
The 23rd International Conference on Auditory Display (ICAD–2017) June 20-23, 2017, Pennsylvania State University

PARALLEL COMPUTING OF PARTICLE TRAJECTORY SONIFICATION TO ENABLE
REAL-TIME INTERACTIVITY

Jiajun Yang

Ambient Intelligence Group
CITEC, Bielefeld University

Bielefeld, Germany
jyang@techfak.uni-bielefeld.de

Thomas Hermann

Ambient Intelligence Group
CITEC, Bielefeld University

Bielefeld, Germany
thermann@techfak.uni-bielefeld.de

ABSTRACT

In this paper, we revisit, explore and extend the Particle Trajec-
tory Sonification (PTS) model, which supports cluster analysis of
high-dimensional data by probing a model space with virtual parti-
cles which are ‘gravitationally’ attracted to a mode of the dataset’s
potential function. The particles’ kinetic energy progression of
as function of time adds directly to a signal which constitutes the
sonification. The exponential increase in computation power since
its conception in 1999 enables now for the first time to investi-
gate real-time interactivity in such complex interweaved dynamic
sonification models. We speeded up the computation of the PTS
model with (i) data optimization via vector quantization, and (ii)
parallel computing via OpenCL. We investigated the performance
of sonifying high-dimensional complex data under different ap-
proaches. The results show a substantial increase in speed when
applying vector quantization and parallelism with CPU. GPU par-
allelism provided a substantial speedup for very large number of
particles comparing to using CPU but did not show enough benefit
for a low number of particles due to copying overhead. A hybrid
OpenCL implementation is presented to maximize the benefits of
both worlds.

1. INTRODUCTION

Model-Based Sonification (MBS) is a sonification technique that
involves (usually high-dimensional) data into the definition of dy-
namic systems which behave according to given laws of motion.
Interaction modes (e.g. shaking, knocking) provide the means for
interactively exploring features of the model (and thus coherences
within the underlying data) as they result in a dynamic system be-
havior that directly contributes to a sound signal, i.e. the sonifica-
tion [1].

Let’s take an example of studying how a new percussive in-
strument works and sounds like. We can visually observe the con-
struction of the object, then touch over the instrument and feel
the materials of different parts. Then we can give it excitations
through various physical actions, e.g. tapping, hitting, scratching,
to test how each part of the instrument sounds like. To understand
the sound it can provide, these excitation will also accompany with
different dynamics, e.g. tapping it gently or hitting it hard. Fur-

This work is licensed under Creative Commons Attribution Non
Commercial 4.0 International License. The full terms of the License are
available at http://creativecommons.org/licenses/by-nc/4.0

thermore, we can pick up other objects such as a drumstick to in-
teract with the instrument to find out more acoustic possibilities.
Through these, one can gain a good understanding of the function-
ality of the instrument.

Model-Based Sonification applies the similar analogy to the
sonification for data mining. For instance, a dataset has its own in-
trinsic features which are unknown. However, we can define a dy-
namic model to bridge between the abstract data and the domain of
acoustical systems, which are nothing but physical systems which
react dynamically. Assuming that a model designer also imple-
mented modes of interactions, the user can then also provide exci-
tations to the data-driven configuration in model space and in turn
the sonification model generates the acoustic response as imme-
diate feedback to the user, whatever the unforeseeable interaction
will be. The data imprints acoustic model properties which holis-
tically and characteristically manifest in sound properties.

A Model-Based Sonification design usually consists of the fol-
lowing steps:

1. The setup phase defines how the data configure elements
of the model (which typically exist in a model space). The
data themselves are neutral and abstract, merely numbers.
The setup grants them physical properties, to establish a
dynamic system with internal degrees of freedom. For ex-
ample, each data point can be considered a point mass in a
d-dimensional space. Or each data point might be consid-
ered as a mass-spring system with inherent attributes such
as mass, stiffness, thus an element that can oscillate and
exhibit acoustic behaviors.

2. The model dynamic sets the equations of motion that ulti-
mately determines the temporal evolution of the system and
thus the sound. It can make use of physical principles such
as inertia, friction, propagation, and energy conservation.

3. The excitation phase is the core part of the interaction to
trigger auditory display. In this phase, specific excitation
methods need to be defined, whether it is through sim-
ple Mouse clicks or complex tangible/physical interactions.
This phase is also closely tied with the model dynamic.

4. The link variables are model-specific features that can be
calculated at any time and whose temporal progression usu-
ally delivers directly the sound signal.

In data mining, Exploratory Data Analysis defines the process
to acquire understanding of data and detect patterns when an ex-
plicit knowledge of the data is absent. In the 1970s, Tukey estab-
lished many famous visualizations of uni- and multivariate data,

The 23rd International Conference on Auditory Display (ICAD–2017) June 20-23, 2017, Pennsylvania State University

e.g. leaf plots, histogram. While they are still the predominant
methods in data visualization, visualizing high-dimensional data
is not always an easy job. For example, parallel coordinate [2]
plots are commonly used to visualising multivariate data by juxta-
positioning each data dimension along one axis. However, impor-
tant patterns and features can be difficult to distinguish when the
data space is dense [3]. Scatterplot matrices are particular useful
when exploring the correlation between any two variables in the
data space, but they lack the ability to examine the holistic fea-
ture of the data. The reason for bringing up the above examples is
to show that there is a limitation with the visualization which we
believe auditory display can help to overcome.

In the domain of sonification research, the techniques used in
sonifying data have been predominantly circled around Parame-
ter Mapping Sonification, Audification and Auditory Icon/Earcon-
based displays. The former technique uses data to drive parame-
ters of a sound generation engine (commonly a synthesizer). While
there are many possibilities to create fruitful mappings from data to
synthesis parameters, we cannot avoid the sonification researcher’s
own subjective decision on the mapping and scaling process. In
Icon-based displays the two main techniques are Auditory Icons
and Earcons, where collective sound pieces or melodies are used
to represent certain state of the data vector. These types of auditory
displays rely solely on a subjective mapping process. The design
bias can be problematic in exploratory data analysis because of
the absence of explicit knowledge of the data, e.g. switching the
scaling or polarity of the mapping between a data channel and the
pitch of synthesizer can lead to very different auditory patterns,
prompting to different judgements.

2. LITERATURE OF SONIFICATION FOR
EXPLORATORY DATA ANALYSIS

There is a body of work on parameter-mapping sonification for
general data inspection1. For reasons of limited space we merely
mention a few. An early on research of using auditory display in
exploratory data analysis can be found in [4], where Flowers and
Hauer looked into the efficiency of using auditory display to study
data in comparison to histogram and Box-Whisker plots. Peres
and Lane also studied the effectiveness of sonification of box plots
in [5]. Flowers et al. examined data using auditory and visual dis-
play of scatterplots for bivariate data in [6]. The remainder of
this section provides pointers to examples of developing general
structure-specific sonification models for data analysis rather than
targeting a specific type of dataset.

Hermann and Ritter introduced the Model-Based Sonifcation
in [7], a paper in which they exemplify the idea with two sonifica-
tion models: Particle Trajectory Sonification and Data Sonograms.
In [8] they introduced a model to sonify data w.r.t. its principal
curve. Further sonification models were introcuced in series, such
as a local heat exploration model (LHEM) [9], Growing Neural
Gas Sonification for exploring intrinsic dimensionality of data and
the Markov-chain Monte Carlo Sonification model [10], most of
them summarized in [11]. Multi-touch interaction for data sono-
grams using MBS was carried out in [12]. Crystallization Sonifi-
cation was introduced in 2002 in [13], this model aims at exploring
the intrinsic data dimensionality around user-selected points in re-
lation to the global data dimensionality [14].

1throughout the ICAD proceedings

3. TOWARDS REAL-TIME INTERACTION IN PTS

The Particle Trajectory Sonification (PTS) aims at exploring the
clustering of vectorial data [15]. This model was initially pre-
sented in [7] in 1999. At that time, however, the limitation in
computing power did not allow a responsive (real-time) interaction
to really treat the vectorial data as a ‘virtual physical instrument’,
onto which the user can apply excitatory interactions to receive au-
ditory feedback instantly in a tightly closed loop. Instead, it took
up to minutes for reasonably complex problems to render usable
sonifications, interrupting the control loop significantly. In 2016,
the computing power has vastly improved. So for the first time,
we can achieve (and explore the benefits of) a real-time experience
of interaction with such complex sonification models in unprece-
dented detail and complexity.

The core objective of this research is to optimize the model
to speed up in order to sonify multiple particles of larger high-
dimensional datasets at a latency that is suitable for real-time in-
teraction. To define a latency threshold to be able to consider
as real-time interaction, also take into account that the interactive
sonification is a type of sonic interaction. It is natural to assume a
similar standard as the latency of a digital musical instrument, es-
pecially physical model instruments. In 2002, Wessel and Wright
suggested that less than 10ms should be an ideal latency for per-
forming a digital musical instrument [16]. A physical piano how-
ever can have even up to 35ms for pp notes [17]. Although it will
be an ideal scenario if the MBS can be interacted within such a low
latency level, it still seen rather ambitious when sonifying larger
datasets. As mentioned in the later section (Sec 5), sonifying large
and high-dimensional data may take upto a few seconds. Thus a
significant speed up approach is required and also we loosen the
definition of real-time interaction to within 300 ms in this partic-
ular case as user only needs to receive a relatively quick response
for the purpose of analysis of the data rather than performing acute
isochronous sequences as would be equipped for musical perfor-
mance.

We start the presentation in Section 4 with details about the
PTS and how this model can be dynamically sonified. Section
5 explores different approaches of implementing the sonification
model, followed by a discussion and summary.

4. PARTICLE TRAJECTORY SONIFICATION

4.1. Model Definition

The Particle Trajectory Sonification Model is a Model-Based Soni-
fication to analyze the clustering information of high-dimensional
datasets through probing a data-driven potential function by dy-
namic test particles. Note that this model allows the analysis
of multivariate data clustering without requiring to carry out any
other clustering analysis beforehand.

The workflow of the model is as follows: a potential func-
tion V (~x) is constructed from the given high-dimensional dataset
by superimposing data point potential functions which are cen-
tered in an Euclidean model space of same dimensionality as the
data at each data point’s coordinates. The overall potential is just
the superimposition of all data point contributions at any arbitrary
location in the high-dimensional model space. For sonification,
particles with a given initial kinetic energy are injected into the
model space. They move around according to a given dynamics
(Newton’s law plus a friction force). The resulting sonification

The 23rd International Conference on Auditory Display (ICAD–2017) June 20-23, 2017, Pennsylvania State University

is obtained by adding the particles’ kinetic energy as function of
time.

Figure 1: Plots of the data potential for a 2D toy problem. (a)
σ = 0.4; (b) σ = 0.16; (c) σ = 0.07; (d) σ = 0.01.

For a formal definition, assume a given data matrix X ∈
M(N ×d,R) whose row vectors are ~xTi , i = 1, ..., N . The model
space is an Euclidean vector space Rd in which points are fixed
for each data point at coordinates ~xi. Assume an injected particle
to have the coordinate ~x, then the particle experiences a ‘gravita-
tional’2 potential:

V (~x) =

N∑
i=1

Φ(|~x− ~xi|) (1)

where Φ(r) is the potential function of a data point defined by:

Φ(r) = − exp

(
− r2

2σ2

)
(2)

where σ is the interaction length, which determines the resolu-
tion of the potential. Fig. 1 shows how σ affects the data potential
V (~x) of a two-dimensional data set. When σ2 is much larger than
the average variation over dimensions, V exhibits only a single
global minimum near the dataset mean (cf. Fig. 1a). With decreas-
ing σ, local minima may arise corresponding to clusters in the data
(cf. Fig. 1b & c). Yet if σ decreases further to smaller values than
the average distance between the nearest neighbors of data points,
each data points’ potential trough is separated, thus we getN local
minima (cf. Fig. 1d).

An injected particle of mass m is given a random initial ki-
netic energy Wkin yet so low that the particle can’t escape from
the data, i.e. Wkin < −V (~x). From Wkin = mv2/2 we obtain
the absolute velocity and set up its random initial velocity vector
~v in d dimensions. Newton’s law of motions describe how the
particle moves in model space. Numerical integration of the equa-
tion of motion with ∆t = dt yields the following updates for the

2gravity works different in this model space than in our universe

particle’s position ~x and velocity ~v:

~v := r~v + dt
−∇V
m

(3)

where r is the energy loss ratio due to friction of the model
space.

~x := ~x+ dt~v (4)

Figure 2: Examples of the trajectories of two particles are injected
in each one of the clusters in 5000 iterations. The green lines
represent the trajectory. The yellow circle indicates the start coor-
dinates of the particle and the red cross is the end of the trajectory.

As aforementioned the sonification is the time series of kinetic
energy3. The frequency and spectral complexity of the sound de-
pend on rate of change of the velocity v. This means two key prop-
erties of the sonification in order for user to listen and understand
the data:

• Particles attracted to a larger cluster exhibit a higher pitch than
those attracted to a small cluster due to the stronger gravita-
tional pull.

• If a particle started at the edge of a cluster, as it oscillates
through the mode and (by friction) converges slowly to the
cluster center (i.e. the mode), the spectral complexity of the
sound decreases until eventually a sine wave like tone. This is
due to the particle becoming less and less affected by the non-
harmonic shape given by the tails of the potential function V
.

An example of the particle movement can be seen in Fig. 2.
Two particles were injected into different clusters (the yellow dots
are the initial locations). After the initialization, the particles
started moving in model space. They are pulled by the collec-
tive attractive forces of all model elements and due to friction they
converge (in this case) to the local minimums of the clusters the
particle belonged. Subject to different sizes of the clusters, their
potential functions are different causing different velocity changes
throughout the trajectories.

From the perspective of the time series of the particle’s kinetic
energy, the sonification is structurally merely the audification4 [1]
of the kinetic energy as a function of time.

3Equivalent to the square velocity vector since mass is a constant
4Audification is a technique that considers the data vector directly as an

audio vector and plays the vector back in audio rate with downsampling or
upsampling if required.

The 23rd International Conference on Auditory Display (ICAD–2017) June 20-23, 2017, Pennsylvania State University

A video example of the sonification can be found in Sec. 7.
Please refer to ‘PTS-parameters.mp4’ for a demonstration how σ
and r affect the sound.

4.2. Exploring example data using the system

In Fig. 3, an example is presented of using the system to distin-
guish two separate clusters. In this example, we used a mixture of
Gaussians to create data with the controlled features, here 4 clus-
ters, N = 980, d = 6. The figure suggests that the right part of
the scatter plot is a single cluster. However, the trajectories show
different convergence targets. Fig. 3a & 3b each demonstrates the
trajectory of particles attracted by different clusters. The particles
converged to two different areas, leading to two different textures
in sound as also rendered visible in the spectrogram respectively.
This indicates that there are indeed two clusters whose discrimina-
tion is visually impossible as they overlap in the scatter plot.

Please refer to video file ‘PTS-clusters.mp4’ for a demonstra-
tion on how to use the sonification model for detecting different
clusters, for finding cluster’s edges/center and outliers.

Figure 3: Comparison of the two particle trajectories and their
spectrograms.

5. MODEL OPTIMIZATIONS WITH VECTOR
QUANTIZATION AND PARALLEL COMPUTING

The previous section presented the mathematical model and sound
examples for injecting a single particle. The analysis of cluster-
ing is about understanding the grouping of data points, which is
a zonal property. Thus it will be more meaningful to inject mul-
tiple particles simultaneously and listen to their collective sound

in a particular zone. The result sonification can either be listened
individually or holistically by superimposing all particles’ energy
and then performing a normalization.

The following section presents multiple approaches of opti-
mizing the dataset with vector quantization, as well as parallelism
with OpenCL framework [18].

5.1. Baseline method

The baseline method is written is Python using the C-extension
library Cython [19] for calculating the particle trajectory. The
squared velocity vector is played back as sound using pyo’s FIFO
player [20] module. Using the FIFO player, the particle trajectory
can be rendered in smaller chunks (per buffer size Ns) continu-
ously that are then pushed to the queue of the FIFO player for
continuous playback. A smaller buffer size can lower the latency
as long as the rendering time t is below t < Ns/fs, where fs is the
sampling rate. For PTS, we choose a sampling rate of fs = 11025
because there is very little audible information in the sonification
at higher frequencies. We use a buffer size Ns = 256. This im-
plementation is originally targeted for single PTS.

In terms of the trigger latency, we define 300 ms as the thresh-
old below which interaction (i.e. insert particles and hear back the
sound) can be regarded as real-time.

As for the performance, the computational cost is proportional
to the number of particles, which was set between 1 to 100. As
shown in Fig. 4, for smaller datasets (200 × 5), Cython imple-
mentation can still achieve satisfactory latency for real-time inter-
action. As for the 2000 × 5 dataset, rendering multiple-particle
trajectories slowed down significantly, and it became unsuitable
above 30 particles. This results prompts to a requirement for sig-
nificant speedup.

0.0 0.5 1.0
Time [secs]

1

10

20

30

40

50

60

70

80

90

100

Nu
m

be
r o

f P
ar

tic
le

s

0.0

0.02

0.03

0.04

0.05

0.06

0.08

0.09

0.1

0.11

0.13

200 x 5 dataset

0.0 0.5 1.0

0.01

0.12

0.25

0.37

0.49

0.61

0.79

0.89

1.03

1.32

1.38

2000 x 5 dataset

Figure 4: Performance for different numbers of particles using
Cython without parallelization.

5.2. Vector Quantization

When dealing with larger datasets, e.g. N > 103 data points, vec-
tor quantization allows to reduce the resolution while still main-
taining the general clustering structure. Here, we apply the k-
means vector quantization to reduce the size of a given dataset
into k prototypes minimizing the cost function

The 23rd International Conference on Auditory Display (ICAD–2017) June 20-23, 2017, Pennsylvania State University

E =

N∑
i=1

k∑
j=1

hij ‖~xi − ~vj‖2 (5)

where hij = 1 if ~xi is nearest to prototype ~vj , else hij = 0.
Note that the number of prototypes is still as high as possible, e.g.
around 1000, and not selected according to the number of expected
clusters. A detailed analysis as to how data set reduction affects
the PTS will be published elsewhere. Fig. 5 shows a linear change
(note that both x and y-axis are log-scaled) in the computational
time of the PTS algorithm with 1 particle only after applying dif-
ferent levels of vector quantizations to a 104×5 dataset. Based on

10 1 100

Time [secs]

32
64

128
256
512

1024
2048
4096
8192

10000

Q
ua

nt
iz

at
io

n
si

ze

0.03

0.05

0.11

0.11

0.22

0.43

0.82

1.52

2.49

4.42

Figure 5: Benchmark of the vector quantization of a 104 × 5 nor-
malized dataset. The test was run on a Windows desktop with Intel
i5-3350 2.7GHz CPU.

Fig. 5, in order to have a responsive interaction for a single particle
(i.e. latency < 0.3 s), the total numbers N × d of a data matrix
should be approximately < 15000. Thus, given a new data matrix
X ∈ N × d,R), if the total number of cells is greater than the
threshold, a mild vector quantization is of k prototypes is applied,
e.g. with k = round(15000/d).

The vector quantization can be precompiled prior to interac-
tion and sonification as a data reduction method, thus the compute
time for the quantization does not affect the time for the sonifica-
tion.

5.3. Parallel Computing with OpenCL

We paralleled the computation of multiple particles’ sonification
using OpenCL. The OpenCL framework allows parallelization to
be executed on either CPUs or GPUs. In both cases, the Np parti-
cles are distributed to the parallel kernels. Each kernel shares the
same data matrix and model parameters, the only difference is the
initial location of the particle. As a result, each kernel returns the
trajectory and kinetic energy vector for the assigned particle. The
performance results are presented in the next subsection.

5.4. Performance of Different Process Units

We tested the new model implementation on 1 CPU (Intel(R)
Core(TM) i5-5287U CPU @ 2.90 GHz, dual- core) and 2 GPU
Nvidia GeForce 940M and Nvidia GeForce GTX 970). These
three units cover a common range of consumer processing units.
Due to the limitation in equipment, the latest generation graphic
cards in 2017 such as GeForce GTX 1000 series are not tested.

However, our selection shall provide an insight into the perfor-
mance of the PTS model using common computers.

Two random datasets are selected for the benchmarks. A
smaller data matrix X1 ∈M(200× 5,R) and a larger data matrix
X2 ∈M(2000×5,R). Notice that the total number of cells ofX2

equals the threshold for applying vector quantization, hence vector
quantization was not applied.

Comparing the baseline result from Fig. 4 with using OpenCL
with CPU (Fig. 6), the latter achieved a mean acceleration ratio of
1.67 in X1 and 1.59 in X2 for multiple particles (Np > 1).

0.0 0.2 0.4 0.6 0.8 1.0
Time [secs]

1

10

20

30

40

50

60

70

80

90

100

Nu
m

be
r o

f P
ar

tic
le

s

0.0

0.01

0.01

0.02

0.03

0.03

0.04

0.05

0.06

0.06

0.07

200 x 5 dataset

0.0 0.2 0.4 0.6 0.8 1.0

0.02

0.07

0.17

0.24

0.32

0.37

0.43

0.52

0.55

0.63

0.76

2000 x 5 dataset

Figure 6: Performance of PTS written in OpenCL using the In-
tel(R) Core(TM) i5-5287U CPU @ 2.90GHz.

When testing with the GPUs, Fig. 7 & 8 show that there is a
constant offset in the computation time, which is due to the data
being copied in and out of OpenCL kernel at each call. The offset
time is proportional to the dataset size, thus for the larger dataset
X2 the latency is over threshold. On the other hand, since the
OpenCL implementation paralleled each particle, increasing the
number of particles does not lead to a proportional increase in the
computing time. Further tests with a higher number of particles
Np > 103 showed that compared to CPU we can gain a 30-fold
speedup before compute time starts to increase linearly also with
GPU.

0.0 0.5 1.0
Time [secs]

1

10

20

30

40

50

60

70

80

90

100

Nu
m

be
r o

f P
ar

tic
le

s

0.08

0.09

0.09

0.1

0.1

0.1

0.11

0.11

0.11

0.11

0.11

200 x 5 dataset

0.0 0.5 1.0

0.8

0.83

0.89

1.16

1.19

1.2

1.22

1.21

1.21

1.22

1.24

2000 x 5 dataset

Figure 7: Performance of PTS written in OpenCL using the Nividia
GeForce GTX 970 graphic card.

The 23rd International Conference on Auditory Display (ICAD–2017) June 20-23, 2017, Pennsylvania State University

0.00 0.25 0.50 0.75 1.00
Time [secs]

1

10

20

30

40

50

60

70

80

90

100
Nu

m
be

r o
f P

ar
tic

le
s

0.07

0.08

0.11

0.11

0.11

0.1

0.12

0.11

0.12

0.12

0.12

200 x 5 dataset

0.00 0.25 0.50 0.75 1.00

Nu
m

be
r o

f P
ar

tic
le

s
0.75

0.85

0.95

1.02

1.06

1.05

1.05

1.07

1.06

1.11

1.13

2000 x 5 dataset

Figure 8: Performance of PTS written in OpenCL using the Nividia
GeForce 940m graphic card.

5.5. Hybrid parallelism between CPU and GPU

Section 5.1 – 5.4 led to the following conclusions:

1. The Cython implementation is ’in serial’ thus the computa-
tion time increased linearly as Np increased.

2. Comparing this to using Cython and OpenCL on Intel i5
CPU, the OpenCL implementation is faster. But it is not
efficient at dealing with larger amount of particles.

3. Implementing OpenCL on GPU has a strong ability for par-
alleling large amount of particles but currently prolonged
by the data I/O overhead (offset) between memory and
graphic card units.

Based on these 3 results, we propose a hybrid OpenCL solu-
tion that utilizes the CPU for smaller Np but then automatically
switches to GPU-based rendition if Np becomes larger. The vari-
ation in Np will depend on the user’s interactions, e.g. tapping an
area with finger or palm. The threshold may vary due to the com-
puter’s processing power, yet it can be pre-calculated when a new
dataset is loaded.

We conducted a test to study how the following three key vari-
ables that affect the computational time:

• ND = N × d is the total size of the dataset. This variable
affects is the main factor for the data input overhead when us-
ing GPU. It also contributes the cost of the potential function
(cf. eq. (1)).

• Nv is the trajectory vector (aka. the audio buffer size), which
affects the overheads of both input and output (passing the
vector from GPU back to memory).

• Np is the number of particles, which only affects the trajec-
tory’s computation cost.

From our benchmarks we can model the relationships between
the three aforementioned variables and computational time. For
GPU we expect:

t = aNDNv + bNv +

{
cNDNv if Np <= No

p

c
Np

No
p
NDNv else

(6)

whereas for CPU, we expect

t = dNDNvNp , (7)

where a, b, c, d are coefficients and No
p is the threshold of maxi-

mum GPU capacity for calculation in parallel at at time. Eq. (6)
addresses that the computation cost is based on three parts: in-
put offset, output offset and cost for rendering the sonification and
trajectory. However, the cost does not increase when Np ≤ No

p .
Using OpenCL with CPU does not suffer from the copying offsets
but only lacks the benefit of allowing a larger number of particles
to run without affecting the time.

We then tested the assumption using the GTX970 graphic card
and the Intel i5 CPU with different ND, Nv and Np and their cor-
respondent computational time t (cf. Fig. 9). However, instead of
plotting t as function of NP , we depict t/(ND ·Nv), which gives
the unit computational time that is only relevant to the number of
particles plotted on the x-axis. In Fig. 9, each line (apart from the
black straight line) represents a specific combination of ND and
Nv . The black straight line is the linear regression of the CPU’s
OpenCL performance5.

101 102 103 104

Number of Particles

10 8

10 7

10 6

10 5

t/(
N

D
*N

v)
 [

se
cs

]

Figure 9: Normalized computation time (t/(NDNv)) comparison.
The markersizes of the data points represents is mapped to ND .
Color coding is mapped to Nv .

The figure shows that the approximate maximum number of
particles for which parallel computing most significantly increases
performance (No

p is peaked at 2048, from then on the required time
increased linearly withNp. WhenNp < No

p , the computation cost
stayed relatively flat with minor increase as Np increased, which
is due to Np × Nv of kinetic energy vector (for sonification) and
Np × Nv × d of position matrix (for visualization) to be copied
from GPU back to the memory. Also, the offset of the first data
point (Np = 1) indicates the input offset. At a larger number of
particles (Np > 100), GPU shows superiority over CPU and the
speedup exhibits a maximum at No

p ≈ 2048, which is about 30
times faster than CPU.

In result, for the tested hardware configuration we arrive at the
following conclusions:

1. It is more effective to use OpenCL with CPU than GPU
when Np < 100, vice versa.

5The high linearity we found when using CPU at lower particle number
(< 100) led us to use linear regression line rather than the actual compu-
tational cost.

The 23rd International Conference on Auditory Display (ICAD–2017) June 20-23, 2017, Pennsylvania State University

2. When 100 < Np < 2048, it is more efficient to use GPU
to better exploit the potential of parrallelism.

3. When Np > 2048, the speedup is maximized with a factor
of ≈ 30.

4. A significant overhead persists for our current approach due
to data being copied in and out of the GPU.

We then put the hybrid method into test and set the switch-
ing threshold to 100. In this test (cf. Fig. 10), we tested different
numbers of particles and data sizes. As mentioned before, 300 ms
is the latency threshold in order to be considered suitable for real-
time interaction. Based on the graph, most of the tested data sizes
are suitable for real-time interaction when Np is smaller than 100.
For ND < 1400, low latency can still be still achieved for higher
Np values. But as ND > 1400 increased, the latency is greater
than 300 ms for larger numbers of particles. However, this issue
can be addressed by using the above-proposed vector quantization
approach presented in Sec. 5.2.

100 101 102 103 104

Number of Particles

10 3

10 2

10 1

100

Co
m

pu
ta

tio
n

Ti
m

e
[s

ec
s]

ND = 6400
ND = 5400
ND = 4400
ND = 3400
ND = 2400
ND = 1400
ND = 400
300ms threshold

Figure 10: Plot of the computation time t with the hybrid method
against Np. The dashed line indicates our defined threshold for
real-time interactivity.

6. DISCUSSION & CONCLUSION

This paper continues the research on Model-Based Sonification.
For the example of Particle Trajectory Sonification we imple-
mented data optimization and parallel computing procedures to in-
crease the responsiveness when interacting with high-dimensional
complex data. The PTS model was initially designed to analyze
clustering features of usually high-dimensional datasets offline as
the computational time may take up to minutes and even longer. In
this project, we proposed several methods to increase the total per-
formance when sonifying multiple particles’ trajectories for larger
datasets. This could pave the way towards an interactive structure-
specific6 toolbox for the exploratory analysis of high-dimensional
data. Firstly, vector quantization can effectively set up a time cap
of 300 ms for a single particle trajectory while maintaining the data

6in contrast to data-specific

structure and thus enable PTS for larger datasets. Secondly, we ob-
served that the OpenCL implementation via CPU provides a mod-
erate speedup compared to the baseline Cython implementation.
With a higher amount of GPU process units, increasing the amount
of particles does not increase the time proportionally. At our test,
we found a maximum of 30 times faster computation as compared
to CPU for larger number of particles (> 2000). However, the data
I/O overhead between memory and the graphics card is still large
for our current implementation. For the tested computer configu-
ration, the hybrid OpenCL implementation can ensure low latency
(<300 ms) forNp < 100 even with large dataset, but it is found to
be difficult to keep the latency low as the number of particles Np

becomes very large.
For our next steps, we plan to reimplement our OpenCL algo-

rithm in hope to eliminate input offsets of GPU by allowing the
data matrix to remain stored in the graphic units instead of passing
it at each call. Also, we currently work on a distance-matrix-based
method for choosing the most influential neighbors relative to the
current particle’s position at each iteration and discarding the rest.
This could lead to another significant speed up in combination with
vector quantization. These together could potentially lead to a sig-
nificant speedup allowing thousands of particles to be sonified in
high-dimensional datasets in real-time.

The advantage of listening to the clustering information via
PTS over the visualization of the potential map (cf. Fig. 1,
2), is that potential maps can only be computed for rather low-
dimensional problems (< 3 dimensions), whereas with few sim-
ple sound probes, the user can navigate the full potential function
and quickly explore prevalent potential troughs (corresponding to
clusters) at different scales of resolution.

7. LINK

Supplementary material for this paper (media files) are available
via the DOI: 10.4119/unibi/2911345

8. ACKNOWLEDGMENT

This research was supported by the Cluster of Excellence Cog-
nitive Interaction Technology ‘CITEC’ (EXC 277) at Bielefeld
University, which is funded by the German Research Foundation
(DFG). We wish to thank our student worker Akhil Jain for pro-
gramming support.

9. REFERENCES

[1] T. Hermann, A. Hunt, and J. G. Neuhoff, Eds., The Sonifica-
tion Handbook. Logos Verlag, 2011.

[2] A. Inselberg and B. Dimsdale, “Parallel coordinates: A tool
for visualizing multidimensional geometry,” Proc. IEEE Vi-
sualization, pp. 361–378, 1999.

[3] M. Graham and J. Kennedy, “Using curves to enhance par-
allel coordinate visualisations,” Information Visualization,
2003. IV 2003. Proceedings. Seventh International Confer-
ence on, pp. 10–16, July 2003.

[4] J. H. Flowers and T. A. Hauer, ““sound” alternatives to visual
graphics for exploratory data analysis,” Behavior Research
Methods, Instruments, & Computers, vol. 25, no. 2, pp. 242–
249, 1993.

The 23rd International Conference on Auditory Display (ICAD–2017) June 20-23, 2017, Pennsylvania State University

[5] S. C. Peres and D. M. Lane, “Sonifcation of statistical
graphs,” Proceedings of the 2003 International Conference
on Auditory Display, 2003.

[6] J. H. Flowers, D. C. Buhman, and K. D. Turnage, “Cross-
modal equivalence of visual and auditory scatterplots for ex-
ploring bivariate data samples,” Human Factors: The Journal
of the Human Factors and Ergonomics Society, vol. 39, pp.
341–351, 1997.

[7] T. Hermann and H. Ritter, “Listen to your data: Model-based
sonification for data analysis,” Advances in intelligent com-
puting and multimedia systems, vol. 8, pp. 189–194, 1999.

[8] T. Hermann, P. Meinicke, and H. Ritter, “Principle curve
sonification,” 2000.

[9] T. Bovermann, T. Hermann, and R. Helge, “The local heat
exploration model for interactive sonification,” International
Conference on Auditory Display, 2005.

[10] T. Hermann, M. H. Hansen, and H. Ritter, “Sonification of
markov chain monte carlo simulations,” International Con-
ference on Auditory Display, 2001.

[11] T. Hermann, The Sonifcation Handbook. Logos Verlag,
2011, ch. Model-Based Sonification, pp. 399–425.

[12] R. Tünnermann and T. Hermann, “Multi-touch interactions
for model-based sonifcation,” Proceedings of the 15th Inter-
national Conference on Auditory Display, 2009.

[13] T. Hermann and H. Ritter, “Crystallization sonifcation of
high-dimensional datasets,” Proceedings of the 2002 Inter-
national Conference on Auditory Display, 2002.

[14] T. Hermann, “Sonification for exploratory data analysis,”
Ph.D. dissertation, Bielefeld University, 2002.

[15] T. Hermann and H. Ritter, “Model-based sonification
revisited—authors’ comments on hermann and ritter, icad
2002,” ACM Transactions on Applied Perception (TAP),
vol. 2, no. 4, pp. 559–563, 2005.

[16] D. Wessel and M. Wright, “Problems and prospects for inti-
mate musical control of computers,” Computer Music Jour-
nal, vol. 26, no. 3, pp. 11–22, 2002.

[17] A. Anders and E. Jansson, “From touch to string vibrations
- the iniitla course of the piano tone,” The Journal of the
Acoustical Society of America, vol. 81, no. S1, pp. S61–S61,
1987.

[18] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel pro-
gramming standard for heterogeneous computing systems,”
Computing in Science & Engineering, vol. 12, no. 1-2, pp.
66–73, 2010.

[19] S. Behnel, R. Bradshaw, D. S. Sljebotn, and G. Ewing,
“Cython: C-exsions for python,” 2008. [Online]. Available:
http://cython.org

[20] O. Bélanger, “Pyo,” 2012. [Online]. Available: http:
//ajaxsoundstudio.com/team/

