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A B S T R A C T

Cyanidioschyzon merolae (C. merolae) is an acidophilic red alga growing in a naturally low carbon dioxide (CO2)
environment. Although it uses a ribulose 1,5-bisphosphate carboxylase/oxygenase with high affinity for CO2, the
survival of C. merolae relies on functional photorespiratory metabolism. In this study, we quantified the tran-
scriptomic response of C. merolae to changes in CO2 conditions. We found distinct changes upon shifts between
CO2 conditions, such as a concerted up-regulation of photorespiratory genes and responses to carbon starvation.
We used the transcriptome data set to explore a hypothetical CO2 concentrating mechanism in C. merolae, based
on the assumption that photorespiratory genes and possible candidate genes involved in a CO2 concentrating
mechanism are co-expressed. A putative bicarbonate transport protein and two α-carbonic anhydrases were
identified, which showed enhanced transcript levels under reduced CO2 conditions. Genes encoding enzymes of
a PEPCK-type C4 pathway were co-regulated with the photorespiratory gene cluster. We propose a model of a
hypothetical low CO2 compensation mechanism in C. merolae integrating these low CO2-inducible components.

1. Introduction

Photosynthetic biomass production is initialized by the fixation of one
molecule of CO2 to the acceptor molecule ribulose 1,5-bisphosphate, cat-
alyzed by the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase
(Rubisco). The resulting two molecules of 3-phosphoglycerate (3-PGA) are
fed into the Calvin-Benson-Bassham cycle (CCB) for reduction to carbo-
hydrates and regeneration of the acceptor molecule. Rubisco catalyzes also
an oxygenation reaction in which O2 is added to the acceptor molecule,
resulting in a proportion of Rubisco occupied with the non-productive side
reaction yielding one molecule of 3-PGA and one molecule of 2-phos-
phoglycolate (2-PG). The latter inhibits multiple essential enzymes and
must hence be efficiently detoxified. The photorespiratory pathway con-
verts two molecules of 2-PG into one molecule of 3-PGA under consump-
tion of energy and release of CO2 and ammonia (reviewed in Bauwe et al.,
2010; Hagemann et al., 2016). Two factors are critical for the rate of car-
boxylation versus oxygenation by Rubisco: The specificity of the enzyme
for CO2 and the ratio of [CO2] to [O2] at the site of Rubisco. Rubisco en-
zymes from organisms of various photosynthetic lineages have different

evolutionary origins, and differ in substrate specificity and reaction velo-
city. Cyanobacteria and land plants use Rubisco Form 1A and 1B, which are
of cyanobacterial origin, while non-green algae, such as red algae, contain
Form 1C and 1D, which are of proteobacterial origin (Hauser et al., 2015).
As a consequence of the reaction mechanism, higher specificity for CO2

decreases Rubisco's velocity, while an increase in velocity is accompanied
by a decline in specificity (Tcherkez et al., 2006). Cyanobacteria employ a
fast Rubisco with low specificity for CO2, while land plant Rubisco achieves
a higher CO2 specificity at the expense of velocity (Savir et al., 2010).
Rubisco enzymes of thermophilic cyanidiophycean red algae, such as
Galdieria parta and Cyanidium caldarium, exhibit the highest CO2 specificity
and thus lowest velocity, measured to date (Uemura et al., 1997).

In addition to the capacities of the enzyme, the [CO2] to [O2] ratio
next to Rubisco strongly influences the carboxylation versus oxygena-
tion rate. To overcome this constraint, many photosynthetic organisms
evolved a CO2 concentrating mechanism (CCM), which raises the CO2

concentration in close vicinity to Rubisco and thereby enhances the
carboxylation rate (Giordano et al., 2005; Raven et al., 2012). The
occurrence of CCMs was demonstrated for cyanobacteria, most algae
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and aquatic plants, as well as for C4 and Crassulacean acid metabolism
plants (reviewed in Raven et al., 2008). The cyanobacterial CCM em-
ploys inorganic carbon (Ci) uptake mechanisms for cytoplasmic bi-
carbonate (HCO3

−) accumulation and specific microcompartments, the
carboxysomes, which encapsulate Rubisco and carbonic anhydrase
(CA). The cytoplasmic HCO3

− diffuses into the carboxysome and is
converted into CO2 by CA. Thus, the CO2 concentration is increased by
a factor of up to 1000 next to Rubisco (Badger and Price, 2003; Kaplan
and Reinhold, 1999). However, even the action of a CCM cannot fully
repress the oxygenase activity of Rubisco (Eisenhut et al., 2006, 2008;
Nakamura et al., 2005; Zelitch et al., 2009). While among aquatic
photosynthetic organisms the cyanobacterial and green algal CCM are
well studied, it remains unclear whether thermophilic red algae also
employ such a mechanism to improve photosynthetic efficiency
(Giordano et al., 2005; Zenvirth et al., 1985).

Cyanidioschyzon merolae (C. merolae) is a model organism for cya-
nidiophycean red algae. The 16 Mbp genome of the single-cell organism
is fully sequenced (Matsuzaki et al., 2004) and techniques for targeted
gene knockout by homologous recombination as well as transient
transformation for, e.g., localization studies are available (Imamura
et al., 2010; Minoda et al., 2004; Watanabe et al., 2011). C. merolae
tolerates temperatures up to 57 °C and prefers acidic (pH<2) growth
medium (Seckbach, 1995). Under these conditions, CO2 is the prevalent
inorganic carbon (Ci) species in the aquatic environment. Although red
algae use a Rubisco with high specificity for CO2 over O2, the reduced
solubility of CO2 at high temperatures forces C. merolae to perform a
plant-like photorespiratory cycle (Rademacher et al., 2016).

In this work, we quantified the transcriptional response of C. mer-
olae in response to changes in CO2 concentrations by RNA-sequencing
(RNA-seq) and applied the data set to predict a hypothetical CCM in C.
merolae and to search for possible components.

2. Material and methods

2.1. C. merolae cultivation

C. merolae 10D wildtype (WT) cells were cultivated in 2x modified
Allen’s growth medium, pH 2 (Minoda et al., 2004), at 30 °C, bubbled
with high CO2 concentrations (5% CO2 in air, HC) or low CO2 con-
centrations (0.04% CO2 in air, LC) at 90 μmol photons m−2 s−1 light in
a Multi-Cultivator MC 1000-OD system (Photon Systems Instruments,
Drasov, Czech Republic).

For the CO2 shift experiment, three independent biological replicates of
continuously HC grown C. merolae WT cells were cultivated for 24 h under
HC conditions with an initial optical density at 750 nm (OD750) of 0.7. After
24 h, cells were shifted by changing the CO2 concentration in the aeration
for 24 h to LC conditions and afterwards shifted back to HC conditions for a
24 h recovery phase. For RNA extraction, 5 mL samples (OD750 = 1.0) were
taken immediately before the shift to LC (HC 0 h), 3 h after shift to LC (LC
3 h), 24 h after shift to LC (LC 24 h), and 24 h after a recovery phase at HC
(HC 24 h). A sampling scheme is illustrated in Fig. 1A.

2.2. Gene expression analysis by RNA-seq

For RNA isolation, the 5 mL samples were centrifuged for 5 min at
4 °C (3000 rpm). RNA extraction from the cell pellet was performed
using the EURx GeneMatrix Universal RNA Purification Kit (Roboklon,
Berlin, Germany) following the manufacturer’s protocol for RNA cell
extraction. DNA was removed by treatment with RNase-free DNaseI
(New England Biolabs, Ipswich, USA).

Libraries were prepared using the TruSeq RNA Sample Prep Kit v2
(Illumina, San Diego, USA). RNA integrity, sequencing library quality
and fragment size were checked on a 2100 Bioanalyzer (Agilent).
Average library size was 320 bp with equimolar pooling (2 nM).
Demultiplexed Illumina reads were aligned with RSEM (parameters:
−very-sensitive; −calc-pme; −calc-ci; −gibbs-burnin 500) with the

default aligner bowtie2 (Li and Dewey, 2011) to the reference tran-
scriptome of C. merolae 10D (ASM9120v1.30.gtf) (Nozaki et al., 2007),
which was retrieved from the ENSEMBL database (Yates et al., 2016).

Differential gene expression was analyzed using the EdgeR package
(McCarthy et al., 2012) in R. All sequenced conditions were analyzed in
a pairwise manner with HC 0 h as reference point. A q-value of 0.01 was
chosen as significance threshold for single gene differential expression
after correction for multiple testing via the Bonferroni algorithm to
limit the false positive rate to close to zero at the cost of a higher false
negative rate (Krzywinski and Altman, 2014). For K-means clustering
transcripts per million (TPM) values were scaled to their average. Sum
of square errors were used to determine the suitable number of clusters
at 10, K-means clustering with Euclidean distance carried out 10,000
times, and the clustering with the best SSE ratio used for further ana-
lysis. Principle component analysis was performed on scaled TPM va-
lues.

The MapMan-based functional categorization of all genes in the C.
merolae genome was performed by comparing their protein sequence to
Arabidopsis TAIR10 (http://www.arabidopsis.org/) using the standalone
version of NCBI BLASTP (2.2.31+) with default settings. The MapMan
categorization was transferred from TAIR10. Functional enrichment was
performed on hierarchical, independent MapMan categories reduced to
their first and second level using Fisheŕs exact tests. All P-values were
corrected for multiple testing via the Benjamini Hochberg algorithm (Table
S1) (Benjamini and Hochberg, 1995). GO terms for C. merolae proteins were
retrieved from the Uniprot database and matched to gene identifiers using
the ENSEMBL database (Yates et al., 2015). GO term enrichment was tested
with the TopGO package (parameters; nodeSize = 10, ontology= “BP”)
(https://bioconductor.org/packages/release/bioc/html/topGO.html; Alexa
and Rahnenfuhrer, 2016) in R. Statistically significant terms were calcu-
lated with classic Fisheŕs exact test and without weighing and corrected
according to Benjamini-Yekutieli to account for dependency of GO terms

Fig. 1. Overview of the CO2 shift experiment. A. Experimental set-up of the CO2 shift
experiment. C. merolae cells were cultivated under high CO2 (5% CO2 in air, HC) con-
ditions, shifted for 24 h to low CO2 (0.04% CO2 in air, LC) conditions, and then shifted
back to HC conditions. Samples for RNA-seq were taken immediately before the shift to
LC (HC 0 h), 3 h (LC 3 h) and 24 h (LC 24 h) after the shift to LC, and 24 h after the
recovery at HC (HC 24 h). The color code for the different samples applies for the com-
plete study. B. Principle component analysis of RNA-seq data.
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(Benjamini and Yekutieli, 2001) (Table S2). Only significant enrichments
(q < 0.05) are reported in the text. Transcription factors were annotated
based on Pérez-Rodríguez et al. (2010). Heatmaps were created using
the heatmap.2 package (https://cran.r-project.org/web/packages/gplots/
gplots.pdf).

The complete RNA-seq data set is provided in Table S3. The read data
have been submitted to the National Center for Biotechnology Information
Gene Expression Omnibus under accession number GSE100372 (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100372).

2.3. In silico analyses of carbonic anhydrases

Amino acid sequences of CMT416C and CMI270C were retrieved
from the Cyanidioschyzon merolae Genome Project data base (http://
merolae.biol.s.u-tokyo.ac.jp) and the alignment performed with the
ClustalW on the Phylogeny.fr platform (http://www.phylogeny.fr,
Dereeper et al., 2008). The SOSUI platform (http://harrier.nagahama-i-
bio.ac.jp/sosui/, Hirokawa et al., 1998) was employed to search for
transmembrane regions. TargetP1.1 (http://www.cbs.dtu.dk/services/
TargetP/, Emanuelsson et al., 2000) was used for prediction of hy-
pothetical targeting peptides.

2.4. Analysis of subcellular localization of carbonic anhydrases

For subcellular localization of the carbonic anhydrases (CA)
CMT416C and CMI270C in Nicotiana benthamiana (N. benthamiana)
protoplasts and C. merolae cells, respectively, two constructs were
generated for each protein, fusing CMT416C and CMI270C with the
yellow fluorescent protein (YFP) either at the N- or C-terminus. The
coding sequences were amplified by PCR using C. merolae genomic DNA
as template and cloned into the pUBN-YFP or pUBC-YFP vector ap-
plying gateway technology (Grefen et al., 2010). In pUBN-YFP and
pUBC-YFP expression of the fusion proteins is under the control of the
UBIQUTIN 10 promoter. Primer sequences are listed in Table S4.
Transient transformation of N. benthamiana leaves was carried out using
the Agrobacterium tumefaciens strain GV3101. Protoplast isolation and
microscope analysis was performed 2 d after infiltration using a Zeiss
LSM 510 Meta confocal −scanning laser microscope as described in
Breuers et al., 2012. Transient transformation of C. merolae cells was
performed as described by Ohnuma et al., 2008. Microscope analysis
was perfomed 24 h after transformation with a Zeiss LSM 780 micro-
scope.

3. Results

3.1. Effects of reduced CO2 concentrations on transcriptome

To analyze transcriptional changes in response to altered CO2 con-
centrations, we performed a CO2 shift experiment. C. merolae cells were
cultivated for 24 h under HC (5% CO2 in air) conditions, then shifted
for 24 h to LC conditions (0.04% CO2 in air), and finally shifted back to
HC conditions for another 24 h. Samples were taken in biological tri-
plicates immediately before the shift to LC (HC 0 h), 3 h after the shift
(LC 3 h), 24 h after the shift (LC 24 h), and 24 h after the recovery

under HC conditions (HC 24 h). The experimental set-up is illustrated in
Fig. 1A. RNA-seq analysis generated 726,326,434 Illumina paired-end
reads with about 18.4 Million paired-end reads per sample on average.
92% of the RNA-reads mapped to the reference genome of C. merolae
(Matsuzaki et al., 2004).

To evaluate reproducibility among biological replicates, a principle
component analysis (PCA) was performed on the transcripts per million
(TPM) values. The biological triplicates clearly clustered together
(Fig. 1B), indicating lower variation between biological replicates
compared to the treatment. Furthermore, the separation of the samples
in the PCA indicated long-term and short-term LC effects as principle
components 1 and 2, accounting for 42% and 26% of transcriptional
variation, respectively (Fig. 1B).

Consistent with the PCA of all expression values, we found a larger
number of genes significantly (q < 0.01, Bonferroni corrected)
changed 24 h (long-term, 1021 genes in total, Fig. 2B, Table S3) after
the shift from HC to LC conditions than 3 h (short-term, 552 genes in
total, Fig. 2A, Table S3) after the shift. For 102 genes, the 24 h culti-
vation phase under HC conditions was not sufficient to fully recover the
initial HC expression situation (Fig. 2C, Table S3) accounting for the
difference between HC 0 h and HC 24 h in the PCA (Fig. 1B).

3.2. Identification of CO2-dependent gene expression patterns

To search for CO2-dependent gene expression patterns, we per-
formed K-means clustering. As a result, 10 different clusters were
generated (Fig. 3). Clusters 1, 2, 3, and 4 contained genes, which were
characterized by short-term reduced transcript levels. Genes of clusters
5 and 6 showed a decline in transcript level during the 24 h LC treat-
ment. Clusters 7 and 8 contained genes with rapid transcript accumu-
lation after 3 h LC conditions, while in cluster 9 transcript levels con-
stantly increased until 24 h after LC shift. Cluster 10 contained genes
that were specifically induced in expression 24 h after LC shift.

To functionally characterize these clusters, we tested them for en-
richment of gene ontology (GO) terms and MapMan categories (Thimm
et al., 2004) expecting similar enrichments with these independent
methods. Among the clusters, which contained short-term (3 h after LC
shift) down-regulated genes, we found cluster 2 enriched for genes of
the GO terms photosynthesis, light reactions, and tetrapyrrole bio-
synthesis (Table S2) and cluster 3 enriched with terms related to ve-
sicle-mediated transport. Clusters 5 and 6 contained genes with reduced
abundance in long-term CO2 deprivation (24 h after LC shift). Cluster 5
showed an enrichment in the MapMan category DNA synthesis/chro-
matin structure (Table S1) and corresponding GO terms related to DNA
replication (Table S2), while cluster 6 was enriched in genes belonging
to GO terms and MapMan categories related to translation and protein
biosynthesis (Table S2) and protein biosynthesis (Table S1), respec-
tively. For cluster 7, which contained short-term LC-induced genes, we
observed a significant enrichment of genes involved in the MapMan
category photosynthesis: light reactions (Table S1). Among the clusters
8, 9, and 10, which contained constantly and long-term LC-induced
genes (Fig. 3), cluster 8 was significantly enriched for genes connected
to photorespiration (Table S1). No significant enrichments were de-
tected for cluster 9 and 10.

Fig. 2. Global transcriptional response of C. merolae
toward changes in CO2 concentrations. A. Short-term
(3 h after shift from HC to LC conditions) effects of
reduced CO2 availability on gene expression. B. Long-
term (24 h after shift from HC to LC conditions) ef-
fects of reduced CO2 availability on gene expression.
C. Recovery effects 24 h after re-shift from LC to HC
conditions. Changes are given as log2-fold changes
compared to HC 0 h. Significance was tested with
EdgeR (q < 0.01; Robinson et al., 2010).
Significantly changed genes are highlighted as red
dots. Numbers of significantly up- and down-regu-
lated genes are indicated.
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All genes encoding the photorespiratory enzymes (Rademacher
et al., 2016) were strongly induced, ranging from 2.6-fold for hydro-
xypyruvate reductase (CMQ289C) to 53-fold for alanine:glyoxylate
aminotransferase (CMS429C) 3 h after shift from HC to LC conditions.
Though at a lower level compared to the LC 3 h value, these genes were
still significantly up-regulated 24 h after the LC shift (Fig. 4, Table S5).
Besides the photorespiratory genes, we also identified core elements of
a hypothetical C4 cycle, funneling pyruvate into a PEP oxaloacetate
cycle (Fig. 4, Table S5), significantly up-regulated during the LC
treatment. Cluster 8 contained the genes encoding phosphoenolpyr-
uvate carboxylase (PPC, CME095C) and phosphoenolpyruvate carbox-
ykinase (PEPCK, CMN285C). With a 22-fold induction, pyruvate
phosphate dikinase (PPDK, CMF012C) was one of the 10 most up-
regulated genes 3 h after the CO2 shift. The transcript accumulation was
even higher 24 h after LC shift. Accordingly, PPDK belonged to cluster
9. The pyruvate regenerating mechanism via malate dehydrogenase and

NADP-malic enzyme exists in C. merolae as both genes were expressed
at HC 0 h. Their expression however was significantly reduced in re-
sponse to the LC shift (Fig. 4, Table S5).

3.3. Bicarbonate transporters and carbonic anhydrases

We furthermore employed the RNA-seq data set to search for possible
components of a hypothetical CCM. We followed the rationale that candi-
date genes involved in an inducible CCM should be co-regulated with genes
encoding proteins of the photorespiratory metabolism, as demonstrated for
the green alga Chlamydomonas reinhardtii (C. reinhardtii) (Fang et al., 2012).
Thus, we investigated clusters 8 and 9, which contained the majority of
photorespiratory genes, for the occurrence of HCO3

− transporters and CAs,
which might participate in a hypothetical CCM. BlastP analyses identified
two candidate proteins in C. merolae homologous to known HCO3

− trans-
port proteins in C. reinhardtii (Table S6). The protein CMN251C showed

Fig. 3. Analysis of CO2-dependent expression pat-
terns by K-means clustering. K-means cluster are
shown in z-scores. Presented are 10 different clusters
(1–10), representing different expression patterns
upon changes in CO2 conditions. Color-coded arrows
indicate different samples.

Fig. 4. The transcriptional response of genes in-
volved in photorespiratory metabolism and HCO3

−

homeostasis to changes in CO2 availability. The ex-
pression profiles of all genes involved in photo-
respiration and carbon sequestering from HCO3

− are
presented as log2-fold changes relative to their ex-
pression at sampling point H0, and are illustrated as
heat map. The sampling points are indicated by H0
(HC 0 h), L3 (LC 3 h), L24 (LC 24 h), and H (HC
24 h). All significant expression changes, at
q < 0.05, are indicated by white asterisks.
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homology to the HIGH-LIGHT INDUCED GENE3 (HLA3) HCO3
− trans-

porter, which is induced under limiting CO2 conditions in C. reinhardtii
(Tirumani et al., 2014). The protein CMS091C is homologous to the
CHLOROPLAST ENVELOPE PROTEINS1 and 2 (CCP1 and CCP2), which
showed HCO3

− transporter function in C. reinhardtii (Tirumani et al., 2014).
Expression of the gene CMN251C followed the same transcription pattern as
the photorespiratory genes with a 2-fold transcript accumulation 3 h and
24 h after the shift to LC conditions (Fig. 5A, Table S5, cluster 8). In con-
trast, expression of CMS091C did not cluster together with the photo-
respiratory genes. The transcription pattern was not affected by the CO2

conditions (Fig. 5A, Table S5) and grouped in cluster 4.
BlastP analyses with known α-, β-, and γ-CAs of the model plant

Arabidopsis thaliana (A. thaliana) (Fabre et al., 2007) revealed four
proteins homologous to CAs in C. merolae: CmCA1 (CMT416C), CmCA2
(CMI270C), CmCA3 (CMM052C), and CmCA4 (CMD023C). CmCA1 and
CmCA2 were homologous to α-CAs and CmCA3 and CmCA4 homo-
logous to γ-CAs of A. thaliana (Table S7). Genes encoding α-CAs showed
CO2-dependent transcriptional dynamics (Fig. 5B, Table S5). Expression
of CmCA1 was most affected by the changing CO2 conditions. While
under HC conditions the gene was only weakly expressed, we observed

a 67-fold accumulation of CmCA1 transcript 3 h after the shift to LC
conditions and a 33-fold increased value 24 h after the shift. The final
24 h HC treatment lead to full recovery to the initial HC transcript value
(cluster 8). Transcript amounts of CmCA2 increased 1.5-fold 3 h after
the LC shift, went down to 50% of the initial HC value after 24 h LC
treatment and fully recovered to the HC default value after 24 h HC
conditions (cluster 7). In contrast, both γ-CAs, CmCA3 and CmCA4,
were quite constantly expressed in C. merolae under HC and LC con-
ditions (Fig. 5B, Table S5). The LC shift induced a slight reduction (0.7-
fold) in transcript abundances for CmCA3 (cluster 6), while transcript
amounts were slightly but significantly increased (1.2-fold) for CmCA4
24 h after shift to LC conditions (cluster 10).

3.4. Subcellular localization of CmCA1 and CmCA2

On the basis of the LC-inducible expression of CmCA1 and CmCA2,
we investigated the encoded proteins in more detail. An amino acid
alignment showed an identity of 90% between both proteins.
Interestingly, CmCA1 contained an additional N-terminal extension of
109 amino acids length (Fig. S1). Closer investigation of this extension
indicated the occurrence of a transmembrane region (23 amino acids
length) predicted by the SOSUI tool (Hirokawa et al., 1998) and a
mitochondrial target peptide predicted by TargetP (Emanuelsson et al.,
2000) (Fig. S1). To determine in which subcellular compartment the α-
CAs of C. merolae reside, localization constructs were designed with an
N- or C-terminal YFP-fusion to avoid masking of a hypothetical target
peptide signal. In transiently transformed tobacco protoplasts
YFP:CmCA1, YFP:CmCA2, and CmCA2:YFP were detected in the cy-
tosol. For CmCA1:YFP the fluorescent signal was mostly detected
around chloroplasts, indicating a possible attachment of CmCA1 to the
chloroplast envelope (Fig. 6A). Transient expression of the YFP fusion
proteins in C. merolae cells consistently revealed cytosolic localization
of YFP:CmCA1, YFP:CmCA2, and CmCA2:YFP. In the case of CmC-
A1:YFP we observed YFP fluorescence at the interface between chlor-
oplast and mitochondrion (Fig. 6B).

4. Discussion

The impact of reduced CO2 availability on the transcriptome of C.
merolae was large. In the short-term (3 h after shift to LC conditions),
11% of all genes were changed in transcript abundance (Fig. 2), which
is well in the range of a comparable study with C. reinhardtii 4 h after a
shift from HC to LC conditions (Fang et al., 2012) and markedly dif-
ferent from the response of land plants (Eisenhut et al., 2017; Queval
et al., 2012). Long-term (24 h) LC treatment increased the number of
significant changes (21% of all genes changed, Fig. 2) in line with the
larger variation captured in the PCA in the direction of long-term
change compared to short-term change (Fig. 1B).

The three sampling time-points captured three pivotal phases in the
responses of C. merolae to changes in CO2 availability: the initial
counter response including up-regulation of photorespiration and a
potential CCM, the long-term acclimation to reduced carbon in the
metabolic system, and the resupply with carbon in the system.
Intriguingly, the short-term high abundance response evident in the
clusters 8 and 9 (Fig. 3) included not only the full set of genes encoding
the enzymes of the photorespiratory cycle (derived from Rademacher
et al., 2016), but also CAs and genes known to be involved in the C4

cycle (Table S5). This coordinated up-regulation (Fig. 4, Table S5)
strongly underscores the importance of the photorespiratory pathway
in C. merolae under CO2 concentrations present in its ecological niche,
and points to a concerted transcriptional regulon of the photo-
respiratory genes. Among the potential transcriptional regulators
changing in expression concomitantly in clusters 8 and 9, the strongest
changes in amplitude were present in putative histone de-acetylases
(CMQ158C, CMG132C, Table S5), suggesting a potential role of epige-
netic processes, in a gene similar to sigma factor B (CMR165C, Table

Fig. 5. Effect of changes in CO2 concentrations on transcript abundances of genes en-
coding hypothetical HCO3

− transporters and carbonic anhydrases. A: CO2-dependent
changes in transcript amounts of CMN251C and CMS091C, encoding hypothetical HCO3

−

transporters. B. CO2-dependent changes in transcript amounts of CmCA1 (CMT416C),
CmCA2 (CMI270C), CmCA3 (CMM052C), and CmCA4 (CMD023C). Transcript amounts
are given in transcripts per million (TPM). Significant differences in relation to the HC 0 h
value (paired t-test, two-tailed), are indicated as * (P < 0.05) and ** (P < 0.01), ns: not
significant.
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S5), which likely mediates chloroplast transcription, and in a regulator
homologous to BRUTUS (CMM141C, Table S5), which controls the iron
response transcription factor POPEYE in higher plants. Long-term
carbon shortage at the LC 24 h time-point reduces growth (Rademacher
et al., 2016) and consequently growth associated processes, such as
DNA replication, the cell cycle, and protein biosynthesis were reduced
in transcriptional abundance (Fig. 3: clusters 5 and 6, Table S1, Table
S2). Reduction of transcriptional abundance for these processes has also
been observed in carbon starved land plants (Brilhaus et al., 2016) and
carbon starved C. reinhardtii cells (Brueggeman et al., 2012; Fang et al.,
2012) pointing to a preserved ancient survival mechanism. During the
response to LC, induced by low external CO2 in algae or by drought
induced stomatal closure in land plants, the responses are however
different. In both cases, the species initially respond with a reduction in
the transcriptional investment into photosynthesis (Fig. 3, cluster 2)
(Brilhaus et al., 2016). The long-term responses however present a
different pattern. The land plant maintains the low expression levels of
photosynthetic genes, while the red alga recovers its transcriptional
investment. C. merolae naturally grows under LC conditions and pre-
sumably recovers photosynthetic transcript abundance because its ac-
climation response re-enables efficient photosynthesis. The resupply of
abundant CO2 and presumably concomitant availability of fixed carbon
mitigated the majority of changes induced by 24 h of LC status as is
evident from the short distance between HC 0 h and HC 24 h points in
the PCA (Fig. 1B), and from the overall pattern (Fig. 3). This mitigation
of changes has also been observed in land plants upon resupply with
water, which in turn caused resupply with carbon (Brilhaus et al.,
2016). However, a low number of genes (Fig. 2C) did not return to the
initial HC starting expression value after a 24 h HC treatment. Among

these, we detected the gene encoding catalase (CMI050C), which par-
ticipates in the photorespiratory metabolism. The ongoing significantly
enhanced gene expression might indicate that this time period was not
sufficient for C. merolae to fully return to the metabolic or energetic
state of HC cells despite attaining a growth rate equal to before treat-
ment (Rademacher et al., 2016).

Co-expression is a powerful tool to search for unknown components
in functionally related processes. It was demonstrated for C. reinhardtii
that genes involved in photorespiratory metabolism are co-regulated
with genes involved in an inducible CCM (Fang et al., 2012) and a
photorespiratory transporter was identified by co-expression analysis in
higher plants (Bordych et al., 2013; Pick et al., 2013). Thus, we sear-
ched clusters 8 and 9, which contained photorespiratory genes, for
candidates establishing a hypothetical CCM in C. merolae. We identified
a hypothetical HCO3

− transporter, two CAs, and enzymes constituting a
PEPCK-type C4 cycle within the LC-inducible clusters 8 and 9 (Table
S5). We suggest the following hypothetical model (Fig. 7) for the con-
certed action of these proteins to function as CCM in C. merolae:

In its natural habitat with an acidic pH the major form of Ci is CO2,
which diffuses into the red algal cell. The cytoplasmic CAs (CmCA2 and
CmCA3, Fig. 6) convert the CO2 rapidly into HCO3

− and thus in-
tracellularly capture the Ci. Additionally, we identified the protein
CMN251C, which shows homology to the LC-inducible HLA3 HCO3

−

transporter from C. reinhardtii (Table S6). The protein is predicted to
reside in the plasma membrane. Thus, CMN251C is a promising can-
didate for Ci uptake under LC conditions in C. merolae. Photosynthesis
in the red alga is most efficient at a low extracellular pH and decreases
at a neutral pH (Zenvirth et al., 1985) calling into question whether
HCO3

− is the major Ci species taken up from the external medium by C.

Fig. 6. Subcellular localization studies of carbonic anhy-
drases. CmCA1 (CMT416C) and CmCA2 (CMI270C) were N-
and C-terminally fused with YFP, respectively. A. Fluorescent
pictures of tobacco protoplast, transiently expressing
YFP:CmCA1, CmCA1:YFP, YFP:CmCA2, and CmCA2:YFP fu-
sion proteins, respectively. Pictures were recorded 48 h after
infiltration of N. benthamiana leaves. B) Localization of
CmCA1 and CmCA2 in C. merolae. Shown are merged pic-
tures. The YFP signal is presented in green and yellow, re-
spectively, chlorophyll autofluorescence in red. C. merolae
cells were transformed 24 h before microscope analysis.
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merolae. Possibly, CMN251C’s role is the harvest of trace amounts of
environmental HCO3

− under Ci limited condition or serving as a CO2

diffusion facilitator.
Genes encoding the components of a PEPCK-type C4 pathway

(Fig. 4) were also contained in the photorespiratory gene cluster 8. This
might indicate a temporary HCO3

− partitioning via PPC and PEPCK
from the cytoplasmic HCO3

− pool into organic acids, thereby in-
creasing the concentration gradient and hence generating additional
“pull” for CO2 entry into the cell. By the action of PEPCK the CO2 is
released stepwise and allowed to diffuse into the chloroplast for fixation
by Rubisco. A single cell C4 metabolism as proposed in diatoms is a
distinct possibility. For example, in LC-acclimated Thalassiosira weiss-
flogii cells, it was shown that repression of PPC activity by the inhibitor
3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate resulted in a
90% decrease in the rate of photosynthesis, which could be overcome
by HC (Reinfelder et al., 2004). For the model diatom Phaeodactylum
tricornutum, the primary function of C4 metabolism might not be in CO2

fixation but rather play a role in dissipating energy and maintaining pH
homeostasis (Haimovich-Dayan et al., 2013). Alternatively, the tran-
sient upregulation of PPC and PEPCK under CO2 limitation might have
to do with overcoming short-term carbon limitation and gluconeogen-
esis from lipid stores and/or protein degradation.

The shift to LC conditions enhances the flux through the photo-
respiratory cycle in C. merolae (Rademacher et al., 2016). Accordingly,
photorespiratory glycine cleavage in the mitochondrion by the GDC
generates increased amounts of CO2 and NH3. The latter is likely pro-
tonated to NH4

+ at the pH of the mitochondrial matrix leading to an
alkalization (Eriksson et al., 1996). A function in maintaining the pH
homeostasis was suggested for the LC-inducible mitochondrial CAs in C.
reinhardtii (Eriksson et al., 1996). In accordance, we postulate that
CmCA1, which was almost exclusively expressed under LC conditions
(Fig. 5B), fulfills this function in C. merolae. Interestingly, we observed
in transiently transformed C. merolae cells the YFP fluorescence signal
of a CmCA1:YFP protein at the interface between chloroplast and mi-
tochondrion (Fig. 6B). A localization to the mitochondrial membrane is
in accordance with the in silico prediction of a transmembrane helix and

a mitochondrial targeting peptide in the N-terminal extension specific
for CmCA1 (Fig. S1). If CmCA1 was indeed attached to the mitochon-
drial membrane, its CO2 production might allow high CO2 accumula-
tion in close proximity to the chloroplast. Thus, the mitochondrial CO2

provision by the concerted action of GDC and CmCA1 might serve as a
CO2 pump for CO2 enrichment around Rubisco as part of a CCM. Al-
ternatively, CmCA1’s role may be the intracellular trapping of the high
volume of CO2 released during photorespiratory glycine decarboxyla-
tion avoiding leakage of CO2 from the cell.

Clusters 8 and 9 also contained numerous genes encoding proteins
of unknown function (Table S3). These LC-responsive proteins are po-
tential candidates for involvement in the LC acclimation in C. merolae
either to detoxify Rubisco oxygenation products or to enrich CO2 at the
site of Rubisco.

Although the RNA-seq data only provide tantalizing suggestions
about a CCM in the red alga and eventually cannot distinguish between
a transport based CCM, a biochemical CCM, a mixed type as here
suggested (Fig. 7), or an as of yet undiscovered mechanism, C. merolae
has demonstrated higher apparent affinity to CO2 under LC conditions
(Rademacher et al., 2016; Zenvirth et al., 1985), raising the possibility
that one or more of the mechanism described above are functional.

5. Conclusion

In conclusion, the red alga C. merolae shows a distinct transcrip-
tional response to reduction in CO2 availability. The CO2 limitation
makes the cells reduce transcripts of protein biosynthesis and DNA re-
plication when growth is stalled. As one strategy to acclimate to LC
conditions, abundance of photorespiratory transcripts is uniformly up-
regulated. Additionally, transcripts constituting a hypothetical PEPCK
C4 pathway, a Ci transporter, and the mitochondrial CA CmCA1 are
higher in abundance. Whether this represents a CCM footprint or a
physiological adaptation in pH maintenance or energy homeostasis
remains to be genetically and physiologically tested.
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