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Abstract

Background: The garden pea, Pisum sativum, is among the best-investigated legume plants and of significant
agro-commercial relevance. Pisum sativum has a large and complex genome and accordingly few comprehensive
genomic resources exist.

Results: We analyzed the pea transcriptome at the highest possible amount of accuracy by current technology. We
used next generation sequencing with the Roche/454 platform and evaluated and compared a variety of
approaches, including diverse tissue libraries, normalization, alternative sequencing technologies, saturation
estimation and diverse assembly strategies. We generated libraries from flowers, leaves, cotyledons, epi- and
hypocotyl, and etiolated and light treated etiolated seedlings, comprising a total of 450 megabases. Libraries were
assembled into 324,428 unigenes in a first pass assembly.
A second pass assembly reduced the amount to 81,449 unigenes but caused a significant number of chimeras.
Analyses of the assemblies identified the assembly step as a major possibility for improvement. By recording
frequencies of Arabidopsis orthologs hit by randomly drawn reads and fitting parameters of the saturation curve we
concluded that sequencing was exhaustive. For leaf libraries we found normalization allows partial recovery of
expression strength aside the desired effect of increased coverage. Based on theoretical and biological
considerations we concluded that the sequence reads in the database tagged the vast majority of transcripts in the
aerial tissues. A pathway representation analysis showed the merits of sampling multiple aerial tissues to increase the
number of tagged genes. All results have been made available as a fully annotated database in fasta format.

Conclusions: We conclude that the approach taken resulted in a high quality - dataset which serves well as a first
comprehensive reference set for the model legume pea. We suggest future deep sequencing transcriptome
projects of species lacking a genomics backbone will need to concentrate mainly on resolving the issues of
redundancy and paralogy during transcriptome assembly.

Background
Pisum sativum (var. Little Marvel) is a legume of agro-
commercial relevance [1] with a large genome, 4300 Mb
[2], which is approximately five to ten times larger than
that of Medicago [3]. At least a third but possibly more
than half of the genome may consist of repetitive ele-
ments [4]. The garden pea was established as a

biochemical model since it is easy to cultivate and fast
growing. Additionally, unlike the Brassicaceae [5], it is
low in glucosinolates, which interfere with enzyme activ-
ity and organelle intactness during isolation. Conse-
quently, a large body of work on enzymes and
organelles was carried out using pea as the model sys-
tem, e.g. [5-11]. The presence of a sequenced genome
or transcriptome is a massive advantage for the analysis
of a model system with Arabidopsis thaliana providing
the best example as the first plant model with genomic
resources [12]. In the absence of a completely sequenced
genome, plant EST collections, such as unigenes at
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NCBI [13], or tentative consensus sequences at DFCI
[14], produced by traditional Sanger sequencing have
proven extremely useful for plant research, e.g. [15].
Recently, it has become feasible to produce tran-

scriptomic resources for non-model species by next
generation sequencing (NGS) at reasonable cost. Next
generation sequencing was employed to create tran-
scriptome databases of species without a sequenced
genome such as mangroves [16], eucalyptus [17], olive
[18], chestnut [19] and Artemisia annua [20]. In all
these projects 454/Roche NGS technology (reviewed in
[21]) was used. For this RNAseq approach either frag-
mented mRNA or fragmented cDNA [22] can be used
as input and read lengths ranging from 100 nucleotides
(nts), 250 nts and 500 nts modal length can be
received depending on the sequencer and sequencing
kit employed, GS 20, GS FLX Standard Series and GS
FLX Titanium Series, respectively (reviewed in [21,23]).
In the various projects different assemblers were used,
employing both overlap based methods [18,20] and
strategies using de Bruijn graphs [16,17,19,24], either
alone or in combination. Independent of the assembler
used, the contigs obtained remained fairly short com-
pared to traditional assemblies performed with Sanger
reads: For GS20 data the average contig length was
130 bases for Eucalyptus [17] and 168 bases for chest-
nut [19]; for GS FLX reads of up to 250 bases the
average contig length was between 334 bases and 433
bases [16-20]. Currently, new tools are developed for
de novo assembly of these EST sequences since they
are considerably shorter than ESTs generated by tradi-
tional Sanger sequencing, for example a version 3.0 of
the overlap based assembler MIRA [25], the GS De
Novo Assembler (alias Newbler) developed and pro-
vided by Roche/454 Life Sciences [23], both designed
for the longer NGS reads (Roche/454) or Velvet
designed for shorter NGS reads (e.g. Illumina) based
on de Bruijn graphs [26]. To our knowledge, there is
currently no standard as to how 454 reads are best
assembled. After assembly, the resulting EST contigs
and singletons (’unigenes’) were annotated using pub-
licly available databases and analyzed further for their
biological information [16-20].
We chose to develop a transcriptome resource for

Pisum sativum to (i) facilitate future biochemical, phy-
siological, and cell biological experiments in P. sativum
and (ii) evaluate different methods for generating
sequence resources for non-model species with large
and complex genomes. The different sequencing and
assembly strategies were explored with respect to their
potential for gene discovery and assessment of comple-
teness. A transcriptome resource of the pea will greatly
facilitate molecular and -omics approaches for research
on this legume.

Results and Discussion
The sequence read databases yielded 450 Megabases of
sequence
De novo sequencing of transcriptomes depends on
sequencing technology with long read lengths such as
454/Roche technologies to facilitate EST assembly with-
out a genomic reference [27]. To generate a pea tran-
scriptome database, four cDNA libraries of cotyledons,
etiolated seedlings, etiolated seedlings exposed to light
for 6 hours, and epicotyl were normalized and
sequenced with GS FLX technology yielding average raw
read lengths of 236 nts and an average trimmed read
length of 228 nucleotides (nts) (Table 1). GS FLX
sequencing yielded more than a quarter billion nts after
removing primers from the raw reads (Table 1). Six
cDNA libraries of flowers, hypocotyl and four leaf
cDNA libraries were normalized and sequenced with
GS20 technology which resulted in an average raw read
length of 103 nts and an average trimmed read length
of 97 nts with more than 150 million nts sequenced
(Table 1). The read length for both sequencing technol-
ogies were in agreement with predicted read lengths
[23]. The raw reads were trimmed and cleaned with
cross match [28] and MIRA [25] to a total of 2,209,735
final reads for assembly (Table 1). Singleton reads that
had no apparent overlap with other reads in the data-
base were sorted out and deposited into a “debris list”
by MIRA [25,29]. These singletons were blasted against
TAIR9 and 189,510 out of the 806,194 debris reads
which matched to an Arabidopsis gene (BlastX, e-value
≤ 10-4) were included in the following analysis. Based on
the contig annotation percentage, we estimated that
approximately 40,000 additional reads were true single-
tons identifying different transcripts, but there is cur-
rently no method to retrieve them from the MIRA
single read bin. If the pea genome was sequenced, these
additional reads could be retrieved from the read data-
base by mapping them to the genome, as has been done
for maize 454 reads [30].

Two assemblies had very different properties
The cleaned and trimmed reads were assembled in a
two pass assembly. The initial assembly was done with
MIRA followed by a second pass assembly with the
TGICL pipeline that includes the CAP3 assembler. The
results of the second pass assembly are available as addi-
tional file 1. The final reads were assembled with MIRA
to 128,767 contigs with the largest contig covering 6283
bp. The contig length distribution showed a bimodal
pattern with two peaks at 108 nts and 260 nts that were
a result of the two different sequencing platforms
employed (Figure 1A). The mean contig length was 324
bases, which was comparable to the mean contig lengths
of other NGS projects of plant transcriptomes reflecting
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comparable assembly performance [16-20]. Besides the
low confidence debris reads MIRA also created singleton
reads of higher confidence. These higher confidence sin-
gletons together with the previously described 189,510
reads recovered from the debris added up to a total of
195,661 singletons, which were considered in the subse-
quent analysis. The singleton length distribution had

two peaks shifted to lower numbers of 88 and 208 nts
with the two peaks representing the two sequencing
platforms employed (Figure 1B).
While MIRA was a conservative assembly program [29]
CAP3 and phrap have been used to assemble a tran-
scriptome [16,24] and can create a more lenient assem-
bly. A second less stringent assembly was produced
from the MIRA contigs using the TGICL pipeline which
includes CAP3 [31,32]. Relaxed parameters of 40 bases
overlap and ≥94% identity were chosen because these
parameters were used for assembling mangrove tran-
scriptomes [16]. This resulted in a total of 81,449 uni-
genes, reducing the number of singletons to 18% and
the number of contigs to 35% of the original number of
singletons and contigs, respectively. The mean contig
length increased to 454 bases. Although the number of
singletons and short contigs decreased in the second
pass assembly, the number of large contigs did not
increase (Figure 1A). To analyze whether the assemblies
only reduced redundancy or whether they also created
chimeric contigs, the initial reads, the contigs of the first
pass assembly, and the contigs of the second pass
assembly were mapped against the transcriptomes of the
model species Arabidopsis thaliana, Glycine max (soy
bean) and Medicago truncatula. The reads themselves
mapped to 18,856 genes of A. thaliana; the unigenes of
the first pass assembly mapped to 90.4% while the uni-
genes of second pass assembly only mapped to 62.2% of
the originally found genes. Mappings to G. max and to

Table 1 Properties of the different libraries; abbreviations are as follows: COT cotyledons, E etiolated leaves, L light
treated etiolated leaves, EPI epicotyl, LVN.1-5 leaf libraries 1-5, FLO flower, HYP hypocotyl, LVR.1 leaf library, non
normalized; asequenced with GS flex, bsequenced with GS 20; all libraries were normalized except LVR.1

library number
of raw
reads

number of reads
after crossmatch

clean up

number of
reads after

MIRA

number
reads for the
assembly

number of
reads with AGI

mapping

raw nts nts after
crossmatch

mean
readlength

raw

mean read
length after
crossmatch

COTa 343,694 335,050 272,731 272402 220,875 81,050,491 75,679,454 235 225

Ea 144,290 135,906 120,202 120126 101,119 34,849,428 32,229,999 241 237

La 192,117 174,563 157,977 157921 137,359 46,654,732 41,408,162 242 237

EPIa 243,294 233,143 189,093 188193 148,059 54,072,084 50,193,810 222 215

LVN.5a 320,209 311,538 268,315 267966 223,735 77,473,643 72,627,353 241 233

sum/averagea 294,100,378 272,138,778 236 228

LVN.1b 350,016 343,361 278,080 277888 228,894 36,551,286 33,767,205 104 98

LVN.2b 302,341 295,416 234,029 233790 192,903 31,399,731 29,009,144 103 98

LVN.3b 146,504 142,862 115,832 115751 96,087 15,049,571 13,963,252 102 97

LVN.4b 278,936 272,367 223,939 223596 184,175 28,590,490 26,562,093 102 97

FLOb 162,353 153,765 95,229 95097 70,957 17,047,889 15,039,288 105 97

HYPb 349,976 327,769 255,437 255310 210,073 36,269,788 31,823,328 103 97

sum/averageb 164,908,755 150,164,310 103 97

LVR.1b 308,042 293,201 191,394 191205 167,551 27,779,787 24,062,060 90 82

total 3,141,772 3,018,941 2,402,258 2399245 486,788,920 446,365,148

Figure 1 Length distribution of contigs (A) and singletons (B).
Length distribution of unigenes obtained from the first pass MIRA
assembly (blue) and the additional second pass assembly with
TGICL including CAP3 (red). (A) Length distribution of all contigs.
There are 128,767 contigs with the largest contig size of 6283
nucleotides in the MIRA assembly and 45,686 contigs after the
second pass TGIGL/CAP3 assembly with the largest contig size of
6258 nucleotides. (B) Length distribution of all singletons that were
employed for subsequent analysis. The MIRA assembly resulted in
195,661 singletons, 35,763 singletons remained after TGICL/CAP3
assembly.

Franssen et al. BMC Genomics 2011, 12:227
http://www.biomedcentral.com/1471-2164/12/227

Page 3 of 16



M. truncatula yielded similar results in that the second
pass assembly lost about a third of contig annotations
obtained for the first pass assembly (Additional File 2).
The reduced identification of genes by the second pass
unigenes for the various references indicated that the
first pass assembly massively decreased redundancy
while leading only to a modest decrease in matchable
reference genes. The lenient second pass assembly lead
to a further reduction in redundancy (Figure 1A) but
also created chimeric unigenes joining sequences origi-
nating from different transcripts indicated by the loss of
one third of the identified genes. It was also attempted
to benchmark a MIRA assembly performed with 454
reads only against Sanger sequencing generated coding
sequences from public sources. However, there were
only 2,281 partial and complete coding sequences of the
garden pea available at NCBI [13]. Comparison of these
sequences to the contigs yielded no conclusions beyond
the comparison to more distant reference genomes. It
was also attempted to use de Bruijn graph based assem-
blers such as velvet [26] and SOAP [33] for 454 read
based transcriptome assembly, however the contig
length distribution was inferior to the overlap based
assemblers (data not shown) and the analysis was not
pursued further.
All subsequent analyses were thus based on the MIRA

first pass assembly unigenes. As the mappings to the
three reference genomes yielded qualitatively similar
results, we chose to base subsequent analyses on the A.
thaliana reference as it is the plant genome which is
currently best annotated.

The database annotation revealed low contamination and
high redundancy
To predict and analyze the function of the 324,428 uni-
genes of the first pass MIRA assembly, they were anno-
tated with A. thaliana followed by M. truncatula, G.
max, and the nr database of NCBI. 90% of these uni-
genes could be mapped to a sequence from either A.
thaliana, M. truncatula, G. max, or NCBI’s NR database
with BlastX with an e-value ≤10-4 (Figure 2). Only 0.5%
of the reads that could be mapped to any of those pro-
tein resources could be exclusively mapped to NR
(Figure 2). The contamination by plant pathogens of
viral or bacterial origin or other non-plant sequences
introduced during preparation was thus very low. Addi-
tionally the unigenes of both assemblies contained very
limited sequences derived from repetitive elements in
the genome (Additional File 3).
During the mapping, a group of AGIs were identified

by the presence of multiple unigene matches from the
unigene database (Table 2). 2,741 AGIs were hit more
than 10 times with a maximal number of 27,525 hits on
a gene encoding a light harvesting complex protein

(Table 2) and 90 AGIs were hit more than 100 times.
Of the ten most frequently hit AGIs, five were light har-
vesting complex encoding genes in addition to the small
chain of RubisCO, a GTP binding protein, a ribosomal
protein, and a protein of unknown function (Table 2).
Based on the MIRA documentation [33,34], we inter-
preted this finding as a high degree of redundancy
between some unigenes, which may be due to sequen-
cing errors, paralogy, or allelism within a particular gene
precluding assembly of unigenes into larger contigs. To
test this assumption, we randomly chose several uni-
genes and used them to query all the redundant
sequences with BlastN. This showed that some unigene
sequence information is highly similar with sequence
identities between 94-100% and identical changes were
recurring in many sequences (data not shown). This
phenomenon was also observed during the sequencing
of the mangrove transcriptome conducted with more
lenient assembly parameters [16]. In principle, there
were several possible factors contributing to this obser-
vation: (i) sequencing errors resulting in difficulties dur-
ing the assembly [25,29]; (ii) different alleles of the
genes, which result in base changes and small insertions
or deletions [25,29]; (iii) different splice variants that
enforce assembly into different unigenes; (iv) assembly
problems; (v) massive expansions of gene families in the
garden pea [34,35], or a combination thereof.
To better distinguish between sequence variation of

biological origin (i.e., alleles, paralogs) and of technical
origin (i.e., sequencing and assembly errors), we

Figure 2 Comparison of the number of MIRA unigene
annotations obtained from the different reference databases
(A. thaliana, G. max, M. trunculata and NCBI NR); For the
annotation the best BlastX hit against the protein sequences of the
reference organisms was employed with an e-value cut off of X ≤

10-4. The total number of annotated unigenes is 271,692
corresponding to 84% of all unigenes.
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retrieved Sanger sequenced cDNA for the five genes
listed in Table 2 for which the sequence information
was available at NCBI [17]. We tested how many posi-
tions of the cDNA were (i) identical among all matching
unigenes, (ii) covered by at least 25 identical variants
(identical point mutations) within the unigenes, (iii) cov-
ered by at least 4 insertions/deletions of a length divid-
able by three, and (iv) being covered by at least one
variant (point mutation or insertions/deletions of a
length not dividable by three) but not exceeding the
required threshold of 25 identical variants (Table 3).
Cases (ii) and (iii) we interpreted as putative positions
containing biological variants that could differentiate
alleles or paralogs, while case (iv) can be interpreted as
putative positions containing sequencing errors. To
strengthen the analysis, we added five additional genes,
which had been published previously as single copy
genes in the pea genome [36-40]. We further tested four
single copy Mendelian genes, seed shape, seed color,

flower colour, and size [41-44]. The BWA mapping gave
no indication of longer insertions or deletions. The
resulting alignments are summarized in Table 3 and can
be viewed by loading additional files 4 and 5 into an
alignment viewer such as tablet [45]. In principle, both
allelic variation as well as paralogous genes are possible
sources of biological variants mapping to the identical
reference gene. However, the sequencing libraries used
in this study were made from pooled tissues harvested
from varying numbers of different plants that were all
grown from a commercial seed source and not from sin-
gle seed decent. Thus, the design of our study does not
permit to distinguish allelic variation from paralogous
genes, also keeping in mind that they are not full-length
transcripts. Between 0.9 and 16.4% of the positions of
the genes tested were covered by frequent (i.e. >25 or
insertions/deletions dividable by 3) variants, which we
took to represent the maximum amount of either allelic
variation or paralogous, recently duplicated genes (Table

Table 2 The ten most frequent AGIs that were used for the annotation of unigenes with BlastX (e-value ≤ 10-4)

# of AGI occurrences AGI Annotation

2658 AT5G18380 40S ribosomal protein S16 (RPS16C)

2684 AT5G54270 LHCB3 (LIGHT-HARVESTING CHLOROPHYLL B-BINDING PROTEIN 3)

3138 AT1G04280 unknown protein

3566 AT2G34430 LHB1B1; chlorophyll binding

4301 AT2G05070 LHCB2.2; chlorophyll binding

6464 AT5G20010 RAN-1; GTP binding/GTPase/protein binding

8636 AT1G67090 RBCS1A (RIBULOSE BISPHOSPHATE CARBOXYLASE SMALL CHAIN 1A)

15392 AT1G29930 CAB1 (CHLOROPHYLL A/B BINDING PROTEIN 1); chlorophyll binding

18815 AT3G27690 LHCB2.3; chlorophyll binding

27525 AT2G34420 LHB1B2; chlorophyll binding

Table 3 Quantification of different sources contributing to redundancy between unigenes; unigenes where mapped
against 14 cDNA reference sequences of P. sativum: orthologs of the ten most frequent AGIs (Table 2), five known
single copy genes from P. sativum, and four genes encoding Mendelian traits; the original alignments can be viewed
by loading additional files 4 and 5 into an alignment viewer such as tablet [45]

gene name corresponding
pea cDNA

length
in bases

# reads
mapped

identical
positions

percentage putative SNP
positions

percentage putative sequencing
error positions

percentage

LHCb1 gi|56809378 801 56517 9 1.1 131 16.4 779 97.3

LHCb2 gi|56809380 798 15370 28 3.5 9 1.1 768 96.2

CCBP gi|141448063 922 10616 609 66.1 18 2.0 296 32.1

Ran1 gi|123192430 666 6488 363 54.5 8 1.2 300 45.0

RuBP gi|169152 674 651 182 27.0 68 10.1 475 70.5

ApxI gi|169042 3625 32 1367 37.7 8 0.2 99 2.7

ek-oxidase gi|37954113 1797 1474 1749 97.3 20 1.1 25 1.4

Fed-1 gi|169086 1995 35 1360 68.2 1 0.1 87 4.4

HMG1 gi|436423 807 6 670 83.0 5 0.6 124 15.4

plastocyanin gi|20845 1505 107 1050 69.8 2 0.1 453 30.1

G3bh gi|2316017 4248 3 3577 84.2 0 – 1 0.0

bHLH gi|308084332 11892 0 0 – nd nd nd nd

SBEII gi|510546 2919 14 2186 74.9 20 0.7 18 0.6

SGR gi|156713218 792 1 787 99.4 4 0.5 1 0.1
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3). For the 9 known single copy genes analyzed in our
study, the frequent variants were between 0.1 and 1.1%
of the positions (Table 3). For these single copy genes,
paralogous genes could be excluded as the source of
this variation; hence these figures represent the maxi-
mum amount of positional allelic diversity, which we
thus consider to be smaller than 1%. Recently, an analy-
sis in the Brassicaceae Cleome gynandra on a smaller
scale also identified genetic variation within transcript
sequences [46]. The vast majority of variable positions
were covered by infrequent variants, which we inter-
preted to represent sequencing errors and not variation
of biological origin (Table 3). 454 sequencing technolo-
gies are known to produce sequencing errors of about
1%, especially in homopolymer stretches [23]. This error
rate probably contributed to redundancies between uni-
genes especially as MIRA provided conservative assem-
blies [25,29]. We thus concluded that the large number
of unigenes obtained in the MIRA assembly is predomi-
nantly due to sequencing errors, which hampered the
assembly. Finally, although many of the unigenes were
highly similar, we also found those with 100% identical
overlaps that thus should have been collapsed during
the assembly. Further, the list of genes with the high
number of matching unigenes (Table 2) was notably full
of genes expected to be highly expressed in the tissues
sampled for library construction. Intuitively, those genes
with the highest expression should yield the best
resolved and longest unigenes as the gene coverage was
highest. Thus a high negative or no correlation was
expected between the number of reads and number of
unigenes matching an AGI. Counter intuitively, the
Spearman correlation coefficient was +0.75 for the first
pass assembly and +0.71 for the second pass assembly:
When a large number of reads matching a reference
gene was present, also a large number of unigenes
matching this reference gene was present (Additional
File 6). This may indicate that both MIRA and CAP3
were unsuccessful in assembling especially those tran-
scripts with high library representation (Additional File
6). To our knowledge, other transcriptome sequencing
projects using the same assemblers did not report on
this phenomenon [16-20], although a large number of
unigenes matching to one reference was observed at
least once [16]. Resolving this possible mapping problem
will require assembling a 454 read set for a model spe-
cies since this will allow tests against the complete refer-
ence genome. The correlation analysis points to the
assembly as at least one of the reasons for the large
number of unigenes recovered. We thus conclude that
assembly and sequencing errors, but not expansion gene
families and biological sequence variation contribute to
the high number of largely redundant sequence contigs
obtained in our study.

While the transcripts were well covered, the
transcriptome coverage was limited
Two parameters define the quality of the database: the
number of possible transcripts tagged by at least one
read (’transcript coverage’) and the number of possible
bases covered (’transcriptome coverage’). The unigenes
in the MIRA assembly corresponded to about 60% of
the protein coding genes of A. thaliana [47]. This num-
ber was comparable to the number of genes detected in
A. thaliana tissues by microarray experiments [48] indi-
cating that the library preparation method captured the
majority of transcripts in a tissue. For this comparison,
however, it has to be kept in mind that both species are
separated by about 90 million years of evolution since
the split between Fabaceae and Brassicaceae [49], pro-
viding opportunities for mutation as well as small and
large scale duplications changing the gene repertoire.
We chose to also test the transcript coverage mathema-
tically with a strategy similar to rarefaction analysis. A
detailed description of the mathematical method is
given in material and methods. Fitting the number of
identified Arabidopsis genes for different samples sizes
for the different libraries to hyperbolic curves resulted
in the parameters summarized in table 4. The different
libraries had slopes of 0.003 to 0.018 at the final read
count (Table 4). Two leaf libraries, the cotyledon and
the hypocotyl library had excellent coverage indicated
by low slopes at the final read count, (Table 4, Figure 3,
Additional file 7) which indicated that in these libraries
almost all possible AGIs were detected. However, the
flower library (FLO), the libraries from etiolated tissue
(E and L) and one of the normalized leaf libraries

Table 4 Properties of the different libraries; a and b,
fitting parameters of the equation y = ax/(b+x) with ‘a’
representing the AGI (Arabidopsis genome identifier)
detections maximally possible (for a detailed description
please see material and methods)

library a b R2 total AGIs
detected

slope at final read
count

COT 11629 35034 0.9948 10873 0.0043

E 13062 18865 0.9989 11566 0.0128

L 12734 20070 0.9987 11631 0.0081

EPI 13662 24062 0.998 12736 0.0073

LVN.5 13109 30514 0.9968 12283 0.0045

LVN.1 13715 20362 0.9976 13298 0.0031

LVN.2 13559 19746 0.9982 12981 0.0042

LVN.3 12718 16929 0.9995 11465 0.0122

LVN.4 13359 19496 0.9986 12670 0.0044

FLO 12382 18261 0.9998 10774 0.0176

HYP 13741 23566 0.997 13071 0.0042

LVR.1 10087 46963 0.996 8515 0.0084

all 16314 35169 0.9921 17104 0.0001
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(LVN.3) retained relatively high slopes at the final read
count. This indicated that sequencing of a higher num-
ber of reads from those two libraries would have
resulted in the identification of more genes in the
respective libraries. The differences in the slope at the
final read count between the different libraries was
mostly due to a low final read count rather than differ-
ences in the fitted hyperbolic curves (Table 4).
Since leaf libraries were analyzed with different

sequencing technologies, GS20 and GS FLX, and with
and without normalization, the effect of each factor on
the transcript coverage could be assessed. In the nor-
malized leaf libraries the detection of between 12,718
and 13,715 genes was the upper limit whereas in the
non-normalized library only 10,087 AGIs could be iden-
tified based on the model and unlimited sequencing.
Theoretically it should be possible to detect ESTs for
lowly expressed genes even from a non-normalized
library given unlimited sample sizes. Nevertheless the
data clearly showed that with comparable library sizes
the number of tagged genes was significantly increased
in normalized libraries. The reason was probably that
sequencing libraries were large but not unlimited.
Hence very abundant leaf transcripts out-competed
transcripts of low abundance for “sequencing space” in
the library leading to the lower number of AGIs that
could be identified in the non-normalized library. Possi-
bly, cDNA synthesis primers got depleted by very abun-
dant messages in non-normalized libraries, thereby
leading to the suppression of less abundant transcripts
in the sequencing library. GS20 sequenced libraries and
GS FLX sequenced libraries yielded similar numbers of
possible AGIs tagged by at least one read. Based on the
mathematical analysis the majority of sequencing
libraries were sequenced to exhaustion (Table 4).

It was more difficult to estimate the amount of bases
covered in relation to all bases of the complete pea tran-
scriptome (in other words the ‘transcriptome coverage’)
since the genome of the garden pea has not been
sequenced yet. To approximate the transcriptome cover-
age, the number of AGIs tagged by multiple reads was
tested. Most transcripts will be longer than one read;
thus coverage with multiple reads is required for com-
plete bases coverage for most of the transcripts. Reads
were again drawn from the read pool of a specific
library/combination of all libraries with the number of
AGIs identified by 5, 10 and 100 reads, respectively,
recorded. In the combined library, a considerable slope
remained at the final read number, indicating that
respective fold coverage was reached only for a subpo-
pulation of AGIs (Figure 3A). Since a subpopulation of
AGIs was hit by only one read, the unigenes resulting
from this subpopulation were expected to remain short;
i.e., the coverage did not suffice for assembly despite the
large number of sequenced reads (Table 1). In an alter-
native approach, BlastX combined with in house python
scripts was used to determine the total sequence cover-
age for all tagged Arabidopsis proteins. The database of
Medicago coding sequences [50] covered 35% of the
Arabidopsis proteome; the database of G. max coding
sequences [51] covered 49% of of the Arabidopsis pro-
teome (based on BlastX, e-value ≤ 10-4). The pea uni-
gene collection from this database covered 31% of the
tagged AGIs. A simulation based on a fragmented Ara-
bidopsis transcriptome estimates that with 450 Mb of
bases, the complete transcriptome ought to be covered
[52]. Since the percentage of the pea database mapping
remained below both other legume mappings (31% to
35% and 49%, respectively), the approach based on
BlastX supported the results of the tagging analysis:

Figure 3 Rarefaction analysis of gene representation in different libraries; in each library different numbers of randomly sampled reads
were blasted against Arabidopsis peptides (TAIR9) and the number of identified AGIs tagged at least once, five, ten and 100 times was recorded.
The resulting data was modeled with non-linear regression fitting y = (ax)/(b+x) (continuous line). (A) Reads were randomly sampled from the
union of all 12 libraries. The total number of different AGIs identified is 17 104. (B) Reads were randomly sampled from either normalized leaf
library one (LVN.1, blue) or the non-normalized leaf library (LVR.1, red). The total numbers of different AGIs used for annotation for the
normalized and the non-normalized library are 13,298 and 8,515, respectively. Data from all libraries is summarized in table 4 and plots are
presented in the Additional file 7.
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both analyses indicated that the transcriptome coverage
was not complete. The gaps resulting from incomplete
coverage probably precluded complete assembly and
many short unigenes persisted (Figure 1). The missing
coverage was not located at either the 5’ or 3’ end of
the transcripts. The sequence read population was tested
for 5’ and 3’ prime bias since the libraries were created
with poly d(T) priming. The results indicated only little
bias against the 5’ end compared to the 3’ end of the
coding sequence (Additional file 8). Based on the tran-
script and transcriptome coverage, the number of
sequence reads was sufficient to tag the majority of
transcripts but not to assemble the transcriptome to
completeness.

Normalization has unexpected effects on the sequence
recovery
The detailed analysis of the leaf libraries revealed that the
normalization leads to increased coverage since a larger
number of AGIs is identified by 5 and 10 reads, respec-
tively (Figure 3B). Neither of the curves reached satura-
tion, however, indicated by the considerable slope
remaining at the final read count (Figure 3A, B). After
establishing that even normalized libraries retained subpo-
pulations of transcripts that were tagged by one read only
and subpopulations that were tagged by up to 500 reads,
we tested whether normalized libraries still retain quanti-
tative information or whether normalization was complete.
The Spearman rank coefficient was calculated pairwise for
the non-normalized leaf libraries versus the normalized
leaf library (Table 5). Despite the normalization, the

Spearman rank coefficients varied between 0.697 for
LVN.5, the only GS FLX sequenced leaf library, and 0.762
for LVN.1. This indicated a strong positive rank-correla-
tion of expression between the normalized and non-nor-
malized libraries. The correlation coefficients between the
different normalized libraries ranged from 0.749 to 0.913
with the GS FLX sequenced library LVN.5 yielding the
lowest coefficient (Table 5). The normalization was repro-
ducible between libraries. Sequencing technology, how-
ever, was an important variable between libraries
influencing the results as the only library sequenced with
GS FLX technology yielded the weakest correlation for all
(Table 5). It was attempted to recover expression profiles
from normalized libraries by developing an algorithm that
captured the transformation from a non-normalized to a
normalized library using the six leaf libraries. This
approach, however, was not successful.
It was tested if normalization or lack thereof influ-

enced the types of genes which were detected in the
resulting libraries of the same tissue. All AGIs identified
with at least one read were counted as present in the
respective leaf libraries and enrichment of functional
categories was analyzed with PageMan software (Figure
4) [53]. 63 MapMan categories [54] were enriched and/
or depleted in any of the six leaf libraries. Thereof 51
categories were either over- or underrepresented in the
non-normalized library. Major metabolic pathways such
as photosynthesis, central carbon metabolism, energy
metabolism as well as lipid, amino acid, and protein bio-
synthesis were overrepresented whereas stress, regula-
tion of transcription, and signaling categories were
underrepresented. The underrepresented categories con-
tained genes which were mainly lowly expressed in
plants [55] and thus were probably underrepresented if
the library was not normalized. However, deeper
sequencing, i.e. sequencing of higher read numbers, may
not be a solution to recovering those genes in non-nor-
malized libraries as the hyperbolic curves fitted to the
data indicated that only 75% of genes present in normal-
ized leaf libraries could be recovered from non-normal-
ized libraries (Table 4). Thus, although massively
parallel sequencing allowed better coverage and quantifi-
cation of lowly expressed genes [56,57], it may still not
cover all expressed genes in a library of defined volume
unless normalization is applied. Among the normalized
libraries, the library LVN.5 which was sequenced with
GS FLX and not with GS 20 had a different pattern
compared to the other normalized libraries with more
categories enriched and depleted. In this library, also
fewer Arabidopsis genes were tagged by reads (Table 4)
although the absolute read count was comparable or
higher than that of the other leaf libraries (Table 1).
This may suggest less efficient normalization, but the
Spearman rank coefficient for library LVN.5 vs. the non-

Table 5 Correlation coefficients between expression
profiles of the different normalized leaf libraries and the
non-normalized leaf library; the expression was
determined as the number of reads mapping to an AGI;
R1 non normalized library LNR

compared libraries Spearman’s rank coefficient

R1 vs. N1 0.7620616

R1 vs. N2 0.7490598

R1 vs. N3 0.6996976

R1 vs. N4 0.7269965

R1 vs. N5 0.6974041

N1 vs. N2 0.9134052

N1 vs. N3 0.8691016

N1 vs. N4 0.8862503

N1 vs. N5 0.8048091

N2 vs. N3 0.8629818

N2 vs. N4 0.8800997

N2 vs. N5 0.7952054

N3 vs. N4 0.8360410

N3 vs. N5 0.7496826

N4 vs. N5 0.7811579
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normalized library LVR.1 was lower than those of the
other normalized libraries compared to the non-normal-
ized one (Table 5). We thus suspect that there was a
biological difference between non-normalized leaf library
five and the other normalized leaf libraries that changed
the pathway representation patterns. Alternatively,
sequencing with a different technology may have chan-
ged the pattern in an unforeseen way.

The different libraries had different pathway
representations
Finally, we hypothesized that sequencing multiple aerial
tissues under different conditions will lead to broader
coverage of metabolic pathways and cellular processes.
This hypothesis was tested with the pathway distribution
in the different libraries. We compared two sequencing
libraries which were isolated from etiolated seedlings

Figure 4 Enriched terms of MapMan categories of normalized and non-normalized leaf libraries; Enrichment of each category was tested
with Fisher’s exact test with counts for the categories of genes present in one library against the counts for the categories of genes present in
the union of all leaf libraries from standard conditions. Red and blue boxes indicate categories that are overrepresented or underrepresented,
respectively (a = 0.05). Multiple testing was corrected for by FDR (Benjamini-Hochberg). For the graphical representation the p-values for the
different categories are transformed into z-scores, thus a p-value of 0.05 is assigned to a value of 1.96. The figure was created with PageMan
software [59] and subsequently modified.
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grown under identical conditions except for a 6 h light
treatment (i.e., de-etiolation) before harvesting. The
metabolic pathways and cellular processes were repre-
sented by MapMan categories [54] and visualized with
PageMan Software (Figure 5) [53]; GO term enrichment
was tested with topGO [58,59]. MapMan categories
were hierarchical [54] and thus ideally suited to our

question. The light-treated library contained more over-
and underrepresented pathways compared to the non-
treated library. In light-treated samples, 59 of 82 cate-
gories were either enriched or depleted, whereas in non-
light treated samples this was only the case for 37 out
of the 82 categories. The library from etiolated seedlings
was enriched in mitochondrial electron transfer, amino

Figure 5 Enriched terms of MapMan categories for libraries of etiolated seedlings and etiolated seedlings after light treatment;
enrichment was tested as described for Figure 4 except the figure shows results without multiple testing correction, the categories that passed
multiple testing correction (by FDR, Benjamini-Hochberg) are marked in green.
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acid metabolism, tetrapyrrol and nucleotide biosynthesis,
protein synthesis, and ubiquitin mediated protein degra-
dation. This etiolated seedling pathway profile repre-
sented a heterotrophic tissue poised to differentiate
upon an environmental cue. The overrepresentation of
mitochondrial metabolism and amino acid metabolism
reflected the dependence on stored metabolites, possibly
amino acids, for energy [60]. Several anabolic pathways
such as tetrapyrrol biosynthesis, nucleotide synthesis,
and the protein category were also overrepresented.
Once the seedlings are exposed to a short term light
impulse, the pathway profile shifted. The light-treated
library was enriched in the categories of photosynthesis,
lipid and amino acid metabolism, tetrapyrrol biosynth-
esis, protein synthesis, ubiquitin mediated protein degra-
dation, protein folding, and the category cell. After the
light treatment, plants initiated a program to switch to
photoautotrophic growth [61]. Photosynthetic genes,
especially of the light reaction, were qualitatively overre-
presented in the library. The remaining overrepresented
categories reflected the buildup of the photosynthetic
apparatus in the thylakoid membranes for photosynth-
esis and the shift away from a heterotrophic lifestyle
upon light exposure [61]. The mitochondrial electron
transfer category was no longer overrepresented. In
addition to the anabolic pathways already overrepre-
sented in etiolated seedlings, the light treated library
was overrepresented in the categories of lipid metabo-
lism, amino acid synthesis, protein targeting and protein
folding reflecting the needs for thylakoid synthesis and
assembly. The massive induction of photosynthesis
genes had also been reported for the photomorphogenic
transition of Arabidopsis [61]. We also tested the corre-
sponding non-hierarchical GO terms for enrichment but
found less striking differences (Additional file 9).
After establishing that the difference in growth condi-

tions of seedlings had a profound effect on the pathway
pattern, all tissue samples were compared (Figure 6).
Mature leaves were enriched in photosynthesis and the
protein synthesis categories as well as the cell and unas-
signed categories. This pattern reflected the major com-
mitment of a mature leaf to photosynthesis and the
protein turnover that was associated with the oxidative
load on the chloroplasts, which was compensated by
protein synthesis. In contrast, in young cotyledons,
which were, unlike in Arabidopsis, storage organs for
seedling development, photosynthesis was not an
enriched category. Since the pea cotyledons mobilized
their reserves, especially proteins [62], the library was
enriched in protein and especially its subcategories of
protein degradation and in amino acid metabolism. In
addition, the cotyledon library was enriched in cell/vesi-
cle transport and p- and v-ATPases as may be expected
for cells turning over protein stored in vesicles [62]. The

hypocotyl library had only amino acid metabolism and
protein biosynthesis overrepresented. Possibly, young
tissues as those sampled for the libraries were all overre-
presented with regard to protein and amino acid meta-
bolism, since both are required to maintain cell division
and multiplication typical of young tissues.
Taken together, the pathway representation analysis

validated the strategy to sample multiple aerial tissues to
achieve good coverage of pathways. Each of the single
libraries contributed sequences corresponding to 8515
to 13298 AGIs presenting 50% to 78% of the 17104
AGIs identified by the union of all libraries (Table 4).

Conclusions
The application of next generation sequencing to the
transcriptome of Pisum sativum, the garden pea,
resulted in 450 Megabases of transcriptome sequence
derived from above-ground organs of pea. Comparison
to Arabidopsis and mathematical analysis showed that
the transcript coverage was near complete and revealed
the effects of normalization on sequence yield and gene
content. The pathway representation analysis also
showed that the different libraries used for sequencing
have different pathway signatures, which fit biological
expectations. Based on the analysis of the transcriptome
resources the pea can now be treated as a biochemical
model plant with near complete transcript coverage
regarding different aerial tissues. The usefulness of the
database in a preliminary form has already been demon-
strated for organelle proteomics [5,24]. Although the
data was assembled with programs used by other tran-
scriptome NGS projects [16-20], the assembly itself was
revealed to be a major bottleneck. 454 sequencing tech-
nology followed by read quantification and read assem-
bly were successfully used not only for the study of
non-model legumes but also for the analysis of the C4

syndrome [46,63].
Completing the transcriptome coverage for pea will

require not only sequencing of libraries derived from
below ground organs and various stages of seed devel-
opment but also improvement in assembly technology.

Methods
Plant material and treatment
Pea seeds of the variety ‘Little Marvel’ were purchased
from a commercial supplier and seeds were sown in soil
and grown under cool light fluorescent lamps for two
weeks. All cDNA libraries reported in this study were
made from plants grown from the same commercial
batch of seeds. Green leaves and flowers were harvested
and plunged immediately into liquid nitrogen. Yellow
etiolated leaves were harvested as above from plants
grown in the dark. De-etiolated leaves were harvested
from the dark grown plants after exposure to the cool
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fluorescent lamps for 6 hours. The epicotyls and hypo-
cotyls were harvested from 6 days-old pea seedlings ger-
minated on a moist filter paper in dark. Cotyledons
were harvested after removing epicotyls and hypocotyls.

RNA extraction
Total RNA extraction and synthesis of double stranded
cDNA was performed as described previously [64].

Briefly, one gram of pea plant samples were ground
with a mortar and pestle in liquid nitrogen and total
RNA was extracted in guanidinium thiocyanate-phenol-
chloroform mixture and pelleted, followed by two
washes of the RNA pellet with 3 M sodium acetate (pH
6.0). The quality of the isolated RNA was analyzed using
formaldehyde agarose gel electrophoresis and the Agi-
lent 2100 Bioanalyzer RNA chip (Agilent Technologies,

Figure 6 Enriched terms of MapMan categories for all different tissues and treatments; enrichment was tested as described for Figure 4.

Franssen et al. BMC Genomics 2011, 12:227
http://www.biomedcentral.com/1471-2164/12/227

Page 12 of 16



CA). The mRNA was isolated using the PolyATract
mRNA isolation system (Promega, WI) and concen-
trated by precipitation with ethanol.

cDNA library preparation
The preparation of cDNA libraries was conducted as
described previously [64]: The cDNA was synthesized
using the Smart PCR cDNA synthesis kit according to
the manufacturers suggestions (Clontech, CA) using 1
mg mRNA. Double-strand cDNA was prepared from 2
mL of the first-strand reaction by PCR (13 cycles).
The cDNA was purified using QIAquick PCR purifica-
tion spin columns (Qiagen) and was checked for pur-
ity and degradation using the Agilent 2100 Bioanalyzer
DNA chip.

Normalization of cDNA library
Some cDNA libraries were normalized to decrease the
amount of highly abundant transcripts. To this end, 1
μg of double-stranded cDNA was normalized using a
commercial kit (Trimmer-kit, Evrogen, Moscow, Russia)
that is based on Kamchatka crab duplex-specific nucle-
ase. The normalization efficiency was analyzed by quan-
titative PCR using primers for Rubisco small subunit
(highly redundant) and CP12 (moderately redundant).
Following normalization, the double stranded cDNA

was PCR amplified, quality checked with agarose gels
and the Agilent’s Bioanalyzer DNA chip and 3 μg of
normalized cDNA was used for sequencing with a GS
20 or GS FLX sequencer (Roche/454 Life Sciences, CT),
respectively.

EST pre-processing and assembly
Sequence reads obtained from 454 software were
cleaned from cDNA primer contaminations using cross-
match [28] and an in house python script clipped the
masked contaminations, discarded reads shorter than 50
nts and adjusted the quality files accordingly. The
cleaned reads were assembled with 1,198 partial and
complete coding sequences from Pisum sativum down-
loaded from NCBI in a hybrid assembly using MIRA
[25,29]. MIRA parameters used were: de novo, est, accu-
rate, sanger, 454 including polyA/T clipping for 454
ESTs. Besides singletons that MIRA evaluated as high
confidence singletons, MIRA discards many singletons
during the assembly to a separate debris file. Of these
debris singletons all with a significant BlastX hit against
the A. thaliana proteome (TAIR9) [65] were added to
subsequent analyses.
A second pass assembly using all the 324,428 unigenes

obtained by the previous MIRA assembly was performed
with the TGICL clustering and assembly pipeline
including CAP3 [31,32]. Both programs were run with
default parameter settings, requiring 94% sequence

identity, a minimum of 40 nucleotides overlap and a
maximal overhang of 30 nucleotides for assembly. As
the largest three clusters that were produced by TGICL
could not be assembled with CAP3 due to memory lim-
itations, they were additionally preclustered and
assembled with scripts provided within the TGICL pipe-
line with default parameter settings [32].

Unigene annotation
The unigenes were annotated by queries against the
proteomes of A. thaliana (TAIR9), M. trunculata (ver-
sion 3.0), G. max (version1.0) [50,51,65] and the non
redundant protein database from NCBI [13] using
BlastX (e-value ≤ 10-4). Functional annotation of the
unigenes was done with MapMan categories [54] and
gene ontology terms [58] via the AGI annotation.

Quantification of different sources contributing to
redundancy between unigenes
Orthologous cDNA sequences from P. sativum to the
most frequent AGIs used for the annotation of the first
pass MIRA unigenes (Table 2) where retrieved from
NCBI [13]. This yielded four complete and one partial
coding sequence: (Lhcb1) light-harvesting chlorophyll-a/
b binding protein, (Lhcb2) light-harvesting chlorophyll-
a/b binding protein, (RuBP) ribulose 1,5 bisphosphate
carboxylase, (Ran1) Ran1 and (Ccbp) chloroplast chloro-
phyll-a/b binding protein. Five genes published as single
copy genes from pea [36-40] and four genes encoding
Mendelian traits [41-44] were added to the analysis. All
324,428 unigenes from the first pass MIRA assembly
were mapped against the retrieved reference sequences
using the BWA-SW Aligner [66]. The column wise
information of the alignments was read out employing
SAM tools [67] and custom written python scripts. For
each alignment the number of alignment positions (col-
umns) with the following characteristics was read out:
(i) identical nucleotides for all unigenes at that position,
(ii) coverage by at least 25 identical variants (identical
point mutations) within the unigenes, (iii) coverage by
at least 4 insertions/deletions of a nucleotide length
dividable by three and (iv) coverage by at least one var-
iant (point mutation or insertions/deletions of a length
not dividable by three) but not exceeding the required
threshold of 25 identical variants.

Mathematical analysis of library completeness
To test the transcript coverage of reads from a specific
library/the combination of all libraries mathematical
analysis similar to rarefaction analysis was employed.
For that purpose a read pool was defined, i.e. all reads
obtained from one library or all reads from all libraries
combined. From such a read pool reads were randomly
drawn to create different sets of reads with increasing
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sample sizes. For each of those given sets the number of
Arabidopsis genes that could be identified by the reads
within the set was recorded with the size of the read set.
This process was automated in a python script. The
identification of the AGI by a read was done via the
MIRA unigenes and their best BlastX hit against the
Arabidopsis proteome (TAIR9) [65]. The numbers of
identified Arabidopsis genes were plotted against the
corresponding sample sizes and the data points were
fitted by non-linear regression with the model y = ax/(b
+x) (SigmaPlot software, Systat Software Inc - Scientific
Software Products). If the sequencing of transcripts
from a particular tissue was exhaustive, the resulting
curve was expected to “saturate"; it converged against a
fixed value, parameter “a” in the model function indicat-
ing an upper limit for gene detection. This “saturation”
was also represented by a decreasing slope at higher
sample sizes, which indicated decreasing potential to
detect additional Arabidopsis genes when further sam-
pling from the defined read pool. An identical approach
was also taken to approximate the transcript coverage
with the difference that the number of all identified
AGIs was not recorded but the number of AGIs that
was identified at least by 5, 10 and 100 reads.

Enrichment analysis
All enrichment tests were performed based on A. thali-
ana annotation of the unigenes. Enrichment analysis
with MapMan categories [54] was tested with Fisher’s
exact test, using the PageMan application [53] and mul-
tiple testing was corrected for by FDR (Benjamini-Hoch-
berg). The gene test sets always consisted of all
Arabidopsis genes identified by the unigenes present in
that library/tissue type. As the reference gene set for the
analysis all Arabidopsis genes identified with reads of
any library important for a specific question were cho-
sen. These were the following library combinations:
union of all genes in all normalized and non-normalized
leaf libraries (Figure 4), union of all genes in libraries E
and L (Figure 5) and union of all genes from all
obtained libraries (Figure 6).
Enrichment of GO terms was tested with Fisher’s

exact test, using the Bioconductor package topGO ver-
sion 0.9.7 [58,59]. The weight01 algorithm of topGO
was used accounting for local dependencies within the
graph structure of the gene ontology.

Accession numbers of raw data
The sequence read data reported in this manuscript have
been deposited in the NCBI Sequence Read Archive and
are available under the Accession Number [NCBI:
SRA031288]. The initial MIRA assembly reported in this
manuscript has been modified according to NCBI guide-
lines and deposited in the NCBI Transcriptome Shotgun

Assembly Archive and is available under the Accession
Number [JI896856 - JI981123].

Additional material

Additional file 1: Fasta file of the unigene database for the the
second pass TGICL/CAP3 assembly using the MIRA unigenes of the
first pass assembly; The fasta file contains the Mira unigenes annotated
with their best BlastX hit (e-value ≤ 10-4) against the proteome of A.
thaliana, M. truncatula, Glycine max and the nr database of NCBI (with
only the best hit against one proteome in the given order is presented).

Additional file 2: Mapping of the cleaned reads, the first pass
assembly and the second pass assembly results against A. thaliana,
M. truncatula and G. max to approximate the proportion of
chimeric genes in the assembly.

Additional file 3: Contribution of retrotransposon-like sequences to
the contig databases.

Additional file 4: The alignments used to generate Table 3; data can
be loaded into tablet [52]for visualization.

Additional file 5: The fasta file of sequences used to generate Table
3; data can be loaded into tablet [45]for visualization.

Additional file 6: Correlation between reads mapping to a reference
and unigenes mapping to the same reference.

Additional file 7: Rarefaction analysis of gene representation in
different libraries; analysis was performed as described in Figure 3
(A) Reads were randomly sampled from the COT library, (B) Reads
were randomly sampled from the FLO library, (C) Reads were
randomly sampled from the HYP library, (D) Reads were randomly
sampled from the EPI library, (E) Reads were randomly sampled
from the either of the different normalized leaf libraries (LVN.1-5),
(F) Reads were randomly sampled from the library made from
etiolated seedlings (E) or the library made from etiolated seedlings
after light treatment (L).

Additional file 8: Proteome coverage of 3’ vs. 5’ ends; Different sets
of query sequences were blasted against the complete Arabidopsis
proteome, TAIR9 pep (black) and only 5’, 3’ ends (100 end standing
amino acids) of all peptides, (red, green, respectively) and the
number of significant hits (BlastX, e-value ≤ 10-4) was recorded. The
sets of query sequences were all first pass MIRA unigenes (unigenes) and
all cleaned reads from the different libraries (COT, E, L, EPI, LVN.5, LVN.1,
LVN.2, LVN.3, LVN.4, FLO, HYP, LVR.1).

Additional file 9: Enriched categories of GO terms for libraries of
etiolated seedlings and etiolated seedlings after light treatment;
enrichment analysis was performed with topGO [64].
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