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Abstract

We study the evolution of R&D networks in a Cournot model where
firms may lower marginal costs due to bilateral R&D collaborations.
Stochastically stable R&D networks exhibit the dominant group ar-
chitecture, and, contrary to the existing literature, generically unique
predictions about the size of the dominant group can be obtained. This
size decreases monotonically with respect to the cost of link formation
and there exists a lower bound on the size of the dominant group for
non-empty networks. Stochastically stable networks are always inef-
ficient and an increase in linking costs has a non-monotone effect on
average industry profits.

JEL Classifications: C72, C73, L13, O30
Keywords: R&D Networks, Oligopoly, Stochastic Stability

1 Introduction

The formation of R&D networks, where firms cooperate with respect to
their innovative activities, is an important feature of many industries (see
e.g. Hagedoorn [12], Powell et al. [18], Roijakkers and Hagedoorn [19]). In
many cases the firms cooperating on the R&D level are competitors in the
market, which gives rise to intricate strategic considerations when selecting
R&D cooperation partners. Given the empirical evidence of R&D collabora-
tions it is important to gain a sound understanding of the factors determin-
ing the structure of R&D networks. From a theoretical perspective Goyal
and Joshi [9] have studied the structure of pairwise Nash stable (PNS) R&D
networks in a seminal contribution. They consider a setting where links re-
duce marginal production costs of firms, which compete a la Cournot. They
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show that the pairwise Nash stable (PNS) networks exhibit the dominant
group architecture (with one completely connected group and all other firms
isolated). However, a wide range of these types of networks (with respect
to the size of the dominant group) may be PNS. And although the sizes
of the dominant group are sensitive to the cost of link formation, there is
no unique prediction with respect to the networks which will be observed.
Moreover surprisingly, the minimal size of the component in a non-empty
network is increasing in the cost of link formation for a certain cost range.
In a related setting of directed R&D networks and Cournot competition
Billand and Bravard [2] obtain stable networks with a similar structure in a
sense that a subset of nodes is heavily connected, whereas the other nodes
do not form own links.

In a recent contribution Marinucci and Vergote [17] study the strategic
formation of R&D networks in a patent-race setting where the number of
links of a firm positively affects its expected valuation of the patent. The
patent is awarded using an all-pay auction based on the R&D effort invested
by all competitors. The authors study the stable networks in a two-stage
setting, where links are chosen first and effort determined in the second
stage. They show that similar to the findings of Goyal and Joshi [9] only
networks with dominant group structure can be stable.

The models of R&D network formation in the papers discussed above
are static1. Dynamic models of R&D network formation have recently been
provided in different economic frameworks (see e.g. Baum et al. [1],König
et al. [16]). The economic environment in these contributions differs sub-
stantially from the models of Goyal and Joshi [9], Billand and Bravard [2],
and Marinucci and Vergote [17], and therefore the stable networks do not
exhibit the dominant group structure. Hence, these dynamic studies do not
provide an indication of how to select among the (typically numerous) stable
networks with dominant group structure. In particular, a dynamic analysis
of the standard Cournot setting considered in Goyal and Joshi [9] is so far
missing.

In this paper, we fill this gap and focus on the dynamics of R&D net-
works in a Cournot oligopoly. We assume in this two stage game, where
decisions about links are made in the first stage and quantities are chosen
in the second, that interaction on the collaboration network is faster than
the dynamics of the networks. This implies in our model that the unique
Nash equilibrium of the second stage, i.e. the equilibrium choice of quanti-
ties, is immediately established.2 For the evolution of collaboration links,
we employ the dynamic model of network formation by Jackson and Watts

1It should be noted that the study of R&D network formation is closely related to the
literature on R&D coalition formation (e.g. Bloch [3], Yi [22]). For a contribution in a
setting related to our model see Greenlee [11].

2In a model with multiple second stage equilibria a slow-fast dynamic needs to be
modeled explicitly as e.g. in Dawid and MacLeod [7].
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[14]. In this framework, each link is considered one by one and the decision
makers play a myopic best-reply to the current state with high probability
and make mistakes with low probability. The resulting stochastically stable
networks select among the pairwise stable networks, and are those which
are observed most of the time in this dynamic model when the probability
of mistakes vanishes.

In the main result of our paper, we characterize the set of stochastically
stable networks. Trivially, they also exhibit the dominant group architec-
ture. We find that the stochastically stable networks are typically unique
(with respect to the size of the dominant group) and the size of the domi-
nant group is monotonically decreasing in the cost of link formation, solving
the puzzle of non-monotonicity in Goyal and Joshi [9]. Further, we show
that there exists a threshold of the dominant group size, below which only
the empty network can be stochastically stable. This result has interesting
connections to analytical findings on efficient networks; e.g. in a similar two
stage game, Westbrock [21] studies the efficient networks and also concludes
that either the empty network is efficient or there exists a lower threshold on
the size of the dominant group for efficient networks to have the dominant
group structure. Our findings imply that for relatively large linking costs
the structure of the stochastically stable networks differ from that of the ef-
ficient ones. For relatively small linking costs both the stochastically stable
and the efficient networks have dominant group structure, where however
numerical analysis suggests that both generically differ with respect to size
such that stochastically stable networks are under-connected.3 Since the
concept of stochastic stability allows us to select generically unique R&D
networks for all values of the linking costs, we are in a position to study
the effects of changes in the linking costs on consumer surplus and industry
profits under consideration of the resulting changes in structure of the R&D
networks. It turns out that whereas consumer surplus moves in the intu-
itively anticipated direction, i.e. increasing linking costs imply decreasing
consumer surplus, a non-monotone U-shaped relationship between linking
costs and average industry profits emerges. In particular, for relatively high
linking costs associated with small dominant group sizes, an increase in these
costs induces an increase in the firms’ profits.

Relative to the existing literature, one new contribution of this paper
is thus to establish a monotone and explicit relationship between key pa-
rameters, like the costs of link formation or market size, and the size of
the dominant group. Such a characterization is important since it allows to
derive conclusions concerning the change in the shape of emerging networks
as key parameters vary. Furthermore, our selection result allows to compare
efficient and emergent networks within the set of dominant group networks.

3Under-connected networks are contained in welfare better networks, e.g. efficient net-
works, see Buechel and Hellmann [5].
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This is different from the existing literature where statements about ineffi-
ciency of stable networks are based on structural differences between these
networks and the efficient one (see Westbrock [21]). On the contrary, our
results enable evaluation of the efficiency of an emergent network based on
the size of the dominant group. Finally, we derive results concerning the
effects of changes in the linking costs on key market indicators like consumer
surplus and average industry profit. In the absence of a (generically) unique
prediction about the shape of the R&D network for a given parameter set-
ting, the existing literature did not provide any results in this respect.

The paper is organized as follows. In Section 2 we present the model
and Section 3 is devoted to the characterization of the stochastically stable
R&D networks for different levels of linking costs. In Section 4 we study
the relationship between stochastically stable and efficient networks and
explore the effect of changes in linking costs on consumer surplus and average
industry profit. The paper ends with some conclusions in Section 5. All
proofs are given in the Appendix.

2 The Model

A set of N = {1, ..., n} ex ante identical firms participates in a two stage
game. To exclude uninteresting cases we assume n ≥ 3. Firms first form
bilateral agreements of collaboration. We denote by gn := {{i, j}|i, j ∈
N, i 6= j} the set of all possible collaboration agreements, which we call the
complete network. The set of all undirected networks is given by G = {g :
g ⊆ gn}. For notational convenience we denote by ij = ji := {i, j} ∈ g a
collaboration link between firm i and firm j in network g. Given a network
g ∈ G, the neighbors of player i are represented by the set Ni(g) := {j ∈
N | ij ∈ g}. We denote by ηi(g) := |Ni(g)| the degree of firm i and by
η−i :=

∑
j 6=i ηj the sum of all other firms’ degree. For a network g ∈ G and

a set of links l ⊆ gn \ g (which is also a network) let g + l := g ∪ l be the
network obtained by adding the links l to network g. Similarly, let g−l := g\l
denote the network obtained by deleting the set of links l ⊆ g from network
g ∈ G. Collaboration links can be interpreted as R&D agreements lowering
marginal costs of producing the homogeneous good. However, maintenance
of links is costly, with constant cost f per formed link.

In the second stage, firms compete in the market by choosing quanti-
ties.4 We assume that marginal cost of producing the homogeneous good
is constant for each firm and for i ∈ N given by ci(g) = γ0 − γηi(g)
with γ < γ0

n−1 . Let qi ∈ R+ be the quantity chosen by firm i and let
q = (q1, .., qn) ∈ Rn+ be the profile of quantities chosen. We assume that
market demand is linear and given by P (q) = max[0, α −

∑
j∈N qj ]. As-

4A more detailed derivation of the second stage equilibria can be found in Goyal and
Joshi [9].
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suming positive prices, the profit of firm i ∈ N in the second stage can be
derived to be, π̃i(q, g) = (α−

∑
j∈N qj)qi − qici(g). Taking the network g as

given, firms try to maximize profits. The interior Cournot equilibrium can
be calculated to be,

q∗i (g) :=
(α− γ0) + nγηi(g)− γ

∑
j 6=i ηj(g)

n+ 1
,

which is strictly positive assuming α − γ0 − γ(n − 1)(n − 2) > 0. Thus, in
equilibrium of the second stage, profits are π̃i(g) = (q∗i (q))

2. Adjusting for
the cost of link formation and noting that the resulting payoff in the first
stage only depends on the degree distribution as the only network statistic,
we write, abusing notation:

πi(ηi, η−i) := πi(g) :=
((α− γ0) + nγηi(g)− γη−i(g))2

(n+ 1)2
− ηi(g)f. (1)

So far the static model is in line with Goyal and Joshi [9]. We now
present a dynamic model of network formation. We assume that adjust-
ment in the quantity choice stage is fast compared to the rate by which
changes in the network occur. An interpretation of this is that adjustments
in competitive decisions (in this case: quantities) happens on an everyday
basis, while strategic choices on R&D partnerships are long-term decisions.
Thus, we consider a dynamic model of network formation such that the
(unique) equilibrium in the second stage is immediately adapted for each
change in the network.5 To model the network dynamics we employ the
stochastic process introduced by Jackson and Watts [14]: time is discrete
t = 0, 1, ... and at t = 0 an arbitrary network is given (e.g. the empty net-
work). We denote the network at time t ∈ N by gt. At each point in time t,
one link is selected by some probability distribution which is identical and
independent over time with full support, i.e. p(ij) > 0 for all ij ∈ gn. If
the selected link is already contained in gt, then both firms decide to keep
or delete the link, and, if not, both firms decide whether to add or not
to add the link. These decisions are myopic and based on marginal pay-
offs from the given link, ∆+

i (ηi, η−i) := πi(ηi + 1, η−i + 1) − πi(ηi, η−i) and

5Although it is well known that the equilibrium in multi-firm Cournot oligopolies is
unstable under a standard best response dynamics due to overshooting (see Theocharis
[20]), assuming a certain degree of inertia in the dynamics makes the equilibrium stable
(see Dawid [6]) and in our analysis it is implicitly assumed that the inertia in quantity
adjustment is sufficiently large such that the unique Cournot equilibrium is reached for
any given R&D network.
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∆−i (ηi, η−i) := πi(ηi, η−i)−πi(ηi−1, η−i−1) which can be calculated to be:6

∆+
i (ηi, η−i) =

γ(n− 1)

(n+ 1)2

[
2(α− γ0) + γ(n− 1) + 2γnηi − 2γη−i

]
− f

∆−i (ηi, η−i) =
γ(n− 1)

(n+ 1)2

[
2(α− γ0)− γ(n− 1) + 2γnηi − 2γη−i

]
− f

The link ij /∈ gt is then added if ∆+
i (ηi, η−i) > 0 and ∆+

j (ηj , η−j) ≥ 0, i.e.
if that link is beneficial for both involved firms (with one strict inequality)
while it is not added else. Similarly a link ij ∈ gt is kept if ∆−k (ηk, η−k) ≥ 0
for both k ∈ {i, j}, while it is deleted else. With high probability 1 − ε
the decision of the players is implemented while with low probability ε the
decision is reversed (i.e. a mutation), which can be interpreted as firms
making a mistake or a experimentation. The such defined stochastic process
is an ergodic Markov process on the state space of G with unique limit
distribution µε depending on the probability of mistakes. The networks g ∈
G such that limε→0 µ

ε(g) > 0 are called stochastically stable (see e.g. Young
[23]). By construction, the absorbing states of the unperturbed process (for
ε = 0) are the pairwise stable networks (PS), i.e. the networks g ∈ G such
that for all i ∈ N : ∆−i (ηi(g), η−i(g)) ≥ 0 and for all pairs i, j ∈ N with
ij 6∈ g: ∆+

i (ηi(g), η−i(g)) > 0 ⇒ ∆+
j (ηj(g), η−j(g)) < 0.7

The condition for pairwise stability is weaker than that for pairwise Nash
stability, used in Goyal and Joshi [9], since PNS requires that in addition
to the PS conditions that πi(ηi, η−i) − πi(0, η−i − ηi) ≥ ηif holds for all
i ∈ N . PNS also captures the opportunity to delete multiple links at a
time. Thus, the dynamics of network formation introduced by Jackson and
Watts [14] may converge to networks which are not pairwise Nash stable,
i.e. where firms would be better off deleting all their links. The reason
for this is that multiple link decisions are not considered in the dynamic
model by Jackson and Watts [14]. A motivation for such a dynamics may
be in our context that link revision opportunities only arrive at certain
times due to long lasting contracts (for existing links) or occasional meetings
between firms (to create new links). Therefore, a model where each link is
considered one by one and firms behave myopically is reasonable.8 Moreover,
since the economic environment is rather complex, it is possible that firms

6For notational convenience we will drop the dependence of ηi(gt) on gt whenever the
reference is clear.

7The definition of Jackson and Wolinsky [15] is adapted here to our framework. The
conditions simply mean that no firm wants to delete a single R&D collaboration and there
do not exist two firms which both benefit (at least one strictly) from a mutual partnership.

8A dynamic process, where absorbing states are only the pairwise Nash stable networks,
necessarily needs to include another decision stage where players (not links) are selected to
revise (multiple) links. In the framework of directed network formation with best response
this has been examined in Feri [8]. It is not straightforward to set up a similar process in
the context of undirected networks considered here and the complexity of the dynamics
would make the stochastic stability analysis infeasible.
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make mistakes or experiment by not forming a myopically reasonable R&D
partnership (with probability ε). However, as we consider the limit ε → 0,
firms learn over time and decide myopically optimal. The networks such that
limε→0 µ

ε(g) > 0, i.e. the stochastically stable networks, are those which for
small ε are observed most of the time (as t→∞) in such a process.

3 The Evolution of Collaboration Networks

In order to study the set of stochastically stable networks, we first charac-
terize the set of pairwise stable networks. Note that

∆+
i (ηi + k, η−i + k)−∆+

i (ηi, η−i) =
2kγ2(n− 1)2

(n+ 1)2
> 0 (2)

which implies that πi(g) is convex in own links, i.e. externalities of additional
own links on marginal payoff from a given link are positive. Moreover,

∆+
i (ηi, η−i + 2k)−∆+

i (ηi, η−i) = −4kγ2(n− 1)

(n+ 1)2
< 0 (3)

which implies that πi(g) satisfies the strategic substitutes property, i.e. ex-
ternalities of additional links of other firms on marginal payoff from a given
link are negative.9 The reason for the strategic substitutes property and
convexity in own links is that additional R&D partnerships of other firms
lower their marginal costs of production and hence decreases own output
quantity and own benefit of a partnership, while additional own collabora-
tion links lower own marginal costs and thus increases own output and the
benefit of a given partnership.

From the convexity property (and ex ante identical firms), it follows
directly that only networks with dominant group architecture such that
there exists one completely connected group of firms of size k and all other
firms isolated, denoted by gk, can be pairwise stable.10 In the following
the pairwise stable networks gk are characterized in terms of the size of the
dominant group.

Proposition 1. There exist numbers (0 <)F0 < F1 < F2 with the following
properties:

1. for f < F0 the complete network gn is the unique PS network,

2. for F0 ≤ f < F1, there exists k(f) ∈ N, 1 < k(f) < n such that
PS =

{
gk(f), ..., gn

}
,

9For formal definitions of the properties convexity and strategic substitutes see, among
others, Goyal and Joshi [10] and Hellmann [13].

10See Goyal and Joshi [10], Lemma 4.1 for an analogous statement for pairwise Nash
stable (PNS) networks. The proof trivially also holds for pairwise stable networks.
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3. for f = F1 we have PS = {g1, ..., gn},

4. for F1 < f ≤ F2, there exists k(f), k̄(f) ∈ N : 1 < k(f) ≤ n+2
2 ≤

k̄(f) < n and k(f)+k̄(f) = (n+2) such that PS =
{
g1, gk(f), ..., gk̄(f)

}
,

5. for f > F2 the empty network g1 is the unique PS network.

The pattern of pairwise stable networks exhibits similar structure as the
pattern of pairwise Nash stable networks in Goyal and Joshi [9]. In fact the
set of PS networks contains the set of PNS networks.11 Two properties are
notable when comparing the two sets. First, the cost threshold such that
the complete network stops being PS coincides with the threshold such that
the empty network starts becoming PS. Second, for the non-monotonicity
part of k(f), i.e. F1 < f < F2, the minimal k and the maximal k such that
gk, k 6= 1 is PS are symmetric around n+2

2 . These two observations do not
hold for the PNS networks in Goyal and Joshi [10]. For an illustration of the
PS and PNS networks, see also Figure 1. In particular, it is worth noting
that many networks can be PS, resp. PNS, and thus these static stability
concepts do not provide precise predictions of which networks will emerge.

Proposition 1 completely characterizes the set of pairwise stable net-
works. With respect to the dynamics introduced above, the only other
possible recurrent classes of the unperturbed process (s.t. ε = 0) are closed
cycles.12 The following Lemma shows, that there do not exist closed cycles
in our model.

Lemma 1. In the model of collaboration networks where payoff satisfies (1),
there does not exist a closed cycle.

Thus the only recurrent classes are the singleton states of pairwise sta-
ble networks. We now employ the techniques by Jackson and Watts [14] to
find the stochastically stable networks. Since the set of stochastically sta-
ble networks is the set of networks with minimal stochastic potential, this
requires the computation of the stochastic potential of a network which is
defined as the sum of all transition costs of the minimal cost (directed) tree
connecting all networks, where the transition cost between two networks is
given by the minimal number of mutations (i.e. mistakes) to move from one
network to another. Since all other states are transient, we may restrict the
construction of the minimal cost tree to the set of pairwise stable networks,
i.e. we construct minimal resistance trees for each gk. To denote the tran-
sition costs for k ≥ 2, let c+(k) denote the minimal number of mutations
necessary to move from gk to gk+1 and let c−(k) denote the minimal number
of mutations necessary to move from gk to gk−1. Moreover, denoting

κ(k) := arg min
k̃∈{0...k}

(
∆+
i (k̃, k(k − 1) + k̃) ≥ 0

)
, (4)

11This holds trivially due to the definition of PS and PNS, see Bloch and Jackson [4].
12For a definition of improving paths and closed cycles, see Jackson and Watts [14].
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we get c+(k) = κ(k) and c−(k+ 1) = k−κ(k), which is proved in Lemma 2.

Lemma 2. Let k ≥ 2 and let gk and gk+1 be pairwise stable. Then the
minimal number of mistakes to move from gk to gk+1 is given by c+(k) =
κ(k) and minimal number of mistakes to move from gk+1 to gk is given by
c−(k + 1) = k − κ(k).

Lemma 2 shows that the number of mistakes necessary to move between
two dominant group networks, gk, gk+1 is determined by κ(k). For a PS
network gk, the number κ(k) is the minimal number of links an isolated
firm needs to be given in order to have an incentive to form a link, i.e. these
are the number of myopically non-optimal links formed by an isolated firm
in order to be willing to form links on their own. Note that a firm in the
dominant group always has an incentive to form a link and thus will not
decline a link.

From Proposition 1 we have for f < F1 that if gk and gk̃ are PS for k < k̃
then also gk

′
is PS for all k′ ∈ N such that k < k′ < k̃. The only case of there

being a gap (in terms of the size k) between two pairwise stable networks gk

is for g1 and gk(f) if F1 < f < F2. Thus, we get that the stochastic potential
of a network gk with k ≥ 2 is given by

r(gk) = c(g1, gk(f)) +

k−1∑
l=k(f)

c+(l) +

k̄(f)∑
l=k+1

c−(l),

where k(f) and k̄(f) is the minimal respectively maximal number k ∈
{2, ..., n} such that gk is pairwise stable and c(g1, gk(f)) is the minimal num-
ber of mistakes to move from the empty network to gk(f), which is set to 0 if
the empty network is not pairwise stable. Denoting by ∆r(k) the difference
in stochastic potentials between two networks, gk and gk+1, k ≥ 2, we get:

∆r(k) := r(gk+1)− r(gk) = 2κ(k)− k.

To characterize stochastically stable networks in Proposition 2, we show first
that ∆r(k) is weakly decreasing in k ∈ N up to k = n−1

4 and then weakly
increasing. Thus, the network(s) gk which satisfy the necessary condition,
∆r(k) ≥ 0 and ∆r(k−1) ≤ 0,13 are the only candidates for stochastic stabil-
ity besides the empty and complete network. In the following we characterize
the stochastically stable networks.

Proposition 2. There exist numbers F ∗0 , F
∗
1 ∈ R such that F0 < F ∗0 < F1 <

F ∗1 < F ∗2 < F2 such that:

1. for f < F ∗0 the complete network gn is uniquely stochastically stable.

13∆r(k) ≥ 0 and ∆r(k− 1) ≤ 0 are necessary conditions for a network g to be pairwise
stable since ∆r(k) ≥ 0 implies r(gk+1) ≥ r(gk) and ∆r(k−1) ≤ 0 implies r(gk−1) ≥ r(gk),
and the stochastically stable networks are those which minimize stochastic potential.
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2. for F ∗0 < f < F ∗1 there exists a function k∗(f) : [F ∗0 , F
∗
1 ) 7→ {n−1

4 , n−1}
such that either the network gk

∗
is uniquely stochastically stable or gk

∗

and gk
∗+1 are the only stochastically stable networks. Moreover, k∗(f)

is weakly decreasing in f .

3. for F ∗1 ≤ f ≤ F ∗2 the empty network and the network gk
∗

(respectively
the networks gk

∗
and gk

∗+1) are stochastically stable.

4. For f > F ∗2 the empty network g1 is uniquely stochastically stable.

The proof is presented in the appendix. It may be helpful to illustrate
the result of Proposition 2 by Figure 1.

pairwise Nash st.

pairwise st.

stoch. st.

0F
1F 2F*

2F*
1F*

0F

k

f

Figure 1: The set of pairwise stable (gray area), pairwise Nash stable (ruled
area) and stochastically stable networks (blue).

The stochastically stable networks follow a clear pattern. First, the size
of the connected component in stochastically stable networks is (weakly) de-
creasing with cost of link formation, although the sizes of PS and PNS net-
works exhibit a non-monotonicity property for a certain cost range. Second,
there exists a lower bound of the component size of non-empty stochasti-
cally stable networks. Third, as Figure 1 indicates, the stochastically stable
networks may lie outside the set of PNS networks characterized by Goyal
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and Joshi [9].14 The observation that stochastically stable networks might
not be pairwise Nash stable, shows that this concept can in general not be
supported by a dynamic foundation, which has the usual properties of evo-
lutionary dynamics, that changes in the state from one period to the next
are local.

It should be noted that, although our discussion concentrates on the
effects of changes of link formation costs f , it is straight forward to see that
a qualitatively identical picture emerges if the market size parameter α is
varied. In particular, we obtain that for a given level of link formation costs,
a decrease of the market size might lead to the abrupt disappearance of an
R&D network of strictly positive size.

4 Efficiency, Consumer- and Producer-Surplus

Westbrock [21] shows that efficient networks exhibit quite a similar structure
to that found in the previous section for stochastically stable networks:15

for large n there exists a cost threshold such that above that threshold
no dominant group network other than the empty network can be efficient
(Proposition 4 in Westbrock [21]). A natural question is then whether it is
possible to compare stochastically stable networks with efficient ones. First,
trivially there exists a cost threshold such that above that threshold, the
empty network is both stochastically stable and efficient. The same is true
for the complete network, if linking costs f are very low.

However, for intermediate cost levels, it follows straightforwardly from
the proof of Proposition 2 and the findings in Westbrock [21] that for a
certain range of linking costs stochastically stable networks are always inef-
ficient. According to Westbrock [21] the network density, defined as D(g) =∑n

i=1 ηi
n(n−1) is an important factor in determining the efficiency of a network.

In particular, no dominant group network g with density 0 < D(g) < 1/2
can be efficient. Concerning the density of stochastically stable networks we
obtain the following.

Corollary 1. There exists F ∈ [F ∗0 , F1] such that for all f ∈ [F , F ∗1 ] all
stochastically stable networks have density 0 < D(g) < 1/2.

We can thus immediately conclude that the stochastically stable net-
work(s) for costs f ∈ [F , F ∗1 ] are inefficient and have the wrong structure.
For f < F the structure of the stochastically stable networks appears to
match that of the efficient networks, in the sense that both are dominant
group networks and the size of the dominant group is decreasing in f . How-
ever, the sizes of the dominant groups do not necessarily coincide. In Figure

14The parameter constellation underlying this figure is n = 25, γ0 = 2, γ = 0.05, α = 35.
15A network is defined as efficient if it maximizes the sum of industry profits and con-

sumer surplus among all networks.
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2 we compare the size of the dominant group in the stochastically stable
networks with that of the welfare maximizing dominant group network.16 It
can be clearly seen that the welfare maximizing network always has a larger
dominant group than the stochastically stable one and this observation ap-
pears to be very robust with respect to parameter changes. In particular
this implies that for values of f where the efficient network has dominant
group structure the stochastically stable networks are under-connected17.
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Figure 2: The stochastically stable networks (blue) and the networks maxi-
mizing welfare among all dominant group networks (black).

The observation that stochastically stable networks are under-connected
relative to the efficient ones is very intuitive. An increase in the size of the
dominant group induces a decrease in the market price, which has positive
implications for consumer surplus. This positive welfare effect of link forma-
tion is not taken into account by firms when they decide whether to build
respectively to delete a link. Based on this difference between social and

16Note that these welfare maximizing dominant networks are efficient for low linking
costs. For high cost levels networks with a different structure are efficient, see West-
brock [21]. However, since stochastically stable networks always exhibit the dominant
group structure, we compare these to those dominant group networks which are welfare
maximizing within this class of networks.

17For a definition of over-connected or under-connected networks, see Buechel and Hell-
mann [5].
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private returns of link formation it should be expected that the size of the
dominant groups in stochastically stable networks tend to be smaller than
those in efficient networks.

Having characterized the relationship between stochastically stable and
efficient networks we will now evaluate how changes in linking costs affect
consumer surplus and average industry profits. First intuition suggest that
an increase in costs should decrease the surplus on both sides of the market,
but we will demonstrate in this section that this intuition is not necessarily
correct.

In what follows we assume that for all values of f a stochastically stable
R&D network emerges and in case two stochastically stable networks co-
exist the network with dominant group size k∗(f) is selected. Consumer
surplus and average industry profits can then be defined as functions of
linking costs in the standard way. For the consumer surplus we have

CS∗(f) =
(α− p∗(f))2

2
,

where p∗(f) = P
(
Q∗(f)

)
denotes the equilibrium price and

Q∗(f) =
n∑
i=1

q∗i (g
∗) =

n(α− γ0) + γ(k∗(f)2 − k∗(f))

n+ 1

denotes the total equilibrium output under the stochastically stable R&D
network g∗ (of dominant group size k∗(f)). The average industry profit
reads

Π∗(f) =
1

n

[
k∗(f)πi

(
k∗(f)− 1, (k∗(f)− 1)2

)
+
(
n− k∗(f)

)
πi
(
0, k∗(f)(k∗(f)− 1)

)]
.

Given these definitions it is a direct Corollary of Proposition 2 that
consumer surplus goes down if linking costs increase.

Corollary 2. The consumer surplus function CS∗(f) is constant for f < F ∗0
and f > F ∗2 , but weakly decreasing on the interval [F ∗0 , F

∗
2 ].

The intuition for this result is straightforward. The size of linking costs
affects the market price only indirectly, because it determines the shape of
the R&D network and thereby the size of the marginal production costs of
the competitors. An increase of the linking costs induces a reduction in
the number of links in the stochastically stable network. This results in an
increase of the production costs of (some) producers and hence to an increase
of the market price and a decrease in consumer surplus. The reduction of
total linking costs that go along with a shrinking size of the dominant group

13
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does not influence the price and are therefore irrelevant for the size of the
consumer surplus.

Considering average industry profits the implications of a change of link-
ing costs are however much less obvious. Several countervailing effects arise.
For a given R&D network the direct effect of an increase of f is clearly neg-
ative. However an increase in f might lead to a reduction of the size of the
dominant group, which leads, on the one hand, to an increase of marginal
costs of some producers, but, on the other hand, reduces the total linking
costs in the market. The next Proposition shows that these countervailing
effects indeed imply that the relationship between linking costs and industry
profits is similar to a U-shape.

Proposition 3. Assume that n is sufficiently large. For f < F ∗0 the average
industry profit Π∗(f) strictly decreases with respect to f . For f > F ∗0 the
average industry profit exhibits an upward jump for all values of f where
k∗(f) is not continuous. In particular, Π∗(f) exhibits an upward jump for
f = F ∗2 and is constant for all f > F ∗2 .

Corollary 2 and Proposition 3 are illustrated in Figure 3, where consumer
surplus and average industry profits in the Cournot equilibrium are shown
under the stochastically stable R&D network18.
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Figure 3: Consumer surplus (a) and average industry profit (b) in the
Cournot equilibrium under the stochastically stable R&D networks.

Consumer surplus is constant with respect to linking costs on all in-
tervals of f where the shape of the stochastically stable network does not
change. Whenever the size of the dominant group in the stochastically sta-
ble network decreases the consumer surplus goes down. Average industry

18The parameter constellation is the same as that for Figure 1
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profits decrease in response to increasing linking costs on all intervals where
the R&D networks does not change. However, it can be clearly seen that
average industry profit exhibits an upward jump at all values of f where the
structure of the stochastically stable network changes and these jumps over-
compensate the negative impact of an increase of f on the intervals where
Π∗(f) is continuous. Overall, this generates a U-shaped relationship where
average industry profits are highest for very small and large values of the
linking costs and lowest if f is in an intermediate range. The observation
that average profits increase in response to an increase in f (which triggers
a decrease in the size of the dominant group) is due to the fact that the
deletion of links of one firm implies a positive externality on all other firms
in addition to the two direct effects inducing the firms to delete their links.
The two direct effects (one negative, one positive) of link deletion by one firm
on average profits are that marginal costs (of the formerly connected) firms
increase and linking costs decrease. The positive externality on the other
firms results from the price increase triggered by the changes in marginal
costs. As shown in Proposition 3 and illustrated in Figure 3 the sum of the
positive externality and the positive implications for total linking costs that
result from the shrinking dominant group size induced by increasing linking
costs dominates the negative effect.

An implication of this insight is that for R&D networks, where the num-
ber of links is substantially lower than in the fully connected network, a
reduction in linking costs is not in the interest of the average firm in the
industry. This is particularly important since real world R&D networks typ-
ically are far from being fully connected and hence it could be concluded
that the linking costs are in the range where average industry profits in-
crease with f . Considering welfare, the observation in the first part of this
section, that the size of the dominant component in the stochastically stable
networks is smaller than that in the efficient networks, suggests that a de-
crease in the dominant component size due to an increase in f should lead
to a welfare loss. Numerical calculations confirm this and show that welfare
under stochastically stable networks is strictly decreasing in f with down-
ward jumps at all levels of the links costs where the dominant component
shrinks. This means that the negative effect of an increase of f on consumer
surplus always dominates the positive implications for industry profits.

5 Conclusion

Considering a stochastic evolutionary process of network formation for col-
laboration networks between firms which later compete in a Cournot oligopoly,
we find that the long–run equilibria, i.e. the stochastically stable networks,
exhibit interesting properties. First, we get a generically unique selection
of the pairwise stable networks. Second, the size of the dominant group is
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monotonically decreasing in the cost of link formation. For a certain cost
range, static stability notions, like pairwise stable and pairwise Nash sta-
ble networks, do not exhibit such a monotonicity property. Third, there
exists a lower threshold on the size of the dominant group such that be-
low that threshold only the empty network is pairwise stable. This may
be interpreted in a way such that there needs to be a number of firms to
join a certain project in order for the project to succeed in the long–run.
Interestingly, our fourth observation of the long–run equilibria is that these
stochastically stable networks are usually not contained in the set of pairwise
Nash stable networks. Thus, even though firms may be better off leaving
the dominant group, in the long–run the large networks survive. Comparing
the stochastically stable networks with efficient networks, we find that for
some cost range the stochastically stable networks do not have the correct
network structure, while simulation shows that for all values of linking costs
stochastically stable networks appear to be under-connected.

An important implication of our findings is that a decrease in link forma-
tion costs induces an increase of the number of connections for a subset of
(well-connected) firms and the accession of some firms to the well connected
’core’, whereas the remaining firms stay isolated. The empirical evidence of
an increasing number of R&D connections (e.g. Roijakkers and Hagedoorn
[19]) suggests that costs of R&D links, relative to the market returns, are
decreasing over time. Our results suggest that the distribution across firms
of newly formed links should have heavy tails with a few firms adding a large
number of links, few firms (the well connected ones) adding a few and many
firms adding none. Also our findings concerning the relationship between
linking costs and average industry profits provide an empirically testable
hypothesis. An empirical evaluation of these qualitative implications of our
analysis is left for future research.
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APPENDIX

Proof of Proposition 1
Since only the networks of type gk (with one completely connected com-

ponent of size k and all other firms isolated) can be pairwise stable,19 we
only have to consider incentives to add a link for an isolated player or in-
centives to delete a link for a connected player. In a network gk, an isolated
firm has no incentive to add a link if ∆+

i (0, k(k − 1)) < 0 and a connected
firm has no incentive to delete a link if ∆−i (k − 1, (k − 1)2) ≥ 0. Note that
we have

∆+
i (0, k(k − 1)) < 0

⇔ γ(n− 1)

(n+ 1)2

[
2(α− γ0) + γ(n− 1)− 2γk(k − 1)

]
< f (5)

and

∆−i (k − 1, (k − 1)2) > 0

⇔ γ(n− 1)

(n+ 1)2

[
2(α− γ0)− γ(n− 1) + 2γ(k − 1)(n+ 1− k)

]
> f (6)

Thus, the complete network is stable as long as ∆−i (n − 1, (n − 1)2) ≥
0 which implies that f ≤ F1 := γ(n−1)

(n+1)2

[
2(α − γ0) + γ(n − 1)

]
and the

empty network is stable as long as ∆+
i (0, 0) ≤ 0 which implies that f ≥

γ(n−1)
(n+1)2

[
2(α − γ0) + γ(n − 1)

]
= F1. Moreover, note that ∆+

i (0, k(k − 1)) is

strictly decreasing for k ≥ 1 and ∆−i (k − 1, (k − 1)2) is strictly increasing
for k < n+2

2 and strictly decreasing for k > n+2
2 . In particular we then get

that for f = F1 all networks gk are pairwise stable. Since ∆+
i (0, k(k − 1))

is strictly decreasing for k ≥ 1, the complete network is uniquely pair-
wise stable if ∆+

i

(
0, (n − 1)(n − 2)

)
> 0 which implies that f < F0 :=

γ(n−1)
(n+1)2

[
2(α − γ0) + γ(n − 1)(5 − 2n)

]
. Moreover, since ∆−i (k − 1, (k − 1)2)

attains its maximum at and is symmetric around k = n+2
2 and since k can

only adopt natural numbers between 1 and n−1, we get that the empty net-

work is uniquely pairwise stable if ∆−i

(
dn+2

2 e − 1,
(
dn+2

2 e − 1
)2)

< 0 which

implies that f > F2 := γ(n−1)
(n+1)2

[
2(α− γ0)− γ(n− 1) + 2γ(dn2 e)(n− d

n+2
2 e)

]
.

The remainder of the statement follows straightforwardly from the slope of
∆+
i (0, k(k − 1)) and ∆−i (k − 1, (k − 1)2).20

Proof of Lemma 1 We show that from any network g ∈ G there exists
an improving path to a pairwise stable network.21 Without loss of gener-

19Goyal and Joshi [9], Lemma 4.1 trivially also holds for pairwise stability.
20See also Figure 1 for an illustration. The proof here is rather kept concise. Goyal and

Joshi [9] provide a more elaborate proof for the result on PNS networks, see Goyal and
Joshi [9], Proposition 4.1.

21For the definitions of improving paths and cycles, see Jackson and Watts [14]
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ality the players are ordered to size of ηi, such that η1 ≥ η2 ≥ ... ≥ ηn
(otherwise reorder according to a permutation). By convexity and strate-
gic substitutes we have that also ∆+

i (ηi(g), η−i(g)) ≥ ∆+
j (ηj(g), η−j(g)) and

∆−i (ηi(g), η−i(g)) ≥ ∆−j (ηj(g), η−j(g)) for all i > j. We now employ the fol-
lowing algorithm which preserves the order: If there exist players j ∈ N who
want to delete a link, i.e. such that ∆−j (ηj(g), η−j(g)) < 0, then start with
the player with the largest number k for whom ηk(g) > 0, i.e. start with the
player k ∈ N with smallest positive ηk which implies ∆−k (ηk(g), η−k(g)) < 0
since ∆−k is lowest among all players with positive ηk(g). By convexity, k
has an incentive to then delete all of her links. Continue with players delet-
ing all of their links according to this order (starting from the last player
such that ∆−k (ηk(g), η−k(g)) < 0 and ηk(g) > 0) until this is no longer pos-
sible. Then this network is pairwise stable or there exist players who want
to add links. Due to the predefined order and the fact that ∆+

i (ηi, η−i) and
∆−i (ηi, η−i) are increasing in ηi and decreasing in η−i this can only be the
players with connections. Now start with the players first in order and add
links for any player until one recipient declines a connection. Either that
network is pairwise stable or we apply the procedure again by deleting links
from the last player in order such that ηk > 0. Since the number of players
is finite, the algorithm finally terminates at a pairwise stable network gk.

Proof of Lemma 2 Note that in any pairwise stable network gk, k 6= n−1
any connected player wants to form a link with an isolated player i ∈ N
by Proposition 1. However, since gk is assumed to be pairwise stable, we
have that ∆+

i (0, k(k − 1)) < 0, i.e. the isolated players decline the connec-
tion. Note that there are two ways to increase player i′s incentive to form
a link, by deleting links between two connected players because of strate-
gic substitutes or build links between i and connected players. However,
the effect of the former is dominated by the latter since (2) and (3) holds.
Thus, player i wants to form links by herself as soon as she has formed

arg mink̃∈{0...k}

(
∆+
i (k̃, k(k − 1) + k̃) ≥ 0

)
links. Note that because of con-

vexity in own links and strategic substitutes the connected players still want
a link with player i, implying that there exists a zero resistance path to the
network gk+1. The other direction is analogous.

Proof of Proposition 2 If there exists a unique pairwise stable network,
then it follows directly that it is stochastically stable. Hence, Proposition 1
directly implies that the fully connected network is stochastically stable for
f < F0 and the empty network for f > F2. Hence we restrict attention
to F0 ≤ f ≤ F2. In this range there are several PS networks and the
subset of the PS networks with minimal stochastic potential gives the set of
stochastically stable networks (see e.g. Young [23]).
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Let us first compare the stochastic potential of networks gk with k ≥
k. The stochastic potential of a PS network gk, k ∈ [k(f), k̄(f)] is given

by r(gk) = c(g1, gk) +
∑k−1

l=k c
+(l) +

∑k̄
l=k+1 c

−(l), where c(g1, gk(f)) is the
minimal number of mistakes necessary to move from the empty network
g1 to gk(f), which is zero if g1 is not pairwise stable and where k̄(f) =
n, if the complete network is pairwise stable. By Lemma 2 we have for
the difference in stochastic potential between two adjacent PS networks
∆r(k) = r(gk+1)−r(gk) = 2κ(k)−k, where κ(k) is given by (4). In order to
characterize the discrete κ(k) let h(k) be the implicit function h(k) := {h ∈
R : ∆+

i (h, k(k− 1) +h) = 0}. Since ∆+
i (h, k(k− 1) +h) is strictly increasing

in h the solution is unique for every k ∈ {1, ..., n− 1}. Solving for h we get

h(k) =
k2 − k
n− 1

+
(n+ 1)2f

2γ2(n− 1)2
− 2(α− γ0) + γ(n− 1)

2γ(n− 1)
, (7)

and hence κ(k) = dh(k)e, if 0 ≤ h(k) ≤ k. Otherwise if h(k) < 0 then κ(k) =
0 and if h(k) > k then κ(k) = k. Taking the continuous approximation of

∆r we get ∆̃r(k) = 2h(k)−k which yields ∂∆̃r(k)
∂k = 2h′(k)−1 = (4k−2)−n−1

n−1 .

Thus, ∆̃r(k) is strictly decreasing/increasing for k < / > (n + 1)/4, has a
global minimum at k = (n+1)/4 and ∆̃r(k) < 0 for k = (n+1)/4. Consider-
ing the continuous approximation ∆̃r(k) the main intuition of the proof can
be seen straightforwardly. For small enough f , we have ∆̃r(k) < 0 for all k
implying that the complete network is stochastically stable. Otherwise there
exists a unique k∗(f) with ∆̃r(k∗(f)) = 0 and ∆̃r(k) > 0 for all k > k∗(f).
This means that k∗(f) is a local minimizer of the stochastic potential r(gk).
Moreover, k∗(f) ≥ n+1

4 . The only other candidate for a global minimizer is
k = 1, i.e. the empty network. Since k is the size of the dominant group,
k can only be an integer. Moreover, the number of mistakes κ(k) can only
take on integer values. In the following we therefore prove the statement by
considering ∆r(k) = 2κ(k)− k = 2dh(k)e − k. Note that a necessary condi-
tion for a minimizer k∗(f) of r(gk) is that ∆r(k∗(f)) ≥ 0 (since this implies
that r(gk

∗(f)+1) ≥ r(gk∗(f))) and ∆r(k∗(f)− 1) ≤ 0 (since this implies that
r(gk

∗(f)) ≤ r(gk∗(f)−1)).
We first show the following auxiliary Lemmas which are helpful in re-

stricting the set of possible minimizers of the stochastic potential. We then
show the statement.

Lemma 3. There does not exists a stochastically stable network gk such
that 2 ≤ k ≤ n−1

4 .

Proof. Note that h(k + 1) − h(k) = 2k
n−1 ≤

1
2 if and only if k ≤ n−1

4 which

yields dh(k + 1)e − dh(k)e ≤ 1 for all k ≤ n−1
4 and from dh(k)e − dh(k −

1)e = 1 it follows that dh(k + 1)e − dh(k)e = 0 for all k ≤ n−1
4 and from

dh(k+1)e−dh(k)e = 1 it follows that dh(k)e−dh(k−1)e = 0 for all k ≤ n−1
4 .
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Suppose now that there exists a 2 ≤ k ≤ n−1
4 such that gk is stochasti-

cally stable. Necessary for stochastic stability of gk is that ∆r(k) ≥ 0 and
∆r(k − 1) ≤ 0.

First, let k be odd. Then ∆r(k) ≥ 0 ⇔ dh(k)e ≥ k
2 implies that

both inequalities must be strict, since k
2 /∈ Z. Then because of k ≤ n−1

4

either dh(k − 1)e = dh(k)e which trivially implies that dh(k − 1)e > k−1
2 or

dh(k − 1)e = dh(k)e − 1 which implies that dh(k − 1)e > k
2 − 1, and, hence

dh(k−1)e ≥ k
2 −

1
2 since dk2 −1e = k

2 −
1
2 . Thus, ∆r(k) ≥ 0 for k odd implies

∆r(k − 1) ≥ 0. Moreover if ∆r(k − 1) = 0 then dh(k − 1)e = dh(k)e − 1
and thus we have dh(k− 1)e = dh(k− 2)e implying that ∆r(k− 2) > 0, and
hence, r(gk−2) < r(gk), contradicting stochastic stability of gk.

Now let k be even and suppose ∆r(k) ≥ 0. First, consider ∆r(k) > 0 ⇔
dh(k)e > k

2 . Thus, dh(k)e ≥ k
2 + 1 since k

2 ∈ Z. As above let dh(k − 1)e =
dh(k)e−1 (the other case dh(k−1)e = dh(k)e trivially implies ∆r(k−1) > 0.)
Then dh(k − 1)e = dh(k)e − 1 ≥ k

2 >
k−1

2 , implying ∆r(k − 1) > 0. Finally
suppose that ∆r(k) = 0. First, if dh(k−1)e = dh(k)e then ∆r(k−1) > 0 and
we are in the case above, where k is odd. Second if dh(k− 1)e = dh(k)e − 1
then we must have dh(k + 1)e = dh(k)e, implying that ∆(gk+1) < 0 which
implies that r(gk+2) < r(gk+1) = r(gk), contradicting stochastic stability of
gk.

Lemma 4. Assume that mink∈{1,...n−1}∆r(k) < 0 and ∆r(n−1) ≥ 0. Then,

there either exists a unique k∗(f) ∈
{
n−1

4 , . . . , n− 1
}

with ∆r(k∗ − 1) <
0,∆r(k∗) > 0,∆r(k) ≤ 0, ∀n−1

4 ≤ k < k∗ − 1 and ∆r(k) ≥ 0, ∀k∗ < k ≤
n− 1 or a unique k∗(f) ∈

{
n−1

4 , . . . , n− 1
}

with ∆r(k∗) = 0,∆r(k∗ − 1) <
0,∆r(k∗+ 1) > 0,∆r(k) ≤ 0, ∀n−1

4 ≤ k < k− 1∗ and ∆r(k) ≥ 0, ∀k∗+ 1 <
k ≤ n− 1. Furthermore, k∗(f) is weakly decreasing with respect to f .

Proof. We show first that ∆r(k) > 0 implies ∆r(l) ≥ 0 for all l > k. Suppose
that there is a k > n−1

4 such that ∆r(k) > 0 ⇔ dh(k)e > k
2 . If k is even

then k
2 ∈ Z and hence dh(k)e > k+1

2 implying dh(k + 1)e ≥ dh(k)e > k+1
2 ,

and thus ∆r(k + 1) > 0. If k is odd then k
2 /∈ Z and hence dh(k)e ≥ k+1

2

implying dh(k+ 1)e ≥ dh(k)e ≥ k+1
2 , and thus ∆r(k+ 1) ≥ 0. Note however

that if ∆r(k+1) = 0 then it must be that dh(k+1)e = dh(k)e implying that
dh(k+ 2)e ≥ dh(k+ 1)e+ 1,22 and, hence, ∆r(k+ 2) > 0. Thus if ∆r(k) > 0
then ∆r(l) ≥ 0 for all l > k.

Second, we note that mink∈{n−1
4
,...n−1}∆r(k) < 0. Assume to the con-

trary that ∆r(k) ≥ 0 for all k ∈
{
n−1

4 , . . . , n− 1
}

. From Lemma 3 it then
follows that ∆r(k) ≥ 0 for all k ∈ {1, ..., n−1

4 }, since ∆r(k) ≥ 0 for k = n−1
4

contradicting the the assumption mink∈{1,...n−1}∆r(k) < 0.

22Since for k ≥ n−1
4

, h(k + 1) − h(k) = 2k
n−1

≥ 1
2

and thus dh(k + 1)e − dh(k)e = 0
implies dh(k + 2)e − dh(k + 1)e = 1.
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Given that mink∈{n−1
4
,...n−1}∆r(k) < 0 define k∗(f) by k∗(f) := 1 +

max
[
k ∈

{
n−1

4 , . . . , n− 1
}
|∆r(k) < 0

]
.23 If ∆r(k∗) > 0 the statements of

the first of the two cases given in the text of the Lemma follow directly
from our arguments above. If ∆r(k∗) = 0, it follows, due to the definition
of ∆r(k), from ∆r(k∗) = 0 that ∆r(k∗+ 1) 6= 0, and due to the definition of
k∗ we must have ∆r(k∗ + 1) > 0. Similarly, we must have ∆r(k∗ − 1) < 0.
Hence, we obtain the statements concerning the second case given in the
Lemma. Finally, the claim that k∗ is weakly decreasing with respect to f
follows from the observation that h(k) is increasing in f , which implies that
∆r(k) is weakly increasing in f . Accordingly, k∗ decreases (weakly) as f is
increased.

In order to prove the claims of the Proposition, we first observe that for
sufficiently small values of f , where ∆r(n− 1) < 0, we have that ∆r(k) < 0
for all k ∈ {1, ...n−1} implying that the stochastic potential is minimized for
the complete network and the complete network is the unique stochastically
stable network.

In what follows we therefore focus on values of f where ∆r(n − 1) ≥ 0.
We consider first the case F0 ≤ f < F1. As shown in Proposition 1 the set
of candidates for stochastically stable networks is given by {gk(f), . . . , gn},
where k(f) is the smallest k such that ∆+

i (0, k(k − 1)) < 0. This property
implies that for k∗(f) < k(f) we must have c+(k∗(f)) = 0. Given that we
have c−(k) > 0 for all k ∈ {2, . . . , n} and f < F1, this implies ∆r(k∗(f)) =
c+(k∗(f)) − c−(k∗(f) + 1) < 0, which contradicts Lemma 4. Hence, we
must have k∗(f) ≥ k(f) and therefore min{k∈{1,...n−1}∆r(k) < 0. Direct
application of Lemma 4 now establishes that among the PS networks the
minimal stochastic potential is attained for gk

∗
, if ∆r(k∗) > 0, or for each

of the networks gk
∗

and gk
∗+1, if ∆r(k∗) = 0.

Considering F1 ≤ f < F2 we observe first that r(g1) − r(gk(f)) =
c(gk(f), g1) − c(g1, gk(f)) is (weakly) decreasing in f and negative for suf-
ficiently large f . On the one hand, we have that c(g1, gk(f)) is (weakly)
increasing in f , which follows because if ∆+

i (ηi, η−i) < 0 for some f , then
∆+
i (ηi, η−i) < 0 for all f ′ > f. Moreover, k(f) is increasing in f . The same

argument implies that c(gk(f), g1) = c−(k(f)) is (weakly) decreasing in f .
Obviously, we have r(g1) = 0 for sufficiently large f , which implies that
r(g1) − r(gk(f)) < 0 for sufficiently large f . From the arguments above it
follows that there exists an interval [f̃l, f̃h] such that

r(g1)− r(gk(f))


> 0 f < f̃l
= 0 f ∈ [f̃l, f̃h]

< 0 f > f̃h.

23For convenience we will drop the dependence on f .
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As the next step of the proof we establish that gk(f) is never stochastically
stable. To this end, we show that k∗(f) ≥ k(f) for all f ≤ f̃h. Given the
(weak) monotonicity of k∗(f) and k(f) it suffices to show this claim for
f = f̃h. Assume that k∗(f̃h) < k(f̃h). Then, k∗(f) is not pairwise stable
and thus we have c(gk

∗
, g1) = 0. Furthermore, due to the definition k∗(f̃h)

it follows from Lemma 4 that r(gk(f̃h)) > r(gk
∗(f̃h)). This implies

r(g1) ≤ r(gk∗(f̃h)) + c(gk
∗
, g1) = r(gk

∗(f̃h)) < r(gk(f̃h))

and we obtain a contradiction to r(g1) = r(gk(f̃h)). Hence k∗(f) ≥ k(f) for
all f ≤ f̃h. Since, by definition gk

∗
always has a lower stochastic poten-

tial than gk, this shows that the only candidates for stochastically stable
networks are g1 and gk

∗
(sometimes together with gk

∗+1). Considering the
difference in stochastic potential between these two networks we have

r(g1)− r(gk∗(f)) = c(gk(f), g1)− c(g1, gk(f)) +

k∗−1∑
k=k

(−∆r(k))

We know already that the first term is (weakly) decreasing in f . For the
sum, we know that for each k the term (−∆r(k)) is decreasing in f . Fur-
thermore, the number of summands (weakly) decreases for increasing f
and each summand is non-negative, because of k < k∗. Altogether, we
obtain that r(g1) − r(gk∗(f)) is weakly decreasing with respect to f . Ar-
guments analogous to above establish that the difference is negative for
sufficiently large f . The claims of the Proposition follow now directly by
setting F ∗0 = min[f |k∗(f) = n− 1], F ∗1 = min[f |r(g1)− r(gk∗(f)) = 0], F ∗2 =
max[f |r(g1)− r(gk∗(f)) = 0].

Proof of Corollary 1 We only need to show that for some f ∈ [F ∗0 , F1]
there exist stochastically stable networks g such that 0 < D(g) < 1/2.
The remainder follows from Proposition 2. Moreover, from the proof of
Proposition 2 we have that the approximation ∆̃r(k) is symmetric around
its minimum n+1

4 . For f = F1 we have ∆̃r(1) = 0 and the empty net-
work cannot be stochastically stable, implying by Proposition 2 that k∗(f)
(and possibly k∗(f) + 1) is stochastically stable. Moreover, for f = F1,
we have ∆̃r(n−1

2 ) = 0 by symmetry of ∆̃r around n+1
4 . Hence, for the

size of the stochastically network(s) gk
∗

(and possibly gk
∗+1) we obtain

k∗ < n
2 . Therefore, for n large enough, we have k∗ < n−1√

2
− 1 and hence

0 < D(gk
∗
) < D(gk

∗+1) = k∗(k∗+1)
n(n−1) < 1

2 .

Proof of Corollary 2 The statement of the corollary is equivalent to the
statement that p∗(f) is constant with respect to f for f < F ∗0 and f > F ∗2 ,
but weakly increasing on the interval [F ∗0 , F

∗
2 ]. Since the equilibrium price

in a Cournot oligopoly with linear demand and constant marginal costs is
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given by the arithmetic mean of the reservation price and the marginal costs
of all producers, we get in our model,

p∗(f) =
1

n+ 1

(
α+ k∗(f)

(
γ0 − γ(k∗(f)− 1)

)
+
(
n− k∗(f)

)
γ0

)
.

It is easy to see that this expression is decreasing with respect to k∗(f)
and the claim of the Corollary follows directly from the monotonicity of
k∗(f) with respect to f as shown in Proposition 2.

Proof of Proposition 3 The first part of the Proposition is straightforward.
According to Proposition 2, k∗(f) = n for all f < F ∗0 and hence Π∗(f) is a
decreasing function of f . To show the second part we define

Π̄(k) = k
(
α− (n− k + 1)

(
γ0 − γ(k − 1)

)
+ (n− k)γ0

)2
+ (n− k)

(
α

−(k + 1)γ0 + k
(
γ0 − γ(k − 1)

))2
− (n+ 1)2k(k − 1)f.

It is easy to check that Π∗(f) = 1
n(n+1)2

Π̄(k∗(f)). Proposition 2 implies

that for all values f̃ where k∗(.) is not continuous we have limf↓f̃ k
∗(f) =

limf↑f̃ k
∗(f) + l for some positive integer l. Therefore, in order to show that

Π∗(f) exhibits an upward-jump at f̃ it is sufficient to show that Π̄(k) is
decreasing with respect to k on the interval [limf↓f̃+ k

∗(f), limf↑f̃− k
∗(f)].

In the remainder of the proof we show that there exists a threshold F̄ < F ∗0
such that Π̄(k) is a decreasing function for all k ∈ [1, n] and f > F̄ .

Differentiating Π̄ and collecting terms yields

Π̄′(k) = γ
[
α− (k + 1)γ0 + k

(
γ0 − γ(k − 1)

)](
− (k − 1)(n− 3) + 2

)
+(n+ 1)

[
γ(k − 1)

(
α− γ0 + γ

(
k(3(n+ 1)− 5k)− (n+ 1− 3k)

))]
−(2k − 1)(n+ 1)2f.

If k > 1 the expression in the first line is negative, whereas for k = 1 this
expression is independent of n. Hence, we have Π̄′(k) < 0 for sufficiently
large n if the the expression of the second and third line is negative. Thus,
the condition that

f >
γ(k − 1)

(2k − 1)(n+ 1)
(α− γ0 + γ(k(3(n+ 1)− 5k)− (n+ 1− 3k)))
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for all k ∈ [1, n] is a sufficient condition for Π̄(k) to be decreasing. Concern-
ing the right hand side of this inequality we obtain

γ(k − 1)

(2k − 1)(n+ 1)
(α− γ0 + γ(k(3(n+ 1)− 5k)− (n+ 1− 3k)))

<
γ

2(n+ 1)
(α− γ0 + γ(k(3(n+ 1)− 5k) + 3n))

≤ γ

2(n+ 1)
(α− γ0 + γ(0.45(n+ 1)2 + 3n)) =: F̄ ,

where we have used that maxk∈[1,n] [k(3(n+ 1)− 5k] = 9
20(n + 1)2. There-

fore, Π̄(k) is a decreasing function on [1, n] if f > F̄ and n sufficiently large.
In order to compare F̄ with F ∗0 we use that at f = F ∗0 we must have

∆r(n) ≥ 0. Using the notation of the proof of Proposition 2 it is easy to see
that 2(h(n) + 1)− n ≥ 0 is a necessary condition for ∆r(n) ≥ 0. Hence, we
must have F ∗0 > F ∗0, where F ∗0 is such that 2(h(n) + 1)− n = 0 for f = F ∗0.
Using ( 7) we obtain

F ∗0 =
γ(n− 1)

(n+ 1)2
(2(α− γ0)− γ(n− 1)(n+ 1)) .

Comparing this expression with F̄ yields

F̄ < F ∗0

⇔ (n+ 1)(α− γ0 + γ(0.45(n+ 1)2 + 3n))

< 2γ(n− 1) (2(α− γ0)− γ(n− 1)(n+ 1))

⇔ γ(0.45(n+ 1)3 + 3n(n+ 1) + 2(n− 1)2(n+ 1))

< (3n− 5)(α− γ0) (8)

Due to our assumption that (α − γ0) > γ(n − 1)(n − 2) (to ensure strictly
positive quantities) inequality (8) must hold if the following holds:

(3n− 5)(n− 1)(n− 2) > (0.45(n+ 1)3 + 3n(n+ 1) + 2(n− 1)2(n+ 1)).

It is easy to see that this inequality holds for sufficiently large n because the
coefficient of n3 on the left hand side is larger than on the right hand side.
This shows that F̄ < F ∗0 ≤ F ∗0 and completes the proof.
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