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Chapter 1

Introduction

Whenever economic agents interact in such a way that the choice of one agent
affects the outcome of other agents, and all agents anticipate the responses to their
actions, this can be modeled as a game. The interacting agents are the players
of the game, and the mathematical study of the logical and strategic structures
of these interdependent interactions is called game theory. The first formal
game-theoretic analyses of such interactions date back to the early 19th century,
when Cournot (1838) developed his thoughts on the theory of competition in
a duopoly, but elements of game theory may have first appeared in ancient
times.1 The mathematically founded theory was introduced in the seminal work
of Von Neumann and Morgenstern (1944), and game theory has since been used
to study a wide variety of social, political, and economic questions, such as in
the analysis of competition between firms, the study of cooperation in free-riding
problems, and the evolution of populations.

The first game-theoretic models were only applicable in very limited settings,
but both the conceptual and mathematical frameworks have since been extended
in many directions. This doctoral thesis aims to contribute to extending the
literature and is motivated by the simple and most famous of all games: the
Prisoner’s Dilemma.2

1A thorough overview of the history of game theory can be found, for instance, in Ross
(2016).

2The game it describes was first introduced and studied by Merrill Flood and Melvin Dresher
in 1950, but they did not refer to it as a Prisoner’s Dilemma. The famous title was given by

1



2 1 Introduction

There are many interpretations of this game, but they mostly refer to the
following situation. Suppose that the police have arrested two suspects who
have committed a crime together. The district attorney interrogates the two
separately but lacks the evidence to convict either. Each suspect has two options
in the interrogation. He or she can either defect and confess the crime, thereby
implicating the other, or the two can cooperate with each other and stay silent.
If both keep silent, the prosecutor can only impose a mild sentence. If one of the
suspects keeps silent, the other can improve his or her situation by confessing,
and therefore receive favorable treatment. If one suspect anticipates that the
other will confess, then the first suspect should also confess to reduce his or her
own expected sentence. Thus, regardless of the other player’s decision, a suspect
can and will always improve his or her own position by confessing to the crime.
Consequently, if both players are aware of this structure, they will both confess
and, thereby, follow their private interests, even though the outcome is worse for
both than if they stay silent.

In game-theoretic terminology, the outcome or solution of a game is called an
equilibrium, referring to the stable or balanced state of a game. In the Prisoner’s
Dilemma, the state described above is such that no player can improve his or her
respective outcome by changing his or her own decision, given that the decision of
the other player remains as it is. This particular type of equilibrium is referred to
as a Nash equilibrium, as it was introduced by Nobel Laureate John F. Nash Jr.
(1950, 1951).

In many situations, players not only meet once but may interact repeatedly.
The structures of these situations may stay the same over the duration of an
entire interaction; therefore, it is a natural extension to study games that are
played repeatedly. In contrast to single-stage games, where only one period of
interaction is considered, repeated games may be played over a finite or infinite
horizon, thus enlarging the set of decisions to be made. A strategy in such a
repeated game can be interpreted to be a plan of action, which defines an action
to be taken for every period of the repeated game, conditional on the actions that
were taken by all players previously. Consequently, the set of possible outcomes
(and, therefore, equilibria) of repeated games may be larger than if the game was
only played once. Nash Jr. (1950, 1951) shows that every finitely repeated game
has a Nash equilibrium, but there are other solutions of the game that can be
characterized as stable outcomes. Moreover, the notion of a Nash equilibrium
may not always be suitable to define a stable outcome, as it only regards the
one-time decision for a complete plan of action and does not account for possible
deviations at later points in the game.

Albert Tucker a little later, and the game has since been interpreted and applied ubiquitously
(see Straffin, 1980, for more details on the history of the game).
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Several other equilibrium notions exist for repeated games. The most fre-
quently applied was introduced by Nobel Laureate Reinhard Selten (1965). He
defined a subgame perfect equilibrium to be a Nash equilibrium not only in the
repeated game as a whole, but in every subgame of the repeated game, where
“subgame” refers to a part of the whole game that is played after a given history
of decisions is established.

In the present thesis we are interested in infinitely repeated games and their
stable outcomes. It has been shown by Fudenberg and Maskin (1986) that
many outcomes of a single-stage game that are not a Nash equilibrium can be
sustained as a subgame perfect equilibrium if the game is repeated over an infinite
time horizon. In the Prisoner’s Dilemma, for example, the outcome where both
players do not confess but stay silent can also be sustained as a stable outcome.
The underlying idea is that, to sustain a certain outcome as a subgame perfect
equilibrium, players face the threat of punishment if they do not play according
to the agreed-upon strategy. If the punishments are credible, players are deterred
from single deviations and the strategy, thereby, sustains cooperative behavior
in the repeated game.

For the infinitely repeated Prisoner’s Dilemma game, mutual cooperation
can be established as follows: The players cooperate as long as no one unilater-
ally deviates. After a single deviation, both players switch to defect for every
subsequent period of the game. By the definition of the game, the mutual de-
fection outcome is strictly worse than the mutual cooperation outcome and can,
therefore, deter a player from deviating.3

The credibility of the threat of punishment is crucial to the success of the
strategy. If, for example, a player would unilaterally and profitably deviate from
the punishment, the agreed-upon strategy cannot be subgame perfect. This
idea is the underlying credibility criterion used for subgame perfect equilibria:
No single player should have the option to profitably deviate from the agreed-
upon strategy in any subgame, thus the prescribed play in any subgame has to
be a Nash equilibrium. The strategy discussed above regarding the Prisoner’s
Dilemma satisfies this condition.

In the late 1990s, however, a second thought on the credibility of punishments
was sparked by several authors.4 What if the prescribed punishment hurts both
the previously deviating agent and the innocent players that are called upon to
punish the deviation? Is it plausible that the players will stick to the punish-
ment or, rather, renegotiate to a Pareto-improving outcome? In the strategy

3The issue is slightly more complex than this, but this general idea suffices for the purposes
of this introduction.

4For example Farrell and Maskin (1989), Bernheim and Ray (1989), Asheim (1997) discuss
this issue; see also the review of literature given in Chapter 4.
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already discussed for the repeated Prisoner’s Dilemma, for example, the mutual
defection outcome leaves both players worse off, and they could both improve
their situations by ignoring the deviation and going back to mutual cooperation.

The literature on renegotiation-proofness studies these questions and has pro-
posed several answers. We thoroughly review the existing literature in Chapter 4
of this thesis. One of the most frequently applied concepts is introduced in Farrell
and Maskin (1989), where Eric Maskin is the third Nobel Laureate referred to
in this introduction. In their seminal work, the authors define the credibility
problem of subgame perfect punishments more precisely and argue that “when
renegotiation is possible, players are unlikely to play, or to be deterred by, a
proposed continuation equilibrium (whether on or off the equilibrium path) that
is strictly Pareto-dominated by another equilibrium that they believe is available
to them” (p. 328).

More generally, Farrell and Maskin (1989) argue that it is “inconsistent”
(p. 328) if cooperation in a repeated game is sustained as a subgame perfect
equilibrium by means of punishments that leave all players worse off than under
cooperation, which is supposed to be the stable outcome of the game in the
first place. In their view, such punishments are not credible, and a strategy
that specifies such punishments cannot be a stable outcome of the repeated
game. They therefore offer a refining equilibrium notion that they call weak
renegotiation-proofness.

In the present thesis, we follow this train of thought and contribute to the
literature on weakly renegotiation-proof equilibria. More generally speaking, this
thesis contributes to our understanding of strategic interactions that go beyond
the basic game-theoretic models and focuses on the characterization of stable
outcomes in repeated multilateral interactions.

1.1 Contributions

Chapter 2 of this thesis is joint work with Tim Hellmann and is dedicated to an
application of weakly renegotiation-proof equilibria in a real-world context. In
this application, we consider a game in which the interacting agents are countries
that produce externalities in the form of pollution that affects all countries. Any
unilateral effort to reduce these externalities will be undermined by the others’
incentive to free-ride on this effort. To overcome this dilemma, countries may
strive for an outcome or agreement that fully internalizes the pollution effects. In
this context, such agreements are called International Environmental Agreements
(IEAs), which have been the subject of many studies in the recent past.5

5For a good overview of the literature, we refer to Jørgensen et al. (2010), Benchekroun
and Long (2012) and Hovi et al. (2015).
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Several IEAs have been formed over the past decades and focus on varying
issues with respect to pollution. The Kyoto Protocol of 1997, for instance, spec-
ifies a reduction of greenhouse gases and was agreed upon by 190 countries. All
IEAs have in common that there is no global agency that can legally enforce an
agreement; consequently, they need to be self-enforcing. To study and character-
ize self-enforcing IEAs in game-theoretic frameworks, the established literature
predominantly uses the notion of Farrell and Maskin (1989).

Most existing game-theoretic models in the literature on IEAs assume that
pollution has a global effect. However, many forms of pollution have additional
negative effects on countries within the same region as the polluting source.
The presence of these local spillovers hence plays a non-negligible role in the
problem of establishing IEAs. In Chapter 2, we therefore ask which IEAs may
be implemented if the negative externalities of pollution have both a local and
a global component.

The local effects of pollution are represented by a network, where a link
between two countries indicates whether one country’s pollution locally affects
the other. This could represent a common border or mean that the countries are
within a certain geographic distance that is critical to the local externality. To
study the stability of IEAs, we use a repeated game approach, where an IEA is
interpreted as a strategy that coordinates the abatement efforts of its members
to maximize joint utility. Formally, we define an IEA as stable if it is a weakly
renegotiation-proof equilibrium.

Our main contribution is that we characterize necessary and sufficient con-
ditions for the stability of an IEA when pollution has both a global and a local
effect. We find that stable IEAs exist if the network structure is balanced. Too-
large asymmetries in the degree of local spillovers may, however, lead to the
non-existence of stable structures. We also discuss the implications of our results
for welfare. The generality of our approach allows for several applications, in
particular regarding the provision of public goods.

In the model of Chapter 2 we restrict our attention to strategies that are
simple in terms of implementation in order to sustain full cooperation. In other
settings, this may be more difficult or other payoffs may need to be sustained. For
two-player games, Farrell and Maskin (1989) present in their Theorem 1 (p. 332)
necessary and sufficient conditions for weakly renegotiation-proof payoffs. Given
a strictly individual rational payoff and two action pairs that can be used for
punishment, the authors construct specific sequences of actions to obtain the
equilibrium payoff, and they also construct renegotiation-proof punishments. Yet,
the proof of the sufficient conditions is not completely correct.

Chapter 3 is, therefore, dedicated to this proof. At first, we precisely identify
the erroneous claim by Farrell and Maskin (1989) and offer a counterexample
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that illustrates the problem. In a nutshell, the authors assume more structure
on the set of payoffs in two-player games than actually exists, and they do not,
therefore, correctly distinguish between convexification and mixing of strategies.
More precisely, in the construction of the sequence of actions that yields the
equilibrium payoff, they claim to obtain a payoff with independent randomization
that is only obtainable with correlated strategies, which they exclude from their
model. Nevertheless, we provide an alternative result that yields a different
sequence of actions to obtain the equilibrium payoff.

Given that the hypotheses of the original theorem are satisfied, we prove that
for every strictly individual rational payoff in a two-player game, one can find
two action pairs with the following properties: a convex combination of their
respective payoffs yields the payoff in question, and the line segment between
those two payoffs is of non-positive slope. These actions can be used for the
sequence of actions that yields the equilibrium payoff, and no continuation payoff
along this sequence can be Pareto-ranked.

To satisfy subgame perfection, one also needs to define punishment strategies
that deter any unilateral deviation from the equilibrium path. Due to our
alternative construction of the equilibrium payoff, we also need to modify the
construction of punishment strategies compared to the one proposed in Farrell
and Maskin (1989). While we also make use of the two action pairs that are
given by the hypotheses of the theorem, we need to adjust the punishment path
to ensure that there can be no Pareto-ranking across any continuation equilibria.
This ultimately fixes the proof and yields that the proposed conditions of Farrell
and Maskin (1989) are indeed sufficient for weakly renegotiation-proof payoffs.

In Chapter 4, we approach the equilibrium notion of weak renegotiation-
proofness conceptually and elaborate on the shortcomings of the concept when
it is applied to games with more than two players. In fact, Farrell and Maskin
(1989) have only formally introduced the equilibrium notion for two-player games
and, as we show, its application to n-player games may yield results that are
against the intuition of stable outcomes in multilateral and repeated interactions.

Even though Farrell and Maskin (1989) already noted in their conclusion that,
for an application of their notion to n-player games, a refinement is necessary,
their concept has frequently been applied in n-player games by extending the
condition of Pareto-undominated continuation equilibria from two to n players.
This, however, excludes possible subgroup renegotiation and gives a single player
the pivotal power to block a renegotiation. By means of several examples, we
demonstrate counterintuitive outcomes that may already arise in three-player
games. Moreover, we show that the characterization results of Farrell and Maskin
(1989) do not generalize to n-player games as proposed by the authors (Farrell
and Maskin, 1989, p. 355).
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We therefore suggest a refinement of the weak renegotiation-proofness notion
that precludes counterintuitive results in general n-player games. In doing so,
a renegotiation protocol is specified that allows players to renegotiate after
any single deviation from the agreed-upon strategy has occurred. We propose
different renegotiation rules that determine which subgroups of players may
jointly renegotiate a change of their strategies while leaving the others’ strategies
fixed. Depending on the specification of the renegotiation rule, the size and
composition of these subgroups may range from the group of all innocent players,
as in the original definition of Farrell and Maskin (1989), to any feasible subset
of players.

Furthermore, we study the relationship between these different specifications
and we elaborate on difficulties to obtain general characterization results. Finally,
we return to our results from Chapter 2, discussing them in light of our addi-
tional refinements and, coming back to the Prisoner’s Dilemma, show that full
cooperation can always be sustained in a general n-player Prisoner’s Dilemma.





Chapter 2

International Environmental
Agreements for Local and

Global Pollution

2.1 Introduction

Rising concerns about climate change has led politicians worldwide to rethink
their countries’ emission of greenhouse gases and air pollution. Doing what is
best for their own countries’ interest, however, does not fully internalize the
global effects of the emissions and hence their optimal policy will not reduce
pollution efficiently. In other words, countries free-ride on others’ abatement
efforts, similar to the case of private provision of public goods. To overcome this
dilemma and achieve more efficient pollution abatement, several International
Environmental Agreements (IEAs) have been proposed and formed in recent
years.1

Besides their global effects, many forms of pollution have additional negative
effects on countries within the same region of the polluting source. Air pollution,
for instance, can cause smog, acid deposition and eutrophication which are
mostly experienced locally while the global effects (e.g., global warming) are

1Examples include the Oslo Protocol on sulfur reduction in Europe (also including other
states) in 1994, the Montreal Protocol on the depletion of the ozone layer in 1987 and the
Kyoto-Protocol on the reduction of greenhouse gases in 1997.

9
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endured worldwide. Short-lived climate pollutants such as black carbon, methane
and tropospheric ozone have both a local and global impact. Their effects on
“regional and global climate, through both direct interaction with atmospheric
radiation and indirect effects related to changes in cloud properties are a growing
concern” (Committee Committee on the Significance of International Transport
of Air Pollutants; National Research Council, 2009). As another example, a
nuclear power plant causes higher negative effects in nearby regions by danger of
malfunctioning compared to the global risk. The presence of these local spillovers
hence plays a non-negligible role and adds heterogeneity to the problem of forming
IEAs.

In this paper, we ask which IEAs may be implemented by purely self-
interested countries when the negative externalities of pollution have a local
and a global component. We use a repeated game approach of abatement efforts
to study the stability of IEAs. An IEA, here, is a strategy profile in the repeated
game which coordinates the abatement efforts of its members to maximize joint
utility. We focus on simple strategies which give rise to punishment paths where
the punishment lasts only one period and which can only be executed via higher
emissions. By stability we mean that an IEA shall be self-enforcing in the sense
that no member shall have an incentive to deviate from cooperation and renego-
tiation shall be prevented. Formally, we define an IEA as stable, if it is a weak
renegotiation-proof equilibrium.

Which countries are affected by the local externality of pollution is represented
by a network: a link between two countries indicates whether these countries’
pollution affects each other locally. Here, a link could mean that two countries
share the same border or are within some distance which is critical for the local
externality. Given a local spillover structure, we derive optimal punishment
strategies such that the grand coalition of all countries can be implemented as a
subgame perfect equilibrium. In contrast to the general literature without a local
spillover structure, global cooperation may fail to be a weakly renegotiation-proof
equilibrium in very asymmetric networks, where the asymmetry is with respect to
neighbors in the network. In other words, if the channels through which countries
affect each other are very unevenly distributed, then global cooperation may fail.
However, we also show that it can always be sustained in regular networks, i.e.
networks such that all countries have the same number of neighbors.

The additional local spillover structure adds heterogeneity to the problem
of stability of IEAs (in the sense of existence of a WRP equilibrium) and has
interesting effects such that in some asymmetric structures, the global IEA is
not a WRP equilibrium. As global pollution can be seen as a perfect public
bad, the local side of it has the characteristics of a local public bad. Since
reducing pollution has the characteristic of a public good, we also contribute to
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the problem of public good provision when the public good has both a local and
a global component. To our knowledge, including both aspects in one model is
also new to the literature of public goods.

Our results have important policy implications. When contemplating an IEA,
strict rules have to be imposed in order to prevent deviation. These rules must
specify the consequences of deviating from the agreed reductions and shall make
use of the local spillover effects. With respect to welfare, we show in Section 2.6
that it is indeed better to first appoint neighbors for punishment of a deviation
before non-neighbors shall punish. That is, neighbors of a deviator are more
effective with their punishment since a deviator is punished through both the
local and the global spillover channel and therefore the punishment path can be
sustained more easily and requires fewer total emission.

More generally, the results may serve as a benchmark that can be useful in
future analyses of IEAs. We point to several possible extensions in our Conclusion
(Section 2.8). Moreover, the results can easily be transferred to other problems
of public good provision and may support a better understanding of free-riding
problems.

The paper is organized as follows: first, we further elaborate on the issue of lo-
cal and global pollution and discuss related literature as well as our contributions.
In Section 2.3 we introduce the basic model of a single-stage game. In Section
2.4 we extend the model to an infinitely repeated game and derive conditions on
existence of weakly renegotiation-proof equilibria for several prominent networks.
Section 2.5 focuses on the welfare-maximizing global IEA. In Section 2.6 we
analyze welfare implications of different network structures. Finally, Section 2.8
concludes. All proofs are presented in the Appendix.

2.2 Background and Literature Review

International Environmental Agreements (IEAs) have been analyzed in various
game-theoretic models over the past two decades. Starting with the seminal
paper by Barrett (1994), several authors have studied the free-rider problem
when joining an agreement by studying both one-shot and repeated games. For
a good overview of the game-theoretic literature on environmental economics
we refer to recent literature surveys such as for example Jørgensen et al. (2010)
or Benchekroun and Long (2012). Formal models of climate cooperation are
thoroughly reviewed in Hovi et al. (2015).

A majority of the models in the literature tackle the problem of air pollu-
tion, caused by the emission of greenhouse gases from fossil fuel combustion.
While some models have at least abstracted from the stark assumption of homo-
geneous countries and introduced asymmetries to account for different impact
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and contribution levels of pollution (e.g., McGinty, 2007; Hannesson, 2010), the
implications of geographical distance to the sources of air pollution have not
been largely accounted for.

However, there is broad scientific evidence for the importance of regional
characteristics for several air pollution effects. Most importantly, short-lived air
pollutants, that include methane, black carbon and tropospheric ozone, have
a significant local or regional impact besides contributing to global problems
such as climate change (see, e.g., Kühn et al., 2013, for a study of emissions on
local and global aerosol properties for China and India). Other examples for
the regional effects of air pollution include the ozone level. For instance, the
ozone level of the Mediterranean region is not only affected by local emissions
but also perturbed by long-range pollution import from Northern Europe, North
America and Asia (Richards et al., 2013).

Summarizing the above evidence we can conclude that the consideration of
local spillover effects in addition to global externalities of emissions is crucial to
better understand and represent the incentives that underlay the formation of
IEAs and stability.2 While Yang (2006) considers an optimal control problem
where countries provide negatively (!) correlated local and global stock exter-
nalities (his example is CO2 and SO2), Dockner and Nishimura (1999) consider
a dynamic game model where each country contributes to a domestic stock of
pollution. Both, however, do not consider the possibility of an IEA to reduce
pollution.

Hence, to our knowledge there exists no game-theoretic model that incorpo-
rates both a local and global spillover effect of air pollution in a standard coalition
formation game for an IEA. This however seems to be crucial in understanding
possible solutions to the problem of reducing pollution as for example Bollen
et al. (2009) show in a cost–benefit analysis, concluding that “combined climate
and local air pollution policy generates extra benefits in terms of climate change
mitigation.” They therefore recommend that policies need to be designed such
that they jointly implement both global climate change and local air pollution
strategies.

Considering only global pollution as a repeated game, several works have
studied IEAs as a strategy profile of a coalition which maximizes members’
utilities and which may punish possible deviators by returning to pollution
strategies. Often in this literature, all members of an IEA are involved in the
punishment of a deviator. This has been found to limit outcomes in terms of
the number of cooperating countries in equilibrium (e.g., Barrett, 1994, 1999),

2In our paper, we study stability of an IEA from a repeated game perspective: an IEA is a
strategy profile in the repeated game of a coalition of signatories which maximizes the sum of
members’ utilities. It is stable if it constitutes a weakly renegotiation-proof (WRP) equilibrium.
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as the more countries punish a deviator, the fewer countries cooperate in the
punishment phase which then lowers the punishing countries’ payoffs in this
phase. To lower the incentives for renegotiation, several authors studied different
punishment strategies that either limit the number of punishers or the duration
of punishment. Among those are Asheim and Holtsmark (2009) and Froyn
and Hovi (2008), who consider a “penance” strategy as in Farrell and Maskin
(1989), but refine this to a “penance-k” strategy, where only a subgroup of k
players punishes a deviator for a finite number of periods before reverting to
cooperation. Another example is Asheim et al. (2006), where artificially two
regions are introduced in order to restrict punishment to be executed only by
a subset of IEA members. By incorporating the regional effects in our model,
however, it comes very natural to use the regional structure for punishment
patterns.

A different enforcement system for global pollution abatement was proposed
by Heitzig et al. (2011). Their dynamic strategy of linear compensation does not
use effective punishment but rather a redistribution scheme where abatement
liabilities are distributed according to past compliance levels. This strategy can
be shown to implement any given allocation of target contributions, therefore
also the full cooperative and efficient solution. By keeping the global abatement
level constant across periods, they avoid renegotiation and can show that any ex
ante chosen allocation is a subgame perfect equilibrium.

We shall also mention that all these models treat pollution as a flow variable.
This may be plausible for short-lived climate gases, but a debatable simplification
for most greenhouse gases that accumulate in the atmosphere over time. The
first models that study IEAs for stock pollutants were proposed by Rubio and
Casino (2005) and Rubio and Ulph (2007). A detailed literature overview can
be found in Calvo and Rubio (2012). More recently, Kratzsch et al. (2012)
study the conditions for stable climate agreements where emissions build up over
time and payoffs in every period depend on the accumulated stock level in the
atmosphere. They also show that global cooperation can be enforced with a
penance-k strategy. Although our model also treats pollution as a flow variable,
we discuss how our results can be interpreted in light of the stock pollution
literature in the Conclusion (Section 2.8).

The application of network theory to problems of public goods is not new
to the literature. Several authors analyze the provision of public goods in a
network and study a local spillover effect where players can only benefit from
their direct neighbors’ provisions (e.g., Allouch, 2015; Bramoullé and Kranton,
2007; Bloch and Zenginobuz, 2007; Elliott and Golub, 2013). However, none of
these include a global spillover effect that would be necessary for an adequate
representation of the pollution problem. We therefore contribute to the climate
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change literature by incorporating elements of the network theory, an issue that
is becoming more and more interesting to researchers of that field (see Currarini
et al., 2014).

2.3 A Pollution Game of Local and Global Spillovers

2.3.1 Model Setup

We consider an economy with a finite set of countries N , which are denoted by
i = 1, . . . , n. Countries are heterogeneous with respect to their size (i.e. satiation
level of consumption) and their position in the local spillover network. We assume
that countries are represented by one individual.3 Each country derives benefits
from consuming a good xi ∈ R+ with marginal benefits assumed to be decreasing.
Likewise, we assume decreasing returns from additional abatement efforts (i.e.
consumption reduction). Benefits of consumption are therefore represented by
the quadratic and concave function

Bi(xi) = −1
2 (x̄i − xi)2 ,

where x̄i ∈ R is an exogenously fixed satiation level which represents the first-
best emission level if there would be no pollution effects of consumption – or at
least there would be no concern for them.

Note. In the following we will make use of the following notation: the n-tupel
x = (x1, . . . , xn) ∈ Rn describes the output vector of all countries. For a
subset A = {i1, . . . , il} ⊆ N , the vector xA =

(
xi1 , . . . , xil

)
is the output vector

of all countries in A. Also, we use the following abbreviation for the output
vector of all countries but country i: x−i = xN\{i}.

Consuming xi emits air pollutants and thus contributes to the stock of pol-
lution which is accumulated on a local and global level.4 While benefits from
consuming xi are private, the emission of pollutants has spillover effects on all
other countries. All countries equally suffer from the global level of pollution.
In addition to the global impact, effects of emissions differ locally and are ex-
perienced by a certain subgroup of countries. For instance, short-lived climate
pollutants such as black carbon, methane and tropospheric ozone have both a
local and global impact.5

3We leave out all issues related to opinion formation and political debate within a country
but focus on the negotiations taking place at the global level.

4For example, Battaglini and Harstad (2012) interpret xi to be the level of energy used to
produce some good. For simplicity we assume one unit of consumption to generate one unit of
pollution.

5Also, usually not only one single pollutant is released during production or consumption
but others are emitted simultaneously and these might only impact certain, local areas. We
abstract from this by summarizing all different pollutants in one representative emission flow
xi.
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We model the local spillover effect by a network structure g ∈ GN , where
GN = {g | g ⊆ gN} denotes the set of all possible networks on the set of players
N , with gN denoting the set of all subsets of N of size 2. A link {i, j} between
two countries i and j in the network g then describes the presence of a direct
local spillover which could be due to geographical distance, common borders,
sharing an ocean or a lake, or other underlying assumptions that we exclude
from our model. We assume that local emission spillovers between countries are
bidirectional and thus focus on undirected networks for simplicity. However, we
show in Section 2.7 that this is not restrictive and adapting notation our results
also hold for directed and weighted networks.

For a network g ∈ GN , we denote by Ni(g) := {j ∈ N |i, j ∈ g} the set
of neighbors of country i in the local spillover network, i.e. those countries
which affect i and are affected by i’s emission not only with respect to the
global externality but also through the local externality. Further, we denote by
ηi := |Ni(g)| the number of countries affected locally by i’s emission, called i’s
degree. The network structure is captured via the indicator function gij which
is equal to 1, if i and j are neighbors and 0 in all other cases. With respect to
the spillover effect, every country suffers from its own emissions both through
the local and the global effect. To account for this and to incorporate it into our
model, we let ḡij = gij for all i 6= j and ḡii = 1.

We assume linear spillover effects on both the global and local level due to
analytical tractability. The marginal impacts are weighted relative to benefits
from consumption by β > 0 for the global spillover effect and γ > 0 for the local
spillover effect.6 The costs incurred from total pollution are then represented by
the cost function

Ki(xi, x−i) = β
∑
j∈N

xj + γ
∑
j∈N

ḡijxj .

The individual profit πi of a country i ∈ N can thus be represented as follows:

πi
(
xi, x−i

)
= Bi(xi)−Ki(xi, x−i)

= −1
2 (x̄i − xi)2 − β

∑
j∈N

xj − γ
∑
j∈N

ḡijxj . (2.1)

In the standard literature, an IEA is defined by the game-theoretic concept of
a coalition. In the repeated setup that we focus on in this paper this corresponds
to a strategy profile that defines agreement (and punishment) actions among
coalition members. The common interpretation is that this coalition coordinates
its member countries’ emissions. Hence, let C ⊆ N be a coalition of k countries

6We shall mention that we abstract from heterogeneities with respect to marginal impacts
to focus on the effect that is derived from the network position.
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i1, . . . , ik that cooperate on the abatement level to maximize their utilitarian
welfare.7 A member of a coalition, called signatory, hence chooses a pollution
level xi such that it maximizes the sum of all signatories’ utilities. Given a
coalition C, we denote by C + i := C ∪ {i} the coalition obtained by i joining C,
and, analogously C − i := C \ {i}. A main input factor for our results will be
the number of intra-coalition links, i.e. the number of neighbors that are part of
the coalition, which will be denoted by ki := |Ni ∩ C|.

2.3.2 Global Versus no Cooperation in the Single-Stage Game

To illustrate the asymmetries in the countries’ incentives to cooperate on global
abatement efforts, we look at the two extreme cases of either no or full cooperation,
i.e. C = ∅ and C = N , in the single-stage game. In this game all countries
simultaneously choose their level of emissions xi.8

In the situation of no cooperation, i.e. C = ∅, every country myopically
determines its emission level to maximize individual profit πi as defined in (2.1).
The first order conditions (subsequently abbreviated as FOCs) then directly yield
the non-signatory Nash outcome

xNSi = x̄i − β − γ. (2.2)

Hence, in absence of a full cooperation agreement, every country emits just
slightly below its first-best level x̄i by accounting for the own marginal emission
effect β + γ.

Assumption 2.1. As we assume non-negative emissions, we impose the following
condition for all i ∈ N : x̄i ≥ m1β +m2γ, ∀ 0 ≤ m1,m2 ≤ n.

Since signatories C ⊆ N choose emissions to maximize the utilitarian welfare
restricted to the members of the coalition, the maximization problem for those
countries is given by

max
(xi)i∈C

∑
i∈C

πi
(
xC , xN\C

)
. (2.3)

The FOCs yield an optimal emission level for every signatory that depends on
the size of the coalition, k, and the number of intra-coalition links, ki = |Ni ∩C|,

xSi (C) = x̄i − βk − γ(ki + 1), (2.4)

7We abstract from the possibility of multiple agreements, thus only one coalition can
form even though the consideration of a local spillover structure may naturally induce locally
organized agreements and thus multiple coalitions. We discuss possible generalizations to
multiple coalitions in Section 2.7.

8The assumption of simultaneous move is standard in the literature. There are, however,
also papers that study the effects of a coalition that acts as a Stackelberg leader (e.g., Rubio
and Ulph, 2006).
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and all non-signatories j /∈ C choose the emission level xNSj given by (2.2). In
the following, we will denote by x(C) =

(
(xSi (C))i∈C , (xNSj )j∈N\C

)
the vector

of outputs when a coalition C is collaborating and denote the respective profits
by πi(C) = πi(x(C)).

For the case of full, global cooperation, i.e. C = N , utilitarian welfare of all
countries ∑i∈N πi(x) is maximized. We obtain xSi (N) = x̄i − βn − γ (ηi + 1),
where every country takes into account the global effects from its pollution as well
as the local spillovers to every respective neighbor. From a global perspective, this
would be the first-best solution as all externalities are internalized. However, not
every individual country is necessarily better off under full cooperation than under
no cooperation. To demonstrate this, we compute the difference in individual
profits between global and no cooperation. For this purpose we introduce the
difference function ∆i(A,B) for two sets A,B ⊆ N such that

∆i (A,B) := πi(x(A))− πi(x(B)).

By inserting xSi (N), respectively xNSi , into (2.1), we then obtain for the difference
between full and no cooperation

∆i
(
N, ∅

)
=πi(x(N))− πi(x(∅))

=− 1
2
[
(βn+ γ(ηi + 1))2 − (β + γ)2

]
+ β

[
βn2 + γ

∑
j∈N

(ηj + 1)− βn− γn
]

+ γ
[
(ηi + 1)βn+

∑
j∈N

ḡijγ(ηj + 1)− (β + γ)(ηi + 1)
]
,

where the first bracket captures the additional cost from abatement when ac-
counting for global cooperation rather than playing individually rational, and is
hence negative, while the second and third brackets capture the positive effects of
global and local emission reduction by the coalition on payoffs. We can simplify
to get

∆i
(
N, ∅

)
=β2

2
(
n− 1

)2
+ βγ

(∑
j 6=i

ηj
)

+ γ2

2
(∑
j 6=i

gijηj − η2
i

)
. (2.5)

Thus, the potential gains from a full cooperation agreement are positive if
and only if

γ2
(
η2
i −

∑
j∈N

gijηj

)
≤ β

(
β(n− 1)2 + 2γ

∑
j 6=i

ηj

)
. (2.6)

Since the right-hand side is positive, Condition (2.6) holds either if the value of
(η2
i −

∑
j∈N gijηj) is small or if β is large relative to γ. Note that the left-hand
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side bracket is non-positive if and only if i′s degree is below the average degree
of its neighbors, i.e. (η2

i −
∑
j∈N gijηj) ≤ 0 if and only if ηi ≤

∑
j∈Ni

ηj

ηi
.

Thus, the potential gains from a full cooperation agreement are positive for
all countries if either the network is not too asymmetric (i.e. where ηi ' ηj for
all i, j ∈ N) or in those cases where the global impact β is large compared to
the local impact γ.9 Instead, very asymmetric network structures and a high
local spillover effect γ can lead to cases where some countries actually prefer no
cooperation to full cooperation as we see in Example 2.1. The countries that
prefer no cooperation over full cooperation are those who have a large degree
compared to their neighbors’ degree, ηi >

∑
j∈Ni

ηj

ηi
, since they have to abate

most and receive relatively few abatement of their neighbors in return. This
effect becomes smaller, the smaller the impact of local pollution γ relative to
global pollution β becomes. Thus, the first observation that we can take away
here is that the local spillover structure may yield asymmetries between countries’
incentives which are difficult to overcome when forming IEAs.

Figure 2.1: A star network with one central node and 6 peripheral nodes.

Example 2.1. Consider the star network g∗(n) with one player connected to all
other n− 1 players who are only connected to the center, exemplarily shown in
Figure 2.1 for 7 nodes. The center node, call it country 1, thus has η1 = n− 1,
while all other countries j 6= 1 have ηj = 1. Country 1 prefers no cooperation
over full cooperation if (2.6) is violated. We get

∆1(N, ∅) = β2

2 (n− 1)2 + βγ(n− 1)− γ2

2 (n− 1)(n− 3)

from (2.5) by plugging in the center and peripheral nodes’ degrees and by noting
that the center is connected to all other nodes, i.e. g1j = 1 for all j 6= 1. Hence
it follows that ∆1(N, ∅) < 0 for all values of γ > β n−1

n−3 . For a peripheral node,
no cooperation is clearly worse than the full-cooperative solution by (2.6) for all
parameter values, since its degree ηi = 1 is smaller than its neighbor’s degree
η1 = n− 1. Nevertheless, global cooperation is not a Pareto-improving outcome
to no cooperation if the local externality dominates the global externality, i.e.
γ > β n−1

n−3 .
9Two examples of sufficient conditions for (2.6) to hold are that either the network is regular,

i.e. ηi = ηj for all i, j ∈ N or that γ ≤ β.
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2.4 Stable IEAs in Infinitely Repeated Games

As the nature of pollution and production is rather of repeated form, a one-shot
game may not be the accurate model to consider IEAs. Thus, we consider from
now on the game described in Section 2.3 which is repeated infinitely often. As
before, we think of an IEA as an agreement between countries who want to
establish an outcome which maximizes welfare among them. In the one-shot
case, this boils down to a simple coalition formation game. When the game is
of repeated form, an IEA requires more: for each possible history of play the
signing countries need to coordinate their actions. Thus, we will define an IEA
as a strategy profile of the repeated game which aims to maximize the utilitarian
welfare of the coalition.

Such an agreement is stable if it meets two requirements: First, stability
requires that no signatory has an incentive to deviate from the strategy that
maximizes the coalition’s utilitarian welfare through threats of future punish-
ments by the other signatories. These threats deter free-rider incentives and
allow for the implementation of full cooperation as a subgame perfect equilib-
rium (subsequently abbreviated as SGP equilibrium) as long as the discount
factor is high enough (see Fudenberg and Maskin, 1986). Second, stability re-
quires execution of the punishment strategies such that they are not vulnerable
to renegotiation. In other words, the punishers shall not have an incentive to
renegotiate the terms of the agreement in a way that they do not carry out the
punishment but strictly prefer to follow a different continuation equilibrium. We
rule out this possibility by considering as stable outcomes only those equilibria
of the repeated game that are weakly renegotiation-proof.10

Thereby in our analysis of IEAs, we do not ask how a group of signatories
forms, but rather which coalition of countries can implement a stable IEA. Prop-
erties of a stable IEA such as the composition of signatories and the required
punishment paths then crucially depend on the local spillover structure. There-
fore, we also derive conditions on the local spillover structure that foster or harm
stability of an IEA.

10Note that there are two limitations of this concept in our subsequent analysis: First, weak
renegotiation-proofness takes account of the possibility of a unilateral deviation of a single
country but does not regard the possibility of a deviation of a subset of countries, which may
very well occur as a result of coordinated action among some countries. Second, by deriving
a WRP equilibrium we cannot answer the question of how coordination may be achieved, i.e.
how countries agree on a particular IEA (see also the discussion in Asheim and Holtsmark,
2009).
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2.4.1 The Infinitely Repeated Game

We briefly introduce a standard infinitely repeated game of the stage game as
described in Section 2.3. Time is discrete and indexed by t ∈ N. In each period,
countries choose consumption (i.e. emission levels) xi(t) (with slight abuse of
notation). In other words, the stage game is played in each period. At time
t, country i’s choice of emission may depend on the entire history of the game
through period t− 1, denoted

ht−1 =
(
(x1(0), ..., xn(0)), ..., (x1(t− 1), ..., xn(t− 1))

)
.

Thus, a strategy si for country i is a function that, for every date t and every
possible history ht−1, defines a period t action xi(t) ∈ R+. Future payoffs are
discounted with a common discount factor δ < 1 such that each country i receives
a discounted payoff for a sequence of emissions

{
(xi(t), x−i(t))

}∞
t=0,

Πi = (1− δ)
∞∑
t=0

δtπi(xi(t), x−i(t)). (2.7)

In the infinitely repeated game, a weakly renegotiation-proof equilibrium is
defined as a strategy profile of the repeated game s = (si)i∈N such that it satisfies
the following.

Definition 2.1. [Farrell and Maskin (1989)] A strategy profile s is a weakly
renegotiation-proof (WRP) equilibrium of the infinitely repeated game if and
only if (i) s is a subgame perfect equilibrium of the infinitely repeated game
and (ii) there do not exist two continuation equilibria of s such that all players
strictly prefer the one to the other.

Since we view an IEA as an agreement of a coalition of players C ⊆ N to
implement the signatory action xSC as defined by (2.4), the application of the
concept of WRP equilibrium has exactly the conditions desired for stability of
such an IEA.11 Condition (i) of Definition 2.1 ensures that the IEA is stable
with respect to unilateral deviations and (ii) implies stability with respect to
renegotiations.

Hence, we ask whether the play of signatory actions can be observed as the
equilibrium path of a WRP equilibrium. For this, credible punishment paths have
to be designed to deter deviations. Due to renegotiation incentives, it may not be
optimal that all other signatories punish. In fact, the harsher the punishment or
the more countries punish, the higher is the incentive to renegotiate.12 Another

11Note that in the following we will use the notation xSi ≡ xSi (C) unless otherwise stated.
Also, to shorten notation we will omit the vector xN\C .

12It has been shown in other papers, such as Froyn and Hovi (2008) and Asheim et al.
(2006), that the limitation of punishers to a subset of the cooperating players can decrease the
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aspect of implementability of an IEA is the fact that strategies shall be simple. We
use the notion of simple strategy profiles by Abreu (1988), defining an equilibrium
path, n respective punishment paths and a transition rule that specifies that
any single deviation by player i from an ongoing prescribed path is responded
by imposing her punishment path. In our setting, we further simplify this by
focusing on punishments that last only one period, restricting to time-invariant
sets of punishers and punishment actions that are independent of the deviator.
Hence a simple strategy, here, is such that for each player at any time there are
only two possible actions played, equilibrium action or punishment action. The
punishment lasts only one period and only the set of punishers depends on the
identity of the deviator.

Formally, we denote Pi(g) ⊆ C the set of players that punish deviator i ∈ C.
Punishment for a deviating signatory i ∈ C is thus carried out as follows: Each
country j ∈ Pi punishes a deviation of country i by emitting the punishment
level xPi instead of the signatory emission xSi where

xPj = x̄j − p(β + γ)

in the period after the deviation. We assume that p ≥ 1 such that the highest
punishment level is the Nash output xNSj . As all non-signatories l /∈ C play
their first-best action, i.e. the Nash equilibrium level xNSl , they will not punish
a deviator but continue with their strategy.

An IEA by a coalition C = {i1, . . . , ik} is then defined by a strategy profile s
of the repeated game such that signatories use the agreement strategy sC, which
is defined for period t = 1 by sC

i (∅, 1) = xSi for all i ∈ C and for t ∈ N recursively
defined by

sC
i (ht−1, t) =

x
P
i , if ∃!j ∈ C : xj(t− 1) 6= sC

j (ht−2, t− 1) and i ∈ Pj
xSi , else

.

Non-signatories j ∈ N \C stick to their Nash emission level xNSj throughout
the game and their strategy is simply given by sN\C

j (·, t) = xNSj for all t ∈ N.
Such an IEA defines a simple strategy profile in the spirit of Abreu (1988), since
it gives rise to the (n+ 1)-vector of paths

(aC,pC
1 , . . . ,pC

n ),

incentives for renegotiation. The same effect can be observed in our model. Here, however,
players face heterogeneous costs from pollution through the local spillover channel. Thus, we
have to derive individual punishment paths, that is individual sets of punishers, for any possible
deviator. Whereas for example Asheim et al. (2006) artificially introduce two separated regions
and let a deviating country be punished only by countries in the same region as the deviator, we
allow for more flexible punishment sets and focus on the impact of the local spillover structure,
represented by the network g, on possible equilibrium outcomes.
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where aC is the agreement path, such that

aC =
{(
xSC , x

NS
N\C

)
,
(
xSC , x

NS
N\C

)
, . . .

}
and pC

i the punishment paths which are triggered if a single country i ∈ N

deviates, such that

pC
i =

{(
xPPi , x

S
C\Pi , x

NS
N\C

)
,
(
xSC , x

NS
N\C

)
,
(
xSC , x

NS
N\C

)
, . . .

}
.

In other words, any single deviation of a country i results in a one-period punish-
ment by the countries Pi who subsequently revert to their signatory strategies,
while all others play as on the agreement path.13 Moreover, only signatories
may have an incentive to deviate from their cooperative output and thus must
be threatened to be punished in order to deter deviation. Non-signatories, on
the other hand, although benefiting from the abatement of others and being
hurt by punishment, are not part of the IEA in the sense that they play their
individual rational output. Thus, punishment paths do not have to be specified
for non-signatories in order to enforce the equilibrium strategy. All together we
ask whether s = (sC, sN\C) forms a WRP, i.e. whether the IEA s is stable.

It is worth remarking that we consider a very specific punishment rule and
simple punishment strategies which can be seen as a refinement of a regular
penance-k strategy (see e.g., Froyn and Hovi, 2008) since it determines for each
signatory an individual set of punishers whereas in the penance-k strategy the
number of punishers is set to be identical across all signatories. However, as
stated before, it is still a strategy that is simple to implement and therefore
suitable for the application in an IEA. Moreover, it is the one that has been
frequently used in the repeated games literature on IEAs and our subsequent
results show that this may not be sufficient to establish full cooperation as a
WRP equilibrium. In Section 2.7 we also briefly discuss what changes if we
allowed for other punishment strategies.

2.4.2 Weakly Renegotiation-Proof Equilibria

Since stability of an IEA by a coalition C requires existence of a WRP equilibrium
such that signatory actions are played, optimal punishments sets Pi for each i ∈ C
and punishment level p have to be determined. As spillovers are heterogeneously
distributed across the signatories due to their network position, this might be a
quite complex task. In Theorem 2.1 we present necessary and sufficient conditions
on these punishment sets.

13Note that only single deviations are considered, that is multiple deviations in a single
period are not punished.
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In accordance with Definition 2.1, we have to check for subgame perfection
and weak renegotiation-proofness. To satisfy the subgame perfectness require-
ment, it suffices to compare the short-term payoff gain from a one-shot deviation,
given by
1
2
(
βk+γ(ki+1)

)2
− 1

2
(
β+γ

)2
−
(
β+γ

)(
β(k−1)+γki

)
= 1

2
(
β(k − 1) + γki

)2
,

with the loss incurred by punishment for all i ∈ N . Since punishment is executed
by other countries increasing their emissions in the period following her one-shot
deviation, a deviator i suffers through both the global and local spillover channel:
Every punisher j ∈ Pi increases emissions by β(k − p) + γ(kj + 1 − p), which
are experienced by the deviator i through the global channel, weighted with
β, and, if j is a neighbor of i, also through the local channel, weighted with γ.
Summing over all punishers j ∈ Pi and rearranging terms yields the term in
square brackets in Equation (2.8) in Theorem 2.1.

For weak renegotiation-proofness we only need to compare the punishers’ pay-
off along a punishment path with their equilibrium payoffs. When all punishers
renegotiate back to cooperation, every punisher j incurs an individual payoff loss,
due to consumption reduction, given by 1

2

[(
β(k − 1) + γkj

)2
− (1− p)2(β + γ)2

]
.

On the other hand, payoffs increase due to spillovers from the other players’ abate-
ment, given by β(k − p) + γ(kl + 1 − p) which are experienced by j through
the global channel, weighted with β, and if l is a neighbor also through the
local channel, weighted with γ. Summing over all punishers l ∈ Pi \ {j} and
rearranging terms yields Equation (2.9) in Theorem 2.1.

Therefore, we obtain the following result.

Theorem 2.1. An IEA s by a coalition C is stable if and only if for all i ∈ C

δ

β2|Pi|(k − p) + βγ

|Pi|(1− p) +
∑
m∈Pi

km + |Pi ∩Ni|(k − p)



+γ2

 ∑
m∈Pi∩Ni

km + |Pi ∩Ni|(1− p)


− 1

2
(
β(k − 1) + γki

)2 ≥ 0 (2.8)

and for all i ∈ C there exists at least one j ∈ Pi such that

β2(k − p)(|Pi| − p) + βγ

(|Pi| − p)(1− p) +
∑

m∈Pi\{j}
km + |Pi ∩Nj |(k − p)


+γ2

2

2
∑

m∈Pi∩Nj
km +

(
2|Pi ∩Nj |+ 1− p

)
(1− p)

−1
2
(
β(k − 1) + γkj

)2
≤ 0.

(2.9)
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To sum up, Pi needs to be large enough while p must be low enough in order
for Equation (2.8) to hold.14 While punishment needs to be harsh enough to
deter deviations, Equation (2.9) yields that punishment cannot be too harsh to
prevent incentives for renegotiation.15

Hence, if both conditions are satisfied, the IEA that specifies for every sig-
natory i ∈ C a set of punishers Pi and a punishment level of the punishers p,
is stable, i.e. play of signatory actions by members of the coalition C is an
equilibrium path in a WRP equilibrium. Even with the simple strategies that
we consider here as an IEA, the conditions in Theorem 2.1 seem quite complex.
The complexity stems from the heterogeneous spillover channels represented by
the network.

The intuition of the conditions can be better explained in the following when
we focus only on one type of spillover (global respectively local, Section 2.4.3)
and subsequently explore comparative statics with respect to changes in the
network and punishing sets (Section 2.4.4). For the rest of the paper we will
moreover assume that every country punishes a deviation by emitting its Nash
output level, i.e. for all i ∈ N we set p = 1 for all punishers j ∈ Pi.

2.4.3 WRP Conditions for Special Spillover Structures

First, suppose that there exists only the global spillover channel, as for example in
Asheim and Holtsmark (2009). Hence, the underlying network plays no role and
the only heterogeneity in the game stems from the exogenously given satiation
levels x̄i. However, as these do not influence the results, the intuition alone
implies that it is not important who punishes, but how many punish, i.e. it is
not the composition of the punishment set that matters but the size. Indeed,
setting γ = 0 in (2.8) and (2.9), one obtains the following.

Corollary 2.1. For γ = 0, the conditions of Theorem 2.1 reduce to

1
2δ (k − 1) ≤ |Pi| ≤

1
2(k + 1) ∀i ∈ C.

Without the local spillover effect, the conditions of Theorem 2.1 determine
the number of punishers allocated to each signatory in order to guarantee stability
of an IEA. To give some intuition, the punishment set needs to be large enough
in order to deter deviation (first inequality) while it cannot be too large in order

14Note that the SGP condition would also entail that no player j ∈ Pi has an incentive to
unilaterally not carry out his punishment. This however is automatically satisfied as we assume
p ≥ 1 (see also Lemma 2.A.1 in the Appendix).

15Note that Equation (2.9) only has to hold for one element of the punishment set which
may lead to results such that enlargement of the punishment group may actually benefit
Condition (2.8). However, the results presented in this paper also hold for stronger versions of
WRP (e.g., that (2.8) has to hold for all j ∈ Pi), which are not available in the literature so far.
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to prevent renegotiation (second inequality). The conditions of Corollary 2.1 are
equivalent to the conditions of Asheim and Holtsmark (2009), Theorem 1, with
s = k and p = 1.

Second, if we instead consider general spillover effects but very special net-
works, then similar observations can be made. For example the empty network
g = g∅ is trivially equivalent to the case where no local spillover effects exist.
Further, consider g = gN , i.e. the complete network. Then, all countries expe-
rience the local spillover from a given country which immediately implies that
this is equivalent to the case where the magnitude of the global spillover is β+ γ

while there are no local spillovers. Hence, also for the case of the complete
networks, the conditions for a WRP equilibrium are equivalent to the ones from
Corollary 2.1.

Third, consider the case when the global spillover channel vanishes, that is
β → 0. Then, the game essentially boils down to a local spillover game where
countries can only free-ride on the actions of their direct neighbors.

Corollary 2.2. Let β → 0, β 6= 0. The conditions of Theorem 2.1 on the
punishment set Pi, i ∈ C reduce to the following:

∀ i ∈ C
∑

m∈Pi∩Ni
km ≥

k2
i

2δ ,

∀ i ∈ C, ∃ j ∈ Pi, s.t.
∑

m∈Pi∩Nj
km ≤

k2
j

2 .

When the global externalities vanish, the composition of the punishment sets
becomes important. Since the global spillover effect becomes negligible, only
neighbors have a deterring effect which implies that the set of punishers must
have enough neighbors in C. The left-hand side of the first equation is then due
to the fact that emission is increased from xSj = x̄j − kjγ to xPj = x̄j − γ for
j ∈ Pi while the right-hand side, which is the incentive to deviate for country i,
is determined by ki. On the other hand, punishers shall not have an incentive to
renegotiate, which is presented in the second condition. Incentives to renegotiate
occur if the neighborhood structure of the punishers overlaps too much. Thus,
given a punishment level, the set of punishers should be constructed such that
their local spillover channels interfere minimally.16

16Note that Corollary 2.2 does not apply to a pure local spillover game, that is for β = 0.
The reason is that Condition (2.9) of Theorem 2.1, thus the condition for weak renegotiation-
proofness, is no longer necessary: In the general model with strictly positive global spillovers,
that is also for β → 0, every country other than the punishers would strictly profit from a
renegotiation away from punishment back to cooperation. For zero global spillovers, however,
any country that is not among the punishers and not connected to a punisher will not strictly
profit, therefore block renegotiation in accordance with Definition 2.1. This may seem rather
counter-intuitive but is in accordance with the widely-accepted WRP notion given in Farrell
and Maskin (1989). A slight adaption of this notion to avoid blocking of unaffected players
allows also for applicability to the case where β = 0.
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2.4.4 Comparative Statics

Abstracting from the special cases of only global respectively local spillovers, we
further explore the meaning of the conditions for existence of a stable IEA by
the coalition C ⊆ N given in Theorem 2.1 by means of comparative statics. To
understand the effect of the local spillover channel, i.e. the underlying network,
we study the effect of additional links in the network on the conditions of subgame
perfection and weak renegotiation-proofness. Further, we ask how an enlargement
of the punishment group may impact these conditions, or more precisely, what
the marginal effect of an additional punishing country is.

The effect of the spillover structure

First, consider the condition on subgame perfection (see Theorem 2.1, Equa-
tion 2.8). Take i ∈ C and define the function fi(δ, C, g, Pi) as the left-hand side
of (2.8). The marginal effect of an additional link (currently not in the network)
lm /∈ g, l,m 6= i, on the subgame perfect condition of player i can be calculated
to be,

fi(δ, C, g + lm, Pi)− fi(δ, C, g, Pi) = δ

(
βγ
(
1Pi(l) + 1Pi(m)

)
+γ2

(
1Pi∩Ni(l) + 1Pi∩Ni(m)

))
,

where 1A(i) denotes the indicator function such that 1A(i) = 1 if i ∈ A and
1A(i) = 0 else. The marginal effect is positive as long as the link lm involves
at least one of i’s punishers (i.e. 1Pi(l) = 1 or 1Pi(m) = 1), meaning that
Condition (2.8) is more likely to hold for i ∈ C after link addition since (2.8)
requires fi(δ, C, g, Pi) ≥ 0. Thus, the marginal effect of an additional spillover
channel is largest if the link is between two punishers of i who are also neighbors
with i and lowest if both are neither. The reason is that punishment increases if
a punisher has an additional spillover channel, since emission reduction is higher
in the non-punishment case. Moreover, neighbors cause a larger marginal effect
for country i through the additional spillover channel.

While the marginal effect of link addition between two countries other than i
on i’s incentive to play the signatory action is unambiguously non-negative, the
same is not so clear for the marginal effect if i itself is involved in the additional
link:

fi(δ, C, g + im, Pi)− fi(δ, C, g, Pi) = βγ
(
1Pi(m)δk − (k − 1)

)
+ γ2

2 (1Pi(m)2δ − (2ki + 1)).

Obviously, if a deviator i has additional spillover channels to non-punishers,
i.e. 1Pi(m) = 0, the effect is negative, since i is required to reduce more of its
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emission in the signatory action and, thus, more tempted to deviate. If instead
the additional link is to a punishing player, i.e. 1Pi(m) = 1, then punishment
also increases. This has an additional deterring effect which clearly depends on
δ such that the effect on subgame perfection is negative as long as the discount
factor δ is small enough, i.e. δ ≤ δ̄(g) = k−1+ γ

β
(ki+ 1

2 )
k+ γ

β
. Note that the marginal

effect is negative for all discount factors if δ̄(g) ≥ 1, which holds for large enough
ki and marginal local spillovers γ.

Next, we turn to the second condition of stability of Theorem 2.1, i.e. the
condition that ensures weak renegotiation-proofness. Considering a deviator
i ∈ C and a punisher j ∈ Pi, we define hij(δ, C, g, Pi) as the left-hand side of
(2.9). The marginal effect of an additional link lm /∈ g on the incentives of a
punisher j of deviator i is then given by

hij(δ, C, g + lm, Pi)− hij(δ, C, g, Pi) = βγ
(
1Pi(l) + 1Pi(m)

)
+ γ2

(
1Pi∩Nj (l) + 1Pi∩Nj (m)

)
.

Since the marginal effect is positive if at least one link involves a punisher of i, the
condition preventing renegotiation of country j ∈ C, (2.9), is less likely to hold
after link addition since (2.9) requires hij(δ, C, g, Pi) ≤ 0. The marginal effect
of an additional link between l and m on the incentives of j ∈ Pi to renegotiate
is largest, when both l and m are punishers and neighbors of j.17 If there is an
additional link between two countries that are not in the punishing group Pi,
this has obviously no impact on the WRP condition for j. Thus, an overlapping
spillover structure of punishing group Pi makes renegotiation more attractive
(and thus makes the IEA vulnerable to renegotiation) since the profit under
cooperation increases. This effect is fostered if there is also a connection to the
punisher j, as decreasing costs through local spillovers increase j’s incentives to
renegotiate and not carry out the punishment.

Since we study the incentives for j to renegotiate, it makes a difference if j
itself is part of the additional spillover. We obtain

hij(δ, C, g + jm, Pi)− hij(δ, C, g, Pi) =

−βγ(k − 1)− γ2(kj + 1
2), m /∈ Pi

βγ − γ2(kj − km − 1
2), m ∈ Pi

.

For j’s incentive itself to renegotiate, the effect of additional links is ambigu-
ous. First, if the additional link leads to a non-punisher of i, then j has lower
benefits from cooperation compared to her Nash action making renegotiation less
attractive. If instead the additional link is to a punisher of i, then j also suffers

17Note that here m = i is not excluded. But since i cannot be part of the punishment group,
we always have 1Pi (i) = 0.
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from the punishment level of the additional neighbor during the punishment
phase, which harms j through the local spillover channel and hence works in the
opposite direction to make renegotiation more attractive.

We can conclude: Given the punishment group, higher density of the spillover
structure within the coalition facilitates subgame perfection while it harms the
renegotiation-proofness condition for most countries. Note, however, that this
does not necessarily hold for the potential deviator respectively a potential pun-
isher who is involved in the additional link. So while the subgame perfection
condition (2.8) has to hold for all i ∈ C and the renegotiation-proofness condition
(2.9) for at least one j ∈ Pi, the overall effect of link addition on both stability
conditions of an IEA may be ambiguous.

Additional punishers

In order to determine an individual, optimal punishment group for every possible
deviator of a coalition, we also have to understand what the marginal effect of
an additional punisher is for the two stability conditions for an IEA. First, we
study the effect on the SGP condition (2.8). We have the following marginal
deterring effect of an additional punisher l on the deviator i:

fi(δ, C, g, Pi ∪ {l})− fi(δ, C, g, Pi) = (β + 1Ni(l)γ)(β(k − 1) + γkl).

Obviously, any additional punisher will decrease the incentive of country i ∈ C
to deviate from the signatory strategy and if the punisher is one of i’s neighbors,
then the additional spillover channel increases this effect. For the WRP condition
(2.9), we have the following marginal effect of an additional punisher l on the
incentive to renegotiate for a punisher j ∈ C:

hij(δ, C, g, Pi ∪ {l})− hij(δ, C, g, Pi) = (β + 1Nj (l)γ)(β(k − 1) + γkl).

Here, the more punishers the higher incentives to renegotiate, and, again, this
effect is enhanced if the punishers are also neighbors.

The comparative statics have shown that there is a trade-off in characterizing
the optimal punishment group for each coalition-member: The more punishers
and the higher the connectedness among them, the higher the threat of pun-
ishment and the easier to sustain an SGP equilibrium. In turn, incentives to
renegotiate increase with the size of the punishment group and its clustering.

2.5 The Stability of a Global IEA

Having determined general conditions for the stability of an IEA, the question of
existence of such a stable IEA has not yet been answered. We focus here on the
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stability of a worldwide IEA, i.e. an IEA where all countries play the signatory
strategy and have no incentive to deviate or renegotiate. However, it is rather
obvious that not all network structures allow for stability of a global IEA. For
instance, from Example 2.1 we already know that the center player of a star
network prefers no cooperation to global cooperation if the local externality is
large enough, i.e. γ ≥ β n−1

n−3 . This immediately implies that a subgame perfect
equilibrium supporting global cooperation cannot exist in the repeated game for
γ ≥ β n−1

n−3 . Clearly, adding the WRP condition (2.9) to this makes the existence
of a stable global cooperation even more restrictive. In fact it can be shown that
for large star networks, a WRP supporting global cooperation fails to exist.

Proposition 2.1. Consider the star network g∗(n) and let γ and β be indepen-
dent of n. Then for n→∞, there does not exist a stable global IEA.

The intuition behind this result is that as n grows, the players become more
and more heterogeneous in terms of degree. While the center player of the star
has to reduce her emission increasingly in the number of her neighbors, the set
of punishers has to grow as well in order to deter deviation by the center player.
This, however, gives increasing incentives to renegotiate – implying non-existence
of a stable global IEA.18 This is a fundamental difference to the existing models in
the literature that study the possibility of global cooperation as a stable outcome
of the climate game. Unlike in Asheim and Holtsmark (2009), we have shown
that for very asymmetric networks such as the star network, global cooperation
may fail to be a WRP equilibrium for the specific punishment rule.

Hence, it seems to be the asymmetry of the network – in particular the
asymmetry of degrees – which leads to failure of a global IEA. Instead, we may
also look at the other extreme case of spillover networks where there are no
heterogeneities in terms of degree, i.e. a network where the number of neighbors
of all players are the same. Such a structure is defined as a regular network.

Example 2.2. Consider a regular network of n = 12 players with ηi = 4 ∀ i ∈ N ,
illustrated in Figure 2.2. Let β = γ and for simplicity δ → 1. Which punishment
sets Pi sustain full cooperation as a WRP equilibrium?

18This result is not restricted to the star network only. Suppose the parameter setting is
such that we can sustain full cooperation as a WRP equilibrium in the star network. Then, as
seen in the comparative statics section above, the addition of one single link may change the
marginal incentives such that the punishment structure needs to be redesigned and may end
up to not sustain full cooperation as a WRP equilibrium. For instance, in the 5-player star
network with γ = 2β, full cooperation is a WRP equilibrium. However, if two peripheral nodes
are linked, this is no longer the case.
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Pi ⊂ Ni Pi = Ni Pi = Ni \ {j1} ∪ {l}

Pi = Ni \ {j1} ∪ {l1, l2} Pi = Ni ∪ {l1, l2, l3}

Figure 2.2: Different scenarios in a circle network. Green nodes represent a WRP
punishing set.

The conditions for the global IEA to be a WRP equilibrium (see Theorem 2.1)
read

∀ i ∈ N : |Pi|+ |Pi ∩Ni| ≥ 7.5, (2.10)

∀ i ∈ N, ∃ j ∈ Pi : |Pi|+ |Pi ∩Nj | ≤ 8.5. (2.11)

Denote the neighbors of player i by Ni = {j1, j2, j3, j4}. While for Pi ⊂ Ni,
Pi 6= Ni, the punishment can be calculated to be too low, choosing Pi = Ni both
Conditions (2.10) and (2.11) are satisfied:

(2.10)⇔ 4 + 4 = 8 > 7.5,

(2.11)⇔ 4 + 1 = 5 < 8.5.

Another possible punishment set of a stable global IEA can be calculated to
be Pi = Ni \ {j1} ∪ {l1, l2} with l1, l2 /∈ Ni. However, punishment sets like
Pi = Ni \ {j1}∪{l1} with l1 /∈ Ni do not satisfy (2.10) while Pi = Ni∪{l1, l2, l3}
with l1, l2, l3 /∈ Ni do not satisfy (2.11). The different scenarios are displayed in
Figure 2.2.

While for very asymmetric network structures a stable global IEA may fail to
exist (see Proposition 2.1), a symmetric network structure as given in Example 2.2
allows for stability of the global IEA. If symmetry in the degree is given, these
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findings can indeed be generalized by considering regular networks such that
ηi = ηj = η for all i, j ∈ N .

Focusing on the global IEA in regular networks yields that ki = η for all
i ∈ N , implying that Conditions (2.8) and (2.9) simplify to

∀ i ∈ N : δ
(
|Pi ∩Ni|γ + |Pi|β

)
≥ 1

2
(
β(n− 1) + γη

)
, (2.12)

∀ i ∈ N, ∃ j ∈ Pi :
(
|Pi ∩Nj |γ + (|Pi| − 1)β

)
≤ 1

2
(
β(n− 1) + γη

)
. (2.13)

Using the results from the comparative statics analysis, we can now directly
derive an existence result for a stable global IEA in regular networks.

Proposition 2.2. Let δ → 1. Then, for every regular network there exists a
stable global IEA.

This result underlines the intuition that in very symmetric settings it is easier
to achieve cooperation than in very asymmetric network settings such as the star.
More specifically, this proposition yields that if countries are sufficiently patient,
we can always find a punishment set Pi such that the simple strategy profile sN

where all countries play the signatory strategy constitutes a WRP equilibrium
of the infinitely repeated game, meaning that such a global IEA is stable.19

Note that the condition δ → 1 is not binding. It is impossible to consider
all possible punishment sets for all possible regular networks, but it is easy to
argue that the complete network is the most restrictive case, since there the
spillover structure maximally overlaps as all spillover channels are present.20 For
the complete network, the threshold value for the discount factor δ can be easily
determined and coincides with the the threshold in Asheim and Holtsmark (2009)
since full cooperation can be established as a WRP equilibrium if the discount
factor δ fulfills the following conditions:

δ ≥ n− 1
n+ 1 for n odd,

δ ≥ n− 1
n

for n even.

Thus, if δ ≥ 1− 1
n , a global IEA is stable in the complete network.

We conclude that whenever countries are homogeneous with respect to the
number of neighbors in the network, global cooperation can be a WRP equilib-
rium. As derived in the comparative statics section, the more asymmetric the
network becomes, the harder it is to restrain countries from renegotiation. For

19Note that in the proof of Proposition 2.2 we even show that it is possible to find a stable
global IEA such that none of the punishers want to renegotiate. Obviously demanding (2.9)
to hold for all j ∈ Pi is more restrictive and, if applied to the definition of WRP equilibria,
would yield a stronger equilibrium concept. In particular it prevents unreasonable equilibria to
appear for instance by adding isolated countries to the punishment sets.

20In network terminology, clustering is equal to 1.
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example, in the very asymmetric case of the star network, no global IEA can be
a WRP equilibrium and hence stable.

However, when the marginal local impact becomes negligible, the network
structure, even if very asymmetric, becomes less significant, implying that global
cooperation can be sustained in all networks.

Proposition 2.3. Let δ → 1 and the local spillover parameter γ be small enough.
Then for every network there exists a stable global IEA.

The result comes without proof since it follows immediately from Asheim
and Holtsmark (2009), where γ = 0 is assumed and holds by continuity in γ.

2.6 Social Benefits and Costs

2.6.1 Social Benefits

While we have shed some lights on the conditions for individual rational behavior
with respect to membership in a coalition, it is important to know for, e.g.,
policy implications what the collective or total welfare effect of an International
Environmental Agreement is. We consider the utilitarian welfare composed of
the sum of all countries’ utilities when the equilibrium path is followed, which is
given by

W(x(C)) =n
(1

2(γ2 − β2)
)
− nβ

∑
i∈N

x̄i + γβ
(∑
i∈N

ηi + n2
)

+ β2n2 + γ2 ∑
i∈N

ηi

+ β2k(k − 1)
(
n− 1

2(k + 1)
)

+ βγ
∑
i∈N

ki(k − 1) + γ2 ∑
i∈N

∑
m∈C

ḡimkm

+ βγn
∑
m∈C

km −
1
2γ

∑
m∈C

km(2βk + γkm + 2γ)− γ
∑
i∈N

∑
j∈N

ḡij x̄j .

Since in the global IEA all countries already maximize W, it is immediate to
see that the global IEA maximizes welfare. Further, because emission reduction
always has a positive effect on all and the members of a coalition maximize their
sum of utilities, it is also quite immediate to see that every IEA by a coalition
C yields higher welfare than an IEA of a subset of C. Given an IEA of a set of
signatories C, the marginal effect of an additional member m on welfare can be
calculated to be

W(x(C +m))−W(x(C)) =
∑
i∈N

∆i(C +m,C)

=β2k
(
2n− 3

2(k + 1)
)

+ βγ
(∑
i/∈C

ki + km(2n− 2− k)
)

+ γ2

2 km(km − 1)

which is obviously positive.
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Further, it is easy to see that increasing spillovers, either through the relative
effect β or γ, or the spillover structure (by adding links to the network) have
negative effects on welfare.

2.6.2 Social Costs of Punishment

Besides the social benefits of an IEA by a coalition C there are also social costs
whenever a country needs to be punished. Although this is off-equilibrium, one
might ask what the welfare effect of punishment is and who should punish in
cases when there is more than one possible punishment group that sustains global
cooperation (see e.g., Example 2.2).

Therefore, assume a player j has deviated and the set of punishers Pj is
called upon to punish. To study the effect of an additional punisher, denote by
∆W

(
Pj + i, Pj

)
the marginal effect on welfare when player i joins the set of

punishers Pj .

Lemma 2.1. Suppose player j has deviated. Then,

∆W
(
Pj + i, Pj

)
= −1

2
(
β(n− 1) + γηi

)2
.

Now when allocating the set of punishers, the question arises who should
punish; neighbors or non-neighbors? Recall that the marginal deterring effect of
an additional punisher i ∈ N on deviator j ∈ N is given by

fj(δ, C, g, Pj + i)− fj(δ, C, g, Pj) = (β + 1Nj (i)γ)(β(k − 1) + γki).

Then it is clear that in order to achieve an equal deterring effect, a non-neighbor
m /∈ Nj must punish more, i.e. have more neighbors than a neighbor i ∈ Nj ,
i.e. ηm > ηi which implies higher social costs. Hence, consider the case that two
instead of one non-neighbor punish.21 Similarly to above, if we have ηm > ηi for a
country m ∈ Pj , m 6∈ Nj , then the social cost of punishment will be larger when
the non-neighbors punish. Instead, consider the case where both non-neighbors
have smaller degree than a punishing neighbor, but together achieve the same
deterring effect. The following result characterizes conditions on β and γ such
that it is socially optimal to have a neighbor with higher degree punish.

Proposition 2.4. Suppose that β ≤ (1 +
√

2)γ. Then, punishment of a deviator
by one of its neighbors is socially preferred to punishment by one or two non-
neighbors such that the deterring effect is the same.

21Of course, this may also have negative effects on the WRP condition since potentially
two punishers’ neighbors instead of one join the set of punishers. Here, however, we are only
interested in the social cost of punishment.
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Thus, if the global spillover effect β is not too large relative to the local
spillover effect γ, it will be better in terms of welfare to have neighbors pun-
ish instead of non-neighbors since to achieve the same deterring effect, total
punishment emission is higher when non-neighbors punish.

2.7 Extensions

2.7.1 Other Punishment Strategies

Besides the very specific penance punishment strategy we consider in our anal-
ysis in the main article, there are of course numerous other ways to punish a
possible deviator. Here, we want to discuss two possible variations of punishment
strategies and their implications for the existence of stable IEAs in the repeated
game.

Stronger Punishment

We have seen that in very asymmetric networks, such as the star, there is no
stable global IEA with punishment levels xPj = xNSj . Let us now consider what
happens if the punishment level that is emitted by the punishers is larger than
their respective Nash output, i.e. what if xPj > xNSj holds?

First, consider again the example of the star network.

Example 2.3. Let γ = 1.5β, n = 5, δ → 1 and g = g∗(n). Suppose we want
only three peripheral nodes to punish the center node i, i.e. |Pi| = 3, and let
us now determine the required punishment level p∗ that yields a punishment
strategy that sustains full cooperation as a WRP equilibrium. The center i has
no incentive to unilaterally deviate from the signatory emission level if

(2.8) ⇔ 3(5− p) + 1.5(3(7− 2p)) + 2.25(3(2− p)) ≥ 50

⇔ p∗ ≤ 0.53. (2.14)

is fulfilled. For the WRP conditions we have

(2.9) ⇔ (5− p)(3− p) + 1.5((3− p)(1− p) + 2) + 2.25
2 (1− p)2 ≤ 15.125

⇔ p∗ ≥ 0.6,

which contradicts the necessary condition for subgame perfection given by (2.14).
Thus, |Pi| = 3 does not yield a different result.

The equivalent considerations for |Pi| = 2 and |Pi| = 1 also yield that the
necessary conditions from subgame perfection conflict with the conditions for
weak renegotiation-proofness. Therefore, in this setting global cooperation fails
to be a WRP equilibrium for any punishment level if only emitted for one period.
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A more general statement, though, is not possible as the comparative static
effects on the conditions for subgame perfection and weak renegotiation-proofness
work in opposite directions for decreasing p. We therefore conclude that our
restriction on Nash punishment levels is not too critical. Moreover, as mentioned
before, it is obvious that even with these simple strategies the design of suitable
punishment strategies is anything but straightforward as proposed in previous
papers.

Longer Punishment

As a second variation, consider punishment strategies that punish a deviator for
more than one period. More specifically, we change the simple strategy profile
s to sT such that we allow punishments over multiple but finite periods T ∈ N ,
i.e. the punishment path is given by

pC
i (T ) =

{(
xPPi , x

S
C\Pi , x

NS
N\C

)
, . . . ,

(
xPPi , x

S
C\Pi , x

NS
N\C

)
︸ ︷︷ ︸

T periods

,
(
xSC , x

NS
N\C

)
, . . .

}
.

We assume that if during a punishment phase a new deviation occurs, either
by the same or by another player, punishment switches to the beginning of the
punishment path of that player. The conditions for subgame perfection and
weak renegotiation-proofness then read as follows. First, there are no unilateral
deviations from the equilibrium if

T∑
t=1

δt
(
πi(xSC)− πi(xSi , xPPi , x

S
C\Pi)

)
≥ πi(xNSi , xSC\{i})− πi(xSC) (2.15)

is satisfied for all i ∈ N . Furthermore, deviations from the punishment are
deterred if

δT
(
πj(xSC)− πj(xSj , xPPj , x

S
C\Pj )

)
+
T−1∑
t=1

δt
(
πj(xPPi , x

S
C\Pi)− πj(x

S
j , x

P
Pj , x

S
C\Pj )

)
≥ πj(xSj , xPPi\{j}, x

S
C\Pi)− πj(x

P
Pi , x

S
C\Pi)
(2.16)

is fulfilled for all j ∈ Pj and for all i ∈ N . Finally, for weak renegotiation-
proofness, we need for all i ∈ N at least one j ∈ Pi such that

T−1∑
t=0

δt
(
πj(xPPi , x

S
C\Pi)− πj(x

S
C)
)
≥ 0

is satisfied, which is obviously equivalent to the original Condition (9) of Theo-
rem 1 with only one punishment period, i.e. T = 1. Consequently, the extension
of the punishment period has no effect on the renegotiation incentives of the
punishers.
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Meanwhile, an increase in punishment periods does influence the conditions
for subgame perfection: The series on the left-hand side of (2.15) is equal to

δ(1− δT )
1− δ

(
πi(xSC)− πi(xSi , xPPi , x

S
C\Pi)

)
,

which obviously increases for larger T but is bounded from above by

δ

1− δ
(
πi(xSC)− πi(xSi , xPPi , x

S
C\Pi)

)
.

We receive that independent of the parameters, an extension of the punish-
ment yields that fewer punishers are sufficient to deter a country from deviating
from the signatory strategy. In line with the folk theorem we can conclude that
in any given network g, if players are patient enough, i.e. if δ is sufficiently
large, we can always find a duration of punishments T such that for (2.15) to be
fulfilled, a single punisher is sufficient. Also, this punisher does not need to be a
neighbor.

Additionally, for small enough Pi, the left-hand side of (2.16) is always posi-
tive such that we can have that for a large enough T , (2.16) is always satisfied,
too. Thus, we can achieve full cooperation as a subgame perfect equilibrium.
As WRP is not affected and for |Pi| = 1 it is always satisfied, we can conclude
without proof the following proposition:

Proposition 2.5. For δ sufficiently large, for every network g there exists a
duration of punishments T such that the simple strategy profile sT is a stable
global IEA.

Note, however, that this result requires very long punishment and hence
lots of pollution. Such a threat might not be credible, if e.g. the negative
consequences of accumulated pollution are increasing in the amount of pollution.
We therefore conclude again that our restriction on the simple strategy profile is
not too restrictive and already offers several interesting insights into the structure
of the model.

Example 2.4. Let γ = 1.5β, n = 5, δ → 1 and g = g∗(n). We have seen that for
p = 1, the global IEA is not stable and also harsher punishment has not changed
this result due to the large asymmetry between the center and peripheral nodes.
Yet, by Proposition 2.5, it is possible to find T > 1 such that the global IEA is
stable: To see this, let T = 2. Then, as WRP remains unchanged, for the center
node i the punishment group must not be larger than 3. Condition (2.15) for
the center node yields Pi ≥ 2 so it remains to check Condition (2.16). Let us
choose Pi = 3. For any peripheral node j, condition (2.15) yields that the center
node is sufficient to punish, i.e. |Pj | = 1. Then, with these punishment sets
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given, (2.16) is satisfied for the center and also for the peripheral nodes. Thus,
when the punishment phase is extended to two periods, the global IEA is stable
in this network.

2.7.2 More General Networks

For the sake of simplicity, we have only considered undirected networks, i.e. local
spillovers were assumed to be bidirectional. Of course, this may often not be the
case. For example, the direction of wind plays an important role for the effects of
air pollution and the direction a river flow influences the pollution effects along
the stream.

Additionally, we can also consider heterogeneities with respect to the scale of
local spillover effects between countries. While some countries may have a very
strong local spillover effect, others may only have little impact on its neighbors’
environmental costs. For instance, these heterogeneities may be connected to
the size of the country.

Does generalizing the unweighted network assumption to weighted and di-
rected networks qualitatively change our results? To illustrate this, let W =
(wij)i,j∈N with wij ∈ R+ denote the weighted network such that wij denotes
the impact of the spillover from country i to country j which is allowed to be
different to wji. Note that our undirected, unweighted setup in the paper can
be expressed in terms of these matrices W such that W is symmetric and all
entries are either 0 or 1, while unweighted but directed networks do not require
the symmetry property. Assuming a general W , the environmental costs are
given by

K̃i(xi, x−i) = β
∑
j∈N

xj + γ
∑
j∈N

wijxj .

Note that in accordance to our model assumptions we assume wii = 1.

While in unweighted networks, the number of intra-coalition links ki is crucial
for the outcomes as ki determines the abatement efforts, this naturally translates
to the sum of weights within a coalition C. Let us denote this number by
wCi = ∑

j∈C,j 6=iwij . We therefore receive a signatory’s output to be xi = x̄i −
βk−γ(wCi + 1) while a non-signatory’s output remains unchanged, since wii = 1.
Further, the impact of a punishment from a punishing country j to a deviator i
matters for both conditions of Theorem 1, since for weighted networks the local
component of the punishment is determined by the impact of the spillover wji.
Hence, analogous calculations as in Theorem 1 show that for weighted networks
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the WRP conditions read:

(2.8)⇒ δ

β2|Pi|(k − p) + βγ

|Pi|(1− p) +
∑
m∈Pi

(
wCm + wmi(k − p)

)

+γ2

 ∑
m∈Pi

wmi(wCm + 1− p)


− 1

2
(
β(k − 1) + γwCi

)2
≥ 0

(2.9)⇒ β2(k − p)(|Pi| − p) + βγ

(|Pi| − p)(1− p) +
∑

m∈Pi\{j}

(
wCm + wmj(k − p)

)
+ γ2

2

2
∑
m∈Pi

wmj(wCm + 1− p) + (1− p)2

− 1
2
(
β(k − 1) + γwCj

)2
≤ 0.

The total effect of both incoming and outgoing local spillovers will now
determine a country’s incentives to sign an IEA or not. If there are large
asymmetries, the global IEA may not be stable but if all countries suffer equally
i.e. wNi = w for all i ∈ N , the global IEA can be stable for sufficiently large
discount factors δ (Proposition 6). Thus, our results nicely generalize to directed
and weighted networks.

2.7.3 Formation of an IEA

In the main article we have restricted the analysis to the question of stability
of IEAs by means of WRP equilibria without modeling the formation of an
IEA. We briefly and informally outline here, how such an IEA could come into
place. First, of course, we could always imagine a climate conference where the
local spillover structure is taken into account. Since there are potentially many
equilibria of the repeated game even for a given coalition, it is difficult to model
the strategies used by the countries to select among the WRP equilibria of the
repeated game.

In fact we could also imagine that a small subset of all countries (e.g. the US
and Canada, or the countries within the EU) start out with a coalition to obtain a
critical mass and then approach countries outside the coalition, particularly those
exposed to local spillovers of the coalition by offering those countries to reduce
emission if they themselves do so. In other words, they threaten punishment
by non-implementation of an IEA (which is equivalent to business as usual) if
other countries do not reduce themselves. Thus, given a coalition C1, rank all
other countries i ∈ N \ C1 by the ratio |Ni∩C1|

|Ni| . Coalition C1 then agrees to the
terms of an IEA conditional on additional countries joining. Those with large
ratio |Ni∩C1|

|Ni| are the ones that are most likely to join C1 since for them the SGP
condition (9) is easiest to be satisfied by the threat of non-implementation of
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signatory strategies of C1. Thus i1 would join C1 if there exists a punishment
set Pi1 ⊂ C1 such that the conditions of Theorem 1 are satisfied. After acquiring
the highest-ranked country i1 to C1, for C2 = C1 ∪{i1} repeat the procedure for
C2 etc.

Since small coalitions are easy to sustain even without threats of future
punishment (see Section 3.2), it may be the case that such a procedure actually
leads to the implementation of a global IEA (if stable for the given spillover
structure). In this way, an initially small IEA may spread to a large IEA, i.e.
from an initially local IEA can emerge a global IEA (see also Section 3.4.2 in
Currarini et al., 2014).

The idea of small coalitions supporting the build up of global climate cooper-
ation is also present in the recently growing literature on climate clubs. In Victor
(2011), a “carbon club” is proposed which may be small at the start but could
grow over time. A crucial factor for the success of such climate clubs is that
all members derive an exclusive benefit and that non-members can be excluded
from the benefits or even be penalized for not participating. As emissions are a
public bad and in our model the only independent variable, our model does not
allow for this exclusiveness and therefore our outline above can only be seen as
an approximation of a climate club approach. For a more precise treatment of
climate clubs, other, exclusive benefits must be introduced to incentivize coun-
tries to join or so-called “external penalties”, unconnected to the emission game,
must be adopted to punish non-signatories, for instance by border (carbon) tax
adjustments. This is not considered in our model and we refer to Nordhaus
(2015) for a more formal approach.

2.8 Conclusion

We have merged local and global pollution spillovers into one model by intro-
ducing a network structure. In the repeated game, we define an IEA as a
strategy profile where signatories aim to play in each stage the action which
maximizes their utilitarian welfare. Using a specific punishment strategy, weakly
renegotiation-proof agreements can be achieved via the threat of punishments. If
the punishing countries suffer too much from punishment themselves, they may
want to renegotiate. To account for this, we characterize an individual group
of punishing countries for each signatory and therefore decrease the incentives
to renegotiate. However, when the network is very asymmetric, as for example
in the star network, full cooperation may not be a weakly renegotiation-proof
equilibrium. In turn, when players are symmetric with respect to their spillover
impacts and sufficiently patient, a global IEA can be stable.
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We have also studied welfare implications of the network structure. More
links in the network have a negative impact on global welfare as the local spillover
effects outweigh the higher efforts by signatories that internalize the additional
externality. Furthermore, we extend our model in several ways. First, we consider
other punishment strategies. We show that if countries can choose stronger
punishments as their Nash output level, fewer countries are necessary to achieve
the same deterrence effect. In the star network, however, this does not change
the results. If, instead, countries are allowed to punish for more than one period,
then less countries are necessary to punish a deviation implying that for large
enough discount factors, we can always find a duration of punishments such that
in any network full cooperation is a WRP equilibrium. Secondly, we abstract
from the undirected and unweighted network setting, and show that our results
nicely generalize to directed and weighted networks. Thirdly, we discuss the
formation of an IEA and elaborate how the local spillover structure can be taken
into account to achieve a stable global IEA.

Due to the generality of our approach, our model can serve as benchmark
model which should be extended and refined in the future. Yet we can already
see that, along the lines of Bollen et al. (2009), a pollution policy that takes
account of the effects of both global and local (air) pollution can help sustain
global cooperation and ultimately increase global welfare. By taking into ac-
count the local spillover structure, punishment mechanisms can be designed
more appropriately and therefore help deter countries from free-riding without
making the agreement vulnerable to renegotiation. In this way, a few countries
(e.g., US and Canada or EU countries), who initially agree to certain terms of
reduction conditional on others joining them, may achieve global cooperation by
particularly taking the spillover structure into account. Our model is also not
limited to the application in the strive for joint emission reduction. It can easily
be adapted to other problems in the provision of public goods.

It can also be extended to analyze a stock pollutant rather than a flow
pollutant as we do in this paper. Assuming a linear law of motion for the
stock of pollution, as it is standard in the literature, and using the same profit-
function of the stage game, we obtain a linear state differential game. Thus,
equilibrium strategies will be constant with respect to the state variable and the
results for non-cooperative and full-cooperative outputs will not change. Note
that to capture the local and global externalities, we would need to include one
state variable capturing the global stock of emissions, and n state variables that
capture the local emission stock for each country.22

22See for example Mason et al. (2016) and Kratzsch et al. (2012), who analyze self-enforcing
IEAs in a differential game and show that a penance punishment strategy, can yield full
cooperation for discount factors large enough.
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Finally, let us remark, that we have restricted our study of IEAs such that we
allowed countries to have only one choice variable: their emission level. There-
fore in the repeated game framework, punishment can only be executed in terms
of increased emission. In reality, it is not so clear that countries are actually
flexible enough to adjust their emission levels accordingly. However, countries
usually also have other threats to deter deviation. One example are trade sanc-
tions imposed on other countries, respectively signatories of an IEA. In a quite
elaborated model, Barrett (1997) shows that trade sanctions may be an efficient
tool since the threat of trade sanctions may be sufficient to incentivize countries
to join the IEA and thereby sustain full cooperation. We have shown in our
reduced model that even though countries are only able to punish by increasing
their emissions, it is still possible to sustain cooperation via a WRP equilibrium
(if the network structure is not too asymmetric, or if punishment is long enough).
Allowing for trade sanctions by also using the network structure, could be a
valuable extension of our model. In this case, the network could also represent
an established trade structure that enables countries to link pollution and trade
strategies (issue-linkage). We expect such an extension to strengthen our results
and to make full cooperation even more likely to emerge.

There are various other ways how our model may be extended. As noted in
Currarini et al. (2014), there is a large potential for network economics to be
applied in environmental economics. In the following, we want to discuss several
of the aspects that could emerge from our model.

First, some simplifications we have taken may be relaxed. Of course, further
heterogeneities imply less analytical tractability but as it is frequently done in
the IEA literature, simulations could be considered to compare the outcomes of
our model to other existing ones. Furthermore, other punishment strategies and
the possibility of multiple coalitions may be worth studying, too.

Regarding multiple coalitions, as long as we strive for the socially optimal
outcome of global cooperation, there is no need for more than a single agreement.
However, whenever global cooperation cannot be sustained as a self-enforcing
equilibrium, one could study what happens if multiple coalitions formed. In
the case of linear costs of pollution, one could reach an outcome where every
country is a signatory in a possibly only very small coalition. Then, individual
contributions to abatement may not substantially improve the business as usual
outcome as all countries only account for very few externalities of their coalition
members.

The extension of the model to incorporate transfers and side-payments is also
very natural. One could then interpret the underlying network structure, i.e. the
links between countries, also as established ways of communication or negotiation
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through which countries can offer side-payments to incentivize non-cooperators
to join the coalition.

Moreover, while reduction of emissions is one way to contribute to the global
effort of fighting climate change, investments in R&D are another possibility to
mitigate pollution. And as it is standard in the (network) literature, spillovers
from R&D play an important role in the decision of optimal investments. Thus,
bringing together the literature of R&D spillovers and the mitigation of pollution
through an IEA is another possible extension of our model.

Finally, there already exist some models that study local and regional agree-
ments that may lead to global cooperation. Methods from Evolutionary Game
Theory have been used to study whether or not local agreements may facilitate
the formation of global cooperation.23 By applying results from opinion forma-
tion in a network, our model may serve as an approach to better understand the
chances of such a formation process. In our benchmark model we only consider
the formation of a single IEA, but the extension to multiple coalitions should be
natural and thus offer a promising area of future research.

23Regional agreements and initiatives have been formed to tackle the problem of regional
pollution effects (visit the Global Atmospheric Pollution Forum online for a list of regional
initiatives worldwide). One example is the “Climate and Clean Air Coalition” that strives for
a reduction of short-lived air pollutants and has been gaining influence over the past years.

http://www.sei-international.org/gapforum/policy/regionalinitiatives.php


Appendix

2.A Proofs

Proof of Theorem 2.1. Let s be an IEA by a coalition C ⊂ N . To be stable, s
needs to be a subgame perfect (SGP) equilibrium which is weakly renegotiation-
proof.

First, consider the SGP condition and note that there does not exist a non-
signatory j ∈ N \C who has an incentive to deviate from playing its Nash action.
Hence, in order for s to be SGP, the signatories i ∈ C shall not have an incentive
to deviate. For this, there are two conditions that need to be fulfilled:

(i) No signatory i ∈ C has an incentive to deviate from xSi

(ii) Given country i ∈ C deviates, no punishing country j ∈ Pi has an incentive
to not punish country i

For Condition (i) to be satisfied, we have to ensure that the potential gain
from deviating from the signatory action xSi is outweighed by the payoff loss
due to execution of punishment in the following period. Thus we have to derive
conditions such that the following holds for all i ∈ C:

πi(xSC) + δπi(xSC) ≥ πi(xNSi , xSC\{i}) + δπi(xSi , xSC\Pi , x
P
Pi)

⇔ δ
(
πi(xSC)− πi(xSi , xSC\Pi , x

P
Pi)
)
≥ πi(xNSi , xSC\{i})− πi(xSC) (2.A.1)

43
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If all signatories i ∈ C play the signatory action xSi as agreed upon, the stage
payoff for i is

πi(xSC) =− 1
2
(
βk + γ(ki + 1)

)2 − β ∑
m∈C

(
x̄m − βk − γ(km + 1)

)
− β

∑
l /∈C

(x̄l − β − γ)− γ
∑
m∈C

ḡim
(
x̄m − βk − γ(km + 1)

)
− γ

∑
l /∈C

ḡil(x̄l − β − γ).

Consider now a situation when country i ∈ C deviates from si in period t.
Then, by s, in the next period t+ 1 we have

xj(C, t+ 1) =


x̄j − βk − γ(kj + 1), if j = i

x̄j − p(β + γ), if j ∈ Pi ∪ (N \ C)

x̄j − βk − γ(kj + 1), if j ∈ C \ Pi

.

This yields the stage payoff during punishment

πi(xSi , xSC\Pi , x
P
Pi) =− 1

2
(
βk + γ(ki + 1)

)2 − β ∑
m∈C\Pi

(
x̄m − βk − γ(km + 1)

)
− β

∑
l∈Pi

(
x̄l − p(β + γ)

)
− β

∑
l /∈C

(x̄l − β − γ)

− γ
∑
l /∈C

ḡil(x̄l − β − γ)− γ
∑

m∈C\Pi

ḡim
(
x̄m − βk − γ(km + 1)

)
− γ

∑
l∈Pi

ḡil
(
x̄l − p(β + γ)

)
,

and we receive for the payoff loss from punishment

πi(xSC)− πi(xSi , xSC\Pi , x
P
Pi) = −β

∑
m∈C

(
x̄m − βk − γ(km + 1)

)
− γ

∑
m∈C

ḡim
(
x̄m − βk − γ(km + 1)

)
+ β

∑
m∈C\Pi

(
x̄m − βk − γ(km + 1)

)
+ β

∑
l∈Pi

(
x̄l − p(β + γ)

)
+ γ

∑
m∈C\Pi

ḡim(x̄m − βk − γ(km + 1))

+ γ
∑
l∈Pi

ḡil(x̄l − p(β + γ))

=− β
∑
l∈Pi

[(x̄l − βk − γ(kl + 1))− (x̄l − p(β + γ))]

− γ
∑
l∈Pi

gil[(x̄l − βk − γ(kl + 1))− (x̄l − p(β + γ))]

=β
∑
l∈Pi

[β(k − p) + γ(kl + 1− p)] + γ
∑
l∈Pi

gil[β(k − p) + γ(kl + 1− p)].

(2.A.2)
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Furthermore we have for the short-term payoff gain from a one-shot deviation

πi(xNSi , xSC\{i})− πi(xSC) = 1
2
(
βk + γ(ki + 1)

)2
− 1

2
(
β + γ

)2

−
(
β + γ

)(
β(k − 1) + γki

)
= β2

2 (k − 1)2 + βγ(ki(k − 1)) + γ

2k
2
i

= 1
2
(
β(k − 1) + γki

)2 ≥ 0. (2.A.3)

Multiplying with δ and rewriting Equation (2.A.2), then substracting (2.A.3),
we obtain that Condition (i) is satisfied if (2.8) holds.

Let us now consider Condition (ii). Suppose country i ∈ C deviated in period
t−1. In order to ensure that all j ∈ Pi actually punish the deviator, the following
condition has to hold for all j ∈ Pi:

πj(xPPi , x
S
C\Pi) + δπj(xSC) ≥ πj(xSj , xPPi\{j}, x

S
C\Pi) + δπj(xSj , xSC\Pj , x

P
Pj )

⇔ δ
(
πj(xSC)− πj(xSj , xSC\Pj , x

P
Pj )
)
≥ πj(xSj , xPPi\{j}, x

S
C\Pi)− πj(x

P
Pi , x

S
C\Pi)

(2.A.4)

For the single-stage payoffs we have

πj(xSj , xPPi\{j}, x
S
C\Pi) =− 1

2
(
βk + γ(kj + 1)

)2
− β

∑
m∈Pi\{j}

(
x̄m − p(β + γ)

)
− β

∑
m/∈C

(x̄m − β − γ)− β
∑

l∈C\(Pi\{j})

(
x̄l − βk − γ(kl + 1)

)
− γ

∑
m∈Pi\{j}

ḡjm
(
x̄m − p(β + γ)

)
− γ

∑
m/∈C

ḡjm(x̄m − β − γ)

− γ
∑

l∈C\(Pi\{j})
ḡjl(x̄l − βk − γ(kl + 1))

and

πj(xPPi , x
S
C\Pi) =− 1

2
(
p(β + γ)

)2 − β ∑
m∈Pi

(
x̄m − p(β + γ)

)
− β

∑
m/∈C

(x̄m − β − γ)− β
∑

l∈C\Pi

(
x̄l − βk − γ(kl + 1)

)
− γ

∑
m∈Pi

ḡjm
(
x̄m − p(β + γ)

)
− γ

∑
m/∈C

ḡjm(x̄m − β − γ)

− γ
∑

l∈C\Pi

ḡjl
(
x̄l − βk − γ(kl + 1)

)
.

We will show that (2.A.1) already implies (2.A.4). To prove this, we need
the following lemma.



46 2 International Environmental Agreements for Local and Global Pollution

Lemma 2.A.1. For all β, γ, k, kj and p ≥ 1 it always holds

− 1
2(βk + γ(kj + 1))2 + 1

2(p(β + γ))2 + (β + γ)(β(k − p) + γ(kj + 1− p))

≤ 1
2(βk + γ(kj + 1))2 − 1

2(β + γ)2 − (β + γ)(β(k − 1) + γkj). (2.A.5)

Proof. As xPj ≥ xSj , we have p(β + γ) ≤ βk + γ(kj + 1) for all j in Pi and thus
we have

0 ≤
(
β(k − 1) + γkj

)2
− 1

2
(
(p− 1)(β + γ)

)2
= β2

(
(k − 1)2 − 1

2(p− 1)2
)

+ γ2
(
k2
j −

1
2(p− 1)2

)
+ βγ

(
2kj(k − 1) + (1− p)2

)
= β2

(
k2 − 1

2(1 + p2)− (2k − p− 1)
)

+ γ2
(
(kj + 1)2 − 1

2(1 + p2)

− (2kj + 1− p)
)

+ βγ
(
2k(kj + 1)− p2 − (2k − p− 1 + 2kj + 1− p)

)
=
(
βk + γ(kj + 1)

)2
− 1

2
(
(β + γ)2 + (p(β + γ))2

)
− (β + γ)

(
β(2k − p− 1) + γ(2kj + 1− p)

)
,

which is nothing else but (2.A.5) and proves the lemma.

We can now rewrite the left-hand side of (2.A.4) and receive

πj(xSj , xPPi\{j}, x
S
C\Pi)− πj(x

P
Pi , x

S
C\Pi)

=− 1
2
(
βk + γ(kj + 1)

)2
+ 1

2
(
p(β + γ)

)2 − β (x̄j − βk − γ(kj + 1)
)

+ β
(
x̄j − p(β + γ)

)
− γ

(
x̄j − βk − γ(kj + 1)

)
+ γ

(
x̄j − p(β + γ)

)
=− 1

2
(
βk + γ(kj + 1)

)2
+ 1

2
(
p(β + γ)

)2 + (β + γ)
(
β(k − p) + γ(kj + 1− p)

)
≤ 1

2
(
βk + γ(kj + 1)

)2
− 1

2(β + γ)2 − (β + γ)
(
β(k − 1) + γkj

)
= 1

2
(
β(k − 1) + γkj

)2

= πi(xNSi , xSC\{i})− πi(xSC).

Thus, whenever (2.A.1) is satisfied, (2.A.4) has no bite and s therefore constitutes
an SGP equilibrium if and only if (2.A.1) holds.

Let us now turn to the condition of weak renegotiation-proofness. As given
in Definition 2.1, a subgame perfect equilibrium s is weakly renegotiation-proof
(WRP) if there do not exist two continuation equilibria such that all players
strictly prefer the one to the other. That is, we have to derive conditions such
that all punishing countries j ∈ Pi will actually punish instead of ignoring the
deviation and continuing with another equilibrium path, e.g., renegotiating to
playing cooperate again.
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For any period t, there are k + 1 possible continuation equilibria that imple-
ment either the agreement path aC or the punishment path pC

j for any signatory
j ∈ C.

Assume that the strategy profile s is an SGP equilibrium, thus Condition (2.8)
is satisfied. In accordance with the definition, for weak renegotiation-proofness
we now need to consider all continuation equilibria and the respective incentives
of each player.

Obviously, a deviating country prefers the agreement continuation equilib-
rium to the one generated by its respective punishment path pC

i , i.e. πi(xSC) >
πi(xSC\Pi , x

P
Pi

) ∀ i ∈ C. Thus, any country that is punished would not block a
renegotiation to the agreement path.

All non-signatories j /∈ C will continue to free-ride on the others’ efforts in
any continuation equilibrium. They will not block a renegotiation either. Also,
all signatories j ∈ C \ Pi that do not punish prefer the equilibrium path with
payoffs πj(xSC) to a continuation equilibrium from following the punishment
path pC

i .
Thus, it remains to check the incentives of the punishers. If πj(xSC) >

πj(xPPi , x
S
C\Pi) holds for all j ∈ Pi, all punishing countries prefer the continuation

equilibrium when no punishment is carried out to the one where i deviated.
Thus, all players strictly prefer the agreement path to the punishment path and
therefore s would not be weakly renegotiation-proof.

Hence, for s to be a WRP equilibrium the following condition needs to be
satisfied for at least one j ∈ Pi:

πj(xPPi , x
S
C\Pi)− πj(x

S
C) ≥ 0. (2.A.6)

We have

πj(xPPi , x
S
C\Pi)− πj(x

S
C) =− 1

2
(
p(β + γ)

)2 + 1
2
(
βk + γ(kj + 1)

)2

− β
∑
l∈Pi

(
x̄l − p(β + γ)

)
+ β

∑
m∈Pi

(
x̄m − βk − γ(km + 1)

)
− γ

∑
l∈Pi

ḡjl
(
x̄l − p(β + γ)

)
+ γ

∑
m∈Pi

ḡjm
(
x̄m − βk − γ(km + 1)

)
=− 1

2

((
p(β + γ)

)2 − (βk + γ(kj + 1)
)2
)

− β
∑
m∈Pi

(
β(k − p) + γ(km + 1− p

)
− γ

∑
m∈Pi

ḡjm
(
β(k − p) + γ(km + 1− p)

)
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and thus (2.A.6) is equivalent to

β2

2
(
(k − p)(k + p− 2|Pi|)

)
+ βγ

kkj − |Pi ∩Nj |(k − p)−
∑
m∈Pi

(km + 1− p) + p(1− p)


+ γ2

2

k2
j − 2

∑
m∈Pi

gjm(km + 1− p)− 1 + p(2− p)

 ≥ 0, (2.A.7)

which we can rewrite such that we obtain (2.9).
Concluding, if the strategy s satisfies (2.8) for all i ∈ C, i.e. is subgame

perfect, and additionally is such that for any i ∈ C there is a punishment set
Pi such that there exists at least one j ∈ Pi that satisfies Condition (2.9), s is
weakly renegotiation-proof.

Proof of Corollary 2.1. For γ = 0 we have that the IEA s by the coalition C is
a subgame perfect equilibrium if and only if for all i ∈ C

δβ2|Pi|(k − 1) ≥ 1
2
(
β(k − 1)

)2
holds. Furthermore, it is weakly renegotiation-proof if and only if for all i ∈ C

β2(k − 1)(|Pi| − 1) ≤ 1
2
(
β(k − 1)

)2
.

For k ≥ 2 this gives

|Pi| ≥
k − 1

2δ ∧ |Pi| ≤
k + 1

2
⇔ 1

2δ (k − 1) ≤ |Pi| ≤
1
2(k + 1).

Proof of Proposition 2.1. As we have already seen in Example 2.1, global co-
operation cannot be supported as an SGP equilibrium in the star network if
γ > β n−1

n−3 holds.
Let us now suppose γ ≤ β n−1

n−3 and consider again the center i of the star
network. Then, we can find a punishment group Pi such that full cooperation
can be sustained as a subgame perfect equilibrium, that is we can find Pi such
that |Pi| ≥ (n−1)2(β+γ)

2(β(n−1)+γ) is satisfied (compare Condition (2.8) of Theorem 2.1).



2.A Proofs 49

Clearly, whenever this lower bound is larger than the upper bound from the
WRP condition (2.9), full cooperation cannot be a WRP equilibrium. We have

(n− 1)2(β + γ)
2(β(n− 1) + γ) >

β(n− 1) + γ

2β

⇔ n > n1 := 2 + β

γ

(
1 +

√
1 + 2γ

β
+ 3(γ

β
)2 + (γ

β
)3

)
. (2.A.8)

Hence, given parameters γ and β, for n large enough (2.A.8) is always satisfied
and global cooperation fails to be a WRP equilibrium.

Proof of Proposition 2.2. Denote by Ψi the set of permutations of players ψi :
N \{i} → N \{i} such that ψi(j) < ψi(m) for all j ∈ Ni, m /∈ Ni. Further, given
a permutation ψi ∈ Ψi, letMψi(ν) denote the first ν elements of the permutation,
i.e. Mψi(ν) := {ψi(1), . . . , ψi(ν)}. This defines a possible punishing set Pi.

Let ν∗ := arg min1≤ν≤n−1{Pi = Mψi(ν) satisfies (2.12)} be the lowest integer
such that the set Mψi(ν∗) deters a signatory from deviating.

First suppose that ν∗ ≤ η. Then by construction we have Mψi(ν∗) ∩ Ni =
Mψi(ν∗) and for any j ∈Mψi(ν∗), j is also in Ni. Thus, j /∈Mψi(ν∗) ∩Nj and
therefore we get for any ψi ∈ Ψi that

|Mψi(ν∗) ∩Nj | ≤ |Mψi(ν∗) ∩Ni| − 1 (2.A.9)

holds for all j ∈Mψi(ν∗).
Hence, the following holds for all ψi ∈ Ψi :

|Mψi(ν∗)∩Nj |γ + (|Mψi(ν∗)| − 1)β ≤ (|Mψi(ν∗)∩Ni| − 1)γ + (|Mψi(ν∗)| − 1)β.
(2.A.10)

Suppose now the opposite, i.e. ν∗ > η. We show that there still exists a
permutation ψ∗i ∈ Ψi such that (2.A.10) holds for all j ∈Mψ∗i

(ν∗).
From (2.12) we get that ν∗ ≥ 1

2(n − 1) − 1
2
γ
βη since for Pi = Mψi(ν∗) we

have that Mψi(ν∗)∩Ni = Ni. Moreover, because of minimality and ν∗ being an
integer, we have

ν∗ =
⌈

1
2(n− 1)− 1

2
γ

β
η

⌉
. (2.A.11)

For all neighbors j ∈Mψi(ν∗) ∩Ni of the deviator i, (2.A.9) still holds and
there is nothing to show.

From (2.A.11) we receive that additional to the neighbors of i there are

ν∗ − η =
⌈

1
2(n− 1)− γ

2β η
⌉
− η

non-neighbors in the punishing set Mψi(ν∗).
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Denote by ψ̃i ∈ Ψi the permutation which minimizes the number of those non-
neighbors j ∈Mψi(ν∗) \Ni that have all their links within the set Mψi(ν∗), i.e.
such that ηj(g|Mψi

(ν∗)) = η holds.24 Suppose that this number is different from
zero, i.e. at least one country inMψi(ν∗)\Ni has all neighbors inMψi(ν∗). Then,
by (2.A.11), from the set Mψ̃i

(ν∗) there are at most η
⌈(

1
2(n− 1)− 1

2
γ
βη
)⌉
− 2η

links into the set N \
{
Mψ̃i

(ν∗) ∪ {i}
}
.

As |N \
{
Mψ̃i

(x∗) ∪ {i}
}
| = n− 1− ν∗, we have that the sum of degrees of

members of the set N \
{
Mψ̃i

(x∗) ∪ {i}
}
satisfies

η

∣∣∣∣N \ {Mψ̃i
(ν∗) ∪ {i}

}∣∣∣∣ = η

n− 1−


(

1
2(n− 1)− 1

2
γ

β
η

)


= η


(

1
2(n− 1) + 1

2
γ

β
η

)
> η


(

1
2(n− 1)− 1

2
γ

β
η

)− 2η.

Thus, the number of all links of members of the set N \
{
Mψ̃i

(ν∗) ∪ {i}
}

ex-
ceeds the maximum amount of links coming into the set from its complement,
meaning that there has to exist a link lm between members l,m of the set
N \

{
Mψ̃i

(ν∗) ∪ {i}
}
.

Considering a permutation ψ̂i ∈ Ψi that is obtained from ψ̃i by switch-
ing a member of Mψ̃i

(ν∗), who has all her links within Mψ̃i
(ν∗), with l ∈

N \
{
Mψ̃i

(ν∗) ∪ {i}
}
, who has a link lm ∈ g|

N\
{
Mψ̃i

(ν∗)∪{i}
}, contradicts the

assumption that ψ̃i yields the minimal number of j with ηj(g|Mψi
(ν∗)) = η.

Hence, there exists a permutation ψ∗i ∈ Ψi such that for all j ∈Mψi(ν∗) we have
|Mψ∗i

(ν∗) ∩Nj | ≤ |Mψ∗i
(ν∗) ∩Ni| − 1, implying that (2.A.10) holds.

Finally, choosing Pi := Mψ∗i
(ν∗) yields first that trivially (2.12) is satisfied.

Moreover, because of minimization we have that (2.12) cannot be satisfied by
any subset of Pi. Thus

(
(|Pi ∩Ni| − 1)γ + (|Pi| − 1)β

)
< 1

2
(
β(n− 1) + γη

)
and

since (2.A.10) holds for Pi = Mψ∗i
(ν∗), we get that (2.13) is satisfied. Hence,

both conditions of Theorem 2.1 are satisfied by choosing a punishment set Pi :=
Mψ∗i

(ν∗) for every i ∈ N , implying that there exists a WRP equilibrium in which
all countries play a signatory strategy, i.e. a stable global IEA exists.

Note that we have shown here a slightly more general result since we have
shown that the WRP condition holds for all punishers.

24Note that all permutations ψi ∈ Ψi =
{
ψi : N \ {i} → N \ {i} s.t. ψi(j) < ψi(m) ∀j ∈ Ni,m /∈ Ni

}
,

deliver the same ν∗ due to regularity of the network.
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Proof of Lemma 2.1. Suppose a player j has deviated and players Pj are called
upon to punish. When a player i joins the punishment group Pj , the marginal
effect on total welfare W can be calculated to be

∆W(Pj + i, Pj) =−
(
βn+ γ(ηi + 1)

)(
β(n− 1) + γηi

)
− 1

2

(
(β + γ)2 −

(
βn+ γ(ηi + 1)

)2 )
=−

(
βn+ γ(ηi + 1)

)(
β(n− 1)− 1

2βn+ γηi −
1
2γ(ηi + 1)

)
− 1

2(β + γ)2

=− 1
2
(
βn+ γ(ηi + 1)

)(
β(n− 1) + γηi − β − γ

)
− 1

2(β + γ)2

=− 1
2
(
β(n− 1) + γηi

)2
+ 1

2(β + γ)
(
βn+ γ(ηi + 1)

−β(n− 1) + γηi
)
− 1

2(β + γ)2

=− 1
2
(
β(n− 1) + γηi

)2
+ 1

2(β + γ)
(
βn+ γ(ηi + 1)− β(n− 1)

+γηi − β − γ)− 1
2
(
β(n− 1) + γηi

)2
.

Proof of Proposition 2.4. Suppose a player j has deviated and players Pj are
called upon to punish. Let i ∈ Nj and l,m /∈ Nj∪{j} be such that fj(·, Pj + i) ≤
fj(·, Pj + l +m). That is, we have that

β
(
β(n− 1) + γηl + β(n− 1) + γηm

)
≥ (β + γ)

(
β(n− 1) + γηi

)
⇔ β2

(
β(n− 1) + γηl + β(n− 1) + γηm

)2
≥ (β + γ)2

(
β(n− 1) + γηi

)2

⇔ β2

(β + γ)2︸ ︷︷ ︸
=:a

( [
β(n− 1) + γηl

]2
+
[
β(n− 1) + γηm

]2
︸ ︷︷ ︸

=:ξ1

+ 2
[ (
β(n− 1) + γηl

) (
β(n− 1) + γηm

) ]
︸ ︷︷ ︸

=:ξ2

)
≥
[
β(n− 1) + γηi

]2
.︸ ︷︷ ︸

=:ξ3

Next, note that ξ1 ≥ ξ3 if ξ1 ≥ a(ξ1 + ξ2), i.e. ξ1− aξ2
1−a ≥ 0. This is equivalent to

0 ≤
[
β(n− 1) + γηl

]2
+
[
β(n− 1) + γηm

]2
−

2β2
[
(β(n− 1) + γηl)(β(n− 1) + γηm)

]
2βγ + γ2 .
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Choosing γηl =
(
β(n − 1) + γηm

)
β2

2βγ+γ2 − β(n − 1) minimizes the right-hand
side and thus above is implied by

⇐ 0 ≤
[
β(n− 1) + γηm

]2[
1 +

(
β2

2βγ + γ2

)2 ]

− 2
(

β2

2βγ + γ2

)2 [
β(n− 1) + γηm

]2
,

which in turn is equivalent to β2 ≤ 2βγ + γ2. For positive values, we obtain
β ≤ (1 +

√
2)γ, which concludes the proof.



Chapter 3

A Note on Renegotiation in
Repeated Games

3.1 Introduction

In Farrell and Maskin (1989), the concept of weak renegotiation-proofness (sub-
sequently abbreviated as WRP) is introduced and the authors provide a char-
acterization of WRP payoffs for general two-player games. In their Theorem 1
(p. 332), the authors give both sufficient and necessary conditions for a strictly
individual rational payoff to be weakly renegotiation-proof. In this note, we use
a counterexample to show that their proof of the sufficient conditions fails at a
particular step. While Farrell and Maskin (1989) are very careful in many steps
of the proof, they implicitly assume more of a structure on the set of payoffs than
actually exists. More specifically, they claim to obtain a payoff with independent
randomization, which is only obtainable with correlated strategies. However, if
correlated strategies were allowed, large parts of the proof would be unnecessary.

First, we introduce the basic notation as given in Farrell and Maskin (1989).
Then, we go through the arguments of the original proof before we point to the
crucial and erroneous claim in that proof. We use a counterexample to illustrate
the problem, and then prove an alternative result that replaces the erroneous
claim and ultimately fixes the proof.

53
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3.2 Basics and Original Result

We adopt most of the original notation from Farrell and Maskin (1989), but
denote sets by calligraphy instead of regular letters since we need a more elaborate
notation for our proof.

Consider a two-player, single-stage game with players i = 1, 2. Each player i
possesses a finite set of actions, and we denote the simplex consisting of player i’s
mixed actions by Ai. We denote the set of both players’ actions by A ≡ A1×A2.
Let g : A −→ R2 be the vector of continuous payoff functions gi : Ai −→ R. The
single-stage game g is then defined by the set of payoffs and actions. We will
denote the set of mixed-strategy payoffs, i.e., the image of g, by

U =
{

(v1, v2) ∈ R2 | ∃ a ∈ A with g (a) = (v1, v2)
}

and the set of feasible payoffs in the repeated game by

V = co (U) .

For player i, the profit-maximizing deviation from action pair a = (a1, a2) is
defined by ci(a) = maxai gi(ai, aj), i 6= j, the minimax payoff1 is defined by
vi = minaj maxai gi(ai, aj) and vmaxi = maxa1,a2 gi(a1, a2) is the maximal
attainable payoff. The set of strictly individual rational payoffs in the repeated
game is given by

V∗ =
{
(v1, v2) ∈ V | v1 > v1, v2 > v2

}
.

In the repeated game, we consider the infinite repetition of the single-stage
game g, which will be denoted by g∗. Let t = 1, 2, . . . ,∞ denote the periods
and the sequence {ai (t)} denote a player’s action profile with ai (t) ∈ Ati. Note
that we assume constant action spaces Ati = Ai for all t. A t-history will be
denoted by ht =

(
a (1) , . . . , a (t)

)
, and H is the set of all such possible t-histories.

A strategy σi for player i in the repeated game is a function that defines an
action ai ∈ Ai for every date t and history ht ∈ H.2 In every period, players
receive the stage-game payoffs. Player i’s discounted average payoff at time t
is then given by (1− δ)∑∞τ=t δ

τ−tgi
(
a1 (τ) , a2 (τ)

)
, where δ < 1 is the common

discount factor for all players. The expected payoffs of strategy σ with discount
factor δ will be denoted by g∗(σ, δ), but we often omit δ and simply write g∗(σ).

A weakly renegotiation-proof equilibrium is defined as follows.
1While Farrell and Maskin (1989) normalize the minimax payoff to zero for both players, we

omit this normalization in the subsequent sections for a better illustration. This is immaterial
to our results.

2Note that by the definition of a strategy σ, we ultimately assume that players can not
only observe the realized actions, but also the mixed strategies in the repeated game. Players
can therefore condition their strategies on all past private randomizations. This assumption is
also made by Farrell and Maskin (1989), but they remark that it is not strictly necessary (see
their footnote 2 on p. 329).
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Definition 3.1 (Farrell and Maskin, 1989). A subgame perfect equilibrium σ is
weakly renegotiation-proof if there do not exist continuation equilibria σ1, σ2 of
σ such that σ1 strictly Pareto-dominates σ2. If an equilibrium σ is WRP, then
we also say that the payoffs g∗(σ) are WRP.

3.2.1 Sufficient Conditions for Weakly Renegotiation-Proof Payoffs

Let us cite the conditions that Farrell and Maskin (1989) propose as sufficient
for WRP payoffs, which is the first part of their Theorem 1 (p. 332).

Theorem 3.1 (Farrell and Maskin, 1989). Let v = (v1, v2) be in V∗. If there
exist action pairs ai = (ai1, ai2) (for i = 1, 2) in g such that (i) ci(ai) < vi, while
(ii) gj(ai) ≥ vj for j 6= i, then the payoffs (v1, v2) are WRP for all sufficiently
large δ < 1.

To prove this result, two steps have to be completed. First, one needs to
construct a sequence of actions to obtain v as a payoff of the repeated game such
that no two continuation payoffs along this path can be strictly Pareto-ranked.
If the players could use correlated strategies, this step would be trivial. As they
can only use independent randomizations, and the set of mixed-strategy payoffs
is a peculiar subset of feasible payoffs, this is not straightforward, as we show
in the following section. Given this sequence of actions for the normal phase of
the game, one then needs to design punishment paths such that v is a subgame
perfect equilibrium and no continuation payoffs of the equilibrium strategy can
be strictly Pareto-ranked.

3.3 The Error in the Proof of Farrell and Maskin (1989)

In the following text, we will go along the original proof of Theorem 3.1 and
first discuss the simple cases where the proof of Farrell and Maskin (1989) works.
Then, we will give a counterexample for the crucial step in their proof and offer
a correction.

Clearly, for a mixed-strategy payoff v ∈ U , i.e., if there exists an action a

such that g(a) = v, there is not much to do as v can be obtained by playing
action a in every period, and trivially, all continuation payoffs along the path
are equal to v. For a payoff v ∈ V∗ \ U , the folk theorem for observable mixed
strategies without public randomization given in Fudenberg and Maskin (1991,
p. 434) yields that for a sufficiently large δ, we can find a sequence of action pairs
{â(t)} such that (1 − δ)∑∞t=1 δ

t−1g
(
â(t)

)
= v. However, this does not ensure

that any two continuation payoffs of this sequence are Pareto-undominated, as
required by the definition of weak renegotiation-proofness.
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Therefore, Farrell and Maskin (1989) construct normal-phase actions using
one of the action pairs a1 or a2 that are given by the hypotheses of the theorem.
Given the vectors g(a1) and v, one can construct the line l1 that starts in
g(a1) and runs through v. If all payoffs of the sequence {â(t)} were on this
line, Lemma 1 of Farrell and Maskin (1989, p. 355, subsequently denoted as
Lemma FM1) yields that the Pareto condition is satisfied. If, however, not all
payoffs lie on l1, there must be actions a∗ and a∗∗ with payoffs g(a∗) above and
g(a∗∗) below l1.

So far, everything is true and works in all two-player games. However, on
page 334, Farrell and Maskin (1989) implicitly claim the following.

Claim 3.1. Let v ∈ V∗ \ U and suppose that a1, a2 in A satisfy the hypotheses
of Theorem 3.1; that is, ai satisfies

(i) gj(ai) ≥ vj, j 6= i,

(ii) ci(ai) < vi,

then, without loss of generality, there exists an action pair ã in A that satisfies

(a) g1(a1) < v1 < g1(ã), g2(a1) > v2 > g2(ã),

(b) v is a convex combination of g(a1) and g(ã).

If the players were able to play correlated strategies, they could easily ran-
domize between g(a∗) and g(a∗∗) to obtain a payoff on l1. However, as there is no
public randomization device, players cannot play correlated strategies and can
only randomize independently. As Farrell and Maskin (1989) rightly continue, if
players randomize independently between a∗ and a∗∗ with probabilities p ∈ (0, 1)
and 1− p, the obtained payoffs, denoted by Γ(p) = (Γ1(p),Γ2(p)), will lie above
l1 for a sufficiently large p and below l1 for a low p. As Γ(p) is continuous in p,
they argue correctly that there must exist a p∗ such that Γ(p∗) lies on l1. Clearly,
if Γ(p∗) = v, the normal phase can be implemented by requiring randomization
between a∗ and a∗∗, but as we assumed v ∈ V∗ \ U , this is not relevant here.

To obtain v as a convex combination of Γ(p∗) and g(a1), we must have
Γ1(p∗) > v1. However, in the following counterexample, we show that there is
no mixed-strategy payoff Γ(p∗) on l1 with Γ1(p∗) > v1. Moreover, contrary to
the claim by Farrell and Maskin (1989) in their footnote 6 on page 334, the
analogous construction with g(a2) and l2 does not work either, which ultimately
rejects Claim 3.1.
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3.3.1 Counterexample to Claim 3.1

Consider the two-player game where Players 1 and 2 can choose between two
pure actions {u, d} and {l, r}, and the stage-game payoffs of the pure strategies
are given by the payoff matrix shown in Table 3.1.

l r

u (0, 0) (2, 2)
l (4, 0) (0, 0)

Table 3.1: Payoff matrix of the two-player strategic game.

For p, q ∈ [0, 1], we denote by a = (p, q) the mixed strategy in which Player 1
randomizes between u and d with probabilities 1 − p and p, respectively, and
Player 2 randomizes between l and r with probabilities 1− q and q.

The set of feasible payoffs V is the convex hull of the payoff vectors (0, 0), (2, 2)
and (4, 0); i.e.,

V = co
({

(0, 0), (2, 2), (4, 0)
})

and the set of strictly individually rational payoffs is given by

V∗ =
{
v ∈ V|v1 >

4
3 , v2 > 0

}
.

In Figure 3.1, we illustrate how the set of mixed-strategy payoffs U is included
in the set of feasible payoffs V.

Player 1’s payoff

Player 2’s payoff

b

b

bb

v1 = 4
3

b

U
V \ U
V∗

b

v

Figure 3.1: Illustration of U and V∗.

Let us consider the strictly individually rational payoff v = (5
2 , 1), which is

not obtainable with mixed strategies, i.e., v ∈ V∗ \ U . Then, consider the action
pairs a1 = (1

4 ,
7
8) and a2 = (1, 5

16). First, we show that a1 and a2 satisfy the
conditions of Theorem 3.1. For action a1, g(a1) = (23

16 ,
21
16), and thus g2(a1) > 1.

For Player 1, the maximal deviation payoff is given by c1(a1) = 7
4 , which is also in

accordance with the conditions. For the action pair a2, we obtain g(a2) = (11
4 , 0),
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and therefore g1(a2) > 5
2 . Finally, Player 2’s maximal deviation payoff is given

by c2(a2) = 0. Thus, the two actions both satisfy Conditions (i) and (ii) of the
theorem.

Next, as proposed by Farrell and Maskin (1989), we construct the line l1 and
find that if all payoffs of the normal phase sequence {â(t)} lie on l1, the average
payoff would not be v since there is no stage-game payoff x on l1 with x1 > v1.
Graphically speaking, there are no stage-game payoffs to the right of v as l1 does
not intersect with U right of v (see Figure 3.2). Thus, if we select two action
pairs a∗ and a∗∗ with payoffs g(a∗) above and g(a∗∗) below l1, and if players
randomize between these two actions with parameters p and q, respectively, the
resulting payoff Γ(p, q) will certainly lie in U , in the dark-gray area in Figure 3.2.
While there exist p∗, q∗ such that Γ(p∗, q∗) lies on l1, in our example, this will
certainly be to the left of v, that is, Γ1(p∗, q∗) < v1.

Player 1’s payoff

Player 2’s payoff

b

b

b

U
V \ U

b

v

bc
g(a1)

l1

b

g(a2)

Figure 3.2: Construction with payoffs g(a1).

Thus, as Farrell and Maskin (1989) claim erroneously in their footnote 6 on
page 334, the analogous construction should work for Player 2 and l2. But, as
one can clearly see in Figure 3.3, this does not hold. There are no payoffs x on
line l2 such that x1 < v1; graphically speaking, l2 does not intersect with U left
of v. Therefore, it is not clear how to obtain v, and the proof is not correct at
this step.

In general, the proof by Farrell and Maskin (1989) fails whenever the two
action profiles a1 and a2 are such that the constructed vectors l1 = g(a1) +
λ
(
v − g(a1)

)
and l2 = g(a2) + λ

(
v − g(a2)

)
do not intersect with the set of

mixed-strategy payoffs U for λ > 1. This is not to say, though, that there are
no games where the proposed construction works and Claim 3.1 holds true.

Note. In this example, v can still be constructed as required. If we choose the
action pair ã1 = (0, 1) that corresponds to the payoffs (2, 2), an extreme point
of V, this action pair satisfies the conditions of the theorem. Furthermore, if we
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Player 1’s payoff

Player 2’s payoff

b

b

b

U
V \ U

b

v

bc
g(a1)

b

g(a2)

l2

Figure 3.3: Construction with payoffs g(a2).

construct the line l̃1 that starts in g(ã1) and runs through v, it intersects with
U right of v, and therefore Claim 3.1 holds. This, however, does not conflict
with our point as the sufficient conditions of Theorem 3.1 are stated to hold for
any action pairs a1, a2 that satisfy the conditions of the theorem. Moreover, in
general n×m games, one cannot always find such an alternative action pair ã
that satisfies the conditions of the theorem. Nevertheless, to fix the proof of
Theorem 3.1, we will show that we can always find two action pairs to obtain
v as a convex combination, and that this already suffices if we also modify the
subsequent steps in the original proof of Farrell and Maskin (1989).

3.4 Corrected Proof of Theorem 3.1

For the proof of Theorem 3.1, we replace Claim 3.1 with the following proposition.

Proposition 3.1. Let v ∈ V∗ \ U . If there exist action pairs a1, a2 in A that
satisfy the hypotheses of Theorem 3.1, that is, ai satisfies

(i) gj(ai) ≥ vj, j 6= i,

(ii) ci(ai) < vi,

then there exist action pairs a1∗ and a2∗ in A that satisfy

(a) g1(a1∗) < v1 < g1(a2∗), g2(a1∗) > v2 > g2(a2∗),

(b) v is a convex combination of g(a1∗) and g(a2∗).

Given the result of Proposition 3.1, we can continue with the proof of The-
orem 3.1 as follows. By Lemma FM1, we obtain that for a sufficiently large δ
there exists a sequence of actions {a(t)} with a(t) ∈ {a1∗, a2∗} that yields dis-
counted average payoffs v. To conclude the proof, we need to show that v can be
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established as a WRP equilibrium. Therefore, one needs to define punishments
to sustain v as a subgame perfect equilibrium and that are such that there is no
Pareto-ranking across any continuation equilibria of the strategy.

If ai∗ satisfies the hypotheses of Theorem 3.1, it can be used to construct a
penance punishment strategy for player i, as suggested by Farrell and Maskin
(1989, p. 335), and the rest of the proof then follows their outline.3 In general,
however, this is not the case, and we need to construct a different punishment
strategy to sustain v as a WRP equilibrium.

Given the actions a1∗ and a2∗ from Proposition 3.1, we define

l∗ =
{
v ∈ V|v = (1− λ)g(a1∗) + λg(a2∗), λ ∈ [0, 1]

}
as the set of payoffs that lie on the line segment between g(a1∗) and g(a2∗). We
will first construct Player 1’s punishment and assume, without loss of generality,
that g2(a1) > v2 holds.4

As c1(a1) < v1, there exists δ < 1 such that

(1− δ)vmax1 + δc1(a1) < v1

and ε1 > 0 such that

c1(a1) < v1 − ε1.

Since g2(a1) > v2, there also exists ε2 > 0 such that g2(a1) ≥ v2 + ε2, and
therefore we can find λ̂ ∈ [0, 1] that satisfies

v1 −
ε1
2 ≤ (1− λ̂)g1(a1∗) + λ̂g1(a2∗) < v1,

v2 ≤ (1− λ̂)g2(a1∗) + λ̂g2(a2∗) ≤ v2 + ε2.
(3.1)

Let λ̃ = minλ̂∈[0,1]{λ̂ satisfies (3.1)} be the minimal value for such λ̂ and
denote the corresponding payoff on l∗ by ṽ = (1− λ̃)g(a1∗) + λ̃g(a2∗). According
to Lemma FM1, there exists a sequence of g(a1∗) and g(a2∗), and a discount
factor δp < 1 such that for all δ ∈ [δp, 1), the expected average payoff is ṽ and
all continuation payoffs along this sequence can be limited to the line segment
between ṽ and v. We denote the sequence of actions by {ap(t)} with ap(t) ∈
{a1∗, a2∗} for all t.

Analogously, there exists a sequence of g(a1∗) and g(a2∗), and a discount
factor δn < 1 such that for all δ ∈ [δn, 1), the expected average payoff is v and
all continuation payoffs along this sequence can be limited to the line segment

3It can be shown that for every 2×2 game, one can always identify such an action pair a1∗.
4If g2(a1) = v2 but g1(a2) > v1, the subsequent punishment construction can be carried

out for Player 2. The case where both g2(a1) = v2 and g1(a2) = v1 hold is discussed in
Appendix 3.A.
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between v and ṽ. This shall be the normal phase of the equilibrium strategy σ(v),
and we denote the sequence of actions by {an(t)} with an(t) ∈ {a1∗, a2∗} for all
t. Note that, in general, δn 6= δp, and we shall therefore take the maximum of
the two in the following steps to ensure that the continuation payoffs of {ap(t)}
and {an(t)} are limited to the line segment between ṽ and v. In the following,
therefore, let δ > δ̄ = max{δn, δp}.

The punishment of Player 1 shall be carried out as follows: In the first
period, play action a1. Then, from period t = 1 on, follow the sequence {ap(t)}
with average payoff ṽ. If Player 1 cheats during her punishment, restart with
action a1. The payoffs at the beginning of her punishment are then given by
p1 = (1 − δ)g(a1) + δṽ, and all subsequent continuation payoffs lie on the line
segment between ṽ and v. This construction is illustrated in Figure 3.4.

Player 1’s payoff

Player 2’s payoff

b v

bc

g(a1)

bc

g(a2)

bc

g(a1∗)

bc

g(a2∗)

bc
ṽ

bc

c1(a
1)

bc

p1

Figure 3.4: Construction of punishment for Player 1.

For the punishment of Player 2, we can adapt the construction for a penance
punishment strategy, as suggested by Farrell and Maskin (1989, p. 335): After a
single deviation of Player 2, play action a2 for a suitable number of periods t2
before returning to the normal phase with expected average payoff v. If Player 2
cheats on her punishment, restart with action a2 (for details see Farrell and
Maskin, 1989).

If Player 1 cheats during the normal phase, she receives p1
1 < v1, which

satisfies

(1− δ)vmax1 + δp1
1 < v1
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for a sufficiently large δ. As also p1
1 > v1 − ε1 for δ sufficiently large, Player 1

has no incentive to cheat in the normal phase or on her own punishment. For
Player 2, all her continuation payoffs along Player 1’s punishment path are weakly
greater than her equilibrium payoff v2, and thus she has no incentive to deviate
from punishing Player 1. As the same holds for Player 2’s punishment, this
strategy constitutes a subgame perfect equilibrium. Formally, we can define the
equilibrium strategy σ(v) as follows:

Play begins in the normal phase, in which players are to follow the
sequence {an(t)}. If Player 1 cheats in the normal phase, the contin-
uation equilibrium is “play a1 for 1 period, then follow the sequence
{ap(t)}”. If Player 2 cheats in the normal phase, the continuation
equilibrium is “play a2 for t2 periods, then return to the normal
phase”. If a player cheats during her punishment, the punishment
begins again. If player i cheats during the opponent’s punishment,
then player i’s punishment begins immediately.

All continuation payoffs of the normal phase and all continuation payoffs of
Player 1’s punishment after the first punishment period lie on the line segment
between ṽ and v. Furthermore, all continuation payoffs of Player 2’s punishment
lie on the line segment between between v and g(a2), and therefore there is
no Pareto-ranking between those three equilibrium paths. Finally, as p1

1 < ṽ1

and p1
2 > ṽ2, none of the continuation payoffs of σ(v) are Pareto-ranked, and

therefore v is a WRP equilibrium.

Note. If the punishment for Player 1 as suggested by Farrell and Maskin (1989)
was followed, which is to play a1 for a suitable number of periods and then revert
to the sequence {an(t)}, all continuation payoffs of the punishment phase would
lie on the line segment between g(a1) and v, and therefore below the line l∗.
Then, even for a sufficiently large δ, it cannot be excluded that there is a strict
Pareto-improvement from Player 1’s punishment to the normal phase (see our
discussion in Appendix 3.B).

3.5 Proof of Proposition 3.1

As the proof of Proposition 3.1 is quite intricate, we will first give an elaborate
outline of the proof before we formally proof the result in Subsections 3.5.1–3.5.3.

We start with the trivial observation that for every v in V \ U , and therefore
in the interior of V, one can always find two payoffs v′ and v′′ in U such that
v is a convex combination. However, it is not straightforward that the line
segment between v′ and v′′ has a negative slope to satisfy Condition (a). This
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will generally depend on the payoff structure of the game, and we therefore have
to complete several steps to show that Condition (a) is always satisfied, given
the hypotheses of the theorem.

In a first step, we will prove Proposition 3.1 for 2 × 2 games. As we are
interested only in those games where U is a strict subset of V, we will first
give a general characterization result of the set of mixed-strategy payoffs U in
Subsection 3.5.1. While the set of feasible payoffs V is generically a quadrilateral
whose extreme points correspond to pure-strategy payoffs, we show in Lemma 3.1
that any payoff v ∈ V \ U will be in a convex set that can be characterized by
an edge of V and a convex curve between the two end-points of this edge. To
show that Proposition 3.1 holds for 2× 2 games, we must distinguish between
the following two cases.

If the edge is of a positive slope, the construction given by Farrell and Maskin
(1989) to show Claim 3.1 does not fail. That is, for at least one of the two action
pairs a1 or a2 given by the hypotheses of the theorem, there exists an action
pair ã ∈ A such that v is a convex combination of g(ã) and g(ai), and thus
Proposition 3.1 holds immediately.

If the edge is of a negative slope, we can use a parallel line that passes through
v. Due to the shape of V \ U , this line must intersect with two edges of V whose
points correspond to payoffs in U . That is, the two points of intersection yield
action pairs a1∗ and a2∗ that fulfill the conditions of Proposition 3.1.

In the second step in Subsection 3.5.3, we extend the results for 2× 2 games
to general n×m games. While the set of payoffs is generically a polygon, we can
identify for every v ∈ V \ U a 2× 2 game such that v is in its respective convex
hull of payoffs. Then, we can use the result for 2× 2 games to finally complete
the proof of Proposition 3.1.

3.5.1 Characterization of U in 2× 2 games

Consider a general 2× 2 game with a payoff-matrix of the following form

 A B

C D

 , (3.2)

where A,B,C,D ∈ R2. For mixed strategies, we assign probabilities (1−p), p to
rows and (1−q), q to columns of (3.2). To characterize the set of mixed-strategy
payoffs U , we will distinguish between four different cases. These cases will be
determined by the shape of V, i.e., the convex hull of the pure-strategy payoffs
A,B,C and D. In the following text, we will therefore shift our analysis from
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the set of actions and payoff matrices to the space of payoffs; that is, we will
study the graphs produced by the payoff function g.5

We will frequently make use of the following definitions.

Definition 3.2. For A,B ∈ R2, we will denote by AB the edge or line segment
that connects A and B. The infinite line through points A and B will be denoted
by
←−→
AB, and the vector that starts in A and connects A with B will be denoted by

−−→
AB. The triangle with extreme points A,B and C will be denoted by ∆ABC.

Definition 3.3. We call a = (a1, a2) ∈ A a semi-pure strategy if one player
plays a pure strategy, while the other chooses a mixed strategy, in which either
a1 or a2 is equal to a standard unit vector. The set of payoffs from a semi-pure
strategy is called an inducement correspondence.6

It is straightforward that for two payoffs of the matrix (3.2) that are either
in the same row or column, all payoffs on the edge between these two payoffs are
obtainable with a semi-pure strategy. Therefore the payoff matrix (3.2) yields six
edges, AB, AC, AD, BC, BD and CD, and four inducement correspondences,
AB, AC, BD and CD.

Generically, the convex hull V of the four payoffs will be a quadrilateral in
the payoff space. As we are interested in those cases where U is a strict subset
of V, the cases where V is not a two-dimensional object are of no interest for
the proof of Proposition 3.1. It is straightforward to see that if all four points of
(3.2) are equal, V is a singleton, and therefore U = V. Also, if the four payoffs
are such that V is a line, U = V holds.

If V is a two-dimensional object that is defined by at least three extreme
points, the issue is more complicated and U = V is generally not true. The set
of mixed-strategy payoffs is given by

U =
{
v ∈ V |

v = (1− p)(1− q)A+ (1− p)qB + p(1− q)C + pqD; p, q ∈ [0, 1]
}
,

where v can be rewritten such that

U =
{
v ∈ V |

v = A+ p(1− q)(C −A) + q(1− p)(B −A) + pq(D −A); p, q ∈ [0, 1]
}
.

Without loss of generality we assume that
−−→
AB and

−−→
AC are linearly independent,

i.e., A,B and C are not on a line. Then we can find parameters β, γ ∈ R such
5For example, see Robinson and Goforth (2005) for an elaborate discussion of this approach.
6It is the set of payoffs that one player can “induce” by playing a pure strategy. See also

Robinson and Goforth (2005).
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that we can construct the point D as follows:

D = β(B −A) + γ(C −A).

For β, γ ∈ [0, 1] and β + γ ≤ 1, V is a triangle. That is, the point D is either
on the boundary or in the interior of the triangle defined by the extreme points
A,B and C. In all other cases, V will be a quadrilateral defined by the four
extreme points A,B,C and D. Two edges between these extreme points will
necessarily lie in the interior of V, and each one of these edges subdivides V into
two triangles.

Depending on the parameters β and γ, i.e., on the position of D, there are
three different cases. For β < 0, γ > 0 and β + γ < 1, AC is an interior edge of
V. For β > 0,γ < 0 and β + γ < 1, AB is an interior edge of V. For β, γ > 0
and β + γ > 1, AD is an interior edge of V. As we show in Lemma 3.1, we can
neglect the last case in the following definition.

Definition 3.4. Let V be a quadrilateral with extreme points A,B,C and
D = β(B − A) + γ(C − A) with β + γ < 1. If β < 0, γ > 0, AC divides V into
two subtriangles, ∆ABC and ∆ACD. If β > 0, γ < 0, AB divides V into two
subtriangles, ∆ABC and ∆ABD. We denote these subtriangles by

V1 = ∆ABC, V2 =

∆ACD, β < 0, γ > 0

∆ABD, β > 0, γ < 0
.

Note that by definition, we have V1 ∪V2 = V. Furthermore, for β < 0 < γ <

1 +β, we have V1∩V2 = AC, and for γ < 0 < β < 1 +γ, we have V1∩V2 = AB.
Using this subdivision we obtain the following result.

Lemma 3.1. Let V be the convex hull of payoffs A,B,C and D and let A,B
and C not be on a line. Let β, γ ∈ R be such that D = β(B −A) + γ(C −A).

1. In the following cases, V is a triangle and V \ U is a convex set at the
boundary of V.

(a) β, γ ≥ 0 and β + γ < 1

(b) γ ≤ 0 and β + γ ≥ 1

(c) β ≤ 0 and β + γ ≥ 1

(d) β < 0 and γ < 0

2. If β, γ > 0 and β + γ ≥ 1, U = V.

3. If β + γ < 1 and β < 0 or γ < 0, V can be characterized such that V1 \ U
and V2 \ U are convex sets at the boundary of V1 and V2, respectively.
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If V is a triangle and U 6= V, we obtain that U ⊂ V is the set of payoffs
between the two edges that are inducement correspondences and a convex curve
between their distinct endpoints. For a payoff matrix (3.2) and the parameters
β, γ ≥ 0 with β + γ < 1, this is the area between AB and AC and the curve
between B and C that is below BC. An exemplary graph is given in Figure 3.5,
and in the proof of the lemma (in Appendix 3.A), we give an analytical expression
for the boundary.
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Figure 3.5: β, γ ∈ (0, 1) and β+γ < 1.
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Figure 3.6: β < 0,γ > 0 and β+γ < 1.

If V is a quadrilateral and U 6= V, as illustrated in Figure 3.6, the characteri-
zation of U in the two subtriangles V1 and V2 is similar to the characterization
of U where V is a triangle. In the proof of the lemma (in Appendix 3.A), we
give an analytical expression for the boundaries of U in the subtriangles.

Given this characterization for the set of mixed-strategy payoffs, we can now
proof Proposition 3.1 for 2× 2 games. As for the characterization, we will first
consider those games where V is a triangle, and then we will consider the general
case where V is a quadrilateral.

3.5.2 Proposition 3.1 for 2× 2 games

Lemma 3.2. Let V be the convex hull of payoffs A,B,C and D. Let β, γ ∈ R
be such that D = β(B −A) + γ(C −A). Then Proposition 3.1 holds.

Proof. Those cases where U = V can be excluded here. First, we will proof the
lemma for the case where V is a triangle. From Lemma 3.1, we have that one of
the edges on the boundary of V is not an inducement correspondence, and that
this edge is also a boundary of the set V \U . In the following, we will distinguish
between different cases for the slope of this edge.

Without loss of generality, we assume that A,B and C are not on a line
and that β, γ ≥ 0, β + γ < 1. Then, the edge of V that is not an inducement
correspondence is BC (see also Figure 3.5). For the characterization, we first
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normalize A to zero and assume, without loss of generality, that for the payoffs
B = (B1, B2) and C = (C1, C2), we have B1 ≤ C1.

First, consider those cases with B1 < C1, B2 > C2, where
←−→
BC has a negative

slope, as illustrated in Figure 3.7. As v ∈ V, the line l∗ that is parallel to
←−→
BC and

runs through v will intersect with both inducement correspondences AB and AC.
Let these points of intersections be v′ = l∗ ∩AB and v′′ = l∗ ∩AC. Since v′ , v′′

are mixed-strategy payoffs, there are actions a1∗ and a2∗ such that g(a1∗) = v
′

and g(a2∗) = v
′′ . Clearly a1∗ and a2∗ satisfy the conditions of Proposition 3.1.

The same holds true when
←−→
BC has an infinite slope, i.e., when B1 = C1 and

B2 > C2 or B2 < C2.

Second, assume that B1 < C1 and B2 ≤ C2, so that
←−→
BC has a non-negative

slope. Assume first that
←−→
BC lies above the origin; that is, it crosses the x-axis to

the left of the origin or is constant above the x-axis, as, for example, in Figure 3.8.
Then, as in the original proof, construct the line l1 that starts in g(a1) and runs
through v. By the hypothesis of Theorem 3.1, l1 has a negative slope and will
therefore intersect with AC at a point v′′ . Hence, the construction for Claim 3.1
works, and therefore Proposition 3.1 follows immediately with a1∗ = a1 and a2∗

such that g(a2∗) = v
′′ . For the case that

←−→
BC lies below the origin, i.e., it crosses

the x-axis to the right of the origin or is constant below the x-axis, the analogous
construction with l2 works, and therefore Proposition 3.1 holds as well.
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←−→
BC with negative
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The proof for the case where V is a quadrilateral uses the same approach.
As in Lemma 3.1, we consider the two subtriangles V1 and V2. Without loss of
generality, assume that v ∈ V1. Then, one of the edges on the boundary of V1 is
not an inducement correspondence, and this edge is also a boundary of the set
V1 \U . We can now duplicate the arguments from the case where V is a triangle
to the subtriangle V1 to show that Proposition 3.1 holds.
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3.5.3 Generalization to n×m games

To completely prove Proposition 3.1, we have to consider general n×m games
with n,m ≥ 2. The resulting convex hull of payoffs V in these games will generally
be a polygon, as in Example 3.1 below. As in the proof for 2× 2 games, we first
characterize the set U . To do so, we will make use of the following definition.

Definition 3.5. Let Π = (πij) ∈ Rn×m be the payoff matrix of the n×m game
g. Then, every two elements πij and πkl of Π with i 6= k, j 6= l, will induce a
unique 2× 2 submatrix

Πijkl =

 πij πil

πkj πkl

 .
We define the induced 2× 2 game g|ijkl of g as the 2× 2 game restricted to those
pure actions that yield payoff matrix Πijkl. The set of mixed-strategy payoffs
obtainable in g|ijkl will be denoted by U|ijkl.

By definition, we have U|ijkl ⊆ U for every induced 2 × 2 game g|ijkl of g,
and also

U{2×2} :=
⋃
i,j,k,l
i 6=k,j 6=l

U|ijkl ⊆ U . (3.3)

This characterization, together with Lemma 3.2, suffices to prove Proposition 3.1.

Proof of Proposition 3.1. Let v ∈ V∗ \ U . By (3.3) we have

V∗ \ U ⊆ V∗ \ U{2×2}.

Therefore, there exists an induced 2×2 game g|ijkl of g such that v ∈ V∗\U|ijkl.
By Lemma 3.2, we have that for every v ∈ V∗ \ U|ijkl with a1 and a2 as given in
the hypotheses of Theorem 3.1, there are always action pairs a1∗ and a2∗ that
satisfy Conditions (a) and (b) of Proposition 3.1.

Example 3.1. Consider the following 2 × 4 game with pure-strategy payoffs
A = (0, 2), B = (1, 3), C = (5, 3), D = (5, 1), E = (6, 2), F = (3, 4), G = (1, 1)
and H = (3, 0) according to the payoff matrix

Π =

 A B C D

E F G H

 . (3.4)

The resulting convex hull of payoffs V and the set U{2×2} are illustrated in
Figure 3.9. Consider payoff v = (5.1, 2.75). As illustrated in Figure 3.9, v is not
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a mixed-strategy payoff. It is close to the edge CE, which is not an inducement
correspondence. This edge induces the 2× 2 game g|ACEG with payoff matrix

ΠACEG =

 A C

E G

 .
As illustrated in Figure 3.9, v is in the convex hull of A,C,E and G. For this
2× 2 game, we can apply Lemma 3.2 to show that Proposition 3.1 holds. Using
the punishment strategy developed in Section 3.4, v can be sustained as a WRP
equilibrium.

Player 1’s payoff

Player 2’s payoff

bc

A

b
B

bc C

b

D

bc

E

b
F

bc

G

b

H

bc

v

U{2×2}

V \ U{2×2}

Figure 3.9: V is a polygon and v induces the 2× 2 game g|ACEG.

3.6 Conclusion

We have shown by means of a counterexample that the proposed proof of The-
orem 1 in Farrell and Maskin (1989) may fail. Given a strictly individually
rational payoff v and two action pairs a1 and a2 that satisfy the hypotheses of
Theorem 3.1, these action pairs cannot always be used to construct a sequence
that yields an average payoff v. Nevertheless, as we have shown in Proposi-
tion 3.1, given such action pairs ai, we can always find two alternative actions
such that their convex combination yields payoff v and that can be used to define
the normal phase of the game. For the punishment strategies, we can use the
action pairs ai, although we need to design a different punishment as in the orig-
inal proof to ensure that no continuation payoffs of the strategy can be strictly
Pareto-ranked. Therefore, we prove that the sufficient conditions of Farrell and
Maskin (1989) continue to hold, and that an equilibrium strategy exists that
sustains v as a WRP equilibrium.





Appendices

3.A Proofs

In the proof of Theorem 3.1 in Section 3.4, we assumed that for i 6= j, at least one
of the inequalities gj(ai) ≥ vj is strict. In the following segment, we show that
this is indeed without loss of generality by discussing the case where g2(a1) = v2

and g1(a2) = v1 hold, as illustrated in Figure 3.A.1.

Player 1’s payoff

Player 2’s payoff

b
v

bc

g(a1)

bc

g(a2)

bc

g(a1∗)

bc

g(a2∗)

bc
ṽ

bc

c1(a
1)

Figure 3.A.1: Boundary case of Theorem 3.1.

Let a1 = (p1, q1) ∈ [0, 1]n×m, where p1 and q1 are vectors of probabilities over
pure actions such that p1 = (p1

1, . . . , p
1
n) with ∑n

i=1 p
1
i = 1, and q1 = (q1

1, . . . , q
1
m)

71



72 3 A Note on Renegotiation in Repeated Games

with ∑m
i=1 q

1
i = 1. By the hypotheses of the theorem, we have that g1(p, q1) < v1

for every probability vector p ∈ [0, 1]n. If for Player 1 there is a probability
vector p̃ ∈ [0, 1]n such that g2(p̃, q1) > v2, we can use ã1 = (p̃, q1) to construct
the punishment of Player 1. This is illustrated in Figure 3.A.2.

Player 1’s payoff

Player 2’s payoff

b
v

bc

g(a1)
bc

g(ã1)

bc

c1(a
1)

bc

bc

c1(a
1)

g(ã1)

Figure 3.A.2: The alternative payoff
g(ã1) lies on g(·, q1).

Player 1’s payoff

Player 2’s payoff

b
v

bc

g(a1)

bc

g(a1(ϵ))

bc

c(a1(ϵ))

bc

bc

c1(a
1)

bc bc

c1(a
1)

Figure 3.A.3: The alternative action
a1(ε) is a perturbation of a1.

If there is no such p̃, as illustrated in Figure 3.A.3, we need to find a different
action for Player 1’s punishment. We will therefore slightly perturb Player 2’s
mixed strategy q1 by ε > 0 to obtain an action pair a1(ε) that we can use to
construct Player 1’s punishment. We will need the following definition.

Definition 3.A.1. Let q ∈ [0, 1]m be a probability vector. For ε > 0, we define
Q(ε) to be the set of probability vectors q(ε) that differ from q in every entry by
at most ε:

Q(ε) =

q(ε) ∈ [0, 1]m
∣∣∣ |qj(ε)− qj | ≤ ε for all j ∈ {1, . . . ,m}, m∑

j=1
qj(ε) = 1

 .
Since c1(a1) < v1, there is an entry i ∈ {1, . . . , n} such that pi = 1 is a best

response to q1 and ∑m
j=1 q

1
j g1(aij) < v1. Then, there exists an ε > 0 such that

for all q1(ε) ∈ Q1(ε), we have
m∑
j=1

q1
j (ε)g1(aij) < v1.

Furthermore, we have that
n∑
i=1

m∑
j=1

piq
1
j (ε)g1(aij) < v1

for all p ∈ [0, 1]n, and therefore c1(·, q(ε)) < v1.
If g2

(
·, q1(ε)

)
≤ v2 for all q1(ε) ∈ Q1(ε), then g(·, q1) must be either an edge

or an extreme point of V, and consequently the construction for Claim 3.1 holds
true. Otherwise, there exists p ∈ [0, 1]n and q1(ε) ∈ Q1(ε) with g2(p, q1(ε)) > v2,
and we can use a1(ε) = (p, q1(ε)) to construct the punishment of Player 1.
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Proof of Lemma 3.1. For the proof of Lemma 3.1, we first derive the character-
ization result for those cases where V is a triangle. For better readability, we
state this in a separate lemma.

Lemma 3.A.1. Let V be the convex hull of payoffs A,B,C and D, and let
A,B and C not be on a line. Let β, γ ∈ [0, 1] with β + γ ≤ 1 be such that
D = β(B −A) + γ(C −A).

1. If β + γ = 1, U = V.

2. If β, γ ∈ (0, 1) and β + γ < 1, V \ U is a convex set at the boundary of V.

Proof of Lemma 3.A.1. First, and without loss of generality, we assume the
payoff A to be normalized to zero, i.e., A = (0, 0). For D = βB + γC and with
abuse of notation, we can rewrite U as

U = Cp
(
(1− q) + qγ

)
+Bq

(
(1− p) + pβ

)
= Cp

(
1− q(1− γ)

)
+Bq

(
1− p(1− β)

)
.

Next, we define two functions x, y : [0, 1]2 −→ [0, 1] that are defined as
x(p, q) = p

(
1− q (1− γ)

)
and y(p, q) = q

(
1− p (1− β)

)
such that U can be

rewritten as

U = x(p, q)C + y(p, q)B.

In order to determine the set U , we will characterize its boundaries. Clearly,
U is a subset of the convex hull of V, and the sides AB and AC are obviously
boundaries of U . To completely characterize the shape of U , we need to deter-
mine the remaining boundary of U between the two extreme points B and C.
Depending on β and γ, U may not reach the side BC, but rather lie below this
edge. We can characterize this boundary that is as close as possible to BC by
determining the maximal value of y for each x. Geometrically speaking, for every
distance from A along the vector

−−→
AC, we want to find the maximal distance that

we can go along the vector
−−→
AB.

In formal terms, we will solve the optimization problem that yields the
maximal value of y for every given value of x , subject to p and q being from the
unit interval. Given a value x and γ > 0, p is implicitly defined as a function
of x and q by p(x, q) = x

1−q(1−γ) . Therefore, we can express the optimization
problem only in x and q, i.e., maxq y(x, q), and as we will make use of the
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Karush–Kuhn–Tucker (KKT) Theorem, we state it in the following standard
form:

max
q
q

(
1− x(1− β)

1− q(1− γ)

)
s.t. q ≥ 0

1− q ≥ 0 (3.A.1)
x

1− q(1− γ) ≥ 0

1− x

1− q(1− γ) ≥ 0

With the Lagrange multipliers α1, . . . , α4 ≥ 0, the necessary conditions for a
solution of (3.A.1) are given by

1− x (1− β)(
1− q (1− γ)

)2 + α1 − α2 + α3
x(1− γ)(

1− q (1− γ)
)2

−α4
x(1− γ)(

1− q (1− γ)
)2 = 0 (3.A.2)

q ≥ 0 (3.A.3)

α1q = 0 (3.A.4)

1− q ≥ 0 (3.A.5)

α2(1− q) = 0 (3.A.6)
x

1− q(1− γ) ≥ 0 (3.A.7)

α3

(
x

1− q(1− γ)

)
= 0 (3.A.8)

1− x

1− q(1− γ) ≥ 0 (3.A.9)

α4

(
1− x

1− q(1− γ)

)
= 0 (3.A.10)

As y(x, q) is concave in q and all inequality constraints are linear, these
necessary conditions are also sufficient. Let us first discuss the general case for
β ∈ (0, 1) and γ ∈ (0, 1), that is, D is in the interior of V, as illustrated in
Figure 3.5.
(1) Assume α1 > 0 holds.

From (3.A.4) we obtain q = 0 as a possible solution and from (3.A.6) it
follows that α2 = 0. Condition (3.A.7) is equivalent to x ≥ 0, and from (3.A.9)
we obtain that x ≤ 1 must hold. Assume α3 > 0. Then, by (3.A.8) x = 0 must
hold, but (3.A.2) yields a contradiction and thus α3 = 0 must hold. For α4 = 0,
(3.A.2) is equivalent to 1 − x(1 − β) + α1 = 0, which is again a contradiction.
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Therefore, it remains to check α4 > 0 and hence x = 1. Condition (3.A.2) yields
no contradiction, and therefore q = 0 is a solution if x = 1.
(2) Assume that α1 = 0 and α2 > 0 hold.

From (3.A.6) we obtain that q = 1 is a possible solution and from (3.A.7)
we obtain that x ≥ 0 must be satisfied. Also, by (3.A.9) we have that x ≤ γ

has to hold. Assume α3 > 0. From (3.A.8) we have that x = 0, and therefore
α4 = 0 must be satisfied. Condition (3.A.2) becomes 1−α2 = 0, and is therefore
satisfied for α2 = 1.

For α3 = 0, assume first α4 > 0. That is, x = γ needs to hold. However,
(3.A.2) then becomes 1 − 1−β

γ − α2 − α4
1−γ
γ = 0, which is a contradiction as

β + γ < 1. Therefore, α4 = 0 needs to hold. Condition (3.A.2) then reads
1− x1−β

γ2 − α2 = 0 and yields x = (1−α2)γ2

1−β . This is not in conflict with (3.A.7)
and (3.A.9) for α2 ≤ 1, and therefore q = 1 is a solution if x ∈ [0, γ2

1−β ).
(3) Finally, assume that α1 = 0 and α2 = 0 hold.

First, assume α3 > 0. Then, by (3.A.8) x = 0 has to hold, but this yields
a contradiction of (3.A.2). Therefore, α3 = 0 must hold. If we assume α4 = 0,
we receive from (3.A.2) that q∗ = 1−

√
x(1−β)

1−γ is a possible solution. Condition
(3.A.9) is only satisfied for x ≤ 1−β. We now check whether this is in accordance
with conditions (3.A.3) and (3.A.5), i.e., that q∗ ∈ [0, 1]. First, q∗ ≥ 0 if and
only if x ≤ 1

1−β , which is already implied by x ≤ 1− β, and which is therefore
no additional constraint. Second, q∗ ≤ 1 if and only if x ≥ γ2

1−β , and therefore
q∗ is a solution for x ∈ [ γ2

1−β , 1− β].
Finally, assume α4 > 0. Then, (3.A.10) yields q∗∗ = 1−x

1−γ as a solution
candidate. Inserting this into (3.A.2) yields that x > 1 − β must hold. Con-
dition (3.A.3) is satisfied if and only if x ≤ 1, and (3.A.5) holds if and only if
x ≥ γ. The latter is already implied by x > 1−β, and therefore q∗∗ is a solution
for x ∈ (1− β, 1].

Summarizing, we have obtained the following optimal qmax as a function of
the parameter x ∈ [0, 1]

qmax(x) =


1, x ∈ [0, γ2

1−β )
1−
√
x(1−β)

1−γ , x ∈ [ γ2

1−β , 1− β]
1−x
1−γ , x ∈ (1− β, 1]

,

which yields for a given x the optimal ymax defined by

ymax(x) =



1− x(1−β)
γ , 0 ≤ x < γ2

1−β(
1−
√
x(1−β)

)2

1−γ , γ2

1−β ≤ x ≤ 1− β
(1−x)β

1−γ , 1− β < x ≤ 1

.
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Therefore the remaining boundary of U , denoted by Umax, is defined as

Umax =
{
v ∈ U

∣∣∣ xC + ymax(x)B, x ∈ [0, 1]
}
. (3.A.11)

That is, we can describe this boundary of U between the points B and C as a
tripartite curve in the Cartesian plane with two linear parts, where either q = 1
or p = 1 holds, and therefore the edge BD or CD is the boundary, respectively,
and a non-linear part defined by the curve

xC +

(
1−

√
x(1− β)

)2

1− γ B

for x ∈ [ γ2

1−β , 1− β].
In the following boundary cases, some of the previous steps are not necessary

or need to be considered differently. We will discuss them briefly.
If D is equal to one of the two extreme points B or C, the problem simpli-

fies. For β = 0, γ = 1, that is, D = C, the function x(p, q) reduces to p and
y(p, q) = q(1 − p). Thus, given a fixed value p, q = 1 is always the maximizer
that corresponds to the edge BD = BC. Therefore, the third boundary of U
corresponds to the third side of V, and therefore U = V holds. Analogously, for
β = 1, γ = 0, that is, B = D, the same approach yields U = V.

If β + γ = 1 holds, the point D lies on the edge BC, and again U = V
holds. For values of x ∈ [0, 1 − β], q = 1 is the feasible maximizer of y, and
therefore the edge BD is the boundary of U . For x ∈ (1− β, 1], q = 1−x

β is the
feasible maximizer of y that corresponds to p = 1. Therefore, the edge CD is
the boundary of U and consequently U = V.

If β = 0 and γ ∈ (0, 1), the point D lies on the edge AC. The tripartite
boundary Umax reduces to a bipartite one. For x ∈ [0, γ2), q = 1 is the feasible
maximizer of y, and therefore the edge BD is the boundary of U . For x ∈ [γ2, 1],
q∗ = 1−

√
x

1−γ determines the boundary of U .
Finally, if γ = 0, the implicit function p(x, q) is not well-defined for q = 1.

Only if x = 0 is this the case, and this directly yields that q = 1 is a feasible
maximizer of y if and only if x = 0. If also β = 0, then for x ∈ (0, 1], q∗ = 1−

√
x

is the maximizer, and therefore the boundary is completely determined by the
corresponding curve. If β ∈ (0, 1) holds, for x ∈ (0, 1− β], q∗ = 1−

√
x(1− β)

and for x ∈ (1− β, 1], q∗∗ = 1− x are the respective solutions of (3.A.1).
It now remains to be shown that V \ U is a convex set for β + γ < 1. First,

note that V \ U is determined by the edge BC and the boundary Umax derived
above. The set V \ U can therefore be interpreted as a simple closed curve.7

7A curve is a simple closed curve if it is a connected curve that does not cross itself and
ends at the same point where it begins.
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A closed regular plane simple curve is convex if and only if its signed curvature
is either always non-negative or always non-positive (see, for example, Gray et al.,
2006, pp. 163–165). If we interpret Umax as a vector function

f : [0, 1] −→ R2, f(x) = xC + ymax(x)B,

we can easily show that f(x) is C2. Also, ∂2ymax(x)
∂2x ≤ 0 holds for all x ∈ [0, 1],

and therefore the signed curvature κ(x) = f ′′(x)
(1+[f ′(x)]2)3/2 is non-positive for all

x ∈ [0, 1]. As the signed curvature of the edge BC is also non-positive, the set
V \ U is convex.

Now, we turn to the proof of Lemma 3.1. For those cases where V is a
triangle, we can use the characterization of the previous Lemma 3.A.1. For the
remaining cases, we use an analogous approach for the two triangles V1 and V2.

Without loss of generality, we assume A to be normalized to zero, that is,
A = (0, 0) and D = βB + γC with β, γ ∈ R. First, we show that all parameter
constellations given in 1.(a) – 1.(d) yield that V is a triangle.

In 1.(a), for β, γ ∈ [0, 1] with β + γ ≤ 1, the convex hull of payoffs V is a
triangle, and therefore we can apply Lemma 3.A.1. For γ = 0, β ∈ R, the point
D lies on the straight line

←−→
AB. For β = 0, γ ∈ R, D lies on

←−→
AC and for β+γ = 1,

D lies on
←−→
BC.

In 1.(b), 1
β ,
−γ
β ∈ [0, 1] and 1

β −
γ
β < 1. Therefore, B = 1

βD −
γ
βC is in the

interior of the triangle ∆ADC. For 1.(c), analogous considerations yield that
C = 1

γ −
β
γB is in the interior of the triangle ∆ABD.

Finally, in 1.(d), if β, γ ≤ 0, the origin, that is, A = (0, 0) = D− β
1−β−γ (B −

D)− γ
1−β−γ (C −D) is in the interior of the triangle ∆DBC.

Next, we consider case 2 with β, γ > 0 and β + γ ≥ 1. If β + γ = 1,
Lemma 3.A.1 yields that U = V. If β + γ > 1, D is clearly above the edge BC,
and this edge is an interior edge of the quadrilateral V. Analogously to the proof
of Lemma 3.A.1, we solve the optimization problem (3.A.1) to show that in this
case U = V holds.

First, for γ < 1, we obtain

qmax(x) =

1, x ∈ [0, γ)
1−x
1−γ , x ∈ [γ, 1]

as the solution for (3.A.1), which yields the following optimal ymax for a given
x:

ymax(x) =

1− x(1−β)
γ , 0 ≤ x < γ

(1−x)β
1−γ , γ ≤ x ≤ 1

.
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If β < 1, the function y(x, q) is concave in q, and therefore the Karush–Kuhn–
Tucker (KKT) conditions (3.A.2) through (3.A.10) are both necessary and suf-
ficient. If β ≥ 1, the KKT conditions yield only necessary, but not sufficient,
conditions. More specifically, y(x, q) is strictly increasing in q, and therefore
q = 1 is the feasible solution as long as x < γ. For all x ≥ γ, the maximal value
is determined by the linear function q(x) = 1−x

1−γ , and therefore coincides with
ymax(x). Thus, the sides BD and DC are also boundaries of U , and therefore
U = V.

If γ = 1, x(p, q) reduces to p and y(p, q) = q(1−p). Thus, given a fixed value
p, q=1 is always the maximizer that corresponds to the edge BD. Therefore,
the sides BD and DC are also boundaries of U , and therefore U = V.

For γ > 1, we obtain for x ∈ [0, 1]

qmax(x) = 1

as the solution for (3.A.1), which yields the following optimal ymax(x) for a given
x:

ymax(x) = 1− x(1− β)
γ

.

If β > 1, the function y(x, q) is concave in q, and therefore the KKT conditions
(3.A.2) through (3.A.10) are both necessary and sufficient. If β ≤ 1, y(x, q) is
strictly decreasing in q, and therefore we need to compare ymax(x) with y(0, x).
As 1 − x(1−β)

γ > 0 for all x ∈ [0, 1], ymax(x) is the solution of the optimization
problem (3.A.1). Thus, the sides BD and DC are also boundaries of U , and
thus U = V.
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Finally, let us now consider the remaining parameter constellations of case 3,
which we will group into four different cases: i) β < 0, γ ∈ (0, 1], ii) β < 0, γ > 1
and β + γ < 1, iii) β ∈ (0, 1], γ < 0 and iv) β > 1, γ < 0 and β + γ < 1. Four
exemplary graphs for the resulting quadrilaterals are given in Figures 3.A.4–
3.A.7. We will only discuss the cases i) and ii), as iii) and iv) are obviously
analogous.

b

A

b
B

b
C

b D

Figure 3.A.4: β < 0, γ ∈ (0, 1)

b

A

b
B

b
C

b D

Figure 3.A.5: β < 0, γ > 1
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b
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D

Figure 3.A.6: β ∈ (0, 1), γ < 0

b

A

b
B

b

C

b
D

Figure 3.A.7: β > 1, γ < 0

i) First, let β < 0 and γ ∈ (0, 1]. In principle, we will follow the same
approach as in the proof of Lemma 3.A.1, but we must add several considerations.
First, we note that y( 1

1−β , q) = 0 for all q ∈ [0, 1], and since β < 0, we have
to separately study U for values of p < 1

1−β , p >
1

1−β and p = 1
1−β . Thus, we

effectively split up the convex hull of V into the two subtriangles V1 = ∆ABC
and V2 = ∆ADC, and therefore study U above and below AC. Clearly, the edge
AC is an inducement correspondence and is therefore included in U .

We will first determine U for p ∈ [0, 1
1−β ) and γ ∈ (0, 1). We can follow

the same steps as in the proof of Lemma 3.A.1, and therefore solve (3.A.1),
but for p ∈ [0, 1

1−β ) instead of p ∈ [0, 1]. Then, given the Lagrange multipliers



80 3 A Note on Renegotiation in Repeated Games

α1, . . . , α4 ≥ 0, the necessary conditions for a solution of the new optimization
problem can be stated as follows:

1− x (1− β)(
1− q (1− γ)

)2 + α1 − α2 + α3
x(1− γ)(

1− q(1− γ)
)2

−α4
x(1− γ)(

1− q(1− γ)
)2 = 0 (3.A.12)

q ≥ 0 (3.A.13)

α1q = 0 (3.A.14)

1− q ≥ 0 (3.A.15)

α2(1− q) = 0 (3.A.16)
x

1− q(1− γ) ≥ 0 (3.A.17)

α3

(
x

1− q(1− γ)

)
= 0 (3.A.18)

1
1− β −

x

1− q(1− γ) ≥ 0 (3.A.19)

α4

(
1

1− β −
x

1− q(1− γ)

)
= 0 (3.A.20)

As y(x, q) is a concave function of q, these conditions are also sufficient and
we obtain the optimal ymax(x) for x ∈ [0, 1

1−β ) as follows

ymax(x) =


1− x(1−β)

γ , 0 ≤ x < γ2

1−β(
1−
√
x(1−β)

)2

1−γ , γ2

1−β ≤ x <
1

1−β

.

Therefore, for p < 1
1−β and γ ∈ (0, 1),

Umax =
{
v ∈ U

∣∣∣ xC + ymax(x)B, x ∈ [0, 1
1−β )

}
is the boundary of U between the points B and C. That is, we can describe the
boundary of U between the points B and C as a bipartite curve in the Cartesian
plane with a linear part, where q = 1 holds, and therefore BD is the boundary,
and with a non-linear part defined by the curve

xC +

(
1−

√
x(1− β)

)2

1− γ B

for x ∈ [0, 1
1−β ). For γ = 1, as discussed in the special cases for triangles,

x(p, q) = p, and therefore q = 1 is the maximizer of y(p, q) for all p < 1
1−β .

Thus, U is the triangle between AB, AC and BD. We have now completely
characterized U in V1, i.e., above AC for γ ∈ (0, 1].
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For p > 1
1−β , still with abuse of notation, we rewrite U as follows:

U = C − (1− p)
(
1− q

β
(1− γ)

)
C + q

β

(
1− p(1− β)

)
(D − C)

Next, and analogously to the proof of Lemma 3.A.1, we define two functions
x̃(p, q) = (1− p)

(
1− q

β (1− γ)
)
and ỹ(p, q) = q

β

(
1− p(1− β)

)
such that

U = C − x̃(p, q)C + ỹ(p, q)(D − C).

As in the proof of Lemma 3.A.1, we now determine for each x̃ the maximal
ỹ such that C − x̃(p, q)C + ỹ(p, q)(D−C) is as close as possible to the edge AD.
Geometrically speaking, for every distance from C along the vector

−−→
CA, we want

to find the maximal distance that we can go in the direction of vector
−−−→
CD.

In formal terms, we will solve the optimization problem that yields the
maximal value of ỹ for every given value of x̃, subject to p > ( 1

1−β , 1] and
q ∈ [0, 1]. Given a value x̃, p is implicitly defined as a function of the two
parameters x̃ and q by p(x̃, q) = 1− βx̃

β−q(1−γ) .
8

Therefore, ỹ = q
(
1+ x̃(1−β)

β−q(1−γ)

)
, and we can express the optimization problem

only in x̃ and q:

max
q
ỹ(x̃, q)

s.t. q ∈ [0, 1] (3.A.21)

p(x̃, q) ∈ ( 1
1−β , 1]

However, for p > 1
1−β , ỹ is a strictly convex function in q, and we therefore

only need to consider the two boundary points q = 0 and q = 1. We have that
ỹ(x̃, 0) = 0 and ỹ(x̃, 1) = 1

β

(
β + x̃(1−β)

1− 1−γ
β

)
> 0 for all x̃ ∈ [0, 1 − γ

1−β ). This is

equivalent to p ∈ ( 1
1−β , 1], and thus q = 1 is the maximizer. This corresponds to

the inducement correspondence BD, and hence in V2, U is the triangle between
AC, CD and BD.

Finally, for p = 1
1−β , we have that y(p, q) = 0 and x ∈ [ γ

1−β ,
1

1−β ]. That
is, the obtainable mixed-strategy payoffs for this value of p is a subset of the
inducement correspondence for q = 0, i.e., the edge AC.

In conclusion, we have characterized U in V by splitting up V into two
triangles V1 and V2 such that U ∩ V1 is analogous to Lemma 3.A.1 and U ∩ V2

is a triangle. Therefore, V1 \ U and V2 \ U are convex sets at the boundary of V.
ii) Now, let β < 0, γ > 1 and β + γ < 1. For this parameter constellation,

we can follow the same approach as in i) and split up U into values of p < 1
1−β ,

p > 1
1−β and p = 1

1−β .
8As β < 0 and β + γ < 1, the implicit function p(x̃, q) is well-defined for all x̃ and q.
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For p < 1
1−β and γ > 1, y(x, q) is a quadratic, convex function in q, and

therefore the KKT conditions (3.A.2)–(3.A.10) do not yield sufficient conditions.
Thus, it suffices to check the two boundary points q = 1 and q = 0. We have that
y(x, 0) = 0 and y(x, 1) = 1− x1−β

1−γ > 0 for all x ∈ [0, y
1−β ). This is equivalent to

p ∈ [0, 1
1−β ), and thus, for this range of p, in V1, U is the triangle between AB,

AC and BD.
For p > 1

1−β , ỹ(x̃, q) is a concave function in q. Thus, the KKT Theo-
rem yields sufficient and necessary conditions for a solution of the optimization
problem (3.A.21). Given the Lagrange multipliers α1, . . . , α4 ≥ 0, these are:

1 + x̃ (1− β)β(
β − q (1− γ)

)2 + α1 − α2 − α3
x̃β(1− γ)(

β − q(1− γ)
)2

+α4
x̃β(1− γ)(

1− q(β − γ)
)2 = 0 (3.A.22)

q ≥ 0 (3.A.23)

α1q = 0 (3.A.24)

1− q ≥ 0 (3.A.25)

α2(1− q) = 0 (3.A.26)
1

1− β + x̃

β − q(1− γ) ≥ 0 (3.A.27)

α3

(
1

1− β + x̃

β − q(1− γ)

)
= 0 (3.A.28)

βx̃

β − q(1− γ) ≥ 0 (3.A.29)

α4

(
βx̃

β − q(1− γ)

)
= 0 (3.A.30)

(1) Assume α1 > 0.
From (3.A.24) we obtain q = 0 as a possible solution, and from (3.A.26) it

follows that α2 = 0. Condition (3.A.27) is equivalent to x̃ ≤ β
β−1 , and from

(3.A.29) we obtain that x̃ ≥ 0 must hold. Assume α3 > 0, then x̃ = β
β−1 must

hold and (3.A.22) is satisfied for suitable α1, α3, α4 ≥ 0. For α3 = 0 and α4 > 0,
x̃ = 0 must hold, but then (3.A.22) yields a contradiction as 1 + α1 > 0. For
α3 = 0 and α4 = 0, 0 ≤ x̃ ≤ β

β−1 must hold, but then 1 + α1 + x̃(1 − β) > 0,
which also conflicts with (3.A.22). Therefore, q = 0 is a solution if x̃ = β

β−1 .
(2) Assume that α1 = 0 and α2 > 0 hold.

From (3.A.26) we obtain that q = 1 is a possible solution. As β + γ < 1,
(3.A.29) yields that x̃ ≥ 0 must be satisfied, and by (3.A.27) we have that
x ≤ β−1+γ

β−1 has to hold. Assume α4 > 0. From (3.A.30) we have that x̃ = 0 must
hold, and therefore α3 = 0. Condition (3.A.22) is satisfied for α2 = 1.
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For α4 = 0, assume first that α3 > 0. That is, x̃ = β−1+γ
β−1 needs to hold.

But then, (3.A.22) becomes 1 − β
β−1+γ − α2 + α3

β(1−γ)
(1−β)(β−1+γ) = 0, which is a

contradiction as β + γ < 1 and γ > 1. Therefore, α3 = 0 needs to hold and
Condition (3.A.22) reads 1− x̃(1−β)β

(β−1+γ)2 − α2 = 0. Thus, x̃ = (1−α2)(1−β−γ)2

β(β−1) , and
for α2 ≤ 1, (3.A.27) and (3.A.29) are satisfied. Therefore, q = 1 is a solution if
x̃ ∈ [0, (1−β−γ)2

β(β−1) ).
(3) Finally, assume that α1 = 0 and α2 = 0 hold.

First, assume that α4 > 0. Then, (3.A.30) yields that x̃ = 0 has to hold,
which conflicts with (3.A.22). Therefore, α4 = 0 must hold.

If we assume that α3 > 0, we receive from (3.A.28) that q∗∗ = β−x̃(β−1)
1−γ

is a possible solution. For (3.A.23) and (3.A.25) to be fulfilled, x̃ must satisfy
x̃ ≤ β

β−1 and x̃ ≥ β−1+γ
β−1 . However, for this range of x̃, (3.A.22) is not fulfilled,

and therefore q∗∗ is not a feasible solution.
It remains to check whether α3 = 0. In this case, (3.A.22) yields two possible

candidates: q∗a = β+
√
x̃(β−1)β
1−γ and q∗b = β−

√
x̃(β−1)β
1−γ . The candidate q∗a does

not satisfy (3.A.25), but q∗b is in the unit interval for x̃ ∈ [ (1−β−γ)2

β(β−1) , β
β−1 ].

Summarizing, we have obtained the following optimal qmax(x) for x ∈ [0, β
β−1 ]:

qmax(x) =

1, x̃ ∈ [0, (1−β−γ)2

β(β−1) )
β−
√
x̃(β−1)β
1−γ , x̃ ∈ [ (1−β−γ)2

β(β−1) , β
β−1 ]

,

which yields

ỹmax(x) =


1 + x̃(1−β)

β−1+γ , x̃ ∈ [0, (1−β−γ)2

β(β−1) )
β−
√
x̃(β−1)β
1−γ (1 + x̃(1−β)√

x̃(β−1)β
), x̃ ∈ [ (1−β−γ)2

β(β−1) , β
β−1 ]

.

Therefore, for p > 1
1−β we can describe the boundary of U below AC between the

points B and C as a function with a linear part, where q = 1, and a non-linear
part, described by the curve

C + x̃C + β −
√
x̃(β − 1)β

1− γ

(
1 + x̃(1− β)√

x̃(β − 1)β

)
(D − C)

for x̃ ∈ [ (1−β−γ)2

β(β−1) , β
β−1 ].

Finally, for p = 1
1−β , we have that y(p, q) = 0 and x ∈ [ γ

1−β ,
1

1−β ]. That
is, the obtainable mixed-strategy payoffs for this value of p is a subset of the
inducement correspondence for q = 0, i.e., the edge AC.

In conclusion, we have characterized U in V by splitting up V into the two
subtriangles V1 and V2 such that U ∩ V1 is a triangle and U ∩ V2 is analogous
to Lemma 3.A.1. Therefore, V1 \ U and V2 \ U are convex sets at the boundary
of V.
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3.B On The Punishment for Player 1

Consider the following 2×2 game where Players 1 and 2 can choose between two
pure actions {u, d} and {l, r} and mix between them with probabilities (1− p), p
and (1 − q), q, respectively. Recall that we denote a mixed-strategy action by
a = (p, q). The stage-game payoffs of the pure strategies are given by the payoff
matrix shown in Table 3.B.1.

l r

u (0, 0) (4, 0)
l (0, 4) (0, 0)

Table 3.B.1: Payoff matrix of the two-player strategic game.

Assume that v = (1.5, 1.5). Then, a1 = (1
2 , 0), a2 = (0, 1

2) satisfy the
hypotheses of Theorem 3.1: g(a1) = (2, 0) and g(a2) = (0, 2). However, as
illustrated in Figure 3.B.1, these actions cannot be used to construct the normal
phase. Nevertheless, we can easily show that a1∗ = (1, 1

4) and a2∗ = (0, 3
4) satisfy

the conditions of Proposition 3.1, and that we can use these actions to construct
the normal phase with expected average payoff v.

If we were to construct the penance punishment for Player 1 according to
Farrell and Maskin (1989, p. 335), the respective continuation payoffs of the pun-
ishment phase are on the line segment between g(a1) and v, and the continuation
payoff at time t is given by

p1(t) = (1− δt1−t)g(a1) + δt1−tv (3.B.1)

for δ < 1 and a sufficiently large t1.
Let ε > 0 and v(ε) be the point on the line segment between g(a1∗) and g(a2∗)

with v1(ε) = v1 − ε. Then, by Lemma FM1, there exists a sequence of actions
a1∗ and a2∗, and a δ̂ < 1 such that for all δ > δ̂, the average expected payoff of
the sequence is v, and all continuation payoffs are limited to the line segment
between v(ε) and v.

However, all continuation payoffs along Player 1’s punishment path will be on
the line segment between g(a1) and v, which lies strictly below the line segment
g(a1∗) and v. That is, when ε > 0 is too large, Player 2’s payoff on Player 1’s
punishment path may be smaller than in the normal phase. Since Player 1 is also
better off in the normal phase, there may be a period t such that the punishment
payoff p1(t) is strictly Pareto-dominated by a continuation payoff of the normal
phase. That is, there is a renegotiation incentive from Player 1’s punishment
path to the normal phase which therefore contradicts the WRP condition. This
is illustrated in Figure 3.B.1 for ε = 0.5.
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Player 1’s payoff

Player 2’s payoff

bg(a1)

bg(a1∗)

b

g(a2∗)

b
vb

p1

b
v(ϵ)

Figure 3.B.1: Punishment- and normal-phase payoffs in the game.

If we decrease ε, according to Lemma FM1, we consequently need to increase
δ. That is, for ε −→ 0, we have that v(ε) −→ v but also δ −→ 1. This in turn
implies that, by the construction of p1 in (3.B.1), we also have that p1(t) −→ v.
Hence, it is not clear whether in the limit there is still a Pareto-ranking between
the punishment and the normal phase. In fact, we show in the following analysis
that in our example, there may always be an incentive to renegotiate from the
punishment to the normal phase for all ε > 0.

According to Lemma FM1, all continuation payoffs of the normal phase
satisfy

v1 ∈ [1.5− ε(δ), 1.5], v2 ∈ [1.5, 1.5 + γ(δ)]

for ε(δ), γ(δ) > 0. Note that due to the selection of a1∗ and a2∗, we have that
ε(δ) = γ(δ), and from the proof of Lemma FM1 (Farrell and Maskin, 1989,
p. 356) we can determine the value of ε(δ), which is given by

ε =
(

1
δ − 1

) (
g1(a2∗)− g1(a1∗)

)
= 3

(
1
δ − 1

)
.

Let δ > 0.9. Then, from the proof of Farrell and Maskin (1989, p. 335), we
obtain that t1 = 3 is sufficient for punishment. By (3.B.1), Player 1’s continuation
payoff on her respective punishment path at time t is given by p1

1(t) = 1.5δ3−t,
while Player 2 receives p2

1(t) = 2(1− δ3−t) + 1.5δ3−t. Then, for any δ > 0.9, we
have that

p1
1(0) = 1.5δ3 < 1.5− ε(δ)

p1
2(0) = 2(1− δ3) + 1.5δ3 < 1.5 + ε(δ)

holds. Thus, there is an incentive to renegotiate from Player 1’s punishment
before its start to the continuation payoff v(ε) of the normal phase, as illustrated
in Figure 3.B.1.





Chapter 4

Extending Weak
Renegotiation-Proofness to

n-Player Games

4.1 Introduction

In infinitely repeated non-cooperative games, when binding agreements are not
possible, threats of punishment are used to sustain an outcome as a subgame
perfect equilibrium. These punishments can harm both the punisher(s) and
the deviator(s), and may therefore not be efficient. Incentives to renegotiate
the initial terms of an agreement may arise and consequently undermine the
credibility of the threats. If one requires an outcome to be ex post efficient,
the set of credible threats and, ultimately, the set of self-enforcing equilibria
outcomes may be limited.

In the late 1980s and the early 1990s, several authors developed concepts that
addressed this problem of credibility, and two main approaches have since been
established in the literature. The first approach, initiated by the contemporary
work of Farrell andMaskin (1989) and Bernheim and Ray (1989), requires credible
punishments, and therefore Pareto-undominated continuation equilibria. The
second strand of literature, started by Pearce (1987) and Abreu et al. (1993),
considers limitations to the set of possible deviations that need to be self-enforcing

87
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in order to oppose an equilibrium path credibly.1

In the present paper, we reason along the lines of the first strand of literature,
and focus on the concept of weak renegotiation-proofness by Farrell and Maskin
(1989) (subsequently abbreviated as WRP), which is frequently applied in various
game-theoretic problems.2 We argue that the application of this equilibrium
concept does not always truly capture the intuitive concept of renegotiation in
multilateral negotiations. More specifically, weak renegotiation-proofness has
only been introduced and defined properly for two-player games, but is also
applied and adopted in larger games with more than two players. We will show
that this is not always unproblematic.

In a game with two players, the behavior in equilibrium is fairly simple,
as players either cooperate or they do not, and renegotiation is blocked if the
innocent party benefits from implementing the agreed-upon punishment. For
more than two players, this is no longer straightforward: Some may cooperate
independently of the others, and therefore also consider coalitional renegotiation
or deviations (Farrell and Maskin, 1989). However, as Asheim and Holtsmark
(2009) also concluded, “there exists no refinement of the concept of weakly
renegotiation-proof equilibrium that takes into account that also a subset of
players can gain by implementing a coordinated deviation” (p. 526).

In this paper, we motivate and develop such a refinement. First, we discuss
the sufficient and necessary conditions for WRP equilibria that are presented
in Farrell and Maskin (1989) and show that it is not possible to extend the
characterization results to general n-player games as these authors proposed.
For three players, the conditions will already fail, and we explain how a single
player can already hinder the proof.

Second, we provide three concise examples that further motivate the need
for a refinement. In our model, in addition to the entire group of players, we
also allow subgroups to renegotiate over continuation equilibria. In order to
keep the model tractable, we do not allow all possible subgroups of players to
renegotiate in every period of the game, but offer a precise protocol that defines
when renegotiations may take place and who is allowed to renegotiate.

Our proposed concept strengthens the original WRP definition by excluding
those continuation equilibria that are enforceable and weakly efficient for the
group of renegotiators. These additional constraints ultimately limit the equilib-
rium payoffs in certain games, but we also show that in an n-player game of the

1For a discussion and comparison between these two approaches, we refer to Fudenberg
and Tirole (1991).

2For instance, the large amount of literature on International Environmental Agreements
relies mainly on this concept; see, for example, Chapter 2 of this thesis and Finus (2000) for a
survey.
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Prisoner’s Dilemma type, full cooperation withstands our refinements and can
still be sustained as an equilibrium.

Several other equilibrium concepts have addressed renegotiation-proofness
and built upon the WRP concept. However, as we elaborate in Section 4.2, these
notions have also failed to capture the situation in n-player games appropriately.
Either a single player or the group of all players can decide upon a deviation
or renegotiation. We therefore conclude that there is no suitable concept that
addresses the issue of subgroup renegotiation in n-player games in a satisfying
way.

The paper is organized as follows. In Section 4.2, we discuss the related
literature, and Section 4.3 introduces the standard notation for infinitely repeated
games. In Section 4.4, we motivate our equilibrium refinement, and discuss
three concise examples that demonstrate how the original WRP notion may
yield counterintuitive results in n-player games. We then model the game and
introduce our additional restrictions in Section 4.5. Characterization results
of the new equilibrium concept and two applications thereof can be found in
Section 4.6, before Section 4.7 provides the conclusion. All proofs are presented
in Appendix 4.A.

4.2 Related Literature

The focus of the present paper is on the consideration of renegotiation incentives
in multilateral negotiations. The first contributions to this strand of literature
were made by Farrell and Maskin (1989) and Bernheim and Ray (1989), who
study how far renegotiation-proofness conditions limit the set of ex ante efficient
subgame perfect equilibria in two-player games. Their proposed notions of weak
renegotiation-proofness and internal consistency, respectively, are widely applied
in different game-theoretic settings in which the lack of an enforcing agency
implies the need for self-enforcing equilibria to achieve cooperation.3

Several refinements to these equilibrium notions exist. Farrell and Maskin
(1989) and Bernheim and Ray (1989) themselves extend their notions to strong
renegotiation-proofness and strong internal consistency, respectively, and impose
that only those continuation equilibria that are themselves renegotiation-proof,
may be an issue in renegotiation, and not only subgame-perfect as in their weaker
notion. However, these equilibria may not always exist, and these refinements

3Applications can be found, for example, in the literature on International Environmental
Agreements (see, for example, Chapter 2 of this thesis), international trade (e.g., Kletzer
and Wright, 2000), and other forms of international cooperation (e.g., McGillivray and Smith,
2000), as well as in dynamic agency models (e.g., Chassang, 2013), oligopoly models that
include renegotiation (e.g., McCutcheon, 1997), and family constitution models (e.g., Cigno,
2006).
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have therefore not been applied as widely. Ray (1994) offers a modification of the
internal consistency equilibrium notion, but does not deliver an existence result
either. Rabin (1991) argues that those continuation equilibria that rely on the
cooperation of the previous deviator can no longer be subject of renegotiation.
He therefore rules out these paths, and calls his concept reneging-proof. We refer
to Bergin and MacLeod (1993) for a detailed survey and for a harmonization of
the standard theories concerning renegotiation-proofness.

More recently, Farrell (2000) extends the weak-renegotiation proofness equi-
librium to n-player games, and focuses on symmetric Cournot and Bertrand
oligopolies. He remarks that, to sustain collusion as a renegotiation-proof out-
come, firms can use highly asymmetric punishments, such that at least one
player blocks renegotiation. However, he argues that one would expect innocent
firms to be treated symmetrically during punishment, and therefore requires
that, after any single deviation, every innocent player should receive weakly
higher payoffs than if no one had deviated (see also Aramendía et al., 2005, for
a similar approach). Thus, every player would block renegotiation, and not only
one single player as required by the definition of WRP. He calls his refinement
quasi-symmetrically weakly renegotiation-proofness and shows that full coopera-
tion cannot be sustained by too many firms in symmetric oligopolies. Horniaček
(2011) defines a strict renegotiation-proof equilibrium as a subgame perfect equi-
librium with all of its continuation equilibria being strictly Pareto-efficient, not
only against other continuation equilibria, but against all strategies.

Thus, to our knowledge, all the relevant literature on n-player games refers
either to a single player or to the group of all players that can decide upon a
deviation or renegotiation, and there is no consideration of subgroup incentives
in the WRP context. Several papers stress this limitation but do not offer
an alternative; for example, Barrett (2005) emphasizes “that the concept of a
renegotiation-proof equilibrium was developed for the two-player game only [. . . ].
When there are more than two players, some [. . . ] may cooperate independently
of the others [. . . ]. To underline the possible importance of this assumption [. . . ],
[he refers] to such treaties as being ‘collectively rational’ rather than renegotiation-
proof” (pp. 1490–1491).

Somewhat misleadingly, there are some concepts with similar sounding names
that seem to address renegotiation as mentioned above, but which take different
approaches. For example, Asheim (1997) introduces an equilibrium concept
called revision proofness. This concept refines subgame perfection in such a way
that strategies need to be robust against joint deviations by multiple players
in any subgame by imposing an internal stability criterion, as in Bernheim
et al. (1987) for coalition proofness, and by adding an external stability criterion.
However, it omits any issues related to ex post renegotiation (see also Ales and
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Sleet, 2014). Renegotiation perfection is introduced by Jamison (2014), and
uses elements of tournament theory to define renegotiation-proof sets in general
games axiomatically. Nonetheless, he also imposes additional criteria (such as
optimality and external stability) that do not coincide with the original idea of
renegotiation-proofness. Xue (2000) calls his concept negotiation-proof, but only
considers a one-shot game with explicit preplay communication to refine Nash
equilibria.

There is also established literature that does not implicitly assume the negoti-
ation and renegotiation process at the collective level, but offers an explicit model
of communication or bargaining before or during the game. Among the first
is Blume (1994), who models intraplay communication using an explicit model
of communication that allows for bargaining over continuation payoffs. More
recently, Miller and Watson (2013) model the agreement on an equilibrium as a
bargaining process that is embedded in the infinitely repeated game. Safronov
and Strulovici (2016) model an additional stage after any period of the game in
which renegotiation is carried out according to an explicit protocol.

For completeness, we also mention that there is a large amount of literature
on renegotiation in finite games (e.g., Benoît and Krishna, 1993; Wen, 1996), as
well as in contract theory (e.g., Fudenberg and Tirole, 1990; Hart and Moore,
1988; Battaglini, 2005). Lately, renegotiation-proof networks have also been
analyzed (e.g., Jackson et al., 2012).

4.3 Notation and Standard Concepts in Repeated Games

In this section, we introduce the standard notation and concepts that we will use
in the following sections. We adopt most of the notations proposed by Farrell and
Maskin (1989), but need some more elaborate concepts to capture the subgroup
behaviors that we will address in our equilibrium refinement.

Let N = {1, . . . , n} denote the set of players with typical element i, and the
set of proper subsets of N will be denoted by P(N). Each player i possesses
a finite set of actions and we denote by Ai the simplex consisting of player i’s
mixed actions. We denote by A ≡ A1 × . . .× An the set of all players’ actions.
Let g : A −→ Rn be the vector of continuous payoff functions gi : Ai −→ R. The
single-stage game g ≡ [g,A] is then defined by the set of payoffs and actions.

For any n-tuple (x1, ..., xn), we define xM ≡ {xi}i∈M and x−M ≡ {xi}i/∈M
for an arbitrary subset of players M ⊂ N . For player i, the profit maximizing
deviation from a ∈ A is defined by ci(a) = maxa′i gi(a−i, a

′
i), and the minimax

payoff by vi = mina−i maxai gi(a−i, ai).
In the repeated game, we consider the infinite repetition of the single-stage

game g, which will be denoted g∗. Let t = 1, 2, . . . ,∞ denote the periods and
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αi = {ai (t)}t∈N a player’s action profile with ai (t) ∈ Ai. Note that we assume
constant action spaces, i.e., Ati = Ai for all periods t.

A t-history will be denoted by ht =
(
a (1) , . . . , a (t)

)
, and H is the set of all

such possible t-histories. In each period, the game g is played, and g∗|ht is the
subgame of g∗ defined by the history ht ∈ H.

A strategy σi for player i in the repeated game is a function that defines
an action ai ∈ Ai for every date t and history ht ∈ H. We call Σi the set of
all strategies for player i, and we denote by σ ≡ (σi)i∈N ∈ Σ ≡ Σ1 × . . . × Σn

a strategy profile of g∗.4 An action profile or path induced by σ is denoted by
α(σ), and α(σ, ht) is the action profile starting from time t+ 1, which is induced
by the t-history ht and the subsequent application of σ. Finally, the subgame of
g∗ after history ht is denoted by g∗|ht , and σ|ht denotes the restriction of σ to
this subgame; this will subsequently be referred to as a continuation strategy of
σ. The set of continuation strategies of σ is denoted by Σ(σ) = {σ|ht , ht ∈ H}.

In each period, players receive the stage game payoffs. Given a sequence of
actions {ai (t)}t∈N, player i’s discounted payoff at time t is given by

(1− δ)
∞∑
τ=t

δτ−tgi
(
ai (τ) , a−i (τ)

)
,

where δ < 1 is the common discount factor for all players. Let us denote by
g∗i (σ) player i’s expected payoff from the strategy profile σ. The payoffs of
a continuation strategy σ|ht will be referred to as the continuation payoffs in
subgame g∗|ht . The repeated game g∗ ≡ [g,Σ] is then defined by the set of payoffs
and strategies, and we denote the set of attainable payoffs in the repeated game
by

V = co
({

(v1, . . . , vn) | ∃ a ∈ A with π (a) = (v1, . . . , vn)
})
.

The set of strictly individually rational payoffs is given by

V ∗ =
{
(v1, . . . , vn) ∈ V | vi > vi ∀ i ∈ N

}
.

In the following, we will identify strategies by so-called simple strategy pro-
files. Using the results from Abreu (1988), we can identify any subgame perfect
equilibrium by a simple strategy profile that defines the strategy σ ∈ Σ by n+ 1
paths and a transition rule between these paths. Let us denote the equilibrium
path p∗ and individual punishment paths p1, . . . , pn. The associated continua-
tion equilibria will be denoted σ1, . . . , σn, where σi = σ|ht , and where ht is a

4Note that, by the definition of a strategy σ, we ultimately assume that players can not
only observe the realized actions, but also the mixed strategies in the repeated game. Players
can therefore condition their strategies on all past private randomizations. This assumption is
also adopted by Farrell and Maskin (1989), but they remark that it is not strictly necessary
(see their footnote 2 on p. 329).
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history in which player i has deviated unilaterally from the equilibrium strategy
in period t.

4.4 Motivation

Many complex issues can arise when considering repeated interactions among
multiple players. Subgame perfect equilibria determine those outcomes that can
be sustained by imposing threats of punishment for possible unilateral deviations.
For situations involving only two players, the equilibrium strategy can be char-
acterized by a normal phase in which all players cooperate, and two punishment
phases, in which the innocent player punishes the deviator after her unilateral
deviation from the agreed-upon strategy.

If, for example, during the punishment phase of one player, the innocent
player is also worse off than in the normal phase, it is reasonable to assume that
both players would favor, and thus renegotiate to, the normal phase. Farrell and
Maskin (1989) argue that players can be assumed to be “competent negotiators”
(p. 330) to support their intuitive approach. They extend their argument and
propose that, whenever there is a possibility of renegotiation, “players are unlikely
to play, or to be deterred by, a proposed continuation equilibrium (whether
on or off the equilibrium path) that is strictly Pareto-dominated by another
equilibrium that they believe is available to them” (p. 328). They suggest the
following definition to capture this:

Definition 4.1 (Farrell and Maskin, 1989). A subgame perfect equilibrium
σ ∈ Σ is weakly renegotiation-proof (WRP) if there do not exist continuation
equilibria σ′, σ′′ of σ such that σ′ strictly Pareto-dominates σ′′. If an equilibrium
σ is WRP, then we also say that the payoffs g∗(σ) are WRP.

This definition is given in the context of two-player games. Of course, it can
be “naturally generalized” (Farrell and Maskin, 1989, p. 355) to n-player games
by simply extending the criterion of strict Pareto-dominance among the players
to the entire group (we will subsequently refer to this as the natural extension of
WRP.). This is what has been done in the literature thus far (see, for example,
the literature mentioned in Section 4.2). In their conclusion, however, Farrell and
Maskin (1989) note that, for games with more than two players, their concept
would need to be strengthened. In fact, already for games with three players, two
of them may cooperate independently of the third and may therefore also consider
coalitional renegotiation or deviations. This consequently makes continuation
equilibria more vulnerable to renegotiation, which is in stark contrast to the
strict Pareto criterion imposed by the WRP generalization, as it allows a single,
possibly non-involved player to decide the outcome of a renegotiation.
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We elaborate on this discrepancy in the following two subsections. First,
we show that the addition of a single player makes it impossible to extend the
characterization results given by Farrell and Maskin (1989) to n-player games.
We thereby refute their assertion that their results have “natural and immediate
generalizations to games with three or more players” (p. 328). Second, we
discuss three different examples in which the pivotal power of a single player
yields counterintuitive outcomes.

4.4.1 Characterization of WRP Payoffs in n-Player Games

As one of the main results of Farrell and Maskin (1989), their Theorem 1 (p. 332)
yields sufficient and necessary conditions for WRP payoffs in games with two
players. To increase readability, we divide the theorem into two parts and state
either condition as its “natural extension” for n players. Claim 4.1 covers the
sufficient conditions, extended to n-player games.

Claim 4.1. Let v ∈ V ∗. If for all i ∈ N , there exist actions ai ∈ A such that
ci(ai) < vi, while gj(ai) ≥ vj for all j 6= i, then v is a WRP payoff for all
sufficiently large δ < 1.

This claim holds true for two players. For the proof, a sequence of actions
for the normal phase, such that no continuation payoff along this sequence can
be strictly Pareto-ranked, must first be found. The proof offered by Farrell and
Maskin (1989) uses the action pairs a1 or a2 to construct this sequence but,
as we elaborate in Chapter 3, this construction may fail. In Chapter 3, we
therefore suggest an alternative approach to obtain v without Pareto-rankable
continuation equilibria. The idea is to select two action pairs a1∗ and a2∗ such
that v is a convex combination of their respective payoffs, and the line segment
connecting these payoffs has a negative slope. If the hypotheses of the claim
hold true, these action pairs can always be found in a game with two players.
For a game with more than two players, as the following example demonstrates,
this is no longer the case; therefore, Claim 4.1 must be rejected.

Example 4.1. Consider a game among three players i = 1, 2, 3 in which each
has two actions, A and B, and the stage-game payoffs are given in Figure 4.1.

The minimax payoff is given by v = (0, 0, 0), and we consider the symmetric
payoff v = (1

2 ,
1
2 ,

1
2). The actions a1 = (B,A,A), a2 = (A,B,A) and a3 =

(A,A,B) satisfy the conditions of Claim 4.1. Can v be a weakly renegotiation-
proof equilibrium payoff?

Analogous to the proof for two-player games, we first need to construct the
normal phase actions. That is, we need to find a sequence of actions {â(t)}t∈N
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Pl. 2
A B

Pl. 1 A (0, 0, 0) (1, 0, 1)
B (0, 1, 1) (0, 0, 0)

A

Pl. 2
A B

A (0, 0, 0) (0, 0, 0)
B (0, 0, 0) (1, 1, 0)

B

Figure 4.1: A three-player strategic game in which Player 3 chooses matrix A or B.

such that no continuation payoff along this sequence can be strictly Pareto-
ranked.

One can show that the construction suggested by Farrell and Maskin (1989)
does not work in this example. Moreover, we can show that, for any δ < 1, there
is no sequence of actions that yields continuation payoffs that cannot be strictly
Pareto-ranked. Assume to the contrary that {â(t)}t∈N is a sequence in which no
two continuation payoffs can be strictly Pareto-ranked. Then clearly, any action
pair that yields payoffs (0, 0, 0) cannot be played along {â(t)}t∈N. Consequently,
there must be λ1, λ2, λ3 ∈ [0, 1] such that λ1 + λ2 + λ3 = ∑∞

t=0 δ = 1
1−δ , and the

discounted payoff v can be rewritten as(
1
2 ,

1
2 ,

1
2

)
= (1− δ)

(
λ1(0, 1, 1) + λ2(1, 0, 1) + λ3(1, 1, 0)

)
.

This yields λi = 1
4(1−δ) , i = 1, 2, 3, which conflicts with ∑3

i=1 λi = 1
1−δ , and

therefore Claim 4.1 must be rejected. Thus, the sufficient conditions do not
generalize to games with more than two players, as asserted in Farrell and
Maskin (1989).

The necessary conditions for weakly renegotiation-proof payoffs in two-player
games are extended to n-player games in Claim 4.2.

Claim 4.2. Let v ∈ V ∗ be a WRP payoff for a discount factor δ < 1. Then there
exists an action ai ∈ Ai for all i ∈ N such that ci(ai) ≤ vi, while gj(ai) ≥ vj for
all j 6= i.

This claim holds true for two-player games, as is shown in Farrell and Maskin
(1989). For n-player games, however, this no longer holds. In fact, the following
example shows that the claim is already incorrect for a three-player game.

Example 4.2. Consider the following infinitely repeated game among three
players with discount factor δ ∈ (1

2 ,
2
3). Player 1 chooses rows A,B or C, and

Player 2 columns A,B or C. Player 3 chooses between the payoff matrix L,
given in Table 4.1, and the payoff matrix R, which has the same payoffs as L for
Players 1 and 2, but Player 3’s payoffs are all reduced by ε. Thus, Player 3 has
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a strictly dominant action L, and we can therefore neglect her strategy in the
subsequent discussion. Nonetheless, her payoffs are crucial for our finding.5

Pl. 2
A B C

Pl. 1
A (0, 0, 0) (0, 0, 0) (0, 0, 0)
B (1, 1, 1) (0, 0, 0) (1 + ε, 0, 0)
C (1 + ε, 0, 0) (0, 0, 0) (1

2 , 4,−2)
L

Table 4.1: A three-player strategic game in which Player 3’s strictly dominant action
is L.

For any ε ≤ 1
8 , the payoff vector v = (1, 1, 1) can be established as a WRP

equilibrium with the following strategy: Play (B,A) as long as no unilateral
deviation occurs. If Player 1 deviates, follow punishment path p1 such that the
players play (A,B), (C,C) before reverting to the equilibrium path. There is
always one player blocking renegotiation along the punishment path p1; therefore,
v is a WRP payoff. However, contrary to Claim 4.2, for Player 1 and any action
a1 with c1(a1) ≤ 1, that is, for a1 ∈ {(A,B), (B,B), (C,B)}, there is no other
player j 6= 1 with gj(a1) ≥ 1.

This clearly disproves Claim 4.2. The underlying reason is that, due to the
strict Pareto-criterion in Definition 4.1, it is always sufficient to have a single
player who can block renegotiation. In Appendix 4.A, we elaborate on why the
proof of Farrell and Maskin (1989) fails for three-player games.

In conclusion, the two counterexamples show that Theorem 1 of Farrell and
Maskin (1989) does not extend to n-player games, which provides the first indi-
cation that the extension of WRP to n-player games may not be unproblematic.

4.4.2 Counterintuitive Equilibrium Strategies in n-Player Games

In addition to the failure of the characterization results in n-player games, there
are more reasons that indicate the importance of a WRP refinement in n-player
games. If we accept the assumption of competent negotiators, the following three
examples illustrate that the natural extension of WRP can yield counterintuitive
results that are in conflict with this assumption.

First, consider a game among n > 2 players, in which a subgame perfect
equilibrium σ ∈ Σ is sustained via the threat of future punishments, and is

5In fact, it would be convenient to neglect the active role of Player 3 in this game to obtain
the same result. However, we want to stress that it is not only an inactive player that can
cause a contradiction with the intuition of Farrell and Maskin (1989).
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defined by the respective paths p∗, p1, . . . , pn. Let player i receive a constant
and equal payoff along every path of the equilibrium; hence, she is indifferent at
any stage. Suppose player j 6= i deviates and the group is supposed to follow
punishment path pj . In accordance with the WRP definition or, more precisely,
due to the strict Pareto-criterion therein, player i can block renegotiation to any
other continuation equilibrium even though she is always indifferent, i.e. neither
affected by a deviation nor worse off during punishment.6

The immediate thought would be to relax the condition of strict Pareto-
dominance and only require weak Pareto-dominance. In fact, some authors
have interpreted the condition in this way, even though Farrell and Maskin
(1989) stated clearly that they require a strictly Pareto-dominating continuation
equilibrium to which to be renegotiated; in other words, a strictly improving
continuation equilibrium for all players. Moreover, by applying the weaker
criterion, the above issue would be resolved but, as we will show in the following,
this does not resolve every problem associated with WRP equilibria in n-player
games.

As a second example, imagine a game among n players, in which a subgame
perfect equilibrium is again sustained via threats of punishment. Further assume
that this is not a WRP equilibrium according to Definition 4.1. Suppose that
an additional player, who receives higher payoffs during punishment phases than
when on the equilibrium path is added to the game, and that all other players’
payoffs remain unaffected. This additional player will block renegotiation and
will therefore make the subgame perfect equilibrium a WRP equilibrium, even
though she may not have the means to actually block renegotiation. Hence, an
indifferent player, or the simple addition of a dummy player to the game, can
already yield counterintuitive WRP equilibria.

Finally, other situations in simple form games that yield results questioning
the intuition of competent negotiators can arise. To illustrate this, consider the
following example.

Example 4.3. Consider a three-player game in which Players 1, 2 and 3 can
choose between two pure actions {A,B}, and the stage-game payoffs are given
as follows, in which Player 3 chooses between matrix A or B:

To avoid cases of indifference, let ε > 0. The payoff vector v = (1, 1, 1) can
easily be implemented as a subgame perfect equilibrium as follows. Since A is
a best-reply for Players 1 and 2, the only punishment threat needed to support
(1, 1, 1) is that for a possible deviation of Player 3. Let her punishment path be

6In principle, this could also occur in two-player games. However, if the non-deviating
player does not suffer from the opponent’s deviation, the original subgame perfect equilibrium
cannot be Pareto-efficient; therefore, competent negotiators would not follow this equilibrium
in the first place. In games with more than two players, the situation is no longer as clear-cut.
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Pl. 2
A B

Pl. 1 A (1, 1, 1) (1 + ε, 1
2 , 0)

B (1
2 , 1 + ε, 0) (0, 0, 0)

A

Pl. 2
A B

A (−1
2 ,−

1
2 , 2) (1 + ε,−1

2 , 0)
B (−1

2 , 1 + ε, 0) (0, 0, 0)
B

Figure 4.2: A three-player strategic game in which Player 3 chooses matrix A or B.

p3 = {(A,B,B)}t∈N, and the equilibrium path be p∗ = {(A,A,A)}t∈N; then, for
any δ ≥ 1

2 , v is a subgame perfect equilibrium.
Obviously, not only is Player 3 hurt, Player 2 is also hurt on p3, and they would

both prefer renegotiating to the equilibrium path p∗ = {(A,A,A)}t∈N. However,
Player 1 has no interest in doing so because ε > 0, and will therefore block this
renegotiation. Hence, this equilibrium is also weakly renegotiation-proof. But
can Player 1 really block this renegotiation? In fact, she has no means of blocking
the joint renegotiation by Players 2 and 3, as she does not need to change her
action at all and, since A is her weakly dominant action, has no interest in doing
so once Players 2 and 3 have decided to play (A,A,A). Therefore, we do not
think that one can call such an equilibrium renegotiation-proof.7

To summarize the findings of the three scenarios above, the crucial problem
that arises when the WRP concept is applied in n-player games is that it suffices
to have one single player, who can block renegotiation even if she is indifferent
and does not participate actively in a change of actions. Thus, the proposed
intuitiveness of the WRP notion does not fully carry over to n-player games;
therefore, in the following section, we will strengthen the concept and offer a
refinement that is better at capturing the behavior in repeated games with more
than two players.

4.5 The Model

To be as precise as possible, we will model a protocol that covers the negotiation
and renegotiation processes taking place in the game. It should be stressed that
we will still model a purely non-cooperative game, but assume that there is some
cooperative behavior or a gentleman’s agreement among the players that allows
us to not only model the actions, but to also include some sort of communication
and negotiation in the repeated interactions.8 We therefore agree with Bernheim

7Note that we omit all welfare considerations at this point and focus on the individuals’
incentives.

8This is also present in the original WRP concept: Farrell and Maskin (1989) argue that
“the assumption that players reach an equilibrium at all seems to postulate that there is a preplay
negotiation in which the credible agreements are the subgame perfect equilibria” (p. 328).
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et al. (2015), who argue that “one cannot formulate a theory of renegotiation
without first specifying which agents take part in the negotiation” and without
a “description of the various plans over which they might negotiate” (p. 1897).

Let us consider an infinitely repeated game g∗, as introduced in Section 4.3.
All players act non-cooperatively, but can communicate and agree upon an
equilibrium before the game begins. In order to model the negotiation and
renegotiation precisely, we assume the following protocol for the game.

Before the game begins, players meet and agree upon an equilibrium strategy,
σ. They consider all possible single-player deviations and, if necessary, design a
punishment path pi for each player. Furthermore, the players already take into
account that they should not agree upon an equilibrium that has continuation
equilibria that are strictly Pareto-dominated. That is, they agree upon a weakly
renegotiation-proof equilibrium.

Once the game has started, and a player i deviates unilaterally in period
t, the equilibrium prescribes that players switch to the punishment path pi.
Before the game continues, and according to a specific renegotiation protocol,
different groups of players may get together with the deviator and renegotiate
the continuation of the game. We will develop this protocol in the following.

We denote by Ri(ht) ≡ Rti ⊂ N a group of players, the renegotiators, who
can renegotiate with the deviator i after her deviation in period t. We denote
this union by R̄ti, i.e. R̄ti = Rti ∪ {i}. Let Ri(ht) ≡ Rti ⊂ P(N) be the set of
all feasible groups Rti after player i’s deviation in period t. This set is history-
dependent in the sense that, for any history ht and deviator i, the set Rti can be
different. We can now define the renegotiation protocol formally.

Definition 4.2. We denote by R : Σ × H × N −→ P(N) the mapping that
assigns for a strategy σ, history ht and player i’s deviation in period t the set
of feasible renegotiation groups Rti ⊂ P(N), and we call R the renegotiation
protocol.

The complete specification of the renegotiation protocol will be provided in
Subsection 4.5.1, and we will now determine the continuation equilibria over
which Rti may renegotiate. As is standard in the coalition-proofness literature,
see for instance Bernheim et al. (1987), we let any group Rti negotiate only over
those continuation equilibria that are available to them. That is, given a history
ht, only those continuation equilibria σ̃ ∈ Σ(σ) can be a subject of renegotiation
that R̄ti can attain by changing its strategies while leaving the other players’
strategies fixed. We will denote this set of available continuation equilibria by
ΣR̄ti

(σ). More formally, then, the group R̄ti plays the subgame g∗|ht , limited
to the available continuation equilibria σ̃ ∈ ΣR̄ti

(σ) that are induced by the
strategies of the other players N \ R̄ti.
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For a WRP equilibrium, Farrell and Maskin (1989) propose that players can
renegotiate over any continuation equilibrium that “they believe is available to
them” (p. 328). In other words, it does not matter whether all or just one player
needs to change her action to achieve the favorable continuation equilibrium.9

In our model, we allow for subgroup renegotiation as proposed by Asheim and
Holtsmark (2009), and do not require either consent or an action on the part of
all players to implement a renegotiation.10

The group R̄ti will agree to renegotiate to another continuation equilibrium if
there is at least one player j ∈ R̄ti, j 6= i, who is strictly better off while all other
players in R̄ti are not worse off. This implies that a player who takes part in
the renegotiation process, but is indifferent between two continuation equilibria,
can no longer block the renegotiation from one to the other. Thus, we eliminate
the problem of dummy or indifferent players that we discussed in the previous
section.

Next, we introduce a notation for weak Pareto-dominance among a subgroup,
which will become useful in the following analysis.

Definition 4.3. Given a subset of players M ⊆ N and for any two strategy
profiles σ, σ̃ ∈ Σ, we let the weak dominance relation �M be defined by

σ �M σ̃ ⇔

g
∗
i (σ) ≥ g∗i (σ̃) ∀ i ∈M

with ">" for at least one i ∈M
. (4.1)

Whenever M = N , we will simply write σ � σ̃.

Given that R̄ti weakly prefers the continuation equilibrium σ̃ ∈ ΣR̄ti
(σ) to σi,

i.e., σi �R̄ti σ̃, players change their strategies accordingly and switch from σi to σ̃.
Thus, σi is not a credible continuation equilibrium, and the equilibrium strategy
is therefore not renegotiation-proof with regard to subgroup Rti. However, if
only a single player changes her strategy, that is, if

∣∣∣{j ∈ N |σ̃j 6= σij}
∣∣∣ = 1,

renegotiation is only feasible if R̄ti = N . We will discuss this in the following.
If only a single player changes her strategy as a result of a renegotiation, the

question of whether this can still be considered to be a feasible renegotiation out-
come or whether it is a unilateral deviation that induces a punishment according
to the subgame perfect equilibrium strategy arises. In Farrell and Maskin (1989),

9There are indeed other approaches (e.g., Rabin, 1991) that limit the set of attainable
continuation equilibria, and therefore receive different results for the set of stable equilibria.

10Note that we only allow for intraplay meetings in the event of a deviation. This can be
justified by the potential need for additional communication among the punishers due to a
change in the game plan. Alternatively, we can argue that, unless a player deviates unilaterally,
subgroup meetings are not feasible as there is no specified protocol that determines the setup
of the subgroup and therefore only all players can meet.
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the former is the case in a two-player game, and unilateral changes of strate-
gies are not sanctioned if they lead to a strictly Pareto-improving continuation
equilibrium for both players. The authors do not discuss this issue, but one can
argue that, in a two-player game according to our protocol, both the deviator
and the punisher meet and renegotiate. Thus, there can be no misunderstanding
about this unilateral deviation. If there are more players in the game, however,
this may change: Those players not present at the renegotiation meeting may
indeed misinterpret the unilateral deviation as an act that calls for punishment.

Therefore, we propose the following rule. If all players unite and renegotiate,
i.e., R̄ti = N , a unilateral change of strategy to implement the outcome of a
renegotiation will not be regarded as an act to be punished. However, if at least
one player does not participate in the negotiation meeting, she may misinterpret
a unilateral deviation and therefore proceed with punishment. Thus, such a
renegotiation would not be feasible.

This finally leads us to our new equilibrium concept.

Definition 4.4. Let g∗ be the infinitely repeated game played among players
N = {1, . . . , n}. Let R be a renegotiation protocol; a WRP equilibrium σ ∈ Σ of
g∗ is then R-weakly renegotiation-proof (R-WRP) if, for any time t, any history
ht ∈ H, and any unilateral deviation of player i in period t, there is no set
Rti ∈ Rti and no continuation equilibrium σ̃ ∈ ΣR̄ti

(σ) such that

σ̃ �Rti σ
i

and, if R̄ti 6= N , also

∣∣∣ {j ∈ R̄ti | σ̃j 6= σij

} ∣∣∣ ≥ 2

holds.

Our definition essentially considers Pareto-dominance not only among all
players, but also among specific subgroups of players that are determined by the
renegotiation protocol for each unilateral deviation. To agree upon renegotiation
and to implement a new continuation equilibrium before the start of the pun-
ishment, it suffices for a group to have a continuation equilibrium available that
constitutes a weak Pareto-improvement to the original one. More specifically,
if one of the players outside of this group is not weakly better off, this does
not prevent the renegotiation from taking place. Moreover, if there are players
outside of the group who are worse off in the new continuation equilibrium, this
constitutes no objection to the renegotiation outcome.
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4.5.1 Specification of the Renegotiation Protocol

To complete the model, we have to specify the renegotiation protocol R. There
are certainly various approaches to this, and Definition 4.4 is held sufficiently
general such that every specification of R can be adopted. In the following, we
will introduce and discuss five different specifications of R.

Specification 1: WRP with weak Pareto-dominance

In the first specification, let us assume that all players meet after any deviation,
i.e., the renegotiation protocol R assigns

Rti = {N}

for all players i ∈ N and histories ht ∈ H. The R-WRP equilibrium of Def-
inition 4.4 is then similar to a WRP equilibrium in which the strict Pareto-
dominance of Definition 4.1 is replaced by weak Pareto-dominance. Note that
this specification is not equivalent to WRP with weak Pareto-dominance as,
according to our definition, the players only meet after a previous deviation, not
in every period.

Specification 2: Every feasible subset of players can renegotiate

The strongest refinement of WRP in our model is the renegotiation protocol that
allows every feasible subgroup of N to renegotiate after any deviation. That is,
we let R be such that it assigns

Rti = P(N)

for all players i ∈ N and histories ht ∈ H. This condition resembles the equilib-
rium condition for a perfect strong Nash equilibrium, but recall that we only allow
for ex post renegotiation after a deviation, and not for multilateral deviations at
any stage of the game.

Specification 3: The active players can renegotiate

In this specification, we reason along the lines of Subsection 4.4.2, and limit the
set of feasible renegotiators to those players who are actively involved in the
change of strategies. We therefore exclude those players from a renegotiation
between two continuation equilibria who would not change their actions if the
game switched from one to the other. Thus, we eliminate the problem of inactive
players who can block renegotiation without taking any action, as seen in our
Example 4.3.
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More specifically, suppose player i deviated from σ in period t, and let
σ̃ ∈ Σ(σ) be a continuation equilibrium of σ. The set of players that can then
renegotiate between σ and σ̃ will be defined by the set of players who play
different actions in σ and σ̃. That is, we let R be such that, for the equilibrium
strategy σ, the set of feasible renegotiation groups after a deviation by player i
and history ht is given by

Rti(σ) =
{
Rti ∈ P(N)

∣∣∣ ∃ σ̃ ∈ Σ(σ) with αj(σi) 6= αj(σ̃) ∀ j ∈ Rti,

αk(σi) = αk(σ̃) ∀ k ∈ N \ R̄ti
}
.

Thus, the renegotiation protocol R determines a subgroup of players for every
history and continuation equilibrium. As there are countably infinite continua-
tion equilibria of σ, there are up to countably infinite many subgroups Rti ∈ Rti
that can renegotiate away from σi.11

In the following example, we show that the proposed WRP equilibrium
strategy does not withstand the additional restriction of Definition 4.4 when
incorporating this specification.

Example 4.4. Consider a three-player game in which every player can choose
between pure strategies A and B; the stage-game payoffs are given in Figure 4.3.
Let δ ≥ 1

2 and ε ∈ (0, 1].

Pl. 2
A B

Pl. 1 A (1, 1, 1) (0, 0, 0)
B (2, 0, 1) (0, 0, 0)

A

Pl. 2
A B

A (0, 1, 2) (0, 0, 0)
B (0, 0, 0) (ε, 1 + ε, 0)

B

Figure 4.3: A three-player strategic game in which Player 3 chooses matrix A or B.

The payoff v = (1, 1, 1) can be sustained as a WRP equilibrium as follows:
As long as no player deviates, play (A,A,A), i.e. p∗ = {(A,A,A)}t∈N. If Player 1
deviates, play (A,A,B) forever, i.e. p1 = {(A,A,B)}t∈N. If Player 3 deviates,
play (B,B,B) forever, i.e. p3 = {(B,B,B)}t∈N.

However, on the punishment path p1, the continuation payoffs of Player 1
and Player 2 are strictly below their respective continuation payoffs on p3. By
Specification 3, Players 1 and 2 can now agree to renegotiate from p1 to p3.
Player 3 is not needed for a change in action and can therefore not block this
renegotiation, even though she is strictly worse off. Thus, this WRP equilibrium
is not R-WRP with Specification 3.

11The problem with the cardinality of renegotiation alternatives is also present in the original
WRP notion.
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Specification 4: The punishing players renegotiate

We further limit the number of possible renegotiators in this specification, and
allow only those players to renegotiate who are involved in the deviator’s pun-
ishment and take an active role in it, i.e., the punishers. Formally, we define the
group of punishers as follows.

Definition 4.5. Suppose the game follows a prescribed strategy σ ∈ Σ with
history ht ∈ H. For every possible deviator i ∈ N at time t, let P ti ⊂ N \ {i} be
the set of players that punish player i by changing their action profiles according
to the punishment strategy σi. Let ht be the history in which player i deviated
in period t, and h̄t the history in which all players complied with the strategy σ
in t. The set of punishers is then defined by

Pi
(
ht
)
≡ P ti ≡

{
j ∈ N \ {i}

∣∣∣ αj (σ, ht) 6= αj
(
σ, h̄t

)}
.

That is, we distinguish between those players who do not react to the de-
viation and those who actively change their actions due to the prescribed pun-
ishments, and who may therefore also reconsider their actions, i.e. possibly
renegotiate. The punishment set is history-dependent; i.e., the path the game
follows and the specific moment when the deviation occurs are decisive to the
composition of the set of respective punishers. According to this motivation, we
propose the renegotiation protocol R that assigns

Rti = {P ti }

for all players i ∈ N and histories ht ∈ H. This is clearly a weaker condition
for renegotiation-proofness than is Specification 3, as there is always only one
subgroup that may renegotiate from σi at time t.

In the following example, the proposed WRP equilibrium strategy is not an
R-WRP with Specification 4.

Example 4.5. Consider a three-player game in which each player can choose
between pure strategies A and B; the stage-game payoffs are given in Figure 4.4.
Let δ ≥ 1

2 and ε ≤ 1.
The payoff v = (1, 1, 1) can be sustained as a WRP equilibrium as follows: As

long as no player deviates, play (A,A,A), i.e. p∗ = {(A,A,A)}t∈N. If Player 3
deviates, play (A,B,B) forever, i.e. p3 = {(A,B,B)}t∈N.

However, on the punishment path p3, the continuation payoffs of Player 2
and Player 3 are strictly below their equilibrium payoff v2 = v3 = 1. Let ht be
such that Player 3 deviated from σ in period t. Then P3 = {2}, R̄t3 = {2, 3},
and Player 1 is thus excluded from the renegotiation meeting by Specification 4.
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Pl. 2
A B

Pl. 1 A (1, 1, 1) (0, 0, 0)
B (0, 0, 0) (0, 1 + ε, 0)

A

Pl. 2
A B

A (0, 0, 1 + ε) (1 + ε, 0, 0)
B (0, 0, 0) (0, 0, 0)

B

Figure 4.4: A three-player strategic game in which Player 3 chooses matrix A or B.

Therefore, Players 2 and 3 can jointly renegotiate back to the equilibrium path
p∗. Thus, this WRP equilibrium is not R-WRP with Specification 4.

Nevertheless, the players can still obtain v = (1, 1, 1) as their equilibrium
payoff by changing Player 3’s punishment to p̃3 = {(B,B,A)}t∈N. Players 1 and
3 would now favor a renegotiation to the equilibrium path but, as P3 = {1, 2}
and R̄t3 = {1, 2, 3}, Player 2 would block the renegotiation.

Remark 4.1. The interpretation of active punishers may be somewhat misleading.
Of course, players who do not change their strategy after a deviation may also
be interpreted as punishers. In fact, not changing the strategy may be the actual
punishment.12 Nonetheless, we want to pinpoint those players who need to
actively change actions due to the punishment strategies, and who may therefore
be in a situation in which additional communication is helpful.

Specification 5: A majority renegotiates

As we have elaborated above, it may be the case that a majority of players
strictly prefers a renegotiation, but a single player can block this according to
the WRP notion. Therefore, it is another natural assumption to specify the
renegotiation protocol such that it allows for renegotiation from the prescribed
continuation equilibrium σi to another continuation equilibrium σ̃ if a majority
is weakly better off. Formally, we let R be such that

Rti =
{
Rti ∈ P(N)

∣∣∣ |Rti| > |N |
2

}
for all players i ∈ N and histories ht ∈ H. As a result, for renegotiation to be
successful, it suffices for two players who would change their strategies in order to
be better off in continuation equilibrium σ̃ to find a sufficient number of players
(at least |N |2 − 1) who do not necessarily need to change their strategies, but who
are weakly better off in σ̃.

12Note also that we do not exclude any players but the deviator from being among the
punishers. Even though one may find good reasons that players who are not affected by a
deviation should not be able to punish, or also players who have no impact on the deviator
through their change of action should be excluded, this is beyond the scope of this paper.
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4.6 Characterization of R-WRP Equilibrium Payoffs

We will now proceed to characterize the new equilibrium for each specification
given in the previous section. To do so, we will not characterize strategies, but
will focus on the equilibrium payoffs, as is common practice in the repeated
games literature. Therefore, let Wδ denote the set of WRP payoffs for a given
discount factor δ < 1. The set of all WRP payoffs in the infinitely repeated
game g∗ will be denoted by W = ∪δ<1 (Wδ, δ). Equivalently, we denote by
Ws = ∪δ<1

(
Ws
δ , δ
)
the set of R-WRP payoffs with specification s = 1, 2, 3, 4, 5.

Obviously, by imposing our additional condition we can (weakly) limit the
set of possible punishment strategies, and therefore ultimately (weakly) reduce
the set of possible equilibrium outcomes in comparison to the original WRP
notion. That is, for every specification s, we have Ws ⊆ W. Nevertheless, we
still have existence as the trivial WRP equilibrium is also an R-WRP equilibrium
for every specification: A strategy that assigns playing the Nash equilibrium in
each subgame for every player has no other continuation equilibrium than itself,
and is therefore clearly an R-WRP equilibrium (see Farrell and Maskin, 1989).

For a two-player game, we return to the original definition of WRP equilibria.
Intuitively, if in the period after a unilateral deviation there were a continuation
equilibrium σ̃ that the non-deviator strictly prefers to the punishment one, WRP
yields that the deviating player can, at best, be indifferent in σ̃. However, σ̃ can
then also be used as punishment. This is shown in the following proposition.

Proposition 4.1. If N = {1, 2}, Definition 4.4 is equivalent to Definition 4.1,
i.e., Ws =W for s = 1, 2, 3, 4, 5.

We can also compare the different specifications with regard to their equilib-
rium payoffs. It is immediately obvious from the specification of the renegotiating
groups that Specification 2, which allows every feasible subgroup to renegotiate,
is the strongest refinement of WRP. That is, we have W2 ⊆ W1,W3,W4,W5.
Furthermore, we have that the set of punishers P ti is included in the set of active
players, as introduced in Specification 3. This directly yields that W4 ⊆ W3,
i.e., Specification 4 is stricter than is Specification 3. Even though the set of
players Rti specified in the different renegotiation protocols may seem compara-
ble, they cannot be further ranked with regard to their equilibrium payoffs (see
Appendix 4.A).

Frankly, the question arises whether the additional conditions we impose in
Definition 4.4 have any limiting effect in games with more than two players. Intu-
itively, allowing for renegotiation by subgroups should generate more threats of
renegotiation, and therefore less stable equilibria. In fact, the following example
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of a three-player game demonstrates that not every WRP equilibrium can be
sustained as an R-WRP equilibrium, independent of the specification of R.

Example 4.6. Consider the infinitely repeated game among three players with
discount factor δ ∈ (0, 1), where the single-stage profits are represented by the
matrix in Figure 4.5 and where ε > 0.

Pl. 2
A B

Pl. 1 A (1, 1, 1) (0, 0, 0)
B (0,−ε,−ε) (0,−ε,−ε)

A

Pl. 2
A B

A ( 1
10 , 0, 2) (1 + ε, 0, 0)

B (0,−ε,−ε) (0,−ε,−ε)
B

Figure 4.5: A three-player strategic game in which Player 3 chooses matrix A or B.

As in Example 4.3, the players can establish the welfare-maximizing payoff
vector v = (1, 1, 1) using the following strategy σ: Follow the equilibrium path
p∗ = {(A,A,A)}t∈N as long as no unilateral deviation occurs. If Player 3 deviates,
play punishment action a3 = (A,B,B) forever. This then constitutes a weakly
renegotiation-proof equilibrium for δ ≥ 1

2 , as it is subgame perfect and Player 1
will always block renegotiation back to the equilibrium path p∗ for ε > 0.

We will first exclude Specification 1 from our considerations and consider
Specifications 2, 3, 4 and 5. If we impose our additional conditions from Def-
inition 4.4, we have Player 1 being unable to block a renegotiation as she is
not in the group of renegotiators Rti. Thus, the proposed WRP strategy is not
R-WRP, and we show that there is in fact no strategy that sustains v as a
R-WRP equilibrium.

First note that there is no other strategy that yields the equilibrium payoff
v = (1, 1, 1), as Player 2 receives strictly less than 1 for all action triples other
than (A,A,A). Thus, p∗ is the unique path to yield v, and it therefore suffices
to focus on Player 3’s punishment, as A is a weakly dominant strategy for both
Players 1 and 2. We show that there is no punishment path that sustains v as
an R-WRP equilibrium.

Suppose to the contrary that there is another strategy σ̃ with punishment
path p̃3 for Player 3’s deviation, which sustains v as an R-WRP equilibrium,
i.e. σ̃ is WRP and no subgroup Rti can renegotiate. As previously, Player 2
will always receive less than her equilibrium payoff v2 = 1 unless (A,A,A) is
played forever. Since {(A,A,A)}t∈N cannot be a subgame perfect punishment
for Player 3’s deviation, Player 2 will always have an incentive to renegotiate
from p̃3 to p∗.
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Recall from Definition 4.4 that, if only a single player carries out the rene-
gotiation, this change of strategy is not feasible according to the renegotiation
process. That is, if only Player 2 plays different actions after Player 3’s deviation,
she would not be able to renegotiate from the punishment path p̃3, and the re-
spective strategy could thus be R-WRP. Therefore, assume that this is the case,
and that only Player 2 changes her action profile when the game moves from
p̃3 to p∗. Then, p̃∗ must be such that action (A,B,A) is played for a suitable
number of periods to achieve subgame perfection. This, however, yields payoffs
strictly below v, and therefore renders this strategy not WRP in the first place.
Thus, it cannot be R-WRP.

Therefore, those subgame perfect punishment paths for Player 3 in which
Player 1 blocks renegotiation to p∗ and is also involved in the punishment remain
to be examined. That is, there must be a time t̄ such that Player 1 plays B on
the punishment path p̃3 .

On the punishment path p̃3, the continuation payoffs in period t̄ are then
given by

g1(σ̃3, ht̄−1) = (1− δ)0 + δg1(σ̃3, ht̄) ≤ g1(σ̃3, ht̄), (4.2)

g2(σ̃3, ht̄−1) = (1− δ)(−ε) + δg2(σ̃3, ht̄) ≤ g2(σ̃3, ht̄), (4.3)

g3(σ̃3, ht̄−1) = (1− δ)(−ε) + δg3(σ̃3, ht̄) ≤ g3(σ̃3, ht̄). (4.4)

According to WRP, at least one of the inequalities must not be strict. Suppose
therefore that (4.2) is an equality; g1(σ̃3, ht̄−1) = g1(σ̃3, ht̄) = 0 must then hold.
Based on the definition of the game, we have g2(σ̃3, ht̄) ≤ 0 and g3(σ̃3, ht̄) ≤ 0,
and therefore the continuation equilibrium σ̃3|ht̄ is strictly Pareto-dominated by
the normal phase equilibrium σ̃. Analogous arguments hold for equations (4.3)
and (4.4), which renders p̃3 not WRP; therefore, σ̃ is not R-WRP.

If we consider a renegotiation protocol R with Specification 1, the pivotal
power of Player 1 in the WRP notion is carried over to R-WRP. Given that
all players meet after Player 3’s deviation, Player 1 will block renegotiation
to the normal phase of the equilibrium. For ε = 0, however, this no longer
holds true, as Player 1 cannot block the renegotiation, and v is not R-WRP
with Specification 1 either. Nevertheless, we assume ε > 0 to avoid the simple
modification—or misinterpretation—from strict to weak Pareto-dominance in
Definition 4.1 rendering our example useless, as σ would then not even be WRP.
Clearly, our findings for Specifications 2, 3, 4 and 5 also hold true for ε = 0.

A more general characterization of R-WRP payoffs, however, is not easy to
obtain. In fact, not even WRP equilibria can be easily characterized in games
with more than two players, as we have shown in Subsection 4.4.1. We therefore
return to the game that has been most frequently studied in the context of WRP
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equilibria in n-player games: the Prisoner’s Dilemma. As shown in Van Damme
(1989) for two-player games, we show that, for symmetric n-player Prisoner’s
Dilemma games, full cooperation can also be obtained as a renegotiation-proof
equilibrium that withstands our additional restrictions of Definition 4.4. Before
we proceed, we first need to define this game for more than two players formally.

In the following Definition 4.6, assumptions (i)–(iv) are standard and gener-
ally accepted for a game of the Prisoner’s Dilemma type. However, there is no
universal definition of the game, as there is always certain degree of freedom in
terms of the different payoffs from multiplayer defections. We therefore introduce
an additional assumption (*).

Definition 4.6. The game G is of the Prisoner’s Dilemma type if the following
conditions are satisfied:

(i) Every player has the same two pure actions, C (cooperate) and D (defect)

(ii) D is the strictly dominant action

(iii) gi(C, . . . , C) > gi(D, . . . ,D) for all players i, ∑i gi(C, . . . , C) > ∑
i gi(a)

for all other actions a ∈ A

(iv) The more players defect, the less profit a cooperator receives

(*) For a ∈ A such that at least two players playD, we have gi(a) < gi(C, . . . , C)
for all players i, i.e., if more than one player defects, every player receives
less than she would in the event of full cooperation

Given this definition, we can now state our result for R-WRP equilibria in
symmetric Prisoner’s Dilemmas.

Proposition 4.2. LetG be a symmetric n-player game of the Prisoner’s Dilemma
type. If δ is sufficiently large, full cooperation can be established as an R-WRP
payoff for all specifications s = 1, 2, 3, 4, 5.

The intuition is straightforward: For every individual deviation, one can
construct a penance punishment strategy whereby one player switches to defect
while all the others play cooperate for a suitable duration before returning to
the full cooperation equilibrium. As only one player is effectively involved in
the punishment, she has no incentive to renegotiate, and none of the others
has the means to do so. Moreover, no matter which group gets together, there
will be no possibility that this group could enforce a renegotiation to the full
cooperative outcome. Obviously, other punishment paths are not enforceable
either. Therefore, the full cooperative solution is stable against any subgroup
renegotiation in the sense of Definition 4.4.
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4.6.1 Application

As mentioned in our introduction and in the discussion of the related literature,
the WRP equilibrium notion is widely applied in various game-theory models.
In situations in which the interacting agents cannot make binding agreements,
self-enforcing agreements must be found to enforce cooperation. In such settings,
the concept of WRP equilibrium often has exactly the conditions desired for such
self-enforcing agreements. As we have shown above, for symmetric games of the
Prisoner’s Dilemma type, there is no need for a refinement of these conditions
when the game is played among more than two players. If this is not the
case, however, there are some weaknesses of WRP that our refinement R-WRP
resolves.

In the following example, we elaborate such a case. We reconsider the
model in Chapter 2 of this thesis, which discusses International Environmental
Agreements (IEAs) among asymmetric players. We will apply the notation of
that model in order to relate the results, and refer to Chapter 2 for all details.
Most importantly, the instantaneous payoff function will be denoted by π, and
g will refer to a network.

We will first repeat the basic model of Chapter 2 before we discuss an example
that leads directly to the additional R-WRP conditions. In the IEA game, in
each period, players choose an action xi ∈ R+, and their instantaneous payoffs
are given by πi

(
xi, x−i

)
= −1

2 (x̄i − xi)2 − β
∑
j∈N xj − γ

∑
j∈N ḡijxj , where β

and γ are the spillover parameters and ḡij is the indicator function, which is
equal to 1 if players i and j are linked, or i = j and 0 in all other cases. The set
of neighbors is denoted by Ni. An IEA refers to a strategy profile s by a coalition
C, and the parameter k denotes the size of the coalition that implements the IEA.
The integer kl denotes the number of links that player l has in that coalition.

To implement an IEA in the repeated game, all coalition members play the
signatory action xSi = x̄i − βk − γ(ki + 1) as long as no single deviation occurs.
After a single deviation by player j, all punishers i ∈ Pj play punishment action
xpi = x̄i − p(β + γ), p ≥ 1 for one period before the signatory action is played
again. The agreement path will be denoted by aC, and the punishment path of
player i by pC

i .
In the following example, we demonstrate the renegotiation opportunities

that are available to the players when the grand coalition is implemented as a
WRP equilibrium. For simplicity, we will focus on the pure local spillover game,
i.e. we let β = 0 and assume that p = 1.13

13Note that, for β > 0 but γ = 0, the game would be symmetric and would be reduced to a
game of the Prisoner’s Dilemma type. Thus, our refinement does not yield additional insights.
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Example 4.7. Consider a game among nine players i = 1, . . . , 9 who are linked
to each other according to the network g, as illustrated in Figure 4.6. According
to Theorem 2.1 in Chapter 2, full cooperation is a subgame perfect equilibrium
if there is a set of punishers Pi for all player i, such that

δ

γ2

 ∑
m∈Pi∩Ni

km


− 1

2 (γki)2 ≥ 0.

Due to the local spillover structure, only the neighbors of a player can punish
her deviation effectively. Let δ = 0.6; it can then easily be seen that Pi = Ni for
all i yields that full cooperation is a subgame perfect equilibrium.

1

2

3

4 5

6

7

8

9

Figure 4.6: Local spillover network in the example.

Moreover, due to the network structure in this example, for every punishment
path pC

i , there is always a player who is not involved in the punishment and who
is not linked directly to a punisher. This player is therefore indifferent between
pC

i and the cooperation continuation equilibrium aC, and will henceforth block
renegotiation from the former to the latter. Thus, WRP follows immediately
(see also Corollary 2.2 of Chapter 2). However, we can show that this equilibrium
does not withstand our additional refinement, and is therefore not R-WRP.

We will discuss three possible renegotiation options. First, consider the
punishment of Player 7. The set of punishers is given by P7 = {6, 8, 9}, and
every punisher j ∈ receives

πj(xpP7
, xsN\P7

) = −1
2(x̄j − xpj )2 − γ

∑
l∈N

ḡjlxl

= 23
2 γ

2 − γ
∑
l∈N

ḡjlx̄l

in the period of punishment. Their respective stage-game payoffs on the agree-
ment path πj(xsN ) are given by

πj(xsN ) = −1
2(x̄j − xsj)2 − γ

∑
l∈N

ḡjlx
s
l

= 23
2 γ

2 − γ
∑
l∈N

ḡjlx̄l
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and therefore, πj(xpP7
, xsN\P7

) = πj(xsN ). That is, all punishing players j ∈ P7

are indifferent between the punishment path pC
7 and the agreement continuation

equilibrium aC. If, according to Specification 4, the renegotiation rule assigns
Rt7 = P7, this yields no contradiction to R-WRP. However, all non-punishing
players j ∈ N /∈ P7 are strictly better off. Therefore, in all other specifications,
any other group of renegotiators Rt7 (sufficiently large for Specification 5) that
includes the punishers, i.e. P7 ⊂ Rt7, will renegotiate from pC

7 to aC.
Second, consider the punishment of Player 6. For the punishing players

P6 = {5, 7, 8, 9}, we have

π5(xpP6
, xsN\P6

) = 23
2 γ

2 − γ
∑
l∈N

ḡ5lx̄l = π5(xsN )

π7(xpP6
, xsN\P6

) = 15
2 γ

2 − γ
∑
l∈N

ḡ7lx̄l < π7(xsN )

π8(xpP6
, xsN\P6

) = 17
2 γ

2 − γ
∑
l∈N

ḡ8lx̄l < π8(xsN )

π9(xpP6
, xsN\P6

) = 17
2 γ

2 − γ
∑
l∈N

ḡ9lx̄l < π9(xsN )

Thus, punisher j = 5 is indifferent between the punishment and the agreement
paths, while all the other punishers would prefer a renegotiation to the agreement
path. According to Specification 4, the punishers would thus renegotiate from
pC

6 to aC, which renders the WRP equilibrium not R-WRP. As before, all other
specifications yield the same result.

Finally, consider the punishment of Player 1. The punishing players j ∈
P1 = {2, 3} receive πj(xpP1

, xsN\P1
) = 17

2 γ
2 − γ

∑
l∈N ḡjlx̄l during the punishment

period. As Players 2 and 3 are not linked to Player 5, they are not affected by a
change of action on the part of this player. Thus, their punishment payoff from
punishing Player 1 or Player 4 is equal, i.e. πj(xpP1

, xsN\P1
) = πj(xpP4

, xsN\P4
)

for j = 2, 3. Player 5, however, is strictly better off on pC
4 than on pC

1 , as the
punishment allows this player to reduce abatement efforts while still free-riding
on her neighbors’ efforts. Thus, if the renegotiation rule is specified according
to Specifications 2 or 3, then Rt1 = {2, 3, 5} ∈ Rt1, and therefore the players will
renegotiate from pC

4 to pC
1 .

We can generalize our observations of the example and propose additional
conditions that are necessary and sufficient for an R-WRP equilibrium in the
IEA game. Clearly, the conditions of Theorem 2.1 in Chapter 2 remain, since
they are necessary and sufficient for WRP. For Definition 4.4 to be satisfied,
it is therefore sufficient to determine whether any subgroup Rti can renegotiate
from the prescribed punishment path to another continuation equilibrium after
a deviation by player i.
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Suppose player i deviated in period t − 1. Players are then supposed to
follow punishment path pC

i . For a coalition of size k, there are consequently
k+ 1 different continuation equilibria at time t: the agreement path aC and the
punishment paths pC

i for all signatories i ∈ C.

According to the definition of the spillover game, all players who are not
participating in the coalition will favor more cooperation over less cooperation.
The same holds for the players who are members of the coalition but who are not
punishing player i. The previous deviator herself strictly prefers the agreement
path to her punishment path. Furthermore, she may also prefer a different
punishment path pC

j to her own punishment. By Condition (2.9) of Theorem 2.1
in Chapter 2, there is at least one punisher who is weakly better off on the
punishment than on the agreement path. However, she may only be indifferent
between the two, and all the other punishers are strictly better off in aC. Thus,
Condition (2.9) must be strict.

There could also be a different punishment path pC
j for j /∈ Pi that all

punishers l ∈ Pi weakly prefer to pC
i . Hence, there are various renegotiation

possibilities at time t, and the following conditions ensure that an agreement is
an R-WRP equilibrium. As the conditions differ for the five specifications of R,
instead of presenting five different results, we will only provide the results for
Specifications 2, 3 and 4, and will place the results for the other specifications
in the appendix.

First note that, for all specifications, we need to replace the WRP condi-
tion (2.9) in Chapter 2 with its strict version to exclude those cases in which
only one indifferent player j blocks renegotiation from pC

i to aC, while all the
other punishers would prefer to renegotiate. If player j ∈ Pi satisfies the strict
condition (4.5), she can block renegotiation to the agreement path. However,
there are other continuation equilibria to which a subgroup Rti may renegotiate.

Proposition 4.3. An IEA s by a coalition C is an R-WRP equilibrium with
Specifications 2, 3 or 4, if and only if for all i ∈ C

δ

β2|Pi|(k − p) + βγ

|Pi|(1− p) +
∑
m∈Pi

km + |Pi ∩Ni|(k − p)



+γ2

 ∑
m∈Pi∩Ni

km + |Pi ∩Ni|(1− p)


− 1

2
(
β(k − 1) + γki

)2 ≥ 0,
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for all i ∈ C there exists at least one j ∈ Pi, such that

β2(k − p)(|Pi| − p) + βγ

(|Pi| − p)(1− p) +
∑

m∈Pi\{j}
km + |Pi ∩Nj |(k − p)


+γ2

2

2
∑

m∈Pi∩Nj
km +

(
2|Pi ∩Nj |+ 1− p

)
(1− p)

−1
2
(
β(k − 1) + γkj

)2
< 0.

(4.5)

and for all j /∈ Pi, at least one of the following two conditions is satisfied:

(a) there exists an l ∈ Pj \ Pi such that∑
m∈Pi\Pj

(
− β(k − p)− γ(km + 1− p)

)
(−β − γḡlm)

+
∑

m∈Pj\Pi

(
− β(k − p)− γ(km + 1− p)

)
(β + γḡlm)

− 1
2(p(β + γ))2 + 1

2
(
βk + γ(kl + 1)

)2
> 0

(b) there exists l ∈ Pi \ Pj such that∑
m∈Pi\Pj

(
− β(k − p)− γ(km + 1− p)

)
(−β − γḡlm)

+
∑

m∈Pj\Pi

(
− β(k − p)− γ(km + 1− p)

)
(β + γḡlm)

+ 1
2(p(β + γ))2 − 1

2
(
βk + γ(kl + 1)

)2
> 0

The additional conditions (a) and (b) extend Theorem 2.1 of Chapter 2,
such that there is no renegotiation from player i’s punishment pC

i to player
j’s punishment pC

j . Clearly, we only need to consider those cases in which
j /∈ Pi, as every punisher j ∈ Pi will certainly block the renegotiation to her own
punishment. For a derivation of the additional conditions (a) and (b), we refer
to Appendix 4.A.

In summary, we have clearly demonstrated how the application of the WRP
equilibrium concept in our model in Chapter 2 may yield international environ-
mental agreements that are stable in the WRP sense, but may not precisely
fit the condition of being self-enforcing, as there can be subgroups that have a
strong incentive to renegotiate at certain contingencies. The outcome of such a
subgroup renegotiation can even improve welfare; for example, when the WRP
condition is only satisfied because there is one player who is indifferent between
two continuation equilibria while all the others are weakly better off. In Proposi-
tion 4.3, we provided necessary and sufficient conditions that guarantee an IEA
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to satisfy our additional constraints and make it R-WRP with Specifications 2,
3 and 4.

4.7 Conclusion

In this paper, we have clearly demonstrated the necessity for a refinement of
the renegotiation concepts for games with more than two players. In general
games, counterintuitive strategies may be supported as a weakly renegotiation-
proof (WRP) equilibrium whereby indifferent and/or inactive players can block
renegotiation without the actual means or incentives to do so. We have therefore
proposed additional constraints on WRP equilibria that exclude the renegotiation
of subgroups that are entitled to renegotiate according to a given renegotiation
protocol R. In an R-weakly renegotiation-proof (R-WRP) equilibrium, there is
no feasible history in which a single player has deviated, and a subgroup defined
by R can renegotiate to a continuation equilibrium other than the one prescribed
by the equilibrium strategy.

We have proposed five different specifications for the renegotiation protocol,
and have partially characterized their respective equilibrium payoffs. They range
from a very weak refinement of the original WRP equilibrium to a very strict
condition that effectively limits the set of attainable payoffs. However, R-WRP
equilibria always exist, but are difficult to characterize. Nevertheless, this is
already the case for WRP equilibria in games with more than two players, as
we have also demonstrated. Furthermore, we have shown that, in games of
the Prisoner’s Dilemma type, full cooperation can always be supported as an
R-WRP equilibrium for every specification.

Needless to say, we have not resolved every open issue in games involving
renegotiation. In fact, we have incorporated most weaknesses inherent in the
WRP notion. First, we only consider single-player deviations and do not allow
for group behavior ex ante. As elaborated in Appendix 4.B, coalition-proof
behavior in infinitely repeated games is an open issue in the literature, and has
not yet been resolved. Our approach can therefore be seen as a step towards
this goal. Second, WRP and R-WRP lack external stability in the sense that
the question of why players would not renegotiate to subgame perfect equilibria
outside the set of continuation equilibria is not answered. Furthermore, the
notion does not require that the equilibrium that may be renegotiated to is itself
renegotiation-proof.

The WRP notion has nonetheless been frequently applied in the literature, as
it offers intuitive and analytically tractable conditions for equilibria in infinitely
repeated games with two players. Our refinement can therefore be seen as an
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extension of this intuitive approach to general n-player games and incorporates
group behavior ex post.

Finally, there are certainly more ways to specify a renegotiation protocol,
but we believe that we have addressed the most intuitive ones. Nevertheless, one
could certainly consider different specifications, and could allow for cooperative
elements such as the core solution. Together with the refinement of the ex ante
equilibrium concept, we leave this to future research.



Appendices

4.A Proofs and Additional Results

On the necessary conditions of Theorem 1 in Farrell and Maskin (1989).
In Example 4.2, we show that the necessary conditions for WRP payoffs,

given in Farrell and Maskin (1989), do generalize to games with more than two
players. In the following, we go along the proof of Farrell and Maskin (1989) for
two players and show why it fails for three and more players.

Let v ∈ V ∗ and let σ(v) be the weakly renegotiation-proof strategy that
yields payoff v. Without loss of generality, we can consider Player 1 and her
worst continuation equilibrium σ1, with a first period action a1 and continuation
σ̂1. This worst continuation equilibrium obviously yields payoffs for Player 1,
which are less or equal v1. If there is no unique σ1, pick the one that is best for
Player 2. If it is still not unique, proceed with the next players and if this does
not yield a unique one, take the first in the list.

If g∗1(σ1) < v1, there must then exist at least one player j 6= 1 with g∗j (σ1) ≥ vj
because of the WRP condition. If g∗1(σ1) = v1, then there is at least one player
j 6= 1 with g∗j (σ1) ≥ vj due to the selection process of σ1. For two players, this
ultimately yields that g∗2(σ1) ≥ v2. For more than two players, we have that for
g∗1(σ1) ≤ v1, there exists a player j 6= 1 with

g∗j (σ1) ≥ vj . (4.A.1)

Next, Farrell and Maskin (1989) claim that gk(a1) ≥ g∗k(σ1) for a player k 6= 1.
Suppose the contrary holds, this then implies that g∗k(σ̂1) > g∗k(σ1). Thus,
because of the WRP condition, there must exist a player l 6= k with g∗l (σ̂1) ≤
g∗l (σ1), as otherwise σ̂1 would strictly Pareto-dominate σ1. For the two-player
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game, this contradicts with the selection process of σ1. For more than two
players, however, we don’t obtain this contradiction and cannot deduce that for
a player k 6= 1 it has to hold that

gk(a1) ≥ gk(σ1). (4.A.2)

Moreover, even if we showed (4.A.2) for a player k 6= 1, this player k from
(4.A.2) and j from (4.A.1) are not necessarily the same players, as it must be the
case in the two-player game, and we therefore cannot conclude that gj(a1) ≥ vj
for a j 6= 1. In fact, this is why Example 4.2 works: The worst continuation
equilibrium for Player 1 is the punishment path σ1. Along this path, Player 2
satisfies (4.A.1) but not (4.A.2), while for Player 3 it is vice versa.

Proof of Proposition 4.1. We only need to show W ⊆ W i. This is trivial, if
w ∈ W is the Nash equilibrium payoff. For all other equilibrium payoffs w ∈ W,
for any time t and history ht, there do not exist two continuation equilibria that
can be strictly Pareto-ranked. We show by contradiction that w ∈ Ws for all
specifications s = 1, 2, 3, 4, 5. Clearly, after a deviation of player i in period t,
the set R̄ti is equal for all specifications, i.e., R̄ti = {i, j} and thus Ws =Ws

′
for

all s, s′ = 1, . . . , 5. Note, that there must always be a punisher of a deviation if
w ∈ W is not a Nash equilibrium payoff and thus Rti 6= ∅.

Suppose w /∈ Ws. There then exists at least one contingency ht, such that
deviator i has deviated in t, and there exists a continuation equilibrium σ̃, such
that j 6= i strictly prefers σ̃ to σi. As w ∈ W, player i cannot strictly prefer σ̃
to σi, that is, it must hold that g∗i (σ̃) ≤ g∗i (σi). By the definition of σ, there
are four possible types of continuation equilibria that are available to player j
at time t+ 1. Either σ̃ is a continuation equilibrium on one of the punishment
paths, it is the other player’s punishment continuation equilibrium, or it is a
continuation equilibrium from the normal phase of the game.

The latter case can be directly excluded by the subgame perfection require-
ment. If g∗i (σi) ≥ g∗i (σ|hτ ) for any history hτ ∈ H such that no player has
deviated, σ cannot be subgame perfect. If σ̃ = σj , then this contradicts with
the subgame perfection condition for player j.

It therefore remains to check any continuation equilibria on the two punish-
ment paths p1 and p2. Thus, consider any history hτ ∈ H, hτ 6= ht, and suppose
first that σ̃ = σi|hτ . We can then sustain w with a new punishment strategy σ̃i,
which uses this continuation equilibrium to punish player i. That is, if we define
σ̃i = σi|hτ , then this renegotiation option is excluded. Next, assume σ̃ = σj |hτ .
Again, we can sustain w with a punishment strategy σ̃i = σj |hτ , such that there
is no renegotiation option. Hence, we can sustain w without any continuation
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equilibria that j would renegotiate to, which contradicts our assumption that
w /∈ Ws, and therefore yields that w ∈ Ws for s = 1, 2, 3, 4, 5.

On the relation of equilibrium payoffs between the different specifications of R.
The different specifications of R, given in Subsection 4.5.1 all yield different

sets of equilibrium payoffs. We have already elaborated that Specification 2 is the
strongest among the five, i.e., W2 ⊆ Ws, s = 1, 3, 4, 5, and that W4 ⊆ W3. The
question arises, whether we can make general statements about the relationship
of the other equilibrium payoffs, but in the following we show that this is not
possible.

First, it is clear that in general W2 6=Ws, s = 1, 3, 4, 5. A renegotiation pro-
tocol R with Specification 2 can generally impose more threats of renegotiation
than under any other specification. Second, it may be intuitive to assume that
Specification 1 is the weakest, i.e., that also W3,W4,W5 ⊆ W1. To show that
this is generally not true, consider Specification 3. Let w ∈ W3, and let player
i deviate in period t. Assume that every group Rti ∈ Rti is indifferent between
the proposed continuation equilibrium σi and every other available continuation
equilibrium σ̃ ∈ ΣR̄ti

(σ). Let Rti 6= N , there can then exist a player that is not
in Rti but strictly better off in σ̃. This does not conflict with Specification 3, but
yields w /∈ W1. For W4 and W5, analogous arguments yield that Specification 1
is not necessarily weaker than Specifications 3, 4 and 5, i.e., W3,W4,W5 6⊂ W1.

Third, it is immediate to see that Specification 1 is not necessarily stronger
than Specifications 3, 4 and 5, i.e., also W1 6⊂ W3,W4,W5. Fourth, Specifica-
tion 5 can also not be related to Specifications 3 and 4. That is, we have that
generally W5 6⊂ W3,W4, and W3,W4 6⊂ W5.

It remains to compare Specifications 3 and 4. Let w ∈ W4. Then for all
players i and periods t, the group of renegotiators Rti = P ti cannot renegotiate
to another continuation equilibrium σ̃ ∈ ΣP ti

(σ). For Specification 3, however,
R allows more subgroups to renegotiate at period t and this may consequently
yield that w /∈ W3.

Proof of Proposition 4.2. Let the full cooperation equilibrium strategy σ be de-
fined as follows: As long as no single player deviates, all players play C, i.e.,
p∗ = {(C, . . . , C)}t∈N. After a single deviation by player i in period t = t̄, the

player j =

i+ 1, if j < n

1, else
, plays D while all others play C for ti periods,

before all come back to playing C, i.e.

pi = {(C, . . . , C,D,C, . . . , C)}t̄+ti
t=t̄+1, {(C, . . . , C)}∞t=t̄+ti+1.
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First, we show that for any δ < 1, we can always find a duration ti such
that σ∗ is a subgame perfect equilibrium. As the game is symmetric, we assume
without loss of generality that i = 1 and player j = 2 is the punisher. Player 1’s
deviation payoff is given by

(1− δ)

g1(D,C, . . . , C) +
t̄+t1∑
t=t̄+1

δt−1g1(C,D,C, . . . , C)

+ δt̄+t1g1(C, . . . , C).

As g1(C,D,C, . . . , C) < g1(C, . . . , C), for any δ < 1, we can determine t1 > 0,
such that player 1 has no incentive to deviate from full cooperation.

Furthermore, by condition (*) of Definition 4.6, it holds that no other player
has an incentive to deviate from her strategy during the punishment, since

cj(C,D,C, . . . , C) = gj(C,D,C . . . , C) ∀ j 6= 2.

And since D is the strictly dominant action for Player 2, no player will deviate
from Player 1’s punishment path. Therefore, this strategy is certainly subgame
perfect.

Second, there are no two continuation equilibria that can be strictly Pareto-
ranked. The only continuation equilibria to compare are the ones along the
full cooperation path p∗, and the punishment continuation equilibria along p1.
Clearly, Player 2 will always block renegotiation from p1 to p∗ and to her own
punishment p2. As all players are symmetric, there is no other continuation
equilibrium to consider; thus, full cooperation is WRP. For R-WRP, in all of
the specifications given, there are obviously no subgroups that can enforce a
renegotiation: No other continuation equilibrium is available without Player 2
and she will always block the renegotiation.

Proof of Proposition 4.3. Let σ be WRP strategy, that is, it satisfies both the
subgame perfection and WRP condition of Theorem 2.1 in Chapter 2. To
guarantee that σ satisfies Definition 4.4, the original WRP condition needs to be
changed to its strict version to exclude those continuation equilibria of σ which
make all punishers Pi weakly better. That is, if there is one punisher j ∈ Pi
such that πj(xpPi , x

s
N\Pi) > πj(xsN ), she will always block renegotiation from the

punishment path pC
i to the agreement path aC. This is Condition 4.5.

To exclude a renegotiation from a punishment pC
i to a different punishment

pC
j , we need to compare the payoffs for all relevant groups of players. In all

specifications, those players who are involved in punishing player i but not player
j, as well as those who are involved in punishing player j but not player i, can
block a renegotiation. That is, we need to have at least one player l ∈ Pi \ Pj or
l ∈ Pj \ Pi who satisfies πl(xpPi , x

s
N\Pi) > πl(xpPj , x

s
N\Pj ). This yields Conditions

(a) and (b).
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On Proposition 4.3 for Specifications 1 and 5.
For Specification 1, players outside the punishment groups Pi and Pj can

also block renegotiation. Thus, if there is one player l /∈ Pi ∪ Pj such that
πl(xpPi , x

s
N\Pi) > πl(xpPj , x

s
N\Pj ), she will block any renegotiation from a pun-

ishment pC
i to a different punishment pC

j . Thus, to guarantee that an IEA s
by a coalition C is an R-WRP equilibrium with Specification 1, the conditions
of Proposition 4.3, together with the following condition (c), are sufficient and
necessary:

(c) there exists l /∈ Pi ∪ Pj such that

∑
m∈Pi\Pj

(
− β(k − p)− γ(km + 1− p)

)
(−β − γḡlm)

+
∑

m∈Pj\Pi

(
− β(k − p)− γ(km + 1− p)

)
(β + γḡlm) > 0

For Specification 5, this condition only applies if this player l /∈ Pi ∪ Pj is
needed for Rti to constitute a simple majority.

4.B Coalitional Behavior in Non-Cooperative Games

The standard theory of renegotiation-proofness tackles collective dynamic con-
sistency among the entire group of players. The refinement introduced in this
paper allows for subgroup renegotiation ex post, but does not cover subgroup or
coalitional behavior ex ante. Quite naturally, one may strive for a concept that
incorporates both ideas, but this has to our understanding not been achieved
yet. In fact, there is a wide literature that studies group behavior in infinitely re-
peated games, but the problem of ex post renegotiation is not covered adequately.
We will discuss the most relevant ones in the following.

The first to tackle coalitional behavior in non-cooperative games is Aumann
(1959); strong Nash equilibria are robust against every conceivable coalition in the
single-stage game. Rubinstein (1980) extends this to infinitely repeated games,
but the conditions are often found to be too harsh, such that existence of strong
Nash equilibria fails. The seminal work of Bernheim et al. (1987) (subsequently
abbreviated as BPW) relaxes these conditions and proposes the equilibrium
notion of perfect coalition-proofness for finitely repeated games—interestingly de-
veloped at the same time as Farrell and Maskin (1989). They impose an internal
consistency condition on the equilibrium set in the sense that they exclude any
deviations which do not fulfill the criteria of the original agreement. The agree-
ment must therefore no longer be stable against any cooperative deviation but
only those, that are self-enforcing in the sense that no subcoalition can deviate
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in a self-enforcing way. However, they can only consider finitely repeated games
as the recursive definition of their equilibrium notion prevents the application
to infinite horizon games. Further refinements of their work can be found, for
instance, in Chakravorti and Kahn (1991) or Kahn and Mookherjee (1992) but
neither of them consider renegotiation.

The problem of recursive definitions has led several authors to use the ap-
proach proposed by Greenberg (1989, 1990), who applies von Neumann and
Morgenstern abstract stable sets to define coalition-proof equilibrium notions
and standards of behavior. Such standards of behavior can be found in DeMarzo
(1992), Asheim (1997), Ferreira (2001) and Xue (2002).

DeMarzo (1992) introduces an exogenously defined leader who suggests a
behavior that is then followed by the group of players; thereby motivating col-
lective consistent behavior. Asheim (1997) assumes that “in each subgame, any
coalition can coordinate on any strategy profile, taking into account that in the
current and each later subgame, any subcoalition can in turn do so” (p. 437),
and refers to this as the perfectly coalition-proof situation (this is indeed the
setting for BPW’s definition). In addition to the internal consistency condition
imposed by Farrell and Maskin (1989) and Bernheim and Ray (1989), he requires
external consistency for the equilibrium set (as in his earlier paper Asheim, 1991),
and argues that in the renegotiation situation it is left “completely unexplained
why the players do not renegotiate to a subgame perfect equilibrium outside the
set of continuation equilibria”. Nevertheless, he also incorporates the recursive
definition of BPW.

Another refinement or extension of the BPW notion is suggested in Fer-
reira (1996). Here, the purpose is to capture both problems of coalition- and
renegotiation-proofness in one equilibrium notion. When considering such an
equilibrium, the author requires it to be “immune to deviations by coalitions
that not only take as fixed the actions of the complementary coalition in the
current period, but also consider reactions by any coalition in future periods”
(p. 250). He argues that, while perfectly coalition-proof Nash equilibria do not
incorporate this, his proposed concept does. Xue (2002) discusses stable agree-
ments and claims to capture the problem of collective dynamic consistency by
also limiting the set of possible deviations, even further than BPW do. Both
authors therefore impose a weaker internal consistency condition than in the
renegotiation-proof concept.

Finally, Chung (2004) imposes a recursive, internal consistency condition that
excludes many possible deviations which are not self-enforcing. He can therefore
obtain an existence result, but is too strict to allow for proper renegotiation in
the sense of WRP.
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