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Abstract

This paper analyzes behavior in repeatedly played two-stage games, where

players choose actions in both stages according to best replies using ’level-n

expectations’ about the opponent’s actions in both stages. Level-n expecta-

tions are recursively defined in a way that a player holding level n expectations

correctly predicts the action of an opponent holding level n− 1 expectations.

A general conceptual framework to study such dynamics for two-stage games

is developed and it is shown that, contrary to results for single-stage games,

the fixed points of the dynamics depend on the level of the expectations. In

particular, for level-zero expectation, fixed points correspond to a Nash equi-

librium of a simultaneous move version of the game, whereas (under certain

conditions) fixed points converge towards the subgame perfect equilibrium of

the two-stage game if the level of expectations goes to infinity. The approach

is illustrated using a two-stage duopoly game, where firms in the first stage

invest in activities reducing their marginal costs and in the second stage en-

gage in Cournot competition. An increase in the level of expectations leads in

the long run to higher cost reducing activities and higher output of the firms,

however to lower profits. Level-two expectations are sufficient to move the

fixed-point of the dynamics to a close neighbourhood of the subgame-perfect

equilibrium.
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1 Introduction

A large part of the theoretical and empirical analysis in many areas of economics

relies on the assumption that the behavior of the involved decision makers is deter-

mined by some sort of equilibrium. In contexts, like Industrial Organization, where

multi-stage games are frequently used to describe strategic interaction with sequen-

tial decisions, a standard equilibrium concept considered in the literature is that

of subgame perfect equilibrium as a refinement of Nash equilibrium. The notion

of (Nash) equilibrium rests on two basic assumptions. First, the assumption that

each player is able to determine his payoff-maximizing strategy given the strategies

of all other players and, second, that in equilibrium the expectations of each player

concerning the strategies of all players coincide with the strategies actually used by

these players. Both assumptions have been extensively discussed in the literature

and considerable amount of research has analyzed the question under which circum-

stances players, who ex-ante cannot determine their best responses and/or do not

have correct expectations about the strategies followed by the other players, can

over time coordinate in a way such that eventually a Nash equilibrium is played.

These studies assume that the considered game is played repeatedly and that players

adjust their strategies over time according to some given process.

The earliest stream of literature dealing with the dynamic stability of Nash equi-

libria is work on best response dynamics, where it is assumed that each player is

able to determine his best response correspondence, but ex-ante expectations about

the other players strategy are in general not correct and are updated over time

(see. e.g. Brown (1951)). A rich literature has studied the dynamic properties of

best response dynamics under naive and adaptive expectations in the framework

of oligopolistic market interaction (see the survey in Kopel (2009)) identifying con-

ditions on the market environment and the expectation formation process under

which Cournot, respectively Bertrand, equilibria are (locally asymptotically) stable

fixed points of the corresponding best response dynamics. This entire literature on

best response dynamics in oligopolies focuses, however, on one-stage games, which is

quite restrictive since many important issues in oligopolistic competition, like capac-

ity choice, location choice or cost reducing activities of firms, are typically analyzed

using multi-stage games.

The agenda of this paper is to relax this restriction to one-stage games and to

extend the analysis of best response dynamics to a scenario where in each period

firms interact in two sequential stages. Furthermore, we relax the assumptions of

naive expectations of individuals, which is typically made in this literature, to a class

of expectation formation functions denoted as ’level- n expectations, which include
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naive expectations as a special case.

In particular, we consider a standard two-stage model of duopolistic competition

with differentiated products introduced in Qiu (1997), where in the first stage firms

make cost-reducing investments and, in the second stage, they sell the product in the

market. We consider a scenario where the demand function and the cost structure of

both firms is common knowledge, but firms face strategic uncertainty in a sense that

they do not know their opponents actions in the current stage when making their

decision. Hence, they build expectations about these actions and then choose their

best response given these expectations. First stage actions are observable between

the stages, which means that expectations about the opponents second stage action

might be influenced by the first stage action of this player. Given our assumption

that the payoff functions of both players are common knowledge, both players are

in a position to determine not only the own best response function but also that of

the opponent in both stages.

Consider now a firm which expects that its competitor uses naive expectations

about its own actions. Anticipating that this competitor will play its best repsonse

based on these naive expectations the firm is able to correctly predict the action

of its competitor for any realization of the previous period actions (since the previ-

ous period actions are common knowledge). Denoting naive expectations as level-0

expectations, we will say that a firm following this kind of rationale has level-1

expectations. Such a firm would then choose its actions as a best response to its

level-1 expectations of the opponents action. Any firm who would correctly predict

the actions a firm with level-1 expectations is said to have level-2 expectations and

extending this reasoning we define level-n expectations for an arbitrary integer n.

The consideration of best response dynamics under expectations of this kind

in a two-stage setting raises several questions. First, and foremost, the issue of

equilibrium selection arises. Oligopoly games with multiple stages typically have

multiple Nash equilibria, among which there is a unique subgame perfect equilibrium.

It is a standard result that the fixed points of iterated best reply dynamics (under

naive expectations) are Nash equilibria of the underlying game, but in the presence

of multiple equilibria it is quite unclear which of these equilibria are (stable) fixed

points of the dynamics. The question arises whether and how the set of fixed points

of the best reply dynamics under level-n expectations depends on the value of n. In

particular, we are interested in understanding under which circumstances firms may

in the long run coordinate on a subgame perfect equilibrium of the underlying two-

stage game. Second, extending the expectation formation process described above

from a one-stage to a two-stage game setting is not straightforward. We consider a
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two-stage game, where first stage actions are common knowledge in the second stage.

This implies not only that the expectation of a firm with respect to its opponents’

action in stage two should be updated after the revelation of the opponent’s action

in stage one, but also that the firm should have expectations about the effect of its

own first stage action on its opponent’s action in the second stage. The opponents

action in stage two is affected through two channels. First, the best response of the

opponent for a given expectation about the own stage 2 action might be influenced

by the own stage 1 action. Given our assumption that the firm knows the payoff

function and hence the second stage best response function of the opponent this

effect of the own stage 1 action is easy to predict. Second, the revelation of the

own first stage action might influence the opponents expectations about the own

action in stage two, which in turn affect the best response action of the opponent.

This channel of influence on the opponents stage-two choice depends on the way

the opponents expectation formation function. Hence, the best response function

of a firm on stage two depends on the way expectations are formed on stage two,

in particular it depends on the level of expectation formation on that stage. Such

a dependency of the best response function of a firm on the way expectations are

formed does not arise in the framework of one stage games and this induces that

the properties of the considered dynamics in two-stage games are stronger affected

by the level of expectation formation.

The paper puts forward three main findings. First, it is shown for a general

class of two-stage games, which includes the duopoly model with cost reducing

investments as well as many other standard models in industrial organization, that,

if the expectation formation follows the standard assumption of level-zero (i.e. naive)

expectations, then the fixed point of the best response dynamics corresponds to a

Nash equilibrium of a version of the game, where first stage actions are not revealed

before the second stage. Such equilibria are in general not subgame perfect. Put

differently, strategic effects of first stage actions on second stage outcomes have

no role under level zero exepctations. Second, it is shown again for the general

class of games that such strategic effects do play a role for the determination of

the fixed point of the dynamics if firm have expectations of higher level. As the

level of expectations tends to infinity the fixed points of the dynamics converge

to subgame perfect equilibrium outcomes. In the framework of the duopoly with

cost reducing activities it is demonstrated that already for level-2 expectations the

unique fixed point of the dynamics is very close to the unique subgame perfect

equilibrium. Third, if the level of expectation formation goes up in the duopoly with

cost reducing activities this induces an increase in the long run consumer surplus
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however a decrease in the long run profits of the firms.

These results are helpful for disentangling two implications of the revelation of

first-stage actions before the second stage. The first implication of the revelation,

which is that a firm can observe the opponent’s first stage action before choosing

the own second stage action, turns out to be irrelevant for the fixed point of the best

reply dynamics if expectations on stage 2 are naive. Although firms for any level

of expectations fully take the observed opponent’s first stage action into account

when determining their best reply, for expectation level smaller than two the fixed

point coincides with the one of the corresponding best reply dynamics, where the

first-stage actions are not revealed in the second stage Crucial for the location of

the fixed point of the dynamics is the second implication of the revelation of first

stage actions, namely that firms expect that their own first stage action influences the

opponents second stage choice via the opponents second stage expectation formation.

This effect becomes stronger the higher the level of the expectations and for large

expectation levels approaches the full fledged inter-stage strategic effect present in

the subgame perfect equilibrium.

The organization of the paper is as follows. In section 2 we review the related

literature. In section 3 we introduce the concept of level-n expectation in a general

setting and derive in this framework characterizations of the steady states of the best

response dynamics under level-n expectations. Section 4 studies the implications of

an increase of the expectations level in a dynamic duopoly model, where firms can

invest in cost-reducing activities before competing on the market. Finally, section 5

concludes the paper. All proofs are given in the Appendix.

2 Related Literature

The paper is related to several streams of literature, which we briefly review here.

First, the question under which circumstances boundedly rational firms coordi-

nate on subgame perfect equilibria of extensive form games, has been discussed for

different types of evolutionary dynamics governing the strategy updating of play-

ers. Noeldecke and Samuelson (1993) consider a model, where for every player of an

extensive form game a population of individuals exists where every possible combina-

tion of individuals meets and plays. Individuals have beliefs about the frequency of

actions at all information sets and update them based on observable action profiles.

They determine their strategy as best responses to their beliefs in all information

sets, where with a small mutation probability the strategy is chosen randomly from

a given distribution. For extensive form games with perfect information, where
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every player moves at most once, the subgame perfect equilibrium outcome has pos-

itive weight in the limiting distribution of the resulting Markov chain for mutation

probabilities going to zero. However, in general also Nash equilibrium outcomes

which are not subgame perfect can have positive weight in the limiting distribution,

which means that evolution generally speaking does not ‘select’ the subgame perfect

equilibrium. Intuitively, this result is due to a potential drift of individuals’ beliefs

about action profiles in information sets that are not reached in the subgame perfect

equilibrium. As has been shown in subsequent papers by Hart (2002) and Kuzmics

(2004), a unique selection of subgame perfect equilibrium in a certain sense can be

achieved if it is assumed that the population size tends to infinity as mutation prob-

abilities become small. Although these papers also deal with best response dynamics

of certain type, the considered setup is quite different from ours. Differently from

our setup, a population of individuals is considered for each player, where individu-

als base their beliefs completely on observed action profiles rather than taking into

account best response correspondences of the other players, as they do in our setup.

This property together with the presence of stochastic mutations are the key factors

allowing for the drift of beliefs in off-equilibrium information sets. Under the level-n

expectation dynamics considered here, players rely on best response considerations

when building their beliefs and therefore also for information sets, which have not

been reached in previous periods beliefs about opponents actions cannot drift. The

qualitative insights that subgame perfect equilibria of perfect information games are

stable with respect to evolutionary dynamics, but in general not the unique stable

outcome, has also been derived in the framework of different classes of deterministic

selection dynamics in Cressman and Schlag (1998) and Demichelis and Ritzberger

(2003).

The second related stream of literature deals with best response dynamics in

oligopolies. Such dynamics have been studied extensively under the assumption of

naive expectations (e.g. Theocharis (1960), Puu (1998), Tramontana et al. (2009))

and adaptive expectations (e.g. Okuguchi (1970), Bischi and Kopel (2001)), for

different assumptions about demand and production structure. Fixed points in these

one-stage settings always correspond to Cournot respecitvely Bertrand equilibria and

the focus of analysis has been on the stability of these fixed points, on the shape of

the basins of attractions in the case of several (locally) stable equilibria and on the

occurence of complex dynamics in such settings (see e.g. Bischi et al. (2010)). Our

results contribute directly to this literature by characterizing properties of the fixed

points of best response dynamics under naive expectations (level-zero expectations

in our notation) for two-stage games. More generally, our results show that the
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overall insight from this literature that any Nash equilibrium of the game is a fixed

point of best response dynamics under ’reasonable’ expectation formation rules (e.g.

naive or adaptive expectations) does not extend to multi-stage games.

The third stream of literature, which is relevant for this paper, deals with the

incentive for cost reducing activities of firms in oligopolistic markets. This litera-

ture is based on the insight that cost advantages relative to competitors improve

the position of a firms in oligopolistic competition. At least in cases of quantity

competition, common knowledge of marginal cost advantages of a firm makes its

competitor act less aggressively, thereby adding positive strategic effects to the pos-

itive direct effect of cost reduction on profits. Therefore, the firms (strategic) choice

of cost reducing activities is an important factor in oligopolistic competition. Qiu

(1997) has analyzed cost reducing activities (CRA) of oligopolistic firms in a two-

stage game setting, where firms first choose the intensity of cost reducing activities

and, after the effects of these activities on costs have become common knowledge,

in the second stage compete on the market. Based on the analysis of the (unique)

subgame perfect equilibrium of the game it is shown that cost reducing activities

are stronger under quantity than under price competition. In several papers using

similar two-stage games the effect of cooperation between the firms on the first or on

both stages of competition have been considered (e.g. D’Aspremont and Jacquemin

(1988)). Whereas much of this literature is based on the consideration of static two-

stage games, a few contributions have explicitly considered the fact that in most

oligopolies firms repeatedly interact on the market and can also repeatedly engage

in cost reducing activities. Cellini and Lambertini (2009), Cellini and Lambertini

(2011) and Breton et al. (2004) consider dynamic oligopolies, where firms, which at

each point in time compete on an oligopolistic market, can over time reduce their

marginal costs by investing in R&D. Since it is assumed here that R&D investments

imply persistent cost reduction, this dynamic strategic interaction is analyzed using

differential game models. Contrary to these contributions the focus in this paper

is set on cost reducing activities without persistent effects. In order to keep pro-

duction costs at a certain level firms have to keep also the level of cost reducing

activities. Examples for such activities are numerous and include production plan-

ning activities, monitoring or quality control activities. Furthermore, contrary to all

the contributions discussed above, this paper is based on the assumptions that the

cost reducing activities and quantity choices of the firms in the oligopoly ex-ante

do not follow any equilibrium of the game, which makes expectation formation an

important issue. Best response dynamics under non-rational expectations has been

hardly analyzed in the context of R&D choice in oligopolies. A rare exception is
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Bischi and Lamantia (2004) where a dynamic model of R&D choices is studied under

the assumption of naive expectations. However, in their setting competition on the

market is represented in reduced form, such that the game repeatedly played by the

firms has one-stage structure.

Finally, it should be mentioned that the level-n expectation formation considered

in this paper is related to the literature on level-k reasoning initiated in Stahl and

Wilson (1995) in the sense that like in this literature we assume that decision makers

choose best responses to expectations about the actions of the other players that

are recursively built in a way that expectations of order n are determined based on

best responses to expectations of order n− 1. However, the focus of our analysis is

quite different to that of the level-k literature. First, we deal with a dynamic model,

where decision makers adapt their expectations and actions over time. Whereas the

level-k literature is mainly interested in explaining behavior of individuals facing

novel situations, we mainly examine the long run behavior emerging if the same

type of interaction occurs many times. Second, contrary to the level-k models, there

is no hierarchy of beliefs in the best response dynamics with level-n expectations.

Rather, all players in the game share the same level of reasoning. Third, to our

knowledge the level-k literature has considered only one-shot games, whereas our

focus is on two-stage games.

3 Level-n Expectations and Best Response Dy-

namics

In this section we define level-n expectation and the corresponding best response

dynamics for a general class of two-stage games and characterize the steady states

of the dynamics for the two extreme cases of n = 0 and n → ∞. The games we

consider have a (not necessarily unique) interior subgame perfect equilibrium in pure

strategies and a unique pure strategy Nash equilibria in each of the subgames on

stage two. A large set of standard models in many areas of economics including

industrial organization fall into this class of games.

3.1 A Class of Two-Stage Games

Consider a two-player two-stage game, where at stage one both players simultane-

ously choose actions xi ∈ Xi with Xi compact subsets of IRm1
i , m1

i ≥ 1, i = 1, 2.

Between the two stages, choices made in stage one become common knowledge and

at stage two both players simultaneously choose actions qi ∈ Qi with Qi compact
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subsets of IRm2
i , m2

i ≥ 1, i = 1, 2. At the end of stage two each player receives

a payoff πi(x1, x2, q1, q2) ∈ IR, i = 1, 2. We assume that both payoff functions are

everywhere twice continuously differentiable and that πi is strictly concave with re-

spect to qi for all (qj, x1, x2) ∈ Qj ×X1 ×X2. Hence, there exist single valued and

continuous best response functions on stage two of the form Rq
i : Qj×X1×X2 7→ Qi.

Furthermore, we assume that for each pair (x1, x2) ∈ X1 × X2 the mapping q 7→
Rq

1(Rq
2(q1, x1, x2), x1, x2) has a unique fixed point q ∈ Q1, which means that for each

subgame defined by (x1, x2) there exists a unique pure strategy Nash equilibrium. A

sufficient condition for this property to hold is that the mapping mentioned above

is a contraction and in what follows we will make this assumption.1 We define as

q∗i : X1 × X2 7→ Qi the choice of player i in the unique Nash equilibrium of the

subgame defined by (x1, x2) ∈ X1×X2. It follows from the assumptions above that

also this mapping is continuous and continuously differentiable for all (x1, x2) where

q∗i (x1, x2) ∈ int(Qi).

Considering the first-stage choices, we define

π∗i (x1, x2) = πi(x1, x2, q
∗
1(x1, x2), q∗2(x1, x2))

as the payoff of player i induced by a pair of first-stage choices, under the assumption

that in all subgames on stage 2 the unique Nash equilibrium is played. We assume

that π∗i is strictly concave with respect to xi for all (x1, x2) ∈ X1 ×X2. A sufficient

condition for, often used in applications, is that the concavity of πi with respect to

xi is sufficiently strong to dominate the effect through q∗i and q∗j . The best response

correspondences on stage one are denoted by Rx∗
i = arg maxxi∈Xi

π∗i (x1, x2) and we

assume that the mapping x1 7→ Rx∗
1 (Rx∗

2 (x1)) has at least one fixed point in X1,

which means that there exists a subgame perfect equilibrium in pure strategies of

the game.

In what follows we will sometimes refer to a version of the two-stage game without

revelation of action choices between the stages. In this version of the game the

choices made in the first stage remain unknown to the players when they make their

decisions in the second stage. Hence, this game is equivalent to a game where the

two players choose xi and qi at the same time. A Nash equilibrium (x̂1, x̂2, q̂1, q̂2) of

1This assumption could be weakened, but it is made to avoid some technical issues in the proof
of the main proposition in the following section. In games where the second stage is characterized
by linear best response functions this property is necessary for the existence of a pure strategy
Nash equilibrium on stage 2. Hence, in many standard models in different areas of economics a
corresponding assumption is made.
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this game is characterized by

x̂i = R̂x
i (x̂j, q̂j) and q̂i = q∗i (x̂1, x̂2), i = 1, 2, (3.1)

where

R̂x
i (xj, qj) = arg max

xi∈Xi

πi(xi, xj, R
q
i (qj, xi, xj), qj) (3.2)

denotes the optimal choice in the first stage of player i, given that the opponent

chooses (xj, qj) and taking into account that the own optimal choice in stage two is

given by the best response function on stage two. We refer to such an equilibrium as

a Nash equilibrium without revelation of actions between stages. It should be noted

that such equilibria are also Nash equilibria of the two-stage game with revelation

of actions between stages, but in general they are not subgame perfect equilibria of

that game.

3.2 Best reply dynamics under level-n expectations

In what follows we consider the dynamic evolution of the behavior of two agents who

repeatedly interact by playing the two-stage game described in the previous subsec-

tion. They choose their actions at both stages according to their best response with

respect to their expectations about the opponent’s action. In building their expec-

tations about the opponent’s action the players take into account that the opponent

will act according to her best response correspondence applied to her expectations.

Based on this we introduce the notion of level-n expectations by denoting naive

expectations as level-zero expecations and then defining level-n expectations as the

actual action of an opponent who has level-n− 1 expectations. In the following two

subsections we formalize this simple idea for expectation formation in the second

and the first stage of the game.

3.2.1 Stage two

In case the expectations are formed at stage two, the actions in the first stage have

been revealed and are taken into account when building the expectations We define

the level-n expectation generating functions in stage two recursively in the following

way:

q̂0
j (x1,t+1, x2,t+1, q1,t, q2,t) = qj,t (3.3)

q̂nj (x1,t+1, x2,t+1, q1,t, q2,t) = Rq
j

(
q̂n−1
i (x1,t+1, x2,t+1, q1,t, q2,t);x1,t+1, x2,t+1

)
, i, j = 1, 2, i 6= j
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for all (x1,t+1, x2,t+1, q1,t, q2,t) ∈ X1×X2×Q1×Q2. It should be noted that q̂nj does

not depend on qi,t when n is even and not on qj,t when n is odd. For example for

n = 2 the expectation is formed from the perspective of player i, who expects that

player j anticipates that qi,t+1 is chosen as the best response to the naive expectation

qj,t and then chooses a best response to that anticipation about qi,t+1. Hence, this

expecation depends only on qj,t, but not on qi,t. To keep notation consistent we

nevertheless write all expectations as functions of both stage two actions in the

previous period.

Actual expectations in the second stage of period t are then given by

q2,ne
j,t+1 = q̂nj (x1,t+1, x2,t+1, q1,t, q2,t).

Clearly, for level n = 0 players have naive expectations.

The two players choose their stage-two actions (q1,t+1, q2,t+1) as best responses

to these expectations. Hence, we have for a process of level-n

qi,t+1 = Rq
i

(
q̂nj (x1,t+1, x2,t+1, q1,t, q2,t), x1,t+1, x2,t+1

)
i, j = 1, 2, i 6= j, (3.4)

where q̂nj is given by (3.3). In order to determine the full dynamics of the system we

have to move now to stage one in order to determine how x1,t+1, x2,t+1 are chosen.

3.2.2 Stage one

Expectation formation as well as the structure of the decision problem of the players

in stage one differs in several respects from that in stage two. The main difference

comes from the observation that the choice of xi in stage one influences the expecta-

tions of the opponent in stage two. The exact form of this influence depends on the

level of the expectation process, which means that the shape of the best response

functions of the players in stage one changes as the level of expectations changes.

For a given (expected) value xj,t+1 of the action of player j in t + 1 the problem of

player i in stage one reads:

maxxi,t+1∈Xi
πi
(
xi,t+1, xj,t+1, R

q
i (q̂

n
j (x1,t+1, x2,t+1, q1,t, q2,t), xi,t+1, xj,t+1),

q̂nj (x1,t+1, x2,t+1, q1,t, q2,t)
)
, i, j = 1, 2, i 6= j.

(3.5)

The solution of this problem is referred to as the best response of player i on stage one

under level-n expectations and denoted by Rx,n
i (xj,t+1; q1,t, q2,t). Strictly speaking n

refers here to the level of expectation in stage two, since the best response function is

independent from the way expectations are formed in stage one. In case the problem
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has several solutions an upper-hemi continuous selection is chosen. To understand

the strategic effects emerging from the expectation formation it is instructive to

consider the first order conditions of problem (3.5). It is given by2

∂πi
∂xi,t+1

+
∂πi
∂qj

∂qnej,t+1

∂xi,t+1

= 0 i, j = 1, 2, i 6= j, (3.6)

where we have used the envelope theorem to drop the partial derivative of πi with

respect to qi and have deleted the arguments in all functions for ease of notation. The

second term in the sum captures the strategic effect emerging from the expectation

formation on stage two and the sign and the size of this effect is driven by
∂qne

j,t+1

∂xi,t+1
.

Having defined this best response function we can formulate expectations in stage

one analogously to that in stage two. Since, the best response function in stage one

depends on the level of expectations in stage two we have to recursively define the

expectation generating functions in stage one for a given expectations level in stage

two. In particular, we define the level-m expectation generating function in stage

one given that expectations are of level n in stage two as:

x̂0,n
j (x1,t, x2,t, q1,t, q2,t) = xj,t (3.7)

x̂m,nj (x1,t, x2,t, q1,t, q2,t) = Rx,n
j

(
x̂m−1,n
i (x1,t, x2,t, q1,t, q2,t); q1,t, q2,t

)
i, j = 1, 2, i 6= j.

for all (x1,t, x2,t, q1,t, q2,t) ∈ X1 × X2 × Q1 × Q2. To reduce notation we write x̂n,nj
as x̂nj . Similar to stage two expectations, x̂nj is independent from xi,t for n even and

independent from xj,t for n odd. The level-n expectations at stage one of period

t+ 1 now read x1,ne
j,t+1 = x̂nj (x1,t, x2,t, q1,t, q2,t).

The resulting dynamics of stage-one actions under level n expectations follow

directly as

xi,t+1 = Rx,n
i

(
x̂nj (x1,t, x2,t, q1,t, q2,t); q1,t, q2,t

)
. (3.8)

Together with the dynamics of stage-two actions (3.4) this defines a dynamical sys-

tem

(x1,t+1, x2,t+1, q1,t+1, q2,t+1) = Φn ((x1,t, x2,t, q1,t, q2,t)) (3.9)

with the generating map Φn : X1 ×X2 ×Q1 ×Q2 7→ X1 ×X2 ×Q1 ×Q2.

In the next section we will apply this general approach in order to formulate

and analyze the expectations and the resulting dynamics of actions for different

2To keep things simple we assume here that q̂n
j is differentiable at the considered point in the

state space, which according to our assumptions holds true for points in the interior of the state
space.
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expectation levels n in the framework of a Cournot duopoly, where firms can invest

in cost reducing activities before making their quantity choices. Before we turn to

this application we formulate two general results characterizing the fixed points of

the expectations dynamics for the extreme cases of the lowest level n = 0 and n

going to infinity.

In the case of n = 0, which corresponds to naive expectations, the fact that

actions are taken sequentially and first stage actions are common knowledge in the

second stage does not influence the long run outcomes of the dynamics (at least if

the dynamics converges to a fixed point). The following Proposition shows that any

fixed point of (3.9) corresponds to a Nash equilibrium of the game without revelation

of action choices between the stages.

Proposition 3.1. Let (x̂1, x̂2, q̂1, q̂2) be a fixed point of (3.9) for n = 0. Then

(x̂1, x̂2, q̂1, q̂2) is a Nash-equilibrium of the game without revelation of actions between

the stages.

It follows from standard results concerning best response dynamics with naive

expectations in the literature that in the context of one-stage games the fixed points

of these dynamics must be Nash equilibria of the game. Based on this, one impli-

cation of Proposition 3.1 is that under naive expectations the fixed points of the

best response dynamics stay the same no matter whether the xi and qi are cho-

sen simultaneusly or sequentially with full revelation of first-stage choices between

the stages. This does not imply that the fact that choices are made sequentially

is irrelevant for the shape of the trajectories of the dynamics. Actually, it is easy

to see that in general the trajectories of(3.9) for n = 0 differ from that of best re-

sponse dynamics under naive expectations for the game where both players choose

xi and qi in the same stage. The reason why the fixed points of the two dynamics

nevertheless coincide is that under naive expectations expectations in stage two are

completely unaffected by the choices in stage one (i.e. the second term in (A.11) is

zero), which means that the best response function on stage one exactly coincides

with the best response function for xi without revelation of choice between stages.

Hence, the fixed points of stage-one actions in the two scenarios coincide. Since the

best response functions on stage two (for given choices of (x1, x2)) also coincide the

fact that the fixed points of stage one actions are the same implies that also the

fixed points of stage-two actions have to coincide.

We now turn to the other extreme and analyze the fixed points of expectations

dynamics if the expectations level is very high. Formally, we consider the limit

n→∞. If the level of expectations is larger than zero, in general it is not ensured

that players have correct expectations about the actions of the other player on stage

13



one in every fixed point of the dynamics. There might be fixed points (x̂1, x̂2, q̂1, q̂2)

where players have expectations x̂1,ne
i 6= x̂i with the property that x̂j is a best

response to x̂1,ne
i and x̂1,ne

i results from the application of the expectation generating

function x̂ni to (x̂1, x̂2, q̂1, q̂2). Such a phenomenon for example occurs for expectation

level n = 1 if the game without revelation of actions between stages has two Nash

equilibria. Denoting the first-stage actions in the two equilibria by (x̄1, x̄2) and

(¯̄x1, ¯̄x2) with x̄i 6= ¯̄xi, i = 1, 2, it is easy to see that x̂1 = x̄1, x̂2 = ¯̄x2 with the

associated expectations x̂1,1e
1 = ¯̄x1, x̂

1,1e
2 = x̄2 is a fixed point of the expectations

dynamics, but players do not have correct expectations and the fixed point does

in general not correspond to a Nash equilibrium of the game. For levels n > 1

even symmetric steady states of the dynamics with a symmetric underlying game

might not be characterized by correct expectations, but might correspond to cycles

of order n of the stage-one best response functions Rx,n
i . In what follows we will

however concentrate our attention to fixed points of the expectations dynamics,

where expectations converge to the correct values. Formally we use the following

definition.

Definition 3.2. A fixed point (x̂1, x̂2, q̂1, q̂2) of the level-n expectations dynamics

exhibits correct expectations in stage one if x̂i = x̂ni (x̂1, x̂2, q̂1, q̂2) for i = 1, 2.

A necessary condition to rule out any fixed points where players do not have

correct expectation is that the best response functions on stage one are contraction

mappings. Since we have assumed contraction properties for the best responses on

stage two it is always guaranteed that expectations with respect to the actions on

stage two are correct in a fixed point of the dynamics. Loosely speaking the following

Proposition shows that the fixed points of (3.9) with correct expectations on stage

one converge to subgame perfect equilibria of the game as the level of expectations

becomes large.

Proposition 3.3. Let (x̂n1 , x̂
n
2 , q̂

n
1 , q̂

n
2 )∞n=0 be a sequence of fixed points of (3.9) with

correct expectations on stage one for increasing expectation levels n. Let (x̂∗1, x̂
∗
2, q̂
∗
1, q̂
∗
2)

be an interior accumulation point of that sequence. Then, (x̂∗1, x̂
∗
2, q̂
∗
1, q̂
∗
2) is a subgame-

perfect equilibrium of the two-stage game.

Although our assumptions about the best responses on stage two guarantee a

unique Nash equilibrium on stage two for any choice made on stage one, our frame-

work allows for scenarios where the expectations dynamics has several fixed points

with correct expectations for a given level n. According to Proposition 3.3 any limit

point of sequences of such fixed points for n→∞ must be a subgame perfect equi-

librium. Following our general assumption that the expectation levels are equal in

14



both stages Proposition 3.3 is formulated for the case where levels in both stages

tend to infinity. However, it should be noted that the Proposition also applies to all

dynamics where the expectation level in the first stage is held constant at some ar-

bitrary level, including naive expectations, and only the level of expectations about

stage-two actions becomes large.Proposition 3.3 says that at least for large n the

fixed point of the dynamics is close to a subgame perfect equilibrium of the game.

It is important to realize that Proposition 3.3 highlights a crucial difference between

the properties of fixed points of expectations dynamics for one-stage and two-stage

games. For one-stage games the set of fixed points with correct expectations is com-

pletely independent of the levels of expectations and only the speed of convergence,

respectively the stability of the fixed points might depend on this parameter. For

two-stage games the set of fixed points in general changes as the level of expectations

is increased. This observation implies that the explicit consideration of the effects

of expectation levels larger than one becomes much more crucial in the context of

two-stage games. Whereas for one-stage games it can be loosely argued that higher

levels in the long run lead to the same outcomes as level n = 0 typically considered

in the literature, for two-stage games this is no longer true. Therefore, it is a natural

and relevant question to ask how ’more sophisticated’ expectation formation in the

sense of higher expectation levels influence the long run outcome of the dynamics.

We will address these issues in the context of a two-stage duopoly model in the next

section.

4 Application to a Dynamic Duopoly with Cost

Reducing Activities

We now use the general framework developed in the previous section to study the

dynamics of cost-reducing activities in a Cournot duopoly under different assump-

tions about expectation formation. In particular, we consider a dynamic version of

a two-stage game introduced in Qiu (1997), where where firms produce horizontally

differentiated goods in a Cournot Duopoly. In the first stage each firm undertakes

cost-reducing R&D efforts, and, in the second stage, the firms choose their quan-

tities and produce. As discussed in the introduction the issue of strategic choice

of cost-reducing activities in an oligopoly has attracted considerable attention in

the industrial organization literature, and was analyzed both from a static and a

dynamic perspective, where the cost reducing activities are typically interpreted as

process innovation. We consider here cost reducing activities (CRA) which are of a

non-cumulative character.
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The inverse demand function for the product offered by firm i is given by

pi = a− qi − γqj, i, j = 1, 2, i 6= j

with γ ∈ (0, 1). Due to cost reducing activities the firms can lower their marginal

costs, given by

ci = c− xi, i = 1, 2, xi ∈ (0, c).

The CRA-expenditure function of firm i is quadratic and of the form

V (xi) =
vx2

i

2
, i = 1, 2.

In terms of our general framework we have a game with strategy spaces Xi = [0, X̄],

Qi = [0, a] for some large X̄ and payoff functions

πi(x1, x2, q1, q2) = (a− qi − γqj − c+ xi)qi − V (xi), i, j = 1, 2, i 6= j.

4.1 Equilibrium Outcomes

We first derive the subgame perfect equilibria of the game using backward induction.

The chosen values of xi are revealed at the end of the first stage and become common

knowledge. Given any first stage CRA x1, x2 the firms maximize the profit on the

second stage with respect to the output. The first order condition ∂πi

∂qi
= 0 gives rise

to the best response function

Rq
i (qj;x1, x2) = Max

[
0,

1

2
(a− c+ xi − γqj)

]
. (4.1)

and the intersection of the two best response functions determines a unique Cournot-

Nash equilibrium, which in the case of positive equilibirum quantities is given by

q∗i (x1, x2) =
(a− c)(2− γ) + 2xi − γxj

4− γ2
, i = 1, 2, i 6= j.

Note that
∂q∗i
∂xi

= 2
4−γ2 > 0 and

∂q∗j
∂xi

= − γ
4−γ2 < 0, i.e. the first-stage CRA influ-

ences positively (negatively) the own (competitor’s) output decision on the second

stage and hence has an intertemporal strategic effect under the assumption that

the Cournot equilibrium is realized in the second stage. However, the best response

function of firm i only depends on xi, which means that for a given quantity of firm

j the best response of firm i is independent from the first stage choice of the level

of CRA by firm j.
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Assuming that the induced quantities in the second stage are positive, in the

first stage the firms maximize

π∗i (xi) = πi(x1, x2, q
∗
1(x1, x2), q∗2(x1, x2)) =

(
(a− c)(2− γ) + 2xi − γxj

4− γ2

)2

− v

2
x2
i ,

i = 1, 2, i 6= j with respect to xi. From the first order condition, (given in (A.2))

we obtain the following proposition.

Proposition 4.1. Assume that

v >

 4a
c(4−γ2)(2+γ)

for a
c

> 2

1 for 1 < a
c
< 2.

(4.2)

Then, there exists a symmetric subgame perfect equilibrium with

x∗1 = x∗2 = x∗SP :=
4(a− c)

v(2− γ)(2 + γ)2 − 4
∈ (0, c) (4.3)

and

q∗1 = q∗2 = q∗SP :=
(a− c)(2− γ) + 2x∗i − γx∗j

4− γ2
=

v(a− c)(4− γ2)

v(2− γ)(2 + γ)2 − 4
> 0. (4.4)

The resulting equilibrium profit is given by

π∗SP = (q∗SP )2 − v

2
(x∗SP )2 =

v(a− c)2
(
v(γ2 − 4)2 − 8

)(
4 + v(γ − 2)(2 + γ)2

)2 .

The condition (4.2) guarantees that π∗(x1, x2) is strictly concave with respect to

xi on Xi.

In addition to this subgame perfect equilibrium the two-stage game has many

Nash equilibria which are not subgame perfect. In general the set of Nash equilibrium

outcomes includes all action profiles (x1, x2, q1, q2) with 0 < xi < c and q∗i = qi(xi, xj)

for i, j = 1, 2, i 6= j. In particular we obtain:

Proposition 4.2. Define x̄ = min

[
(a−c)

(2+γ)
√

v
2
−1
, c

]
and consider an arbitrary x̃ ∈

[0, x̄]. Then, there exists a symmetric Nash equilibrium (xNE, xNE, qNE(·), qNE(·))
of the game, such that xNE = x̃.

The level of CRA’s denoted by x̄ is the maximal level where firms have non-

negative marginal costs and non-negative profits in the corresponding Nash equi-

librium. This Proposition shows that a large range of outcomes can be interpreted
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as a Nash equilibrium of the two stage game. In particular, under condition (4.2)

any level of CRA below that in the (unique) subgame perfect equilibrium is consis-

tent with Nash equilibrium. If we consider a version of this game, where first stage

actions are not revealed between the two stages, then the set of Nash equilibria

collapses to a single point.

Proposition 4.3. Assume that (x1, x2) is not revealed after the first stage and that

v > a
(2+γ)c

and a > c holds. Then, there exists a unique positive Nash equilibrium

(x̂1, x̂2, q̂1, q̂2) with

x̂1 = x̂1 = x̂NE :=
a− c

v(2 + γ)− 1
∈ (0, x∗SP ) and

q̂1 = q̂2 = q̂NE :=
v(a− c)

v(2 + γ)− 1
∈ (0, q∗SP ).

(4.5)

The profits of the two firms in that equilibrium is given by

π̂NE =
v(2v − 1)(a− c)2

2(v(2 + γ)− 1)2
.

Comparing the unique subgame perfect equilibrium of the two-stage game with

the unique Nash equilibrium of the game without revelation of stage-one choices,

we realize that the revelation of stage 1 actions leads to an increase of the level of

cost reducing activities and of quantities in equilibrium. Therefore, revelation of

actions between the stages leads to lower prices, which implies a higher consumer

surplus. On the other hand it can be verified that for all γ ∈ [0, 1], 0 < c < a and all

values of v satisfying (4.2) the profit of the firms in the Nash equilibrium without

revelation of stage 1 actions is larger compared to their profit in the subgame perfect

equilibrium of the two-stage game. The economic intuition for these observations is

that without revelation of the CRA before the quantity choice of the opponent the

additional incentives for CRAs stemming from the negative effect a reduction of own

costs on the opponents output disappears. Hence, firms invest less in CRA’s in the

game without revelation, which implies that marginal production costs are higher

and quantities are lower. With respect to the firms’ profits the positive effect of the

increase of the opponents costs outweighs the own reduction in CRA and therefore

the profit is larger without revelation of stage 1 actions. The comparison of these

two equilibria will turn out to be relevant for the understanding of the economic

implications of an increase of the expectations level for the long run outcomes of the

dynamics. We now turn to the analysis of these dynamics.
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4.2 Level-n expectations dynamics

We assume now that firms repeatedly interact according to the two-stage game

described above (with revelation of stage-one actions between the stages). Ex-ante

they are not coordinated in one of the equilibria and they have to build expectations

about the actions of the other firm in both stages. They build their expectations

according to the expectations process with level n, as described in section 2, and

choose their actions as a best response to these expectations.

Like in the discussion of the general case, we start the analysis of the expectation

dynamics by considering stage two. In that stage each firm has observed the level

of cost reducing activities by the opponent and builds expectations according to

(3.3). The following Lemma provides an explicit representation of the expectation

generating function for level-n expectations.

Lemma 4.4. The level n expectation generating function on stage two concerning

the quantity qj,t+1 is given by

q̂nj (x1,t+1, x2,t+1, q1,t, q2,t) =

(
1

2
(a− c+ xj,t+1)

) b(n−1)/2c∑
k=0

(
−γ

2

)2k

(4.6)

+

(
1

2
(a− c+ xi,t+1)

) bn/2c∑
k=1

(
−γ

2

)2k−1

+
(
−γ

2

)n
q·,t,

where buc denotes the largest integer smaller or equal than u ∈ IR and q·,t stands for

qi,t if n is odd and for qj,t if n is even.

Considering the effect of the choice of cost reducing activities by firm i in the

first stage of t+ 1 on the expected quantity of firm j, it can be seen that an increase

of the expectations level from n to n + 1 induces an increase of the coefficient of

xi,t+1 in q̂j only if n is odd. Put differently, if n is even, then increasing the level

by one does not change the size of the (negative) marginal effect of an increase of

xi,t+1 on the expected quantity of firm j and therefore also the strategic incentive to

invest stemming from the possibility to influence qj,t+1 with xi,t+1 should not change.

Based on the explicit representation of the expectations in stage two the following

Lemma gives the best response function in stage one under level-n expectations.

Lemma 4.5. The best response function in stage one under level-n expectations in
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stage two for sufficiently large values of (a− c) and v > 9
8

is given by

Rx,n
i (xj,t+1, q1,t, q2,t) (4.7)

= max

0,
1 +

∑bn/2c
k=1

(
−γ

2

)2k

2v −
(

1 +
∑bn/2c

k=1

(
−γ

2

)2k
)2

(
(a− c)

n∑
k=0

(
−γ

2

)k

−γ
(
−γ

2

)n
q·,t +xj,t+1

b(n−1)/2c∑
k=0

(
−γ

2

)2k+1

 ,
where q·,t stands for qi,t if n is odd and for qj,t if n is even.

It should be noted that the coefficient of the CRA of the opponent is negative,

which means that, like in the static model, CRA’s are strategic substitutes. Also it

is easy to see that the absolute value of the coefficient of xj,t+1 is smaller than 1,

which means that the best response function on stage one is a contraction mapping.

The expectations concerning the actions on stage one, x1,ne
j,t+1 are built recursively

according to (3.7) where the best response Rx,n
j is given by (4.7). Since the resulting

expression becomes rather large, we abstain from presenting the full expressions

of these expectation functions here. It is easy to see that also these expectation

functions are linear with respect to all arguments x1,t, x2,t, q1,t, q2,t. Using these

specifications of the best response and expectation functions, the dynamics is given

by (3.4) and (3.8).

Also for the fixed points of the expectations dynamics in principle a closed form

expressions could be given. However, the complexity of these expressions would

not allow substantial qualitative insights. Therefore, rather than providing these

expressions we characterize in the following propositions several key properties of

the sequence of the symmetric fixed points of the dynamics.

Proposition 4.6. Assume that v > 9
8
. Then there exists a unique symmetric in-

terior fixed point (x̂n, x̂n, q̂n, q̂n) of the level-n expectations dynamics. In the fixed

point firms have correct expectations at stage one and the following properties hold:

(i) x̂0 = x̂NE, q̂
0 = q̂NE

(ii) x̂n = x̂n+1, q̂n = q̂n+1 for n even.

(iii) x̂n < x̂n+1, q̂n < q̂n+1 for n odd.

(iv) limn→∞ x̂
n = x∗SP , limn→∞ q̂

n = q∗SP .
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Whereas items (i) and (iv) of the Proposition are just special cases of the general

results given in Propositions 3.1 and 3.3, items (ii) and (iii) provide additional

insights into the dependence of the fixed points on the level of expectations. In

particular, the proposition shows that the level of CRA’s and output in the fixed

point increases monotonously as the level of expectations grows. However, if the

considered level is even, then an increase by one does not alter the fixed point, so

the increase happens ’stepwise’ only at transitions from an odd to the next higher

even level. As pointed out above, this is due to the fact that the best response on

stage two is not directly influenced by the stage-one action of the other firm and

therefore the size of the strategic effect of the stage one choice on the opponent’s

action on stage two changes only at every second increase of n. The observation

that there are no fixed points of the dynamics where firms do not have correct

expectations is due to the fact that the best response function on stage one is a

contraction. This rules out multiple fixed points of the best response functions and

best response cycles, which would be needed for fixed points where expectations are

not correct.

Standard arguments imply that the characterized fixed points of the dynamics

are asymptotically stable as long as γ is sufficiently small. Precise conditions on this

parameter guaranteeing stability are however rather involved and since the focus of

the analysis is on the effect of the expectation level n on the location of the fixed

points we do not derive these conditions here. At the end of this section we will

however briefly get back to the issue of stability of the fixed point.

From an economic perspective Proposition 4.6 shows that if firms increase the

sophistication of their expectation rules, in the sense that they increase their expec-

tation level, this leads in the long run to more cost reducing activities and higher

outputs. As the expectation level n goes up the fixed points move monotonously

step-by-step from the Nash equilibrium of the game without revelation of cost reduc-

ing activities before the quantity choice towards the subgame perferct equilibrium

of the two-stage game.

The effect of an increase in the expectation level is illustrated in Figure 4.1, where

the size of CRA’s and output quantities in the unique fixed point of the dynamics

are depicted for different values of n3 It can be clearly seen that for n = 0 and n = 1

the fixed point coincides with the Nash equilibrium of the game without revelation

of actions between stages. However, already for n = 2 firms reach in the long-run

an outcome close to the subgame perfect equilibrium. As predicted in Proposition

3The parameter values used in all the figures are a = 5, c = 2, γ = 0.5, v = 1.2. Hence the
conditions on v of all Propositions in this section are satisfied.
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Figure 4.1: Level of cost reducing activities (a), output quantities (b) and firm profits
(c) in the unique symmetric fixed point of the expectations dynamics for increasing
n.

4.6 the long run outcome does not change if the expectation level is increased from

n = 2 to n = 3. Moving to n = 4 implies another small upward jump of long run

CRA’s and output of the firms. For this level the fixed point almost coincides with

the subgame perfect equilibrium of the game. Therefore, further increases in the

expectation level do not lead to any observable changes in the fixed point. Panel

(c) of Figure 4.1 shows that this upwards movement of the fixed point values of

CRA’s and output associated with an increase in n leads to a reduction in firms’

profits. As discussed above, this is due to the fact that the negative price effect of

the decrease of the opponent’s marginal costs outweigh the positive profit effects of

the increase in own CRA’s. Increasing the level of sophistication in the expectation

formation process of the firms in the industry therefore has negative implications

for the average industry profits. Consumers however profit from such an increase in

sophistication, since the market price goes downs as n is increased.

The actual expectations dynamics for different expectation levels are illustrated
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Figure 4.2: Dynamics of cost reducing activities (a) and output quantities (b) under
different expectation levels: n = 0 (black), 1 (red), 2 (dark blue), 3 (light blue), 4
(green) and 10 (pink).

in Figure 4.2. The figure shows that although the fixed points for n = 0 and n = 1

coincide the transient dynamics differ. In particular, under naive expectations some

oscillations occur prior to convergence to the steady state, which are absent under

expectations of level n = 1. Starting with n = 2 the dynamics look very similar,

exhibiting very fast convergence to the steady state, which is close to the subgame

perfect equilibrium of the game. Actually, due to the larger range of x and q values

depicted in this figure compared to Figure 4.1 the difference in long run values

between n = 2 and larger levels is almost indiscernible. Overall, Figures 4.1 and 4.2

show that, whereas it is almost irrelevant whether naive expectations or expectations

of level n = 1 are considered, the transition to level n = 2 leads to a significant

qualitative change in transient and long run behavior. For such an expectation level

firms reach after a few periods a state very close to the subgame perfect equilibrium

of the game.

Although the focus of this paper is on the characterization of the fixed points

of the expectation dynamics, we conclude the discussion by reconsidering the issue

of stability of the fixed points. Figure 4.2 shows that for our default parameter

setting, which includes a degree of horizontal product differentiation of γ = 0.5 the

fixed points of the dynamics are stable regardless of the expectation level. It is easy

to see that decreasing the degree of vertical differentiation makes the best response

functions on both stages steeper and therefore should contribute to a destabilization

of the fixed point (see also Hadar (1966)). Based on this reasoning we show in Figure

4.3 the expectations dynamics for different expectation levels for the case γ = 0.95,

which means that the products of the two producers are close substitutes. It should
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Figure 4.3: Dynamics of cost reducing activities (a) and output quantities (b) under
level-n expectations for γ = .95: n = 0 (black), 1 (red), 2 (dark blue), 3 (light blue),
4 (green) and 10 (pink).

be noted that all conditions used in the Propositions of this section, in particular

also the condition for the existence of an interior subgame perfect equilibrium are

still satisfied for this parameter value. The destabilizing effect of the increase in γ

can be clearly seen. For expectation levels 0, 2 and 4 both CRA’s and quantities

exhibit oscillations for several periods before they converge towards the steady state.

For n = 10 the fixed point now becomes unstable and CRA’s and quantities end

up in a period 2 cycle. This figure illustrates that more sophisticated expectation

formation in the sense of a higher level of expectations might prevent firms from

reaching a fixed point and coordinating in the long run. Whereas in the case of

naive expectations or expectations with low level firms in the long have correct

expectations, firms end up with persistently wrong expectations if their expectation

level is large. This at first sight counter-intuitive finding is due to the fact that

an increase in n makes the negatively sloped best response function on stage one

steeper (see (4.7)), which enlarges the danger of overshooting.
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5 Conclusion

This paper is a first contribution to systematically analyze the implications of differ-

ent levels of expectations formation for best response dynamics in multistage games.

Our analysis is focussed on a two-stage duopoly game where firms have sufficient

information about the production technology of the opponent such that they can de-

termine the best responses of the other firm on both stages. It is shown that in such

a setting the long run outcome on the market depends crucially on the level of rea-

soning underlying the expectation formation process of the firms. An increase in this

level does not lead to a smooth change of the trajectories. Rather, such an increase

has no or very little effect for most transitions but leads to a rather aprupt change

in the dynamics and long run outcome as the expectation level goes from n = 1

to n = 2. This means that whereas in the long run it does not make a difference

whether firms use naive expectations or anticipate that the opponent will choose

best responses to its naive expectations, there is a qualitative change in behavior

if firms take into account that the opponent might go through similar reasoning

than the firm itself and hold the expectation that about the firms own action that

correspond to its best response. In the context of the considered two-class duopoly

any more sophisticated reasoning than that does not lead a substantial change in

the behavior. Although the long run outcome of (stable) best response dynamics

depends on the level of expectation our results show that only outcomes between the

Nash equilibrium of the game without revelation of actions between stage and the

subgame perfect equilibrium of the game. Comparing this with the range of all Nash

equilibrium outcomes shows that only a strict subset of Nash equilibria corresponds

to fixed points of the best response dynamics under level-n expectations. So, even

without information about the actual level of expectations this dynamic approach

provides some equilibrium selection.

In recent years substantial experimental work has been done to obtain a better

understanding of how individuals build expectations in different market settings (e.g.

Heemeijer et al. (2009), Hommes (2011)). The considered interaction structure in

these experiments typically has one-stage strcuture. The insight obtained in this

paper, that in two-stage problems market outcomes differ substantially depending

on whether decision makers build level-1 or level-2 expectations might be a basis for

experimental work on expectation formation in the framework of repeated two-stage

market interaction.

The analysis in this paper has mainly focussed in the location of (stable) fixed

points and has dealt with a linear-quadratic duopoly model with a unique subgame-

perfect equilibrium. As has been documented in the literature considering nonlinear
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demand or cost specifications would certainly give rise to co-existence of locally

stable fixed points, or more generally attractors, and complex dynamical patterns. A

rigorous analysis how basins of attraction or dynamic patterns in standard two-stage

oligopoly games are affected by the level of expectation formation is an interesting

challenge for future work.

26



References

Bischi, G.-I., C. Chiarella, M. Kopel, and R. Szidarovszky (2010): Non-

linear Oligopolies, Springer.

Bischi, G.-I. and M. Kopel (2001): “Equilibrium selection in a nonlinear duopoly

game with adaptive expectations,” Journal of Economic Behavior & Organization,

46, 73–100.

Bischi, G.-I. and F. Lamantia (2004): “A competition game with knowledge

accumulation and spillovers,” International Game Theory Review, 6, 323–241.

Breton, M., A. Turki, and G. Zaccour (2004): “Dynamic model of R&D,

spillovers, and efficiency of bertrand and cournot equilibria,” Journal of Optimiza-

tion Theory and Applications, 23, 1–25.

Brown, G. (1951): “Iterative Solutions of Games by Fictitious Play,” in Activity

Analysis of Production and Allocation, ed. by T. Koopmans, Wiley: New York.

Cellini, R. and L. Lambertini (2009): “Dynamic R&D with spillovers: com-

petition versus cooperation,” Journal of Economic Dynamics and Control, 33,

568–582.

——— (2011): “R&D incentives under Bertrand competition: a differential game,”

The Japanese Economic Review, 62, 387–400.

Cressman, R. and K. Schlag (1998): “The dynamic (in)stability of backwards

induction,” Journal of Economic Theory, 83, 260–285.

D’Aspremont, C. and A. Jacquemin (1988): “Cooperative and noncooperative

R&D in duopoly with spillovers,” American Economic Review, 78, 1133–1137.

Demichelis, S. and K. Ritzberger (2003): “From evolutionary to strategic

stability,” Journal of Economic Theory, 113, 51–75.

Hadar, J. (1966): “Stability of Oligopoly with Product Differentiation,” The Re-

view of Economic Studies, 33, 57–60.

Hart, S. (2002): “Evolutionary dynamics and backward induction,” Games and

Economic Behavior, 41, 227–264.

Heemeijer, P., C. Hommes, J. Sonnemans, and J. Tuinstra (2009): “Price

stability and volatility in markets with positive and negative expectations feed-

back,” Journal of Economic Dynamics and Control, 33, 1052–1072.

27



Hommes, C. (2011): “The heterogeneous expectations hypothesis: Some evidence

from the lab,” Journal of Economic Dynamics and Control, 35, 1–24.

Kopel, M. (2009): “Oligopoly Dynamics,” in Handbook of Research on Complexity,

ed. by J. J.B. Rosser, Edward Elgar.

Kuzmics, C. (2004): “Stochastic evolutionary stability in extensive form games of

perfect information,” Games and Economic Behavior, 48, 321–336.

Noeldecke, G. and L. Samuelson (1993): “An evolutionary analysis of back-

ward and forward induction,” Games and Economic Behavior, 5, 425–454.

Okuguchi, K. (1970): “Expectations in an Oligopoly Model,” Review of Economic

Studies, 37, 233–237.

Puu, T. (1998): “The chaotic Duopolists revisited,” Journal of Economic Behavior

& Organization, 33, 385–394.

Qiu, L. D. (1997): “On the Dynamic Efficiency of Bertrand and Cournot Equilib-

ria,” Journal of Economic Theory, 75, 213–229.

Stahl, D. and P. Wilson (1995): “On players’ models of other players: Theory

and experimental evidence,” Games and Economic Behavior, 10, 218–254.

Theocharis, R. (1960): “On the Stability of the Cournot Solution on the Oligopoly

Problem,” The Review of Economic Studies, 27, 133–134.

Tramontana, F., L. Gardini, and T. Puu (2009): “Cournot duopoly when

competitors operate multiple production plants,” Journal of Economic Dynamics

and Control, 33, 250–265.

28



A Proofs

Proof of Proposition 3.1

The fact that (x̂1, x̂2, q̂1, q̂2) is a fixed point of (3.9) and expectations are naive implies

using (3.4) and (3.8) that

q̂i = Rq
i (q̂j, x̂1, x̂2) , i = 1, 2 (A.1)

and

x̂i = Rx,0
i (x̂j; x̂1, x̂2, q̂1, q̂2) , i = 1, 2

hold. From (A.1) we directly obtain that q̂i = q∗i (x̂1, x̂2) and (3.5) yields under

consideration of q0e
j,t+1 = qj,t = q̂j that

Rx0
i (x̂j; x̂1, x̂2, q̂1, q̂2) = arg maxxi∈Xi

πi (xi, x̂j, R
q
i (q̂j, xi, x̂j), q̂j) .

Using (3.2) this implies

x̂i = Rx0
i (x̂j; x̂1, x̂2, q̂1, q̂2) = R̂x

i (x̂j, q̂j).

Accoringly, (x̂1, x̂2, q̂1, q̂2) satsifies (3.1) and therefore is a Nash equilibrium of the

game without revelation of action choices between the stages. Q.E.D.

Proof of Proposition 3.3

First, it should be noted that due to our assumption that π∗i (x1, x2) is strictly convex

with respect to xi, the first order condition

∂π∗i (x̂
∗
1, x̂
∗
2)

∂xi
=
∂πi(x̂

∗
1, x̂
∗
2, q̂
∗
1, q̂
∗
2)

∂xi
+
∂πi(x̂

∗
1, x̂
∗
2, q̂
∗
1, q̂
∗
2)

∂qj

∂q∗j (x̂1, x̂2)

∂xi
= 0, i, j = 1, 2, i 6= j

(A.2)

in combination with

q̂∗i = q∗i (x̂
∗
1, x̂
∗
2), i = 1, 2 (A.3)

is a sufficient condition for an interior point (x̂∗1, x̂
∗
2, q̂
∗
1, q̂
∗
2) to be a subgame-perfect

equilibrium of the game. Since (x̂∗1, x̂
∗
2, q̂
∗
1, q̂
∗
2) is an interior accumulation point of

the sequence (x̂n1 , x̂
n
2 , q̂

n
1 , q̂

n
2 )∞n=0 there must exist an interior subsequence (nk)

∞
k=0 with

limk→∞(x̂nk
1 , x̂nk

2 , q̂nk
1 , q̂nk

2 ) = (x̂∗1, x̂
∗
2, q̂
∗
1, q̂
∗
2). To reduce notation we assume without

restriction of generality that the original sequence already has these properties.

To reduce notation we define q̂2,ne
i = q2,ne

i (x̂n1 , x̂
n
2 , q̂

n
1 , q̂

n
2 ) for i = 1, 2. Because

(x̂n1 , x̂
n
2 , q̂

n
1 , q̂

n
2 ) is a fixed point of (3.9) with α = 0 we obtain from (3.4) that q̂i =
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Rq
i (q̂

2,ne
j ; x̂n1 , x̂

n
2 ), i, j = 1, 2, i 6= j. Furthermore, assuming that n is odd, it follows

from (3.3) that

q̂2,ne
j = Rq

j

 Rq
i

(
Rq
j

(
. . . Rq

i

(
Rq
j (q̂i; x̂

n
1 , x̂

n
2 ) ; x̂n1 , x̂

n
2

)
; . . . ; x̂n1 , x̂

n
2

)
; x̂n1 , x̂

n
2

)︸ ︷︷ ︸
(n−1)/2 times

; x̂n1 , x̂
n
2


Together with q̂i = Rq

i (q̂
2,ne
j ; x̂n1 , x̂

n
j ) this implies that q̂i is a fixed point of the n/2+1

times composition of the function Rq
i (R

q
j(φ; x̂n1 , x̂

n
2 ); x̂n1 , x̂

n
2 ). Since this function is

assumed to be a contraction, also the n/2 + 1 times composition is a contraction

and therefore has a unique fixed point in Qi. Therefore, the fixed point of this

composition must coincide with the fixed point of Rq
i (R

q
j(φ; x̂n1 , x̂

n
2 ); x̂n1 , x̂

n
2 ) and we

obtain that q̂ni = q∗i (x̂
n
1 , x̂

n
2 ), i = 1, 2. Analogous arguments establish that this

property also must hold if n is even. Since q∗i is continuous this implies that (A.3)

holds.

It remains to be shown that (A.2) holds true. Due to our assumption that players

have rational expectations on stage 1 in the considered fixed points we must have

x̂ni = Rx,n
i (Rx,n

j (x̂i; q̂
n
1 , q̂

n
2 ); q̂n1 , q̂

n
2 ) = Rx,n

i (x̂nj ; q̂n1 , q̂
n
2 ). Comparing the corresponding

first order condition

∂πi(x̂
n
1 , x̂

n
2 , q̂

n
1 , q̂

n
2 )

∂xi
+
∂πi(x̂

n
1 , x̂

n
2 , q̂

n
1 , q̂

n
2 )

∂qj

∂qnej,t+1(x̂n1 , x̂
n
2 , q̂

n
1 , q̂

n
2 )

∂xi
= 0

with (A.2), it becomes clear that all which remains to be shown is that

lim
n→∞

∂qnej,t+1(x̂n1 , x̂
n
2 , q̂

n
1 , q̂

n
2 )

∂xi
=
∂q∗j (x̂1, x̂2)

∂xi
.

holds. Considering this partial derivative we first observe that

∂qnej,t+1(x̂n1 , x̂
n
2 , q̂

n
1 , q̂

n
2 )

∂xi
=
∂q̂nj (x̂n1 , x̂

n
2 , q̂

n
1 , q̂

n
2 , q̂

n
· )

∂xi
,

where q̂n· stands for q̂ni or q̂nj depending on whether n is odd or even. The recursive

definition of q̂nj induces the following recursion for this partial derivative:

∂q̂nj (x̂n1 , x̂
n
2 , q̂

n
1 , q̂

n
2 , q̂

n
· )

∂xi
= (A.4)

∂q̂n−1
j (x̂n

1 ,x̂
n
2 ,q̂

n
1 ,q̂

n
2 ,q̂

n
· )

∂xi
+

∂q̂n−1
j (x̂n

1 ,x̂
n
2 ,q̂

n
1 ,q̂

n
2 ,q̂

n
· )

∂q·

∂Rq
i (q̂n

j ;x̂n
1 ,x̂

n
2 )

∂xi
n even

∂q̂n−1
j (x̂n

1 ,x̂
n
2 ,q̂

n
1 ,q̂

n
2 ,q̂

n
· )

∂xi
+

∂q̂n−1
j (x̂n

1 ,x̂
n
2 ,q̂

n
1 ,q̂

n
2 ,q̂

n
· )

∂q·

∂Rq
j (q̂n

i ;x̂n
1 ,x̂

n
2 )

∂xi
n odd,
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where
∂q̂n

j (x̂n
1 ,x̂

n
2 ,q̂

n
1 ,q̂

n
2 ,q̂

n
· )

∂q·
follows the recursion

∂q̂nj (x̂n1 , x̂
n
2 , q̂

n
1 , q̂

n
2 , q̂

n
· )

∂q·
=


∂q̂n−1

j (x̂n
1 ,x̂

n
2 ,q̂

n
1 ,q̂

n
2 ,q̂

n
· )

∂q·

∂Rq
j (q̂n

j ;x̂n
1 ,x̂

n
2 )

∂qi
n even

∂q̂n−1
j (x̂n

1 ,x̂
n
2 ,q̂

n
1 ,q̂

n
2 ,q̂

n
· )

∂q·

∂Rq
i (q̂n

j ;x̂n
1 ,x̂

n
2 )

∂qj
n odd.

Furthermore, we have

∂q̂0
j (x̂

n
1 , x̂

n
2 , q̂

n
1 , q̂

n
2 , q̂

n
· )

∂xi
= 0,

∂q̂0
j (x̂

n
1 , x̂

n
2 , q̂

n
1 , q̂

n
2 , q̂

n
· )

∂q·
= 1.

for i, j = 1, 2 and i 6= j. Direct calculation based on these expressions establishes

that the partial derivative with resepect to the last argument q· of the expectation

generating function at stage 2 is given by

∂q̂nj (x̂n1 , x̂
n
2 , q̂

n
1 , q̂

n
2 , q̂

n
· )

∂q·
=


(
∂Rq

i (q̂j ;x̂1,x̂2)

∂qj

)n/2 (∂Rq
j (q̂i;x̂1,x̂2)

∂qi

)n/2
n even(

∂Rq
i (q̂j ;x̂1,x̂2)

∂qj

)(n−1)/2 (∂Rq
j (q̂i;x̂1,x̂2)

∂qi

)(n+1)/2

n odd

Inserting this into (A.4) finally yields

∂q̂nj (x̂n1 , x̂
n
2 , q̂

n
1 , q̂

n
2 , q̂

n
· )

∂xi
= (A.5)

∂Rq
i

∂xi

∑n/2
k=1

(
∂Rq

i

∂qj

)k−1 (∂Rq
j

∂qi

)k
+

∂Rq
j

∂xi

∑n/2−1
k=0

(
∂Rq

i

∂qj

)k (∂Rq
j

∂qi

)k
n even

∂Rq
i

∂xi

∑(n−1)/2
k=1

(
∂Rq

i

∂qj

)k−1 (∂Rq
j

∂qi

)k
+

∂Rq
j

∂xi

∑(n−1)/2
k=0

(
∂Rq

i

∂qj

)k (∂Rq
j

∂qi

)k
n odd,

where we again have dropped all functional arguments on the right side to lighten

the notation. Due to our assumption that the composition of the two best response

functions on stage 2 is a contraction we have ‖ ∂Rq
i

∂qj

∂Rq
j

∂qi
‖∞< 1 and taking the limit

for n→∞ in (A.5) we obtain

lim
n→∞

∂q2,ne
j,t+1(x̂n1 , x̂

n
2 , q̂

n
1 , q̂

n
2 )

∂xi
= lim

n→∞

∂q̂nj (x̂n1 , x̂
n
2 , q̂

n
1 , q̂

n
2 , q̂

n
· )

∂xi
=(

∂Rq
i (q∗j ;x∗1,x

∗
2)

∂xi

)(
∂Rq

j (q∗i ;x∗1,x
∗
2)

∂qj

)
+

∂Rq
j (q∗i ;x∗1,x

∗
2)

∂xi

1−
(
∂Rq

i (q∗j ;x∗1,x
∗
2)

∂qj

)(
∂Rq

j (q∗i ;x∗1,x
∗
2)

∂qj

) .

To conclude the proof we have to compare this expression to
∂q∗j (x̂∗1,x̂

∗
2)

∂xi
. Since q∗j gives
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the Nash equilibrium choice of player j on stage 2 it has to satisfy

q∗j (x1, x2) = Rq
j(R

q
i (q
∗
j (x1, x2);x1, x2);x1, x2)

for all (x1, x2) ∈ X1 ×X2. Taking the derivative with respect to xi on both sides at

(x1, x2) = (x̂∗1, x̂
∗
2) yields

∂q∗j (x̂
∗
1, x̂
∗
2)

∂xi
=
∂Rq

j(q̂
∗
i ; x̂

∗
1, x̂
∗
2)

∂xi
+
∂Rq

j(q̂
∗
i ; x̂

∗
1, x̂
∗
2)

∂qi

(
∂Rq

i (q̂
∗
j ; x̂

∗
1, x̂
∗
2)

∂xi
+
∂Rq

i (q̂
∗
j ; x̂

∗
1, x̂
∗
2)

∂qj

∂q∗j (x̂
∗
1, x̂
∗
2)

∂xi

)
,

where we have used that q̂∗j = q∗j (x̂
∗
1, x̂
∗
2) and q̂∗i = Rq

i (q̂
∗
j ; x̂

∗
1, x̂
∗
2). Collecting terms

gives

∂q∗j (x̂
∗
1, x̂
∗
2)

∂xi
=

∂Rq
j (q̂∗i ;x̂∗1,x̂

∗
2)

∂xi
+
(
∂Rq

j (q̂∗i ;x̂∗1,x̂
∗
2)

∂qi

)(
∂Rq

i (q̂∗j ;x̂∗1,x̂
∗
2)

∂xi

)
1−

(
∂Rq

j (q̂∗i ;x̂∗1,x̂
∗
2)

∂qi

)(
∂Rq

i (q̂∗j ;x̂∗1,x̂
∗
2)

∂qj

)
and we have shown that

lim
n→∞

∂q2,ne
j,t+1(x̂n1 , x̂

n
2 , q̂

n
1 , q̂

n
2 )

∂xi
=
∂q∗j (x̂

∗
1, x̂
∗
2)

∂xi
.

This concludes the proof. Q.E.D.

Proof of Proposition 4.1:

Direct calculations give the first order condition

∂π∗i (x1, x2)

∂xi
=

2

4− γ2
(a− c+ x∗i − γq∗j )− vx∗i = 0 (A.6)

In order to guanrantee that the first order condition characterizes the maximum

of pi∗ we have to check that π∗ is concave and that marginal costs and quantities

are positive at the point where the FOC is satisfied. The second order condition is

given by

v >
1

2

( 4

4− γ2

)2

, (A.7)

the condition x∗SP > 0 and q∗SP > 0 yields

v >
4

(2− γ)(2 + γ)2
(A.8)
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and the condition for c− x∗SP > 0 yields

v >
4a

c(2 + γ)(4− γ2)
. (A.9)

The condition (A.7) implies (A.8) and therefore (A.7) and (A.9) are the binding

constraints. Equalizing the terms on the right hand side of these two inequalities

yields
1

2

( 4

4− γ2

)2

=
4a

c(2 + γ)(4− γ2)

which can be simplified to

γ =
2(a− c)

a
.

One observes the possible relation between a and c for the feasible boundary values

of γ, i.e. γ = 0 and γ = 1. Obviously, γ = 0 implies a = c and γ = 1 implies

a = 2c. Hence, for a ≥ 2c (A.9) is more restrictive than (A.7) regardless of γ.One

gets immediately

max

{
1

2

( 4

4− γ2

)2

,
4a

c(2 + γ)(4− γ2)
:
a

c
> 2

}
=

4a

c(2 + γ)(4− γ2)
.

and for 1 < a
c
< 2 the following holds

max

{
1

2

( 4

4− γ2

)2

,
4a

c(2 + γ)(4− γ2)
: 1 <

a

c
< 2

}

=


4a

c(γ+2)(4−γ2)
for 0 < γ 6 2(a−c)

a

1
2

(
4

4−γ2

)2

for 1 > γ > 2(a−c)
a

< 1.

This argumentation directly yields the following result

v >

 4a
c(2+γ)(4−γ2)

for a
c

> 2

1 for 1 < a
c
< 2.

Finally, it has to be guaranteed that profits of both firms are non-negative for levels

of CRA characterized by (A.6). From the expression for π∗SP given in the Proposition

we obtain directly that profits are non-negative iff

v ≥ 8

(4− γ2)2
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and it is easy to see that this inequalitya always holds under condition (??). This es-

tablishes that the first order conditions (A.6) indeed characterize the unique subgame

perfect equilibrium and the claims of the Proposition now follow by straight-forward

calculations. Q.E.D.

Proof of Proposition 4.2:

Define

qNE(x1, x2) :=

q∗i (x̃, x̃) if x1 = x2

β else

for sufficiently high β. Because of x̃ ≤ x̄ we have πi(x̃, x̃, q
∗
1(x̃, x̃), q∗2(x̃, x̃)) ≥ 0.

Given firm i’s competitor’s decision qj = qNE and xj = x̃, we consider two scenarios

concerning the strategy of firm i with respect to the CRA. If xi 6= x̃ this implies for

the reaction of firm j that q̂j(xi, xj) = β which implies p ≤ 0 and therefore πi < 0.

Therefore, in its best response, firm i always chooses xi = x̃. This implies for the

best response of firm i with respect to the quantity that

q̂i (x̃, x̃) = Rq
i

(
x̃, q∗j (x̃, x̃)

)
= q∗i (x̃, x̃) (A.10)

must hold, where Rq
i (x̃, qj) denotes the best reply function of firm i at the quantity

choice stage. The crucial equality in (A.10) follows because q∗i (x̃, x̃) is the Nash

equilibrium quantity in the second stage for (xi, xj) = (x̃, x̃). The quantity choice

of firm i at any level of CRA different from (x̃, x̃) does not affect its payoff and

therefore setting these quantities to β is (weakly) optimal for the firm. This shows

that (xNE, qNE(x1, x2) is indeed a best response for firm i. Q.E.D.

Proof of Proposition 4.3:

In an interior Nash equilibrium we must have q̂i = Rq
i (q̂j; x̂1, x̂2) and the first order

condition with respect to xi,

q̂i − vx̂i = 0

must hold. It is easy to see that the combination of these two conditions yields under

the assumption of positive costs and quantities the unique solution given in (4.5).

The second order conditions are 2 > 0 and v > 0, the condition for x̂∗NE > 0, q̂∗NE > 0

is v > 1
2+γ

and the condition for x̂∗NE ∈ (0, c) can be rewritten to v > a
(2+γ)c

. It is

easy to check that under these conditions no equilibrium with zero output of one

firm can exist. Q.E.D.
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Proof of Lemma 4.4:

We show the Lemma by induction. For n = 0 we have

q̂0(x1,t+1, x2,t+1, q1,t, q2,t, φ) = φ,

which corresponds to (4.6) for n = 0. Assume that (4.6) holds for some even n.

Then, we obtain for order n+ 1

q̂n+1(x1,t+1, x2,t+1, q1,t, q2,t, φ)

= q̂n
(
x1,t+1, x2,t+1, q1,t, q2,t, αqj + (1− α)Rq

j(φ;x1,t+1, x2,t+1)
)

=

(
αqj +

1

2
(1− α)(a− c+ xj,t+1)

) b(n−2)/2c∑
k=0

(
−γ(1− α)

2

)2k

+

(
αqi +

1

2
(1− α)(a− c+ xi,t+1)

) bn/2c∑
k=1

(
−γ(1− α)

2

)2k−1

+

(
−γ(1− α)

2

)n(
αqj + (1− α)

1

2
(a− c+ xi,t+1 − γφ)

)
=

(
αqj +

1

2
(1− α)(a− c+ xj,t+1)

) bn/2c∑
k=0

(
−γ(1− α)

2

)2k

+

(
αqi +

1

2
(1− α)(a− c+ xi,t+1)

) b(n+1)/2c∑
k=1

(
−γ(1− α)

2

)2k−1

+

(
−γ(1− α)

2

)n+1

φ.

Hence, (4.6) holds also for n + 1. The transition from an odd n to n + 1 can be

verified analogously, which completes the proof. Q.E.D.

Proof of Lemma 4.5:

For given xj,t+1 the maximization problem of firm i in stage 1 reads

maxxi,t+1∈[0,X̄]

[
Rq
i (q

2,ne
j,t+1;x1,t+1, x2,t+1)

(
a−Rq

i (q
2,ne
j,t+1(q1,t, q2,t, x1,t+1, x2,t+1);x1,t+1, x2t+ 1)

−γq2,ne
j,t+1 − (c− xi,t+1)

)
− v

2
x2
i,t+1

]
,

where it should be kept in mind that q2,ne
j,t+1 is a function of (q1,t, q2,t, x1,t+1, x2,t+1).

Taking into accout that Rq
i has to satisfy the first order condition on stage 2, and

assuming that c − xi,t+1 > 0, and Rq
i > 0, the first oder condition of this problem
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reads

Rq
i (q

2,ne
j,t+1;x1,t+1, x2t+ 1)

(
−γ

∂q2,ne
j,t+1

∂xi,t+1

+ 1

)
− vxi,t+1 = 0 (A.11)

Assuming that the second order condition holds, the first order condition character-

izes the optimal solution to this problem as long as the value of xi,t+1 satisfying the

FOC is positive. From Lemma 4.6 we obtain that

∂q2,ne
j,t+1

∂xi,t+1

=

bn/2c∑
k=1

(
−γ(1− α)

2

)2k−1

and inserting this as well as (4.1) into (A.11) and solving for xi,t+1 yields after some

tedious calculations the expression given in (4.7). Clearly, this expression is positive

for sufficiently large values of (a− c). The second order condition for a maximum is

given by

v >
1

2

1 +

bn/2c∑
k=1

(
−γ(1− α)

2

)2k
2

.

Taking into account that
(
−γ(1−α)

2

)
∈ [−0.5, 0.5] we get for the the right hand side

of this inequality

1

2

1 +

bn/2c∑
k=1

(
−γ(1− α)

2

)2k
2

=
1

2

1 +

(
−γ(1− α)

2

)2 1−
(
−γ(1−α)

2

)n
1−

(
−γ(1−α)

2

)2


2

<
1

2

(
1 +

(
1

2

)2 1 + 1
2

1−
(

1
2

)2

)2

=
9

8

. Since the objective function of firm i on stage 1 is quadratic in xi,t+1, the condition

v > 9
8

guarantees the concavity of the objective function on [0, X̄]. This completes

the proof. Q.E.D.

Proof of Proposition 4.6:

It follows directly from the arguments given in the proof of Proposition 3.3 that a

symmetric interior fixed point (x̂n, x̂n, q̂n, q̂n) of the adaptive expectation dynamics
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of order n has to satisfy

q̂n = Rq(q̂n; x̂n, x̂n) =
a− c+ x̂n − γq̂n

2
, (A.12)

which implies q̂n = a−c+x̂n

2+γ
. Due to the symmetry of the game we haveRx,n

1 (x, q̂n, q̂n, q̂n) =

Rx,n
2 (x, q̂n, q̂n, q̂n) and we denote this function as R̂x,n(x). Analogously we write

x̂1,ne(x) = x1,ne
i (x, x, q̂n, q̂n), i = 1, 2. Since R̂x,n is a contraction also the mapping

αx+ (1−α)R̂x,n(x) is a contraction for all positive α and, considering the recursion

(3.7) used to generate the expectations in stage 1 and the fact that R̂x,n is linear in

x, we obtain |∂x̂
1,ne(x)
∂x
| ≤ 1 for all x ∈ (0, X̄). Furthermore, due to the fixed point

property, we must have

x̂n = R̂x,n(x̂1,ne(x̂n)) (A.13)

Taking into account that |R̂′| < 1 it becomes clear that the function on the the right

hand side of this equation is also a contraction, which means that it has a unique

fixed point in [0, X̄]. Due to the contraction property of R̂x,n also the equation

x = R̂x,n(x) has a unique fixed point in [0, X̄]. It is easy to see that this fixed point

is also a fixed point of (A.13). Therefore, the two fixed points must coincide, which

means that (x̂n, x̂n, q̂n, q̂n) has to satisfy x̂n = R̂x,n(x̂n) and x̂1,ne(x̂n) = x̂n. Due to

the fact that marginal costs of CRAs at xi = 0 are zero the fixed point can never be

at x̂n = 0. This shows that there exists a unique symmetric interior fixed point and

that at this fixed point both firms have correct expectations at both stages.

Concerning items (i) to (iv) in the proposition, the items (i) and (iv) are direct

implications of Propositions 3.1 and 3.3 and need no special proof. In order to show

points (ii) and (iii) we introduce the following simpliying notation:

F =
−(1− α)γ

2
, S1(n) =

b(n−1)/2c∑
k=0

F 2k, S2(n) =

bn/2c∑
k=1

F 2k−1, S3(n) =
n∑
k=0

F k.

From

x̂n = Rx,n
i (x̂n, q̂n, q̂n, q̂n)

we obtain after insertion of q̂n = a−c+x̂n

2+γ
into (4.7) and collecting terms the equation

A(n)x̂n = B(n)(a− c)
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with

A(n) = 2v − 1− 2FS2(n)− F 2S2(n)2

+(1 + FS2(n))

(
αγ

2 + γ
(S3(n)− F n) +

γ

2 + γ
F n − FS1(n)

)
B(n) = (1 + FS2(n))

(
S3(n)− αγ

2 + γ
(S3(n)− F n)− γ

2 + γ
F n

)
.

It can be easily verified that A(n) and B(n) are both positive under our assumptions,

which confirms that the equation has a unique positive solution. To prove points (ii)

and (iii) of the Proposition we have to characterize the signs of A(n+ 1)−A(n) and

B(n + 1) − B(n). To this end we denote ∆Sj(n) = Sj(n + 1) − Sj(n), j = 1, . . . , 3

and obtain

∆S1(n) =

{
F n n even

0 n odd

∆S2(n) =

{
0 n even

F n n odd

∆S3(n) = F n+1

Considering first the case where n is even we have after collecting terms

A(n+ 1)− A(n) = (1 + FS2(n))F n

(
γ

2 + γ
(F − 1)− F +

αγ

2 + γ

)
= 0

B(n+ 1)−B(n) = (1 + FS2(n))F n

(
F − αγ

2 + γ
− γ

2 + γ
(F − 1)

)
= 0,

where
(
F − αγ

2+γ
− γ

2+γ
(F − 1)

)
= 0 can be verified by inserting F = −(1−α)γ

2
.
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Clearly, this implies that x̂n+1 = x̂n. If n is odd the corresponding terms read

A(n+ 1)− A(n) = (1 + FS2(n))F n

(
−2F +

αγ

2 + γ
+

γ

2 + γ
(F − 1)

)
︸ ︷︷ ︸

=−F

+F n+1

(
−F n+1 +

αγ

2 + γ
(S3(n)− F n) +

γ

2 + γ
F n − FS1(n)

)

= F n+1

−1− F (S1(n) + S2(n))︸ ︷︷ ︸
=S3(n)−Fn

+
αγ

2 + γ
S3(n) +

(1− α)γ

2 + γ
F n − F n+1



= F n+1︸ ︷︷ ︸
>0

−1 + S3(n)

(
αγ

2 + γ
− F

)
︸ ︷︷ ︸

<0

+
(1− α)γ

2 + γ
F n︸︷︷︸
<0


< 0

and

B(n+ 1)−B(n) = (1 + FS2(n))F n

(
F − αγ

2 + γ
− γ

2 + γ
(F − 1)

)
︸ ︷︷ ︸

=0

+F n+1

(
S3(n)− αγ

2 + γ
(S3(n)− F n)− γ

2 + γ
F n

)

= F n+1︸ ︷︷ ︸
>0

S3(n)

(
1− αγ

2 + γ

)
︸ ︷︷ ︸

>0

−(1− α)γ

2 + γ
F n︸ ︷︷ ︸

>0


> 0 .

This implies that x̂n+1 = B(n+1)
A(n+1)

> B(n)
A(n)

= x̂n and therefore also q̂n+1 > q̂n must

hold. Q.E.D.
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