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Abstract

When machine learning is applied in safety-critical or otherwise sensitive areas,
the analysis of feature relevance can be an important tool to keep the size of models
small, and thus easier to understand, and to analyze how different features impact
the behavior of the model. In the presence of correlated features, feature relevances
and the solution to the minimal-optimal feature selection problem are not unique.
One approach to solving this problem is identifying feature relevance intervals
that symbolize the range of relevance given to each feature by a set of equivalent
models. In this contribution, we address the issue of calculating relevance intervals
– a unique representation of relevance – for reject option support vector machines
with a linear kernel, which have the option of rejecting a data point if they are
unsure about its label.

1 Introduction

Feature selection is a tool commonly used to increase the performance of a machine learning
algorithm, to reduce computational and sample complexity, and to obtain smaller models that are
easier for humans to understand. Early definitions of feature relevance were given by [7], and
feature selection has been an active research area for decades [4], where popular methods include
l1-regularization and filter methods based on mutual information [10, 11, 2]. In the presence of highly
correlated variables, minimal-optimal sets may not be unique and relevance cannot be represented in
by a binary relevant – irrelevant distinction. Thus, popular feature selection methods do not allow for
full insight in this case. This is particularly true if we aim to take into consideration different costs or
practicalities of collecting each feature set, or simply need to check whether the decision behavior of
highly performing models corresponds to our real world intuition. Under these goals, the problem of
interest is the all-relevant problem. So far, it has received far less attention than the minimal-optimal
problem, which aims for a single feature subset that allows good classification accuracy. Recent
approaches for its solution include importance determination using random forests [9], combined l1-
and l2 regularization and various forward-backward selection schemes based on different importance
measures [12, 3] and, most recently, a mathematical formulation for determining all possible feature
relevance combinations for a linear classifier. [5] In this contribution, we extend this formulation to
reject option linear classifiers.

Reject option classifiers are a deviation from typical binary classification schemes that are used
when the cost of misclassification is high. If the classifier is unsure of the correct label, it declines to

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Preprint – Accepted at NIPS Workshop on Transparent and Interpretable Machine Learning in Safety Critical
Environments.



make a low-certainty prediction and instead returns a “reject”, in order to allow further diagnostics or
reevaluation, instead of making an uncertain and potentially damaging decision. Nearest neighbor
classification with a reject option goes back to [6]. More recently, reject options have been extended
to SVMs for the global two-class and local multi-class cases [1, 8].

To allow introspection into these classifiers, it is desirable to analyze which features are especially
important to its decisions in general as well as on a particular data point or class. To the best of
our knowledge, there is no method to unambiguously analyze feature relevance for reject option
classifiers. We propose a method to calculate feature relevance intervals for the special case of
linear reject option support vector machines. These relevance intervals provide information about
the all-relevant problem as well as allowing the distinction between strongly and weakly relevant
features. In the following sections, we first shortly review the main points in feature relevance and
feature selection and reject option classifiers, exemplified by reject option SVM, and then present our
method, as well as illustrate its results on toy data sets.

2 Feature Relevance

Our setting is a classification problem with features X1, . . . , Xd and binary labels Y . Regard the
feature Xi and let Si be the set of all features except Xi. Then, by the taxonomy introduced in [7],
the feature Xi is strongly relevant if it contains information about Y not contained in Si. It is weakly
relevant if it contains information about Y not contained in some subset S ( Si and it is irrelevant if
it is neither strongly nor weakly relevant.

The distinction between strong and weak relevance is necessary because it is possible for a feature
to be informative but redundant, in the sense that it does contain information on the labeling Y , but
does not add to the information already contained in Si. In this case, a binary sense of relevant and
irrelevant would fail to accurately represent the informativeness of Xi.

In applied machine learning, we are often not directly concerned with which features contain
information on our target variable, but rather with which features help us solve the classification
problem well, i.e. which features contain information on Y that can be leveraged by our choice
of model. In this setting, the distinction between strong and weak relevance is equally sensible,
because a feature that contains information leverageable by our chosen model may still be made
redundant by other features with the same qualities. This is one reason why a unique solution of the
minimal-optimal feature selection problem may not exist: exchanging one of the redundant features
for another may not affect the quality of the feature subset for qualification. These cases motivate
us to consider the all-relevant feature selection problem, which aims to obtain information about all
equivalently good subsets. As an example of where this may be important, consider a doctor who,
besides the predictive performance offered by a feature set, also has to consider how expensive and
invasive the measurement of the features is, or an engineer who has to consider that the accuracy of
measuring features deteriorates to different degrees under conditions such as location, lighting and
temperature.

In Section 4, we present a method that calculates relevance intervals for the hypothesis class of linear
reject option classifiers, thus giving information about which features are necessary to achieve a
certain level of classification performance, and which features may be substituted for others.

3 Reject Option SVM

Reject option classification is a common approach in applications where the cost of misclassification
is high enough that rejecting a data point is preferable to classifying it if the probability of misclassifi-
cation is large. If we let r be the highest probability of misclassification that we find acceptable, we
can define a reject option loss function that assigns a cost of 1 to a misclassification, 0 to a correct
classification, and a cost of r to a reject. Bartlett et al. [1] introduced a piecewise linear surrogate
of the cost function optimized by the optimal reject Bayes classifier that generalizes the hinge loss
commonly used for training support vector machines and showed how to use it in the training of
reject option SVMs. Specifically, given data (~x1, y1), . . . , (~xn, yn), for a linear kernel, the reject
option SVM is uniquely determined as the solution of the following convex optimization problem:
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argmin
~w,b,~ξ,~γ

‖~w‖22 +
1

n

n∑
i=1

(
ξi +

1− 2r

r
γi

)
s.t. ξi ≥ 0, γi ≥ 0, ξi ≥ 1− yi (〈~w, ~xi〉+ b) ,

γi ≥ −yi (〈~w, ~xi〉+ b) , i = 1, . . . , n.

where the resulting classification rule is given by f(~x) = sgn(〈~w, ~x〉 + b) if |〈~w, ~x〉 + b| > r and
“reject” otherwise.

The magnitude of the |wi| determines how much a change in the variable Xi influences the certainty
of the classifier: changing the value of the i-th feature by 2r

|wi| or greater where wi 6= 0 can make
the difference between a confident prediction of one class or the other, whereas a change by less
than 2r

|wi| cannot flip the class prediction, only change a confident prediction to a reject or vice versa.
wi = 0 means that the predictions of the classifier are completely independent of the value given to
the i-th feature. These observations motivate the use of the weights |wi| as proxies for the relevance
of feature Xi. However, if there is a set of correlated features in the data set, the minimization of the
l2 norm encourages the classifier to distribute weight over this group, making each seem irreplaceable
on the one hand, and obscuring the magnitude of their relevance on the other hand, even though
“shifting” the weight to a single one out of the group of features would lead to identical classification
behavior. We show how to address this issue in the following section.

4 Feature Relevance Intervals for Reject SVM

We have seen that choosing a single, well-performing model and analyzing which features are relevant
to this model provides an incomplete picture at best. Instead, we want to consider all models with
acceptable classification performance and infer feature relevance for each one, in order to deduce
which features are substitutable for one another, should this be necessary out of economic or efficiency
concerns. This can be achieved by the following procedure, which is an extension of our work in [5]:

1. Pick a baseline reject SVM, e.g. by solving the regularized empirical risk minimization
problem proposed by Bartlett et al. [1]

2. Consider all reject option SVMs with similar costs and l1-norm of the weight vector ~w as the
baseline SVM. This allows weights to shift between correlated features while maintaining
the performance on the observed data. The range of |wi| that occur in these SVMs are a
proxy for the range of relevance that can sensibly be assigned to the i-th feature.

Step 2 can be formalized by the following optimization problems (a minimization and a maximization
problem, both with the same objective function and constraints), for each feature j = 1, . . . , d:

min
~w′,b′,~ξ′,~γ′

/ max
~w′,b′,~ξ′,~γ′

|w′
j |

s.t. ‖~w′‖1 ≤ ‖~w‖1
n∑
i=1

(
ξ′i +

1− 2r

r
γ′i

)
≤

n∑
i=1

(
ξi +

1− 2r

r
γi

)
ξ′i ≥ 0, γ′i ≥ 0, ξ′i ≥ 1− yi (〈~w′, ~xi〉+ b′) ,

γ′i ≥ −yi (〈~w′, ~xi〉+ b′) , i = 1, . . . , n.

using the original reject SVM solution (~w, b, ~ξ,~γ) as a baseline. Here, we upper bound the margin
violation of the hypotheses (~w′, b′) by the margin violations of the baseline classifier in order to
ensure that our hypotheses perform as well concerning the surrogate loss function of [1] as our base
hypothesis. We do not lower bound the margin violations in order to admit improvements on the
baseline hypothesis.

These optimization problems can be solved using linear programs, and thus the results are unique
and can be computed in polynomial time. If wmin and wmax are the solutions of the minimization
and maximization problems, respectively, then [wmin, wmax] is exactly the range of magnitudes of a
weight vector such that weights are only shifted compared to the baseline, with no adverse effects on
the reject option loss.
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Figure 1: The left column shows the baseline SVM. The middle column shows a linear classifier that
assigns minimal weight to the first feature (plotted horizontally), while maintaining the l1-norm and
value of the modified hinge loss of the baseline classifier. The right column shows a linear classifier
giving maximal weight to the first feature, again maintaining the l1-norm and value of the modified
hinge loss of the baseline classifier. The top, middle and bottom rows depict the first, seconds and
third datasets, respectively. Rejected samples are shown in gray; classified samples are shown in
black or white. The decision boundary is indicated by a black line.

5 Experiments

We present experimental results of our method on three toy datasets that are two-dimensional (to
allow straight-forward visualization) and result from independent measurements of the same feature,
i.e. the features are designed contain redundant information, but the duplication may become useful
due to independent noise. In the first two datasets, noise gets more pronounced the closer a sample
lies to the decision boundary. In the first dataset, the first feature is noisier than the second, while in
the second dataset, both are subject to equal amounts of noise. Both datasets simulate cases where
measuring a feature is more complicated in critical cases, e.g. in medical settings. The third dataset is
composed of samples that are fewer towards the decision boundary, which is akin to populations in
which the vast majority of samples has characteristics expressed strongly in one of two ways. Code
for our method and the experiments can be found at github.com/janphigoe/rejectferel.

The results of our method, applied to the three datasets, are displayed in Figure 1. Even though
measuring twice helps alleviate the decline in classification accuracy and certainty caused by noise,
our method detects when a single measurement suffices for classification performance close to optimal
– however, it does not simply reduce the feature’s weight to zero or increase it to the maximum in
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all cases. For example, for the first dataset, since the first feature is noisier than the second, relying
solely on the first is not possible.

Notice how, in the majority of cases, assigned classes are not flipped, but the choice of rejected points
differs strongly among these classifiers with the same generalized hinge loss. In the future, we will
investigate the behavior of the set of rejected points and of the true reject loss in the extremal cases.

6 Conclusion

We have presented a method of calculating feature relevance intervals for linear reject option SVM.
In a first analysis, our method has produced results that align with the underlying ground truth as well
as our expectation. The next steps are a comparative analysis with other feature selection methods on
toy data with known ground truth, an evaluation on real world data, and a closer investigation of the
true loss of the “equivalent” hypotheses we consider.
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edged.
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