N.

C([0, o0[, H) L C([0, oo[, H)

Tn

C([0, 00, R)

Here, 7, denotes the projection to the n-th component. The above mapping 4 is continuous
and, therefore, measurable w.r.t. the Borel sigma-algebra. Using this transformation, the
Ornstein—Uhlenbeck measure P4, as defined in the introduction, can be written as

PA[F] = ZA(P)[F] = (pa o B)(P)[F] = oaW)[F],  VF € B(C([0,00[, H)),

because of )
ZtA = PAa0 Bt'

Hence, we have

Pa=pa(W) = pa ((X) W<">> =X (W), @2.1.1)

neN neN

where W is the projection of W to the n-th coordinate and the last equality follows from

/dw <®W ">)

neN

1T /dW(" 1T /dwm—(@@ W(”>[]

neN neN (n) neN
Tn %OA (pn )~ (mn(F))

Starting from the left-hand side of the assertion we have

1 2
E exp ”Z‘ﬁg / 9,.b(t, Z) dt
) 0 "
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Using Equation (4.2.1.1) we can write this as
2

/ exp H(zIEO 0/ 00 (1. (25 0 F) (D)) dt] | A@WO(1,).

C([0,00[R)N neN

H

where (f,)nen are the components of f. Using Fubini’s Theorem we can perform the i-th
integral first and obtain

1 2
Q). n ; .
/ e | 1 / 0ub (.65 0 fu)()uer) dt] | AWO(£)A@ W (£,).
C([0,00[ RN\ i} C([0,00 R) <10 " ner

Since % o f; is under W distributed as Z*® under P. By Proposition the inner
integral is smaller than C, so that the entire expression is smaller than

CAQW™ (1) =C.

neN
C([0,00[ RN\ (i} o

where in the last step we used that W™ are probability measures.

Theorem 4.2.2 (Cf. [Wrel6, Theorem 2.3|)

Let ¢ € ]0,1] and (Z{*):c(0,00[ be an H-valued Ornstein-Uhlenbeck process with drift term
(A, ie.
dZA = —0AZMdt + d By,
ZEh = 0.
There exists an absolute constant C' € R (independent of A and ¢) such that for all Borel
measurable functions b: [0,1] x H — H with

tel0,1],xeH

1/2
[b]lcc,a == sup (ane””bn(t,ﬁ) < 0.
neN

The following inequality

where

Bas = A B2 i o, @ > 0
(w.l.o.g. ||b]|s,4 > 0) holds uniformly for all bounded, measurable functions h: [0,1] — H
with
1Alloo = s [2(t)] 1 €10, 00]

telo,1
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and

> ()AL < o0, Vvt € [0,1].

neN

Recall that A is defined in equation (L.1.I) and « is the map from Proposition [4.1.3|

Proof

Step 1: The case for twice continuously differentiable b.

Let Z* be an H-valued Ornstein—Uhlenbeck process, b: [0,1] x H — H a bounded, Borel
measurable function which is twice continuously differentiable in the second variable with
[6]| 0,4 < 0o (and hence ||b]|o < oo by Proposition [£.1.2), and h: [0,1] — H a bounded,
measurable function with |||/ # 0. Let a and C be as in Proposition Recall that A
is defined as

A=) N\ <o

neN

Note that by Proposition Bap > 0. By the Fundamental Theorem of Calculus we
obtain

4B

TAIZ. b(t, ZA + h(t)) — b(t, ZH) dt

Eexp

o —_

0=1

1
45,41;/ IA
_E b 204 1 on(t
P | Tl +OR(®))
0

0=0
H

2

1
/b’ t, ZH 4+ 0n(t)h(t) dodt| |,
0

H

4Bay
1A[1%

= Eexp

S — _

where O’ denotes the Fréchet derivative of b w.r.t. . Using Fubini’s Theorem we can switch
the order of integration, so that the above equals

2

1 1
Eexp | 484, / / b’(t,ZfAJrGh(t))H};l(H) dtdo
0 0

2

/ ’tZ‘AJr@h()) B rap

e
=0, b(t,Z{A+0M(t)) H

= Eexp [ 484y

—Eexp | 464, / /

\

€N

H H Z@xzb (t, ZF + Oh(t))e; dtdd

1€EN JEN "
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)\1/2Zb t, Z! 4 0h(t))e; dtdd , ([@220)

hHoo

1
=Eexp | 484y //Z A0,
0 0

€N | u

-

=eNibpg,i(t,Z{4)
where

hi(t)

i)hﬁ,i(t, l’) = 6)\i
1]

AN bt @+ 0n(t))e;

jEN

Note that [|bsg.llec < 1 because for all (t,z) € [0,1] x H we have

hi
Ibnoi(t, z)| = [hi(t)] A 2N > bi(t,x + 0h(t))e;
il =
J H
<1
1/2
< AN (Z M leT PN et @+ 6h(t))2>
JEN

1/2
< MM sup A7 V2 (Z Aje%bj(t,x+0h(t))2) < [[blloc,a-

Jen jeN
TV N >

<1

—~
<[[blloo,

Using Jensen’s Inequality and again Fubini’s Theorem the expression (4.2.2.1)) is bounded
from above by

1 1 2

/ Eexp | 48as > A ? / e 0, bpgi(t, ZH) dt| | de.
0 €N 0 "

Applying Holder Inequality we can split the sum and estimate this from above by

1 1 2
/ Eexp 4845 > A" / e 0, bpi(t, ZH4) dt| | 6
0 €N €N 0 o
=A
1 1 2
- / Eexp | 48450 ) / e N8, bpoi(t, ZM) dt| | de
0 1€N 0 H
1 1 2
— / E]Jexp [ 48400 / ey, bpg(t, ZE4) dt| | de.
0 ieN 0 I

Young’s Inequality with p; := \;A leads us to the upper bound
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1 1 2
1 §
/ EY  —exp | 484,Ap; / ey, byg(t, ZE4) dt| | de.

ien P ) .

2
/Z —Eexp | 48450 / N0, bngi(t, ZHY) dt| | de. [@.2.2.9)

i€N "

Recall that
Bap = —A 2|b)| 22 al 1nf ay, et

hence, we can estimate (4.2.2.2)) from above by

1 1 2
1 ~
/Z—Eexp ay, e /e_kiamibh,gﬁi(t, 7z dt de.
ien Pi
0 0 H
1 1 2
1 ~
- /Z —Eexp | oy, | | Ouibnoilt, ZfA) dt dé.
o ieN T "

Since ¢ € ]0,1] and « is non-increasing by Proposition the above is smaller than

1 1 2
1 ~
/ Z —E €XP | Gy, /axibhﬁJ' (t, ZfA) dt deé.
o €N 0 "

Applying Lemma for every 6 € [0,1] and ¢ € N results in the estimate

/Z Cdo=cC

1€EN
=1
Step 2: The general case: Non-smooth b.

Let b: [0,1] x H — H be a bounded, Borel measurable function with ||b||ca < oo (and
hence ||b]]oc < 0o by Proposition |4.1.2), and h: [0,1] — H a bounded, Borel measurable
function with 0 # ||h|| < oo and

D ht)PX <00 VEE 0, 1].

neN

Let B4 and C be the constants from Step 1. Set ¢ := exp th;” as well as

po == dt @ Z{A[P],
pn o= dt @ (ZI 4 h(t)[P).
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Note that the measure Z;4[P] is equivalent to the invariant measure N(0,5;A7") due to
[DZ92, Theorem 11.13| and analogously (Z{* + h(t))[P] to N(h(t),5;A™"). Furthermore,
h(t) is in the domain of A for every ¢ € [0, 1] because of

D (h(t),en)®Xs < Y 1P, < oo

neN neN

We set
g(t) := 20 Ah(t).

Observe that g(t) € H for every t € [0, 1] because of

9Ol = 42 X lha() < co.

neN
Hence, [Bog98, Corollary 2.4.3] is applicable i.e. N(0,5,A7") and (Z;* + h(t))[P] are equiv-
alent measures. By the Radon—-Nikodym Theorem there exist a density p so that
i _
dyio

Furthermore, there exists § > 0 such that

/ p duo(t,) < . E223)
A

for all measurable sets A C [0, 1] x H with po[A] < J. Set
_ ) €
3 := min (5, —) . @2.24)

By Lusin’s Theorem (see [Taoll, Theorem 1.3.28]) there exist a closed set K C [0,1] x H
with uo[K] > 1 — ¢ such that the restriction

blg: K — H, (t,x) — b(t, )

is continuous. Note that

(o + pn) K] = po[ K] 4-pun[K] <

<6<

+ /p dpo(t,z)  <e. (4.2.2.5)

Kec

DO ™

N

—_———
<5 by @2.2.4) and [{2:2.3)

Applying Dugundji’'s Extension Theorem (see [Dugb1, Theorem 4.1]) to the function b|x
guarantees that there exists a continuous function b: [0,1] x H — H with [|b]|sc < ||6]|s
and ||b]lco,a < ||b]/oo.a Which coincides with b on K. Starting from the left-hand side of the
assertion we have

1 2
Ba,
E exp Hh"ﬁg /b(t, ZH 4 (b)) — b(t, 2 dt

H

Adding and subtracting b and using that b — b = 0 on K yields that the above equals

- 58 -



Chapter 4: Probabilistic Regularization by Noise

1
Eexp ”i% / Lce(t, ZE4 -+ WD) (1, ZE4 + () — B(t, ZE4 + h(1))]
o 0 6[25,2]

Applying the fact that (a + b)? < 2a® + 20? we estimate from above by

1 2
8
E exp Hfﬁ /]1Kc(t, ZEA £ h(t) 4 Tge(t, 24 dt
* \o
1 2
20ap | [+, ua T A
+||h||2 b(t, Z;” + h(t)) — b(t, Z,7) dt
00 s "
2
) 86A,b LA LA
=Eexp ”h”2 Z —|—h< ))—i—]ch(t, Zt ) dt
= \0
1 2
2Bap -
e | / (t, ZI + h(t)) — b(t, ZH) dt
0 H
and using Young’s Inequality this is bounded by
1 2
1 16
5 Eexp ﬁ /ILKC(t, ZA+ h(t) + Lge(t, Z,4) dt
- H
A,
1 2
1 4By
+5Ee T /b(t ZE 1 h(t)) = b(t, ZH) d

Let us estimate A; first
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L 2k
.1 /16 g
= Zk_(ﬁ) E / Lie(t, Z{4 + h(t)) + Lge(t, Z{4) dt
=1 o0 0 H
<1 (1684,\" . 1 (64840)"
§1+ZE<IIhH2 ) 2 GulK] 4 ol <”Zm(nhu2 )
b= * <= by (229 N
crom(f) v

This concludes the estimate for A;. Let us now estimate As. Since b is continuous there

exists a sequence R [0,1] x H — H of functions with ||13(m)||Oo < oo and ||E(m)||OO7A < 00

which are smooth in the second variable (i.e. twice continuously differentiable) such that 5

converges to b everywhere, i.e.

2" (4, ) "2 B(L, @), Vvt € [0,1], Vo € H.
Using the above considerations A, equals
1 2

4 m .
Eexp | 204 / lim 5" (¢, ZA + h(t) — 8", 24y at| |

1P113 |/ m—ee
0

which in turn can be bounded using Fatou’s Lemma by
1 2
/5 (t, 24+ ht) — 5", 24y at| | 12.2.6)

H

L 4B
lim inf E exp
m—+00 17213

Applying Step 1 with b replaced by ™ yields that (4.2.2.6) and henceforth A, is bounded
by C', so that in conclusion we have

1 2
1 C
- H

which completes the proof.
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5 A Concentration of Measure Result

In this chapter we introduce our definition of a regularizing noise and show that an Ornstein—
Uhlenbeck process (in the same setting as in the previous chapter) is a regularizing noise
according to our definition. We call a stochastic process X : [0,1] x Q — H a regularizing
noise if it fulfills certain conditions (see Definition which are derived from the main
estimate of the previous chapter (see Theorem[4.2.2)). Furthermore, we describe a regularizing
noise with three parameters: (Q,h, «).

With Q C H we denote the subspace of H in which X behaves in a regularizing fashion. In
applications this will be a much smaller space than H itself. This also encodes how regu-
larizing X is, since usually for stochastic differential equations there is a trade-off between
the size of the non-linearity and the “regularizing power” of a noise term. In applications
the non-linearity of a stochastic differential equation will be required to take values in the
smaller space ().

h (called the index of fractionality or just index) on the other hand encodes the time-
regularization of the noise. For Brownian motion (and Ornstein—Uhlenbeck process since
Ornstein—Uhlenbeck processes are driven by a Brownian motion in additive form) this will
be % However, for fractional Brownian motion we expect h = 1 — H, where H is the
Hurst parameter of the fractional Brownian motion. Notice that the noise becomes more

regularizing the irregular (in terms of path-regularity) it is.

Lastly, a (called order) is used to capture the decay of the tail of the noise. For Brownian
motion and Ornstein—Uhlenbeck processes this will be simply be 2 since the probability
density function of the noise behaves like ~ e~#I* for || approaching infinity. In general, we
expect a = 2 for Gaussian noises.

This chapter contains two sections. In the first section we consider an abstract regularizing
noise X and prove a concentration of measure result and tail estimate for these regularizing
noises.

In the last section we use the estimate established in the previous chapter to prove that a
Hilbert space-valued Ornstein-Uhlenbeck process is indeed a regularizing noise according to
our definition in the first section. Henceforth, the concentration results of the first section
are automatically established for Ornstein—Uhlenbeck processes.

5.1 Regularizing Noises

Definition 5.1.1 (Regularizing noise)

Let X: [0,1]xQ — H be a stochastic process adapted to a filtration (F)ep1) and @ C RY.
We call X a Q-regularizing noise of order a > 0 with index h €]0, 1] if the following conditions
are fulfilled

(i)
QCrPr~H
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(1)

t
P /b(s,Xs + ) —b(s, X, +y) ds| >n|t — sz —y|lg| Fr| < Ce™"

S H

for all 0 < r < s < t < 1, all Borel measurable functions b: [0,1] x H — @ and
x,y € 2Q for some constants C, ¢ > 0 (independent of r, s, ¢, x,y, but not b!).

(iii) For every Borel measurable function f: [0,1] — @ the image measure (X; + f(¢))[P]
is equivalent to X;[P] for every t € [0, 1].

Remark 5.1.2

If X is a self-similar process of index h €]0, 1] i.e. for every a > 0 we have

dist

{Xu |t >0y = {ad"X, |t >0}
and X is a regularizing noise then the index h in Definition is precisely the index of
self-similarity of the process X as the following Proposition [5.1.6] shows.

Notation 5.1.3
We define

reg(Q, h,a) == {X:[0,1] x Q@ — H|X is a Q-regularizing noise of order o with index h} .

Proposition 5.1.4
For all Q C Q' C RY we have

reg(Q’, h,a) C reg(Q, h, ).

Proof

Let X € reg(Q)’, h,a). Since @ is smaller than )’ Condition (i) and (iii) of Definition
are trivially fulfilled for (X, Q') and since every function b: [0, 1] x H — @ can be considered
as a function b: [0,1] x H — @' so is Condition (ii).

UJ

Proposition 5.1.5

For all a < o/ we have

reg(Q, h,a’) C reg(Q, h, a).
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Proof

Let X € reg(Q,h,a’) and ¢ be the constant from Condition (ii) of Definition of the
regularizing noise X. Let n > 0. We set

/
d = max % — 2% > 0.
0<x<1

If n > 1 we obviously have n® < 7. If, on the other hand, n < 1 then n® — ¢ < n®. We
therefore obtain

_Oél il / /O
ecn <eccn+cc:€ccecn,

which implies that Condition (ii) Definition is fulfilled and therefore X € reg(Q, h, «)
which completes the proof.
O

Proposition 5.1.6

Let X be a self-similar Markov process of index h €]0,1[. Assume that Condition (ii) of
Definition is fulfilled for the case s =0, t = 1 i.e. we have

1
P /b(S,XS +2) —b(s, X, +y)ds| >nlz—ylg| < Ce™"
0 H

for some b,¢,C,a, all z,y € H and every n > 0. Then Condition (ii) of Definition
holds for all 0 < r < s <t <1 for the same b, z,y, c, C, « i.e. we have

t
v /b(T’XT”) —0(r, X, +y) dr| > aft = s|"[x —ylu| Fr| < Ce™"
B H
for all n > 0.

Proof

Let ((X¢)teo,00s (Ft)tc0,0]), T S, t, b, and y be as in the assertion. In order to complete the
proof we have to bound the expression

t
Pple) /b(s,Xr +z) = b(s, X, +y) dr| >nlt — 5"z —ylu| F,
” H

For the reader’s convenience we added the integration variable as a superscript to the re-
spective measure which we integrate against. Fix an ' € . Using the transformation
r’":=(~Y(r — s), where £ := |t — s| this equals
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Pdw) | g /b(ﬁs’ + 7, Xy + )
0

—b(ls' + 1, Xpgyr +y) ds'| > nllx —ylg| Fr | ).

H
We define
b(t,z) == b(lt + 7, ("),
Fo= 0"y,
gi=1"y,

Furthermore, we define the image measure

P,:=PoX(-,2)7 " Ve e H,
where X (¢, x) is the stochastic process X started in x at time ¢. Hence, the above expression
simplifies to

1
PR | / b(ls' + 1, Xpg + )

0

—b(ls' +r, Xpgy +y(ls' + 1)) ds’| > n€h|x —ylg
H
1

P / b(s, 07" Xps + ) — b(s, 0" Xy + §) ds| > 0|7 — Glu
0 H
Since X is by assumption self-similar of index h this is the same as

1
X(w / (5, X, +2) —b(s, Xs +7) ds| >n|Z —ilu
0 H

Note that b is a Borel measurable functions and takes values in the same space as b. By
assumption the above is therefore smaller than

_cna
Ce ,

which completes the proof.

Example 5.1.7 (Brownian motion in R?)

Let H := R,
Q:={reR% |z| <1}
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and X: [0,1] x Q@ — R? be a Brownian motion. Then X is a Q-regularizing noise with
order o = 2 and index h = %

Condition (i) of Definition is trivially fulfilled. Likewise, Condition (iii) since we are in
a finite-dimensional space. Condition (ii) has been proven by A. Davie in [Dav07, Corollary
2.6].

Corollary 5.1.8 (Cf. [Wrel6l, Corollary 3.2])

Let X be a @)-regularizing noise of order a with index h. There exists a constant C'x > 0 so
that for all 0 <r < s <t <1 and for every Borel measurable function b: [s,t| x H — @
and for all F,-measurable random variables z,y: Q2 — 2(). We have for all p € N

t P
E / b(s, X+ 7) — b(s, X, +y) ds| | F| < CRpP2)t — s — g2,
s H

where Cx > 0 only depends on the constants (C, ¢, &) in Definition of the regularizing
noise X.

Proof

Let 0 <r <s<t<1andb,p as in the assertion.
Step 1: Deterministic x, y

Let x,y € H be non-random with x # y. We set

¢
S =t —s| ™"z —y|5 /b(s,Xs + ) —b(s, X5 +y) ds
s H

and calculate

[e.9]

E[SP|F]=E /ﬂ{s>n}pnp‘1 dn| F.

0

Notice that the above is valid since S is a non-negative random variable. Using Fubini’s
Theorem the above equals

[e.9]

/pnplP[S > | F] dn.
0

Plugging in the definition of S the above line reads

00 t
/pnplIP’ /b(s,Xs+:c) —b(s, Xs+y) ds| >nlt — "z —ylu| F.| dn.
0 S H
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We estimate the probability inside the integral by using the fact that X is a regularizing
noise (more precisely Condition (ii) of Definition [5.1.1)). Therefore, the above expression is
smaller than

1—2
C/pn” Lo=en dn—C’C p/n’a‘le_"l dn/
c
0 0
C
-Cetr(l)
o 2

Using Stirling’s formula this is bounded from above by

Qc—gp 4_7Tg—p/26—p/2€é P2 < Ec—gppﬂ
o D T« ’

J/

-~

1
<V2me—1/2¢8

which proves that E[SP|F,] < C%pP/2, concluding the assertion in the case that x and y are
deterministic.

Step 2: Random =z, y

Let z,y: Q — 2(Q) be F, measurable random variables of the form

T = Z 14,74, y= Z Layi,
i=1 =1

where z;,y; € H and (A;)1<i;<n are pairwise disjoint sets in F,.. Notice that due to the
disjointness we have

b <t, X+ ILAZ.xi) —b (t, X+ lAiyi) = Ta, [b(E, Xy + ) — b(t, X + )]
=1

i=1 i=1

Let p be a positive integer. Starting from the left-hand side of the assertion and using the
above identity yields

. )
E / b(t, X, + ) — b(t, Xo +y) dt| | F,
L|s H
n [ t P
Y B |14 /b(t,Xt—kxi)—b(t,Xteri) atl |7
=1 i s "

Since A; € F, this can be expressed as

t p

i=1 s "

and by invoking Step 1 this is bounded from above by
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— il = %P2 [t — "] -yl

CP P2t — s|P

In conclusion we obtained the result for step functions z, y. The result for general F.
measurable random variables x, y now follows by approximation via step functions and taking
limits.

O

5.2 The Ornstein—Uhlenbeck Process is a Regularizing Noise

In this section we establish that a Hilbert space-values Ornstein—Uhlenbeck process (as
studied in the previous chapter) is a regularizing noise (see Corollary [5.2.3) as defined in the
previous section.

Definition 5.2.1
Let (Z{")ic0,00 be an Ornstein—Uhlenbeck process with drift term A and Cy > 0. We set

Z)\ne2’\"|xn|2 <Oy } ,

neN

QA = {Z’ = (-rn)neN € RY

where (A,)nen are the eigenvalues of the operator A.

Theorem 5.2.2 (Cf. [Wrel6, Corollary 3.1])

For every Borel measurable function b: [0,1] x H — Q“ there exists a constant 345 > 0
(depending only on the drift term A of the Ornstein—Uhlenbeck process (Z{)iep,00] and
the function b) such that for all 0 < r < s < ¢t < 1, all Borel measurable functions
hi,ho: [s,t] — 2Q% and for any 7 > 0 the inequality

t
P /b(s, ZA 4 hy(s)) — b(s, Z2 4 ho(s)) ds| > nl"?||hy — haloo| Gr | < 3e P47
s H

holds, where £ := t —s. Recall that G, := {(Z*)"(F)|F € G} is the filtration of (Z{):e(0,00(;
where G, := o(m4|s < t) and 7, are the projections 7s: f — f(s).

Proof

Let r,s,t,0,b,hy and hy be as in the assertion. Note that the assertion is trivial if hy = ho,
hence w.lo.g. we assume h; # hy. Furthermore, note that since b: [0,1] x H — Q* we
have ||b]|co,a < oo (as will be later be required by Theorem and ||b]|c < oo due to
Proposition [4.1.2]

Let ((Bt)te(0,00]> (Ft)te[o,00[) be the Wiener process of the Ornstein-Uhlenbeck process (ZA)tE[O ool
We define the stochastic processes Z/4 := (~1/2Z and B, := (~'/?>By,. Note that B is again
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a Brownian motion w.r.t. the normal, right-continuous filtration (F})ieo,00 = (Fet)teo,00]-
Additionally, we have

ot
ZtEA _ 671/2Z2¢t1 _ gl/Z/e(Zts)A dBS
0
ot t

:/eé(t—Z)Ag—l/Q deez/e(t—s’)EA df?s/.
0 0

Hence, Z* is an Ornstein—Uhlenbeck process with drift term ¢A.

For the reader’s convenience we add the integration variable as a superscript to the respective
measure which we integrate against, hence the left-hand side of the claim reads

P(dw) /b(s, ZSA(w) + hi(s)) — b(s, Zf(w) + ha(s)) ds| > n€1/2||h1 — hal|o| G-
r H

Fix an w’ € Q. Using the transformation s’ := ¢~!(s — r) the above equals

1
Pp(dw) e/mw+nagxm+mwy+m
0

—b(ls' 1, Zgh (W) + ha(Cs' + 7)) ds'| >l 2| Ry — halleo| Gr | (W)
H
Furthermore, we define the image measure

P, :=PoZ4(-,z)7}, Vo € H,
where
ZAt,x) = Z + e M, Ve € H, t € [0,00].

Recall the definitions of m; and G, in the statement of this theorem. Since G, is the initial
sigma-algebra of G, w.r.t. Z4 we have

E [ﬂ't o ZA\QT] (W) =Eq [Wt’m (Z4(),

where Eq denotes the expectation w.r.t. the measure Py. Applying this to the above situation
we obtain that the left-hand side of the assertion reads

1

IP’(()dw) /b(fs + 7, Tpsir (W) + h1(ls + 1))

0

—b(ls + 7, Tpsyr (W) + ha(ls + 7)) ds| > 9l Y?||hy — hylse| Gr | (Z24(W)),

H
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Applying the universal Markov property (see [Bau96, Equation (42.18)] or [Jac05, Equation
(3.108)]) we have

1

- Pfi?)ZA(w’)) /b(ﬁs + 7, Tes(w) + hy(€s + 7))
0

— b(ls + 7, (W) + ho(s + 7)) ds| >0l V2 hy — byl | . (5.2.2.1)
H

We define

b(t,x) == b(lt + 7,01 %x),
ha(t) := 0720y (0t + 1),
ha(t) i= 2Ry (8t + 1),

so that expression ([5.2.2.1]) simplifies to
1
P o) / b(s, 0= 2y + Ru(s)) — b(s, 02wy + hols)) ds| > 1 Hﬁl - BQH .
0 H
Note that b, hy, hy are all bounded Borel measurable functions, b is Q“-valued since b is

Q*-valued and ||b]|oo = [|b]|c as well as [|b]jco.s = ||b]loc,a- Plugging in the definition of P,
the above reads

1

(PoZ4(-, ZMw)) ™)) / b(s, 0Py (w) + R (s))

— 5(s,€_1/27rgs(w) + ho(s)) ds| >n ‘ hy — hy
) -
1
_p / by (5, 72205, (W) — €126 ZD () 1y (5) — ()
0 —(-1/27A =70
B (5, 22, ZA (W) — P ZAW)) ds| > n‘ b= | |

-~

—-1/2ZA—FtA .

where Ew,,EQ(t,x) = b(t,x + 02 MAZA(W) + hy(t)). Recall that Z% is an Ornstein—
Uhlenbeck process which starts in 0. By Theorem there exist constants §4, (depending
on the drift term A and b, but independent of ¢ since ¢ € ]0,1]) and an absolute constant
0 < C < 3 such that the conclusion of Theorem holds for every Ornstein—Uhlenbeck
process Z‘ with the same constants £, and C. Since exp(f4,| - |?) is increasing on R, the
above equals
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1 2

—HN BAf) 3 Bw/,iLQ(& ZfA + iL1(S) - ilz(S)) - l;w/im(s, ZfA) ds > exp (BA,bn2)
il

H

P |exp

and by Chebyshev’s Inequality this can be estimated from above by

1 2

P (5 25 () — a(s)) — B (5. 204 ds

—Bapn?
e E exp »

hy — hy

2
00 0 H

Since ||l~7w,7;L2||<>O = 6]l as well as ||l~7w,7;L2||oo,A — ||b]loc,a hold, the conclusion of Theorem
[4.2.2] implies that the above expression is smaller than

Oe—ﬁA,bU2 '

Corollary 5.2.3 (Z4 € reg(Q4,1/2,2))

Let (ZtA)tE[O,oo[ be an Ornstein-Uhlenbeck process with drift term A with filtration (G;)icp,00]
as defined in the previous Theorem Let Q4 C H be as in Definition (for arbitrary
C'4 > 0) we then have

1
Z4 € reg (QA, 5,2) .

Proof

We have to show that (Z;*),e(o,oof fulfills the three conditions of Definition with (@, h, ) =
(@4, 3,2). By Definition Q" obviously fulfills Q4 C ¢2 = H. Condition (i) is therefore
fulfilled.

Let b: [0,1] x H — Q* be a Borel measurable function and z,y € 2Q* be given. Then,
invoking Theorem [5.2.2] with the constant functions h; = x and hy = y proves Condition (ii).
Notice here that we consider the Ornstein-Uhlenbeck process (Z{)ep0,0o| under the filtration
(Gt)ico,00] as defined in Chapter 1 and the statement of Theorem [5.2.2]

Let f:[0,1] — Q* be a Borel measurable function. For Condition (iii) to be fulfilled we
have to show that the image measure of Z4 shifted by f is equivalent to image measure of
Z4 under P.

Note that the measure Z{[P] is equivalent to the invariant measure N (0, 2A™") due to [DZ92]
Theorem 11.13] and analogously (Z* + f(t))[P] to N(f(¢),5A™"). Furthermore, f(t) is in
the domain of A for every t € [0, 1] because f takes values in Q4 and due to

ST )22 < 3 [ fa(8)PA2 < oo

neN neN
We set
g(t) == 2Af(1).
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Observe that ¢(t) € H for every t € [0, 1] because of

g®)1H =4 2| fa(t)]? < 0.

neN
Hence, [Bog98, Corollary 2.4.3] is applicable i.e. N(0, 3A7") and (Z/*+ f(t))[P] are equivalent

measures.

In conclusion all three conditions are met and the Ornstein—Uhlenbeck process (Z;*):e(o,o0f is

therefore a regularizing noise w.r.t. the space Q4 with index % and order 2.
OJ
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6 Pathwise Regularization by Noise

Let X : [0,1] xQ — H be a stochastic process adapted to a filtration (F;)cjo,1). We assume
furthermore that X is a Q-regularizing noise for a cuboid @ (see Definition [3.1.1)) of order
a > 0 with index h €]0, 1] in the sense of Definition [5.1.1]

Let, additionally, b: [0,1] x H — @ be a Borel measurable map, n € N and k£ € {0, ...,2" —
1}. In this chapter we analyze the mapping

(k+1)2-™
H>zv+— / b(s, Xs(w) + ) — b(s, Xs(w)) ds
k2—n -
as well as
(k+1)2—"
HxH> (z,y) — / b(s, Xs(w) + ) — b(s, Xs(w) +y) ds
k2—n

H
for a given path ¢t — X;(w) for a fized w € Q.

In this first section we show that the first mapping is bounded by

2+a+2y

Cn 559 (2] + 272"

Here, h is the index and « the order of the regularizing noise X. v > 0 controls the size of
the cuboid @ in terms of its effective dimension. If we formally put v = 400 we are in the
finite-dimensional case and generalize A. M. Davie’s estimate (see [Dav07]) i.e. we obtain the
same estimate since R%-valued Brownian motion is a regularizing noise with (h,a) = (3,2)
(see Example 5.1.7)).

In the second section we show in a similar way that the second mapping is bounded from
above by

C <7’Lé2_5n|l' o y’oo + 2_295n> '

Here, there is a tradeoff between the regularity we obtain in time 6 € [0, h] and the residual

term 05 := (h — 5)2&3‘127.

Compared to the estimates obtained in the previous part, all estimate hold for all w in a set
Acp with P[AZ ] < e, where € > 0 can be taken arbitrary small. However, the constants C
(later denoted by C.) depend crucially on € and explode as e approaches 0.
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6.1 Estimate for © —— ¢, k()

Definition 6.1.1

Let b: [0,1] x H — @ C H be a Borel measurable function. For n € N\ {0}, k €
{0,...,2" — 1} and = € H we define

Onk: HXxQ —Q
by

(k+1)2—7

Pn k(b T, w) = / b(s, Xs(w) +z) — b(s, Xs(w)) ds.

Usually we drop the b and w and just write ¢, x(x) instead of ¢, x(b; z,w). Additionally, we
set

(k+1)27"
(T, y) = / b(s, Xs(w) + ) — b(s, Xy(w) +y) ds.

k2—n

Remark 6.1.2
Note that for fixed n € N, k € {0,...,2" — 1} and w € Q the map

‘Son,k(', )‘H HXxH — R+, (x,y) — ’()O'mk(x?y)h{

is a pseudometric on H.

Lemma 6.1.3 (Cf. [Wrel7, Lemma 3.3])

For r,m € N and v > 1 we have

In(r +m+ DY <In(r+ )Y +In(m + 1)/,

Proof
Let r,m € N. We have

r+4m+1<rm+r+m+1=>r+1)-(m+1),
which implies that

In(r+m+1) <In((r+1)-(m+1)) =In(r+1)+In(m+1).

Since % < 1 we immediately obtain

In(r +m+ DY <In(r + )Y + In(m + 1)/

due to the fact that 2 — /7 is concave which completes the proof.
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Definition 6.1.4 (The usual assumptions)

Let (X;)tcpo,1] be a stochastic process adapted to a filtration (F;).ejo,1) and @ C RY a cuboid
(see Definition [3.1.1)) or a subset of a cuboid. We say that the tuple ((X;)ic(o,1), (F)ief0,1]; @)

fulfills the usual assumptions if

(i) X €reg(Q,h,a). Le. X is a Q-regularizing noise of order « with index h.

(ii) There exists Cg > 0 and v > 1 such that ed(Q),, < Co(In(m + 1))/ for all m € N,
i.e. the effective dimension of Q grows at most like In(m)*/".

From now on we will always assume that we are working with a tuple ((X;)cjo,17, (Ft)ecfo,]; @)
which fulfills the usual assumptions.

Theorem 6.1.5 (Cf. [Wrel7, Theorem 3.4])

Assume that the usual assumptions (see Definition are fulfilled. For every ¢ > 0
there exists C. € R such that for every Borel measurable function b: [0,1] x H — Q,
n € N\ {0} and k € {0,...,2" — 1} there exists a measurable set A.jn1 € Flripn € Q
with P[A k] < 57" such that on Ak

24a+42y

@l < Con* 27 (] 427%)
holds for all points x € 2Q NI (see Definition for the definition of the set D).

Remark 6.1.6

Note that the constant C. depends on ¢ and v, but not on b. Conversely, the set of “good
omegas” AZ, . depends on ¢, b, n and k.

Proof
Sketch of the proof:

The idea of the proof is to first of all consider the event

En,k,x = {w S Q: ‘@n,k(m)‘H > ns,b,n|x‘oo2ihn}7
where x € 2@Q). Since X € reg(Q, h,a) the probability of the above event is bounded from
above by
CeMebm,

However, since we have to prove an estimate uniformly in x € 2Q) N 1D we actually have to
consider the event

U En,k,z

xe2QND

and therefore we obtain an estimate for the probability of this event of the form
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E Ceenn,

z€2QND

Since we want the sum to be convergent (and moreover arbitrary small for sufficiently small
e > 0) this would require 7., to be dependent on x which is undesirable. A way out of this
dilemma is dissect the set () as follows

U En,k,z - U U En,k,x

ze2QND m=0 xc2Qn2—mzN
and choose 7., (and therefore E, ;) dependent on the newly introduced variable m.

However, since we are only really interested in the case when x is “small” we can do even
better! We introduce the new variable » € N and set

Qr={r€Q: [z|]c <27}

Then @), is the set () “localized around zero”. Since we, obviously, always have |, (2)|g <
C'27" it is enough to consider r from zero to some large number N and dissect the set () as
follows

2" oo
U En,k,:p - U U U En,k,x~

z€2QND r=0m=r z€2Q,N2-mZN

Here, we have chosen N = 2". By letting 7.;, furthermore depend on m and r, more
precisely we will set

1,1
Mebm = Newmmr ~ (I0(1/E)Y M (m — 1)V ed(Q,)5 2

we can show that the probability of the event is uniformly small while still obtaining a strong
estimate.

In spite of all this effort we still have the problem that in the end we obtain an estimate of
the form

|0k (@) < C (In(1/€))* 0t (m — r)l/* ed(QT)r?% 7] 0027

We can control r since first of all r < 2" and secondly r is of the order log,(|z|.}). Never-
theless, for a given « the variable m > r depends on which level m in the lattice Q, N2-™ZN
the point x lives in. We therefore modify our approach in the following way:

Consider the set

En,k,x,y,m,r = {w c Q: ‘Qpn,k(mu Z/)’H > ns,b,n,m,r‘x - y‘oozihn}
together with the dissection

2" oo
U En7k7x?y7m7r = U U U En?k7x7y7m7r.
x,y€2QND r=0m=r g yc2Q,N2-mZN

One would assume that with our current approach the probability of this event increased by
a lot, since we are now consider all pairs (z,y), but it actually only increased by a factor 2
in one of the exponents. Following this modified approach yields an estimate of the form
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(. w)li < C (In(1/€)" 0t/ (m — )/ ed(@u) |z — ylw2 ™.

We are now able to circumvent our previous issue with the following construction: For a
given x € 2Q we construct for every m € {r,r +1,...} a point z,,, € 2Q, N27"Z" (i.e. z,, is
a lattice point on the m-th level) in such a way that x,, is close to x. Since |, (-, - )|x is
a pseudometric (as mentioned in Remark we can use the triangle inequality

|90n,k($)|H S ’@n,k(xra0>|H + Z |90n,k(xm+luxm)|H

m=r

and use our estimate from above for |, x(x,y)|y. Note, that this time we are able to
estimate the variable m as follows: for the first term on the right-hand side and for the first
term under the sum we have m = r. For all other terms we estimate |T,,11 — Tpm|oo < 277
and show that the sum is dominated by the first term. Let us now pursue the approach in
detail.

Beginning of the proof:
Step 1:

Let ¢ > 0. For r > 0 we set (similar as in Definition Qr ={r€Q:|r|] <27}
Let m be an integer with m > r and z,y € 2Q, N2 ™ZN. We are going to estimate the
probability of the event {|p, x(z,y)|m > n} for a suitable n > 0. To this end let (C,c) be
the constants from Definition and we set

1/a
Ne 1= (111 (?)) . (6.1.6.1])

W.lo.g. we assume that ¢ is sufficiently small so that 7. is, first of all, well-defined and
furthermore 7. > 1. Let us consider the following probability.

P {[gns(,9)lr > ¢ o1+ 204 5(1 4+ m = 1)) ed(2Q)i o — yl2 ]

Since z,y € 2Q, N27"Z"N and |- |«, | - |2 are effectively equivalent norms i.e.
|- |2 < /ed(2Q;)m| - | (see Proposition ) the above expression is smaller than

1
P {loni(@, )l > ¢ on(14+ 20 + 51+ m — 1)/ ed(2Q, )il — 2"
Since X is a regularizing noise this probability is smaller than
Ol ¢d(2Qr)m =1 (2n-+5(14+m—r)) ed(2Q,)m

Using that 7. > 1 and ed(2Q), ), > 1 the above is bounded from above by

Cvefng‘ 67(2n+5(1+m77")) ed(2Qr)m _ 06717? 672n675(1+m7r) ed(2Qr)m

In order to get a uniform bound we calculate
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P U U U {](pnk )|y > 775(1+2n—|—5(1—i—m—r))l/aed(ZQT) 2\3: y\oo2’h”}

r=0m=r z,y€
2Q,n2—mzN

2™ oo
< CZZ Z 012 g 21 o =5(14+m—1) ed(2Qs)m

r=0 m=r z,y€
2Q,rn2—mzN

on

— (e e ZZ#{ z,y) | 2,y €2Q,N2" mZN} —2n ,=5(1+m—r) ed(2Qr)m

r=0 m=r

Using the usual assumptions (see Definition [6.1.4) and Proposition we can invoke
Theorem which results in

#{r|re€2Q,N27™ZN} < 2exp (2(1 +m — 1) ed(2Q,)m) -

Hence, we can bound the above probability by

2™ oo
4Ce™™% Z Z exp (4(1 +m — 1) ed(2Q,)p,) e~ 2ned0Hm=)ed2Qr)m

r=0 m=r

— 40 e Z > exp(—(L+m —r)ed(2Q,)m) -

r=0 m=r

Note that the last sum converges since ed(2Q),.),, > 1 and because of

Zexp (14+m—r)ed(2Q;)m) < Zexp (1+m)) <1

the above is smaller than
271
4Ce™E Z e = 4Ce™E (2" + 1)e " < 8Ce e
r=0
Plugging in Definition (6.1.6.1) of 7. the above is smaller than Se™. In conclusion there
exists a measurable set A, C Q with P[A. k] < se " such that on AZ,, . we have

1,1
lonn(@, )| < Vo (14 20+ 5(1 +m — r)*ed(Q)a 2 |z — yla2 ™™

10 . . i . (6.1.6.2)
e+ (L m = )*) ed (@) — ylw2"

forn>1,ke{0,..,2" =1}, r€{0,...,2"}, m > r and z,y € 2Q, N 2-™Z".
Step 2:

Claim: For every dyadic number x € 2Q, with r € {0,...,2"} and n > 1, k € {0,...,2" — 1}
we have

| onge() | < Cene2 27" l/a(ln(r+2))2aw (6.1.6.3)
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on AZ, - Indeed, let z be a dyadic number such that = € 2Q, with r € {0,...,2"}. Recall
Corollary |3.2.5] For every m € N with m > r we set

T =277 (%) € 20, N2-7N,

where 7\ is the map from Corollary Le. |x — Zm|eo < 27™. By the triangle inequality
(see Remark [6.1.2) and ¢, x(x) = ¢ (2, 0) we immediately get

(e (@) b < |onp(@r O+ Y |onp(@mer, @)
Note that the sum on the right-hand side is actually a finite sum, because x is dyadic, so that
x,, = x for m sufficiently large. Note that x,,, 41 € 27 FDZN hence, by using inequality
(6.1.6.2)), the above expression is bounded from above by

10 1.1
— e (0 (L = 1)) ed(2Q,)¢ 2 ] 27
10 N 1o 1/a L""% —hn
ol D> M (L4 (m 4 1) = 1)) ed(20,) 513 [Tms — Timlo2 "

Using the definition of x,, and [T, 1 — Tmloo < [Tma1 — Tloo + [Tm — T]oo < 27 this can
be estimated from above by

10 1/a 2 ro—hn
aeijale (n / +1) ed(2Q, ) 272
40 —l/a = 1/ 1/a\o—(m+1) +2 hn
e e Y (L (m o+ 1) = ) V)27 ed (2Q,)5 112
40 hn = 1/« 1/ 2 m
< —an2 Y (T (L m =) ) ed(2Q,)i 22

By the usual assumptions we have that ed(Q,), < Cg(In(m + 1))/7, where v > 1 and
Cq > 0 are the constants from Definition [6.1.4, Using this we can further estimate the
above expression by

400573 =
T 23 (0 4 (1 m = 1)) (In(m 4+ 1) G D
ocH e
400577 =
< 2D (0 (L m) ) (tn(r 4 m o+ 1)) Sy 9T
m=0

Using Lemma [6.1.3] and putting all constants into the new constant C. for the sake of
readability the above is smaller than

C.27mr i (n* 4+ (14 m)"*) ((111(7“ +1)2 +In(m +2) m) 2~

< OEQ—th—r nlt/ ln r +1 2&“% Z 27 nt/e Z(ln(m + 2)) QM 27

m=0
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lnr Zl+ml/o‘2m+z 1—|—m1/a(ln(m—|—2))2a72 ]
m=0

m=0

Since v > 1 we can estimate (In(m + 2))26w < 2™/2. The above expression is therefore
bounded by

C.27hngr [2n1/a(ln P a3 272 (o) 4 Y (14 m)l/az—mﬂ]

< G272 [2711/ “(Inr)/7 4 40 4 4(lnr) 57 4+ 6} .

And since we have 1 < (In(r 4 3)) 27 2av we obtain

24«

[on ()| < C27M27 0t (In(r + 3)) 2,
which proves Claim (6.1.6.3)).

Step 3:
For a fixed n € N let € 2Q N'D such that |x| > 272". We set
ri= [log, |2 < [2"] < 2"

And hence we have
—1 -1
277 = g logzllelec ) < g-logslulc 1 — 91|

Additionally, we have r € {—2,...,2"} and x € 2Q),, because of the fact that
2] oo = 27 B2l < 977

Hence, we can apply Step 2 (6.1.6.3]) to obtain

| on ()| < C27 M2~ (In(r + 3))31’*3
< Con'/27Mz| (log, (2°7)) 2 e <C nl/a(3n) 207 27| 2 .

Step 4:

Conversely to Step 3, for fixed n € N let 2 € 2Q N'D such that |z| < 272". Then z € Q,
with 7 = 2" so that by Invoking Step 2 (i.e. Inequality (6.1.6.3)) we have

| i (z) | < C’€2_rn1/°‘2_h"(ln(r + 3))22%3 < 027 ptlag—n/2 (log2 (23”))1/7
< CLnl/o9=hno=2" (3p) %7

This concludes the proof.
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6.2 Estimate for (x,y) — @nr(x,y)

Let us now prove an estimate for the term |, x(z,y)|n. Since, due to technicalities in the
proof of Theorem [6.1.5 we were forced to prove an estimate for |, ,(z, y)|n in the previous
section the proof in this section will mainly follow along the same lines as the previous
section.

Theorem 6.2.1 (Cf. [Wrel7, Theorem 3.6])

Assume that the usual assumptions (see Definition are fulfilled. For every ¢ > 0 there
exists C: € R such that for every Borel measurable function b: [0,1] x H — () satisfying
Assumption there exists a measurable set A.;, C Q with P[A.;] < e such that on Agy
and for every 0 < § < h we have

1 —on _9bsn
[ni(zy)ln < Ce [ne2 "z =yl + 272"

for all points z,y € Q ND with |z —yloe < 1, n > 1, k € {0,...,2" — 1} where 65 :=

2a
(h - 5) 2+a—z2y'
Remark 6.2.2

Note that the constant C. depends on ¢ and v, but not on b. Conversely, the set of “good
omegas” AZ, depends on both, ¢ and b.

Proof

Sketch of the proof:

Since this proof is similar to the proof of Theorem in the previous section we merely
point out the differences.

We would like to obtain an estimate which is “good” when |z — y|w is small instead of
just |z| being small, hence, the “localization trick” from the previous proof does not work
anymore. Compared to the last proof there is no variable r anymore, so that we have to
dissect the set 2Q ND in the lattices 2Q N27™Z" as described in the beginning of the sketch
of the proof of Theorem [6.1.5] Following the approach of the last proof with this setup,
results in the estimate

| onk (2, y) | < Cnaw2 M etz g=m,

where m € N is chosen such that 277! < |2 — y|, < 27™. We then proceed to bound the
1 24a
term mat 2y by giving up a little bit of 27" term. This yields the following bound

k(2 y)lm <C nag-dng—m + 9—20"

Here, 0 > 0 is an arbitrary number smaller than A and €5 > 0 a number depending on ¢ as
well as on « and 7. The result then follows by bounding 27 by 2|z — y|s-
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Beginning of the proof:
Step 1:

Let meN, 0<d<hand z,y € QN2 ™ZN. Let (¢,C) be the constants from Definition
for the regularizing noise X and ¢ > 0. We set

o (e(0)”

We again assume that € > 0 is small enough so that the above is well-defined and 7. > 1.

Analogously to the previous proof we estimate

1,1
P [lons(e. )l > o014+ 20+ 501+ m) e ed( @ e — pl2™].

Since x,y € QN27"ZN and | - |, | - |2 are effectively equivalent normsi.e. |- |2 < \/ed(Q)m] - |oo
(see Proposition [3.1.6)) the above expression is smaller than

1 —hn
P [lonsl, )l > €001+ 2+ 5(1 4+ m) V2 ed(Q)n)F e — 9122
Due to the fact that X is a regularizing noise this expression is bounded by
Cle e ed(@)m =g (2n+5(1+m)) ed(Q)m

and since 7. > 1 as well as ed(Q),, > 1 the above expression can be estimated from above
by

e—nge—(2n+5(1+m)) ed(Q)m S e—n§6—2n6—5(1+m) ed(Q)m )

Using this, we estimate the following probability

no1

e’ [e'e) 2
PIUU U U lear@pln > o n (14 20+ 5(1 +m)) "/ ed(Q) o — ylw2 ™

n=1m=0 z,y€ k=0
Qn2—mzN

<C i f: > o~ o= 2np=5(14m) ed(Q)m

< 0 3N ()l € Q2T 2 e S @,

n=1 m=0

Using the usual assumptions (see Definition [6.1.4) and Proposition we can invoke
Theorem B.2.3 for » = 0 so that we have

#{(2,y) |2,y € QN27"Z"} < exp (4(1 + m) ed(Q)m) -

So that we can bound the above probability by

Ce 373 exp (41 + m) ed(Q)) 2" 21 2

n=1 m=0
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< Ce ™ Z Z 2"e ™" exp (—(1 +m)ed(Q)m) -

n=1 m=0

Note that the last sum converges since ed(Q),, > 1. Hence, the above is bounded from above
by

Ce~ ’7522” 2"Zexp (1+m))

J/

-~

<1

so that, in conclusion, we have estimated the above probability by

o0
Ce™ e E MeT < Cle™ =g,
n=1

Therefore, we obtain

(e )l < e (14 204 5(1+m)/ ed (@) 2 — ylo2 ™
10 b e Li S 6.2.2.1)
S ajall (n + (1+m) ) ed(@Q)s 2|r — y|eo2
forn > 1, k € {0,...,2" — 1}, m € N and for all 2,y € QN 27"Z" on a set AS, C Q with
]P)[As,b] é e.

Step 2:
Claim: For all points z,y € @QND, with |z —y|o < 1,n > 1and k € {0,...,2" — 1} we have

1 —on _obsn
[@np(x)|n < Cene [2 o=yl +27777 (6.2.2.2)

on AZ,. Indeed, let r,y € Q be two dyadic points in @ with [r —y| < 1. W.Lo.g. we
assume z # y. Fix 7 € N be so that 277! < |x — y|o < 27". Note that this implies that
r > 0. Using Corollary for every m € N with m > r we set

T =7 (z) € QN 272N,
Ym, - _7T( ( )GQQQ AN
By the triangle inequality (see Remark [6.1.2)) we immediately get

’@n,k(xyy)‘H S |(10n,k(xrayr)’H + Z |(Pn,k(xm+1axm)‘H + Z |90n,k(ym+17ym>’H

m=r m=r
Note that both sums on the right-hand side are actually a finite sums, because x and y are
dyadic points. Also note that T, Tmi1, Yms Yms1 € 2-FDZN so that by using inequality
(6.2.2.1)) the above expression is bounded from above by

1.1
5t (4 (L 1)) ed(Q)F " F |2 — g2

F10e7 o 37 (0 4 (m o+ 2)M%) ed(Q) T F2 N2,
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where we have used that by the definition of x, we have |Z,, 11 — ZTmloo < |Tme1 — Tl +
|Zm — Z]oo < 271 and an analogous calculation for |[ym,i1 — Ymleo. Since |z, — oo <
12y — oo + |2 = Yloo + [ — Yrloo < 2772 this can be further estimated from above by

e 1.1
40¢~ Yoy, Z(nl/o‘ + (m 4+ 1)V ed(@),‘;l+22’m2’h”.

By the usual assumptions we have that ed(Q,), < Cg(In(m + 1))/7, where v > 1 and
Cg > 0 are the constants from Definition Using this we can further estimate the
above expression by

0057 & 1 ™
—n > (0 4 (m+ )Y (In(m + 1))

m=r

and since n'/* 4+ (m + 1)/® < 2(n(m + 1))/ this is bounded by

t\.’)\»—t

)l —mao—hn
/o v27"M2

24a
800" &
Me g nM(m + )l/a(ln(m—f—l))?an mo=hn,

m=r

Cl/a

By performing an index shift this can be written as

24«

80C 3"

acl/a

nanl/a2—hn2—r Z(m +r+ 1)1/a(1n(m +r+ 1))2;732_"1.

m=0

We use (m +r + 1)Y* < 2 ((m+ 1)Y/* 4+ r'/*) and invoke Lemma m to estimate this
further from above by

24«

160C™

a201/a nenl/a2—hn2—7“ Z((m 4 1)1/a + 7,,1/01) ((hl(m + 1)) za.y + (111(7‘ + 1)) 2a7> 9—m.

m=0
Expanding the terms yields

24«

160C2™

a2cl/e

nenl/o=hno=r Z [(m + DY (In(m + 1))22%3 + (m+ D)Y(In(r + 1))22%3

m=0

/o (In(m + 1)) 2+ r/%(In(r + 1)) Zav} 9=,

Plugging in (In(r 4 1)) T < 272 and evaluating the sum term by term leads us to the
following upper bound

2+«

160C5™

a2cl/a

(e 9] oo

n.nt/*9 hno=r [Z(m + 1)V ™2 4 (In(r 4+ 1)) 2 S Z(m + 1)Y/ag—m

ot/ Z 272 4l (In(r + 1))% 2_’"]
m=0 m=0
24«

160C5™

/e n.nt/*2=hno-r [6 + 3(In(r + D)7 + drt/e 4 20V (In(r 4 1)) 200 ey
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+

1680C 3"

24«
2ay
a2cl/a

nena 2 (In(r + 2)) 2 (r 4+ 1)/%27",

2+
2

336002 )

2 1/Q nen= 27 (r 4 1) 55 (4 1)),
accHe

In conclusion we finally obtained

+

336003

S en! g (4 1) 3 gD, (6-2.2:3)
e/

|90n,k:(x7 y)|H <

We are going to estimate this further using the following claim:

Set 05 := (h — 6) 5222 > 0.

2+a+2y

Claim:

There is a constant C, ., > 0 (independent of n and m) such that

1

parat I 27T < gy 4 0, 272" yp p e N (6.2.2.4)
holds.
Proof of Claim (6.2.2.4):

Case 1: r < 21ttn

11, 24a 1 (140am) (L 2tay 1_24at2y g 2ta+2y, 1
naratre 27 < paHlMEHET) o — pa 9 ey 9% sar g —hn — CSE/TLQQ on,
—— — 9

—9(h—d)n
Case 2: 21t0mn <

a9 st 3 9 < et i 9 r/29-T/2 £ (1(2) 920
N—— T N — — a,y

<1 <c

This ends the proof of Claim (6.2.2.4). Using (6.2.2.4) and inequality ((6.2.2.3|) we conclude

that

+

2+a
3360C,C2™

aZclja ke [2 w272 4 16 2—296"} :

|90n,k($7y)|H <

Recall that 277! < |z — y| so that the above is smaller than

C.n. [néZ_dn\x — Yoo + 2_2951 ,

which finishes the proof of Claim ((6.2.2.2)).
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7 Continuity of ¢y, i

Let as in the previous chapter X be a Q-regularizing noise and b: [0,1] x H — @ be a
Borel measurable map. In this chapter we show that the map

(k+1)2—7
Ong: T / b(s, Xs(w) +2) — b(s, Xs(w)) ds,
k2

as defined in the last chapter, is continuous. We even show that for sequences of functions
hm: [0,1] — @ living in small set ®, which converge pointwise to a limiting function h € ®
we have

(k+1)277 (k+1)27"
/ b(s, Xs(w) + him(s)) — b(s, Xs(w)) ds =3 / b(s, Xs(w) + h(s)) —b(s, Xs(w)) ds
k2 ko—n

with probability 1. Using this result for constant functions we can extend the two estimates
from the previous chapter (Theorem and Theorem [6.2.1) from Q ND to Q.

Since the proof of the above mentioned result is split into two steps, this chapter is split
into two sections as well. The idea is to construct a continuous function b: [0,1] x H — Q
which coincides with b on a large set. If we replace b by b above, the result follows from
Lebesgue’s dominated convergence Theorem.

In the first section we show that for every ¢ > 0 and any sufficiently “small” set U C [0, 1] x H
we have

1

/1U<S,Xs(w> +h(s)) ds < &

uniformly for all h € ®. Here, U acts as the set {(t,z) € [0,1] x H | b(t,z) # b(t, z)}, where
b and b do not coincide.

In the second section we construct the function b and carry out the proof of the above
mentioned result in Theorem We, moreover, extend the estimates obtained in the
previous chapter to the set @@ in Corollary [7.2.2]
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7.1 A Uniform Bound for Regularizing Noises

Definition 7.1.1
Let L > 0. We define

O :={h:[0,1] — 2Q: |h(s) — h(t)|ec < L|s —t|, Vs,t € [0, 1]},
VO <k <2":Vs,telk27™ (k+1)27"[: h(s) = h(t) and

®, = 10,1 2 D
" {h 0.1] — 20N ’Vm,@ €ZNI0,27]: |h(m2=") — h(£27")|oo < Lim — 427 |’

P* ::@UU@n.

Remark 7.1.2

Note that elements in ® are continuous, since functions in ® are Lipschitz continuous (with
Lipschitz constant at most L). @, will be used to approximate elements in ®. Also note
that ® and ®,, are separable w.r.t. the maximum norm and hence ®* is separable.

Observe that the above spaces are constructed in such a way that the assumptions we impose
on f (see Assumption implies that the function u from Proposition is in the space
®. In other words, the difference of two solutions of always lives in the space ® due
to Assumption [I.1.2]

Lemma 7.1.3 (Cf. [Wrel7, Lemma 4.4])
Let h € ®* and n € N. We then have
on_q

D a2k 4+ 1)27 ) — h(2k2 )| <

o0

N[

Proof

Let h € ®* and n € N be as in the assertion. If h € ® the inequality follows immediately
from the Lipschitz continuity of h. Let h € ®,, for some m € N.

Casel: m>n+1

We have
2"—1
> a2k + 1)270FY) — h(2k27 )|
k=0
2" —1
- |h((2k + 1)2m-(H027m) — p(2k2m ()|

k=0
Using the assumption that h € ®,, by definition of ®,, the above expression is bounded from
above by
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2"—1

E Lsz(nJrl)zfm _ £
2
k=0

Case 2: m<n+1

Since h € ®,, is constant on all intervals of the form [k27™, (k 4+ 1)27™] the sum simplifies
to

2n—1 am=1_1
> |r((2k + 1270 ) — k27| = Y |R((2k + 1)27) — h(2k27™)|
k=0 k=0

And using the definition of ®,, the above sum is bounded by

Lemma 7.1.4 (Cf. [Wrel7, Lemma 4.5])

Assume that the usual assumptions (see Definition |6.1.4) are fulfilled. For every ¢ > 0
there exist 0 > 0 such that for every open set U C [0,1] x H with mass p[U] < ¢, where
= dt ® X;[P], then there is a measurable set Q. ;7 C Q with

]P)[Q \ Qs,U] S e
such that the inequality

1
/ILU(S,XS +h(s)) ds < ¢
0

holds on . ;y uniformly for any h € ®*.

Proof
Sketch of the proof:

First, note that since the set U C [0,1] x H is open the mapping (¢t,z) — lLy(t,x) is
lower-semicontinuous. This implies that for a given function h € ®* we have

1 1

/ILU(t,Xt(oJ) +h(t)) dt < lim [ 1yt Xi(w) + h,(t)) dt (7.1.4.1))

n—00
0 0

by Lebesgues dominated convergence Theorem for any sequence (h,)nen as long as (hy)nen
converges pointwise to h. We therefore do only need to prove the assertion for a countable
and dense subset of ®*.
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For every n € N we consider the sets
{h SO ]l[kg—n7(k+1)2—n[h(8) = ]]_[k27n7(k+1)27n[h(t> € Q_nZN7 Vs, t € [0, 1], ke {0, 21— 1}}

i.e. the sets in which the functions h € ®* are 27"ZN-valued and constant on all dyadic
intervals [k27", (k +1)27"[. Notice, that the union of these sets form a dense and countable
subset of ®*. The strategy of the proof is then as follows.

For a given h € ®* we construct a sequence of functions (h,)nen, Which lies in the set
introduced above and converges pointwise to h. We rewrite the above limit ((7.1.4.1) as

1

/ Lo (t, Xo(w) + h(t)) dt

< /HU(t,Xt(w) ) dt + Z/ (t, Xe(w) + hpia(t) — Ly (t, Xe(w) + hy(t)) di

for a suitable (i.e. sufficiently large m € N). We split the second integral into the dyadic
intervals [k2-+Y (k4 1)2-*+Y[ Since the functions h,; and h, are constant on these
intervals, we can rewrite the above with the help of our function ¢, ; (see Definition
so that we end up with

! 0o 2ntlol

/ Lo (t, Xow)+hm (D) 4D D7 pnrrs (s st (k27 ) =g (Lo (k27 ))

0 n=m k=0

Using Theorem we can bound this from above by

1 oo 2ntl-q

/ Lo (t Xo(@) + hn(6)) At D7 30 (n527 5 oy (k2704D) = By (k204D g 4272 )

0 n=m k=0

Since functions h € ®* are either Lipschitz continuous or dyadic approximations of Lipschitz
continuous functions we have |h, 1 (k2~"FD) — b, (k2-+D)| ~ 27+ (see Lemma [7.1.3).
Hence, by virtue of the term 27°", the sum over n converges and becomes arbitrarily small
as m gets large. We are left with estimating the integral

1

/ Lo (t, X (@) + hin(8)) dl,

0
which is comparable with the situation we started with. However, we have to prove that
this integral is small for only finitely many functions h,,! Henceforth, by requiring that the
set U is sufficiently small, the above integral is smaller than any given ¢ > 0 uniformly for
finitely many functions h,, and we therefore conclude the proof.
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Beginning of the proof:

Let ¢ > 0 and let C,/; be the constant from Theorem where we set § := %, so that

0:=0;5; = %2+2;127. Choose m € N sufficiently large, i.e. choose m € N so that

(4+L)Copp > ma2 /2 < % and  m (7.1.4.9)

n=m

>
~ 6%21n(2)?
holds. Here L > 0 is the constant from Definition Set N,, :== Q N27™Z" and note
that N, is a finite 27™-net of ) w.r.t. the maximum norm.

We set

p o= dt @ X;[P],
My = dt ® (Xt + Z)[IED}

for all z € . Since X is a regularizing noise, we can use Condition (iii) in Definition
to conclude with the help of the Radon—Nikodyn Theorem that there exist densities p, so
that

dp,
dp

z-.

Furthermore, the family {p.|z € N,,} is uniformly integrable, since N, is finite. Hence,
there exists 6 > 0 such that

82

A

for every measurable set A C Q with pu[A] < 6. Let U C [0,1] x H be open with mass
(U] < 6. Then, by invoking Theorem for the function 1y with the constant C./, and
§ := h/2, there exists a measurable set A,y C Q with P[A. ;] < 5 such that

(k+1)2~—"

k2—n

holds for every n > 1, k € {0, ...,2" — 1} and z,y € @ N D on AZ ;. Furthermore, we define
the events B, by

We then have
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]P[B =P /ﬂUSX‘i‘Z d8>m
0

ZEm

gZIP’/ILU(s,XS+z)ds>2 ZE/ (5, X+ 2) ds

2ENm 0 2€Nm
2.2m 2 2m
= Z / Iy(s,x) du.(s,x) Z /pz s,x) du(s, x).
3
ZeNm[O,l]XH z€Nm 7

Since u[U] < ¢ using inequality ((7.1.4.3)) the above is bounded from above by

2.2m g2 £
e ) T2

In conclusion we proved that we have P[5, ] < § and therefore obtained that

For every h € ® and n € N we define
— 127h(k27™)
Z Tjpa-n (k1 1)2-n[ () e o e@Qn2™mzN,  vtelo,1], (71.4.4)
:Nn

where | - | denotes the componentwise floor function. Note that h, is Q-valued since h is Q-
valued. Furthermore, h,(t) is a dyadic number for all ¢ € [0, 1]. Also note that h,, converges
to h for n — oo.

Now, let

1
Ea,U = ﬂ /I]_U(t,Xt + h(t)) dt <eg
hed*

We are going to prove that AZ ;N BS; C E.p holds. To this end let w € AZ ;N B ;. Using
that w € B, we have

9 9
< < = —
[t x@ ) a <3| [t X + ot de | < 3 50—
0 k=0 k2—m eNom k=0
And since w € AZy; we obtain for n > m
1
[ 108 X00) s (8) = Bt Xifw) + B0
0
ity | (k2o
< / Vo (t, Xo() + e (£)) — T (F, Xo(w) + () dlt
k=0
k2—(n+1) €QND €QND
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ontl_1

<3 G (2 (k2 ) — By (k2 2
k=0

2n+1_1
< Copp [27H1277 4 a2 72 N by (k27 — hn((k/2)2”)]oo] .

k=0

Note that since h,, is constant on intervals of the form [k27", (k+1)27"[ we have h,((k/2)27") =
hn(|k/2]27™), so that the above equals

2ntl_g
Cepp | 271272 4 a2 3" |hn+1(k2‘”‘1)—hn(Lk:/QJZ‘”)|oo].

k=0

Plugging in Definition (7.1.4.4]) yields that the above expression can be written as

antl_g
o [2 Fnn22 S gt (kg | — 2 |27 ((k/2) 27 \oo]
k=0
ontl_q
< Copp |20 2@y pag=hn/2 N7 gmn=t| |9+ (k27 | — 2 (k2T )|
k=0 h > >
antl_g
fnw2 2 N Rk b (k2] 27 |
k=0

L peg—hn/2 Z_ 27" 2" ([k/2] 27") = [2°h (1k/2] 2‘")Hoo]

k=0 ~ -

<1

antl_1
< 05/2 2n—%02 In(2)2mn + 3né2—hn/2 + néQ—hn/Q Z ‘h (kz—(n+1)) —h (2 Uf/QJ 2—(n+1))|w] ‘

k=0

Since k = 2|k/2] in case k is even the sum can be restricted to k of the form k = 2k’ + 1 for
K € {0,...,2" — 1}. with the help of (7.1.4.2)) the above is bounded by

2" —1
Cg/z gn—2n | 3né2—hn/2 + néQ—hn/Z Z ‘h ((2]{5/ + 1)2—(n+1)) —h (2]{;’2_(n+1)) ‘oo] .

k'=0

Using Lemma we can further estimate the above sum by %, where L > 0 is the constant
from Definition so that in conclusion we obtain

/ILU(t, Xi(w) + byt (1) — 1y (t, Xp(w) + hy(t)) dt| < (4 + L)C'E/Qné2_h"/2,
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Therefore as long as w € A¢ ;N BZ; we have by Lebesgue’s dominated convergence Theorem,
the lower semi-continuity of 1y and by the above calculation

1 1

/]lU (£, X, (w) + h(t)) dt < lim [ Ty (t, X,(w) + hn(t)) dt

n—00
0 0

= / Ly (t, Xe(w) + hp(2)) dt + i / Ly(t, Xe(w) + hnpa(t) — Lu(t, Xe(w) + hy(t)) di

n=m 0

7.1.4.2)
(4+L 5/22”“2 hn/2 <

n=m

+-=c

€ € €
2 2 2

In conclusion we have proven that A¢, N B¢, C E.y and hence P[E, ;] > 1 — ¢ which
completes the proof.
]

7.2 The Approximation Theorem and Consequences thereof
Let us now proceed to prove the main theorem of this chapter.

Theorem 7.2.1 (Approximation Theorem cf. [Wrel7, Theorem 4.6])

Assume that the usual assumptions (see Definition [6.1.4) are fulfilled. Let b: [0,1]x H — Q
be a Borel measurable function. Then there exists a measurable set ' C Q with P[{)] =1
such that for every sequence (A, )men € ®* which converges pointwise to a function h € ®*
ie. nlbl_rgo |h(t) — hm(t)| g = 0 we have

1 1

lim [ b(s, Xs(w) + hn(s)) ds = /b(S,Xs(w) + h(s)) ds

m—00
0 0

for all w € V.

Proof

Let b be as in the assertion. For £ € N let ¢, := 27¢. By Lemma for every ¢, there
exists a 0y such that for every pair (g4, ;) the conclusions of Lemma holds. Applying
Lusin’s Theorem to the pair (b, d,) yields for every £ € N a closed set K, C [0,1] x H with
p[K§] < &g, where p = dt @ X,[P], so that

blg,: Ko — H, (t,x) —> b(t, )

is continuous. By Dugundji’s Extension Theorem (see [Dugb1, Theorem 4.1]) (applied to
the above maps) there exist functions b,: [0,1] x H — H such that

b(t,ﬂ?) = Eg(t,l’), v(tax> € KZ?
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[1Be]l0 = N10]loo

and

be 1s continuous.

Then, by invoking Lemma for (e4,0., Kf) we obtain for every ¢ € N a measurable set
Y, with P[Q)] > 1 — ¢, such that for any w € Q) and h € ®*

/ Lig (5, Xa(w) + h(s)) ds < &

holds. Let
Q= liminf €.
{—00
Since we have
YRS PR pESI.
¢eN 2eN ¢eN

the Borel-Canteli Lemma implies that

Pllimsup Q] =0 = P[Q]=1.

{—00

Let w € € be fixed. Then, there is an N(w) € N such that for all £ > N(w) we have w € €
and therefore for all m € N we obtain

1
[ a6 )+ ) | < FzD
0

Note that inequality ((7.2.1.1)) also holds if we replace h,, by h, since h € ®* by assumption.
The assertion now follows easily by the following calculation

1

/b(s, Xo(W) 4 hun(8)) — be(s, Xg(w) + hm(s)) ds

0 H
1

S /ILKE(S?XS(W) + hm(S))lb(S, Xs(w) + hm(S)) - l_)g(S,Xs(W) + hm(S))‘HJ dS

~
0 <2

1

< Q/H.K[?(S,XS<W) + hn(s)) ds.

0
(N

J/

-~

<ey by (7.2.1.1)

In conclusion we have

m—00

lim / b(s, Xo() + hun(s)) — b(s, Xs + h(s)) ds

H
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H

Using the above calculation this is bounded from above by

1

2e0 + nllinoo /Eg(s,Xs(w) + hm(s)) — b(s, Xs(w) + h(s)) ds

Since b, is continuous and h,, converges pointwise to h this is the same as

2e0+ /Z_)g(S,XS(W) + h(s)) ds — b(s, Xs(w) + h(s)) ds

0 H

1

<2+ / Tke(s, Xs(w) + h(s)) V_)g(S,XS(W) + h(s)) — b(s, Xs(w) + h(s)){@ ds < 4ey,

0 <2

where the last inequality follows by invoking inequality for h,, replaced by h. Taking
the limit ¢ — oo completes the proof of the assertion, since the left-hand side is independent
of £.

O

Using the above Approximation Theorem (Theorem [7.2.1)) we can now extend the estimates
obtained in Chapter 6 (Theorem [6.1.5 and [6.2.1)) to the whole space @ as the following
Corollary shows.

Corollary 7.2.2 (Cf. [Wrel?7, Corollary 4.7])

Assume that the usual assumptions (see Definition are fulfilled. For every ¢ > 0
there exists C. € R such that for every function b: [0,1] x H — @, n € N\ {0} and k €
{0,...,2" — 1} there exists a measurable set A.p 1 € Fpqryz—r € Q with P[A k] < 57
such that

24a+42~y

Lag, . Jeni(@)la < Con 227" (|Jofo +27)

holds for every = € 2Q) and by setting

co 2"—1

As,b = U U Az—:,b,n,k

n=1 k=0

we have P[A. ] < e with the property that
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1 —&n _obsn
Lacloni(z,y)|a < Ce |na2 Mz = yloo +277° ]

holds for all z,y € 2Q, n > 1 and k € {0, ...,2" — 1}, where 65 := (h — ) 2@3127.

Proof

The first inequality follows from Theorem for all points x € 2Q ND. For general points
x € 2(@) this follows by approximating 2QQ N DD > x,, — = and using Theorem [7.2.1]

The second inequality follows in the same way by combining Theorem [6.2.1] and Theorem
Note that the estimate can be trivially extended from points x,y € @ to x,y € 2Q) by
changing the constant C. and using that ¢, ; is a pseudometric (see Remark |6.1.2)).

Observe that one can choose (C. / A.p), so that the conclusion of Theorem [6.1.5 and [6.2.1]
hold (with the same constant / one the same set).

O
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8 Long-Time Regularization using Euler
Approximations

In this chapter we will prove estimates for terms of the type

N

Z |Pnketq(Tgr15 Tg) -

q=1

We will first prove a concentration of measure result for the above term in Lemma [8.1.3
Using this we prove a P-a.s. sure version of this estimate in Theorem [8.2.1] However, this
estimate only holds for medium-sized N (i.e. N = 2°" for some ¢ € ]0, 1[). By splitting the
sum and using Theorem repetitively we conclude the full estimate in Corollary [8.2.2]

Note that applying our previous estimate for ¢, ; (Corollary [7.2.2)) to every term under the
sum would result in an estimate of order na2="N. Since N will later be chosen to be of
order 2" this is of no use. The technique to overcome this is two-fold:

On the one hand the ¢, 14, terms have to “work together” to achieve an expression of order
N. However, since {p, p+q(2,) | ¢ =1, ..., N} are “sufficiently uncorrelated” the law of large
numbers tells us to expect on average an estimate of order v/ V.

On the other hand, in later applications z, will be values taken from the solution of the
integral equation (IE) , so that it is reasonable to assume that |z,41 — 2|5 = |©nptq(Tq) |-
Exploiting this enables to use both of our previous established estimates (Corollary
for every |pn krq(Tgt1, Tq)|m term.

Using both techniques we end up with an estimate of order 27N (see Corollary [8.2.2)).

We split this chapter into two sections. In the first we only consider the case when z,1; =
Tg + Onitq(z4) (a so-called Euler approximation).

In the second section we consider general points z, € @ C RY. We choose 2y close to zq and
define the Euler approximation z, of xz, by

Zgr1 = Zg + Pnrq(2q)

and proceed to estimate the above sum in terms of the difference

Vg = Tgr1 — Tg — @n,k—s-q(xq)

between z,,; and the Euler approximation of x,,; given z,.
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8.1 Euler Approximations

In this section we concentrate on the case when for a given o € Q C RN we have 2,1 =
Tqt+Pn ktq(Zq). A sequence (z4),=1,. n of this form is called an Euler approximation sequence.

77777

Theorem 8.1.1 (Burkholder—-Davis—Gundy Inequality)

Let (M, Fp.)nen be a real-valued martingale. For 2 < p < oo we have

(E| M, [7)!/? < p(E[(M)/?)!?. (B111)

Proof

In the celebrated paper [Dav76l Section 3] it is shown that the optimal constant in the case
of discrete Martingales is the largest positive root of the Hermite polynomial of order 2p. We
refer to the appendix of [Osel2| for a discussion of the asymptotic of the largest positive root.
See also [Khol4, Appendix B|, where a self-contained proof of the Burkholder-Davis—Gundy
Inequality with asymptotically optimal constant can be found for the one-dimensional case.

Lemma 8.1.2 (Cf. [Wrel7, Lemma 5.2])

Let (M, F.)nen be a real-valued martingale of the form

Mr = zr: Xk
k=1

with E[X?] < CPpP for all k € N and p € [1,00][ then

(3(25) )]

E

holds for all » € N.

Proof

Let (M, F,)nen be a martingale. Using the Burkholder-Davis—Gundy Inequality (8.1.1.1)
for every r,p € N with p > 2 we have

r p/2
E[M?] < pPE[(M)??] = pPE (Z Xs)

< pprp/Q—l]E < pprp/2—1rcppp — C’prp/Qpr.

S

k=1

In conclusion we obtain
E[MP] < CPr#/2p™ (8.1.2.1)
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for every p > 2. Furthermore, using Inequality (8.1.2.1) for p = 2, we trivially have by
Jensen’s Inequality

E[M,/?] < E[M2]V* < CV/?'/42, B1.2.9)
E[M}] < E[M?)/? < Cr'/?2? (8.1.2.3)

and
E[M??] < E[M]P* < C3/25/428, B1.24)

Hence, starting from the left-hand side of the assertion we obtain

1 M 1/2 oo B E[M;)/Q]
o (1(25))] - S

p=0

E

We split the sum for different p and use the above inequalities (8.1.2.2), (8.1.2.3)), (8.1.2.4)
and (8.1.2.1)) to bound the above expression by

C1/2,1/49 7207,1/222 7303/2703/423 oo . p
C1/2p1/4 + Crl/2 + C3/2p3/4 Z

v~ - "~ - ~ v~ p= 4 h,—/
=4-1 =4-2 =4-3 p

=4-PEL
p!

1+8°! <1+Z4Ppp.
N p=1

Using Stirling’s Formula for p > 1

3pPe P < e TZFT \/ 2mppPe P < p!

and the above calculation we finally calculate

1/ M, \Y? 1S
LM <14y arer <2,
eXp<8(C’\/F> )]— +3p:1 <=

E

Lemma 8.1.3 (Cf. [Wrel7, Lemma 5.3])

Assume that the usual assumptions (see Definition are fulfilled. Let ¢ > 0, (by)gen
be a sequence of functions b,: [0,1] x H — (), then there exists a measurable set A.; :=
Ac (bg)gen € €2, a constant C' € R and N. € N such that for all zy € @, all n € N with n > N,
all r € N with r < 2"/2 k€ {0,...,2" —r — 1} and for every n > 0 we have

r—1
P|Lac Z\ganq byi Tq—1, Tg) | > nC (272" V/r|wo|ir + V/r272") + C27 2h"2\xq]H <4e ",
q=1 q=0

where 411 1= Ty + Pnitq(by; Tg) for ¢ € {0,...,7 — 1} is the Euler approximation sequence
for xg.
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Proof

Sketch of the proof:
The idea of the proof is to use the identity

l@n,k-kq(bq; Tg—1, xq) |H :l¢n,k+q(bq; Lg—1, xq) |H - EEHQOn,k-&-q(bq; Lg—1, "Eq) |H|F(k+q)2*"l

:X/q ;{/q :‘:,Zq
+ F['@n,k—&-q(bq; Tg-1, xq) |H|~’T_.(k+q)2*”l - E[Eﬁ%,mq(bq; Lg—1, Iq)|H|"r(k+q)2*"] |]:(k+q—1)2*"l
—7, -V,
+ EE[EH‘Pn,k-&-q(bq; Lg—1, xq) |H|‘/—_-(k+q)2*”] |‘F(k+q—1)2*”l'
~
By defining

X, =Y, - 7,
Wy=2,-V,

this can be rewritten in the less explicit form

Yq:Xq""Wq‘f"/;z'

We now sum over ¢ to obtain

DV =D X D) W+ V.
q=1 q=1 q=1 q=1

Note that since X, (respectively WW,) is a random variable minus its conditional expectation,
hence, the maps

T
r—> Z Xq,
q=1

r— XT:Wq
q=1

are martingales w.r.t. the filtration (F(zyr)2-n)ren and (Fgir—1)2-n)ren. These two martin-
gales can be estimated by their bracket process using the Burkholder-Davis—Gundy Inequal-
ity (see the previous Lemma for details). We will then calculate the bracket process
and use our previous developed estimates for ¢, ; (Theorem in the form of Corollary

7.2.2)) as well as Corollary [5.1.8}

This leaves us with estimating the residual term

Vg = E[EHS@n,kJrq(bq; Lg-1, xq>|H‘]:(k+q)2—”]|-7:(k+q71)2—"]-

Since we are dealing with the conditional expectation we can use the tail estimate for ¢,
(Corollary [5.1.8)) for p = 1. Proceeding in this manner, we obtain an upper bound containing
27"z, 1 — x,|g. Since z, is an Euler approximation sequence we have
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[Zg—1 — Zglr = |Pnktqe(Tg) |,
so that we can apply Corollary again to obtain an upper bound of the order 272" |z, |p.

There is a technical problem with this approach however. Theorem [6.1.5] only holds on a set
Ag}qu’k +q © §2. We therefore, in order to resolve this issue, modify the Euler approximation
sequence Zq so that x, = 0 if z, is outside of the set AZ, . . Since we would like to use
the above mentioned martingale estimate (Lemma, we have to modify z, in such a way

that z, is still measurable w.r.t. F(iq)2-n-
Beginning of the proof:

Let € > 0, n € N\ {0} and b,: [0,1] x H — @ be as in the assertion. Using Corollary
there exists C. € R and A.p, nitqg € For1yz—n With PlAcp nktq) < %e_”g such that for all
x € 2() we have

24a+2y

| Onsq(by; @) < Con 2on 270 (| + 2727 . (8.1.3.1)

on AZ, . rig Note that x is allowed to be a random variable and we have used that
| loo < | |- We now set

N, := min {n e N\ {0}|Cun 57" < ghn/g} |

Let, as in the assertion, be n € N with n > N., r < 2"/2 k€ {0,...,2" —r — 1} and x4 € Q.
Additionally, let 441 := z, + @n1q(bg; ¥4) be the Euler approximation sequence defined for
q€{0,...,r—1}. We write z, = (xff))ieN for the components of z, and for ¢ € {1,...,7} we
calculate
(k+g+1)27"
9] < [z)] + / b (5, X + ) — b (s, X,) ds| < |2, ] + 2[|6@|c27".
(k+q)2—m

Via induction on ¢ we deduce

2] < |257] + 2027189 | o <[]+ 20277 08 oo

<1

and since both z, € @) and, by assumption, b, takes values in () we conclude that z, € 2¢Q)
for all ¢ € {1,...,r}. Note that x4 is F(414)2-n-measurable. Due to the fact that inequality
(8.1.3.1)) only holds on A¢ C Q) we modify z, in the following way

€,bg,n,k =

Observe that we lose the property that z,.1 — 2, = ¥ r+q(by; z,), but we still have z, € 2Q
and

|:i‘q+1 - 'f:q|H S |S0n,k+q(bq; i’q>|H 8~1-3~3

Most importantly, the modified Euler approximation sequence (Z,)q—o,...r is still Fpq)2-n-
measurable. We set
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2" —1
Ae,b = Aa,(bq)qu = U U U Aa,bq,n,k

neN k=0 ¢eN

in a similar way as in Corollary [7.2.2l We obviously have P[A. ;] < ¢ and for the modified
Euler approximation we obtain for every ¢ € {0, ...,r — 1}

Tgraln = 2g + Lac, . Onkralby; To)lu < [Tqlm + Lag, . [0nktq(bg; To)lu

2+4+a+2y

and using inequality (8.1.3.1) for x replaced by 2, and C.n 2e7 < 2//2 this is bounded
from above by

2tat2 . ) o
i+ Con” 355 27 ([l +27) T (L4272l + 270727

By applying the discrete Gronwall inequality (see Corollary [2.1.2) with o = 27""/2 and
B = 27hm/22=2" (or via induction over g € {0,...,r} and using that ¢ < r < 2"/2) we have

q—1
’ilq|H S (1 + 2—hn/2)q|§70|H + Z(]- + 2—hn/2)€2—hn/22_2”
=0
—hn hn/ —hn _hn hn/2 | _on
< (2 ol g2 (L 2P 0
<e <1 <e
In conclusion we obtain
|iglm < e (|zolu +2777). ’1.3.4)
for all ¢ € {0, ...,r}.
For the next step we define
Yy = [0nnrq(bg; Tg1, 24) 1,
Zy = BlY| Frerqa—r] = Blloniiq(bg; g1, T¢) || Fetgp2-n];
X, =Y, -2,

as well as

rAT

M, =Y "X,
q=1

with 7 € N. Note that M, is a F(y4r11)2-»-martingale with My = 0. Furthermore, for every
p € N we have the following bound of the increments of M

E[|X,["] < 2" E[|Y[” + | Zg[") < 2PE[|@n pq(bg Eg-1, 24) [3]-
Using Corollary and inequality (8.1.3.3)) this is bounded by

CRpP227 "M E[| 21 — &[] < O%p? 227" El0nprg-1(bg-15 Fg-1)[r]-
Using Corollary again this is bounded by
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CX P2 2" E |21 |y] < CFPP2 2 E[|2q-1[f].
Applying inequality (8.1.3.4)) yields
E[| X, %] < Cpro—2hvmep (|zolm + 2—2n)p.

Note that z( is deterministic. Using this bound we invoke Lemma with

C:= 0)2(2—2hn (|l’0|H + 2_2n)

and hence we obtain the following bound for the martingale (M) ey

1 T71/222hnMT 1/2
e — < 2. R.1.3.5
X (8 (FGmrem) )| 8133

In a similar way as (X, Yy, Z,, M;) we define

E

Vo = ElZ| Fhtg-1)2n);

Wo =2, -V,
and
AT
ML =Y "W,
T=1

Observe that M) is a F(1-)2-»-martingale and in a completely analogous way as above we

obtain
1 r—1/292hn 1/ 1/2
exp | = r < 2. 8.1.3.6
P18 (c§<<|xo|H+22">) = 6139

Let us now consider the term V,

E

Vg = E[Zg| Ferg-1)2-2] = E[E[|0n1+4(bg; g1, To) | [ Fh+q2=] | F (erq-1)2-1]
Using Corollary for p = 1 and inequality (8.1.3.3)) this is bounded by

Cx 27" E[|2g-1 — &gl Firrg-1)2-n] < Cx27"E[|@nstq-1(0g—15 Zq-1) | Firyq-1)2-).
Invoking Corollary again this can be further bounded from above by
CX27" Bl Zq-1|u| Fiirq-12—] = Cx27 " |Z4-1] .

This leads us to

r r—1
STV, <0327 iyl 81.3.7)
q=1 q=0

For notational ease we set C' := v/8C%. Finally, starting from the left-hand side of the
assertion and using Y, = X, + W, + V, we get for every n > 0
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r r—1
P Lac, Z |0 ktq(bg g1, Tg) | > nC” (2_%“\/;‘370’11 + \/772_2n) + Z |2l 1
q=1 q=0
. r—1
<P > e, [, ta(bg; g1, ) [ > nC" (272" /rlwolw + V/r272") + €272 > lagln
La=1 Yy =X WtV =0
[ r r—1 r
SPUY Vy> 2y gl | +P | D0 Xy + Wy > 00V (27 ol + 2-2")]
Lg=1 q=0 q=1
—0 by (E137)
<P [ ZX‘I > C'nyr (27 wolp +27) | +P Z W, > C'n/r (272" wo| i +27%)
=1 =1
Lf_'/ L/_'/
=M, =M/
7,—1/222hn T—1/222hn
—P M, >n| +P M > ).
[0'<|xo|H+2—2"> ! [C’(|$0|H+2_2) !

|

By applying the increasing function x + exp(z'/?) to both sides and using Chebyshev’s

Inequality this can be bounded from above by

r—1/292hn r—1/292hn

exp(—n'/*)E

o o) e (e

Using inequality (8.1.3.5) and (8.1.3.6) we can conclude that

’mo‘H + -2 \x0|H + 22"

Lac, Z |Pnkq(bg; Tam1, 2| > nC" (272" /r|zo|m + V/r272") + C'272hn

q=1

P

which completes the proof.

8.2 Long-Time Regularization

>M’f)l/2] '

r—1

Z 4|1

q=0

E

_1/2
4e7 ",

U

In this section we now consider the case of arbitrary (z,),—o,.. . Given zy € ) we construct
a 2o € () which is “close” to xy and consider the Euler approximation sequence (2z,),—0.. » by

setting

Zg+1 = Zg t ‘Pn,k+q(zq)~

24 then acts as an approximation of z,. By controlling the error between z, and z, we are

able to prove the following theorem.
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Theorem 8.2.1 (Cf. [Wrel7, Theorem 5.4])

Assume that the usual assumptions (see Definition are fulfilled. For every ¢ > 0 there
exist C. € R, Q. C Q with P[Q¢,] < e and N. € N such that for all sequences (by)4en of
functions b,: [0,1] x H — @, all n € Nwith n > N, k € {0,...,2" —r — 1}, § €]0, h[ and
for all yq, ..., y, € @ we have

r—1
2 min s
9—2hn oo (73 n2+5\/?> ol + 9—on/4 Z Yog i + o-2min s n |
q=0

Z |Oneta(Dgs Ya—1, Yo) o < C-

q=1

on Q. for 1 <7 < 2°"4 where Y 1.4 = Ygr1 — Yog — Prkrq(be; ¥q) for ¢ € {0,....;r — 1} is the
error between y, and the Euler approximation of y, given y,1 (i.e. Y, + @nr+q(by; yq)) and

0s = (h — 5)2&3‘127 as in Theorem [6.2.1]

Proof
Sketch of the proof:

In order to prove the theorem we first have to get a “IP-a.s. version” of Lemma This
is done by considering the event

r r—1
Bejapnrkay = {Z [onhrq(Tq1, %) [ > NCVr (27" wo|y +272) + C272" Z |93q|H} :

q=1 q=0
By Lemma the probability of the above event B. 345,k is bounded from above by

4= In the first step of the proof we show that by setting 7 ~ nH%(log(l/a))2 the
probability of the event

oo 20m/4gn_p_q 220

U U U U U BE/Q,b,n,r,k,xo

n=Ne r=0 =0 s=0g5cQsn2—(s+n)ZN
is bounded by e. Here, Q, := {z € Q: |z|o < 27} as in the proof of Theorem [6.1.5]

In the second step for a given a sequence ¥y, ..., y, we construct a 2y € Q, N2~ CHIZN with
s €0, ...,2%"} such that 2 is “close” to yo. By defining 2,11 := 2, + ©nr+q(2,) the sequence
(24)q=0,...» is then an Euler approximating sequence. Hence, we can use the above “P-a.s.
version” of Lemma for x, replaced by z, and therefore we obtain an estimate for the
expression

r
Z |90n,k+q<zq—1> Zq) |H
qg=1

In the third step we estimate @y, k+4(2¢, Yy)|m- Using the triangle inequality

|Zq+1 _yq+1|H < ’Zq—l—l —ZgtYq _yq+1|H+ |Zq _yq|H < |90n,k+q(zqa yq)|H+ |7n,k:,q’H+ ’Zq _yq|H

together with the fact that |yo — zo|g is small (by construction of zy) we can perform an
induction over ¢ to obtain the required estimate.
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In the final step we use the identity

Yg—1 =Yg = Yg—1 — Zg—1 T Zg—1 — Z¢ + 24 — Yq

to deduce that

Pt (Yg—1 Yo) | < [Onierq(Wa—15 Zg—1) |1 + [0 prq(2a—15 Z0) |1 + [0 etq (2, Yo ) |1-
Applying the estimates obtained in the previous steps concludes to proof.
Beginning of the proof:
Step 1:
Let ¢ > 0 and C./, the constant from Corollary Similar to the proof of Lemma [8.1.3]

we set

N, := min {n € N\ {0}CLpn 5 < 25"/4} . 2.1.1)

For the sake of readability we write b = (b;)sen. By Lemma there is A.j2p C § with
P[A. /23] < 5 and a constant C' € R such that for x,41 1= 24 + ©n k4q(bg; 24) and any x4 € Q
we have

T r—1
Plla,, Z | Pnkrq(bg; Ta1, T) | > nCVT (272 o |y +2727) + C27°M" Z \2q| 1 ] < 4e "
q=1 q=0

N J/
-

::BE/Q,b,Tl,T‘,k’,:BO

8212
for all n > 0. We note that r < 29"/ < 2"/4_In order to obtain an almost sure bound we
define

oo 20m/4gn_p_q 220

Bg/27b = U U U U U Bs/2,b,n,r,k,xo~

n=N. r=0 k=0 s=0 CEOGQSOQ_(‘H'")ZN

W.lo.g. we assume that ¢ > 0 is sufficiently small so that

4
Me ::log—ozl
€

and applying Lemma in the form of inequality (8.2.1.2)) with n := (1 + 2(3n)1+%)2ﬁ€2
yields

oo 20m/4gn_p_1 227

P[Bun) <4 % > > > "

n=N¢ r=0 k=0 s=0 $0€Q302_(5+")ZN

00 22n
<4y 2y A(Q.N g~ (tm gz =2 T i
n=~N¢ s=0

Using the usual assumptions (see Definition [6.1.4)) and Proposition we can use Theorem
to estimate the above expression by

- 110 -



Chapter 8: Long-Time Regularization using Euler Approximations

o) 22n

n=N¢ s=0
By the usual assumptions we have ed(Qs)sin < Co(In(s +n + 1))/7, where v > 1 and

Cg > 0 are the constants from Definition Henceforth, the above sum can is bounded
by

2271

n=Ng s=0

<4e™ 3 gin(2. g 4 A 2T < g § gn(gny 67200
n=Ng n=Ng

> 1 1 1 °°
— fo Z oin 3(3n)w€_(3n)1+w 6_(371)1+7 < e Z 94n =3 < 90T — %
| S ——
n=~N¢ <1 n=N¢

<5

Henceforth, P[B, /) < 5. We set Q. := Ag/m N BS/M. Note that P[Qg’b] <e.

5.
In conclusion there exists C. € R such that for all n > N., r < 2/* k€ {0,...,2" —r — 1}
and z¢ € Q, N2~ CFMZN with s € {0, ..., 22"}

r r—1
Z |S0n,k+q(bq; CCq—l; xq)lH S Os 712—~_%2_2}m\/ﬂx0|H + 2_2}m Z |xq‘H + T2_296n 8-2-1~3
q=1 q=0

holds on Qe with g := g + @ iie(2g). Recall that 85 := (h — 6) g7l
Step 2:

Let n, k, r € N and vy, ..., ¥ € @ be as in the statement of this theorem. From now on fix
an w € Q.. Let s be the largest integer in {0, ..., 22"} such that

yolm <277
holds. This implies that yg € @)s. Since s is maximal with the above property we have

27t < Yo or lyolm <27° = 92"

and hence

27 < max(2lyo|m,27%") < 2Jyolu + 277" (8.2.1.4)

Since yp € @, we can construct zp € Q@ N 2-CtMZN which is close to yo, in the following
way:

Recall that since we assume that the usual assumptions (see Definition [6.1.4)) hold Proposi-
tion implies that there is a constant ¢, > 0 such that

|| <exp (—e™),  V(zn)nen € Q. 82.1.5)
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Set d := (In(c;(2s + 2n)))'/7. For the components i < d we choose z = (z(()i))ieN so that

) — 28 < 275, ’.2.1.6)

and z(()i) := 0 for all ¢ > d. The distance between y, and zj is therefore bounded by

lvo = 2ol = D lue” ="+ D I

0<i<d d<i<oo

Using the above inequality (8.2.1.6)) and the fact that, since yy € @), the components of y
satisfy the bound (8.2.1.5)) this can be estimated by

do—2s—2n + Z exp (_26%1'7) < d9—2s—2n + exp (_ecyd“/) Zexp (_ecfyi’v)7
i=d =0

—e—25—2n =

J/

-~

.02
=:05<00

where we have used exp(—2e“"") < exp(—e“?") exp(—e“*") in the last step. Therefore, we
get

Yo — 20l < Cyy/In(2s + 2n)t/r2757"

and hence by inequality (8.2.1.4]) we obtain

Yo — 20l < Cy4/In(2s + 2n)1/7 (21_n|y0|H + 2_"2_22n>
< 20, /In(220+1 + 2017 (27"l +277272) < 20y /tn(im)1/7 (27 gl + 277272

(10g2<24n)>1/7 — — _92n (4n)1/"/ — _ _92n
pYe —(2” 919 ):20 <2" 919 )
Y 111(2)1/7 |y0|H + o' 1n(2)1/,y |yO|H +
In conclusion we have
= 1 —n _92n
luolm = |yo — 20lu < C, (n2w2 ol +272 ) : R21.7)

We define zq, ..., z, recursively by

Zg+1 1= Zq + Pngtq(bgi 24).

Note that 2, ..., z, are deterministic since we have fixed w. Using the definition of 2z, we have

|Zq+1|H < ’Zq|H + |<Pn,k+q(bq5zq)’H-

Recall that w € Q.;, C A¢ J2b and hence we can invoke the conclusion of Corollary SO
that the above expression is bounded from above by

24+a+42y

2gli + Cepan” 2 27" (|20 +27%") < (14+27"2) 2| + 27227,
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where we have used Definition (8.2.1.1]) to conclude that C., ona T2 < 9=hn/2 By apply-
ing the discrete Gronwall inequality (see Corollary 2.1.2) with a = 2-"*/2 and § = 2-"/22-2"
(or via induction over ¢ € {0, ...,7} and using that ¢ < r < 29%/2 < 2//2) we have

q—1
|Zq|H <1+2 hn/2 |Z ’H+Z 1_|_2 hn/2 9= hn/22 2n

S (1_|_27hn/2) ’ZO|H ( +2 hn/2) ro hn/22—2” §6(120’H+272n).
N——— N—— g

<e <e <1

Since 2o, ..., 2, is by definition an Euler approximation and z, € Q,N2-+*»ZN the conclusion
of Step 1 (inequality (8.2.1.3))) with z, replaced by z, holds and we obtain that

r r r—1
2 _ _obsn _
S lonkra(zats 2l < Ce [0 32720 Jr gy 4 7272 4 27200 37 |Zq!H]

g=1 L q=0

[ r—1

L q=0

— CE -n2+%2_2hn\/F|ZO|H —|— T2_206n + 2—2hnre (’ZO|H + 2_2n)i|

2 _ __omin(fg,1)n
< 2eC. [max <n2+v r,r) 27 oy + 127 }

< 2¢C. [max (n”%\/ﬁ 7") 272" (lyolur + Iyo — 2olm) + r2‘2mi“(95’”"] .

Applying inequality (8.2.1.7)) yields that the above expression is bounded from above by

. e (4 ) 2 (s a2+ 5 ))

<1

2 _ _omin(fg,1)n
<C., [max <n2+w NG r) 272yl + 272 } ,

where C. , := 460507. Therefore we obtain

! 2 min ,1)n
> nksalzat 2l < Cop [ma (57,0} 272 g g 472727 - (E213)
q=1
Step 3:
Claim:
r—1
Osn
lenk+q<zq,yq)|H < CL|r2 " yol + 127" + 27 “”“Zlmqm] . (82.19)
q=1 q=0

- 113 -



Chapter 8: Long-Time Regularization using Euler Approximations

Proof of (8.2.1.9)):

We set u, := z, — y, for ¢ € {0, ...,r} and bound the increments of u, in the following way.

Ugr1 — Uglr = |Zg41 = Ygr1 — 2g + Yglir = [0nkra(bg; 2g) — Ygr1 + Yolu
< |@ni+a(bgs 2) = Yar1 + Yq + Vgl + [Vnal
= |@nk+q(bg; 2) — Prkta(bg; Yo) | i + [V kgl -
= [Pnr+a(ba; 24, Yol + [V kgl

We therefore deduce that

[Ugr1|H < Jugs1 — Uglm + [ugla < |Onkrq(bes 2 Yo) | + [ Vgl o+ |tga-

By the conclusion of Corollary and Definition (8.2.1.1)) this is bounded by

Lo g gt o i
Copa (nF27% 120 =yl 4272 )Pl S (1427 lug i+ Ceps2™ " + gl

=|uqlm

Using again the discrete Gronwall inequality (Corollary ) this time with av = 27"/2 and
B = 27mn/29-2" (o1 via induction over ¢ € {0, ...,r} and using that ¢ < r < 29/2) we have

r—1
—n r _obsn
[uglg < Cepa (1 +2 g /2) <|U0|H + 727" 4 § |%,k,q|H)
~—_———

<e 7=0

r—1
_90sn
< eCepa <|U0|H 27y |ka‘1|ﬂ> ‘

q=0

Using the above calculation together with inequality (8.2.1.7) yields

r—1
= 1 —n __omin(fg,1)n
gl < eCepo (Cvn2w2 [Wolsr + 2r27 2" 43 |fyn,k,q\H> ®-2-1.10)

q=0
and hence, by combining this estimate with Corollary we have

®-2.1.1) 1 sn _on —én —2n
nkraCo vl = Cep (n827|z = ol +27%) < Cupp (27 fuglu +27%)
r—1
(8.2.1.10)) ~ min(6g,1)n —2n
< eCl2 (Cm%r“\yﬂm +2r27 T S m,k,qm) +Cepp2”™
q=0

In conclusion since r < 29%/4 we obtain

‘%On,kJrq(qu yq) ln < Cé

r—1
—n __omin(f5,1)n —_n
27" [yl + 277" 27 2 i H]
q=0

and hence summing over ¢ = 1,...,r and using again that r < 2°"/* completes the proof of
Claim (8.2.1.9)).
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Step 4:

Finally, using the identity y,—1 — ¥q = Yg—1 — 2¢g—1 + Zg—1 — 2q + 24 — Y4 the left-hand side of
the assertion can be bounded as follows

Z|90n,k+q(bq§ Ya—1,Yg) | < Z|90n,k+q(bq; Ya-1, 2q-1) | HFPnkq(bg; Zg-1, 2) |+ |@nh+4(bg; Zg, Yg) |1
q=1 q=1

Applying inequalities (8.2.1.8)), (8.2.1.9) and (8.2.1.9) with z,, vy, replaced by z,-1, Y41
respectively yields that this is bounded by

r—1

2—2hn max (T, n2+%\/;> |yO|H + T2_2min(65,1)n + 2—6n/4 Z |'Yn,k,q|H
q=0

1"
o

Corollary 8.2.2 (Cf. [Wrel7, Corollary 5.5])

Assume that the usual assumptions (see Definition [6.1.4)) are fulfilled. For every € > 0 there
exists C: € R and N, € N such that for every sequence (b,),en of Borel measurable functions
bg: [0,1] X H — Q there exists a measurable set (& ), © @ with P[Q () | ] <& such

that for all n € N with n > N, all N € N with N <2" k€ {0,...,2" — N}, § €]0,h[ and
for all z, € @ for g € {0, ..., N} we have

N-1
|Pngirq(bg Tr1, Tg) |l
q=0
N N-1
< O 273 gy 4 27 gy + 270N gl + N2TE
q=0 q=0

on Q.p, where v, 14 = Tgr1 — Ty — Pnitq(by; x4) is the error between z,41 and the Euler

approximation of .4 given x, and 05 := (h — d)5 +2§127'
Proof
We define r := |2°"/*|. For the sake of notional ease we set v, = 0 whenever ¢ > N. In

order to estimate the left-hand side of the assertion we will use Theorem To this end
we split the sum into s pieces of size r. Choose i € {0, ...,r — 1} such that

Lr*lNJ 1 r—1 \_'r'ilNJ
D |l < ;Z Y lrgroln
t=0 qg=0 t=0
/N
holds. Since we calculate the mean of > |z, |n on the right-hand side, it is clear that
=0

such an i always exists. Set s := [r~!(N — )| and note that s < [r~'N|. Using this we
have
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rlLT‘ 1]\[

S
Z|$i+tr|H Z Z |xq+tT|H
t=0

Hence, we obtain

s N-1
S wiserln <Y gl B221)
t=0 q=0

Starting with the left-hand side of the assertion we split the sum into three parts. The first
part contains the terms z, for ¢ = 0 to ¢ = i. Since 1 < r < 29n/4 this can be handled
by applying Theorem directly. The second part contains s sums of size r. Here,
Theorem is applicable for every term of the outer sum running over ¢t. The last part
can be handled, in the same way as the first part, by directly applying Theorem [8.2.1] This
strategy yields

N-1 i1
> nitalbe: Tasr: )l m = > [Pnerg(bgi Tgs1, Tg) 1
q=0 q=0
s—1 r—1
+ Z Z P ptirtra(Ogs Tqr1tivers Tarirer) |
t=0 q=0

N—i—rs—1
+ E |90n,k:+i+sr+q(bq§ Lg1+itsr, xq-&-i-‘rsr) |H
q=0

< C:

i—1
2—2hn max <7“, n2+%\/;) |$0‘H + 2—(571/4 Z h/n,k,q‘H + r2_2m1n(95,1)n]

q=0
s—1

+C>

t=0

N—i—rs—1
—2hn 2—‘1-2 —&n/4 72min(05,1)n
2 max <7’, n- \/F> \xHM]H + 2 / g |’Yn,k,z‘+sr+q|H + 72 .
q=0

r—1

—9hn _Sn/4 _2min(85,1)n

2 T igtr|H + 2 / E |V ki trtql i+ 72
q=0

+ C;

< C.

N-1
n n n __omin(fg5,1)n
2720 | 20| b +22hr5 |xz+tr|H+26/4E Vodgler + (s +2)r272777° ]
— q=0

Estimating this further by using inequality (8.2.2.1]) and » < 29/* yields the following bound

2C,

N-—1 N-—1

n n n min(65,1)n

RO o gy + 270 Z|$ | +27 6/4Z|7nk,q|H+N2 2mntod ],
q=0 q=0

which completes the proof.
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9 Proof of the Main Result

In this chapter let X: [0,1] x Q@ — H be a stochastic process adapted to a filtration
(Ft)icfoa)- We assume furthermore that X is a @-regularizing noise of order av > 0 with
index h € [£,1[ in the sense of Definition Assume that the usual assumptions (see
Definition hold, i.e. there is a constant Cy € R is such that ed(Q),, < Cqo(In(m+1))/"
for v > 1.

In this chapter we assume that

1—nh 2ary 1
< < - 9.1]
h 24a+2y ~ h -1)
Note that in case h = % this condition simplifies to
24 a+ 2y <2ay <4420+ 4y (9.2)

and if additionally a = 2, this reduces simply to v > 2.

9.1 Preparation

Let f:[0,1] x H — @ be a Borel measurable map. For the sake of notional ease let us
define the function b, as follows.

Definition 9.1.1

Let A: D(A) — H be a positive definite, self-adjoint, closed, densely defined linear operator
such that the trace of its inverse A~! is finite. For all n € N and k € {0, ...,2" — 1} we define

by o(t, ) i= e (FFD2T=0A g3 ) Vte k27", (k+1)27"], z € H.

For given € > 0 let, furthermore, ). y C Q be such that Theorem Corollary and

.....

,,,,,

From now on fix an w € Q. ;. In this chapter we consider functions v € C([0, 1], H), which
are solutions to the following integral equation

t

u(t) = /6_(t_s)’4 (f(s, Xs(w) +u(s)) — f(s, Xs(w))) ds, vt € [0, 1]. (9.1.1)

0

We prove that w fulfills a log-type Gronwall inequality (see Theorem [9.2.4) and conclude
that u must be trivial in order to be a solution to the above integral equation (see Corollary
9.2.5)).
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Remark 9.1.2

Since we have already established that, as long @) is small enough, an Ornstein—Uhlenbeck
process is a regularizing noise (see Corollary we are able to conclude from the above
mentioned result that equation has only the trivial solution v = 0. Henceforth,
from Proposition the main result of this thesis follows. Details of this argument can be
found in Chapter 10 below.

From this point onwards let u € C([0, 1], H) be a solution of equation (9.1.1) and assume
that u € @ (see Definition for the definition of the set ®) with Lipschitz constant L > 1.

Definition of §

Let 0 < § < h such that
1—h - 2ary
h—§6 24+a+2y

Recall that h is the index of the regularizing noise and that we imposed the condition

1—nh - 2y
h 2+ a+ 2y’
which guarantees the existence of such a 9.

Definition of ¢
Recall that 65 was defined as

2
05 = (h—0)——T
24+ a+ 2y
By our definition of  we have that
1—-h< 05.
Hence, there exists ¢ > 0 such that
1—h+ C < 95.

Definition of mg
Let mg € N be the smallest number such that the following inequalities are fulfilled
24+a+2y
mo 2ay S h2<m07

27hm0/2 <

2—§m0/4 S
©.1.2.1)

3h2~m090mo

2(1—h+<)m0

IN

[N NN IS NN IS N

>

0 — g < 2™,

IN A

2402~ 0m0/4

N | —

1
—_
—
oo

1
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where C' > 1 is a constant such that

‘672_” -1 <02
op
for all n € N.
Note that our assumption 5 +25127 < % implies that
2 E1) )
Os = (h—0)——T 1% <, 0.1.2.2)

24 a+2y T h

which guarantees the existence of such a mg € N.
Assumption on 3 / Definition of N

Fix a m € N with m > mgy and j € {0,...,2™ — 1} and assume that there exists § € R
satisfying

92" < g < 22O and (27 e < 8. ©.1.2.3)
We additionally set

N = [3hlogy(1/8)].

Remark 9.1.3 (Existence of )

The interval in which § lives is non-empty since by our previous definitions we have
1-—h+(<6;
from which we deduce that
o(I=h+C)m - 9fsm.
Since m > my the definition of m, guarantees even that
o(I=h+)m  ofsm _
so that

_9(1=h+¢)m _o0sm
22 > gm=29"

Lemma 9.1.4

With everything as above we have

9(+0/4=2h)m ) EEEE o (1=h)m < N < 3. 905 %-27”. (9.1.4.1)
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Proof

Starting from left to right we have

1+ oh<1-high<i-h
4 <0

since § < h. Therefore,

o(1+6/4=2R)m  o(1-h)m

. 24a42~y
and since m > mgy > 1 we have m™ 27 > 1.

The second inequality follows from N = [3hlog,(1/3)] and

N > 3hlog,(1/8) =  3h20-h+Om — potmo=hm
2+a+2y

and since h2°™ > m~ 27 by (9.1.2.1)

N > m san g=hm.

The third inequality holds since

9.1.2.3]

N = [3hlog,(1/8)] < 3hlogy(1/8) +1 <  3h(2%™ —m) + 1 < 3h2%™.
Finally, the last inequality follow from (9.1.2.1)) and

@.121)
3h2~molsm < 3p—moglime T2 %
This implies that
1
3h2%m < —.om
— 2 7
which completes the proof.
U
Definition 9.1.5
Let A > 0 be the smallest positive real number satisfying
(j+1)2n—m—1
-n -n —-m Ztod2y (1-h)n
> Ju((k+1)27") —u(k2 )|y < A2 [N 40”27 2 . Vne{m, ., N}
k=j2n—m
(19.1.5.1))
ie.
2m (j+1)2n—'m.71
A= max S > ful(k+1)27") —u(k27)] 4.

< _
m_nSNN+n 2ay 2(1 h)n fmjzm—m
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Definition 9.1.6
For fixed m € N and j € {0,...,2™ — 1} as before we define for every n € N with n > m

(j+1)2n—m—1

Vo= Y fuk2)m

k=j2n—m

Lemma 9.1.7

Let everything be as described above. We then have

by < 2207 [mé], Vn € {m,...,N}.

Proof

For n = m we have ¢, = |u(j27™)|g which is smaller than 5 by (9.1.2.3). Let n €
{m +1,...,N}. By splitting the sum in two sums, one where k is even and one where k
is odd, we can estimate v, by ¢,_; in the following way

(j+1)2n—m—1 (j+1)2n—m—1 (j+1)2n—m—1
Yn= > 2= > w2 Ma+ D |uwk27)k
k:j2n—nl k:jgn—nb k:jgn—m
2|k 2tk
(j+1)2m—m—1 (j+1)2m—m—1
< D0 k2t Y fulk2 ) =l (k=1)27) (k=127 (k41)27) —u(k2 ™)
k=j2n—m k=j2n—m
2|k 2tk

Since k — 1 is even whenever k is odd, rewriting the term |u((k — 1)27")|g yields that the
above equals

G+1D2r—m—1
> (w2 + [uk2")]n)
S
(j+1)2nm—1
+ Y fulk2™) = u((k = 127k + u((k + 1)27) — w(k2")|n
ST
(j+1)2n7m71 1 (]+1)2n m_1
=2 Y fu(k2) S fulk2™) = u((k = )27 i + [u((k + 1)27) — a(k2 ™)
k:anfmfl k=jon—m
2tk
(j+1)2n—1-m—1 (j+1)2r—m—1
=2 > JuE27" ) g+ ) fu((k+ 127 — w(k2 ") |n
k:an—l—m k=j2n—m
:wn—l
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Since n € {m + 1,..., N} we can use inequality (9.1.5.1) from Definition to estimate

the second sum by AZ_m[NjLAQ_mnH?ﬁ%2(1_h)”} so that, henceforth, the above is bounded
from above by

A2 o (1—h)n

U < 2y + A2TN + A2 20n 2

By invoking the discrete Gronwall inequality (Lemma [2.1.1)) with o = 1 or by induction on
n we deduce

djn < 2nfm¢m+ Z Aznflme_i_ Z A2n7€*m€2+2(§;272(17h)€

f=m+1 l=m+1

<2 MU+ AN Y 27 AT Y L 27 i€ {m, ., N

l=m+1 {=m+1

We use |u(j27™)|g < B (see (9.1.2.3)) for the definition of §) to bound the above expression
by

M BHAN Y 24 A )Y 2 MR <o B4 A2TTN A2

This can, moreover, be simplified so that 1, is bounded by

2™ [B + 2Amax(2-"N, 27"/ |

In summary we obtain

Py <2:277" [B+ Amax(27"N, 272 | Vn € {m,..,N}.

By Lemma [9.1.4{ we have 2=™N < L and since m > mg we have by the definition of mg (see
(0.1.2.1)) that the 27"m/2 < 27hmo/2 < 1 and therefore the above maximum is bounded by
%. In conclusion we deduce that

A
P < 2.277 [54_5} 7 Vn € {m,..., N},

which completes the proof.
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Definition 9.1.8
For every n € {m,..., N} and ¢ € N with ¢ > n we set

(12t

Ay = Z |S0£+1,r+1 (bn,LrQn*f*IJ U ((T + 1)2_(“1)) U (TZ_(€+1))) ‘H

r:j21+1—m

Lemma 9.1.9

Let everything be defined as above. There exists a non-negative constant C' € R such that
for all n € {m,..., N}

(j+1)2n—7n_1

D Jul(k +1)27) = w(k27) = @ k(buis u(k2 ™)) < C27"n + Y Ay

k=j2n—m t=n

holds.

Proof

Recall from the beginning of this chapter that u € ® is a solution to equation (9.1.1)). We
set

2m—1

Un(t) =Y Lpa-n rryp-n((t)u(k2").
k=0

Note that w, converges pointwise to u on [0,1] and wu, € ®* (see Definition for the
definition of the set ®*) by construction and since u € ®. We have

}u((k‘ +1)27") —u(k27") — 0k (bng: u(k:2_"))’H
(k+1)2—™
= lu((k+1)27") —u(k27") — / bk (t, Xi(w) + w(k27")) — by i(t, Xi(w)) dt

k2—"n H

Since u solves equation (9.1.1)) the above equals

T IAL( X () + u(t) — (1 Xelw)))

~
ES
O\Jr
=

=

"

3

(k+1)2—"

- / b, Xo (@) + a(k27)) = byt Xo(w)))

k2—n H
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(k+1)2—"

- / e (D20 (£ X () + u(t)) — f(t, Xy(w))) dt

k2
(k+1)2—™

- / b a(t, Xo(w) + u(k2™)) — bos(t, Xo(w))) dt

k2—n

k2—m

+ / (e‘((’““)?’"‘t” — e—(’“Q’"—t)A) (f(t, Xp(w) + u(t)) — f(t, X, (w))) dt

0 H

Using the definition of b, ; (see Definition [9.1.1]) this can be simplified and bounded by

(k-+1)2-"
/ bk, Xo(w) + 0(t)) — bus(t, Xo(w) + u(k2~)) dt
k2—n H
k2~
wlemraoa] [ et Xiw) +ult) - £(8 X)) de
— = | ;

Since u,, is constant on [k27", (k + 1)27"] and using again that u solves equation (9.1.1]) we
can estimate this by

(k+1)2—"

/ bt X2 () + () — bt Xo(w) + u(k2™) dt| + C2 (k2™
k2 =
By invoking Theorem this can be rewritten as
(k+1)2~
z1i>r£1o / bk (t, Xi(w) + we(t)) — by i(t, Xi(w) + un(t)) dt|  + C27"w(k27") |y
k2—n "
(k+1)2—"
< C27Mu(k2™™)| g + Z / bk (t, Xi(w) 4+ weg1(t)) — by i (t, Xi(w) + ue(t)) dt
Ko

H

oo (k41)2¢-n—1 |(@r+2)271

<C2Mu(k2u+Y . Y / bk (t, Xy (w) + g1 (1) — bog(t, Xo(w) + ug(t)) dt

f=n r=k2tm |5 0T

oo (kf1)20-n—1 |@r+1D2 ¢t

= 27" u(k2™" ‘H*Z > /?mk(t,Xt(w) +u(2r27Y) = b (t, Xe(w) 4 u(r279) dt

l=n r=k2¢-n

-~

2r2—¢-1 =0
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£—1
so (k1)2t-m—1| (2r+2)27

+> ) b (t, Xo(w) + u((2r +1)275Y)) — bn(t, Xo(w) + u(r279)) dt

- —Lol—
l=n  r=k2¢-—n (2r+1)2—¢-1

H
oo (k+1)26—n—1
= C27"u(k2™™) |y + Z Z | 0et1, 27"+1 b s u ((27‘ + 1)2_8_1) y U (TQ_E)) |
=n r=k2¢-n
Summing over k € {72"™, ..., (j + 1)2" ™ — 1} leads us to
(j+1)2n—m—1
> Ju((k+1)27") = u(k2™) = ok (bug; w(k27") 1
k=jon—m
(G+1)2nm -1 oo (k+1)2¢-n—1
< Z 02 "|u k’2 |H + Z Z |30g+1 2r+1 n kU ((27" —|— 1)2_£_1> , U (7’2_6)) |H
k—j2" m =n r=k2¢{-n
(j+1)2n—m—1 co (j+1)27=m—1 (k+1)20-"—1
Z 027"|u(/€2 |H—|—Z Z Z ’(,0[+1 27«+1 n oy W ((27’ + 1)27571> , U (7’272)) ’H
k=jan—m =n  k=jon—m  p=k20n
(G+1)27—m—1 o J+1)2£ m_q
= Z C27"u(k27" \H‘FZ Z | orsrori1 (b, ronepsu ((2r + 12771 u (r27)) |
k=j2n—m —=n r= ]Ql m
(j+1)2n—m—1 s (j41)26+1-m 2
= > C2Mu(k2 M a+Y Y perresr (bapon-egsu (0 4+ 1277 Ju (r2771)
k‘:jZn_m {=n T:j28+177n
In conclusion we obtain
(G+12n -1 (G+12n -1 00
> Julk+1)27") = u(k2™) = @uplbaps w2, < Y C27"u(k2)|m+ Y A
k:anfnL k:anfnL {=n
and with the help of Definition we rewrite this as
(j+1)2n—m—1 0o
Y Jullk+ 127 = u(k27") = @up(bg; u(k2 )], < C27"n + Y Ay,
k=j2n—m l=n
which concludes the proof.
]
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9.2 The Main Proof

The idea of the proof is the following: We use the reversed triangle inequality together
with Lemma to isolate the term |u((k + 1)27") — w(k27")|g. On the right-hand side
we have the €271, term and two sums. For the first sum (the one involving the term
|0,k (bnge; w(k27™)) | ) we simply use Theorem|[6.1.5] (in the form of Corollary to obtain
the estimate in Lemma We will split the second sum (the one involving the term Ay) in
the cases ¢ < N and N < /. In the first case we use Corollary which will lead us to the
inequality in Lemma [9.2.3] For the second case we have to do a more direct computation,
which heavily relies on the fact that u is Lipschitz continuous which is executed in Lemma
9.2

Combining all of this will result the final bound (9.2.4.1]). Using the knowledge of the already
established estimate in Lemma and the Definition of A (see Definition [9.1.5) we will
be able to estimate A in terms of 8 (inequality (9.2.4.2))). Feeding this back into inequality

(9.1.5.1)) for n = m completes the proof.

Lemma 9.2.1

Let everything be defined as above. There exists a constant C. € R such that for every
n € {m,...,N} we have

(+1)2m7m—1

at2y A
CXnt Y lonalbusi k)l < 8CC "2y |4 2],

2
k=j2n—m

where C' > 0 is the constant from Lemma [9.1.9]

Proof
Starting from the left-hand side of the assertion we apply Corollary to obtain

(j+1)2n77n_1

k=j2n—m

ARG 2+a+2y
<CMp+ Y. Cen e 27 (Ju(k27)|, + 277

k:jQ'nf'm

and since n > m this is smaller than

2+at2y (1) -l
02*7’1/(/}” + an 2ay 2*hn Z (‘u<k2in)‘H + 272771)
k,’:an—'m
24a+2y (j+1)2n—m—1
B (o S,
k=j2n—m

Again, using that n € {m,..., N} and the definition of ¢, (Definition [9.1.6) this can be

written as

- 126 -



Chapter 9: Proof of the Main Result

24a+42y

C2 ", + Con ™ 2er 270 (2772727 oy ).

24a+2
Since 27" < n “Sas 27 the above is furthermore bounded from above by

24a+42y

20Cn " 2ar 270 (277272 4y
Using Lemma this can be further estimated by

a2y m A
200 5 27 <2nm22 +2.2n7m {5 + ED

< 4(}05712*532” o(1=h)ng—m (2_2m LB+ g)

Since 272" < 8 by (9.1.2.1)) and (9.1.2.3)) this can be further estimate from above by

8CCLn 5y 91— lng—m [5 n g} '
Hence, we obtain for all n € {m,..., N}
(j+1)2”_m71 24+a+2y A
C27"pu+ Y | nklbugsu(k2™"))| g < 8CCn™ 2 20-Mng=m [5+5} .
k=jon—m

Lemma 9.2.2

With everything as defined above we have

Z Ay < 3LC.2~ ™2 hN/3,
(=N

Proof
By applying Corollary with 0 := % we obtain

so (1241

ZAe = Z Z | P11 (b pran—eorps e ((r + 1)2_(“1)) U (7“2_(“1))) |H
(=N (=N

r:j2£+1—m
oo (12412
<> C. ((e +1) 7272 oy ((r 4+ 1)27 D) — g (r27 )| 4 2‘Z> .
/=N T:j2£+1—m

Using the Lipschitz continuity of u (recall that L is the Lipschitz constant of ) this is smaller
than

(120

LOY e+ 1272 N ([r+ 127 =27 27
=N

r:jQu’l*""
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(+1)2F 1

=LC.Y ((+1)m27M2 N~ (27 427
{=N

r:j2é+1—m

=3LC. > 24 1) 2 Mot = 3102 Y (04 1)a2 M2 < 3LC2 MY,
=N (=N

And hence we obtain

Z Ay < 3LC.2~ ™2~ hN/3,

(=N

Lemma 9.2.3

Let everything be as above and recall that h > %, which is crucial for this lemma. We then
have

N—-1 A 1 (e’
A, <24 27-MN — — Ay.
; , < 24C.C [ﬁ+2]+2; g

Proof

For n < ¢ < N we define

Ve = U((T’ + 1)2_4) - U’(TQ_Z) - @Z,T(bn,l_TTHﬂ;U(TQ_Z)L Vr e {07 ) 26 - ]‘}

and note that due to Lemma we have

(j+1)20-m—1 o0
Yo Neeln <O+ s (237)
r=jot-m =0

Recall the definition of A, (see Definition [9.1.8):

(12t

A= Z ‘90£+1,r+1 (bn,\_TQ"*Z*H;u ((r+ 1)2_(“1)) U (7"2_(“1))) }H

T:j2f+17m

Using Corollary yields that this is bounded from above by

(D2 (121
_ _ _ _ c—m, e —90st
C. |2 2ht Z ]u(rZ (€+1))’H+2 60/4 Z ”Y£+1,T|H+2(6/4 2h)é‘u<j2 )|H_|_2€+1 9—2% ’
T:j2£+l—m T:j2£+1—m

where we used that 05 < 1 (which follows from inequality (9.1.2.2))). Plugging in Definition
this can be simplified to
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(41201 o
Ce |272Mapgyy + 27044 Z [Ves1,0 | + 2(6/47%%‘“(‘7‘27”1)’1{ + 2t tmmg=2

r:j2€+1—m

Summing over ¢ € {n,..., N — 1} then yields

N-1 N-1 (j+1)20H-m—1
0
AE S Ca 2—2hf,¢£+1 + 2—(5@/4 E |7€+1,T|H + 2(5/4—2h)£|u(]’2—m)|H + 2K+1—m2—2 5¢
l=n {=n T:j2l+17'm

< C:

N—-1 o0
Z (2—2h£¢£+1 + 2—6(/4 <C2—e¢£+1 + ZA€/)> + 2(5/4—2h)n|u(]2—m)|H + 2n+1—m2—295n] :

{=n =0

where we used inequality (9.2.3.1) from above and exploiting that 27¢ < 272" yields that
the above expression is bounded by

N-1 .
Cé [Z 272h2w€+1 + 2—6n/4ZA€, + 2(6/472h)n‘u(j27m)|H + 2n+1m2295n] ’

l=n U'=n
where C! := 2C.C. Since { < N we can use Lemma to estimate the term 1y, and the
assumption |u(j27™)|y < 5 (see (9.1.2.3)) to obtain the following estimate

N-1
Z Ay < 4C!
l=n

N-1 0o

Z 2—2h€2£—m |:5 + é:| + 2—6n/4 ZAE’ + 2(5/4—271)71/6 + 2n—m2—296n] ‘
2

l=n

{'=n

and since m < n this is smaller than

N-1 o)
A Osm
/ (1-2h)lo—m —om/4 (6/4—2h)m —2%
4CEL§ P 2 {B+—2]+2 Y Ap+2 842 ]

V'=n

Recall that h > % and hence 2020 < 1. Therefore, the above is bounded from above by

4C"

V'=n

A = m
9—m N |:B + §:| + 2—6m/4 ZAK' + 2(5/4_2h)m6 + 2—295 ] .

Using that 2(0/4=20m — 9=mo(+0/4=2h)m < 9=m N (see Lemma 9.1.4.1)), the above expression
can be again bounded by

4C!

A EY > Osm
—-m = —om/4 —-m —2%
2 N{B+2]+2 Y A +2 NG+ 2 ]

l=n

Recall that by (9.1.2.3)) we have 972" < 27™f3, so that in conclusion we deduce

N-1 0o
A
;_ Ay <12C1 |27™N [ﬁ + 5} 4 o —om/4 ;_ A,

Since m > mg and myg is defined (see (9.1.2.1))) such that 126’;2_5’”0/4 < % we have
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N—-1 A 100
N <24C.C27™N — — Ay.
éz:; ¢ < 24C.C [5%—2}%—2; ¢

From this point onwards we can forget all the definitions of this chapter.

Theorem 9.2.4 (Cf. [Wrel7, Theorem 6.2])
Assume that the usual assumptions (see Definition [6.1.4]) are fulfilled and that additionally

h> 3 and (9.1)) ie.

1—nh 2ary
h < 24 a+ 2y
holds. Let ¢ > 0 and f: [0,1] x H — @Q then there exist Q. C Q with P[Q¢ ] < ¢,
K = K(e) > 0 and my = my(e) € N, § €]0,h[ and ¢ > 0 such that for any function v €
being a solution of equation for a fixed w € Q. , for all integers m with m > my,
j €10,...,2™ — 1} and f satisfying

1
< =
—h

22" < B <9 and fu(j27)|m < B,

where 05 = (h — 9) 25;’127 we have

[u((G+1)27") | < B (14 K27 logy(1/8)) .

Proof

Let € > 0 and f be as in the assertion. Let b, be as in Definition Note that for all
n € Nand k € {0,...,2" — 1} b, is Q-valued since f is Q-valued. Let €. ,d,(, N be as in
the beginning of this chapter.

Putting together both estimates Lemma and Lemma for A, we have

[e'S) N—-1 o0 o0

—-m A 1 —mao—hN/3

D A= A+ A <24C.02 N{ﬁ+5}+§ZAE+3LC€2 27hNI3,
{=n l=n (=N {=n

Henceforth, we deduce

= A
> Ay <48C.C2"N [ﬁ + 5} +6LC.27 2N/
l=n

and since N = [3hlog,(1/3)] this expression is bounded by

5ALC.C2"™N [ﬁ n g} .

Therefore, we have

> Ay <BALC.C2™N lﬁ + g] . (9.2.4.1)
l=n
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From Lemma [9.1.9| and the reversed triangle inequality we deduce

(j+1)2n—m71 (j+1)2n—m71 00
S u((k+ 127" —uk2 ™) g <C2"n+ Y [@nrbags (k27 |m + ) A
k:j2n77n k:jQ'nf'm {=n

With the help of Lemma [9.2.1 and (9.2.4.1]), we estimate this by

(j+l)2nim—l (]+1)2n7m_1 00
Yo lu((k+127) —uk2 g O™+ D parlbassulk2))lu + Y A
k=j2n—m k=j2n—m {=n
2+a+2 A A
< 8CLCn zan Q(-hng=m {5 + 5} + 54LC.C2~™N {5 + 5}

24a+2y A
< 54LC.C27" [n £ DL N] : [g + 5} ,

Note that the above argument holds for all n € {m, ..., N}. Hence, by the minimality of A

(i.e. Definition [9.1.5)) and inequality (9.1.5.1)) we have

2+a+2y

. A
Az [pSEET 20 4 | < BALCLC2 [T 20 4 ) {5 + 5}

for all n € {m, ..., N}. This implies that

A
A<b4LC.C [6 + 5} )
We deduce from this that

A < 108LC.CB. ©9.2.4.9)

Setting n = m in (9.1.5.1)) of Definition reads

F13) .
w((+1)27™) —u(j2 )|y < A2 [m s 20-hm 4 N
lu((G+1)27") —u(27")|x < A2

Putting |u(j27™)|x to the right-hand side we deduce that

2+a+42y

lu((G +1)27") g < [u(27")|u + A27" [m 20y Q=h)m | N}

+2y

and since we have A < 108LC.Cf (see inequality (9.2.4.2)) as well as m gan Q(=h)m <N
by Lemma yields that the above expression is smaller than

B+ 108LC.CB2~™N = 3 (1+ 108LC-C2"[3hlogy(1/B)]) < B (1 + K2 ™ logy(1/8)),

where the constant is defined as K := 648 LhC.C' which completes the proof.
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Corollary 9.2.5 (Cf. [Wrel?7, Corollary 6.3])

Assume that the usual assumptions (see Definition [6.1.4)) are fulfilled and that additionally
h > % and (9.1) i.e.

1—nh - 2ay 1
h 24+ a+2y ~ h
holds. Let f:[0,1] x H — @, then there exists a set Ny C Q with P[N¢] = 0 such that for
all w € N§ every u € C([0,1], H) is a solution to

<

t

u(t) = /6_(t_s)A(f(s,u(s) + Xi(w)) — f(s, Xs(w))) ds, vt € [0, 1]. (9.2.5.1)
then v = 0.

Proof

Step 1:

Let € > 0 and €. ; be the of set of Theorem [9.2.4] Fix w € €.y and let u, as stated in the
assertion, be a solution to the above equation (9.2.5.1)). Since ||f||s < oo the function w is
in the set ® with L := 2||f|| (see Definition [7.1.1)).

Applying Theorem gives us a K > 0 and my € N as well as 6 > 0 and ¢ > 0 such that
1+ h+ ¢ < 6s. For sufficiently large m € N (i.e. K <In(2)2™ and m > my) we define

Oy 1= 27720
and
O[/ — 2_2<1*h+(>m
Furthermore, Theorem implies that for all 5 € [y, o/, ] we have

u(@2™) e <8 = Ju((G+1)27")|a < B(1+ K27 log,y(1/5))
for all j € {0,...,2™ — 1}.

A simple calculations yields

In oy, 205 _m oo

Ina’,  9(1—h+Om — %%,
so that we are able to invoke Corollary which implies that u = 0.
Step 2:

Let £k € N. By setting ¢ := 1/k in Step 1 we conclude that there is € ; C Q with
P ;] < 1/k such that u = 0 for all w € Q4 5. By defining

Ny := ﬂQg,f
k=1

we have P[Ny] = 0 and u = 0 for all w € N§ which concludes the proof.
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10 Applications

In this chapter we apply the result of the previous chapter to deduce path-by-path uniqueness
for several stochastic differential equations (Theorem [10.1.1)) using the language of effective
dimension and regularizing noises we developed in the previous chapters.

As a simple Corollary we obtain a proof of the main result (see Corollary [10.2.1)).

10.1 Proof of the main result in abstract form

Theorem 10.1.1
Given any filtered stochastic basis (€, F, (F¢)c(o,00[, Py (Wi)icp,00))- Let X € reg(Q, h,a)
with h > % and Cg > 0 such that

ed(Q)m < Co(In(m + 1))/, Vm e N

for some v > 1 and

1—nh 2ary 1
< < —
h 24+a+2y ~ h

(T0.1.1.1)

then the for every Borel measurable function f: [0,7] x H — @ the stochastic differential
equation

dY; = —AY;dt + f(t,Y;)dt + dW,,

where (W;)¢cjo,00[ is a cylindrical Wiener process and

t
X, = / e~ =94 qmy,
0

has a path-by-path unique solution in the mild sense.

Proof

By Proposition it is sufficient to show that there exists a measurable set 2y C 2 with
P[] = 1 such that for all w € Qg the only function u € C([0, 1], H) solving

t

u(t) = / e~ (f(s, Xo(w) + u(s)) — f(5, Xa(w))) ds

0

is the trivial function u = 0. Since by assumption X € reg(Q, h, ) and the usual assumptions
(Definition [6.1.4]) are fulfilled, this follows simply by invoking of Corollary
O]
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10.2 Proof of the main result

In this section we prove the main result (Theorem [1.1.3). Recall that in Chapter 1 we
have reduced Theorem to Proposition and via a Girsanov Transformation to
Proposition [1.2.1] For the reader’s convenience we restate the main result.

Corollary 10.2.1
Given any filtered stochastic basis (2, F, (F¢)tco,000s Py (Wi)tejo,0f)- Let f:[0,T] x H — H
such that f fulfills Assumption [I.1.2] Then the stochastic differential equation

dY; = —AY,dt + f(t,Y;)dt + dW,,

where (W})icp,00] 18 @ cylindrical Wiener process has a path-by-path unique solution in the
mild sense.

Proof
Recall that by Assumption we have || f]|co.4 < 00, so that we can set

Q= {x c RN: Z/\”GQ/\H

neN

z,]? < HfHOOA} N{z € RY: |z,| < exp (—ecwm)}, (110.2.1.1))

where v > 2 and ¢, > 0 are the constants from Assumption We note that Assumption
implies that f is ()-valued.

Recall the definition of the set Q“ (see Definition [5.2.1)) and Q7 (see Definition [3.2.1)).
Setting Ca := || f|loo.4 in the definition of the set Q4 we can rewrite (10.2.1.1]) to

Q="' NQ.
We conclude that

t
74 = /6_(t_s)A dWs,

0

together with the filtration (G;)icp00f as defined in (1.1.2), is by Corollary a QA-
regularizing noise with h = % and a = 2. Invoking Proposition yields that Z4 is a
@-regularizing noise with the same h and a.

Furthermore, since Q C Q7 we have ed(Q),, < ed(Q"),, < Co(In(m + 1))}/ for all m € N
by Proposition and henceforth the usual assumptions (Definition [6.1.4]) are fulfilled.
Moreover, condition ((10.1.1.1)) of Theorem [10.1.1| for h = % and o = 2 reads

4ry <
442y —

This is obviously fulfilled since by Assumption we have v > 2. Therefore, invoking
Theorem [10.1.1] with X := Z4 completes the proof.

1<

O
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10.3 Finite-dimensional case

Let H =R? and Q := {z € R%: |2| < C} for a constant C' > 0. Then by Proposition [3.1.5]

we have sup ed(Q),, < oo so that
meN

ed(Q),, < Co(ln(m + 1)), Vm e N

is fulfilled for any v > 0. Recall that (see Example|5.1.7) for any R-valued Brownian motion

B we have B € reg(Q, 1, 2).

Corollary 10.3.1 (Cf. [Dav07])
Let X € reg(Q, h,a) with & > 1 for any bounded set @ C R? such that

1—h 1

hoSYSw
then for every bounded Borel measurable function f:[0,7] x R — R? the stochastic
differential equation

dY, = f(t,Y,)dt + dX;
has a path-by-path unique solution.

Proof

Let C := || f|lo then by setting @ := {x € R?: |z| < C} as above, the function f is Q-valued.
In order to invoke Theorem [10.1.1| condition (10.1.1.1)) i.e.

1—nh - 2ary 1

h 24+a+2y ~ h

has to be fulfilled for some v > 1. Note that the mapping

IA

2y
A —s A
2+ a+2y
is increasing and

) 2ary
lim ———— =«
oo 2+ o + 2y
Hence, we can always find a v > 1 satisfying condition ((10.1.1.1)), since we have, by assump-
tion, that

1—h< <1
. oz_h.

Invoking Theorem [10.1.1| therefore completes the proof.
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