
Journal of Software Engineering for Robotics 8(1), December 2017, 45-64
ISSN: 2035-3928

Domain-Specific Language Modularization Scheme
Applied to a Multi-Arm Robotics Use-Case
Dennis Leroy WIGAND1 Arne NORDMANN2 Niels DEHIO3 Michael MISTRY4 Sebastian WREDE1

1 Technical Faculty, Bielefeld University, Germany, {dwigand, swrede}@techfak.uni-bielefeld.de
2 Corporate Sector Research and Advance Engineering, Robert Bosch GmbH, Germany, arne.nordmann@de.bosch.com

3 Research Institute for Robotics and Process Control, TU Braunschweig, Germany, n.dehio@tu-braunschweig.de
4 School of Informatics, University of Edinburgh, Scotland, mmistry@inf.ed.ac.uk

Abstract—The development of robotics systems requires a coherent design, implementation, and integration of multiple domain-
specific software artifacts that provide the application-specific capabilities. Model-driven software development (MDSD) provides an
efficient methodology that enables the design, integration, and verification of robotics applications already at the level of multiple
domain-specific models. While the application of MDSD for the engineering of robotics systems is conceptually promising, the
interoperability, composability, and reusability of developed domain-specific languages and resulting models are challenging. In this
article, we discuss the requirements for language modularization and composition from a robotics perspective and introduce a language
composition approach for component-based robotics systems. We use a state-of-the-art language workbench, which supports reuse,
extensibility, and refinement of domain-specific languages and code generators. We present and discuss a case study to evaluate the
proposed extension and composition approach from a language developer’s perspective as well as from a language user’s perspective,
i.e. the perspective of the roboticist supported by our set of domain-specific languages.

Index Terms—Model-Driven Engineering, Domain-Specific Language, Code Generation, DSL Modularization, Generator Composition.

1 INTRODUCTION

A DVANCED robotics systems such as service, entertain-
ment, or versatile industrial robots with cognitive in-

teraction skills require the coherent design, integration, and
verification of heterogeneous software artifacts from multiple
domains such as motion planning and control, multi-modal
perception, machine learning, or interaction design jointly real-
izing the application-specific requirements. Model-driven soft-
ware development (MDSD) using domain-specific languages
provides a promising methodology to improve the application
development process [1] for such robotics systems, e.g., by
facilitating separation of concerns (SoC) and separation of
roles (SoR) [2], [3]. Its successful application has been shown
in domains such as avionics [4] or automotive [5].

Regular paper – Manuscript received July 15, 2017; revised July 15, 2017.
Digital Object Identifier: 10.6092/JOSER 2017 08 01 p45

• This work was supported by the European Communitys Horzion 2020
robotics program ICT-23-2014 under grant agreement 644727 - CogIMon
and was supported by the Cluster of Excellence EXC-277: Cognitive
Interaction Technology (CITEC) at Bielefeld University.

• Authors retain copyright to their papers and grant JOSER unlimited
rights to publish the paper electronically and in hard copy. Use of the
article is permitted as long as the author(s) and the journal are properly
acknowledged.

A domain-specific language (DSL) is characterized by its
expressive focus towards a specific domain [6] and the defini-
tion of formal notations that are intuitively understandable for
domain experts [7]. A large number of DSLs were proposed
covering many of the relevant (sub-)domains in robotics [8].
Among these proposed languages, many co-exist in the liter-
ature targeting similar concerns. Both, conceptually and tech-
nically, the model-driven robotics community nowadays still
lacks significant reuse of models, domain-specific languages,
and tools, which leads to a huge amount of reimplementation
for the same aspects and high fragmentation.

In contrast to component-based software engineering [9]
where principles such as modularity, extensibility, and reuse
are comparably well understood [1], [10], the composability
of domain-specific languages and their resulting models is
still challenging [4], [10], [11], [12]. For a composition to be
successful, a large number of challenges need to be considered,
above all, separation of concerns [2], [13] and support for
language evolution [4], [12]. In robotics software engineering,
only a small body of work considers scalable composition
in model-driven approaches despite the observation that for
most non-trivial robotics applications it is already necessary
to compose and reuse different languages and models [14],
each dealing with specific concerns of the system. Reducing

www.joser.org - c© 2017 by D. L. Wigand, A. Nordmann, N. Dehio, M. Mistry, S. Wrede



46 Journal of Software Engineering for Robotics 8(1), December 2017

Fig. 1: Visualization of the three composition dimensions. The
computation- (CIM [15]) and platform-independent (PIM [15])
models are represented within the Capabilities dimension.
Together with the two other dimensions, platform-specific
models (PSM [15]) are formed. The abstraction increases from
right to left.

the fragmentation as well as the overall development costs
by reusing existing DSLs within and across projects [4] is
essential to apply model-driven development in robotics at
scale.

The main contribution of this article addresses the afore-
mentioned challenge by introducing a concept for language
modularization and composition in robotics (see Fig. 1) based
on a state-of-the-art language engineering approach. In Sec. 2
the main requirements for composable DSLs are outlined from
a robotics perspective, while Sec. 3 briefly discusses language
workbenches with dedicated support for composition. Sec. 4
introduces the scheme for language composition and generator
composition, which is specifically tailored to component-
based robotics systems and supports reuse, extensibility, and
refinement of domain-specific languages and code generators.
Conform to the structure of Sec. 4, we present an exemplary
composition in Sec. 5 that describes the necessary aspects
to support the KUKA LWR 4+ [16] light-weight robotic arm
using the Open Robot Control Software (Orocos) [17] with
our approach. Sec. 6 presents a qualitative and a quantitative
evaluation of the introduced language modularization from a
language developer’s perspective, whereas Sec. 7 discusses our
approach from a language user’s perspective. In Sec. 8 we
present and discuss related work on language modularization
and composition before Sec. 9 provides a conclusion.

2 CHALLENGES OF DSL MODULARIZATION

Most papers with a focus on language modularization and
composition have one particular aspect in common: they
address the need to overcome various challenges during the
design and development phase of modular language families.
Among those, the challenges of language composition and
evolution [18], [19], [20], [4], [21] stand out. As long as
a (sub-)domain is not entirely covered by a DSL, language
evolution is imminent. Over time, developers need to extend

a DSL to find and incorporate the correct abstractions to
represent the domain properly (DSL extension [20], [21]).
Even then, a completely explored domain is usually not set
in stone, especially when our understanding of it changes
(DSL refinement [4], [19]). The impact of each evolution can
range from tiny to massive w.r.t. the languages as well as
their global composition. The key question that developers are
facing is how to adapt an existing language or a family of
languages to changing requirements while keeping the impact
as small as possible, to avoid a cascade of changes propagating
through the entire composition [4]. Different authors take on
the various challenges and rephrase them into guidelines for
DSL design and modular arrangement. Only guidelines that
can or should be applied to DSL composition are considered
in the following. These guidelines are numbered consecutive
in form of (GX).

Dhouib et al. [11] promote the specification of component-
based robotic architectures (G1) as most robotics systems
are component-based. They urge to reuse language modules
for composition (G2). Thus, achieving modularity by creating
highly modular language fragments is mandatory for compo-
sition and distributed development [22]. However, languages
should not only be composed together, but extended and
reused by other DSLs as well. Collecting DSL modules in
a library-based approach offers the possibility to import only
the required language and generator modules for a task [10].
The need to support exchangeability of heterogeneous modules
(G3), while maintaining a target-platform independent core, is
addressed by [11], [22]. This kind of composition can only
be achieved through composable language fragments that use
well defined interfaces (G4), allowing the exchange of realiza-
tions and restricting language evolution to defined extension
points [10]. By demanding the support of smooth evolution
of DSLs (G5) through agile and reusable code generation,
as well as through extensible DSL realizations, the challenge
of language evolution is addressed by [11] too. Thus, DSLs
should be able to incorporate superficial changes without the
need to create an entirely new realization. Eventually, Karsai et
al. [22] state that all guidelines, instead of being followed
blindly, should be considered by the language designer and
applied where suitable.

3 TOOL SUPPORT

Tools called Language Workbenches support the developer to
overcome some of the aforementioned challenges, by facili-
tating language development and making modularization and
composition technically feasible. These aspects are especially
well supported in projectional tools, whereas parser-based
tools offer only limited support. Parser-based tools, such as
ANTLR1 and Eclipse xText2, cannot guarantee that two or
more language extensions work together without conflicts,

1. http://www.antlr.org/
2. http://www.eclipse.org/Xtext/

http://www.antlr.org/
http://www.eclipse.org/Xtext/


D. L. WIGAND et al./ Domain-Specific Language Modularization Scheme Applied to a Multi-Arm Robotics Use-Case 47

because the resulting grammar might be ambiguous. On the
other hand, projectional tools, such as Intentional [23] and the
JetBrains Meta Programming System (MPS)3, avoid disam-
biguity by eliminating the need for parsing [7]. Furthermore,
MPS was designed particularly to work with sets of integrated
languages. According to Voelter [12], it supports four differ-
ent kinds of composition: Referencing, Extension, Reuse and
Embedding. Out of those four, embedding is most interesting
for our approach, since it combines two previously unrelated
languages [24] without modifying either of the languages. This
renders embedding a non-invasive kind of composition and
makes the languages maintain their modularity. MPS provides
a mechanism called annotation that can be categorized into
the class of embedding. Although the annotation mechanism
does not introduce any kind of dependency, it does perform
syntactic composition. Annotations can be attached to arbitrary
elements of the abstract syntax and can be shown together
with the concrete syntax of the respective elements. To achieve
syntactic composition, annotations take advantage of the pro-
jectional view provided by MPS, in which the concrete syntax
is directly projected from the abstract syntax. Details on the
features of MPS and its support for modularization can be
found in [12], [24].

4 LANGUAGE COMPOSITION FOR ROBOTICS

To benefit from composition mechanisms in the context of
robotics, these mechanisms need to be integrated into mean-
ingful parts of a framework that consider the specifics of the
robotics domain. Hence, we propose a language composition
and generation approach for component-based robotics sys-
tems that supports extensibility and refinement (see Sec. 2).
It is realized using JetBrains MPS to draw on the provided
benefits (see Sec. 3).

We separate domain-specific language modules along three
orthogonal dimensions (see Fig. 1). This was inspired by the
work of Ratiu et al. [24], who used two modularization dimen-
sions to enable easy and modular implementation of DSLs and
analyses, which can then be reused between different DSLs.
Under consideration of the Robot Application Development
Process (RAP) introduced in [1], we chose the following three
dimensions as the foundation to cover the different aspects of
robotic systems:

• Hardware Platform, representing robotic platforms in-
cluding their kinematic structure and robot-specific con-
straints resp. interfaces.

• Software Platform, describing the characteristics of soft-
ware frameworks (i.e. middlewares) and their require-
ments for code generation.

• Capability, defining isolated aspects that are reusable and
can be composed to cover the functional concerns of the
system.

3. http://jetbrains.com/mps

Fig. 2: Visualization of the interfaces used to compose the
Capability, Software Platform, and Hardware Platform dimen-
sion.

By using the annotation mechanism introduced in Sec. 3,
flexible composition of the dimensions is possible. This way,
dimension-overarching models can be created, representing
various robotics systems. Such a system can encompass a
set of capabilities, adapted to a set of software frameworks,
deployed on different robots in the real world as well as in
simulation.

4.1 Core Dimensions
To ensure exchangeability and modularity, as well as dis-
tributed development, it is essential that all languages and
generators are realized to be as independent and self-contained
as possible. The three previously mentioned dimensions are
introduced in the following. Each of those dimensions, con-
tains a language module that acts as the common base for
all other languages in the same dimension. The common
bases equip derived languages with the necessary mechanisms
(see Fig. 2) to support the embedding4 of other modules.
Annotations are a particular kind of embedding mechanism
that provides an extension point for enriching models with
additional information.

4.1.1 Hardware Platform Dimension
In this dimension, the different hardware platform aspects are
modeled, including kinematics, dynamics, safety constraints,
control interface, etc. Explicitly considering the hardware plat-
form has proven to be an essential concern for robotic systems,
since it is addressed by various contributions, e.g., [25], [26],
[27], [28]. To represent robotic platforms, we introduced the
Hardware Platform DSL, which forms the common base
in this dimension. It provides the IAmHardwarePlatform an-
notation as an anchor point to force robot-specific constraints
onto models based on the Capability dimension (see Fig. 2).
This may be necessary since the computational capacity can
vary significantly between different robots. Thus, for instance,
the number of active components could be restricted to fit
the robot’s limits. Each supported hardware platform is repre-
sented as a language module that extends the base language

4. Type of composition introduced by Voelter [12] and described in Sec. 3.

http://jetbrains.com/mps


48 Journal of Software Engineering for Robotics 8(1), December 2017

Fig. 3: Illustration of an exemplary set of capabilities. Language modules (displayed in the UML package syntax) that are
important in the course of this work are displayed with their main concepts. Each colored area represents a (sub-)domain of
robotics systems [8]. While the pure description of concepts for e.g., a robotic platform is considered a capability, the actual
concretization (including constraints) for a particular robot (e.g., KUKA LWR 4+) falls into the associated platform dimension.

and which specializes the inherited annotation to match its
platform (see IAmLWR4+ in Fig. 2). Considering the Nao5

robot as an example [29]: No language modules for hardware-
specific requirements need to be added, since NAOqi6 is
specifically tailored to the robot, implicitly containing Nao
hardware constraints. However, for a different robot, such
as the KUKA LWR, it is necessary to add robot-specific
constraints. Apart from robotics platforms, this dimension also
covers the modeling of other hardware, such as sensors (e.g.
force-torque sensors), interfaces (e.g. ethernet ports), as well
as computation units (e.g. external workstations).

4.1.2 Software Platform Dimension
In contrast to the hardware platforms, this dimension mainly
focuses on component frameworks (e.g., Orocos, ROS [30]
and CCA [31]), middlewares (e.g., YARP [32], RSB [33]),
as well as all other software-related aspects, such as interface
protocols (e.g., the Fast Research Interface Library (FRI)7).
The majority of the represented software frameworks in this
dimension is eventually targeting code generation.

The common base language in this dimension is the
Software Platform DSL. Analogous to the Hardware

5. https://www.ald.softbankrobotics.com/en/cool-robots/nao
6. http://doc.aldebaran.com/2-1/naoqi/index.html
7. http://cs.stanford.edu/people/tkr/fri/html/

Platform dimension, it entails the IAmSoftwarePlatform an-
notation, which can also be attached to models based on
languages from the Capability dimension. Each software plat-
form is represented by adapting the inherited annotation from
its base language to the respective platform (see IAmOro-
cos in Fig. 2). Further, modules in this dimension can be
specially tailored towards extending or restricting capabilities
to software requirements. These modules extend associated
capabilities and introduce platform-specific constraints or gen-
erators. Through the mechanisms inherited by the Software
Platform DSL, its automatic application is restricted to
model fragments based on the particular capability and which
are annotated with the associated software platform. For
instance, to use a capability that generates motions for NAOqi
as software framework, a constraint needs to be introduced
on the motion part of the model. This constraint would then
ensure that the background motion behavior of the NAOqi
API is disabled, which otherwise overrides motion commands
when active. In case a software platform requires additional
information that would in the future be provided by a model
aspect that is not available yet, the platform can make use
of the demand mechanism. This mechanism is provided by
the common base language of this dimension. By specializing
and implementing the IDemand interface, a demand can be

https://www.ald.softbankrobotics.com/en/cool-robots/nao
http://doc.aldebaran.com/2-1/naoqi/index.html
http://cs.stanford.edu/people/tkr/fri/html/


D. L. WIGAND et al./ Domain-Specific Language Modularization Scheme Applied to a Multi-Arm Robotics Use-Case 49

introduced that mandates to be fulfilled. If there is no capa-
bility that is able to comply with such a demand, the specific
software platform can provide a model element that allows
to manually specify the missing information, until a suitable
capability becomes available.

4.1.3 Capability Dimension
This dimension builds the third pillar of our approach, cov-
ering the functional parts of a system that are independent
of any software and hardware framework. Each DSL in this
dimension represents a capability of the robotics system that
can be traced back to the Capability DSL, which forms
the common base. From this language, each of the derived
DSLs inherits an interface (ICanBePlatformAnnotated) that
enables the embedding of language modules from the platform
dimensions. This allows platform-specific constraints to be
applied onto capabilities, and capabilities to be transformed
by generators according to platform-specific needs. However,
no direct dependencies are introduced between capability and
platform language modules.

Fig. 3 shows an exemplary set of capabilities categorized
into different (sub-)domains. For most of the (sub-)domains
there is already related work present in form of domain
concepts. These could be integrated as capabilities and used
together with the proposed composition approach. For further
information on the chosen (sub-)domains and existing related
work refer to [8].

4.2 Extensible Language Modules
Apart from the base languages, we have realized the fol-
lowing modules: In the Hardware Platform dimension the
RobotPlatform DSL represents robotic platforms using an
URDF8/SRDF9-based meta-model, which is provided by the
Kinematics DSL. The Capability dimension incorporates
the Component DSL and Coordination DSL, focusing
on the structure and coordination of the components to form
the abstract representation of a system. The rationale behind
these languages is to cover the static view (component struc-
ture) as well as the dynamic view (system-level and task-level
coordination) of a robotic system. The Component DSL is
based on the Component-Port-Connector (CPC) meta-model,
since most robotic systems can conceptually be boiled down
to a variant of it [11], [34]. To combine the static and dynamic
view, the Systems Coordination DSL was created. For
instance, it allows to manipulate system components from
within a state machine. Apart from the general system de-
scription, further concerns need to be covered, e.g., motion
generation. To support the modeling of motion control archi-
tectures the Motion Primitive DSL, introduced in [35],
was reused in our composition approach. One of its main
concepts is the Adaptive Component, resembling a kinematic
controller using different dynamic motion primitive types.

8. Unified Robot Description Format (URDF) http://wiki.ros.org/urdf
9. Semantic Robot Description Format (SRDF) http://wiki.ros.org/srdf

Fig. 4: Adaption the of multi-staged transformations concepts,
introduced in [7], to the proposed generator composition:
The intermediate layer (IL) during generation is formed by
the Coordination and Component DSL. Above the two
languages more specific capabilities and platform specializa-
tions of capabilities are located. They all reuse the backend
generation of the intermediate layer. Below however, multiple
transformations are performed from the intermediate layer into
different languages, reusing the transformations from above.

4.3 Modular Generators

One of Dhouib et al.’s [11] guidelines discussed in Sec. 2
demands flexible and reusable code generation. According to
Voelter et al. [7], multi-staged transformation is a common
consequence of language extension. Languages are incremen-
tally stacked on top of others, reusing the transformations of
the lower languages instead of generating directly down to the
lowest level (General Purpose Language (GPL) level). Thus,
we composed the model transformations to support backend
as well as frontend reuse with respect to the intermediate layer
(IL). As visualized in Fig. 4, multiple DSLs that generate into
a language of the IL (gray boxes) can reuse the intermediate
language’s generators (backend-reuse). However, languages
below the IL are implicitly reusing all transformations that
happen above that layer. Thus, they only need to provide
a transformation from the intermediate language to their
own DSL to cover the generation of models from multiple
languages above the IL (frontend-reuse).

There are three ways for a language module to contribute
to the generation in our approach. Those are used mostly
by languages from the platform dimensions (software and
hardware), depending on their requirements and realization:

1) If a derived language modifies the meta-model of the
inherited language, while staying withing the scope of its
inherited generator, it is not necessary to add additional or
extend inherited generators. In this context, the scope of a
generator is defined by the input pattern of the generator’s
transformation.

2) However, if the modifications of the derived language
go beyond the boundaries of the inherited generator’s
scope, the resulting model might not be a valid input
for the inherited generators anymore. Hence, the derived

http://wiki.ros.org/urdf
http://wiki.ros.org/srdf


50 Journal of Software Engineering for Robotics 8(1), December 2017

language needs to add or extend its (inherited) generators.
3) To provide mandatory information for generators located

at a lower position in the generation pipeline, languages
from the platform dimensions can use their annotation
mechanism to propagate platform-related information
down the pipeline. This approach has the benefit of being
able to reuse the transformations of the existing languages
instead of creating a separate branch in the generation
pipeline for that particular case.

Capability language modules do not have platform-related
generators, because they are platform-agnostic. Nevertheless,
platform unspecific artifacts, e.g., PlantUML10, should be
generated from these capabilities as well [29]. Hence, we
introduced modules to our composition that solely contain
generators. These generator-only modules transform models
between completely independent languages, without introduc-
ing any additional dependencies. By packaging generators in
their own modules, they can be applied in a very flexible
manner only where they are needed. To ensure that generators
get applied to valid models only, a generator’s input needs to
meet defined constraints. Even though platform-specific gen-
erators are able to transform specific concepts of capabilities,
these concepts are not considered as valid input if they are
not annotated with the particular interface from the associated
platform-specialization for the generator.

5 LANGUAGE COMPOSITION EXAMPLE

In this example, the existing language composition is extended
by motion generation for the KUKA LWR 4+ platform. The
application model using robot and software specific extensions
is generated into executable code after applying a series of
model-to-model (M2M) and model-to-text (M2T) transfor-
mations. The generation target for the functional aspects is
CoSiMA11, an Orocos-based execution framework. The initial
situation for this example entails all languages introduced
in Sec. 4 and the LWR 4+ robot already modeled w.r.t. its
kinematics as well as its robot control interface (i.e. FRI),
using the RobotPlatform DSL.

5.1 Core Dimensions
In order to add support for controlling the KUKA LWR
4+ platform, the corresponding software and hardware needs
to be represented. In our case, this means extending the
base languages of the platform dimensions to specialize the
interfaces according to Fig. 2 for Orocos as well as for
the KUKA LWR 4+ hardware. In the Software Platform
dimension, the language module Orocos is created to contain
the IAmOrocos annotation, which specializes IAmSoftware-
Platform (see Fig. 5). To support the KUKA LWR 4+ robot,
the LWR 4+ Platform is created in the Hardware Platform

10. http://plantuml.com/
11. http://cogimon.github.io/

Fig. 5: Illustration of the concepts supporting Orocos as a
software platform in the composition. While the concepts
of the Orocos DSL (blue border) specialize the necessary
concepts of the Software Platform DSL (gray border), the
interface ICanBePlatformAnnotated from the Capability DSL
(orange border) represents the annotation target for software
platforms.

dimension, specializing the IAmHardwarePlatform annotation
to IAmLWR4+. Both parts lay the foundation for embedding
the KUKA LWR 4+ platform and Orocos into our approach
and enable the composition with existing capabilities.

5.2 Extensible Language Modules
Once the annotation mechanisms are properly adapted to
support the new platforms, (language resp. generator) mod-
ules can be created in the Software Platform dimension
that, e.g., enrich capabilities with Orocos specific con-
straints and model transformations. In this case, the Compo-

nent, Systems Coordination, and Motion Primitives are
specialized to Orocos Component, Orocos Systems
Coordination, and Orocos Motion Primitives. In
the Hardware Platform dimension, the language module
LWR4+ Platform needs to be created. It contains spe-
cific constraints regarding the control modes provided by the
KUKA LWR 4+ through FRI.

For the sake of readability and considering that the pre-
sented use case in Sec. 7.1 focuses on controlling the KUKA
LWR 4+ by generating code towards the Orocos framework,
only the highly relevant language modules will be introduced
more detailed in the following:

5.2.1 LWR4+ Platform
With regards to the algorithmic research that will be done on
the KUKA LWR4+ using Orocos, commanding the robot in
joint torque mode is essential. However, in contrast to other
robots that support joint torque control out of the box, the
FRI interface that is offered by KUKA to remote control
the robot, supports only joint position and joint impedance
control as joint-space control modes. Fortunately, there is a
way to achieve joint torque control on the KUKA LWR4+ by
using the joint impedance mode in a special configuration.
The only throwback that comes with this solution is that

http://plantuml.com/
http://cogimon.github.io/


D. L. WIGAND et al./ Domain-Specific Language Modularization Scheme Applied to a Multi-Arm Robotics Use-Case 51

Fig. 6: Simplified meta-model of the Component DSL (gray border) enriched by additional concepts of the Orocos Component
DSL (green border) that are mandatory to create models that use Orocos as software platform. The relationship of the DSLs
to the software platform specialization for Orocos, namely, the Orocos DSL (blue border) and the interface of the Capabilities
DSL (orange border) shows the composability according to Fig. 2.

the robot compensates for gravity on its own. Keeping this
in mind, a constraint is needed that makes sure that in the
torque command, which gets send to the robot, the gravity
is neglected so as if the command would be executed in a
zero-gravity environment. In situations where a component
sends joint torques to a robot control interface that uses the
LWR 4+ Platform and FRI as the remote control interface, the
constraint gets automatically triggered. As a result, the user is
asked to take care of the gravity before sending the command
to the robot. This constraint intertwines the Software Platform
dimension (i.e. FRI), the Hardware Platform dimension (i.e.
KUKA LWR 4+) and the Capability dimension (i.e. Compo-
nent and Robot Component).

5.2.2 Orocos Component

The purpose of specializing the Component DSL mainly is
to cover additional structural aspects that are key concepts of
Orocos: For instance, so called activities12 need to be defined
to manage the order and scheduling of Orocos RTT (C++)
components. Since the Component DSL does not have any
concept that is even remotely related to such an activity (see
the gray bordered concepts in Fig. 6), it needs to be included
as a new concept, i.e. RTTActivity. Hence, aspects such as

12. http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/
orocos-components-manual.html#corelib-activities

activities are treated as mandatory for the specific software
platform and, thus are reflected by a demand, in this case by
the IAmOrocosDemand, which utilizes the demand mechanism
from the Software Platform DSL. In contrast to optional
aspects of a software platform, these demands represent as-
pects that need to be specified by each ComponentInst that is
annotated with the Orocos platform. Furthermore, connections
in the Orocos framework require a connection policy to be
valid. Again, the concept of such a connection policy is not
included in the Component DSL, therefore an RTTConnection
extending the general connection is created that holds an
RTTConnPolicy. If two Orocos components are connected,
the Connection is converted into an RTTConnection, which
then provides the possibility to specify a connection policy.
Additionally, RTTConnections are only allowed to connect
components that are annotated with the Orocos platform.

5.2.3 Orocos Systems Coordination
In contrast to the Orocos Component DSL (see Sec. 5.2.2),
no structural aspects are added here. Instead, the Orocos Sys-

tems Coordination DSL focuses on additional constraints
and validations. Due to the Systems Coordination’s ability
to interact between the structural and dynamic view, it is used
to orchestrate the configuration and launch sequence of an
Orocos system. This requires no additional structural changes,
since for this purpose Orocos components can be treated as

http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-components-manual.html#corelib-activities
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-components-manual.html#corelib-activities


52 Journal of Software Engineering for Robotics 8(1), December 2017

general components. However, configuring an Orocos compo-
nent needs to be done according to its life cycle (a set of
states and transitions): First, a constraint is created ensuring
that all the required operations of the life cycle are exposed by
the components. Second, the control flow of the configuration
model is analyzed to validate the call order of these operations
w.r.t. the life cycle.

5.2.4 Orocos Program Script
For the structural model of an Orocos system we target the
generation of Orocos Program Scripts13 (OPS), which are used
to specify the components, activities, and connections of a
system along with their configurations. In terms of MPS, this
language acts as a so called base language to model these kinds
of scripts and providing model-to-text transformations, which
produce plain text artifacts according to the OPS format.

5.2.5 Orocos RTT (C++)
Generating the C++ implementation of an Orocos component
for instance for a motion primitive, requires the ability to
produce Orocos-specific source code (cf. NaoqiModules in
case of NAOqi). For this purpose, the Orocos RTT (C++)
DSL provides an abstraction that allows to create models of
Orocos components, which conform to the C++ base language.
Through this layer between the Component and the C++

DSL, validations and constraints can be used to ensure that
the input model for actual C++ source code generation is not
only conforming to the C++ standard, but also that it is valid
according to Orocos’ specification for C++ components.

5.3 Modular Generators
To generate artifacts such as C++ and OPS code, a suitable
set of generators needs to be imported and enriched with
additional Orocos generators. Following the scheme of Fig. 1,
implicit generation pipelines are arranged by composing a set
of generator modules. An example of the generation steps for
different targets can be seen in Fig. 7.

Apart from the already existing generators covering the ca-
pabilities of the system, new transformations need to be added
that allow platform specific generation for Orocos. To create
an Orocos RTT (C++) component implementation containing
a motion primitive, a generator for Orocos motion primitives
is necessary. It transforms a motion primitive concept that
contains a Dynamical System [35] into a Component represen-
tation, which subsequently allows to reuse generic generators
for Components, such as for system diagrams. In Fig. 7, a
Component wraps a component structure around a placeholder
for framework-specific content, in this case, a representation
of the Dynamical System in the C++ base language. The
Component is further annotated with the Orocos platform and
is afterwards transformed into an abstract representation of

13. http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/
orocos-components-manual.html#program-syntax

Fig. 7: The overall structure shown in Fig. 4 is adapted in
this figure to elucidate the different generator steps along
exemplary models related to the scenario in Sec. 5. To generate
the artifacts at the bottom, the associated transformations are
executed in a top-down manner. On the right, an Adaptive
Component annotated with the Orocos platform is transformed
via a Component and an Orocos RTT Component to its
final C++ representation, which is plain text eventually. A
Component that contains a State Machine is processed by
two different generator pipelines, while maintaining an intact
reference between the models and artifacts.

an Orocos C++ component implementation (i.e. OrocosRTT
Component) by an Orocos Component generator. Since the
motion primitive is now fully represented conforming to the
targeted software framework, the annotation is not required
anymore and thus removed. This is marked by the empty green
circles in Fig. 7. From here on, the Orocos RTT (C++) DSL
with its included Orocos-specific generators will take care
of the generation into an entirely C++-based representation,
which then reuses the M2T transformations provided by the
C++ base language to create the C++ source for an actual
Orocos RTT component.

Apart from C++-based artifacts, an Orocos Program Script
is generated by incorporating different heterogeneous model
pieces to eventually form a complete artifact. For this purpose,
there are mainly two generator modules. Each of them covers a

http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-components-manual.html#program-syntax
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-components-manual.html#program-syntax


D. L. WIGAND et al./ Domain-Specific Language Modularization Scheme Applied to a Multi-Arm Robotics Use-Case 53

different aspect: The first generator is provided by the Orocos

Component language module and takes the structural view of
the system model (i.e. components, connections, etc.) as input
to transform it into OPS statements. Additionally, it draws
on the information provided by the Orocos-annotations to
configure necessary aspects, such as the priority or frequency
of the annotated component. The second generator is pro-
vided by the Orocos Systems Coordination and transforms
component configurations into OPS statements. Finally, the
resulting artifact incorporates the static view, configuration
and launch sequence of the system in form of an OPS file,
which can then be passed into the Orocos deployer14 binary
to execute the system.

However, to generate an Orocos component that is capable
of interpreting and executing a finite-state machine (FSM) on
its own, a Component from the Component DSL is created
(annotated with Orocos) that holds a State Machine, which is
represented in the Systems Coordination DSL with Orocos-
specific extensions. Those extensions are provided by the
Orocos Systems Coordination DSL.

As seen in Fig. 7, the generation splits into two different
pipelines: One for the state machine generation (left column)
and the other one for the state machine interpreter component
(2nd left column). Although the generation is separated, an
intact reference between the Component and its associated
State Machine is maintained. Furthermore, the Orocos Sys-

tems Coordination DSL needs to contain a generator that
takes care of the generation of Orocos-specific parts in a
State Machine. Reusing the Coordination DSL as IL, a
generator needs to be used that transforms Orocos-annotated
State Machines into a Orocos Program Script-based FSM
representation.

At the same time, additional artifacts can be generated
from reused generator modules, such as PlantML diagrams,
which can be formed for every generic system of components
specified using the Component DSL.

6 EVALUATION: LANGUAGE DESIGNER

The evaluation of the presented approach from the language
designer perspective is performed qualitatively and quantita-
tively. First, the composition is analyzed qualitatively with
regards to the guidelines introduced in Sec. 2. Afterwards,
this is followed by a quantitative evaluation of the amount of
reuse in our approach and the application of common object-
oriented software metrics to analyze the composition.

6.1 Qualitative Evaluation

The proposed approach is discussed along the guidelines (GX)
condensed in Sec. 2:

14. http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/
orocos-deployment.html

6.1.1 Specification of comp.-based robotic arch’s. (G1)
Since we based our Component DSL on the CPC meta-
model, it is also inherited by every specialization of the
Component DSL, such as the Motion Primitives DSL. This
way, our system description is based on a well-established
specification model for component-based architectures.

6.1.2 Reuse language modules for composition (G2)
As described in Sec. 4, the proposed composition is divided
along three dimensions, separating the main concerns of
robotics systems. Each dimension encompasses language or
generator fragments for different aspects of that dimension.
Since supporting new capabilities and platforms follows a
specific scheme (see Sec. 5), reusing a significant amount
of the existing implementations (e.g., language and generator
fragments) becomes feasible. The fact that only a desired
set of capabilities needs to be covered to support a new
software platform offers the benefit of incremental and dis-
tributed development. In general, our modularization provides
a library-based approach for language and generator modules,
which can be loaded or unloaded at will, supporting dynamical
configurations of compositions and independent evolution of
languages and generators. Using such a library-based modu-
larization is also encouraged by Horst et al. [10].

6.1.3 Support exchanging heterogeneous modules (G3)
The functional level of our proposed approach is entirely
software- and hardware platform agnostic. By using the intro-
duced composition mechanisms, the provided capabilities, e.g.,
components, can be generated into heterogeneous software and
executed on associated hardware platforms.

6.1.4 Use well defined interfaces (G4)
For the interaction between the three dimensions, we intro-
duced interfaces (see Fig. 2) that allow non-invasive compo-
sition, using the Embedding mechanism described in Sec. 3.

6.1.5 Support of smooth evolution of DSLs (G5)
The ability to change elements of a DSL without triggering
a cascade of changes, which has an impact on diverse other
language modules, depends on the stability [36] of the DSLs
where the change is going to happen. The stability of the
modules in our approach is analyzed in Sec. 6.2.2. Since stable
languages mostly have a number of languages depending on
them, the probability of having a higher impact on these
depending DSLs increases. Through the modular design and
SoC in our approach, we minimize the dependencies between
the modules. Additionally, change is mainly happening to
instable modules, which do not have many dependencies. This
makes sense considering the Component DSL and higher-
level languages (e.g., the Motion Primitives DSL). While the
first one is based on a well-established scheme (CPC) and thus
not very likely to change drastically, the latter is more prone

http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html


54 Journal of Software Engineering for Robotics 8(1), December 2017

to language evolution. This is due to the fact that these higher-
level specializations cover different subdomains that might not
be represented or accessed entirely (see Sec. 6.2.2).

6.2 Quantitative Evaluation

This part of the evaluation aims at quantifying the reuse and
stability of the proposed structure for language composition.
First, the actually reused elements are analyzed and compared
with the additional effort that would occur through not reusing
parts of existing modules. The analysis is followed by an
evaluation of a stability metric [36] applied to our proposed
modules.

6.2.1 Reuse and Effort Analysis

To gain insights on the reuse factor of our proposal, the
language modules relevant for the static and dynamic view
of a system are considered. This includes the Orocos-related
languages, namely Orocos Component and Orocos Sys-

tems Coordination; as well as the languages for NAOqi,
introduced in [29]: NAOqi Component and NAOqi Sys-

tems Coordination. Taking a closer look at these languages
in Tab. 1, it can be seen that each of these languages would
contain a very high amount of additional elements in case of no
reuse. Especially the Orocos Systems Coordination would
need to incorporate 22.57 times more elements than it would
need reusing existing languages modules. These numbers were
gained by adding the language elements from the reused
languages to the elements of the derived language per MPS’
aspect. Here, we assume that all elements from the reused
languages are important for the derived language. Apart from
several other downsides that come with monolithic and non-
dynamic software designs, the additional effort spent to create
these language modules strongly encourages modularization
similar to our approach.

NAOqi Comp Orocos Comp NAOqi Sys.Coord Orocos Sys.Coord
Structure 73 (+59%) 42 (+282%) 48 (+2300%) 47 (+4700%)
Editor 50 (+43%) 27 (+286%) 41 (+1950%) 39 (+3900%)
Constraints 10 (+43%) 5 (+400%) 16 (+1500%) 15 (+1500%)
Behavior 22 (+47%) 11 (+450%) 33 (+3200%) 32 (+3200%)
Typesystem 28 (+65%) 13 (+333%) 13 (+550%) 14 (+1300%)
Intentions 5 (+67%) 3 (+200%) 5 (+400%) 4 (+400%)
Dataflow 0 (+0%) 0 (+0%) 12 (+200%) 8 (+800%)
Total (+%) 188 (+46%) 101 (+279%) 168 (1443%) 167 (2257%)

TABLE 1: Presentation of the language development effort.
The platform-specific extensions, i.e. NAOqi/Orocos Compo-
nent and NAOqi/Orocos Systems Coordination, are considered
as stand-alone languages without any kind of reuse. While
the number in each cell indicates the number of language
elements per MPS’ aspect, the percentage displays the ratio
between the elements w.r.t. reuse. Compared to the NAOqi
Systems Coordination that reuses other languages, the stand-
alone version needs in total 1443% =̂ 14.43 times, and for
the Orocos it is even 2257% =̂ 22.57 times more elements.

Ca Ce I
Kinematics 2 0 0.00
Software Platform 17 0 0.00
Capabilities 8 0 0.00
Component 34 1 0.03
Coordination 11 1 0.08
Hardware Platform 3 2 0.40
Sys. Coord. 6 17 0.74
Orocos Comp. 0 10 1.00
Orocos Sys. Coord. 0 10 1.00
NAOqi Comp. 0 18 1.00
NAOqi Sys. Coord. 0 12 1.00

TABLE 2: Stability analysis of the modules from the proposed
composition according to [36]. Ca is the afferent couplings.
Ce stands for the efferent couplings. I is based on Ca and Ce,
representing the instability of a module. The metric ranges
from 0 (stable) to 1 (instable).

6.2.2 Stability Analysis
It is essential for a composition to be founded on a stable basis
of languages (see Sec. 2). Since building upon an instable
base, prone to change and fluctuation, could cause cascades
of changes to propagate through the entire composition. Thus,
our proposed language modules are evaluated by applying
a stability metric, introduced by Martin [36]. He proposes
two characteristics to classify a module: Independence and
Responsibility. Independent modules do not depend on any-
thing else. Responsible modules are heavily depended upon
by other modules. Modules that are both independent and
responsible, do not need and should not change. Applying
this metric to the concepts of language modules, the findings
are displayed in Tab. 2. The metric ranges from 0 (stable) to 1
(instable). The base languages that lay the foundation to model
a component-based robotic system in our proposal are close
to being stable, e.g., Component, Coordination, whereas
specific capabilities and their platform associations are, in
this case, highly instable according to this metric. However,
not all parts need or even should be stable. If all parts of a
system would be entirely stable, there would be no room left
for changes [36], thus preventing evolution. Nevertheless, it
is obligatory to build upon a stable basis while keeping the
most specific parts of the composition exposable to change.
This prevents changes from rippling through the system while
being able to adapt and extend the current state of composition.

7 EVALUATION: LANGUAGE USER

The introduced language modularization and composition was
initially motivated in Sec. 2 from a language designer’s
perspective, which was evaluated in the previous Sec. 6. The
following section continues this discussion from a language
user’s perspective, i.e. from the perspective of the roboticist
and system builder15.

The qualitative evaluation in this section focuses on model-
ing features that help the user to handle the complex interplay

15. The semantics of the role is informed by [37].



D. L. WIGAND et al./ Domain-Specific Language Modularization Scheme Applied to a Multi-Arm Robotics Use-Case 55

between software, hardware, and the desired capabilities for
their application. Regarding the evaluation, we decided against
considering a toy example and chose one of the main scenarios
of our current research project16 instead. Putting our approach
in practice not only provides a suitable degree of complexity,
but more importantly, facilitates the development of a highly
relevant part of our research.

In the following, we introduce a robotics application, which
we consider a valuable use case for the presented com-
position approach to show where and why it excels. The
chosen scenario for this use case unifies different aspects of
robotics systems, such as static system description, coordina-
tion, software execution environment, hardware environment
(i.e. kinematics and dynamics), as well as timing. Our ap-
proach integrates these domains in a way that they can be
seen and designed independently most of the time. Therefore,
distributed development and usage is enabled. In the real
world, however, these aspects are not entirely decoupled,
but often heavily intertwined. With the presented language
composition approach, these relationships can be exploited in
form of assumptions and information that are inferred across
domains. Thus, we expect that support by the introduced
language family is especially valuable in scenarios where
there is a tight coupling between capabilities, hardware, and
software. Robotics experiments with a strong focus on a single
aspect of robotics, e.g., control or perception, may also be
covered by our language family. [8]. Furthermore, modeling
such a scenario is not only based on the composition of diverse
language modules, but ultimately also on the composition
of generator modules. Through our approach, this complex
DSL ecosystem is able to scale with the requirements of the
scenario, as long as the necessary domains are represented and
available based on the three dimension presented in Sec. 4.

7.1 Multi-Arm Object Manipulation Use Case

Many tasks in daily human household activities deal with
contact and are either related to wiping surfaces [38] or
grasping objects [39]. Both activities require complex contact
constraints. Robot motion in contact situations is constrained
and typical free space motion control techniques cannot be ap-
plied directly. In modern robotics, a key challenge is to exploit
or deal with these contact constraints. For this scenario, we
chose a method for multi-arm manipulation of rigid objects,
subject to external disturbance.

7.1.1 Scenario Description
Considering a robotics system consisting of four fixed-base
manipulators operating in a cooperative manner to manipulate
a rigid object via a force-closed grasp (see Fig. 8). Each
end-effector (i.e. triangular plate with three rubber feet) is in
contact with the object and may generate arbitrary wrenches

16. Cognitive Interaction in Motion – CogIMon (see https://cogimon.eu/)

(a) Simulated robot setup.

(b) Real robot hardware.

Fig. 8: Presentation of the quad-arm object manipulation
scenario on a simulated robot setup (a) as well as on the real
robot hardware (b).

upon the object. Due to the tight contact, this system can
be seen as a closed kinematic chain. The manipulators are
constrained: the relative transformation between end-effectors
stays constant (assuming no slipping along contact surfaces).

In this scenario, for manipulation of the object, one has to
consider two main objectives: First, end-effectors have to apply
(internal) forces to compensate for object dynamics. Second,
we want to control the object pose while end-effectors have
to adapt their position and orientation to maintain the contact-
constraint.

Projected inverse dynamics control (PIDC) [40], [41] is an
elegant framework for this purpose. This approach separates
robot control into two orthogonal subspaces for contact consis-
tent motion generation and applying contact forces. The pro-
jection is based on a Jacobian which specifies the contact con-

https://cogimon.eu/


56 Journal of Software Engineering for Robotics 8(1), December 2017

straint, assuming zero Cartesian velocities and accelerations at
the contact points. PIDC ensures that constraint force does not
produce any virtual work for any virtual displacement. For
this, the robot is constrained such that only internal forces
are allowed to enforce the contacts. Furthermore, motion
generation is not allowed to effect contact constraints. The
PIDC approach was validated by Ortenzi et al. [42] with a
torque-controlled robot for wiping a board.

PIDC can be employed for various scenarios by choosing a
constrained Jacobian. When grasping an object with two (or
more) end-effectors, one can employ the well studied grasp-
matrix constraint [43], [44]. It represents the mapping between
the object twist to the twists of the contact points. Employing
this constraint in a force-closed grasp situation, PIDC allows
to perform motion and force tasks separately, resulting in
different and independent control laws for applying desired
contact forces and tracking motion tasks [45].

7.2 Modeling Process
In this section we discuss the necessary steps to model the
scenario considering the separation of the different involved
roles (SoR [2]). Using MPS as tool for language develop-
ers as well as language users, the scenario was completely
modeled based on the language modules introduced in Sec. 5.
Exploiting the projectional editing feature of MPS, we created
a custom graphical editor to define the static view of a system
(see Fig. 9). Together with suitable concrete syntaxes (e.g.,
textual, graphical) for the other aspects, an intuitive way of
designing a component-based robotics system is provided.

Being able to distribute and separate the development by
roles at language usage level is one of the main advantages
of the presented language composition approach. This not
only improves efficiency and productivity, but also minimizes
distractions and the feeling of being overwhelmed by an entire
project. Hence, the user in a particular role is able to solely
focus on the part that requires his or hers expertise. The
following sections are structured according to the modeling
process, which considers SoR following [2], [37].

7.2.1 Functional Design
The first task to model such a scenario is to assess its
functional and non-functional requirements. By analyzing the
algorithmic theory (e.g., the control scheme), the domain
expert was able to identify the functional building blocks that
form the control algorithm for this scenario:
End-Effector Motion Controller (1) The end-effector mo-
tion controller computes torques to follow a desired trajectory
(consisting of position and orientation) with the object’s center.
End-Effector Force Controller (2) In contrast to the motion
controller, this component enforces contact by controlling
(internal) force.
Projection Combiner (3) The output of both motion and
force controllers is combined by projecting onto orthogonal
subspaces.

Constrained Auxiliaries (4) Variables that are necessary for
PIDC, such as the projection matrix, its derivative and the
constrained inertia, are computed by this functional block.
Kinematics and Dynamics (5) Based on the current joint
angles, the end-effector positions and velocities, end-effector
Jacobians, joint space inertia matrix as well as a vector for
compensating gravity and centrifugal/Coriolis are calculated
and provided for further calculations.
Constraint (6) By evaluating the current end-effector posi-
tions, the associated grasp matrix constraint is computed. This
is used to dictate the direction of contact forces.
Trajectory Generator (7) This functional block provides the
desired trajectory (positions and orientations) for the object’s
center.
Object Pose Tracking (8) Tracks the manipulated object’s
pose using an external vision system to acquire ground truth
information.
Contact Force Estimator (9) Estimates the contact forces.
Even though the obtained signal is not precise enough for robot
control, the estimated data can be used for offline evaluation
or fault detection. Consequently, this block can be executed
with low priority compared to other functional blocks.

Together with the domain expert, the system architect then
defines the system. A static view is used to describe the
components and the connectivity of the system. A dynamic
view is used to define the configuration and the launch
sequence. For this scenario, compliant robotic manipulators
need to be used that can be operated in joint torque control
mode and the main control loop needs to run at 1 kHz in order
to have stable control.

7.2.2 Capability Modeling
Based on the insights gained from the domain expert and the
system architect, the functional blocks required (but not yet
available) for the desired robotics system need to be modeled
by the component supplier through concepts of the Compo-

nent DSL (see Fig. 10). For our scenario, the new components
were added to the component repository (CCL17) model. CCL
contains different components, the system builder can draw
on to create a static system model (see Fig. 9). Using the
static view, the behavior developer is able to specify the model
for the dynamic view, leveraging the Systems Coordination

DSL. This model includes the component configurations as
well as their launch sequence (see Fig. 12). In the special case
of considering the configuration of the components involved in
the control scheme, the domain expert’s knowledge is required
to fine-tune the behavior. Eventually, both models are used to
let the robotic system execute a desired behavior.

7.2.3 Technology Mapping
One of the requirements identified in Sec. 7.2.1 was a main
loop update rate of 1 kHz. To fulfill this requirement Orocos

17. name of the model displayed in Fig. 9



D. L. WIGAND et al./ Domain-Specific Language Modularization Scheme Applied to a Multi-Arm Robotics Use-Case 57

Fig. 9: Screenshot of our graphical editor in MPS, displaying the modeled static view of the quad-arm object manipulation
scenario. On the left, the used models are displayed, including the component- (CCL), robotic platform- (RobotRepo) and
data type- (RSTRT) repository. All components, connections, etc. that form the system are displayed on the right. The purple
connections highlight the main data flow for this scenario, while the numbers on the components refer to the functional blocks
in Sec. 7.1. For instance, the end-effector motion controller (1) was decomposed into three components. Components without a
number, represent mandatory and optional parts of the system. The components on the right include the four robot interfaces,
which are necessary, but not described as functional parts of the control scheme. Additionally, logging and safety components
are optional w.r.t. to the control scheme, but highly important for the safe execution.

RTT was selected as a suitable technology mapping for this
scenario. Since at that point there are not yet any platform-
specific aspects included in the previously created models
(see Sec. 7.2.2), the software engineer maps a software plat-
form (i.e. Orocos) to the system, or rather to each component
that needs to run in an Orocos real-time environment. Since
Orocos demands to have the timing of the components speci-
fied, the performance designer needs to take care of handling
the different activities and the timing of the individual compo-
nents in the system. Fig. 13 shows the annotated component of
the task-space position controller for the end-effectors, which
is associated to an activity that sets the update frequency,
priority, and scheduler accordingly. To leverage Xenomai18

support, the scheduler needs to be set to ORO_SCHED_RT.

18. https://xenomai.org/

7.2.4 Hardware Mapping

To deploy the modeled system for the LWR 4+, the respective
hardware platform needs to be available to be used by the
components that interface with the robot. Hence, the robot
engineer needs to provide the kinematics as well as dynam-
ics model (see Fig. 11). However, if the desired robot is
already available in the so called robotic platform repository
(RobotRepo17) model, the robot engineer can also draw on
the existing robots and load the respective models from the
repository. The next step is to configure one robot component
per controlled robot. In order to control the entire robot, or a
subset of the available kinematics, so called kinematic chains
need to be defined. Such a chain, consists of a sequence
of joints that are connected via links. Depending on the
scenario, the desired chains are defined and thus available to
be controlled in the intersection of control modes supported
by the involved joints. In our model, a robot component is

https://xenomai.org/


58 Journal of Software Engineering for Robotics 8(1), December 2017

Fig. 10: Illustration of the component description model for
the JointPositionController available in the CCL repository.

controllable once it contains a fully defined kinematic chain.
For this, a chain requires a set of consecutive joints as well
as one of the available control modes to indicate the active
mode. Only one control mode can be active per chain at a
time. In this case, the entire kinematic chain of the KUKA
LWR 4+ is used and set into a special kind of joint torque
mode (+ gravity compensation), since the robot along with its
FRI interface does not provide direct joint torque control.

Fig. 11: Kinematics and dynamics model of the KUKA LWR
4+, including meta information, i.e. collision meshes for
simulation and collision detection.

7.3 Refining the Models
The modeling process presented in the previous section
(see Sec. 7.2) represents one iteration cycle. In the first itera-

Fig. 12: Behavior model for the system in form of a state
machine. To access the callable operations on a component,
the model draws on the available components in the static
view (see Fig. 9) and their associated component descriptions
(see Fig. 10).

tion the process needs to be followed in a rather strict order,
since the technology and hardware mapping phase can only
be entered after a platform-independent model is created. The
next iterations are targeted at refining the models and resolving
issues or triggered constraints. Thus, the order is less strict.
Already during the first iteration (as soon as two intertwined
aspects are used) the users can benefit from the composition
approach, which allows to make assumptions across models
and across (sub-)domains, supporting the user while develop-
ing the system (see the example presented in Sec. 7.3.2). Once
the first iteration is finished, aspects from every dimension
are incorporated in the models. Although, benefits are created
for the users by treating these aspects resp. language modules
as independent during the development phase, some parts are
highly coupled from a functional point of view. Exploiting this
kind of intertwinedness is where our composition approach
excels the most.

Examples for user support w.r.t. possible refinements in
further iterations are presented in the following:



D. L. WIGAND et al./ Domain-Specific Language Modularization Scheme Applied to a Multi-Arm Robotics Use-Case 59

Fig. 13: Visualization of the end-effectors’ task-space position
controller component, annotated with the Orocos platform
and associated with an activity to define the timing. For this
activity, an update frequency of 0.001[s] =̂ 1[kHz], a priority
of 15, and as scheduler ORO_SCHED_RT is chosen, which
enforces the Xenomai support for execution (if available).

7.3.1 Adapting the Architecture to Other Platforms

For instance, depending on the hardware platform, the generic
control architecture is automatically scaled towards the robot
platform. Of course, there are limits: A control architecture for
manipulators cannot be ported to a humanoid robot without
further knowledge. This, however, does work among different
manipulators that expose the mandatory control modes. Using
the inferred e.g., degrees of freedom (DoF) from the robot
platform provides the required information to warn the user,
when manually specifying a value that does not match the DoF
of the controlled robot (see Fig. 14).

Fig. 14: Illustration of a warning that occurs when the degrees
of freedom of a controller component are manually overridden,
although they were already inferred automatically from the
robotic hardware platform that should be controlled.

This kind of intertwined yet non-invasive composition of
modules allows further to efficiently adapt specific parts to
changing requirements. For instance, deploying a modeled
system on another software or hardware platform does not
require the involvement of the Function Developer nor the
Component Supplier. Only the expert for the specific platform
is required to make the proper changes. The general system
will adapt accordingly (within realistic bounds). However,
deploying a controller that does not make sense (on a semantic
level) for a particular robot, will most likely result in an
unwanted behavior.

Fig. 15: Presentation of the textual representation for a system
containing two components: A controller that sends joint
torque commands to a robot component that interfaces to a
KUKA LWR 4+. The entire kinematic chain of the robot is
set to a non-standard joint torque control mode with additional
semantics (+gravity), indicating that gravity will be compen-
sated for by the robot. This triggers a constraint and informs
the user about possible semantic inconsistencies.

7.3.2 Coping with Peculiarities of Special Compositions
The composition can yield even more complex assumptions
when all three dimensions, i.e. the Software Platform dimen-
sion, the Hardware Platform dimension, and the Capability
dimension, are considered together. As discussed in Sec. 5.2.1,
a constraint is triggered when a component sends joint torques
to a robot control interface that uses the LWR 4+ Platform
and FRI as the remote control interface. After triggering the
constraint, the user is asked to take care of removing the
gravity from the torque command before sending it to the
robot, since the LWR 4+ already compensates for gravity on
its own (see Fig. 15). However, our control components offer
a functionality to be called by the constraint to automatically
neglect the gravity in the computations.

7.3.3 Modeling Currently Unsupported (Sub-)Domains
Another advantage of the presented approach is the fact that
a system can directly be modeled in the generic Component

DSL, System Coordination DSL, etc, even though there
might not be a (sub-)domain-specific language module for a
particular aspect available yet. This is especially useful when
considering research projects, where it is often the case that
not all parts required for a research prototype are supported
by language modules right from the start. For instance, we
were able to model a prototype of the scenario at a point in
time where the (sub-)domain of motion primitives was not
yet covered by the composition. The prototype however, was
then used as an additional asset to the domain analysis, which
resulted in a language module for motion primitives, i.e. the
Motion Primitives DSL. With that new module, the model
was incrementally refined to include the motion primitives
aspect. The same principle can be applied to e.g., a software
platform. Before the timing aspects of Orocos were modeled,
the different activities needed to be parameterized manually
via the behavior model. Afterwards, using the modeled activ-
ities, the configuration is automatically generated.



60 Journal of Software Engineering for Robotics 8(1), December 2017

Fig. 16: Depiction of the generation process w.r.t. the used
models and resulting artifacts. The root models are arranged
in the upper half of the figure, while the generated artifacts
(i.e. OPS script and C++ implementations) are displayed in
the lower half. The models that act as input for the generation
process are connected with the double-lined arrows towards
the artifact they contribute to.

7.4 Resulting Models and Generated Artifacts

The outcome of the modeling process for this scenario is
expressed by the following models (see Fig. 16):

• a model repository containing the kinematic and dynamic
description of the robotics platforms (RobotRepo).

• a model repository for all available components (CCL).
• a model defining the static view of the system, which

embeds
– a model part for the mapping the Orocos as the

software platform.
– a model part for the configuration (e.g., control modes

and kinematic chains) of the KUKA LWR 4+ as the
hardware platform.

• a model representing the configuration and launch se-
quence of the system.

After transforming these models through the pipeline of com-
posed generators for this particular composition, two types of
artifacts are created: An OPS script that executes the described
behavior of the robotic system as well as different Orocos-
specific C++ implementations for the components. The fact
that the different heterogeneous model elements created from
different roles are compiled to a homogeneous artifact through
the composed compilers is a great simplification from a user’s
perspective and eases execution of the potentially complex
model.

8 RELATED WORK

There is an increasing number of DSLs in the context of
robotics systems, covering a variety of different concerns [8].

However, in most cases, these DSLs are self-contained without
being considered as parts of a composition at all.

Lesire et al. [46] propose a design process based on the
Mauve DSL, separating the concerns of computation and
configuration. The DSL can be traced back to CPC including
behavioral aspects. It provides modeling and validation of
component-based systems with particular focus on the non-
functional requirements of real-time. Even though we share
the same belief of applying CBSE and SoC to facilitate
development, their approach diverges from ours. Since they
consider the computation concern as “black box” and do not
model it, they are not able to generate computational code. In
our approach, we model and generate the computational code
(e.g., in the Motion Primitives DSL), instead of just mapping
the components to their platform-dependent implementation.
For compatibility with already existing computational code,
however, we also support such a kind of mapping. Apart from
that, their approach is not very robotics-specific since it does
not consider the robotics platform, which is an essential part
of a robotics system. Instead, they solely focus on the software
platform, i.e. the (Orocos) middleware.

The RobotML DSL to design, simulate, and deploy robotics
applications is presented by Dhouib et al. [11]. RobotML
sets the focus on modeling platform-independent robotics
applications that can be deployed on multiple target platforms.
It is realized as an UML profile. Similar to the Mauve DSL, the
system’s architecture, communication, and behavioral aspects
can be modeled and components are mapped to platform-
specific “black box” implementations. Although this approach
separates the robotics system description from the platform
description and explicitly represent the execution environment,
the approach does not distinguish between software and hard-
ware platforms. However, we believe that it is obligatory to
consider software and hardware as two individual concerns
since a system using a particular middleware might be de-
ployed on different hardware platforms that each demand the
consideration of different requirements. As far as we can
tell, RobotML is a single DSL, not utilizing the concept
of language modularization, thus preventing distributed de-
velopment. Furthermore, it uses direct M2T transformations
to generate towards a target-platform. However, according to
Voelter et al. [7], multi-staged M2M transformations increase
understandability, maintainability and offer to benefit from
reusing existing transformations. While utilizing solely direct
M2T transformations may be suitable for some purposes,
our approach conforms with the statements of Voelter et al.
especially when considering extensibility and composition (see
Sec. 4).

The 3-View Component Meta-Model (V3CMM) [5]
provides a platform-independent modeling approach for
component-based application design. It allows the modeling
of a system with modular high-level components including
their behavioral aspects. Furthermore, it supports M2M and
M2T transformations towards different generation targets. Al-



D. L. WIGAND et al./ Domain-Specific Language Modularization Scheme Applied to a Multi-Arm Robotics Use-Case 61

though it offers a fully model-driven approach for software
deployment, it is not particularly robotics-specific. In contrast
to that, our proposed approach represents robotics-specific
aspects due to the explicit consideration and modeling of the
robot platform.

Hochgeschwender et al. [47] propose a model-based ap-
proach for software deployment in robotics. They state that
the deployment of a robotics system needs to be separated
from the core functionalities. Similar to our approach, they
decompose a robotics application into software and hardware
aspects. However, their approach supports a far more fine-
grained and extensive model of robot platforms compared to
ours. While we currently only support the kinematic structure
and actuators implicitly as joints, they are able to define
the entire robot model in terms of sensors and actuators. In
order to build a robotics application, they draw on a set of
features and necessary transformations to target generation
against a framework (i.e. deployment files for Orocos). These
features are similar to the concerns covered by languages in
the Capability dimension of our approach. Unfortunately, in
their work they do not describe their generator composition nor
the interaction of platform-independent and -dependent parts
in detail.

With the MontiArcAutomation architecture modeling
framework, Ringert et al. [48] present an approach for lan-
guage and code generator composition of CPC systems. Based
on their language workbench MontiCore, they apply their
approach to robotics applications. Although they share our
mindset w.r.t. almost all presented challenges of composition,
e.g., support of heterogeneous target platforms (see Sec. 6.1.3),
they do not consider the robot (hardware) platform explicitly.
Furthermore, the approach only allows covering concerns
based on component behavior modeling languages. As far as
we can tell, the approach does not support adding arbitrary
concerns to the composition.

Regarding the aspect of modeling the static view of a
system, the BRICS component model (BCM) [34] and the
BRIDE toolchain [49] are interesting approaches to tackle
the issue. While the idea of BCM is to provide guidelines
(e.g., in form of the CPC meta-model) and tools to structure
the development process of components and component-based
systems in a framework- or application-agnostic way, BRIDE
provides an Eclipse-based modeling environment to specify
framework-independent systems (incl. component interfaces)
and to generate implementation skeletons for chosen target
languages (i.e. ROS and Orocos). Both approaches follow
the model-driven engineering approach and Separation of
Concerns. Our proposed approach is strongly influenced by
BCM and BRIDE. For instance, we are leveraging an extended
version of the CPC meta-model from BCM as mentioned
in Sec. 4.2 and we also conform to the Separation of Concerns
mindset. However, while BCM and BRIDE cover only the
static view of a system, our proposed approach unifies many
more aspects and is able to cover all robotics (sub-)domains

eventually.
Regarding the generation of Orocos component interfaces

and specifying the deployment and configuration of such
components, multiple solutions exist. Apart from some al-
ready mentioned publications, the Robot Construction Kit
(Rock) [50] offers a slightly different approach. After spec-
ifying the component interface and its dependencies in a
concrete syntax, the resulting file can be processed by their
oroGen transpiler to produce an Orocos-based C++ component
skeleton implementation. Eventually, the developer is then able
to implement the behavioral aspects into the skeleton. This
is similar to the BCM and BRIDE approach, except for the
fact that, as far as we can see, oroGen only provides one-
directional generation. Furthermore, Rock allows to describe
the deployment and configuration of components using Ruby
scripts. Since there is no tight integration of both aspects, no
extensive assumptions or constraints can be made over the
different aspects. This is a disadvantage, since this kind of
intertwinedness (e.g., between the static and dynamic view of
a system) is where our approach benefits the most from.

9 CONCLUSION
In this article, we discussed the need for language and gen-
erator composition as well as the accompanying challenges.
We introduced a three-dimensional model-based composition
approach for developing component-based robotics systems,
which addresses the main challenges of composition while be-
ing specifically designed to conceptually cover heterogeneous
concerns of the robotics domain, e.g., coordination, motion,
and perception. Apart from modeling platform-independent
capabilities, we specifically consider software and hardware
platform modeling as separate dimensions. Together with a
truly modular and flexible multi-staged code generator com-
position to support multiple heterogeneous generation targets,
these three dimensions form the pillars of our approach.

We evaluated the extensibility and general structure of our
composition in a case study, where we successfully covered the
concern of motion generation for the KUKA LWR 4+ platform
using our Orocos-based framework CoSiMA. The language
composition fosters separation of roles while still supporting
language users in coping with the complex interplay of the
different system aspects, e.g., hardware, software, and capabil-
ities. Motivated by the insights gained from the discussion of
related work in the direction of general language composition
and MDE approaches in robotics, we encourage awareness
for the need of language modularization and composition
especially for domain-specific modeling of advanced robotic
systems.

Future work on the basis of this article may include an
extension to the component-based systems architecture in
terms of (sub-)system composition, since this is expected to
further increase reuse. In addition to that, we are currently
investigating the interplay between the three presented dimen-
sions, to identify further (domain-specific) relationships that



62 Journal of Software Engineering for Robotics 8(1), December 2017

can be made explicit to contribute to an enhanced modeling
support. Ultimately, a user evaluation is intended, which will
provide the required insights that help to refine the presented
approach.

REFERENCES

[1] R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar,
H. Bruyninckx, P. Soetens, M. Haegele, A. Pott, P. Breedveld,
J. Broenink, D. Brugali, and N. Tomatis, “Brics - best practice
in robotics,” in Proc. 41st Int. Symp. Robotics and 6th German
Conf. Robotics, Jun 2010, pp. 1–8. [Online]. Available: http:
//ieeexplore.ieee.org/document/5756905 1, 4

[2] C. Schlegel, A. Lotz, and A. Steck, Robotic software systems: From
code-driven to model-driven software development. INTECH Open
Access Publisher, 2012. [Online]. Available: http://ieeexplore.ieee.org/
document/5174736/ 1, 7.2

[3] C. Schlegel, A. Lotz, M. Lutz, D. Stampfer, J. F. Inglés-Romero, and
C. Vicente-Chicote, “Model-driven software systems engineering in
robotics: covering the complete life-cycle of a robot,” it-Information
Technology, vol. 57, no. 2, pp. 85–98, 2015. [Online]. Available:
https://doi.org/10.1515/itit-2014-1069 1

[4] J. White, J. H. Hill, J. Gray, S. Tambe, A. S. Gokhale, and D. C.
Schmidt, “Improving domain-specific language reuse with software
product line techniques,” IEEE software, vol. 26, no. 4, pp. 47–53,
2009. [Online]. Available: http://ieeexplore.ieee.org/document/5076458/
1, 2

[5] D. Alonso, C. Vicente-Chicote, F. Ortiz, J. Pastor, and B. Alvarez,
“V3cmm: A 3-view component meta-model for model-driven robotic
software development,” Journal of Software Engineering for Robotics,
vol. 1, no. 1, pp. 3–17, 2010. [Online]. Available: https://joser.unibg.it/
index.php?journal=joser&page=article&op=view&path%5B%5D=18 1,
8

[6] A. van Deursen, P. Klint, and J. Visser, “Domain-Specific Languages:
An Annotated Bibliography,” ACM Sigplan Notices, 2000. [Online].
Available: http://dl.acm.org/citation.cfm?id=352035 1

[7] M. Völter, S. Benz, C. Dietrich, B. Engelmann, M. Helander,
L. Kats, E. Visser, and G. Wachsmuth, DSL Engineering – Designing,
Implementing and Using Domain-Specific Languages. CreateSpace
Independent Publishing Platform, 2013. [Online]. Available: http:
//voelter.de/dslbook/markusvoelter-dslengineering-1.0.pdf 1, 3, 4, 4.3, 8

[8] A. Nordmann, N. Hochgeschwender, D. Wigand, and S. Wrede, “A
Survey on Domain-Specific Modeling and Languages in Robotics,”
Journal of Software Engineering in Robotics, 2016. [Online].
Available: https://joser.unibg.it/index.php?journal=joser&page=article&
op=view&path%5B%5D=100 1, 3, 4.1.3, 7, 8

[9] D. Brugali and P. Scandurra, “Component-Based Robotic Engineering
(Part I),” Robotics and Automation Magazine, no. 12, 2009. [Online].
Available: http://ieeexplore.ieee.org/document/5306930/ 1

[10] A. Horst and B. Rumpe, “Towards Compositional Domain Specific
Languages,” 7th Workshop Multi-Paradigm Modeling, pp. 1–5,
2013. [Online]. Available: http://www.se-rwth.de/publications/Towards
Compositional Domain Specific Languages.pdf 1, 2, 6.1.2

[11] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane,
“Robotml, a domain-specific language to design, simulate and deploy
robotic applications,” in Proc. 3rd Int. Conf. Simulation, Modeling,
and Programming for Autonomous Robots, ser. SIMPAR’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 149–160. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-642-34327-8 16 1, 2,
4.2, 4.3, 8

[12] M. Voelter, Language and IDE Modularization and Composition
with MPS. Braga, Portugal: Springer Berlin Heidelberg, 2011,
pp. 383–430. [Online]. Available: https://link.springer.com/chapter/10.
1007%2F978-3-642-35992-7 11 1, 3, 4

[13] D. Groenewegen and E. Visser, “Declarative access control for
webdsl: Combining language integration and separation of concerns,”
in Proc. Int. Conf. Web Engineering. Yorktown Heights, New York,
USA: IEEE, July 2008. [Online]. Available: http://ieeexplore.ieee.org/
document/4577881/ 1

[14] A. Nordmann, N. Hochgeschwender, and S. Wrede, “A survey on
domain-specific languages in robotics,” in Proceedings of the 4th
International Conference on Simulation, Modeling, and Programming
for Autonomous Robots - Volume 8810, ser. SIMPAR 2014. New
York, NY, USA: Springer-Verlag New York, Inc., 2014, pp. 195–206.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-11900-7 17 1

[15] OMG. (2014, Jun) Model Driven Architecture (MDA) Guide. [Online].
Available: http://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf 1

[16] R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-Schäffer,
D. Beyer, O. Eiberger, S. Haddadin, A. Stemmer, G. Grunwald,
and K. R. Gmbh, “The KUKA-DLR Lightweight Robot arm a
new reference platform for robotics research and manufacturing
Summary / Abstract Stages of research and product development,”
Joint 41th Internatiional Symposium on Robotics and 6th German
Conference on Robotics, pp. 741–748, 2010. [Online]. Available:
http://www.vde-verlag.de/proceedings-en/453273110.html 1

[17] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion
control core of the Orocos project,” in IEEE International Conference
on Robotics and Automation, 2003, pp. 2766–2771. [Online]. Available:
http://ieeexplore.ieee.org/document/1242011/ 1

[18] W. Cazzola and D. Poletti, “Dsl evolution through composition,”
in Proceedings of the 7th Workshop on Reflection, AOP and
Meta-Data for Software Evolution, ser. RAM-SE ’10. New York,
NY, USA: ACM, 2010, pp. 6:1–6:6. [Online]. Available: http:
//doi.acm.org/10.1145/1890683.1890689 2

[19] S. Erdweg, P. G. Giarrusso, and T. Rendel, “Language composition
untangled,” in Proceedings of the Twelfth Workshop on Language
Descriptions, Tools, and Applications, ser. LDTA ’12. New York,
NY, USA: ACM, 2012, pp. 7:1–7:8. [Online]. Available: http:
//doi.acm.org/10.1145/2427048.2427055 2

[20] L. Renggli, M. Denker, and O. Nierstrasz, “Language boxes: Bending
the host language with modular language changes,” in Proceedings of the
Second International Conference on Software Language Engineering,
ser. SLE’09. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 274–293.
[Online]. Available: https://doi.org/10.1007/978-3-642-12107-4 20 2

[21] S. Erdweg, T. van der Storm, M. Völter, L. Tratt, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat, P. J.
Molina, M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi,
V. Vergu, E. Visser, K. van der Vlist, G. Wachsmuth, and J. van der
Woning, “Evaluating and comparing language workbenches,” Comput.
Lang. Syst. Struct., vol. 44, no. PA, pp. 24–47, Dec 2015. [Online].
Available: http://dx.doi.org/10.1016/j.cl.2015.08.007 2

[22] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schneider, and
S. Vlkel, “Design guidelines for domain specific languages,” in Proc.
9th OOPSLA Workshop Domain-Specific Modeling, 2009, pp. 7–13.
[Online]. Available: https://arxiv.org/abs/1409.2378 2

[23] C. Simonyi, M. Christerson, and S. Clifford, “Intentional software,” in
Proc. 21st Annu. ACM SIGPLAN Conf. Object-oriented Programming
Systems, Languages, and Applications, ser. OOPSLA ’06. New
York, NY, USA: ACM, 2006, pp. 451–464. [Online]. Available:
http://doi.acm.org/10.1145/1167473.1167511 3

[24] D. Ratiu, M. Voelter, Z. Molotnikov, and B. Schaetz, “Implementing
modular domain specific languages and analyses,” in Proc. Workshop
Model-Driven Engineering, Verification and Validation. ACM, 2012,
pp. 35–40. [Online]. Available: http://mbeddr.com/files/modevva2012.
pdf 3, 4

[25] M. Frigerio, J. Buchli, and D. Caldwell, “A Domain Specific
Language for Kinematic Models and Fast Implementations of
Robot Dynamics Algorithms,” in Proc. Workshop Domain-Specific
Languages and models for Robotic systems, 2013. [Online]. Available:
https://arxiv.org/abs/1301.7190 4.1.1

[26] A. K. Ramadorai, U. Ganapathy, and F. Guida, “A generic
kinematics software package,” in Proc. Int. Conf. Robotics and
Automation. IEEE, 1994, pp. 3331–3336. [Online]. Available:
http://ieeexplore.ieee.org/document/351058/ 4.1.1

[27] M. Bordignon, K. Stoy, and U. P. Schultz, “Generalized programming
of modular robots through kinematic configurations,” in Proc. Int.
Conf. Intelligent Robots and Systems. IEEE, 2011, pp. 3659–3666.
[Online]. Available: http://ieeexplore.ieee.org/document/6094811/ 4.1.1

[28] M. Frigerio, J. Buchli, and D. G. Caldwell, “Model based code
generation for kinematics and dynamics computations in robot

http://ieeexplore.ieee.org/document/5756905
http://ieeexplore.ieee.org/document/5756905
http://ieeexplore.ieee.org/document/5174736/
http://ieeexplore.ieee.org/document/5174736/
https://doi.org/10.1515/itit-2014-1069
http://ieeexplore.ieee.org/document/5076458/
https://joser.unibg.it/index.php?journal=joser&page=article&op=view&path%5B%5D=18
https://joser.unibg.it/index.php?journal=joser&page=article&op=view&path%5B%5D=18
http://dl.acm.org/citation.cfm?id=352035
http://voelter.de/dslbook/markusvoelter-dslengineering-1.0.pdf
http://voelter.de/dslbook/markusvoelter-dslengineering-1.0.pdf
https://joser.unibg.it/index.php?journal=joser&page=article&op=view&path%5B%5D=100
https://joser.unibg.it/index.php?journal=joser&page=article&op=view&path%5B%5D=100
http://ieeexplore.ieee.org/document/5306930/
http://www.se-rwth.de/publications/Towards_Compositional_Domain_Specific_Languages.pdf
http://www.se-rwth.de/publications/Towards_Compositional_Domain_Specific_Languages.pdf
https://link.springer.com/chapter/10.1007/978-3-642-34327-8_16
https://link.springer.com/chapter/10.1007%2F978-3-642-35992-7_11
https://link.springer.com/chapter/10.1007%2F978-3-642-35992-7_11
http://ieeexplore.ieee.org/document/4577881/
http://ieeexplore.ieee.org/document/4577881/
http://dx.doi.org/10.1007/978-3-319-11900-7_17
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf
http://www.vde-verlag.de/proceedings-en/453273110.html
http://ieeexplore.ieee.org/document/1242011/
http://doi.acm.org/10.1145/1890683.1890689
http://doi.acm.org/10.1145/1890683.1890689
http://doi.acm.org/10.1145/2427048.2427055
http://doi.acm.org/10.1145/2427048.2427055
https://doi.org/10.1007/978-3-642-12107-4_20
http://dx.doi.org/10.1016/j.cl.2015.08.007
https://arxiv.org/abs/1409.2378
http://doi.acm.org/10.1145/1167473.1167511
http://mbeddr.com/files/modevva2012.pdf
http://mbeddr.com/files/modevva2012.pdf
https://arxiv.org/abs/1301.7190
http://ieeexplore.ieee.org/document/351058/
http://ieeexplore.ieee.org/document/6094811/


D. L. WIGAND et al./ Domain-Specific Language Modularization Scheme Applied to a Multi-Arm Robotics Use-Case 63

controllers,” in Proc. Workshop Software Development and Integration
in Robotics, 2012. [Online]. Available: https://www.iit.it/it/people/
marco-frigerio?docId=76&format=raw&view=download 4.1.1

[29] D. L. Wigand, A. Nordmann, M. Goerlich, and S. Wrede,
“Modularization of domain-specific languages for extensible component-
based robotic systems,” in 2017 First IEEE International Conference
on Robotic Computing (IRC), April 2017, pp. 164–171. [Online].
Available: http://ieeexplore.ieee.org/document/7926534/ 4.1.1, 4.3, 6.2.1

[30] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng, “Ros: an open-source
robot operating system,” in ICRA Workshop on Open Source
Software, 2009. [Online]. Available: http://www.willowgarage.com/
papers/ros-open-source-robot-operating-system 4.1.2

[31] A. Nordmann, M. Rolf, and S. Wrede, Software Abstractions for
Simulation and Control of a Continuum Robot. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 113–124. [Online]. Available:
https://doi.org/10.1007/978-3-642-34327-8 13 4.1.2

[32] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: Yet another robot
platform,” International Journal of Advanced Robotic Systems, vol. 3,
no. 1, p. 8, 2006. [Online]. Available: http://dx.doi.org/10.5772/5761
4.1.2

[33] J. Wienke and S. Wrede, “A middleware for collaborative research in
experimental robotics,” in 2011 IEEE/SICE International Symposium
on System Integration (SII), Dec 2011, pp. 1183–1190. [Online].
Available: http://ieeexplore.ieee.org/document/6147617/ 4.1.2

[34] D. Brugali and L. Gherardi, “Hyperflex: A model driven toolchain for
designing and configuring software control systems for autonomous
robots,” Studies in Computational Intelligence, vol. 625, pp. 509–534,
2016. [Online]. Available: https://www.scopus.com/inward/record.uri?
eid=2-s2.0-84958559705&doi=10.1007%2f978-3-319-26054-9 20&
partnerID=40&md5=d18f20fdc514a4a2868e251d6b070124 4.2, 8

[35] A. Nordmann, S. Wrede, and J. Steil, “Modeling of movement
control architectures based on motion primitives using domain-specific
languages,” in Proc. Int. Conf. Robotics and Automation, May 2015,
pp. 5032–5039. [Online]. Available: http://ieeexplore.ieee.org/abstract/
document/7139899/ 4.2, 5.3

[36] R. Martin, “Oo design quality metrics: an analysis of dependencies,”
ROAD, vol. 2, no. 3, 1995. 6.1.5, 6.2, 2, 6.2.2

[37] Robotics and Embedded Systems, Technische Universität München.
(2017, May) Roles in the Ecosystem [RobMoSys Wiki]. [Online].
Available: http://robmosys.eu/wiki/general principles:ecosystem:roles
15, 7.2

[38] D. Leidner, A. Dietrich, M. Beetz, and A. Albu-Schäffer, “Knowledge-
enabled parameterization of whole-body control strategies for compliant
service robots,” Autonomous Robots, vol. 40, no. 3, pp. 519–
536, 2016. [Online]. Available: https://link.springer.com/article/10.
1007/s10514-015-9523-3 7.1

[39] A. M. . Okamura, N. Smaby, and M. R. Cutkosky, “An overview
of dexterous manipulation,” in IEEE/RSJ Int. Conf. on Robotics
and Automation, vol. 1, 2000, pp. 255–262. [Online]. Available:
http://ieeexplore.ieee.org/document/844067/ 7.1

[40] F. Aghili, “A unified approach for inverse and direct dynamics of
constrained multibody systems based on linear projection operator:
Applications to control and simulation,” IEEE Transactions on
Robotics, vol. 21, no. 5, pp. 834–849, 2005. [Online]. Available:
http://ieeexplore.ieee.org/document/1512343/ 7.1.1

[41] M. Mistry and L. Righetti, “Operational space control of constrained
and underactuated systems,” in Proceedings of Robotics: Science
and Systems VII. MIT Press, 2011. [Online]. Available: http://www.
disneyresearch.com/wp-content/uploads/mistry rss11 final.pdf 7.1.1

[42] V. Ortenzi, M. Adjigble, J. A. Kuo, R. Stolkin, and M. Mistry, “An
experimental study of robot control during environmental contacts
based on projected operational space dynamics,” in IEEE/RAS Int.
Conf. on Humanoid Robots, 2014, pp. 407–412. [Online]. Available:
http://ieeexplore.ieee.org/document/7041392/ 7.1.1

[43] S. Erhart and S. Hirche, “Internal force analysis and load distribution
for cooperative multi-robot manipulation,” IEEE Transactions on
Robotics, vol. 31, no. 5, pp. 1238–1243, 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/7206596/ 7.1.1

[44] F. Caccavale, P. Chiacchio, A. Marino, and L. Villani, “Six-dof
impedance control of dual-arm cooperative manipulators,” IEEE

Transactions on Mechatronics, vol. 13, no. 5, pp. 576–586, 2008.
[Online]. Available: http://ieeexplore.ieee.org/document/4639601/ 7.1.1

[45] H.-C. Lin, J. Smith, K. Kouhkiloui Babarahmati, N. Dehio, and
M. Mistry, “A projected inverse dynamics approach for dual-arm
cartesian impedance control,” arxiv, Under review. [Online]. Available:
https://arxiv.org/abs/1707.00484 7.1.1

[46] C. Lesire, D. Doose, and H. Cassé, “Mauve: a component-based
modeling framework for real-time analysis of robotic applications,”
in Proc. 7th Workshop Software Development and Integration in
Robotics, 2012. [Online]. Available: https://hal-onera.archives-ouvertes.
fr/hal-01060327 8

[47] N. Hochgeschwender, L. Gherardi, A. Shakhirmardanov, G. K.
Kraetzschmar, D. Brugali, and H. Bruyninckx, “A model-based
approach to software deployment in robotics,” in Proc. Int. Conf.
Intelligent Robots and Systems, 2013, pp. 3907–3914. [Online].
Available: http://ieeexplore.ieee.org/document/6696915/ 8

[48] J. O. Ringert, A. Roth, B. Rumpe, and A. Wortmann, “Language
and code generator composition for model-driven engineering of
robotics component & connector systems,” Journal of Software
Engineering for Robotics, vol. 6, no. 1, pp. 33–57, 2016. [Online].
Available: https://joser.unibg.it/index.php?journal=joser&page=article&
op=view&path%5B%5D=87 8

[49] A. Bubeck, F. Weisshardt, and A. Verl, “Bride - a toolchain
for framework-independent development of industrial service robot
applications,” in ISR/Robotik 2014; 41st International Symposium on
Robotics, June 2014, pp. 1–6. [Online]. Available: http://ieeexplore.
ieee.org/document/6840120/ 8

[50] S. Joyeux and J. Albiez, “Robot development: from components to
systems,” in 6th National Conference on Control Architectures of
Robots. Grenoble, France: INRIA Grenoble Rhône-Alpes, May 2011,
p. 15 p. [Online]. Available: https://hal.inria.fr/inria-00599679 8

Dennis Leroy Wigand received his M. Sc. de-
gree in computer science from Bielefeld Uni-
versity, Germany, in 2015. Afterwards he joined
the Cognitive Systems Engineering group at the
Bielefeld Institute for Cognition and Robotics
(CoR-Lab) as Ph.D. student. Dennis Wigand’s
particular research interest lies in domain-
specific system engineering with respect to code
generation. Due to his participation in the EU
project CogIMon (Horizon 2020), which aims at
a step-change in compliant human-robot interac-

tion, he is particularly focused on the force domain.

Dr. Arne Nordmann received his PhD (Dr.-Ing.)
from Bielefeld University in 2015, focussing on
model-driven engineering methods and domain-
specific languages in the context of robotics
systems. In 2015 he joined the Bosch Corporate
Research department to work on model-based
safety assessment of highly-automated driving
architectures and robotics systems.

https://www.iit.it/it/people/marco-frigerio?docId=76&format=raw&view=download
https://www.iit.it/it/people/marco-frigerio?docId=76&format=raw&view=download
http://ieeexplore.ieee.org/document/7926534/
http://www.willowgarage.com/papers/ros-open-source-robot-operating-system
http://www.willowgarage.com/papers/ros-open-source-robot-operating-system
https://doi.org/10.1007/978-3-642-34327-8_13
http://dx.doi.org/10.5772/5761
http://ieeexplore.ieee.org/document/6147617/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958559705&doi=10.1007%2f978-3-319-26054-9_20&partnerID=40&md5=d18f20fdc514a4a2868e251d6b070124
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958559705&doi=10.1007%2f978-3-319-26054-9_20&partnerID=40&md5=d18f20fdc514a4a2868e251d6b070124
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958559705&doi=10.1007%2f978-3-319-26054-9_20&partnerID=40&md5=d18f20fdc514a4a2868e251d6b070124
http://ieeexplore.ieee.org/abstract/document/7139899/
http://ieeexplore.ieee.org/abstract/document/7139899/
http://robmosys.eu/wiki/general_principles:ecosystem:roles
https://link.springer.com/article/10.1007/s10514-015-9523-3
https://link.springer.com/article/10.1007/s10514-015-9523-3
http://ieeexplore.ieee.org/document/844067/
http://ieeexplore.ieee.org/document/1512343/
http://www.disneyresearch.com/wp-content/uploads/mistry_rss11_final.pdf
http://www.disneyresearch.com/wp-content/uploads/mistry_rss11_final.pdf
http://ieeexplore.ieee.org/document/7041392/
http://ieeexplore.ieee.org/document/7206596/
http://ieeexplore.ieee.org/document/4639601/
https://arxiv.org/abs/1707.00484
https://hal-onera.archives-ouvertes.fr/hal-01060327
https://hal-onera.archives-ouvertes.fr/hal-01060327
http://ieeexplore.ieee.org/document/6696915/
https://joser.unibg.it/index.php?journal=joser&page=article&op=view&path%5B%5D=87
https://joser.unibg.it/index.php?journal=joser&page=article&op=view&path%5B%5D=87
http://ieeexplore.ieee.org/document/6840120/
http://ieeexplore.ieee.org/document/6840120/
https://hal.inria.fr/inria-00599679


64 Journal of Software Engineering for Robotics 8(1), December 2017

Niels Dehio Niels Dehio received the M. Sc.
degree in computer science from Bielefeld Uni-
versity, Germany, in January 2015. He is pursu-
ing the Ph.D. degree at the Research Institute
for Robotics and Process Control (IRP), Techni-
cal University Braunschweig, Germany. His cur-
rent research interests include robot learning
and model-based control. Contributing to the
EU project CogIMon (Horizon 2020), he is par-
ticularly focusing on prioritized multi-objective
motion generation for highly redundant robots,

interacting with humans.

Dr. Michael Mistry Michael Mistry is a Reader in
Robotics at the School of Informatics, University
of Edinburgh, where he is also a member of the
Institute for Perception, Action and Behaviour.
Michael is broadly interested in human motion
and humanoid robotics, with a research focus
on operational space control, redundancy reso-
lution, stochastic optimal control, dynamics and
model-based control, particularly in environmen-
tal contact. Previously, Michael has been a lec-
turer at the University of Birmingham, a postdoc

at the Disney Research Lab at Carnegie Mellon University, a researcher
at the ATR Computational Neuroscience Lab, and a Phd student at the
University of Southern California.

Dr. Sebastian Wrede received his PhD (Dr.-
Ing.) in Computer Science from Bielefeld Univer-
sity in 2008. Since 2009 he heads the Cognitive
Systems Engineering group (at CoR-Lab) and is
responsible investigator in the Excellence Clus-
ter on Cognitive Interaction Technology (CITEC)
at Bielefeld University. Furthermore, he is coor-
dinator of the innovation project FlexiMon within
the it’s OWL leading-edge cluster on reconfig-
urable robotics systems in manufacturing and re-
sponsible investigator in the EU project CogIMon

(Horizon 2020). Sebastian Wrede’s focus of research resides on model-
driven engineering methods, domain-specific languages and software
architectures for interactive robotics applications. He is a member of GI
and IEEE RAS TC-SOFT.


	Introduction
	Challenges of DSL Modularization
	Tool Support
	Language Composition for Robotics
	Core Dimensions
	Hardware Platform Dimension
	Software Platform Dimension
	Capability Dimension

	Extensible Language Modules
	Modular Generators

	Language Composition Example
	Core Dimensions
	Extensible Language Modules
	LWR4+ Platform
	Orocos Component
	Orocos Systems Coordination
	Orocos Program Script
	Orocos RTT (C++)

	Modular Generators

	Evaluation: Language Designer
	Qualitative Evaluation
	Specification of comp.-based robotic arch's. (G1)
	Reuse language modules for composition (G2)
	Support exchanging heterogeneous modules (G3)
	Use well defined interfaces (G4)
	Support of smooth evolution of DSLs (G5)

	Quantitative Evaluation
	Reuse and Effort Analysis
	Stability Analysis


	Evaluation: Language User
	Multi-Arm Object Manipulation Use Case
	Scenario Description

	Modeling Process
	Functional Design
	Capability Modeling
	Technology Mapping
	Hardware Mapping

	Refining the Models
	Adapting the Architecture to Other Platforms
	Coping with Peculiarities of Special Compositions
	Modeling Currently Unsupported (Sub-)Domains

	Resulting Models and Generated Artifacts

	Related Work
	Conclusion
	References
	Biographies
	Dennis Leroy Wigand
	Dr. Arne Nordmann
	Niels Dehio
	Dr. Michael Mistry
	Dr. Sebastian Wrede


