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Abstract— Nodding is an important factor in human commu-
nication, providing a physical cue for socially communicative
acts such as turn taking, backchanneling, and confirmation. In
this article, we describe a vision-based online head nodding
detector that works with monocular camera images. Using
SVM regression, our system estimates the head pose based on
facial landmarks. Subsequence dynamic time-warping is then
used to compare head pose features against nod templates. In
contrast to many other previous implementations, our system
was evaluated with study participants who were not instructed
to reply by nodding, and shows good results while maintaining
a low false positive rate.

[. INTRODUCTION

Nodding is one important type of head movement in so-
cial interaction and communication, and the physical action
transmits information on different functional levels [1]. On
a semantic level, for instance, nodding indicates affirmation.
In social interaction, nodding is used for backchanneling.
In Japanese culture, nodding has also been observed to
mark the end of one’s turn speaking. Because nodding is so
widespread in human communication and social interaction,
robots and agents designed to interact with humans should
be able to detect head nods. Such a cue can support various
functions in robots, such as a dialogue system or attention
monitoring, as for instance in engagement detection.

Various systems for nod detection have been proposed.
Since nodding induces the relative movement of facial land-
marks such as the eyes, their relative movements are typically
used as features for nod detection. For example, in [2],
pupil location is tracked using an infrared camera system.
After this data is gathered, the location is smoothed and
a symbolic direction of movement is calculated. A Hidden
Markov Model (HMM) is used to detect nodding based on
directional symbols. This model was trained using a corpus
of 25 head nods from instructed users answering questions to
an agent, and the system is capable of real-time processing.
A similar approach is used in [3], but it differs from the
previous approach in that the visual spectrum is used. In
this system, the user’s face and eyes are first detected. The
relative changes in the eyes’ positions on the face are used as
a nod feature. The training data consists of 37 nod samples
collected from instructed users. Instead of relying solely on
the eyes as a landmark, optical flow can be used to detect
facial motion [4]. The flow vector’s angle is discretized into
directional symbols and an HMM is used to classify nodding
based on these directional symbols. This model is trained
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Fig. 1. Left to right: Three frames of a recorded head nod. Blue lines
visualize the head pitch and yaw. Purple lines depict the derivatives and red
lines show the actual distance to the nodding prototype. The current nod
detection count is indicated by the red number.

with 100 nod samples and depth sensing is also used for nod
detection. In [5], the Kinect sensor is used to estimate head
pose. A symbolic direction of movement is calculated based
on pitch and yaw changes, and an HMM is used to classify
nodding based on directional symbols. This model is trained
with 150 samples of nodding. A more sophisticated approach
is used in [6] than in the previously described models: a 3-D
head tracker operating with the Kinect depth sensor is used to
estimate the rotation matrix of the face and within a temporal
window, frequency and axis features based on changes in the
rotation matrix are calculated. A support vector machine is
used to classify nodding. The model is trained on 543 nods
taken from a corpus containing conversational interactions,
such as job interviews and grant applications.

Most of the existing work uses databases with instructed
users. This might lead to more pronounced nodding patterns
that are easy to detect. Furthermore, the corpora often contain
a relatively high frequency of nods. Nodding behavior,
however, tends to differ significantly among individuals:
some people nod rarely, while others nod frequently [7].
Accordingly, a system with a low false positive rate is
required to accommodate this. In addition, the amount of
training data can be very low. We therefore propose a nod
detection system that is based on subsequence dynamic time
warping. In domains such as gesture recognition, dynamic
time warping has been shown to outperform HMM:s [8]. Our
system is able to detect nods online, based on prototypical
nods (see Fig. 1). We show that our nod detector performs
well on human-agent conversational data, including cases
with low nod frequencies. Furthermore, our approach relies
on monocular VGA camera images and thus does not require
specialized hardware such as depth sensors or high resolution
cameras.



Fig. 2. Person interacting with the virtual agent BILLIE.

This paper is structured as follows: Section II introduces
the scenario our nod detection approach is applied to. In Sec-
tion III our methodology is explained step by step, including
feature extraction, head pose estimation, and dynamic time
warping. Finally, evaluation results based on existing datasets
and a user study are presented in Section IV.

II. SCENARIO

Our work is part of the research project KOMPASS at
Bielefeld University, where the virtual agent BILLIE is
currently being developed to provide assistance to elderly or
cognitively impaired people in planning their daily activities.
BILLIE maintains a person’s schedule by interacting with
the user (see Fig. 2), for example by suggesting activities. In
order to be able to successfully interact with people, BILLIE
requires the capability to perceive cues from its conversation
partner relevant to the interaction. One possibility is to rely
on verbal communication for these cues. However, if the
user’s speech is not clear, visual cues such as nodding might
help the system better understand the users’ intentions or
desires. Furthermore, such visual cues can also help the
system to ascertain if the person is actually engaged in the
interaction with the agent.

III. HEAD NOD DETECTION

The guiding idea behind our approach is to detect head
nods based on changes in the head pose. Our system estima-
tes the user’s head pose based on facial landmark features and
then uses dynamic time warping to compare changes in the
actual head pose with prototypical changes that occur during
nodding. Nodding is detected if the comparison results
fall below a threshold that defines sufficient similarity. An
overview of the approach is shown in Fig. 3. In the following
sections, a detailed description of each step is provided.

A. Facial Feature Extraction

For face detection and facial landmark estimation, we
rely on an implementation provided by dlib [9], [10]. The
landmark estimation algorithm uses a cascade of regressors
to estimate the face’s landmark positions (see Fig. 4) directly
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Fig. 3. Nod Detection System Overview

from a minor set of pixel intensities. Coordinates of the
resulting landmarks are expressed relative to the nose root
and are normalized for the rotation and size of the face. The
result is a 136-dimensional vector consisting of the X and Y
values of each normalized landmark position.

B. Head Pose Estimation

Various methods exist to estimate head pose, including
geometric methods, tracking methods, and regression me-
thods [11]. To robustly estimate the pitch and yaw angles
of the head pose based on few assumptions, we decided
to use support vector regression (SVR). The advantage of
this approach is that it can be trained with head pose data
from multiple users in varying light conditions. The resulting
classifier does not need to be calibrated with an initial head
pose or adapted to specific users. The Biwi Kinect Head
Pose Database [12] was used for training the SVR models.
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The database was recorded using the Kinect depth sensor
(including 2-D RGB images) and consists of 24 people
turning their heads in different directions, as well as reference
head pose data. Images with faces not reliably detected by
dlib’s face detector were excluded. The data was further
filtered to approximate a uniform distribution of pitch and
yaw angles so as to optimize the training data for support
vector regression. After filtering, 5,621 2-D images with
annotated head orientations for yaw and 1,617 images for
pitch were used as training data. Two independent SVR
models for estimating pitch and yaw were trained based on
the feature vector described in the previous section. Figure 5
depicts the head pose estimator visualizing detection results.
Optimal model parameters were determined using a grid
search.

For each parameter set, a three-fold cross validation was
conducted to estimate the regression error. The best model
resulted in a standard deviation of 6.3 degrees for pitch
and 6.2 degrees for yaw. Results are shown in Table I. The
head pose angles are used as features for our nod detection
approach, and are described in the next section.

C. Dynamic Time Warping of Head Pose Changes

The idea guiding our approach to head nod detection is
to compare the pitch angles estimated by the head pose
SVR against reference nods. Humans exhibit head nods
differing in terms of duration and strength. To measure the
similarity between the estimated pitch and reference nods,
dynamic time warping is used to compensate for length
variations. Dynamic time warping is a widely used method
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Fig. 6. Head nod detection with DTW.

for comparing time series. However, constant offsets and
amplitude of the time series (for example, a different neutral
position of the head and different nod strength) cannot be
compensated for by dynamic time warping. These problems
can be eliminated, though, by taking the derivative of the
time series as an input for the DTW [13].

The idea of dynamic time warping is to warp two time
series by pausing or continuing one of them such that the sum
of distances between them becomes minimal. This requires
a distance function. Given two discrete time series A and
B of length M and N, a distance function d(i, j) represents
the distance between A(i) and B(j). In our implementation
we chose Euclidean distance. To find the minimal distance
the optimal warping path needs to be determined. First, all
possible d(i, j) are composed in a cost matrix C. The optimal
alignment between A and B is determined by evaluating all
paths from C(0,0) to C(M,N) and selecting the path where
the sum of their elements is minimal. By using dynamic
programming distance calculation and path evaluation can
be handled in one step. This is accomplished by calculating
an accumulated cost matrix C4 according to Equation 1.



Each distance calculation Cy(i, ) also provides the cost of
the minimal warping path to C4(0,0). Specifically, C4 (M, N)
holds the distance between the time series A and B.

d(0,0), ivj:O
. ) d0,))+Cy, i=0,7>0
CAlD =Y 4(i,0)+cr, i>0,j=0
d(i,j) +min(CL,CLT,CT), i,j> 0
where
CL=Ca(i,j—1),
Crr =Ca(i—1,j—1),
CT:CA(iflaj)'

D. Online Dynamic Time Warping

Processing data online means that our implementation has
to be able to detect nods in a continuously expanding time
series. The prototype time series is fixed in size. Thus, it
is not sufficient to compare time series of fixed lengths
using DTW. Multiple instances of a subsequence, i.e. the
nod prototype, have to be detected in a continuous stream
of head pitch values. This problem is solved by employing
subsequence dynamic time warping which is a modification
of the DTW algorithm to handle incremental updates. At
each time step the accumulated cost matrix C4 is extended
with a new column and filled with the accumulated costs for
the new time point according to Equation 1. The bottom row
C4 indicates the minimal distance Dys,; for a subsequence
ending at the current time step j. In the offline case the DTW
warping path always ends on C4(0,0). However, a dynamic
target point is required within the incremental series B. This
is achieved by redefining the case (i =0, > 0) in Equation
1 to d(0, j) which leads to Equation 2.

d(0, j), i=0
Ca(i,j) =4 d(i,0)+Cr, i>0,j=0 (2)
d(i, j) +min(Cr,Crr,Cr), i#0

According to this method each element of the bottom row
of C4 holds the minimal distance Dy ; of each possible
alignment of A = [ay,...,ay] and By = [by,...,by]. In the
event that Dy ; falls below a given threshold, a nod is
detected within the starting point k£ and end point N of the
corresponding minimal path. To avoid detection overlaps, a
cost of infinity is assigned to the column with the nod end
point N. A schematic representation of online dynamic time
warping for head nod detection is shown in Figure 6.

E. Slope Constraints in Online Dynamic Time Warping

In the previous section, we defined the start and ends
point for the DTW warping path, but we did not impose
any constraints on the route of the warping path. In some
cases, the alignment of two series could pause one of the
series while continuing on the other one for long time,
thus matching very short to very long parts. This undesired
behavior can be prevented by constraining the warping path’s
slope with a restriction on how many consecutive steps in the
same horizontal or vertical direction are allowed. When the

accumulated cost matrix is calculated, the slope constraint
can be enforced by checking how many steps were taken in
consecutive directions of the warping path. This prevents the
warping path from deviating too far from the diagonal of the
DTW distance matrix. Based on empirical testing our system
allows a maximum of 2 steps in the same direction.

FE. DTW Cost Normalization

As mentioned in Section III-C, we take the derivative
of the time series to compensate for the constant offsets
and amplitude differences of the pitch angle data. However,
the amplitude differences of the derivative are not compen-
sated for, although head nods may have been performed
at different velocities. In general, it can be observed that
two high amplitude time series with high similarity have a
higher DTW distance than two head nods with comparable
similarity but low amplitude. We therefore use the standard
deviation of the subsequence in B with the length of A as a
cost normalization factor. This heuristic is possible because
the standard deviation correlates approximately linearly with
the time series amplitude. The normalization is applied to
the accumulated cost matrix by dividing the bottom row by
the subsequence standard deviation.

G. Data Smoothing and Differentiation

For each new frame, a new head pose is estimated by the
SVR model. The resulting time series tends to be noisy due
to estimation errors. Furthermore, our approach relies on the
derivative of the head pitch making it more sensitive to noise.
We therefore use a polynomial filter introduced by Savitky
and Golay [14]. The advantage of this filter over rolling
mean or Gaussian smoothing is the better preservation of
peaks including their characteristics. In addition, it combines
differentiation and smoothing in one filter operation. The
general Savitzky-Golay formula is shown in Equation 3,
where n is the filter length.

n—1
2

1
J’t:% Z

n—1

2

AiXp 3)

i=—

For calculating the smoothed derivatives a; should be set to
i. Note that x; refers to the raw signal data. The normalization
factors & are listed in the following table:

filter length h

5
7 28
9

11 110

Based on empirical testing we set the coefficients to n =9
and h = 60.
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Fig. 7.  Pitch angle (blue) and smoothed derivative (red) of two typical
head nods.

TABLE I
THE PART OF THE WOZ1 DATASET USED FOR CROSS-EVALUATION.

dataset ~ #People  #Nods Entire Average
Video Length  Nod Duration
WOZ1 21 497 246 min 803 ms
IV. EVALUATION
A. Datasets

The KOMPASS WOZ1 dataset contains recordings of 51
participants, consisting of students, seniors and cognitively
impaired individuals interacting with the virtual agent BIL-
LIE. The participants were instructed to schedule their next
week of activities with the help of BILLIE. Nodding obser-
ved in the participants’ behavior can be assumed to occur
naturally, since no instructions were given to participants
with regard to nodding. For the purpose of this evaluation,
a VGA camera recording was selected. The videos were
captured at 30fps, for an entire video length of 629 minutes.

All head nods were annotated manually by two indepen-
dent observers. Annotators were instructed to make their
annotations according to the following definition: a head
nod begins with the head starting to move down. Then
it continues with a down-up movement and ends when
the raising of the head has stopped. Figure 7 depicts the
pitch data of two head nods in degrees over time, and the
corresponding derivatives.

The length of all annotated nods combined accumulates to
12 minutes (1.9%) of video, with a total nod count of 690.
This finding demonstrates that nodding and non-nodding
classes are strongly imbalanced in natural interaction data.
However, both annotators agreed on only 72% of nodding
instances, indicating that some nodding behavior is difficult
to judge. According to our observations, it is primarily subtle
nods that contribute to the complexity of detecting nods.
For further processing the annotations both annotators agreed
with is chosen as ground truth.

Ground Truth: (TTTT T[T [ [ NEEENEEEENEN [ [ ([ [ EEEEEEEE
DTW Detection: [T T [T [ FI i [ T[T TTTTTTTTTTTTT]

Framebased
Evaluation:
TN,TN,N,..  FPFP.. TRTRTP... FNFN  TN,TN,.. FN,FN,FN,..
Eventbased
Evaluation: %
™ ™ ™ FN
Fig. 8. Framewise and eventwise performance measure.

B. Frame- and Event-Based Evaluation Methodology

A single instance of nodding typically spans several fra-
mes. Thus, one way of evaluating the performance of the
nod detector is to consider each frame by comparing it with
the reference annotation. Each comparison can have four
outcomes: True Negative, False Negative, True Positive, and
False Positive (see Fig. 8). However, small temporal shifts
between the ground truth and the nod detector are counted
as errors even though the nod in general has been detected,
the alignment is not fully identical. This motivates an event-
based evaluation of the nod detector. Here, nodding is seen
as a single event, which is detected correctly if the event falls
within a certain temporal tolerance window of the reference
annotation (see Fig. 8).

Frame-based evaluation is able to handle imbalanced da-
tasets well. However, the false positive rate is higher than a
human observer would agree with. Event-based evaluation,
on the other hand, is not able to handle imbalanced datasets
well. Nevertheless, the positive rate is closer to human
judgment. Our datasets are imbalanced since they contain
only few nodding frames compared to the frames for which
no nodding was annotated. We therefore propose a combined
evaluation strategy. Negatives (i.e. non-nodding frames) will
be evaluated frame-wise, since they would otherwise form
large blocks of non-nodding, which would count as only one
event. Positives will be evaluated event-wise, since a small
alignment error can be tolerated given the low number of
nod events.

C. Nod Prototype and Threshold Selection for DTW

As described in Section III-C, a prototypical nodding time
series that generalizes most nod types is required. This nod
prototype will serve as the basis for calculating the DTW
distance to arbitrary subsequences of live data. The prototype
is selected from a set of annotated nod sequences from
a training dataset. The sequence that performs best with
respect to the training dataset is selected as the prototype.
This requires a quality criterion to assess the classification
performance.

First, the desired true positive rate (recall) is specified in
advance. Subsequently, the DTW threshold is adjusted to
match the desired recall. For each prototype candidate, we
iterate over the DTW threshold and test the prototypes on
the training dataset until the desired recall is reached. After
all prototype candidates have been evaluated, the precision
of each prototype for classifying the training data is used as
a quality criterion. The sample with the highest precision is
chosen as the nod prototype.
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Fig. 9. Precision (y-axis) and recall (x-axis) of cross validation runs on
the WOZI dataset: Solid lines indicate event based precision. True negative
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To visualize the large performance variation between participants’ data,
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respectively.

D. KOMPASS WOZI Results

To estimate the performance of the nod detector, a cross
validation is performed on the Kompass WOZ1 dataset. For
cross validation, we excluded videos with a face detection
failure ratio of more than 90% as well as videos with less
than four annotated nods. An overview of the remaining part
of the WOZI dataset is shown in Table II. In each iteration,
one person is left out and the nod prototype selection
procedure described in the previous section is carried out on
the remaining data. Each nod prototype is thus tested on the
data from the excluded individual. The averaged results are
presented in Figure 9. Relatively low results of event-wise
precision (blue solid line) are misleading and are caused by
the highly unbalanced dataset. Here, our combined frame
and event-wise scheme (see IV-B) is used to handle the
imbalanced training data, demonstrating high true negative
(or low false positive) rates (blue dashed line).

For comparing our results with other methods, a com-
parable dataset is required. The nod detection approach
introduced by Chen et. al., was evaluated on the KTH-Idiap
dataset [6], where 4.5% of the frames contain nodding. To
make our data comparable, a subset of the WOZI1 corpus
(WOZ1-SUB) was composed. Random five minute long
excerpts from the students and senior groups of the corpus
were selected in a way that the same distribution of nodding
and non-nodding frames was achieved. Our results on this
subset and the results by Chen et. al.,, are compared in
Table III.

Fig. 10. Human-robot interaction scenario with the Meka robot.

E. Human-Robot Interaction User Study

In order to verify our approach in a human-robot interacti-
on scenario and to evaluate the generalization capabilities of
our model, we conducted a user study in which participants
interacted with the humanoid robot Meka (see Fig. 10). An
Asus xtion pro is integrated in the head of the Meka robot.
However, in this evaluation only the RGB sensor is used,
which captures the participants’ heads for nod detection at
30fps in VGA resolution. Meka’s voice was synthesized
by using the text-to-speech system MaryTTS [15]. Before
the interaction, participants were not instructed to use head
gestures. The following dialogue was designed to induce
natural nods: to engage participants in an interaction, Meka
told the participants that he bought some food and needs help
to make a fruit salad. After this, Meka went through a list of
15 food items and asked if each item can be an ingredient
for fruit salad. The list contained 10 different fruits and five
non-fruits. After giving the participant some time to respond,
each question was followed by a short verbal confirmation.
The steps in the dialogue were advanced by a Wizard-of-Oz
to ensure correct timing between utterances.

Meka was programmed to return a head nod by performing
a short down up movement of its head after detecting a
nod from the human. The dialogue was not controlled by
the nod detection module. A total of 10 participants (three
female, seven male) took part in the study, four of whom
wear eyeglasses.

The interaction and system activity was recorded. The
total video length adds up to 22 minutes. For evaluation,
all nodding was annotated event-wise to evaluate detection
results on the event level. The results are shown in Table IV.



TABLE IV
NOD DETECTION RESULTS ON THE HUMAN-ROBOT INTERACTION DATA

#Nods  Precision Recall F-Score  #FP/min
Total 62 0.56 0.61 0.58 1.5
Total [no glasses] 41 0.82 0.68 0.74 0.8
18
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12
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Participant ID

Fig. 11.
outlier.

Total number of false positives per participant. Note the strong

As shown in Figure 11, there was a strong outlier in
our dataset with many false positives. The main cause of
false positives was poor alignment of facial features, which
frequently occurred with participants who wore glasses.

V. CONCLUSION

In this paper, we presented a nod detection system based
on dynamic time warping that works on monocular VGA
images. Support vector regression was used to estimate head
pose angles based on facial landmark features. Noise reduc-
tion and differentiation was carried out using the Savitzky
Golay filter. We extensively evaluated our approach on a cor-
pus of human-agent interaction. Our approach already shows
a relatively high true positive rate of 0.70, while maintaining
high true negative rate of 0.97. This behavior is important
because nodding is transient, and thus no nodding is observed
most of the time in typical interactions. Furthermore, we
conducted a user study to evaluate our approach using the
Meka robot, which shows that our approach also works in
human-robot interaction.

At the moment, our approach uses only one nod prototype.
To achieve better coverage of the feature space of different
nod types, we aim to extend our approach to multiple nod
prototypes. Representative prototypes could be selected by a
clustering algorithm. Furthermore, we plan to apply the same
methodology to detect head shakes allowing the system to
detect some forms of negation.
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