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Introduction

I Aim: Discuss some advanced questions of distances for machine learning, namely

I (Pseudo-)Euclidean embeddings
I Indefinite Learning
I Edit Distance Theory

I Structure: Motivation by historic cognitive science literature (60s to 2000s)

I What this talk is not about:

I Relational machine learning methods (refer to, for example, Hammer and Hasenfuss
2010; Hammer, Hofmann, et al. 2014; Schleif and Tino 2015)

I Metric axioms and metric taxonomies (has been done very well by Nebel et al. 2017)
I Similarities and Kernels (you may also refer to Nebel et al. 2017; Schleif and Tino

2015)
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Euclidean Embeddings
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Spatial Representations of Knowledge

Shepard (1962)

The notion of nearness or proximity, which is objectively defined only for pairs of
objects in physical space, tends to be carried over to very different situations where the
space in which entities can be closer together or further apart is not at all
evident.

I Assume that objects live in an underlying, Euclidean space, i.e.: Given pairwise
distances D ∈ Rm×m, find an Euclidean embedding X ∈ Rm×n (n ≤ m), such
that ‖~xi − ~xj‖ ≈Dij

⇒ non-metric Multi-Dimensional Scaling (MDS)

I Then use X for subsequent machine learning (implicitly or explicitly)
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Embedding Example

I Data set: {“”, “a”, “b”, “aa”, “ab”, “bb”} with Levenshtein-Distance

−1 0 1

−1

0

1

a

b

aa
ab

bb

I Note: Information loss increases with higher intrinsic data dimensionality
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Representing Prototypes (the “distance trick”)

I Assume that prototypes are affine combinations of data points, i.e.:

~wk =

m∑
i=1

αk,i · ~xi s.t.
m∑
i=1

αk,i = 1 ∀k ∈ {1, . . . ,K} (1)

⇐⇒ W = A ·X s.t.
m∑
i=1

Ak,i = 1 ∀k ∈ {1, . . . ,K} (2)

I If X is an isometric embedding, it holds (Hammer and Hasenfuss 2010):

‖~wk − ~xi‖2 = Ak,: ·D:,i −
1

2
Ak,: ·D ·Ak,:

T (3)
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Indefinite Learning
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Metric properties and non-Euclidean distances

I Distances have to conform to the minimality, symmetry, and triangle
inequality axioms

Tversky (1977)

Similarity judgments can be regarded as [...] statements of the form “a is like b.”
Such a statement is directional; it has a subject, a, and a referent, b, and it is not
equivalent in general to the converse similarity statement “b is like a.” [...] We say
“the portrait resembles the person” rather than “the person resembles the portait”.

I all metric axioms may be violated in practical cases, especially the triangular
inequality (Schleif and Tino 2015)

I Even if all axioms hold, a distance may be non-Euclidean
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Pseudo-Euclidean Embeddings

Pękalska and Duin (2005, p. 122)

Let D ∈ Rm×m be non-negative, symmetric, and reflexive (i.e.: zero diagonal).

Then,
there exists two embeddings X+ ∈ Rm×n+

and X− ∈ Rm×n−
with n+ + n− ≤ m,

such that for all i, j ∈ {1, . . . ,m}:

Dij =

√
‖ ~x+i − ~x+j‖2 − ‖ ~x−i − ~x−j‖2 (4)

where ~x+i is the ith row of X+ and ~x−i is the ith row of X−.
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Pseudo-Euclidean Embeddings (contd.)

I Input: squared (!) matrix D

I Compute corresponding similarities via double-centering:

S = −1

2
·
(
D − 1

m
· 1 ·D︸ ︷︷ ︸

column means

− 1

m
·D · 1︸ ︷︷ ︸

row means

+
1

m2
· 1 ·D · 1︸ ︷︷ ︸

matrix mean

)
(5)

I Eigenvalue decomposition: U ·Λ ·UT = eig(S)

I Select positive and negative Eigenvalues: Λ+ = Λ[:, ~λ > 0] and
Λ− = Λ[:, ~λ < 0], where ~λ = diag(Λ)

I Generate embeddings: X+ = U ·
√
Λ+, and X− = U ·

√
−Λ−

I A distance is Euclidean iff there are no negative Eigenvalues
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Embedding Example
I Data set: {“”, “a”, “b”, “aa”, “ab”, “bb”} with Levenshtein-Distance
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Challenges in non-Euclidean distances

I Distance trick still works

, but prototype-datapoints-distances can become negative

I Eigenvalue correction may distort the distances significantly (Nebel et al. 2017;
Schleif and Tino 2015)

I Optimization problems become (even more) non-convex

⇒ Lack of methods which can deal with non-Euclidean distances explicitly, without
information loss (?) (Schleif and Tino 2015)
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Structural Alignment and Representational Distortion

Hodgetts, Hahn, and Chater (2009)

Nevertheless, both accounts appear to have fundamental limitations. [...]

Real-world
objects are not merely represented as lists of features or dimensions but represented in
a structured way that considers not only the composite elements but the relations
between these different elements.

I Measure distances between structures via edit or alignment distances
(Paassen, Mokbel, and Hammer 2016)
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Alignment distance

I Assume a set of graphs x ∈ X over a node alphabet Σ

I Assign a cost C to each pair in (Σ ∪ {−})× (Σ ∪ {−})

I Alignment distance d(x, y): Cost of minimum assignment of nodes in x to nodes
in y under some constraints to the assignment.

⇒ Equivalent to edit distance for sequences

⇒ Triangular inequality in general hard to verify

⇒ Link to minimum bipartite matching problems
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Alignment Distance Example
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Edit Distance
(Paaßen et al., 2017, work in progress ...)

I Assume a set of possible edits δ : X → X for some set of structured data X

I Create a legal move graph G = (X , E) where E = {(x, y)|δ ∈ ∆ : δ(x) = y}

I Assign a cost C to each edge in G

I Edit distance d(x, y): length of shortest path from x to y in G

⇒ Metric properties (but not Euclideanicity!) achievable under moderate constraints
to ∆ and C

⇒ Supports search for pre-images (e.g. object that corresponds to prototype)
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Edit Distance Example
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Conclusion

I quasi-metrics (distances without triangular inequality) permit a minimal (w.r.t.
dimensionality), isometric embedding

I Can be used implicitly via distance trick

I Distances may be non-Euclidean (can your method deal with that? Can you
afford to enforce Euclideanicity?)

I edit/alignment distances offer a general view on structured data

Thank you for your attention!
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