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Chapter 1

Introduction

This thesis contributes to the area of network theory in economics. It especially

deals with the role of externalities, either positive or negative, in social and economic

networks. The implementation of the network approach in economics is a relatively

recent development that has strongly flourished over the last two decades. The

books by Goyal (2007), Jackson (2008) and Bramoullé et al. (2016) provide an

excellent overview of the theory of social and economic networks. Network theory is

an interdisciplinary field and links various research areas together, like economics,

sociology, computer science, physics and mathematics. Many of the basic ideas and

concepts go back to the early roots of graph theory in mathematics.

Social and economic networks play a prominent role in many areas of our daily life.

Consider for example a network of professional contacts. There is strong empirical

evidence that the better a person is positioned in such a network, the more valuable

information about open vacancies she will receive when she is looking for a job (see

e.g. Granovetter (1974) and Cingano and Rosolia (2012)). Further applications are

e.g. opinion formation and influence in social networks, buyer-seller networks or

R&D networks in which companies form joint collaborations to reduce costs, benefit

by knowledge spillovers and foster innovation. All these applications have also been

studied from a theoretical perspective: See e.g. Calvó-Armengol (2004) and Cahuc

and Fontaine (2009) for job networks; Grabisch and Rusinowska (2010) and Grabisch

et al. (2017) for opinion formation and influence in social networks; Kranton and

Minehart (2001) and Wang and Watts (2006) for buyer-seller networks; and Goyal

and Moraga-González (2001) and Dawid and Hellmann (2014) for R&D networks.

1



Chapter 1. Introduction 2

A network is given by a set of nodes and a set of links which connect the nodes.

The network explicitly indicates the relationships and distances (by the length of

the paths) between the nodes. When new links are formed or existing ones are

deleted, the situation may (substantially) change, not only for the nodes directly

involved, but also for the other nodes in the network. These effects are called exter-

nalities. Consequently, some nodes may then favor to form/delete (different) links

than before and the network structure could significantly change over time. Typical

questions which arise and which are usually discussed in the relevant literature are

the following: Are there positive and/or negative externalities and if so, how severe

are they for whom under which conditions? Which networks are (pairwise) stable

and which are (strongly) efficient? Which structures are equilibria that are likely to

be observed in the long run?

For this thesis, the groundbreaking paper by Jackson and Wolinsky (1996) plays a

central role. We consequently build up on it and we frequently relate our results to

their outcomes. Jackson and Wolinsky (1996) introduce two fundamental models,

the connections model and the co-author model and provide conclusions regarding

the pairwise stability and strong efficiency of specific architectures in these settings.

In the connections model, nodes establish links to each other and receive a certain

benefit for it. Establishing/Maintaining a link is associated with a cost and de-

pending on the cost-benefit comparison, adding, maintaining or deleting a specific

link might be individually rational. Benefits spill over to a node from all nodes

it is directly and indirectly connected to. The spillovers from indirect connections

are discounted and dependent on distance. If two nodes form a new link, this may

only reduce the distance between other nodes. Hence, the connections model is a

framework with purely positive externalities by link formation.

In contrast, the co-author model is a framework with purely negative externalities

by link formation. In the co-author model, the nodes are interpreted as researchers

who put effort in (joint) research projects. On the one hand, to be involved in a

further co-authored project provides an additional option to pubish, but on the other

hand, being increasingly connected also comes with a downside. The more projects

a researcher is involved in, the less time he spends on every single project, since his

time budget is fixed. Hence, if a researcher decides to join an additional project,

link formation always induces negative externalities on his existing co-authors.

Jackson and Wolinsky (1996) als introduce the notion of pairwise stability. A net-
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Chapter 1. Introduction 3

work is said to be pairwise stable, if no single node wants to delete an existing link

and no two nodes mutually would like to establish a link between each other. This

stability concept has been widely applied in the literature afterwards (see e.g. in

Johnson and Gilles (2000) and Goyal and Joshi (2003)). It has been critized, how-

ever, due to the restriction that only one link can be altered at the same time.

Therefore, different (stronger) stability concepts were suggested, like the notion of

strong stability where a network is stable against changes in links by any coalition

of individuals (see e.g. Dutta and Mutuswami (1997) and Jackson and van den

Nouweland (2005)).

Besides that, there exist many further refinements of stability. Buechel and Hell-

mann (2012) provide a comprehensive overview of the most common notions and

elaborate important results regarding the connectedness of networks and the role of

externalities in strategic network formation. First, the authors show that if a pro-

file of utility functions satisfies positive externalities, then no pairwise Nash stable

network is over-connected with respect to any monotonic welfare function. Second,

Buechel and Hellmann (2012) prove that if a profile of utility functions satisfies

negative externalities and concavity, then no network which is pairwise stable with

transfers, is under-connected with respect to the utilitarian welfare function. Addi-

tional contributions on the role of externalities in social and economic networks have

been provided, e.g. by Goyal and Joshi (2006), Bloch and Jackson (2007), Morrill

(2011) and Hellmann (2013).

While many models in the aforementioned literature consider either positive or neg-

ative externalities, in this thesis we will focus in large parts on modifications that

contain both types of externalities – positive and negative – at the same time. Then,

given a network structure and the perspective of a specific node, the critical ques-

tion usually is, which effect overweighs. It is important to understand better the

implications of having both types of externalities simultaneously because models

with purely positive or negative externalities appear to be somehow restrictive. As

a concrete example, displaying either externailities, consider a stylized academic

job market in which information about job opportunities and candidates is shared

within a network of scientists (the nodes). In such a network, some scientists offer

vacancies which they cannot fill internally, while others need to place team members,

e.g. their job market candidates or untenured faculty. Establishing and maintaining

a connection to a colleague (i.e., a link) is costly, but increases the probability of

Philipp Möhlmeier Externalities in Social and Economic Networks



Chapter 1. Introduction 4

receiving valuable information. Information received from a neighboring node is

passed on to all neighbors, with its value depreciating. For a given node, an addi-

tional link induces a positive externality (if it reduces the distance to other nodes)

and/or a negative externality (if it better connects remote nodes, i.e., if it gives

theses scientists a relative advantage). The analysis of such a situation would be

strongly simplified by considering only one specific type of externality, but like in

many other real-world applications it does not to appear very coherent. Depending

on the structure of the network, the perspective of a specific node and the nodes

involved in the link formation process, either positive or negative externalities may

overweigh.

Throughout this thesis, we are going to introduce various (specific and generalized)

models that capture both types of externalities. Our main goals are to describe the

structural implications induced hereby and to understand better the role of exter-

nalities in social and economics networks. We will derive results about (asymptotic)

pairwise stability and strong efficiency, draw conclusions depending on the under-

lying framework and relate our results to the existing literature on externalities.

Following this introductory chapter, this thesis contains four additional chapters:

Chapters 2 to 5 are all self coherent research papers using their own notation. Chap-

ters 2 and 3 are joint work with Agnieszka Rusinowska and Emily Tanimura, chapter

4 is work on my own and chapter 5 is joint work with Claus-Jochen Haake and Sonja

Recker. Chapter 2 is already published in the Journal of Public Economic Theory

(JPET) and chapter 3 is forthcoming in Mathematical Social Sciences (MSS). In

the following let me highlight more details regarding the specific contents of the

chapters 2 to 5.

In chapter 2 we develop a modification of the connections model by Jackson and

Wolinsky (1996) that takes into account negative externalities arising from the con-

nectivity of direct and indirect neighbors, thus combining aspects of the connections

model and the co-author model. We consider a general functional form for agents’

utility that incorporates both the effects of distance and of neighbors’ degree. Con-

sider a situation in which people are involved in projects. They generate some kind

of knowledge by themselves and receive some from others. If an agent is involved

in many projects, he will have less time to generate output by himself. However,

the more connections he has, the more knowledge he will receive from neighbors,

neighbors of neighbors and so on. Consequently, we introduce a framework that

Philipp Möhlmeier Externalities in Social and Economic Networks



Chapter 1. Introduction 5

can be seen as a degree-distance-based connections model with both negative and

positive externalities. Our analysis shows how the introduction of negative external-

ities changes certain results on stability and efficiency in comparison to the original

connections model. In particular, we see the emergence of new stable structures,

such as a star with links between peripheral nodes. Our analysis focuses mainly

on structures with short diameters, but also considers cases with extreme levels of

decay. We also identify structures, for example, certain disconnected networks that

are efficient in our model, but which cannot be efficient in the original connections

model. While our results are proved for the general utility function, some of them

are illustrated by using a specific functional form of the degree-distance-based utility.

In chapter 3 we deal with network formation frameworks, where payoffs reflect an

agent’s ability to access information from direct and indirect contacts. We integrate

negative externalities due to connectivity associated with two types of effects: com-

petition for the access to information, and rivalrous use of information. We consider

two separate models to capture the first and the second situation, respectively. In

the first model we assume that information is a non-rivalrous good, but that there is

competition for the access to information, for example because an agent with many

contacts must share his time between them and thus has fewer opportunities to pass

on information to each particular contact. In the second model we do not assume

that there is competition for the access to information, but rather that the use of

information is rivalrous. In this case, it is assumed that when people are closer

to the sender than an agent, the harmful effect is greater than when others are at

the same distance to the sender as that agent. In both models we analyze pairwise

stability and examine if the stability of a structure is preserved when the number

of agents becomes very large. This leads to a new concept that we call asymptotic

pairwise stability. We show that there exists a tension between asymptotic pairwise

stability and efficiency. The results allow us to compare and contrast the effects of

two kinds of competition for information.

While in chapter 2 the connections model by Jackson and Wolinsky (1996) is modi-

fied to a degree-distance-based variation, in chapter 4 we present another modifica-

tion of the connections model that is closely related and takes account of negative

externalities by overall connectivity. The idea for this approach goes back to Jackson

and Wolinsky (1996) who mention in their seminal paper that “... one might have

a decreasing value for each connection (direct or indirect) as the total amount of

Philipp Möhlmeier Externalities in Social and Economic Networks



Chapter 1. Introduction 6

connectedness increases.” (p. 53.). Taking this as a starting point, we add a weight-

ing factor depending on overall connectivity to the functional form of the original

connections model. This weighting factor is independent of own links, but benefits

received from direct and indirect connections are reduced by increasing overall con-

nectivity of the other nodes in the network. In this context, we solve for pairwise

stable and asymptotically pairwise stable networks and analyze strongly efficient

networks. We compare the results and indicate the similarities and differences of

the connections model with purely positive link externalities and the adjusted ver-

sion with negative externalities by overall connectivity. What appears to be striking

in the overall connectivity model is the role of the star network. It turns out to

be pairwise stable, asymptotically pairwise stable and to be a very well perform-

ing structure in terms of strong efficiency. The reason for this is that it combines

short distances between all nodes with a minimal number of links. Hence, all nodes

receive many spillovers with low decay and relatively low punishment by overall

connectivity.

Chapter 5 is more applied and we investigate a duopoly with horizontal product

differentiation, in which firms strategically form costly links to customers. Such a

link to a customer may be interpreted as the firm granting access to trade its product.

Altering the network of links changes the structure of competition. This results in

externalities and influences the equilibrium quantities and profits. We investigate

in how far the degree of substitutability of the firms’ products and the costs of link

formation influence equilibrium profits and thus the incentives to form or delete

links. We illustrate which networks are locally and Nash stable for which regions

of costs/substitutability combinations. For networks with an arbitrary number of

customers we analyze local stability regions for selected networks and determine

their limits as the number of customers becomes large. We also relate local and

Nash stability for selected networks with n customers. For networks with three

customers we entirely characterize locally stable networks. In particular, existence

is guaranteed for any degree of substitutability and any cost value.

Philipp Möhlmeier Externalities in Social and Economic Networks



Chapter 2

A degree-distance-based

connections model with negative

and positive externalities

This chapter is based on a joint work with Agnieszka Rusinowska and

Emily Tanimura, both from Université Paris I Panthéon-Sorbonne, Cen-

tre d’Economie de la Sorbonne. It is published in the Journal of Public

Economic Theory (JPET), volume 18, pages 168–192, 2016.

2.1 Introduction

The connections model, introduced in the seminal paper of Jackson and Wolinsky

(1996) is a setting in which only direct contacts are costly but discounted benefits

spill over from indirect neighbors. A natural interpretation is that benefits result

from the access to a resource conveyed by the network, such as information or

knowledge provided by indirect contacts.

An appealing feature of networks is that they capture the externalities that ‘occur

when the utility of or payoff to an individual is affected by the actions of others,

although those actions do not directly involve the individual in question’ (Jackson,

2008, p. 162). In the connections model, network externalities are positive. An

additional link formed by some pair of individuals (weakly) benefits all other agents

7
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externalities 8

by providing access to new indirect contacts or by reducing the distance that infor-

mation has to travel. Such positive aspects of increased connectivity are certainly

important. However, in many situations increased connectivity can also have nega-

tive side effects. Studying such cases is what motivates the analysis in this paper:

we consider a model in which agents benefit from indirect contacts as in the origi-

nal connections model but in which the connectivity of an agent may also exert a

negative externality on his direct and indirect neighbors.

Contexts where this is the case abound. For example, learning of a job opening

may be less useful if the information has been communicated to many others. When

there is competition for some resource transmitted by the network, the benefits

from indirect contacts are reduced when the latter have many connections. In our

model, the utility an agent derives from an indirect contact, viewed as the initial

sender of an information, is reduced when the latter has a high degree and thus

sends the information to many others. However this might not fully account for the

negative impact of all other individuals in the communication chain who receive the

information. Hence, our model should be viewed only as a simplified or approximate

description of the negative effects of connectivity when there is competition for

information.

Another negative effect of high connectivity that our model perfectly captures arises

because the busyness of agents reduces their availability or productivity. The con-

nections model of Jackson and Wolinsky (1996) could also be interpreted as follows:

nodes generate output by themselves but also forward output from others. Now in-

terpret this as a situation in which individuals are involved in projects and generate

knowledge by themselves but also receive knowledge from others. Then, a person

involved in many projects will have less time to generate output. On the other hand,

the more well connected he is, the more knowledge he will receive and forward to his

neighborhood. Stated in a provocative way, “well connected people are often great

talkers, but networking is time consuming and reduces one’s productive time so

that the main work is done by others”. Nevertheless, the role of such well connected

agents is very important: not that they contribute a lot by their own knowledge

production, but they provide access to the output of many others.

By integrating the negative effect of the busyness of agents, at first sight, our model

looks similar to the well-known co-author model (also introduced in Jackson and

Wolinsky (1996)) where the time devoted to a single project decreases with the
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total number of projects a co-author is involved in. In our version, the nature of the

negative externality is similar but information spills over from indirect connections.

The co-author model only considers direct collaborations and thus conveys negative

effects solely through the busyness of direct co-authors. Hence, our model combines

aspects of the connections model and the co-author model. Externalities resulting

from additional links can be both positive and negative. New links are useful for

reaching indirect partners, but the latter will be more busy, less productive and thus

less valuable per se although more efficient as intermediaries. Exploring the tradeoff

of these effects and their impact on the stable and efficient network architectures

that can arise is the object of our analysis.

A host of papers modify the original connections model in different directions, but

most are not directly related to the issues we explore. Generalizing Jackson and

Wolinsky (1996), Bloch and Jackson (2007) show that the results of the latter still

hold when decay takes a more general functional form. Besides the aforementioned

co-author model, the study of negative externalities that is most closely related to

ours is the model of Morrill (2011) in which the benefits of a link is a decreasing

function of the partner’s degree. In fact, our setting generalizes Morrill (2011),

where there are no benefits from indirect contacts and externalities are purely nega-

tive. Goyal and Joshi (2006) consider a framework where connectivity can generate

positive or negative externalities, depending on whether the other agent is a direct,

indirect or non-neighbor. They investigate two specific models. The first one cap-

tures negative externalities due to overall connectivity and thus addresses situations

somewhat different from the ones that motivate our work. In their second model, the

marginal benefit of forming a link to some agent is affected both by his and by one’s

own degree. The authors characterize stable structures, both in cases where the

marginal benefits of a link increase with the potential partner’s degree and in cases

where they decrease as a function of it. Billand et al. (2012) prove the existence of a

pairwise stable network in a local spillover game, when the marginal benefit of link-

ing to an agent is decreasing with the degree of the latter and increasing in the own

degree. The two aforementioned studies focus on the interplay between an agent’s

own degree and the degree of his neighbors when spillovers are local, whereas our

analysis explores the tradeoff between degree-based negative externalities, reflecting

busyness, and the possibility of receiving positive spillovers from distant partners.

We consider a network formation game whose payoffs have a functional form similar
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to that of the generalized connections model by Bloch and Jackson (2007) – the

distance-based utility model, so as to facilitate comparison with the latter, but

involve a penalty resulting from the degree of direct and indirect contacts. In this

degree-distance-based connections model, we assume a two-variable (instead of one-

variable) benefit function which depends on distances to and degrees of (direct and

indirect) neighbors.

As in the original connections model, there is multiplicity of pairwise stable struc-

tures. We do not give a complete characterization but focus on some cases where

outcomes can be compared and contrasted with those of the original connections

model. In particular, we analyze stable structures with short diameters. The Jack-

son and Wolinsky model exhibits two such pairwise stable structures, the star and

the complete network with a swift transition from one to the other. In our model,

these structures can also be stable, but more interestingly we find new pairwise sta-

ble structures with short diameters which could not arise in the original connections

model.

The nature of these new structures raises the following question: when direct and

indirect contacts are evaluated based on two criteria, their capacity to be intermedi-

aries and to what extent they are available (i.e., not too busy), how should these two

roles be distributed? Will we see specialization so that some highly connected agents

are valuable only as efficient intermediaries whereas other contacts are counted on

for availability, or will we see a more equal distribution of roles where all agents are

moderately busy and play a moderate role as intermediaries?

Indeed, we identify two types of architectures both of which ensure short commu-

nication paths between all agents but which are organized quite differently. One

resembles a star but all peripheral agents also have a “local” neighborhood of direct

contacts. In this case, the agents in the network occupy different roles. The center

is specialized in the role of intermediary but is too busy to be of much value per se.

The agents in the local neighborhood are not useful as intermediaries, but, being

less busy, they are valuable in their own right. In the second structure, all agents

have similar degrees and contribute equally to providing indirect contacts.

We derive stability conditions for the stable architectures in the original connections

model (star/complete/empty) and for the aforementioned new structures. For a

given payoff function, these conditions tell us whether one of these structures is

stable. However, they provide little intuition for what determines the stability.
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We pursue our analysis under the additional fairly natural assumption that decay

is independent of degree. The concavity of the benefit function with respect to

degree is then sufficient to ensure the existence of a range of link costs for which at

least one of the new structures with short diameter is stable. More generally, the

concavity/convexity of the benefit function with respect to degree is seen to play

an important role in determining which structures with short diameters are stable.

We also analyze stability and efficiency for extreme levels of decay. For high decay,

our stable structures coincide with those in Morrill (2011) which is natural since

our model approximates his when decay is large. For small levels of decay, stable

structures will be minimally connected with some constraints on degrees.

As shown in Jackson and Wolinsky (1996) strongly efficient networks may not be

stable, and conversely networks need not be efficient even when they are uniquely

stable. Buechel and Hellmann (2012) show that inefficient outcomes can be related

to the nature of the externalities. They introduce the notion of over-connected

(under-connected) networks – those which can be socially improved by the deletion

(addition) of links. The authors prove that for positive externalities no stable net-

work can be over-connected. Negative externalities tend to induce over-connected

networks, and under some additional conditions, no stable network can be under-

connected. In our model, the new structures with short diameters, while stable,

would typically not be efficient when the network is large. The same is true for the

complete graph. We show this without actually characterizing the efficient network.

Finally, we show that under certain conditions the star will be uniquely efficient. The

conditions required in our proof are quite restrictive but compatible with the stabil-

ity of the star structures with peripheral links. Thus, our model can indeed generate

over-connectedness as defined by Buechel and Hellmann (2012), which could never

occur in the original connections model.

The rest of the paper is structured as follows. In Section 2.2 we recapitulate some

preliminaries on networks, the Jackson and Wolinsky connections model and existing

extensions. In Section 2.3 we present our model. Pairwise stability and efficiency are

studied in Sections 2.4 and 2.5, respectively. We begin by providing some illustrating

examples in networks of small size and then turn to the general analysis of stability

and efficiency. In Section 2.6 we mention some possible extensions. Some proofs are

presented in the Appendix.
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2.2 The connections model and its modifications

In this section we first present the preliminaries on networks (see, e.g., Jackson

and Wolinsky (1996); Jackson (2008)) and then briefly recapitulate some models

related to our work: the connections model and the co-author model of Jackson and

Wolinsky (1996), the distance-based model by Bloch and Jackson (2007), and the

model with degree-based utility functions by Morrill (2011).

Let N = {1, 2, . . . , n} denote the set of players (agents). A network g is a set of

pairs {i, j} denoted for convenience by ij, with i, j ∈ N , i ̸= j,1 where ij indicates

the presence of a pairwise relationship and is referred to as a link between players i

and j. Nodes i and j are directly connected if and only if ij ∈ g.

A degree ηi(g) of agent i counts the number of links i has in g, i.e.,

ηi(g) = |{j ∈ N | ij ∈ g}|

We can identify two particular network relationships among players in N : the empty

network g∅ without any link between players, and the complete network gN which

is the set of all subsets of N of size 2. The set of all possible networks g on N is

G := {g | g ⊆ gN}.

By g + ij (g − ij, respectively) we denote the network obtained by adding link ij to

g (deleting link ij from g, respectively). Furthermore, by g−i we denote the network

obtained by deleting player i and all his links from the network g.

Let N(g) (n(g), respectively) denote the set (the number, respectively) of players in

N with at least one link, i.e., N(g) = {i | ∃j s.t. ij ∈ g} and n(g) = |N(g)|.

A path in g connecting i1 and iK is a set of distinct nodes {i1, i2 . . . , iK} ⊆ N(g)

such that {i1i2, i2i3, . . . , iK−1iK} ⊆ g.

A network g is connected if there is a path between any two nodes in g.

The network g′ ⊆ g is a component of g if for all i ∈ N(g′) and j ∈ N(g′), i ̸= j,

there exists a path in g′ connecting i and j, and for any i ∈ N(g′) and j ∈ N(g),

ij ∈ g implies that ij ∈ g′.

A star g∗ is a connected network in which there exists some node i (referred to as

1Loop ii is not a possibility in this setting.
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the center of the star) such that every link in the network involves node i.

The value of a graph is represented by v : G → R. By V we denote the set of

all such functions. In what follows we will assume that the value of a graph is an

aggregate of individual utilities, i.e., v(g) =
∑

i∈N ui(g), where ui : G → R.

A network g ⊆ gN is strongly efficient (SE) if v(g) ≥ v(g′) for all g′ ⊆ gN .

A network g ∈ G is pairwise stable (PS) if:

(i) ∀ ij ∈ g, ui(g) ≥ ui(g − ij) and uj(g) ≥ uj(g − ij) and

(ii) ∀ ij /∈ g, if ui(g) < ui(g + ij) then uj(g) > uj(g + ij).

In the symmetric connections model by Jackson and Wolinsky (1996), the utility of

each player i from network g is defined as

uJW
i (g) =

∑

j ̸=i

δlij(g) − cηi(g) (2.1)

where 0 < δ < 1 denotes the undiscounted valuation of a connection, lij(g) denotes

the distance between i and j in terms of the number of links in the shortest path

between them in g (with lij(g) = ∞, if there is no path connecting i and j in g) and

c > 0 determines the costs for a direct connection.

Jackson and Wolinsky (1996) (Proposition 1) show that the complete, the empty

or the star graph can be uniquely strongly efficient (depending on c and δ). More

precisely, they prove that the unique SE network in the symmetric connections model

is:

(i) the complete network gN if c < δ − δ2

(ii) a star g∗ if δ − δ2 < c < δ + (n−2)δ2

2

(iii) no links if δ + (n−2)δ2

2 < c.

They also examine pairwise stability in the symmetric connection model. By virtue

of Jackson and Wolinsky (1996) (Proposition 2), in the symmetric connections

model:

(i) A pairwise stable graph has at most one (non-empty) component.

(ii) For c < δ − δ2, the unique PS network is the complete graph gN .
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(iii) For δ−δ2 < c < δ, a star g∗ encompassing all players is PS, but not necessarily

the unique PS graph.

(iv) For δ < c, any PS network which is non-empty is such that every player has

at least two links (and thus is inefficient).

Jackson and Wolinsky (1996) also present the co-author model, in which nodes are

interpreted as researchers and a link represents a collaboration between two re-

searchers. The utility function of each player i in network g is given by

uco
i (g) =

∑

j:ij∈g

wi(ni, j, nj) − c(ni) (2.2)

where wi(ni, j, nj) is the utility of i derived from a link with j when i and j are

involved in ni and nj projects, respectively, and c(ni) is the cost to i of maintaining

ni links.

Bloch and Jackson (2007) introduce an extension of the original connections model

– the distance-based model, where the utility of agent i is given by

udist
i (g) =

∑

j ̸=i

f(lij(g)) − cηi(g) (2.3)

with f nonincreasing in lij(g); see also Jackson (2008) for the presentation of this

distance-based model.

Morrill (2011) models situations in which any new relationship causes negative ex-

ternalities. The payoff of each player from a link is a decreasing function of the

number of links maintained by his partner. A utility function is degree-based if

there exists a decreasing function φ such that

udeg
i (g) =

∑

j:ij∈g

φ(ηj(g)) − cηi(g) (2.4)

2.3 A degree-distance-based connections model

In Jackson and Wolinsky (1996), an additional link induces only positive external-

ities. We suggest a modification that also generates negative externalities due to

increasing connectivity. Every agent benefits from his direct and indirect connec-

tions, but it is additionally assumed that the higher the degree of a direct or indirect
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partner, the less valuable is this connection. In order to remain close to the connec-

tions model we follow existing generalizations of Jackson and Wolinsky (1996), by

considering the utility of agent i given by

ũi(g) =
∑

j ̸=i

b(lij(g), ηj(g)) − cηi(g) (2.5)

where b : {1, . . . , n − 1}2 → R+ is the net benefit that an agent receives from the

direct and indirect connections, and c > 0 is the cost for a direct connection. It is

assumed that for all lij(g), b(lij(g), k) is nonincreasing in degree k, and for all ηj(g),

b(l, ηj(g)) is nonincreasing in distance l. Moreover, if there is no path connecting i

and j in g, i.e., if lij(g) = ∞, then we set b(∞, ηj) = 0 for every ηj ∈ {0, 1, . . . , n−1}.

In particular, ũi(g∅) = 0 for every i ∈ N .

In the original connections model the benefit term is expressed using a single pa-

rameter δ. If we expressed the benefit function in our model using parameters that

regulate decay with distance and utility loss due to degree, we could write

b(l + 1, ηj(g)) = δl,ηj(g)b(l, ηj(g)), b(l, ηj(g) + 1) = cl,ηj(g)b(l, ηj(g))

where δl,ηj(g) ∈ (0, 1) expresses the decay between distance l and (l + 1) for a fixed

degree ηj(g), and cl,ηj(g) ∈ (0, 1) expresses the utility loss due to an additional link

increasing the degree from ηj(g) to (ηj(g)+1) for a fixed distance l. This gives much

versatility, in particular, decay does not need to be constant with distance.

Since we aim to analyze negative externalities resulting from the connectivity of di-

rect and indirect neighbors, we will assume that the benefit function b is decreasing

in degree (and in distance), except when mentioning explicitly the original connec-

tions model as a particular case of the degree-distance-based model.

Our framework also generalizes the degree-based model by Morrill (2011). We have

φ(ηj(g)) = b(1, ηj(g)), for all ηj(g) ∈ {1, . . . , n − 1} (2.6)

The generalized model defined by (2.5) also extends the distance-based model con-

sidered in Bloch and Jackson (2007) and recapitulated in (2.3). In other words, we

consider a two-variable (instead of one-variable) benefit function.

In some examples, we will use a specific form of the degree-distance-based utility,
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which is very close to the original connections model, except that it incorporates

an additional information about the degree of direct and indirect neighbors. More

precisely, to illustrate some of our results, the following utility of agent i will be

used:

ui(g) =
∑

j ̸=i

1

1 + ηj(g)
δlij(g) − cηi(g) (2.7)

that is, we will set b(lij(g), ηj(g)) = 1
1+ηj(g)δ

lij(g).

An idea somewhat similar to the one expressed by our model is presented in Haller

(2012) who studies a non-cooperative model of network formation. He considers

two examples with negative network externalities in which the values of information

are endogenously determined and depend on the network. This is in line with the

idea that it is harder to access the information from an agent who has more direct

neighbors.

2.4 Pairwise stability in the model

2.4.1 Stability of the star, the complete and the empty

graph

Next, we examine pairwise stability (PS) in the model. In order to compare results

in our model with those of Jackson and Wolinsky (1996), we start by analyzing the

stability of the architectures which were prominent there: the empty network, the

star and the complete graph. Furthermore, we check if a non-empty PS network

must be connected. In the connections model of Jackson and Wolinsky (1996), any

pairwise stable graph has at most one (non-empty) component. We will show that

it is not necessarily the case in our model. After establishing the stability conditions

for g∅, g∗ and gN , we will look for other PS structures. We will begin by considering

networks in which all agents are at distance at most 2 from each other. In such a

network, the benefit of adding a link to an agent of degree k − 1 is

f̃(k) := b(1, k) − b(2, k − 1) for k ∈ {2, . . . , n − 1}, and f̃(1) := b(1, 1) (2.8)

Note that in the original connections model f̃(k) = δ − δ2 for each k. We have the

following results on pairwise stability of the three prominent architectures.
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Proposition 2.1. In the degree-distance-based connections model defined by (2.5):

(i) The empty network g∅ is PS if and only if f̃(1) ≤ c.

(ii) The star g∗ with n ≥ 3 encompassing all players is PS if and only if

f̃(2) ≤ c ≤ min
(
f̃(1), b(1, n − 1) + (n − 2)b(2, 1)

)
(2.9)

This cost range is non-empty whenever f̃(2) ≤ b(1, n − 1) + (n − 2)b(2, 1).

(iii) The complete network gN with n ≥ 3 is PS if and only if

c ≤ f̃(n − 1) (2.10)

(iv) The unique PS network is the complete network gN if

c < min
1≤ηk≤n−2

f̃(ηk + 1) (2.11)

(v) g∗ and gN are simultaneously PS if and only if f̃(2) ≤ c ≤ f̃(n − 1). This cost

range is non-empty whenever f̃(2) ≤ f̃(n − 1). In particular, if f̃(n − 1) <

c < f̃(2), then neither the complete graph nor the star is PS.

(vi) A PS network may have more than one (non-empty) component.

Proof: (i) Consider any two agents i, j ∈ g∅. ũi(g∅ + ij) − ũi(g∅) = ũj(g∅ + ij) −
ũj(g∅) = b(1, 1) − c = f̃(1) − c. Hence, if f̃(1) > c, then both players profit from

establishing the link, and therefore g∅ is not PS. If f̃(1) ≤ c, then ũi(g∅+ij)−ũi(g∅) ≤
0 and ũj(g∅ + ij) − ũj(g∅) ≤ 0 which means that g∅ is PS.

(ii) Consider the star g∗ with n ≥ 3 agents. Take the center of the star i and two

arbitrary agents j, k, where j ̸= i, k ̸= i, and j ̸= k. This means that ij ∈ g∗ but

jk /∈ g∗. For stability the following conditions must hold:

(A) ũi(g∗) − ũi(g∗ \ ij) ≥ 0 and (B) ũj(g∗) − ũj(g∗ \ ij) ≥ 0 and (C) ũj(g∗ + jk) −
ũj(g∗) ≤ 0.

(A): ũi(g∗) − ũi(g∗ \ ij) = b(1, 1) − c = f̃(1) − c. Hence, (A) holds iff f̃(1) ≥ c.

(B): ũj(g∗) − ũj(g∗ \ ij) = b(1, n − 1) + (n − 2)b(2, 1) − c. Hence, (B) holds iff

b(1, n − 1) + (n − 2)b(2, 1) ≥ c.
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(C): ũj(g∗ + jk) − ũj(g∗) = b(1, 2) − b(2, 1) − c = f̃(2) − c. Hence, (C) holds iff

f̃(2) ≤ c.

Hence, we get f̃(2) ≤ c ≤ min
(
f̃(1), b(1, n − 1) + (n − 2)b(2, 1)

)
.

(iii) Let n ≥ 3. Consider any two agents i, j ∈ gN . We have ũi(gN) − ũi(gN − ij) =

ũj(gN) − ũj(gN − ij) = b(1, n − 1) − b(2, n − 2) − c = f̃(n − 1) − c.

(iv) Consider two arbitrary agents i and j, j ̸= i such that ij /∈ g, ηi > 0 and ηj > 0.

Then we have ũi(g + ij) − ũi(g) ≥ b(1, ηj + 1) − b(2, ηj) − c = f̃(ηj + 1) − c and

ũj(g + ij)− ũj(g) ≥ f̃(ηi +1)−c. If ηiηj = 0, then ũi(g + ij)− ũi(g) ≥ b(1, ηj +1)−c

and ũj(g + ij) − ũj(g) ≥ b(1, ηi + 1) − c. Hence, if c < min1≤ηk≤n−2 f̃(ηk + 1), then

any two agents who are not directly connected benefit from forming a link.

(v) We have f̃(n−1) = b(1, n−1)−b(2, n−2) < b(1, n−1)+(n−2)b(2, 1). Moreover,

from the nonincreasingness of b in degree, f̃(n − 1) < b(1, 1) = f̃(1). Hence, from

(2.9) and (2.10), g∗ and gN are simultaneously PS if and only if f̃(2) ≤ c ≤ f̃(n−1).

(vi) The general existence of pairwise stable disconnected structures is given in

Proposition 2.8. In small networks we can also find other types of architectures.

Consider for example g given in Figure 2.1 and the utility function given by (2.7).
g

1

3

2 4

5

Figure 2.1: A PS network with two components in the degree-distance-based con-
nections model

Network g is PS if 1
4δ + 2

3δ2 < c ≤ 1
3δ − 1

2δ2, e.g., for δ = 1
15 and c = 107

5400 . Since we

have two groups of symmetric agents (1, 2, 3 and 4, 5), we only need to calculate the

following:

u2(g) − u2(g \ 23) = 2
3δ − 2c −

(
1
3δ + 1

2δ2 − c
)

= 1
3δ − 1

2δ2 − c ≥ 0

u4(g) − u4(g \ 45) = 1
2δ − c ≥ 0

u2(g + 24) − u2(g) = 1
3δ + 1

2δ2 − c and u4(g + 24) − u4(g) = 1
4δ + 2

3δ2 − c

Note that if 1
3δ − 1

2δ2 − c ≥ 0, then 1
2δ − c > 0 and 1

3δ + 1
2δ2 − c > 0. Hence, g will

be PS if 1
3δ − 1

2δ2 ≥ c and 1
4δ + 2

3δ2 < c. !

Note that Proposition 2.1 confirms, in particular, the results on pairwise stability

of gN , g∗ and g∅ in the Jackson and Wolinsky model. Assume now that the benefit
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function b is strictly decreasing in degree – for simplicity, take the degree-distance-

based model given by (2.7). Naturally, since δ − δ2 > δ
n − δ2

n−1 for any n ≥ 2, if gN is

PS in our model, then it is also PS in the Jackson and Wolinsky framework under

the same parameters. Moreover, if g∅ is PS in the original connections model, then

it is also PS in our framework. Roughly speaking, the costs under which the star

g∗ is PS in our model are rather lower than the costs under which g∗ is PS in the

Jackson and Wolinsky model for the same δ and n. For δ < 1
2 , g∗ cannot be PS in

both frameworks at the same time, but for δ ≥ 1
2 such an overlap of costs under

which the star is PS is non-empty2.

Proposition 2.1(v) shows the existence of a region where the star and the complete

graph are simultaneously PS. This could never occur in the original connections

model where the regions of stability for these two structures were disjoint. However,

we should note that, for instance, for the degree-distance-based utility given by (2.7),

limn→∞ f̃(n − 1) = 0 so that the possible cost range for which the complete network

and the star are simultaneously PS is very small in large networks.

Figure 2.2 (left) illustrates the pairwise stability regions for the three simple archi-

tectures for the model given by (2.7) with n = 9, δ ∈ (0, 1) and c ∈ (0, 0.5]3. In this

figure, the green area indicates the stability region of g∅, the red area the one for

gN and the yellow area the one for g∗. The overlapping (quite small) orange area

indicates the parameter region in which gN and g∗ are simultaneously PS, and the

white area in which none of the three simple structures are PS.

2.4.2 Other stable structures in the degree-distance-based

model: examples and illustration

Next, we will be interested in PS architectures of the degree-distance-based connec-

tions model, other than those analyzed in the previous section. An example of a

PS structure that can occur in the white area in Figure 2.2 (left) is the windmill

2In the Jackson and Wolinsky model, g∗ is PS if δ − δ2 < c < δ. In our model (2.7), g∗ is PS

if δ
3 − δ2

2 ≤ c ≤ min
(

δ
2 , δ

n
+ (n−2)δ2

2

)
. As δ

3 − δ2

2 < δ − δ2, the costs range under which g∗ is PS

in both frameworks is δ − δ2 ≤ c ≤ min
(

δ
2 , δ

n
+ (n−2)δ2

2

)
. Note that δ − δ2 ≤ δ

2 if and only if

δ ≥ 1
2 , and therefore g∗ cannot be PS if δ < 1

2 . For δ ≥ 1
2 , the overlap of costs is non-empty, as

δ − δ2 ≤ min
(

δ
2 , δ

n + (n−2)δ2

2

)
.

3The calculations have been done in Mathematica. The details can be provided upon request.

Philipp Möhlmeier Externalities in Social and Economic Networks



Chapter 2. A degree-distance-based connections model with negative and positive
externalities 20

Figure 2.2: PS regions in the degree-distance-based connections model given by (2.7)
(n = 9): only g∅ (green area), only g∗ (yellow area), only gN (red area), none of
these three (white area); Left – g∗ and gN simultaneously (orange area); Right –
“Windmill” (blue region)

structure shown in Figure 2.3. This is a specific example of what we will call a

core-periphery structure.

Definition 2.1. In a core periphery structure with periphery degree ηm, one node,

the center, is linked to all other nodes, and every node other than the center has the

same degree ηm.

Figure 2.3: Windmill as an example of a PS network in the degree-distance-based
connections model

To get a more precise feeling for the range of parameters in which such a windmill

structure is stable, consider Figure 2.2 (right). Compared to Figure 2.2 (left), Fig-

ure 2.2 (right) is zoomed in and shows an additional blue area in which the windmill

structure is PS. The green, yellow, red and white areas have the same meaning as
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before.

Figure 2.4 presents all PS networks for n = 3 with the corresponding parameters

for the model (2.7). Note that a network with one link can be PS in our framework

(with b being strictly decreasing in degree), contrary to the Jackson and Wolinsky

model. Figure 2.4 confirms nicely Proposition 2.1(v). In particular, g∗ and gN are

simultaneously PS only for c = δ
3 − δ2

2 .

Figure 2.4: PS networks in the degree-distance-based connections model given by
(2.7) (from left to right): (i) δ ≤ 2c, (ii) 0 < δ < 1

3 and δ
3 + δ2

2 < c ≤ δ
2 , (iii)

(0 < δ < 1
3 , δ

3 − δ2

2 ≤ c ≤ δ
3 + δ2

2 ) or (1
3 ≤ δ < 1, δ

3 − δ2

2 ≤ c ≤ δ
2), (iv) c ≤ δ

3 − δ2

2

Let us now illustrate, for some small network sizes, examples of other PS structures

that can appear. In some cases, these architectures are not stable in the original

connections model which make them interesting per se. Many of the architectures

that we see in these examples can also be shown to exist in a network of arbitrary size

n in some parameter range, as will be shown in a later section. Figures 2.5 and 2.6

show some examples of different PS structures for n = 5 and n = 6, respectively, for

the model given by (2.7) with δ = 1
15 and c = 107

5400 . From among these examples,

only the two regular networks (with the degree ηi = 2 for every i ∈ N) can be PS

under some parameters in the original connections model. The remaining networks

which are PS in our framework could never be PS in the original connections model.

Note that four of these networks contain two components. In Figure 2.5 these are

the first network (on the left) that has been used in the proof of Proposition 2.1(vi),

and the second network with one isolated player and four players, each having the

degree equal to 2. In Figure 2.6 these are the first and the second network, both

having two non-empty components.

Figure 2.5: Some PS networks in the degree-distance-based connections model given
by (2.7) for n = 5, δ = 1

15 and c = 107
5400
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Figure 2.6: Some PS networks in the degree-distance-based connections model given
by (2.7) for n = 6, δ = 1

15 and c = 107
5400

2.4.3 Stability analysis for new architectures with short di-

ameters

In the previous sections, we provided examples of networks that are PS in our

framework for small values of n. These illustrate some of the general results about

architectures that can be PS for an arbitrary size n for some values of the decay

and cost parameters. In contrast, most of them can never be PS in the original

connections model. We have already seen that there exist PS structures other than

the star and the complete graph, in particular, ones that are intermediary between

these two in the sense of link inclusion, that is g is PS and g∗ ⊂ g ⊂ gN . This is

never possible in the original Jackson and Wolinsky model. Figure 2.3 depicted an

example of such a structure, the windmill which is an example of a PS structure that

contains a star but which also comprises links between the nodes in the periphery.

We prove the following result about the stability of stars with peripheral links.

Proposition 2.2. Assume that the benefit b and the cost c are such that there exists

an ηm ∈ N such that f̃(ηm + 1) < c ≤ f̃(ηm). Assume that moreover, n is such

that f̃(n−1) + (n − 1 − ηm − (ηm − 1)(ηm − 2)) (b(2, ηm) − b(3, ηm)) > c. Then any

core-periphery structure with periphery degree ηm is PS.

Proof: Let us show that under the conditions stated the described structure is

pairwise stable. Every peripheral node has degree ηm. Breaking the link to another

peripheral node does not modify the benefits from nodes that can be reached at

distance 2. Only direct benefits are lost. None of those peripheral nodes wants to

break a local link with another peripheral agent of degree ηm because ũj(g)− ũj(g −
lj) = b(1, ηm)−b(2, ηm−1)−c = f̃(ηm)−c ≥ 0 by assumption. No agent wants to add

a link to a peripheral agent whose degree in g is ηm because doing this would decrease

the utility, as ũj(g + jm) − ũj(g) = b(1, ηm + 1) − b(2, ηm) − c = f̃(ηm + 1) − c < 0
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by assumption.

Every peripheral node has an incentive to maintain a link to the center for the

following reason: Without a link to the center, an agent can reach at most (ηm − 1)

neighbors. Each neighbor has (ηm − 2) links to nodes different from the center and

the respective agent. Hence, without a link to the center, an agent can reach at

most (ηm − 1)(ηm − 2) + 1 nodes at distance 2 (including one indirect link to the

center). To identify the nodes who are at distance 3 in absence of a link to the

center, one has to subtract from the overall number of nodes n the agent himself,

his direct neighbors and the neighbors of degree 2. Consequently, by breaking a link

to the center, at least n − 1 − (ηm − 1) − ((ηm − 1)(ηm − 2) + 1) = n − 1 − ηm −
(ηm − 1)(ηm − 2) nodes move to distance 3. Thus ũj(g) − ũj(g − ij) ≥ b(1, n − 1) −
b(2, n − 2) + (n − 1 − ηm − (ηm − 1)(ηm − 2)) (b(2, ηm) − b(3, ηm)) − c = f̃(n − 1) +

(n − 1 − ηm − (ηm − 1)(ηm − 2)) (b(2, ηm) − b(3, ηm)) − c.

We show that for given b and c, we can find n such that

f̃(n − 1) + (n − 1 − ηm − (ηm − 1)(ηm − 2)) (b(2, ηm) − b(3, ηm)) − c > 0 (2.12)

Note that b(2, ηm) > b(3, ηm). Moreover, b(1, k) ≥ 0 for all k, and therefore from

(2.8) we have f̃(n − 1) ≥ −b(2, n − 2) ≥ −b(2, 1). Hence, c − f̃(n − 1) ≤ c + b(2, 1)

and then every n such that n > c+b(2,1)
b(2,ηm)−b(3,ηm) + 1 + ηm + (ηm − 1)(ηm − 2) satisfies

(2.12). !

Note that in the original connections model, where f̃ is constant, the first assumption

of Proposition 2.2 which requires a decreasing f̃ is never satisfied.

The stable structure with inhomogeneous degrees given in Proposition 2.2 illustrates

the fact that in the degree-distance based model, a node can be attractive either

because it is not too “busy” with other neighbors or because it is highly connected

and provides indirect benefits. We also have examples of stable structures where

the degree distribution is essentially homogeneous.

Proposition 2.3. Let g be a network such that lij(g) ≤ 2 for all i, j, and there

are at least (n − 1) nodes with identical degree k and at most one node j such that

ηj < k. Then g is PS in the cost range f̃(k + 1) < c < f̃(k) and f̃(ηj) > c. In

particular, for the utility function given by (2.7), this cost range is non-empty if and

only if k > δ+
√

δ
1−δ and f̃(ηj) > c.
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Proof: No agent wants to add a link to an agent with degree k since f̃(k + 1) < c.

Moreover, no agent wants to delete a link to an agent with degree k since the loss

of utility is at least f̃(k) which exceeds the saving of c. Note that there may be a

single agent j such that ηj < k. This agent does not want to form a link to any

other agent since all other agents have degree k. Moreover, since lij ≤ 2, the only

path that is shortened is the one to the player one links to, and this path is reduced

by one link. No agent wants to drop a link to agent j since f̃(ηj) > c. For the

utility function given by (2.7), there exists a cost c such that f̃(k + 1) < c < f̃(k) if

k belongs to the interval where f̃(k) is decreasing, i.e., on [ δ+
√

δ
1−δ , n − 1]. !

Structures satisfying the properties stated in Proposition 2.3 clearly exist. We can

give some (non exhaustive) examples.

Proposition 2.4. Pairwise stable networks with equal degree: For n, M and l

such that M =
√

n ∈ N , and l is a divisor of M , there exists a pairwise stable

network g such that lij(g) ≤ 2 for all i, j and all nodes have a degree equal to

k = (M − 1) + (M − 1)l. It consists of M completely connected components or

islands. Each node is linked to exactly l nodes on all other islands.

Proof: Divide n = M2 into M disjoint sets of size M , which we index by m =

1, . . . , M . Divide each set of M agents into disjoint sets of size l (Sm
i )M/l

i=1 . Link

agents from distinct islands if they have the same i. This ensures that each agent

has exactly M − 1 + (M − 1)l neighbors. Moreover, lij(g) ≤ 2 for all i, j. !

We note that since k = (M − 1) + (M − 1)l ≥ 2(
√

n − 1), the structures defined

above only exist for fairly large degrees. We also note that whenever l > 1, the

resulting homogeneous network is such that the removal of a single link does not

change the diameter.

Architectures with small diameters: further interpretation and analysis

of the stability conditions

We established conditions for the stability of the main PS structures considered

in Jackson and Wolinsky (1996) as well as other structures with small diameters:

windmill structures and equal degree island models. However, these conditions did

Philipp Möhlmeier Externalities in Social and Economic Networks



Chapter 2. A degree-distance-based connections model with negative and positive
externalities 25

not provide much intuition for what really lies behind the stability of the various

structures.

The conditions did show that the stability of some of the structures was only com-

patible with certain behaviors of the function f̃ . For example, Propositions 2.2, 2.3

require f̃ to be decreasing. In this section we show that, under an additional as-

sumption, namely that decay is independent of degree, the behavior of the function

f̃ (increasing or decreasing) can be related to the convexity/concavity of the ben-

efit with respect to degree. Conditions related to concavity/convexity are easy to

interpret and the results in this section should make it apparent that the conditions

ensuring the stability of the new structures with short diameters analyzed in the

previous section are not difficult to satisfy.

Throughout this section, we make the assumption that decay of the benefit is inde-

pendent of the degree of the neighbor in the sense that b(l+1,k)
b(l,k) =: δl for every k, that

is, the decay of the benefit may vary with the distance l but not with the degree k.

The following proposition links the behavior of the function f̃ to the convexity/con-

cavity of the benefit with respect to degree.

Proposition 2.5. We have the following:

• f̃(k) is decreasing whenever b(l, k) is concave in the degree k.

• If b(l, k) is convex in the degree k, then there exists a level of decay 0 < δm < 1

such that f̃(k) is decreasing whenever δ1 ≤ δm, and there exists a 0 < δM < 1

such that f̃(k) is increasing whenever δ1 ≥ δM .

Proof: Consider f̃(k) − f̃(k + 1) = b(1, k) − b(2, k − 1) − (b(1, k + 1) − b(2, k)) =

b(1, k) − b(1, k + 1) − δ1 (b(1, k − 1) − b(1, k)). This quantity is positive if and only

if b(1,k)−b(1,k+1)
b(1,k−1)−b(1,k) ≥ δ1. If b is concave in degree, then b(1,k)−b(1,k+1)

b(1,k−1)−b(1,k) ≥ 1 ≥ δ1, so that

f̃(k) will always be decreasing. Now, if b is convex, then 0 < b(1,k)−b(1,k+1)
b(1,k−1)−b(1,k) < 1 for

all k ∈ 1, . . . , n − 1. Define δM := maxk
b(1,k)−b(1,k+1)
b(1,k−1)−b(1,k) and δm := mink

b(1,k)−b(1,k+1)
b(1,k−1)−b(1,k) ,

then f̃(k) is decreasing for δ1 ≤ δm and increasing when δ1 ≥ δM . !

Consequently, the conditions in Propositions 2.2 and 2.3 are compatible with a

benefit function that is concave in degree and with one that is convex in degree only

if decay is large. Other results, such as the existence of simultaneous stability of the

star and the complete network (see Proposition 2.1) cannot occur for a b concave
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in degree, but are compatible with a b convex in degree, for which the function f̃

exhibits a wider range of behaviors.

The behavior of the function f̃ is crucial for selecting the stable structures with di-

ameter 2. We will now return to the stability conditions of the structures considered

in the previous section. When f̃ is increasing, we have a precise characterization of

the stable networks with diameter 2 which have the property that the removal of a

single link does not increase the diameter.

Proposition 2.6. If f̃ is increasing, then:

• there is a cost range for which the star is stable

• there is a cost range for which the complete graph is stable

• there is a cost range for which the star and the complete graph are stable

• a stable network g such that lij(g − kl) ≤ 2 for all i, j and all kl must be a

complete network.

Proof: The function f̃ is increasing on [2, n − 1]. However, f̃(1) = b(1, 1) >

f̃(2), . . . , f̃(1) > f̃(n − 1). The complete network is stable if c < f̃(n − 1). The

star is stable if f̃(2) < c < f̃(1) and if f̃(n − 1) + (n − 2)b(2, 1) > c. The condition

f̃(2) < c < f̃(n − 1) < f̃(1) is sufficient for simultaneous stability of the star and

the complete network.

For the last property, consider a stable network g such that lij(g − kl) ≤ 2 for

all i, j and all kl. The existence of a node of degree 1 contradicts the property

lij(g − kl) ≤ 2 for all i, j and all kl, because the removal of such a node disconnects

the network. First note that if there are two nodes in g whose degrees are different

from n − 1, these nodes must be directly linked. Indeed, suppose that their degrees

are η and η′. Neighbors of these agents do not lose any indirect benefits by breaking

with them. Hence, stability requires that f̃(η) > c and f̃(η′) > c. But then

f̃(η + 1) > c and f̃(η′ + 1) > c. Consequently, if the agents of degree η and η′

are not connected, they would like to form a link and g would not be stable. Let

S = {i ∈ N(g)|1 < ηi < n − 1}. All agents in S are linked by the above. The agents

in N \ S have degree n − 1, they are linked to all agents. An agent in S is linked

to all other agents in S and to agents in N \ S. But then an agent in S has degree

n − 1 contrary to hypothesis. Thus S is empty. Consequently, the stable networks
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g such that lij(g − kl) ≤ 2 for all i, j and all kl have only nodes with degree n − 1

and are thus complete graphs. !

Corollary 2.1. If f̃ is increasing, then:

• no core periphery structure is stable

• no homogeneous island structure where each agent has at least two links to the

other islands is stable.

Having established these results, we will now return to the stability of the new

structures with short diameters in the case where f̃ is decreasing. Recall that

by Proposition 2.2, the core-periphery structure in Proposition 2.2 with periphery

degree η is PS if

• f̃(η + 1) < c ≤ f̃(η)

• f̃(n − 1) + (n − 1 − η − (η − 1)(η − 2))[b(2, η) − b(3, η)] > c

These conditions can only be satisfied if f̃ is decreasing. When this is the case, we

note that it is fairly easy to find a cost range such that the conditions in Propo-

sition 2.2 are satisfied when the periphery degree η is small compared to n. To

satisfy the first condition we must take a cost c > f̃(η + 1) ≥ f̃(n − 1). There-

fore the link to the center is only maintained if the indirect benefit term, bounded

below by (n − 1 − η − (η − 1)(η − 2))[b(2, η) − b(3, η)] is sufficiently large. When

the network size n is large and η is small compared to n (η ≪
√

n), this term is

large unless [b(2, η) − b(3, η)] is very small, that is unless there is hardly any decay.

In other words, when f̃ is decreasing, it is easy to find cost ranges with PS core-

periphery structures in which each peripheral agent has a “local” neighborhood that

is relatively small compared to the whole network.

It is more difficult to obtain a stable core-periphery structure when the periphery

degree η is large. Indeed, suppose for example that n/2 + 1 < η < n − 1. In this

case the only benefit that is lost when a peripheral agent breaks with the center is

the direct utility of the link to the center. When n/2+1 < η < n−1, the peripheral

agent can reach the whole network at distance 2 without going through the center.

Peripheral agent i has at least n/2 + 1 contacts other than the center. Suppose

that there were some agent k that he could not reach at distance 2 through these

contacts. But agent k has at least n/2 + 1 links that are not to the center. At least

one of these must lead to a neighbor of i. The benefit of conserving the link to the
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center is then reduced to b(1, n − 1) − b(2, n − 2) = f̃(n − 1) < f̃(η) < c and so

the core-periphery structure is not stable. It is quite natural that a core periphery

structure where agents have very large peripheral neighborhoods cannot be stable.

Indeed, the peripheral agents can then reach a large fraction of the network without

going through the center which then becomes superfluous and cannot be maintained.

While there may not be any stable core periphery structure with a large periphery

degree η, if η is sufficiently large, then we can always find a cost range in which

there is a stable homogeneous island structure (Proposition 2.4) with degree η when

f̃ is decreasing.

Proposition 2.7. For degrees η such that the structure in Proposition 2.4 exists,

this structure is PS if f̃(η + 1) < c ≤ f̃(η). Such a c always exists when f̃ is

decreasing.

Proof: We revisit the conditions of Proposition 2.4. When f̃ is decreasing, we can

always find a cost satisfying f̃(η + 1) < c ≤ f̃(η). When f̃ is decreasing, the latter

also implies that f(d) > c for any d < η. !

The propositions in this section highlight the importance of whether the function f̃

is decreasing or increasing. This can in turn be related to the concavity/convexity

of the benefit function with respect to degree. However, even without concav-

ity/convexity of the latter, it is easy to compute directly the function f̃ whose

behavior allows us to pin down the stable structures with short diameters. Struc-

tures with short diameters other than the star and the complete network, such as

the core-periphery network and the homogeneous degree network, cannot be stable

when f̃ is increasing. On the other hand, when f̃ is decreasing, we always have a

cost range where the homogeneous island structure is stable. A cost range where

the core-periphery structure is stable should also exist for many reasonable benefit

functions at least when the number of peripheral links is small compared to the

whole network. This shows that our model exhibits new pairwise stable structures

in some cost ranges under reasonable and not too demanding assumptions. Indeed,

the function f̃ will be decreasing if the benefit function is concave with respect to

the degree, or even when it is convex in this variable, provided that decay is high

enough.

We also observe that the comparison of link costs and the marginal benefit of linking

to an agent of degree η, i.e., f̃(η) is important for determining whether a core-
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periphery or a homogeneous structure emerges. If f̃(η) exceeds the cost even for large

degrees η, then it is difficult to maintain a core-periphery structure. The peripheral

agents want to form many links in the periphery, but by doing so, they are able to

circumvent the center which becomes superfluous and cannot be maintained. On

the other hand, the homogeneous organization where all agents have an equal and

fairly high but not maximal degree will be stable. Such a structure is not possible if

the cost exceeds f̃(η) for a small degree. In this case, however, we can have a stable

core-periphery structure with only a small number of peripheral links.

2.4.4 Stability analysis for extreme values of the decay pa-

rameter

We complete our analysis of pairwise stability by considering the two extreme cases

where decay is very large (i.e., δ is very small for the model given by (2.7)), or

where decay is very small (i.e., δ is close to one for the model defined by (2.7)). We

will show that in both of these cases, the degree-distance-based model can exhibit

a very large number of PS architectures, which are only restricted by the fact that

(most) nodes must have the same degree. When decay is large, the pairwise stable

architectures include a number of disconnected structures with constraints on the

degrees. These structures can be seen to coincide with those that are shown to be

stable in Morrill (2011) (Proposition 2, p. 372). This is a natural since the benefits

of a direct link in our model coincide with the benefits of a link in Morrill (2011)

and that the indirect benefits can be neglected when decay is large.

The case of the benefit function where decay is very large can be expressed by the

condition b(1, k) ≫ b(2, k) for every k.

Proposition 2.8. Let n be a fixed network size. Let ϵ > 0. Then there exists b > 0

such that for any function b with b(2, 1) < b and any cost such that b(1, r + 1) + ϵ <

c < b(1, r) − ϵ, a network g satisfying the following properties is pairwise stable: in

g, n − k nodes, where k ≤ r, have an identical degree r. The remaining k nodes

are all linked to each other (such a network is what Morrill (2011) calls a maximal

nearly k-regular network).

Proof: Fix ϵ > 0. Consider the maximal indirect benefit an agent can gain from a

link. This benefit is bounded by (n−2)b(2, 1). Let b = ϵ
n−2 . For any 0 < b(2, 1) < b,
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the benefit of indirect links is inferior to ϵ. Basically, we can now neglect utility from

indirect contacts. Let us establish that no pair of agents i, j in g can establish a

mutually beneficial link. Let i be a node of degree ηi = r. Then ũj(g + ij) − ũj(g) <

b(1, r + 1) + ϵ − c < 0. Therefore no agent wishes to form a link to an agent who

already has degree r. Let ij ∈ g with ηi ≤ r and ηj ≤ r. Neither i nor j wishes to

break this link: ũj(g − ij) − ũj(g) < c + ϵ − b(1, ηi) ≤ c + ϵ − b(1, r) < 0. !

The family of PS networks described in Proposition 2.8 is very large and includes

in particular all structures where agents have identical degrees, such as the circle

or a generalized circle with agents linked to their m nearest neighbors. There is

also an abundance of disconnected structures that satisfy the condition stated in

Proposition 2.8.

One example is that of a number of disconnected “islands” of identical size.

Corollary 2.2. Consider a network of size n. Let m be a divisor of n. The net-

work consisting of n/m completely connected components of size m is PS under the

conditions stated in Proposition 2.8.

The class of PS networks described in Proposition 2.8 exists for some decay values

and for some cost range for every network size. However, in order for these structures

to appear, decay must be large, and all the more so when n is large, as we have

(n − 2)b(2, 1) < ϵ < b(1, r) ≤ b(1, 1). The possible values of the cost for which these

structures exist shrink the larger n and r are. In practice, the most likely decay is

very large so that indirect benefits are almost negligible. The larger the size of the

components, the smaller is the possible cost range. Among the possible structures,

the one that we are most likely to see emerge in practice is thus that in which all

agents have degree one or two, and the network size is not too large.

Let us now consider the other extreme case where decay is very small so that δ is

close to one in the model defined by (2.7). In other words, we consider the benefit

functions such that b(l, k) ≈ b(l′, k) for all k, l, l′ ̸= ∞.

Proposition 2.9. Let n be a fixed network size. Let c > 0. Then there exist

ϵ > 0 and b such that |b(l, k) − b(l′, k)| ≤ ϵ for all k, l, l′ ̸= ∞, and any network g

satisfying the following properties is pairwise stable: g is minimally connected and

satisfies minj∈N b(1, ηj(g)) ≥ c > (n − 1)ϵ.

Proof: Fix c > 0. What is the maximal benefit an agent can derive from an
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additional link in an already connected structure? The indirect benefit of link for-

mation is bounded above by (n − 2) max1≤x≤n−1 (b(1, x) − b(n − 1, x)) ≤ (n − 2)ϵ.

Since g is connected, any additional link provides a utility ũi(g + ij) − ũi(g) ≤
b(1, ηj + 1) − b(n − 1, ηj) + (n − 2)ϵ − c ≤ (n − 2)ϵ + b(1, ηj + 1) − b(n − 1, ηj + 1) +

b(n − 1, ηj + 1) − b(n − 1, ηj) − c ≤ (n − 1)ϵ − c < 0. Let us establish that no agent

wants to remove a link. If ij ∈ g, then neither i nor j wishes to break this link.

Indeed, because g is minimally connected, i and j are not in the same connected

component in g − ij. Therefore ũi(g − ij) − ũi(g) < c − b(1, ηj) < 0. !

De Jaegher and Kamphorst (2015) also study a model where agents’ payoffs are

based on their access to information in a setting with small decay. Information is

defined as the sum of all decayed paths to indirect contacts, i.e., exactly the benefit

term in the connections model. Payoffs differ from those of Jackson and Wolinsky

(1996) because agents apply a possibly non-linear function to evaluate this aggregate

quantity. Our model differs from Jackson and Wolinsky (1996) because we impose

a “penalty” on the value received from each indirect contact before aggregating

the value of all indirect contacts by addition. Because of these differences, our

setting and that of De Jaegher and Kamphorst (2015) are not directly comparable.

However, in both cases, the small decay assumption leads to stable structures that

are minimally connected, reflecting the low benefit of forming a link to someone who

is already in the same connected component. We obtain this result when the decay

parameter approaches 1, whereas De Jaegher and Kamphorst (2015) assume small

but not vanishing decay.

2.5 Efficiency in the model

Next, we analyze strong efficiency (SE) in the model, also sometimes referred to as

efficiency in the paper. In the degree-distance-based model, there is a much wider

range of possible SE architectures than in the Jackson and Wolinsky model. While

in the latter, only g∅, g∗ and gN can be SE, in our model additional structures can

be SE for some parameters. To see this immediately, consider the 3-player example

presented in Section 2.4.2. Figure 2.7 shows all strongly efficient networks in this

model given by (2.7).

In this simple 3-player example we can already see an additional difference between
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Figure 2.7: Unique SE networks in the degree-distance-based connections model
given by (2.7) (from left to right): (i) (0 < δ < 1

3 and 2c > δ) or (1
3 ≤ δ < 1

and 2c > 1
2δ2 + 5

6δ), (ii) 0 < δ < 1
3 and δ2 + 2

3δ < 2c < δ, (iii) (0 < δ < 1
3 ,

1
3δ − δ2 < 2c < δ2 + 2

3δ) or (1
3 ≤ δ < 1, 2c < 1

2δ2 + 5
6δ), (iv) 2c < 1

3δ − δ2

our model and the original connections model. In the latter, the cost ranges of

PS and SE for the complete network coincide. In the degree-distance-based model

defined by (2.7), gN can be PS but not efficient: for n = 3 it is the case for 1
3δ −δ2 <

2c < 2
3δ − δ2. Similarly to Jackson and Wolinsky, we exhibit the contradiction

between stability and efficiency in the higher cost ranges: the empty network is PS

but not SE for δ < 2c < 1
2δ2 + 5

6δ and 1
3 < δ < 1. The structure which could neither

be PS nor SE in the original connections model – the network containing one link

and one isolated player – is PS and SE in our model in the same cost range.

Another interesting observation in the model given by (2.7) and n = 4 is for instance

that the line is the unique SE network if 0 < δ < 4−
√

13
6 and 1

3δ − 1
3δ2 − δ3 < 2c <

1
3δ + 5

3δ2 + δ3; for the calculations, see Appendix 2.A.1.

After presenting these examples, we turn to the theoretical analysis. Contrary to

the original connections model, disconnected networks may be pairwise stable. Let

us show that they can also be efficient.

Proposition 2.10. Let n be even and fixed, and ϵ > 0. There exists b > 0 such

that for any function b with b(2, 1) < b, the network described in Proposition 2.8,

consisting of n/2 disjoint completely connected components with m = 2 is uniquely

efficient in the cost range b(1,1)+b(1,2)
2 + ϵ < c < b(1, 1) − ϵ.

Proof: Fix ϵ > 0. Consider the maximal indirect benefit an agent can gain from

a link. This benefit is bounded by (n − 2)b(2, 1). Thus the total social utility from

indirect links is bounded by n(n − 2)b(2, 1). Let b = ϵ
n(n−2) . For any 0 < b(2, 1) < b,

the total social utility of indirect links is inferior to ϵ. Basically, we can now neglect

utility from indirect contacts. Note that if there are at least two nodes with no

link, forming a link between them increases total utility since c < b(1, 1). Assume

now that a network contains some node i such that ηi = k ≥ 2. Let ij belong to

the network. Let us show that removing ij is efficiency improving. Let ηj ≥ 1.
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Since indirect benefits are negligible, only i and j lose by removing the link ij. This

loss is b(1, ηi) + b(1, ηj) ≤ b(1, 2) + b(1, 1) < 2c. Therefore removing the link of an

agent with degree greater than one is efficiency improving. In this parameter range,

an efficient network is such that each agent has exactly degree 1. This is achieved

uniquely by a network consisting of disjoint connected components of size two. !

When decay is very large, benefits from indirect contacts are negligible and the

negative impact of an increased degree dominates. Thus it is not socially desirable

to connect two components.

Proposition 2.11 shows that when network size is large, the complete network is not

strongly efficient when it is stable.

Proposition 2.11. Whenever (n − 1) (b(1, n − 2) − b(1, n − 1)) > b(1, n − 2) −
b(2, n − 2), the complete network is not strongly efficient for any cost c > 0. For the

model defined by (2.7), gN is not SE whenever n > 1
δ . In particular, the complete

network is not strongly efficient when it is uniquely PS.

Proof: We note that the total link cost is always greater in gN than in gN − ij

when c > 0. Assume c = 0. Let us consider the difference in total utility between

gN and gN − ij, that is
∑n

i=1

(
ũi(gN) − ũi(gN − ij)

)
. For agents i, j the utility loss

is b(1, n − 1) − b(2, n − 2). The remaining n − 2 agents gain from the connectivity

decrease of their direct neighbors i and j, 2(n − 2) (b(1, n − 2) − b(1, n − 1)). In

total, the change in social utility is

n∑

i=1

(
ũi(g

N − ij) − ũi(g
N)
)

= 2(n − 2) (b(1, n − 2) − b(1, n − 1)) − 2b(1, n − 1) + 2b(2, n − 2)

= 2(n − 1) (b(1, n − 2) − b(1, n − 1)) + 2 (b(2, n − 2) − b(1, n − 2)) .

This quantity is positive whenever (n − 1) (b(1, n − 2) − b(1, n − 1)) > b(1, n − 2) −
b(2, n − 2) meaning that the complete network gN is not strongly efficient. Except

for very large decay (when b(1, n − 2) ≫ b(2, n − 2)), the complete network is

inefficient even when n is rather small. Solving (n − 1) (b(1, n − 2) − b(1, n − 1)) >

b(1, n − 2) − b(2, n − 2) for the model defined by (2.7) leads equivalently to the

condition n > 1
δ . !
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Proposition 2.12. Let g be a network in which lij(g) ≤ 2 for all i, j and let kl be

a link such that lij(g − kl) ≤ 2 for all i, j. Then:

(i) g − kl has higher overall utility than g for any c > 0 when n is such that

2(n − 2) > K
min(α,β) where K = b(1, ηk) − b(2, ηk − 1) + b(1, ηl) − b(2, ηl − 1),

α := min1<l<n[b(1, l−1)−b(1, l)] > 0 and β := min1<l<n[b(2, l−1)−b(2, l)] > 0

(ii) In particular, for the model defined by (2.7), g − kl is strictly more efficient

than g for any c > 0 if δ > 1/n.

Corollary 2.3. Suppose n satisfies the condition in Proposition 2.12. Then, neither

the windmill (presented in Proposition 2.2), nor the complete graph, nor the multiple

islands model (presented in Proposition 2.4 with l > 1) are efficient (even when they

are PS).

Indeed, it is readily verified that these structures contain a link whose removal

conserves a maximal network diameter of 2.

Proof of Proposition 2.12: Consider two nodes k, l, such that the maximal dis-

tance in g − kl is still 2. We must have 1 < ηk ≤ n − 1 and 1 < ηl ≤ n − 1. Let us

show that overall utility increases when this link is removed.

First consider the change in utility for k and l: ũk(g)−ũk(g−kl)+ũl(g)−ũl(g−kl) =

b(1, ηk)−b(2, ηk −1)−c+b(1, ηl)−b(2, ηl −1)−c. This quantity is positive when g is

pairwise stable, since k and l have an incentive to maintain the link. It is bounded

by K.

The presence of the link kl has a negative impact on all other agents. Agent k has

degree ηk. Thus he has ηk − 1 direct neighbors, excluding l already accounted for

above. Besides k himself and his ηk direct neighbors, the remaining n−1−ηk agents

are at distance 2. The utility loss for these agents is (ηk −1)(b(1, ηk −1)−b(1, ηk))+

(n − 1 − ηk)(b(2, ηk − 1) − b(2, ηk)) and similarly for agent l, replacing ηk by ηl.
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We can now compare the overall utility of g and g − kl. It is

n∑

i=1

(ũi(g) − ũi(g − kl))

= b(1, ηk) − b(2, ηk − 1) + b(1, ηl) − b(2, ηl − 1) − 2c

− (ηk − 1)(b(1, ηk − 1) − b(1, ηk))

− (n − 1 − ηk)(b(2, ηk − 1) − b(2, ηk)) − (ηl − 1)(b(1, ηl − 1)

− b(1, ηl)) − (n − 1 − ηl)(b(2, ηl − 1) − b(2, ηl))

Define α := min1<l<n[b(1, l−1)−b(1, l)] > 0 and β := min1<l<n[b(2, l−1)−b(2, l)] >

0.

∑n
i=1 (ũi(g) − ũi(g − kl)) ≤ K − 2(n − 2) min(α, β) − 2c < K − 2(n − 2) min(α, β),

which is negative provided 2(n − 2) > K
min(α,β) .

In particular, for the model defined by (2.7),
∑n

i=1 (ui(g) − ui(g − kl)) is negative

if F (ηk) + F (ηl) < 0 with F (ηk) = δ
ηk+1 − δ2

ηk
− (ηk − 1)

[
δ

ηk
− δ

ηk+1

]
− (n − 1 −

ηk)
[

δ2

ηk
− δ2

ηk+1

]

F (ηk) < 0 ⇐⇒ ηk − δ(ηk + 1) − (ηk − 1) − (n − 1 − ηk)δ < 0 ⇐⇒ 1 < nδ.

Similarly, F (ηl) < 0 if and only if n > 1
δ . Thus, whenever n > 1

δ the network g is

not efficient. !

This result is easy to understand. In a network in which all agents are at distance at

most 2 when kl is removed, the link kl benefits only agents k and l themselves and

exerts a negative externality on a large number of agents at distance 2. Provided n

is large, this outweighs the positive effects of the link.

Next, we focus on the conditions for efficiency of the star. Let us define the function

h(m) = mb(1, m) + (n − 1 − m)b(2, m) (2.13)

This function represents an upper bound of the social utility that an agent with

degree m provides to others. This upper bound is attained for example for a star,

but generally it is not attained. For the model defined by (2.7), we have h(m) =

m δ
1+m + (n − 1 − m) δ2

1+m .

We assume the following conditions:
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Condition 2.1. Function h defined by (2.13) is decreasing.

Condition 2.2. For any k > 2, let a+d = k and a
′

+d
′

= k. Then if |a−d| ≥ |a′−d
′|

then h(a) + h(d) ≥ h(a
′

) + h(d
′

).

Condition 2.2 means that when keeping fixed the sum of degrees of two agents,

the total maximal social utility provided by the two agents, as measured by the

function h is greater if the agents have dissimilar degrees. Note that Conditions 2.1

and 2.2 are satisfied for the model defined by (2.7), when n > 1
δ ; for the proof, see

Appendix 2.A.2.

Condition 2.1 is not demanding and holds easily if the network size n is large. Condi-

tion 2.2 seems to have a convexity flavor. One agent with high degree and one agent

with low degree provide more social utility (or at least the upper bound given by h

is greater) than two agents with intermediate degrees. In fact the proposition below

shows under some conditions that Condition 2.2 cannot hold if b is concave with

respect to degree. However, convexity is not sufficient to guarantee Condition 2.2

because a convex function whose behavior is very close to that of a linear function

would not satisfy it.

Proposition 2.13. Suppose that for any degree η, b(2, η) = δb(1, η) for some δ ≤ 1

(decay independent of degree) and that b(1, η) is differentiable. Then Condition 2.2

never holds if b(1, η) is concave. Moreover Condition 2.2 does not hold for all convex

b(1, η).

This proposition is proved in Appendix 2.A.3.

Proposition 2.14. Let g be a connected structure. Whenever h given by (2.13)

satisfies Conditions 2.1 and 2.2, we have v(g) ≤ v(g∗).

Proof: First we show that v(g) ≤ v(g∗) for any minimally connected structure g.

Let g be a minimally connected structure. It is thus characterized by m, J1 and S

in Lemma 2.1 (presented in Appendix 2.A.4), the degrees of the nodes in S and the

distances between all pairs of nodes. By Lemma 2.1, all nodes in J1 have degree one.

There are m nodes in S whose degrees are (2 + αi)m
i=1 (without loss of generality we

let the m nodes in S be 1, 2, . . . , m). The remaining n − j1 − m nodes have degree

2. Therefore by Lemma 2.2 (presented in Appendix 2.A.5), we have

v(g) ≤ ∑n
i=1 h(ηi(g)) = j1h(1) +

∑m
i=1 h(2 + αi) + (n − j1 − m)h(2).

We apply Condition 2.2 to obtain h(αi +αj +2)+h(2) ≥ h(αi +2)+h(αj +2). Thus
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we have
∑m

i=1 h(αi + 2) + (n − m − j1)h(2) =
∑m−2

i=1 h(αi + 2) + (n − m − j1)h(2) +

h(αm−1 + 2) + h(αm + 2) ≤ ∑m−2
i=1 h(αi + 2) + (n − m − j1)h(2) + h(αm−1 + αm +

2) + h(2) =
∑m−2

i=1 h(αi + 2) + h(αm−1 + αm + 2) + (n − m − j1 + 1)h(2) ≤ . . . . ≤
h(
∑m

i=1 αi + 2) + (n − j1 − 1)h(2).

Then, applying again repeatedly Condition 2.2, v(g) ≤ j1h(1)+h(
∑m

i=1 αi +2)+(n−
j1−1)h(2) = j1h(1)+h(j1)+(n−j1−1)h(2) = j1h(1)+(n−j1−2)h(2)+h(2)+h(j1) ≤
j1h(1)+(n−j1 −2)h(2)+h(1)+h(j1 +1) = (j1 +1)h(1)+h(j1 +1)+(n−j1 −2)h(2) ≤
. . . ≤ (n − 1)h(1) + h(n − 1) = v(g∗).

As we have shown, any minimally connected structure g has a degree sequence (ηi)n
i=1

such that v(g) ≤ ∑n
i=1 h(ηi) ≤ v(g∗). Any connected structure gK is a superset of

a minimally connected network g. Let g ⊂ gK and let µi = ηi(gK) − ηi(g) ≥ 0. By

Lemma 2.2 we have v(gK) ≤ ∑n
i=1 h(ηi(gK)). We will show that

∑n
i=1 h(ηi(gK)) ≤

∑n
i=1 h(ηi(g)). Let us consider h being decreasing. For the model given by (2.7), we

verify that for all m > 1, h(m + 1) − h(m) ≤ 0 ⇐⇒ δ ≥ 1
n . We use this now to

show successively that:

∑n
i=1 h(ηi(gK)) =

∑n
i=1 h(ηi(g) + µi) ≤ ∑n

i=1 h(ηi(g) + (µi − 1)) ≤ ∑n
i=1 h(ηi(g) +

(µi − 2)) ≤ . . . . ≤ ∑n
i=1 h(ηi(g)). Since

∑n
i=1 h(ηi) ≤ v(g∗), we conclude that

v(gK) ≤ ∑n
i=1 h(ηi) ≤ v(g∗). !

Consequently, for the model defined by (2.7), v(g) ≤ v(g∗) whenever n > 1
δ . We

now show that under some fairly weak assumptions on the payoffs, we also have

v(g∗) ≥ v(g) for any disconnected network g. Under these conditions, the star will

then be efficient.

Proposition 2.15. Let g∗
1 and g∗

2 be two disjoint stars with centers i and j. When-

ever (nk − 1)[b(1, nk) + b(2, 1) − b(1, nk − 1)] ≥ c for k = 1, 2 (sufficient but not

necessary condition), where nk is the cardinality of g∗
k, v(g∗

1 ∪ g∗
2 + ij) ≥ v(g∗

1 ∪ g∗
2).

In particular, this cost range exists when b(1, nk) + b(2, 1) > b(1, nk − 1).

Proof: Under the assumptions in Proposition 2.14, the value of a star is not smaller

than the value of any connected structure. Let g be a disconnected network. Then

v(g) is maximized when g is the union of star components. Let us show that under

some weak conditions, social utility is increased by connecting two stars.

Indeed, let i and j be the centers of two stars of size n1 and n2, with 2 ≤ n1 ≤ n

and 2 ≤ n2 ≤ n. If we add a link between the centers, then the change in utility is
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(n1 −1)[b(2, n2) + (n2 −1)b(3, 1) + b(1, n1) − b(1, n1 −1)]+ b(1, n2) + (n2 −1)b(2, 1) +

(n2−1)[b(2, n1)+(n1−1)b(3, 1)+b(1, n2)−b(1, n2−1)]+b(1, n1)+(n1−1)b(2, 1)−2c ≥
(n1 −1)[b(2, n2)+b(1, n1)+b(2, 1)−b(1, n1−1)]+(n2−1)[b(2, n1)+b(1, n2)+b(2, 1)−
b(1, n2 − 1)] − 2c

This quantity is positive under a fairly weak condition: it is sufficient that decay

with distance is not too great and utility decrease with respect to the neighbor’s

degree is not too great: (nk − 1)[b(1, nk) + b(2, 1) − b(1, nk − 1)] ≥ c for k = 1, 2.

If connecting two disjoint stars is efficiency improving, the efficient network cannot

be disconnected and so under Conditions 2.1 and 2.2, the star is efficient. !

The condition in the above proposition is sufficient but not necessary and can be

improved. However, the star is not uniquely efficient. The complete graph, the

empty one, and also the line or a disconnected graph with connected components of

size two can all be efficient for some choices of b. The results we have are sufficient

to show that the star is uniquely stable under conditions which are compatible with

the (in some cases unique) pairwise stability of other structures than the star.

From Propositions 2.14 and 2.15, and adding condition that b(1, 1) > c (which

ensures that the empty network is not efficient), we obtain the following.

Proposition 2.16. Let the benefit function b satisfy Conditions 2.1 and 2.2, (ñ −
1)[b(1, ñ) + b(2, 1) − b(1, ñ − 1)] ≥ c for all 2 ≤ ñ ≤ n and let b(1, 1) > c. Then

the star is efficient, and is uniquely efficient whenever a strict inequality holds in

Condition 2.2.

Having established the efficiency of the star under some conditions, we can now com-

pare with the pairwise stable structures characterized in the previous section. The

conditions for efficiency of the star can be compatible with the stability conditions

of the complete network or with that of the windmill network (Propositions 2.1(iv)

and 2.2). This is most readily verified by checking the respective conditions for

the function (2.7). Indeed, the assumptions under which we proved the star to be

efficient exclude concavity of the benefit function with respect to degree, but the

new structures with short diameters could be stable both when the benefit function

is concave and when it is convex in degree. This implies the existence of benefit

functions and cost ranges verifying our general assumptions for which the star is

efficient but not pairwise stable, and the pairwise stable or even uniquely pairwise
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stable network is not efficient. We have already seen that for large n the windmill

or complete network are not efficient in their stability region. The result about the

efficiency of the star also shows that the efficient network can be strictly contained

in a (or the, in the case of uniqueness) pairwise stable network. This implies that

our model can give rise to overconnectivity in the strong sense defined by Buechel

and Hellmann (2012), which could never occur in the original connections model.

2.6 Conclusion

In this paper, we analyzed network formation in the presence of negative externalities

in a model that combined the presence of indirect benefits and a penalty resulting

from the connectivity of direct and indirect neighbors. Our analysis focused mainly

on the case of structures with short diameters but also considered cases with extreme

levels of decay. It would be interesting but more challenging to extend it beyond

these cases. While remaining in the framework with global positive spillovers, we

could also consider somewhat different models that capture other types of negative

externalities. As we discussed in the introduction, the model we proposed here is a

good fit for a situation that we could see as a “generalized” co-author model where

knowledge spills over from more distant parts of the network. We can also think of

situations where benefits could spill over from distant neighbors but be reduced by

overall connectivity. One might see a link as a consumer good whose value is based

on its rarity and which thus decreases the more common or widespread it is. We

could also gear the model more specifically towards the competition for information,

by letting payoffs depend on the number of informed agents in a communication

chain. Finally, we note that in the model we considered, as well as in the potential

extensions, we are likely to have a high multiplicity of equilibria, suggesting that

the use of stronger stability concepts, e.g., strongly stable networks (those which

are stable against changes in links by any coalition of individuals; see Jackson and

van den Nouweland, 2005) could be helpful for equilibrium selection.
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2.A Appendix

2.A.1 Proof for efficiency of the line for n = 4

The line is the unique SE network for n = 4, model (2.7) and some δ, c.

Proof: Let n = 4. Let U (k) =
∑4

i=1 ui(g(k)), where k ∈ N and 1 ≤ k ≤ 8. Similarly,

the sum of the players’ utilities for the line, the empty graph and the complete graph

is denoted by UL, U∅ and UN , respectively. We will determine the parameters δ and

c under which the line gL is the unique SE network. We have: UL = δ3+ 5
3δ2+ 7

3δ−6c

U∅ = 0, UN = 3δ − 12c, for the graph with one link: U (1) = δ − 2c

for the graphs with two links: U (2) = 2δ − 4c, U (3) = δ2 + 5
3δ − 4c

for the graphs with 3 links (different from gL): U (4) = 3δ2 + 9
4δ − 6c (star), U (5) =

2δ − 6c

for the graphs with 4 links: U (6) = 4
3δ2 + 8

3δ − 8c, U (7) = 5
3δ2 + 31

12δ − 8c

for the graph with 5 links: U (8) = 2
3δ2 + 17

6 δ − 10c.

UL > U (4) iff δ2 − 4
3δ + 1

12 > 0 iff 0 < δ < 4−
√

13
6 . We solve: UL > U (2) and UL > U (6)

and 0 < δ < 4−
√

13
6 , which gives 0 < δ < 4−

√
13

6 and 1
3δ− 1

3δ2−δ3 < 2c < 1
3δ+ 5

3δ2+δ3.

For such δ and c, we have, in particular, δ > 2c. Hence, UL > U (1), UL > U∅, and

also UL > U (3), UL > U (5), UL > U (8), UL > U (7), UL > UN . !

2.A.2 Proof regarding Conditions 2.1 and 2.2

Conditions 2.1 and 2.2 are satisfied for the model (2.7), when n > 1
δ .

Proof: Consider h(m) = m δ
1+m + (n−1 −m) δ2

1+m . We have h′(m) = δ(1−δn)
(1+m)2 < 0 for

n > 1
δ . Consider a, d such that a + d = k, and therefore d = k − a. For the model

defined by (2.7), we have h(a)+h(d) = h(a)+h(k −a) = δa
1+a +(n−1−a) δ2

1+a +(k −
a) δ

1+k−a +(n−1−(k −a)) δ2

1+k−a = (1+a)(δ−δ2)
1+a + (1+k−a)(δ−δ2)

1+k−a +δ
[

nδ−1
1+a + nδ−1

1+k−a

]
. Thus

we can write h(a)+h(d) = c(δ)+δG(a), where G(a) := nδ−1
1+a + nδ−1

1+k−a . The derivative

of this function is G
′

(a) = 1−nδ
(1+a)2 + nδ−1

(1+k−a)2 which is zero at a = k/2. Moreover, we

can show that this zero corresponds to a minimum provided that nδ > 1. Indeed,

when this is the case, G(a) ≥ 0 and G(0) = (nδ − 1)
(
1 + 1

1+k

)
≥ G(k/2) =

(nδ − 1)
(

2
1+k/2

)
for every k ≥ 2. We also note that by symmetry, G(a) = G(k − a).

This implies that G(a) is decreasing on [0, k/2] and increasing on [k/2, k]. Since

Philipp Möhlmeier Externalities in Social and Economic Networks



Chapter 2. A degree-distance-based connections model with negative and positive
externalities 41

|a − d| = |a − (k − a)| = |2a − k|, if |a − d| > |a′ − d
′ |, then |a − k/2| > |a′ − k/2|,

which implies G(a) > G(a
′

), which implies h(a) + h(d) > h(a
′

) + h(d
′

). !

2.A.3 Proof of Proposition 2.13

Proof: Condition 2.2 holds if and only if h(a) + h(d) = h(a) + h(k − a) =: H(a)

is decreasing on [0, k/2]. We have b(2, η) = δb(1, η) for some δ ≤ 1. We compute

H
′

(a) to find H
′

(a) = (1 − δ)[b(1, a) − b(1, k − a)] + δ(n − 1)[b
′

(1, a) − b
′

(1, k − a)] +

(1 − δ)[ab
′

(1, a) − (k − a)b
′

(1, k − a)]. Now a ≤ k − a. Consequently if b(1, η) is

concave in degree, b′(1, k − a) < b′(1, a) < 0 and H
′

(a) > 0. Thus Condition 2.2 is

not compatible with concavity of b with respect to degree. We can also see that in

the limit case between concavity and convexity where b(1, η) is linear in degree, we

would have H
′

(a) ≥ (1−δ)[b(1, a)−b(1, k −a)] > 0. Thus convexity is not sufficient

to guarantee Condition 2.2. !

2.A.4 Proof of Lemma 2.1

Lemma 2.1. Let g be a minimally connected network of size n > 3. Let J1 be the

set of nodes of degree 1 and j1 the number of elements in this set. Then, whenever

j1 > 2, there exists a set S containing 1 ≤ m ≤ j1 nodes such that for all i ∈ S,

ηi ≥ 3 and
∑

i∈S αi = j1 − 2, with αi = ηi − 2.

Proof: We prove this by induction on the network size. Any minimally connected

structure of size n+1 can be obtained by adding one node n+1 and one link between

n+1 and some j < n+1 in a minimally connected network of size n. Suppose that gn

(n ≥ 4) verifies the induction hypothesis. If S(gn) = ∅, gn is a line. If we link n+1 to

a node of degree 1, j1(gn+1) = j1(gn) = 2 and S(gn+1) is still empty. If we add a link

between n+1 and a node of degree 2, there will be 3 nodes with degree 1 and 1 node of

degree 3. Thus j1(gn+1) = 3, and
∑

i∈S(gn+1) αi(gn+1) = 1 = j1(gn+1)−2. If gn verifies

the induction hypothesis and S(gn) ̸= ∅, there are several possibilities. Either the

link from n+1 goes to a node j such that ηj(gn) = 1. Then the number of nodes with

degree one does not change so j1(gn+1) = j1(gn). The number of nodes in S does not

change and ηj(gn+1) = 2. Thus
∑

i∈S(gn+1) αi(gn+1) =
∑

i∈S(gn) αi(gn) = j1(gn) − 2 =

j1(gn+1) − 2. If ηj(gn) = 2 then ηj(gn+1) = 3 and card(S(gn+1)) = card(S(gn)) + 1

and j1(gn+1) = j1(gn) + 1. Thus
∑

i∈S(gn+1) αi(gn+1) =
∑

i∈S(gn) αi(gn) + αj(gn+1) =
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j1(gn) − 2 + 1 = j1(gn+1) − 2. Finally, if n + 1 links to j such that ηj(gn) > 2,

then j1(gn+1) = j1(gn) + 1, card(S(gn)) = card(S(gn+1)) and ηj(gn+1) = ηj(gn) + 1.

Thus
∑

i∈S(gn+1) αi(gn+1) =
∑

i∈S(gn) αi(gn+1) =
∑

i∈S(gn) αi(gn) + 1 = j1(gn) − 2 +

1 = j1(gn+1) − 2. This concludes the proof of the induction step. The induction

hypothesis is verified when n = 4. There are two minimally connected structures:

a line and a star. In a line, there are two elements of degree 1, thus j1 = 2 and

S = ∅. In a star with n = 4, j1 = 3, S consists of the center with degree 3 and

indeed
∑

i∈S(gn) αi(gn) = 3 − 2 = j1(gn) − 2. !

2.A.5 Proof of Lemma 2.2

Lemma 2.2. Let g be a network with degree sequence (ηi(g))n
i=1. Then the value of

g is v(g) ≤ ∑n
i=1 h(ηi(g)).

Proof: The ηi(g) immediate neighbors of i derive the utility b(1, ηi(g)) from the

link to i. The remaining n − 1 − ηi(g) nodes are at distance at least 2 from i and

therefore the utility obtained from i is bounded by b(2, ηi(g)). !
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Chapter 3

Competition for the access to and

use of information in networks

This chapter is based on a joint work with Agnieszka Rusinowska and

Emily Tanimura, both from Université Paris I Panthéon-Sorbonne, Cen-

tre d’Economie de la Sorbonne. It is forthcoming in Mathematical Social

Sciences (MSS).

3.1 Introduction

In addition to public information, diffused by sources such as the media, and avail-

able to everyone, most of us also receive valuable information that circulates only in

a restricted manner, between friends and acquaintances. Access to such decentral-

ized information certainly matters. For example, numerous studies have shown that

direct and indirect personal contacts are the most frequent providers of information

that leads to finding a job (Granovetter, 1973, 1974); see also Boorman (1975) for

transmission of job information via strong and weak contacts. This highlights the

importance of an individual’s network of friends and acquaintances and justifies the

widely recognized idea that the latter is a form of social capital.

Jackson and Wolinsky (1996) were the first to propose and analyze a setting, later

generalized by Bloch and Jackson (2007), where individuals seek to maximize the

benefits in terms of information flow, that they receive in a network by strategically
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forming their links. An underlying assumption in their framework is that a denser

social network will benefit everyone by providing more information, at least if we

disregard the cost required to maintain the relationships.

However, this relies on the underlying assumption that information is what is known

as a non-rivalrous good, that is, a good which, used by several individuals simul-

taneously, provides each of them with the same utility as if he were the sole user.

At a closer look, the validity of this assumption seems to depend on the nature of

the information. Going back to the case of employment opportunities, someone who

learns of an attractive job opening would certainly prefer that few other people were

informed. Similarly, learning of an early sale of coveted concert tickets or where

there is available parking in a crowded part of town is more valuable when the in-

formation is not widely shared. In other cases, information is truly a non-rivalrous

good: I am glad to be informed that rain is predicted in the afternoon because I can

bring my umbrella and my well-being is in no way reduced by the fact that others

find out too and bring theirs. For this reason, it is natural to integrate a negative

externality that captures how much an agent’s utility declines when he has to share

his information with others.

A second point to consider is that even in cases where the use of information is non-

rival, there may be competition for the access to it due to congestion effects. Agents

with many contacts are less likely to spend as much time with each one of them

as someone who has a small number of contacts. This may translate into a lower

probability of transmitting useful information to each one of the contacts. In this

case, an agent is not per se unhappy that other people receive certain information.

He is unhappy if others receive it instead of him.

In this paper we discuss how to model the negative externalities associated with

connectivity resulting from the two aforementioned effects in a network formation

game framework. We consider two separate models, to capture competitive use

of information and competitive access to information, respectively. In practice,

the presence of both together is perfectly possible. However, separating the cases

facilitates the analysis and allows us to better understand and compare the effects

of each assumption.

Our main results concern pairwise stability and efficiency in these two models. In

particular, our analysis sheds some light on the essential differences between the

effects of competition for the access to information and the competitive use of in-
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formation. We begin our analysis by determining necessary conditions for pairwise

stability in the first model. This allows us to rule out some candidates for pairwise

stability and to characterize the possible ones in terms of the quantity of incom-

ing information received by the agents and their importance as intermediaries. In

both models, we analyze pairwise stability of several “standard” architectures, in

particular, the star, circle, complete and empty networks, and a structure of sepa-

rate pairs. We also examine k-regular networks in the second model which is more

tractable with respect to this analysis. Depending on model parameters, a variety of

structures can be pairwise stable. We introduce a new stability concept that we call

“asymptotic pairwise stability”, i.e., we are interested in the network structures that

remain PS when the number of agents becomes very large. This approach, which

consists in studying the asymptotic properties of a sequence of graphs of increasing

size is standard in the analysis of random graphs (see, e.g., Erdős and Rényi (1960)

and Bollobas (2001)) where it is motivated by the need to use probabilistic limit

theorems. Our framework is the same but in the special case where the sequence of

graphs is deterministic and the asymptotic properties we seek to study are related

to the payoff parameters of our model. From an empirical point of view, focusing

on network structures that are stable when the number of agents is large but not

necessarily otherwise seems relatively reasonable in our model which aims to de-

scribe individuals’ access to useful information. To illustrate this point through a

numerical example, empirical studies such as e.g., Killworth and Bernhard (1978)

estimate the number of contacts where a contact is defined as somebody from whom

one can ask for a favor to 200 on average. In an empirical study about finding a job,

Granovetter (1974) found that the information that allowed an individual to find a

job typically originated from indirect contacts up to three steps away. Even if we

assume that there is much overlap, so that each of one’s 200 contacts does not pro-

vide 200 distinct contacts, conservatively estimating the number of non-overlapping

contacts to 100 places the number of agents relevant to the transmission of informa-

tion at 1003 = 1 000 000. More generally, the notion of asymptotic pairwise stability

could be relevant for studying various large networks such as peer to peer file shar-

ing networks, Facebook, etc. In our setting, asymptotic pairwise stability allows

us to obtain sharper predictions. Furthermore, for both models we show a tension

between the asymptotic pairwise stability and efficiency, in the sense that some

network architectures are not efficient when being asymptotically pairwise stable.

While our paper is related to a number of other works in the literature on strategic
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network formation, to the best of our knowledge we are the first ones to propose a

framework for studying network formation with information overspills in the case

where the use of information is competitive. A model of network formation with

information flow and congestion effects is studied by Charoensook (2012), although

in a different framework from the connections model (Jackson and Wolinsky, 1996)

and the model we propose, since he builds on Bala and Goyal (2000) and analyzes

Nash networks. Calvó-Armengol (2004) considers job contacts networks and rivalry

in the access through network links, but investigates a different framework of strate-

gic network formation and studies the Nash equilibria of a non-cooperative game of

network formation. The problems of competitive use or access to information are not

explicitly considered in the modifications and extensions of the original connections

model (Jackson and Wolinsky, 1996) that capture the issue of negative and positive

externalities in networks (e.g., Billand et al. (2012), Billand et al. (2013), Buechel

and Hellmann (2012), Currarini (2007), Goyal and Joshi (2006), Haller (2012), Hell-

mann (2013), Morrill (2011), Möhlmeier et al. (2016) and the references therein) or

in the communication networks where the link-strength is endogenously chosen by

the agents (e.g., Bloch and Dutta, 2009).

In the model of competition for the access to information, for reasons that will be

explained when the model is presented, all paths between agents are taken into

account, not only the shortest paths as is usually the case in the literature on

strategic network formation. An exception is Charoensook (2012) where in case of

multiple paths between two agents, the value of information sent between them is

given by the optimal paths, i.e., the paths that maximize the value of information

obtained via the different paths.

Another work that has a similarity with the present paper in the sense of considering

all possible paths is Lim et al. (2015) who investigate a threshold model of cascades

in networks. They define a cascade centrality of an agent as the expected number of

switches given the agent is the seed, where the expected probability that an agent

switches is equal to the sum of the degree sequence products along all the paths

from each seed.

In the remainder of the paper we proceed as follows. First, preliminaries on net-

works are recalled in Section 3.2. Section 3.3 concerns competition for the access

to information. In Section 3.4 we study the competition for the use of informa-

tion. Section 3.5 presents concluding remarks and a comparison of the two kinds
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of competition for information. Longer proofs of the results are presented in the

Appendix.

3.2 Preliminaries

First we recall some notations and definitions related to networks that will be used

in our analysis; see e.g., Jackson and Wolinsky (1996); Jackson (2008). Let N =

{1, 2, . . . , n} denote the set of players (actors, agents). For simplicity and w.l.g. we

assume that n is even. A network g is a set of pairs {i, j} denoted for convenience by

ij, with i, j ∈ N , i ̸= j,1 where ij denotes a link between players i and j. Nodes i and

j are directly connected (in other words, i and j are neighbors) if and only if ij ∈ g.

We denote by Ni(g) the neighborhood of i in g, i.e., Ni(g) = {j ∈ N | ij ∈ g}.

The degree di(g) of agent i counts the number of links i has in g, i.e., di(g) =

|Ni(g)| = |{j ∈ N | ij ∈ g}|.

A network g is regular if for some d ∈ {0, 1, . . . , n − 1}, di(g) = d for each i ∈ N .

We denote by g∅, g∗, gc and gN the empty network (regular network with d = 0),

the star (network in which di = n − 1 for one node i (the center) and dj = 1 for

all other (peripheral) nodes j ̸= i), the circle (regular network with d = 2) and the

complete network (regular network with d = n − 1), respectively. The set of all

possible networks g on N is denoted by G := {g | g ⊆ gN}.

By g + ij (g − ij, respectively) we denote the network obtained by adding link ij to

g (deleting link ij from g, respectively). Furthermore, by g−i we denote the network

obtained by deleting player i and all his links from the network g.

Let N(g) (n(g), respectively) denote the set (the number, respectively) of players in

N with at least one link, i.e., N(g) = {i | ∃j s.t. ij ∈ g} and n(g) = |N(g)|.

A path connecting i1 and iK is a set of distinct nodes {i1, i2 . . . , iK} ⊆ N(g) such

that {i1i2, i2i3, . . . , iK−1iK} ⊆ g. We denote by p(i1iK) a path from i1 to iK and

by P (i1iK) the set of all paths from i1 to iK . We write j ∈ p(i1iK) if path p(i1iK)

passes through j.

By lij(g) we denote the geodesic distance between i and j, i.e., the number of links

1We do not allow for loops in this setting.
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in the shortest path between i and j in g. If there is no path connecting i and j in

g, then we set lij(g) = ∞.

A network g is connected if there is a path between any two nodes in g.

The network g′ ⊆ g is a component of g if for all i ∈ N(g′) and j ∈ N(g′), i ̸= j,

there exists a path in g′ connecting i and j, and for any i ∈ N(g′) and j ∈ N(g),

ij ∈ g implies that ij ∈ g′.

Let ui : G → R denote the utility for player i ∈ N . A network g ∈ G is pairwise

stable (denoted by PS) if:

(i) ∀ ij ∈ g, ui(g) ≥ ui(g − ij) and uj(g) ≥ uj(g − ij) and

(ii) ∀ ij /∈ g, if ui(g) < ui(g + ij) then uj(g) > uj(g + ij).

A network g ⊆ gN is strongly efficient (denoted by SE) if

∑

i∈N

ui(g) ≥
∑

i∈N

ui(g
′) for all g′ ⊆ gN

3.3 The model of competition for the access to

information

3.3.1 Description of the model

Each agent possesses a private piece of information which provides other agents

with a benefit if they receive it. The information transmission between two agents

takes place if a costly link between them is established. We assume two-way com-

munication which can be modeled by an undirected network, where a link between

agents i and j enables agent i to access j’s information and vice-versa. We consider

two-sided link formation, i.e., mutual consent is required for forming a link.

In our first model we assume that there is competition for the access to information,

for example because an agent with many contacts spends less time with each of his

contacts, and thus has fewer opportunities to pass on information to the latter. On

the other hand, we assume that the use of the information is non-rivalrous. We

want to capture the idea that the likelihood that each neighbor receives a piece of

information decreases with the number of contacts of the sender. When an agent
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is not sure that information will actually reach him through the shortest path to

the sender, it is natural to value redundancy, that is, the agent gets utility from

all paths between him and the sender not just the shortest one. Consequently, the

utility of agent i in the model of competition for the access to information is defined

by

uCA
i (g) =

∑

j ̸=i

∑

p(ij)∈P (ij)

δ|p(ij)| ∏

k∈p(ij),k ̸=i

f(dk(g)) − cdi(g) (3.1)

where p(ij) is a path from i to j of length |p(ij)|, 0 < δ < 1, f is a decreasing

function of the degree, f(d) > 0 for every d ∈ N+, f(1) ≤ 1, and c > 0 is the cost

for a direct connection. We have uCA
i (g) = 0 if P (ij) = ∅ for each j ∈ N .

The modeling of the function f is important. We can interpret f(d) as the proba-

bility that a neighbor of an agent with degree d receives the information from the

latter. We compute the probability of each possible path along which information

can travel to an agent, and multiply it by the utility of receiving the information

through that path (i.e., taking into account the path length). Arguably, the value

one assigns to receiving a piece of information from some path with a certain proba-

bility, might be lower if one also has a probability of receiving the information along

other paths. This would be especially true if one was almost sure to receive the

information along some of the paths. However, we are interested in the case where

communication efficiency decreases with degree, so that a large number of paths

necessarily means that each one has a low probability. We will assume that agents

value all additional possibilities of receiving an information and so we do not apply

a concave transformation to
∑

j ̸=i
∑

p(ij)∈P (ij) δ|p(ij)|∏
k∈p(ij),k ̸=i f(dk(g)).

The functional form of f determines how the level of inefficiency of the communica-

tion varies with degree. If f is convex, the decline is more rapid for small degrees,

if f is concave it is the contrary. We can see the quantity f(d)d as measuring the

efficiency of transmission to d contacts. We note that f(d)d ≤ d. Cases where f(d)d

is large (a particular case being f(d) = 1) would be for example when an agent uses

mailing lists to communicate, he can then successfully send information to an arbi-

trarily large number of contacts. If he needs to meet contacts in person, we should

have f(d) ≪ 1
d for large degrees, so that f(d)d < 1, which can be interpreted as a

situation where conveying the information requires a lengthy explanation so that an

agent with too many contacts may not convey it successfully to any of them.

The specific choice f(d) = 1/d can be viewed as a case where the agent splits his
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time equally with his contacts and the probability of being informed is proportional

to this time. Since we will sometimes do computations with this specific functional

form, we define the utility

ũCA
i (g) =

∑

j ̸=i

∑

p(ij)∈P (ij)

δ|p(ij)| ∏

k∈p(ij),k ̸=i

1

dk
− cdi(g) (3.2)

It is clear that our model differs from the connections model (Jackson and Wolinsky,

1996) and the degree-distance-based connections model (Möhlmeier et al., 2016) in

several respects. In the original Jackson-Wolinsky model, the benefit of i from the

information sent by j in g is equal to δlij(g). In the degree-distance-based connections

model, such a benefit is determined by b̂(dij(g), dj(g)), where the benefit function b̂

is nonincreasing in each of the two variables (distance, degree) and b̂(∞, dj) = 0 for

every dj ∈ {0, 1, . . . , n − 1}. In the present model, the function f reduces the flow

of information from high degree senders and passing via high degree intermediaries.

Moreover, we take into account multiple paths originating from the same sender,

not only the shortest paths. To illustrate it on a simple example, consider networks

g and g′ in Figure 3.1 and the benefit of agent i from the information sent by agent

j. In the original connections model, the flow of information from j to i is equally

beneficial to i in g and g′, and is equal to δ2. The fact that agent k has fairly more

connections in g′ than in g and hence the information from j to i could be conveyed

much easier in g than in g′ is ignored in the Jackson-Wolinsky model. Similarly in

the degree-distance-based connections model (and if we set a particular functional

form of the benefit function b̂(dij(g), dj(g)) = 1
1+dj(g)δ

dij(g) which gives i the benefit
δ2

3 from the information sent by j): while it does take into account the number of

connections of the sender of information, it ignores the connections of agents along

the paths of the flow of information, i.e., the connections of agent k in this example.

The model of competition for the access to information defined in (3.1) and (3.2)

assumes that the neighbors of both agents j and k have an impact on the efficiency

of the information transmission between j and i. Agent i benefits more when the

intermediary agent k has less contacts. In model (3.2) the benefits that i gets from

j’s information sent via k are equal to δ2

4 in g and δ2

14 in g′.

Our model of competition for the access to information also differs from the original

connections model in how the information flow is evaluated. It is assumed that

each agent passes the piece of information he possesses to all of his contacts, i.e.,
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j’s information is sent to i both via k and via l. Since i cannot always be sure via

which path j’s information will reach him first, not only the shortest paths that the

information passes through (or the path that would give the maximum benefit), but

all paths of the information flow between j and i “contribute” to the benefit. In the

example given in Figure 3.1 this means that the benefit for i from the information

sent by j is equal to the sum of the benefits from the shortest path going through

k and from the path passing through l and m (the latter being equal to δ3

8 in both

g and g′ under model (3.2)). Note that in g′, for sufficiently large δ this benefit δ3

8

is greater than the benefit δ2

14 from the information passed via the shortest path.
g

k

i

j

l

m

g′

k

i

j

l

m

12

3

4 5

Figure 3.1: The models of competition for information versus the connections and
degree-distance-based connections models

In the next sections we analyze pairwise stability in the model given by (3.1) and

(3.2).

3.3.2 Possible and ruled-out categories of pairwise stable

structures

In what follows we analyze necessary conditions for maintaining a link in a PS net-

work in model (3.1). We show that the value of a link to an agent is determined

by two features of this agent’s structural position: on one hand the quantity of

incoming information he receives and on the other hand his importance as an inter-

mediary. The condition allows us to obtain some characterizations of possible PS

structures in terms of these two features - incoming information and importance as

an intermediary.

• We define the information obtained by j without using i as an intermediary

in network g as:

Ij−i(g) =
∑

k ̸=j,i

∑

p−i(kj)∈P −i(kj)

δ|p−i(kj)| ∏

m∈p−i(kj)

f(dm(g))

where p−i(kj) is a path from k to j that does not pass through i and P −i(kj)
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denotes the set of such paths.

• We define the information of i with j as an intermediary (or a sender) in

network g − ij as:

I i,j(g − ij) =
∑

k ̸=i

∑

pj(ki)∈P j(ki)

δ|pj(ki)| ∏

m∈pj(ki)

f(dm(g − ij))

where pj(ki) is a path from k to i that passes through j and P j(ki) denotes

the set of such paths. Moreover, pj(ji) and P j(ji) denote simply p(ji) and

P (ji), respectively.

Lemma 3.1. Let ij ∈ g. Agent i prefers network g to network g − ij if and only if

δf(dj(g))
(
1 + Ij−i(g)

)
− I i,j(g − ij)

(

1 − f(dj(g))

f(dj(g) − 1)

)

> c (3.3)

Proof: uCA
i (g) > uCA

i (g − ij) is equivalent to δf(dj(g))+ Ij−i(g)δf(dj(g))+ I i,j(g −
ij) f(dj(g))

f(dj(g)−1) − c > I i,j(g − ij) which leads to (3.3). !

It results from the above formulation that if the communication technology is inef-

ficient for high degrees (limd→∞ f(d) = 0) then:

• In a PS network (unless the cost is very low), agents with a high degree must

receive a high quantity of information.

• In a PS network (unless the cost is very high), if low degree agents receive a

high quantity of information, they must also be important as intermediaries

in the network.

One could be inclined to think that agents with a high degree always receive a lot

of information, making the first remark above trivial. This is in fact not the case.

Even if a node has a high degree, it does not necessarily need to get a lot of incoming

information.

Lemma 3.2. Suppose that the degree di of every agent i in the network satisfies

d ≤ di ≤ d̄. Then an upper bound on value of the information received by any agent

is
∑n−1

l=1 (d̄f(d)δ)l. In particular, if d̄f(d)δ < 1, then the upper bound is independent

of the network size n.

Proof: The number of paths (without repetition) of length l leading to i is bounded
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by d̄l. Indeed, i has at most d̄ neighbors and each of them has at most d̄ neighbors

and so on. Since the minimal degree of any node is d, the value of an information

sent on a path of length l is bounded by (f(d)δ)l. Since the maximal length of a

path with no repetition is n − 1, the total value of incoming information is thus

bounded by
∑n−1

l=1 (d̄f(d)δ)l. !

It follows from the bound above that the quantity of incoming information of a high

degree node can vary greatly depending on the network structure. For example,

we can apply Lemma 3.2 with d̄ = d = n − 1 to the complete network. If the

communication technology is inefficient, the condition d̄f(d)δ < 1 holds and so the

value of the incoming information for each node in the complete network is bounded

independently of n. When n is large, it is thus order of magnitude smaller than for

the center of a star which receives (n − 1)f(1)δ, and this despite identical degrees.

The following proposition can be seen to result from a bound of the incoming infor-

mation an agent can receive.

Proposition 3.1. Suppose that the communication technology satisfies f(d)d < α <

1 when d is sufficiently large. Consider a network in which each node i has a degree

di such that k ≤ di ≤ k
δ . If k = cn for c > 0, so that the degrees are of the same

order of magnitude as the network size, then such a network cannot be PS when n

is large.

Proof: We apply Lemma 3.2 with d = k and d̄ = k
δ . The total value of incoming

information is thus bounded by
∑n−1

l=1 (kf(k))l. By assumption kf(k) < α < 1 for

large k, and we have limn→∞
∑n−1

l=1 (kf(k))l = kf(k)
1−kf(k) . Consequently, the requirement

δf(d)[1 + Ij−i(g)] > c cannot hold for any d = cn, when n is large. This rules

out networks with high (on the order of magnitude of the total network size) and

fairly homogeneous (i.e., whose variation is bounded by the constraint k ≤ di ≤ k
δ )

degrees. !

The condition k ≤ di ≤ k
δ for each i puts a bound on the variation in degree of the

nodes. The result basically says that large networks where agents have high but

homogeneous degrees are not PS when communication technology is inefficient for

large degrees.

To conclude, the previous results rule out some candidates for PS structures (except

for very low costs):
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(1) No PS network can contain high degree nodes receiving a low level of incoming

information.

(2) No PS network can consist only of nodes with a high and fairly homogeneous

degree (the degree of every node i must verify k ≤ di ≤ k
δ ).

The PS networks that are not ruled out by the previous results can thus belong to

the following very general categories:

(a) networks combining high degree nodes with a lot of information and low degree

nodes receiving little information;

(b) networks with only low degree nodes and a lot of information who are all

important as intermediaries in the network (this structural constraint is ac-

tually rather restrictive since low degree nodes are not naturally important

intermediaries);

(c) networks combining high degree nodes and low degree nodes, where both types

receive a lot of information;

(d) networks with only low degree nodes with little information.

In the next subsection, we will study the pairwise stability of some particular net-

works which provide examples of structures belonging to the different categories

listed above.

3.3.3 Pairwise stability of some “standard” architectures

We analyze pairwise stability of the prominent network structures that were shown to

be stable in the Jackson-Wolinsky model and the degree-distance-based connections

model, such as the empty network, the star and the complete network, as well as

pairwise stability of the circle and some disconnected structures.

Proposition 3.2. In the model defined by (3.1) the following holds:

(i) The empty network g∅ is PS if f(1)δ ≤ c.

(ii) The star g∗ with n ≥ 3 is PS if

f(2)δ + f(n − 1) (2f(2) − f(1)) δ2 + (n − 3)f(1)f(2)f(n − 1)δ3 ≤ c
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and

c ≤ min
(
f(1)δ, f(n − 1)δ + (n − 2)f(1)f(n − 1)δ2

)
. (3.4)

(iii) The complete network gN with n ≥ 3 is PS if

c ≤ f(n − 1)δ

+ f(n − 1)δ
n−2∑

k=1

δk (n − 2)!

(n − 2 − k)!
fk−1(n − 1) ((k + 1)f(n − 1) − kf(n − 2)) .

(3.5)

(iv) The circle gc of n > 3 nodes is PS if

c ≤
n−1∑

k=1

fk(2)δk + fn−2(2)δn−1 (f(2) − f(1)) (3.6)

and

c ≥ f(3)δ + 2f(3)
n−2∑

k=1

fk(2)δk+1 + 2f(3)f
n
2

−1(2)δ
n
2 − 2

n−1∑

k= n
2

fk(2)δk. (3.7)

(v) The structure of n
2 separate pairs is PS if

f(2)δ(1 + f(1)δ) ≤ c ≤ f(1)δ (3.8)

The cost range for the stability is non-empty whenever

δ ≤ f(1) − f(2)

f(1)f(2)
. (3.9)

See the proof in Appendix 3.A.1.

The conditions for pairwise stability obviously involve the cost c, the decay δ and the

function f . Depending on the structure, pairwise stability depends on the efficiency

of the communication technology for different degrees. More precisely, we only take

into account f(1) for the empty network, f(1) and f(2) for the structure of separate

pairs, f(1), f(2) and f(3) for the circle, f(1), f(2) and f(n − 1) for the star with

n nodes, and finally f(n − 1) and f(n − 2) for the complete graph with n nodes.

Conditions for pairwise stability of the network structures of n nodes usually depend
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on n, with the exception of the empty network and the structure of separate pairs. It

is interesting to see if the stability of these structures is preserved when the number

of agents becomes very large. For instance, if we consider the particular model

defined in (3.2), then one can clearly see that the cost range for stability of the

star decreases with the number of agents and becomes empty when n → ∞. The

same remark holds for the stability of the complete network. The next subsection

is devoted to the analysis of this issue.

3.3.4 Asymptotic pairwise stability

As we have explained in the introduction, it is natural to assume that the number

of agents who participate in the information exchange described by our models is

large. For this reason, it is natural to focus on networks that are PS when n is large.

To this effect, we introduce a notion of asymptotic (with respect to network size)

pairwise stability.

Definition 3.1. Let S be some network structure (e.g., star, complete graph, circle,

. . . ). We say that the structure S is asymptotically pairwise stable (APS) with

respect to the utility function u if

• it is asymptotically well defined, i.e., we can define a sequence of networks

(gnk
)k≥1 of strictly increasing size nk such that every network gnk

has the struc-

ture S, and

• there exist fixed admissible parameters of the utility functions (ui)n
i=1 such that

for all i, j, i ̸= j

lim
n→+∞

(ui(gn) − ui(gn − ij)) ≥ 0

and if

lim
n→+∞

(ui(gn + ij) − ui(gn)) > 0,

then

lim
n→+∞

(uj(gn + ij) − uj(gn)) ≤ 0.

The set of admissible specifications (parameters) of the utility function for which

the network is APS is the asymptotic stability range of the networks.

Remark 3.1. In the model (3.1) the asymptotic stability range is (c, δ, f), i.e., it
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is determined by the cost c > 0, 0 < δ < 1 and a function f defined in (3.1), i.e.,

verifying f(d) > 0 for all d ∈ N+ and f(1) ≤ 1.

We should note that APS is not a refinement of PS, nor is it a weaker concept. A

certain network structure can be PS for some fixed n but not APS. It is also possible

that a certain network structure is APS but not PS for small values of n. This will be

illustrated by several examples further on. The main interest of the concept of APS

is to reduce the parameter space since the parameter n disappears. The conditions

for APS tend to be less involved than those for PS which may depend on n.

Proposition 3.3. In the model (3.1) the following holds:

(i) The empty network g∅ is APS whenever it is PS, i.e., if f(1)δ ≤ c.

(ii) The star g∗ with n ≥ 3 is not APS for inefficient communication technology,

more precisely, when limn→+∞ f(n)n = 0, for any δ < 1.

If f satisfies 0 < limn→+∞ f(n)n ≤ 1, then there exists a non-empty positive

cost range for which the star g∗ is APS if and only if

1 ≥ lim
n→+∞

f(n)n >
f(2)

f(1)(1 − f(2))
.

In particular, for the model (3.2), i.e., when f(d) = 1/d, such a non-empty

cost range does not exist.

(iii) The complete network gN is not APS for inefficient communication technology,

more precisely, for a function f such that limn→+∞ f(n)n ≤ 1, for any δ < 1.

(iv) There exists a non-empty positive cost range for which the circle gc is APS if

and only if

δ ≤ f(2) − f(3)

f(2)f(3)
. (3.10)

In particular, for the model (3.2) such a non-empty cost range exists for any

0 < δ < 1 and is given by

δ

3
+

2δ2

3(2 − δ)
≤ c ≤ δ

2 − δ
. (3.11)

(v) The structure of n
2 separate pairs is APS whenever it is PS, i.e., when (3.9)

is satisfied. In particular, for model (3.2) such a non-empty cost range exists
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for any 0 < δ < 1.

See the proof in Appendix 3.A.2.

Let us return to the possible and “ruled-out” PS categories of networks listed in

Section 3.3.2. The star is an example of a PS structure in the category of networks

consisting of high degree - high information nodes and low degree – low information

nodes (structure (a)). As shown in Proposition 3.3(ii) it can be APS if communica-

tion efficiency declines moderately but not too rapidly in degree. For an inefficient

communication technology the cost range for which the complete network is PS

becomes vanishingly small as the network size grows. This result given in Proposi-

tion 3.3(iii) can also be deduced from Section 3.3.2, since gN consists only of nodes

with a high and homogeneous degree (structure (2)). The circle is an example of a

PS structure with only low degree – high information nodes that are all important

as intermediaries (structure (b)). The incentive to add links is countered by the fact

that each node is an important intermediary but would become less important if

additional links are added. The stability of the circle is reinforced when communi-

cation efficiency decreases with degree. The separate pairs structure is an example

of a PS network with only low degree nodes with low information (structure (d)).

Asymptotic pairwise stability versus pairwise stability Clearly, if condi-

tions for PS depend on n, PS and APS do not coincide. On the one hand, a structure

can be PS but not APS, i.e., the cost range for stability becomes empty when the

number of agents grows. An example is the complete network with n nodes which

is PS under condition (3.5) but not APS for inefficient communication technology.

Similarly, the star with n nodes is PS in the model (3.2) under condition (3.4) but

not APS. On the other hand, a structure can be APS but not PS, which is the case

for the circle, as shown in the following example.

Example 3.1. In the model (3.2), for any δ ∈ (0, 1) there exists a non-empty cost

range for which the circle is APS and this cost range is given by (3.11). On the

other hand, by virtue of (3.6) and (3.7), the cost range for which the circle with 4

nodes is PS in the model (3.2) is given by

δ

3
+

δ2

6
− δ3

12
≤ c ≤ δ

2
+

δ2

4
.
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Note that δ
2 + δ2

4 < δ
2−δ for any δ ∈ (0, 1). Hence, for the cost such that

max

(
δ

2
+

δ2

4
,
δ

3
+

2δ2

3(2 − δ)

)

< c ≤ δ

2 − δ

the circle is APS (for large n) but not PS for n = 4.

Tension between asymptotic pairwise stability and efficiency Under com-

petition for the access to information, it might happen that a structure is APS but

not SE in some cost range. To see that, first we calculate the following result.

Lemma 3.3. The structure of separate pairs is more efficient than the circle for

very large number of agents when c > 2f(2)δ
1−δf(2) − δf(1).

See the proof in Appendix 3.A.3.

From Lemma 3.3 and Proposition 3.3 we have the following conclusion.

Conclusion 3.1. In the model (3.2) the circle gc is not efficient for the whole cost

range where it is APS, i.e., for c satisfying (3.11).

Proof: In the model (3.2) the condition c > 2f(2)δ
1−δf(2) − δf(1) under which the struc-

ture of separate pairs is more efficient than the circle for very large n is equivalent to

c > δ2

2−δ . On the other hand, note that for every δ ∈ (0, 1), δ2

2−δ < δ
3 + 2δ2

3(2−δ) < δ
2−δ .

Hence, when the circle is APS, that is, for c such that δ
3 + 2δ2

3(2−δ) ≤ c ≤ δ
2−δ , it is not

efficient. !

3.3.5 Comparison with other related models

In Jackson and Wolinsky (1996), as one could expect, the empty network is PS for

high cost and the complete graph if costs are low. The main finding is that the star is

PS for intermediary levels of cost and decay. The degree-distance-based connections

model differs from the original connections model in that it reduces the value of

an information originating from an overly busy sender. However, contrary to the

CA model, only the busyness of the original sender and not of the intermediaries in

the communication chain matters. In this model, the star remained APS, while the

complete network is never APS. Similarly, under competition for information, the

complete network is never APS if the communication technology is inefficient. This
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is not unexpected, in light of the result for the degree-distance-based connections

model, since the negative effects of high degrees are stronger in the CA model where

they also concern the intermediaries in the communication chain. As for the star,

it can be APS in model (3.1), but only if the communication efficiency does not

decline too rapidly with the degree.

We note however, that when a star is formed in the CA model, the distribution of

benefits between center and periphery is different from that in the Jackson-Wolinsky

model in the sense that it is now the center who extracts the most benefits. While

in the original connections model, if the center of the star does not want to cut a

link, then a periphery node will not want to cut the link either, in the model given

by (3.2) this is not necessarily true. In other words, it is possible that the center of

the star does not want to cut a link while a peripheral node prefers to do so. To see

that, let i be the center of a star and j a peripheral node. If we denote by uJW
i the

utility of i in the Jackson-Wolinsky model, then:

uJW
i (g∗) − uJW

i (g∗ − ij) = δ − c and uJW
j (g∗) − uJW

j (g∗ − ij) = δ + (n − 2)δ2 − c,

and therefore if uJW
i (g∗) > uJW

i (g∗ − ij) then also uJW
j (g∗) > uJW

j (g∗ − ij).

On the other hand, for the model (3.2), where ũCA
i (g∗) − ũCA

i (g∗ − ij) = δ − c and

ũCA
j (g∗) − ũCA

j (g∗ − ij) = δ
n−1 + (n−2)δ2

n−1 − c, for every δ and n ≥ 3, there exists c

such that ũCA
i (g∗) > ũCA

i (g∗ − ij) but ũCA
j (g∗) < ũCA

j (g∗ − ij).

Under competition for information, there are in fact structures different from those

that were PS in Jackson and Wolinsky (1996) that enjoy greater asymptotic stability

than the star for inefficient communication technologies. If the decline in commu-

nication efficiency going from degree two to degree three is large enough, the circle

will be APS for a wide range of decay levels. The same is true for the structure with

disjoint pairs if the decline in communication efficiency going from degree one to

two is large enough. Thus, contrary to the model by Jackson and Wolinsky (1996),

where any PS network has at most one non-empty component, in model (3.1) dis-

connected structures can now be PS and remain stable when the number of agents

becomes large. We note that both for the circle and the disconnected pair struc-

ture, the (asymptotic) stability only depends on the behavior of the communication

technology for small degrees.
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3.4 A model of competition for the use of infor-

mation

3.4.1 Description of the model

We will now assume that there is no competition for the access to information but

that the use of information is rivalrous. Moreover, we assume that the disutility

inflicted by those who are closer to the sender than an agent is greater than the

disutility inflicted by those who are at the same distance to the sender as that

agent. For the sake of simplicity, we will assume that it does not matter how many

steps before an agent the earlier informed people got the information. In this case,

the utility an agent i derives from network g is defined by

uCU
i (g) =

∑

{j ̸=i|lij(g)<∞}
b(lij(g), xij(g), yij(g)) − cdi(g) (3.12)

where b(lij(g), xij(g), yij(g)) is a three variable function b : N+ × N2 → R+ for the

value of the information that i receives from j, lij(g) is the geodesic distance from i

to j in g, xij(g) is the number of agents who are closer to j than i, and yij(g) is the

number of agents who are at the same distance to j as i. It is also assumed that
∑+∞

l=1 b(l, x, y) < +∞ for all x, y ∈ N.

We note that if lij(g) = 1, then necessarily xij(d) = 0. Due to the fact that it is

worse to an agent when others are closer to the sender than when they are at the

same distance to the sender as the agent, we also assume

b(l, x, y) > b(l, x + k, y − k) for all k ≥ 1 (3.13)

The function b is decreasing in each of the three variables. The level of decrease with

respect to x and y captures the level of rivalry in the use, the extreme cases being

the constant case: an agent does not care if others are informed, and the case where

b reaches 0 if many others learn the information before the agent. Moreover, if the

utility declines rapidly with distance, it seems reasonable that b should decline more

rapidly with respect to agents who are closer to the sender than the given agent.

Before we turn to the analysis of pairwise stability in the model of competition for

the use of information, let us compare the benefits from information as modeled in
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the different frameworks. Note that in model (3.12) the benefit from the informa-

tion received by a neighbor x, i.e., b(1, 0, dx − 1), depends only on the degree dx

of the neighbor, as in the degree-distance-based model, where this benefit is deter-

mined by b̂(1, dx), with b̂(lij(g), dj(g)) depending on the distance between the sender

j and the receiver i, and on the degree of the sender. In the distance-based model

(Bloch and Jackson (2007)), which is an extension of the original connections model

with the nonincreasing benefit function b̃(lij(g)), the benefit from the information

sent by a neighbor is always the same and is equal to b̃(1). For example, in Fig-

ure 3.1 the benefit of agent i from the information sent by his neighbor k in the

degree-distance-based connections model is given by b̂(1, 2) and b̂(1, 7) in g and g′,

respectively, and in model (3.12) by b(1, 0, 1) and b(1, 0, 6) in g and g′, respectively.

However, if we consider the information obtained from indirect contacts, then what

is determined in the degree-distance-based connections model is “included” in the

model of competition for the use of information. More precisely, the degree of a

sender of information obtained by x which is not the sender’s neighbor is included

in the number of agents that receive the information before x does. In Figure 3.1,

for instance, the benefits of i from information sent by j are equal to b̃(2), b̂(2, 2)

and b(2, 2, 1) in network g, and b̃(2), b̂(2, 2) and b(2, 2, 6) in network g′.

3.4.2 Pairwise stability of some “standard” architectures

We start our analysis of the model defined in (3.12) by proving conditions for pairwise

stability of the prominent structures.

Proposition 3.4. In the model defined by (3.12) the following holds:

(i) The empty network g∅ is PS if b(1, 0, 0) ≤ c.

(ii) The star g∗ with n ≥ 3 is PS if

c ≥ b(1, 0, 1) − b(2, 1, n − 3) (3.14)

and

c ≤ min (b(1, 0, 0), b(1, 0, n − 2) + (n − 2)b(2, 1, n − 3)) . (3.15)
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(iii) The complete network gN with n ≥ 3 is PS if

c ≤ b(1, 0, n − 2) − b(2, n − 2, 0). (3.16)

(iv) The circle gc of n > 3 nodes is PS if2

c ≤
n
2

−1∑

k=1

b(k, 2k − 2, 1) −
n−1∑

k= n
2

+1

b(k, n − 2, 0) (3.17)

and for n > 6

c ≥ b(1, 0, 2)−b(
n

2
, n−2, 0)+2

⌊ n
4

⌋∑

k=2

b(k, 2k−2, 2)−2

n
2

−1∑

k=⌈ n
4

⌉+1

b(k, 2k−2, 1) (3.18)

and for n ∈ {4, 6}, c ≥ b(1, 0, 2) − b(n
2 , n − 2, 0).

(v) The structure of n
2 separate pairs is PS if

b(1, 0, 1) + b(2, 1, 0) ≤ c ≤ b(1, 0, 0). (3.19)

See the proof in Appendix 3.A.4.

All the conditions for pairwise stability stated in Proposition 3.4 depend on the

benefit function b and, with the exception of the empty graph and the separate pair

structure, also on the number of agents n. For any benefit function satisfying our

general assumptions, the empty graph will be stable if the cost is high enough, i.e.,

if it exceeds the benefit of receiving an information alone. For other structures,

a non-empty cost range in which there is pairwise stability does not exist for all

benefit functions. To ensure such a cost range for the star, roughly speaking, an

agent’s utility must not decline too much when he receives an information at the

same time as all other agents in the network compared to when he receives it at the

same time as only one other agent. From monotonicity of function b and assumption

(3.13), for a given n there always exists a cost range for which the complete network

is pairwise stable, but this cost range can be small and shrink drastically when n

grows. Nevertheless, if decay is fairly large and/or the benefit of an agent decreases

drastically when he moves from a situation where all other agents are at the same

2We use the notation ⌊x⌋ := max{y ∈ N | y ≤ x} and ⌈x⌉ := min{y ∈ N | y ≥ x}.
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distance to the sender as himself to a case where all other agents are closer to the

sender, then the complete network is pairwise stable. The conditions for the pairwise

stability of the circle are rather un-plausible. They require that there is a very large

loss in benefit for an agent when moving from a case with only one more agent being

at the same distance to the sender as himself to a situation with two more agents

being informed. There exists a non-empty cost range for pairwise stability of the

separate pairs structure when decay is very large and/or when the benefit of an

agent decreases drastically when, instead of being the only one informed, another

agent is at the same distance to the sender.

3.4.3 Asymptotic pairwise stability of some “standard” ar-

chitectures

Next we analyze the asymptotic pairwise stability (APS) as introduced in Defini-

tion 3.1. We check if the PS networks listed in Proposition 3.4 remain PS if the

number of agents becomes very large.

Remark 3.2. In the model (3.12) the asymptotic stability range is determined by

(c, b), i.e., by the cost c > 0 and a function b defined in (3.12), i.e., verifying

b(l, x, y) > 0 for all l, x, y.

The asymptotic pairwise stability of some structures depends on which of the fol-

lowing two assumptions (A1) or (A2) is made:

(A1) lim
k→+∞

b(l, k, y) > 0 for every l ≥ 2, y ∈ N

(A2) lim
k→+∞

b(l, x, k) = 0 for all l ≥ 2, x ∈ N.

Assumption (A1) states that an agent’s benefit from getting the information remains

positive even if the number of agents who are closer to the sender than himself

becomes very large. On the contrary, assumption (A2) means that the agent does

not benefit anymore from the information if the is at the same distance to the

sender as a very large number of agents. Note that assumption (A1) implies that

limk→+∞ b(l, x, k) > 0 for all x ∈ N. Similarly, (A2) implies that limk→+∞ b(l, k, y) =

0 for all y ∈ N. We get the following results:

Proposition 3.5. In the model (3.12) the following holds:
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(i) The empty network g∅ is APS whenever it is PS, i.e., if b(1, 0, 0) ≤ c.

(ii) Under assumption (A1), there always exists a non-empty cost range for which

the star g∗ with n ≥ 3 is APS. The cost c must satisfy

b(1, 0, 1) − lim
n→+∞

b(2, 1, n − 3) ≤ c ≤ b(1, 0, 0). (3.20)

Under assumption (A2), there exists a non-empty cost range for which the star

is APS if and only if

lim
n→+∞

(n − 2)b(2, 1, n − 3) ≥ b(1, 0, 1) (3.21)

and then the cost range must satisfy

b(1, 0, 1) ≤ c ≤ min
(

b(1, 0, 0), lim
n→+∞

(n − 2)b(2, 1, n − 3)
)

. (3.22)

(iii) There exists a non-empty cost range for which the complete network gN is APS

iff limn→+∞ b(1, 0, n − 2) > limn→+∞ b(2, n − 2, 0). The cost must satisfy

c ≤ lim
n→+∞

b(1, 0, n − 2) − lim
n→+∞

b(2, n − 2, 0). (3.23)

In particular, under assumption (A2), the complete network is not APS.

(iv) The circle gc of n > 3 nodes is APS if

b(1, 0, 2) + 2
+∞∑

k=2

b(k, 2k − 2, 2) ≤ c ≤
+∞∑

k=1

b(k, 2k − 2, 1) (3.24)

(v) The structure of separate pairs is APS whenever it is PS, i.e., when (3.19) is

satisfied.

See the proof in Appendix 3.A.5.

Consider the case where the number of agents becomes very large and an agent

still derives some benefit from the information even if many others are closer to the

sender than himself. Then there always exists a non-empty cost range for pairwise

stability of the star and the more the agent benefits from the information which has

been also reached by many other agents being at the same distance to the sender,

the larger is this cost range. For the complete network, there exists a non-empty
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cost range for its pairwise stability if an agent strictly prefers to get the information

directly and to be at the same distance to the sender as all other agents than to

get the information after all other agents have got it. The sharper is this benefit

difference, the larger is the cost range for pairwise stability of the complete graph.

3.4.4 Tension between asymptotic pairwise stability and ef-

ficiency

We will show that under competition in the use of information, some structures are

APS but not SE. First, we will establish conditions under which the star is more

efficient than some other structures.

Lemma 3.4. The star g∗ is more efficient than:

(i) The empty network g∅ for sufficiently small costs, i.e., if

2c < b(1, 0, 0) + b(1, 0, n − 2) + (n − 2)b(2, 1, n − 3)

and under assumption (A1) it is the case for any c > 0 when n is sufficiently

large.

(ii) The structure of disjoint pairs when

(n − 1)[b(1, 0, n − 2) + (n − 2)b(2, 1, n − 3)] > c(n − 2) + b(1, 0, 0)

and under assumption (A1) it is the case for any c > 0 when n is sufficiently

large.

(iii) The complete network gN for sufficiently large costs, i.e., if

c >
n − 1

n − 2
b(1, 0, n − 2) − b(2, 1, n − 3) − b(1, 0, 0)

n − 2
. (3.25)

Proof: Let g̃ denote the structure of disjoint pairs. We have:

∑

i∈N

uCU
i (g∅) = 0,

∑

i∈N

uCU
i (g̃) = n (b(1, 0, 0) − c) ,

∑

i∈N

uCU
i (g∗) = (n − 1) (b(1, 0, 0) + b(1, 0, n − 2) + (n − 2)b(2, 1, n − 3) − 2c)
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and

∑

i∈N

uCU
i (gN) = n(n − 1) (b(1, 0, n − 2) − c) .

All parts result immediately from the comparison of the sums given above. !

From Proposition 3.5 and Lemma 3.4 we can write the following conclusions.

Conclusion 3.2. In the model of competition in the use of information:

(i) Under assumption (A1) for sufficiently large n, the empty network is not effi-

cient when being APS, i.e., for c satisfying c ≥ b(1, 0, 0).

(ii) Under assumption (A1) for sufficiently large n, the structure of disjoint pairs

is not efficient when being APS, i.e., for c satisfying (3.19).

(iii) There exists a non-empty cost range for which gN is APS but not efficient if

lim
n→+∞

b(2, 1, n − 3) > lim
n→+∞

b(2, n − 2, 0). (3.26)

See the proof in Appendix 3.A.6.

3.4.5 Connectedness and degree homogeneity in (asymptot-

ically) pairwise stable networks

Given the difficulty of obtaining a full characterization of the PS networks in our

model, we will focus on exploring two of their properties, which are likely to be

affected by the presence of the negative externality associated with connectivity,

namely their connectedness and their degree distribution. Indeed, it is natural to

ask whether the desire to access more exclusive information would tend to generate

disconnected networks contrary to the original connections model. Secondly, we

can ask what is the impact on the degree distribution? We have already seen that

agents can still form networks with highly unequal degrees such as the star. Will

they also tend to form networks in which everyone has a similar degree, so as to

distribute the “nuisance of connectivity” more evenly? In this section, we provide

a condition for the connectedness of PS networks and then turn to analyzing under

which conditions k-regular networks can be stable.
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We already know from Proposition 3.4(v) that the structure of disjoint pairs is PS

under condition (3.19). However, the following proposition which gives a sufficient

but not necessary condition for ensuring that only connected networks can be PS

shows that the conditions under which disconnected networks can be PS are quite

restrictive.

Proposition 3.6. Suppose that for all d ≥ 1, b(1, 0, d − 1) − b(1, 0, d) < b(2, d, d2).

Then no network containing more than one non-trivial component can be PS.

Proof: Suppose that l and i are in different components in g and that i and l are the

nodes with the highest degrees in their respective components. Since i is in a non-

trivial connected component, he has at least one neighbor j (and similarly for l). If l

forms a link to i, he gains at least uCU
j (g) −uCU

j (g − ij) − b(1, 0, di −1) + b(1, 0, di) +

b(2, dj, |N2
j (g)|) ≥ uCU

j (g) − uCU
j (g − ij) − b(1, 0, di − 1) + b(1, 0, di) + b(2, di, d2

i ),

where N2
j (g) is the set of nodes which are exactly at distance 2 from node j in g.

Indeed, the direct benefit of the link to i is lower for l than for j: b(1, 0, di) instead of

b(1, 0, di − 1). Otherwise, l gains at least as much from adding the link il as j gains

from adding ij (strictly more if i and j are not disconnected in g − ij) and he also

gains b(2, dj, |N2
j (g)|) because he can reach j at distance 2. Since di is the maximal

degree in i and j’s component, b(2, dj, |N2
j (g)|) ≥ b(2, di, d2

i ). By the assumption,

uCU
l (g+il)−uCU

l (g) ≥ uCU
j (g)−uCU

j (g−ij)−b(1, 0, di −1)+b(1, 0, di)+b(2, di, d2
i ) >

uCU
j (g) − uCU

j (g − ij) ≥ 0. Thus agent l would like to form the link il. One can

apply an identical argument to show that agent i wants to link to l implying that g

is not PS. !

The situation under competition for the use of information is not that different from

the standard Jackson-Wolinsky framework, where an agent on a different island

gains more than neighbors on the same island gain from maintaining the link. The

only difference is a small disutility due to one additional link to the partner. If this

loss is small compared to the gain in indirect benefits (that we underestimate in the

proof), no network with several non-trivial components can be stable.

Note that Proposition 3.6 is consistent with condition (3.19) which implies that

there exists a non-empty cost range for pairwise stability of the structure of separate

pairs if b(1, 0, 1) + b(2, 1, 0) ≤ b(1, 0, 0). Taking d = 1 in Proposition 3.6 leads to

b(1, 0, 0) < b(1, 0, 1) + b(2, 1, 1) which implies b(1, 0, 0) < b(1, 0, 1) + b(2, 1, 0).

Philipp Möhlmeier Externalities in Social and Economic Networks



Chapter 3. Competition for the access to and use of information in networks 69

We turn now to the analysis of k-regular networks. We start by introducing some

concepts and conditions that will appear in our first result.

Definition 3.2. An agent i has a growth dummy neighbor if there exists j such that

ij ∈ g and Nj(g) ⊂ Ni(g) ∪ ⋃{k|ik∈g,k ̸=i} Nk(g).

A growth dummy neighbor of i is a neighbor who does not contribute to i’s neigh-

borhood growth. Growth dummy agents exist in networks with much cohesion and

“group structure" in which an agent’s neighbors are likely to be connected to each

other and have many neighbors in common.

Condition 3.1. We say that Condition 3.1 is verified for d if for every k ≥ 3 and

0 ≤ x ≤ k2, k, x ∈ N, it holds that:

(1) b(1, 0, k − 1) − b(1, 0, k) < k[b(2, k, x) − b(d − 1, k, x)]

(2) b(2, k − 1, k2) ≥ b(d, k, 0)

(3) b(1, 0, l − 1) − b(1, 0, k − 1) > b(d, l − 1, 0) − b(2, k − 1, k2) for every l < k.

Condition 3.2. For every k ≥ 3 and 0 ≤ x ≤ k2, b(1, 0, k − 1) − b(1, 0, k) <

kb(2, k, x).

If Condition 3.1 holds for d, then it also holds for any d̃ > d. In particular, when

d → ∞, parts (2) and (3) are always verified, and part (1) becomes Condition 3.2.

When d is large, Condition 3.1 is not very demanding. It requires only that one

additional neighbor does not reduce benefits too sharply and that there are sufficient

benefits at distance 2.

Proposition 3.7. If Condition 3.1 is verified for d, then no network g containing

an agent i who has a growth dummy neighbor and an agent l such that dl(g) ≤ di(g)

and dil(g) ≥ d can be PS.

See the proof in Appendix 3.A.7.

Corollary 3.1. We have the following:

(i) If Condition 3.1 is verified for d, then no k-regular network g such that its

diameter diam(g) > 2d and which contains an agent who has a growth dummy

neighbor can be PS.

(ii) If Condition 3.2 is verified and k is bounded independently of n, then no k-

regular network g which contains an agent who has a growth dummy neighbor
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can be APS.

Proof: (i) Let i be the agent with a growth dummy neighbor. Since diam(g) > 2d,

there exists some agent l such that dil ≥ d. Since the network is k-regular, di(g) =

dl(g). The conditions of Proposition 3.7 are fulfilled.

(ii) Let i be the agent with a growth dummy neighbor. There is an agent l at distance

at least diam(gn)/2 from i, dl(g) = di(g). By replacing dil in Proposition 3.7 by

diam(gn)/2, we obtain that gn cannot be PS if b(1, 0, k − 1) − b(2, k − 1, k2) <

b(1, 0, k) − b(diam(gn)/2, k, 0) +
∑

a∈Nl(g) b(2, k, xa) − b(diam(gn)/2 −1, k, xa). If k is

bounded independently of n, then we have limn→∞ diam(gn) = ∞. Assuming that

the sum of the indirect benefits converges, we have limn→∞ b(diam(gn)/2, k, 0) =

limn→∞ b(diam(gn)/2 −1, k, xa) = 0. Moreover, |Nl(g)| = k. Since xa ≤ k2 (it is the

number of agents at distance 2 from l), by Condition 3.2, g cannot be APS. !

The types of networks that are ruled out (under fairly weak assumptions on the ben-

efits) are networks with many locally redundant links and large diameters. Networks

of this type are for example networks based on some notion of proximity (whether

it is geographical or in terms of similar attributes): agents make links to others

who are geographically close and do not form long range links. Let us give some

examples of networks which contain dummy players. In particular, several types of

k-regular networks have this properties and thus cannot be stable.

Example 3.2. One example is the “geography based” circle network. Let the agents

1, . . . , n be located on a circular graph and let agent i be connected to the agents

numbered i−m, i− (m−1), . . . , i+1, . . . , i+m (mod(n)). This network is k-regular

with k = 2m and has the growth dummy player property when m ≥ 2. For example,

agent i + 1 is a growth dummy for agent i. (This well known model is in fact a

special case of the circulant graph example given below).

Example 3.3. Another example is a certain type of k-regular bi-partite graph. Sup-

pose that n = 2m. Divide the nodes into two disjoint sets of size m. Label the nodes

in the sets a1, . . . , am and b1, . . . , bm, respectively. Let ajbl ∈ g ⇐⇒ |j − l| ≤ c

(mod(n)). This is a k = 2c regular network and agent bj is a growth dummy player

for player aj: the neighbors of bj are aj−c, . . . , aj+c, but these agents are also neigh-

bors of bj−c, . . . , bj+c who are neighbors of aj.

Example 3.4. Consider the following k-regular circulant graph. Let the agents

numbered 1, . . . , n be located on a circular graph and let ij ∈ g ⇐⇒ j = i + z, i +
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z + 1, . . . , i + z + k, i − z, i − (z + 1), . . . , i − (z + k) (mod(n)) with k ≥ 3. This

is a k-regular graph and j = i + z + 1 is a growth dummy player for i because his

neighbors are also neighbors of either i + z or i + z + 2.

The previous subsection provided examples of different types of k-regular networks

which in virtue of Proposition 3.7 cannot be PS or APS under the weak assumptions

on the benefits. Now we will show that there are other constructions of k-regular

networks that can be PS/APS for the same degree k and under the same assumptions

on the benefits.

Example 3.5. We construct the following (2m − 2)-regular network g. Let n =

m(m + 1) with m ∈ N. Divide the agents into m + 1 islands consisting of m

agents. Number the agents on island 1 by a1,1, . . . , a1,m and the agents on island l

by al,1, . . . , al,m. Let ax,yap,q ∈ g if x = p, i.e., if agents belong to the same island.

On island 1, let agent a1,j be linked to agent av,j on every island v except v = j + 1

(mod(m)). On island 2 let agent a2,j be linked to agent av,j on every island v except

v = j + 2 (mod(m)). On island t let agent at,j be linked to agent av,j on every island

v except v = j + t (mod(m)).This ensures that each agent on the same island has

a distinct island he is not linked to. Moreover, if an agent ax,y is not linked to the

agent with label y on island v, he is linked to an agent who is linked to this agent.

Network g is (2m − 2)-regular. We can verify that diam(g) = 2. Indeed, an agent is

linked directly to some agent on every island different from his own except one. On

this island, the agents with different labels are reached by the agents on his island.

The agent with his label is reached by some agent on another island with the same

label.

Proposition 3.8. The (2m − 2)-regular network defined in Example 3.5 is PS in a

non-empty cost range whenever b(d, ., .) is strictly decreasing in d. It is not APS if

condition (A1) does not hold.

See the proof in Appendix 3.A.8.

For n = m(m + 1) we can therefore construct (2m − 2)-regular networks that are

PS in a non-empty cost range as long as the benefit is strictly decreasing with

respect to distance, whereas other (2m − 2)-regular networks of the types in the

previous examples (nearest neighbor circle, bipartite graph, circulant graph) are not

PS. These observations indicate that k-regularity itself is not sufficient to determine

whether a network is PS. This is not so surprising since k-regular networks for
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the same k comprise very different structures. In particular, the diameter of such

networks can be very different.

Proposition 3.8 shows that there exists a k-regular network with k large and small

diameter (diam = 2) that can be PS in our model under very weak assumptions.

Now we will determine the conditions under which k-regular networks with k not

too large (i.e., such that the diameter of the network is large) can be APS. We

introduce the following condition.

Condition 3.3. The network does not contain a cycle of length l ≤ 2d + 1.

We can show the following results.

Proposition 3.9. Assume that b(d̃, ., .) = 0 whenever d̃ > d. Let g be a k-regular

network, where k is bounded independently of n.

• If b(1, 0, k − 1) − b(1, 0, k) < b(2, k, k2), then g cannot be APS.

• If g verifies Condition 3.3 and b(1, 0, k − 1) − b(1, 0, k) >
∑l=d

l=2 b(l, kl−1, kl),

then g is APS in a cost range of size

b(1, 0, k − 1) − b(1, 0, k) −
l=d∑

l=2

b(l, kl−1, kl).

See the proof in Appendix 3.A.9.

3.4.6 Connectedness and degree homogeneity in asymptot-

ically pairwise stable networks as a function of the

level of aversion to others being informed

In this section we give some results on the connectedness and degree homogeneity

of APS structures under different assumptions about the level of aversion to others

being informed. We start with the case where there is moderate aversion to others

being informed, in the sense that the benefit declines if a very large number of agents

are closer to the sender than oneself but not if they are at the same distance to the

sender as oneself (NON A1). In this case we have a clear characterization in the case

where the cost is small compared to the direct benefit. The second case in which

we obtain some interesting results is when aversion to others being informed is very

Philipp Möhlmeier Externalities in Social and Economic Networks



Chapter 3. Competition for the access to and use of information in networks 73

strong: the benefit must not only go to zero when others are at the same distance

to the sender as oneself (A2) but it must decline at a sufficiently rapid pace. We

also have a proposition in the intermediary case, which mainly shows that in this

case there are no clear predictions about degree homogeneity/heterogeneity without

making additional assumptions.

The following definition will be important for characterizing the behavior in the first

case (NON A1).

Definition 3.3. Note by B(gn) the set of nodes whose degrees in gn are bounded

independently of n. Let BC(gn) be the complement of B(gn), so that {1, . . . , n} =

B(gn) ∪ BC(gn). Let SG be the set of connected networks g verifying the following

properties: g is connected, BC(gn) ̸= ∅. If |B(gn)| is not bounded, then there exists

at least one node l in BC(gn) for which limn→∞|{j ∈ B(gn) | lj ∈ gn}| = ∞, that

is, a node l which has a “large” number of links to nodes in B(gn).

The networks in SG are basically of two types. Either there is a very large completely

connected component of nodes whose degrees are not bounded independently of n

and a “small” (size bounded independently of n) group of nodes with low (bounded)

degrees. The network is connected, so links exist between the “high” and “low”

degree group. If there is a large (size not bounded independently of n) number of

low-degree nodes, then there is at least one high degree node who has an unbounded

number of links to nodes in the low degree group. In the first case, we have a

structure reminiscent of a complete graph, since the nodes who are not part of the

large connected component make up only a negligible fraction of the total number

of nodes. Everyone outside of this component has a much lower degree than the

agents in the component. The second case is closer to a star structure: The agents

with high degree are all connected to each other but they are not necessarily that

many of them. At least one of the high degree agents must be linked to a large

number of low degree agents.

The following proposition characterizes the APS networks in the case where there

is strong aversion to a large number of agents being closer to the sender and under

a condition on direct benefits.

Proposition 3.10. If limx→∞ b(2, x, 0) = 0 and limn→∞ b(1, 0, n − 2) > c, then:

• The complete graph is PS.
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• Any g, other than the complete graph that is APS belongs to the class SG

introduced in Definition 3.3.

• In particular, if g is PS, then it is connected and its diameter is bounded

independently of n.

See the proof in Appendix 3.A.10.

The intuition for this result is that with the given conditions on the payoff param-

eters, the diameter has to be small. If the diameter is small and all agents have

similar degrees, these degrees have to be high. However, under assumption (NON

A1) an agent wants to form a direct link to another agent with a very high degree to

avoid being informed after all his neighbors. Thus a network with similar and high

degrees will always “collapse” to a complete network. Therefore, if the network is

not the complete graph, there must be degree inequality. A network with unequal

degrees can be stable because the low degree nodes want to link to the high degree

nodes but the converse is not true for all payoff parameters.

If the direct benefits are lower compared to the cost, many different types of struc-

tures can be PS and additional assumptions are needed to determine which ones

arise. The following proposition is mainly for the sake of comparison with the other

cases.

Proposition 3.11. The assumptions that limx→∞ b(2, x, 0) = 0 and

0 < limn→∞ b(1, 0, n) < c are:

• not compatible with APS of the complete graph;

• compatible with the APS of the star;

• compatible with the APS of networks with small (bounded independently of n)

and large (unbounded) diameters.

We omit the proof which is not complicated. We now consider the case where there

is stronger aversion to others being informed, in the sense that utility decreases to

zero also when a large number of others are of the same distance from the sender, i.e.,

when Assumption (A2) holds. However, the conditions under which we obtain PS

structures that are clearly different from those with weaker aversion to others being

informed are stronger than just assumption (A2). We also make an assumption on

the rate of decline.
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Proposition 3.12. Suppose that Assumption (A2) holds and that

lim
n→∞

nb(2, 0, n) < c.

Then any g that is APS is such that:

• The degrees of all nodes in g are bounded independently of n.

• The network diameter is not bounded independently of n.

• Under certain assumptions on the benefit parameters non connected networks

can be stable.

See the proof in Appendix 3.A.11.

3.5 Discussion and concluding remarks

Since the payoff functions in our two models of a competition for information do

not involve the same parameters, we cannot always obtain meaningful comparison

of the stable structures in the two models. Indeed, in both models many structures

can be PS for some choices of payoff parameters and the parameter ranges cannot be

compared. If we turn to asymptotic pairwise stability, predictions become sharper,

revealing differences between the effects of competition for the access to, and com-

petition in the use of information, in terms of which structures agents are likely to

form. We can also contrast the results in these two models with those of the original

connections model.

In the original Jackson-Wolinsky model, the star emerged as the uniquely (asymp-

totically) pairwise stable structure in a large parameter range. This is not the case

for either one of the models considered here. In the CA model, the star is never

APS for inefficient communication technologies. It fares somewhat better in the CU

model if the aversion to others being informed first is not too strong, since each

peripheral agent receives a large quantity of information although it is shared with

others. It should be noted that the star, when it is formed does not benefit the

same agents in the CA or CU model as in the original connections model. In the

latter, most of the benefits are extracted by the peripheral agents who always de-

rive a strictly greater utility from being linked to the center than the center does

from being linked to them. In short, the center sponsors costly links that mainly
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benefit the peripheral agents. Therefore, it is the center’s decision that is critical for

stability: if the center wants to maintain a link so does the peripheral node. When

we introduce competition effects, the situation changes. Agents in the periphery

suffer the effects of congestion (CA model), or from receiving information that is

always shared with many others (CU model). Now, the star typically fails to be

stable because the peripheral agents do not want to maintain a link to the center,

or because they link directly to each other to receive more “exclusive” information.

Generally speaking, competition in the use of information seems to favor the stability

of structures with small diameters and also of densely connected structures. We

have shown that if an agent sees little value in an information that many others

have received before him, and if costs are low enough, the only APS structures are

generalized stars, that is structures where a few high degree nodes, linked to each

other are linked to a large number of low degree nodes, or structures similar to

the complete network consisting of a large completely connected component whose

members are linked to lower degree nodes. Competition in the use of information

leads to small network diameters since agents get little benefit from information

that has passed through a large number of intermediaries. Again, we are not able to

characterize the efficient structure although we have found that in a wide parameter

range the star outperforms the other usual structures and in particular the complete

network. It results from this that the CU model can exhibit over connectedness

since the complete network can be dominated by the star in terms of efficiency in

its stability range. The reason for this is quite clear: individual agents do not like

to receive a piece of information after everybody else and so they will tend to form

more links to gain early access. However, by doing so, they reduce the value of

the information for those who previously received it first. Ultimately, nobody will

receive any information that is not widely shared.

With competition for the access to information, on the other hand, neither the star

nor the complete network is APS when the communication technology is inefficient.

Instead, we find that the circle, which avoids congestion effects since each agent has

only two contacts, can be stable under some conditions on the parameters, mainly

that decay is high enough. While we are not able to identify the efficient network

in the CA model, a comparison of several “standard” network architectures show

that the circle outperforms the others in terms of efficiency for a wide range of costs

and levels of decay under a condition that is only related to the communication
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technology, namely that the communication efficiency is close to being maximal

for agents with degree two. Moreover, we have shown that in both models some

structures are not efficient when being APS. In the CU model, the circle is PS only

under very un-plausible assumptions on the payoff function. A network with long

communication chains does not satisfy agents who compete for the use of information

since most of the information they receive will have passed through a large number

of intermediaries.

Depending on whether they face competition for the access to information or compe-

tition in the use of information, agents’ network formation strategies will be rather

different. In the CU model, the desire to avoid being informed after others will in-

cite agents to create new links to bridge large distances. If costs are low, the stable

networks have short diameters and may be densely connected, sometimes too much

so from the point of view of efficiency. In the CA model, on the other hand, densely

connected structures are not plausible unless costs are very low. In this context, the

source of disutility is congestion, a problem which is aggravated in densely connected

networks. Longer communication chains can now be more stable and efficient than

structures with short diameters because there is less congestion when information

is transmitted.

3.A Appendix

3.A.1 Proof of Proposition 3.2

Proof: (i) Consider any two agents i, j ∈ g∅. We have uCA
i (g∅ + ij) − uCA

i (g∅) =

uCA
j (g∅ + ij) − uCA

j (g∅) = f(1)δ − c ≤ 0 iff f(1)δ ≤ c.

(ii) Consider the star g∗ with n ≥ 3 agents. Take the center of the star i and two

arbitrary agents j, k, where j ̸= i, k ̸= i, and j ̸= k. This means that ij ∈ g∗ but

jk /∈ g∗. For stability the following conditions must hold:

(A) uCA
i (g∗) − uCA

i (g∗ \ ij) ≥ 0 and

(B) uCA
j (g∗) − uCA

j (g∗ \ ij) ≥ 0 and

(C) uCA
j (g∗ + jk) − uCA

j (g∗) ≤ 0.

(A): uCA
i (g∗)−uCA

i (g∗\ij) = (n−1)f(1)δ−(n−1)c−(n−2)f(1)δ+(n−2)c = f(1)δ−c.

Hence, (A) holds iff f(1)δ ≥ c.
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(B): uCA
j (g∗) − uCA

j (g∗ \ ij) = f(n − 1)δ + (n − 2)f(1)f(n − 1)δ2 − c. Hence, (B)

holds iff f(n − 1)δ + (n − 2)f(1)f(n − 1)δ2 ≥ c.

(C): uCA
j (g∗+jk)−uCA

j (g∗) = f(2)δ+f(n−1)δ2 (2f(2) − f(1))+(n−3)f(1)f(2)f(n−
1)δ3 − c. Hence, condition (C) holds iff

f(2)δ + f(n − 1)δ2 (2f(2) − f(1)) + (n − 3)f(1)f(2)f(n − 1)δ3 ≤ c.

Hence, (A) and (B) and (C) lead to condition (3.4).

(iii) Let n ≥ 3. Consider any two agents i, j ∈ gN . We have

uCA
i (gN) − uCA

i (gN − ij)

= f(n − 1)δ + (n − 2)f(n − 1) (2f(n − 1) − f(n − 2)) δ2

+ f 2(n − 1)(n − 2)(n − 3) (3f(n − 1) − 2f(n − 2)) δ3 + · · ·
+ fn−2(n − 1)(n − 2)!((n − 1)f(n − 1) − (n − 2)f(n − 2))δn−1 − c

which leads to (3.5).

(iv) Let gc be the circle of n agents. Let i, j ∈ g. The ‘no-deletion’ condition

uCA
i (gc) ≥ uCA

i (gc − ij) holds iff 2f(2)δ + 2f 2(2)δ2 + . . . + 2fn−1(2)δn−1 − 2c ≥
f(2)δ+f 2(2)δ2+. . .+fn−2(2)δn−2+fn−2(2)f(1)δn−1−c iff condition (3.6) is satisfied.

For the ‘no-addition’ condition, it is enough to show that agent i does not want to

add a link to the node that is the most far away from himself. Denote such a node

by k. Then uCA
i (gc) ≥ uCA

i (gc + ik) iff

2f(2)δ + 2f 2(2)δ2 + . . . + 2fn−1(2)δn−1 − 2c ≥
2f(2)δ + f(3)δ + 2f 2(2)δ2 + 2f(2)f(3)δ2 + . . .

+ 2f
n
2

−1(2)δ
n
2

−1 + 2f
n
2

−2(2)f(3)δ
n
2

−1 + 4f
n
2

−1(2)f(3)δ
n
2 + 2f

n
2 (2)f(3)δ

n
2

+1 + . . .

+ 2fn−3(2)f(3)δn−2 + 2fn−2(2)f(3)δn−1 − 3c

iff condition (3.7) is satisfied.

(v) Consider network g consisting of n
2 separate pairs. Take arbitrary i, j, k ∈ N

such that ij ∈ g, ik /∈ g. We have the following conditions:

uCA
i (g) − uCA

i (g − ij) = f(1)δ − c ≥ 0

uCA
i (g + ik) − uCA

i (g) = f(2)δ + f(1)f(2)δ2 − c ≤ 0

Hence, g is PS iff (3.8) holds. The cost range is non-empty whenever f(2)δ(1 +

Philipp Möhlmeier Externalities in Social and Economic Networks



Chapter 3. Competition for the access to and use of information in networks 79

f(1)δ) ≤ f(1)δ which gives condition (3.9). !

3.A.2 Proof of Proposition 3.3

Proof: (i) and (v) are obvious, since the conditions for PS do not depend on n.

(ii) Let function f be such that limn→∞ f(n)n = 0. Then the star is APS if f(2)δ ≤
c ≤ 0. Suppose now that function f is such that 0 < limn→+∞ f(n)n ≤ 1. Then the

star is APS if

f(2)δ + f(1)f(2)δ3 lim
n→+∞

f(n)n ≤ c ≤ f(1)δ2 lim
n→+∞

f(n)n.

Such a positive cost exists when

lim
n→+∞

f(n)n ≥ f(2)

δf(1)(1 − δf(2))
.

Let limn→+∞ f(n)n := a ∈ (0, 1]. We need to consider the inequality

af(1)f(2)δ2 − af(1)δ + f(2) ≤ 0

We have ∆ = a2f 2(1)−4af(1)f 2(2) = af(1)(af(1)−4f 2(2)), and ∆ ≥ 0 iff 2f(2) ≤√
af(1) ≤ 1. Since δ ∈ (0, 1), we have the condition af(1)−

√
∆

2af(1)f(2) < 1 which is equivalent

to a > f(2)
f(1)(1−f(2)) . In particular, the condition is not satisfied for f(d) = 1

d .

(iii) Stability of the complete network requires

c ≤ f(n − 1)δ

[

1 +
n−2∑

k=1

fk−1(n − 1)
(n − 2)!

(n − 2 − k)!
δk((k + 1)f(n − 1) − kf(n − 2))

]

︸ ︷︷ ︸
=:S

.

Let us show that the right hand expression of this inequality goes to 0 as n → +∞.

We note that

(k + 1)f(n − 1) − kf(n − 2) < (k + 1)f(n − 2) − kf(n − 2) = f(n − 2).

Since limn→+∞ f(n)n ≤ 1, there exists an M such that for all n ≥ M , f(n)n ≤ 1.
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Thus

S ≤ f(n − 1)δ

[

1 +
M∑

k=1

fk−1(n − 1)
(n − 2)!

(n − 2 − k)!
δk

]

+ f(n − 1)δ
n−2∑

k=M+1

f(n − 2)fk−1(n − 1)δk (n − 2)!

(n − 2 − k)!
.

We have

f(n − 2)fk−1(n − 1)
(n − 2)!

(n − 2 − k)!

= (n − 2 − k + 1) . . . (n − 3)(n − 2)f(n − 2)fk−1(n − 1) < ((n − 2)f(n − 2))k ≤ 1.

Thus

S ≤ f(n − 1)δ

⎡

⎣1 +
M∑

k=1

fk−1(n − 1)
(n − 2)!

(n − 2 − k)!
δk +

n−2∑

k=M+1

δk

⎤

⎦

The first sum in the bracket is finite, the second one converges since δ < 1 and

limn→+∞ f(n − 1) = 0. Consequently, S tends to zero and no positive cost exists.

(iv) The circle is APS if

lim
n→+∞

[

f(3)δ + 2f(3)
n−2∑

k=1

fk(2)δk+1

]

≤ c ≤ lim
n→+∞

n−1∑

k=1

fk(2)δk

or equivalently

f(3)δ + 2f(3)δ lim
n→+∞

[
f(2)δ − (f(2)δ)n−1

1 − f(2)δ

]

≤ c ≤ lim
n→+∞

f(2)δ − (f(2)δ)n

1 − f(2)δ

⇐⇒ f(3)δ + 2f(3)δ

[
f(2)δ

1 − f(2)δ

]

≤ c ≤ f(2)δ

1 − f(2)δ
(3.27)

⇐⇒ f(3) + f(3)f(2)δ ≤ c(1 − f(2)δ)

δ
≤ f(2).

Such a positive cost exists whenever f(3) + f(3)f(2)δ ≤ f(2) ⇐⇒ δ ≤ f(2)−f(3)
f(2)f(3) .

Moreover, if we apply f(d) = 1
d to (3.27), we get the cost range given by (3.11). !
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3.A.3 Proof of Lemma 3.3

Proof: We compare the circle with the disjoint pair structure denoted by g̃. Con-

sider

lim
n→∞

(
∑

i∈N

uCA
i (g̃) −

∑

i∈N

uCA
i (gc)

)

We have

∑

i∈N

uCA
i (g̃) = nδf(1) − nc,

∑

i∈N

uCA
i (gc) =

2nf(2)δ (1 − (δf(2))n−1)

1 − δf(2)
− 2nc

and

lim
n→∞

(

nδf(1) − nc − 2nf(2)δ (1 − (δf(2))n−1)

1 − δf(2)
+ 2nc

)

=

lim
n→∞

(

nδf(1) + nc − 2nf(2)δ

1 − δf(2)
−
)

= lim
n→∞

(

f(1)δ + c − 2f(2)δ

1 − δf(2)

)

n

This quantity is positive if c > 2f(2)δ
1−δf(2) − δf(1). !

3.A.4 Proof of Proposition 3.4

Proof: (i) Consider any two agents i, j ∈ g∅. We have uCU
i (g∅ + ij) − uCU

i (g∅) =

uCU
j (g∅ + ij) − uCU

j (g∅) = b(1, 0, 0) − c ≤ 0 iff b(1, 0, 0) ≤ c.

(ii) Consider the star g∗ with n ≥ 3 agents. Let i be the center of the star and j, k

two arbitrary agents, where j ̸= i, k ̸= i, and j ̸= k. The stability conditions are

the following:

(A) uCU
i (g∗) − uCU

i (g∗ \ ij) ≥ 0 and

(B) uCU
j (g∗) − uCU

j (g∗ \ ij) ≥ 0 and

(C) uCU
j (g∗ + jk) − uCU

j (g∗) ≤ 0.

(A): uCU
i (g∗)−uCU

i (g∗ \ ij) = (n−1)b(1, 0, 0)−(n−1)c−(n−2)b(1, 0, 0)+(n−2)c =

b(1, 0, 0) − c. Hence, (A) holds iff b(1, 0, 0) ≥ c.

(B): uCU
j (g∗) − uCU

j (g∗ \ ij) = b(1, 0, n − 2) + (n − 2)b(2, 1, n − 3) − c. Hence, (B)

holds iff b(1, 0, n − 2) + (n − 2)b(2, 1, n − 3) ≥ c.

(C): uCU
j (g∗ + jk) − uCU

j (g∗) = b(1, 0, 1) − b(2, 1, n − 3) − c. Hence, condition (C)

holds iff c ≥ b(1, 0, 1) − b(2, 1, n − 3).
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Hence, (A) and (B) and (C) give conditions (3.14) and (3.15).

(iii) Let n ≥ 3. Consider any two agents i, j ∈ gN . We have

uCU
i (gN) − uCU

i (gN − ij) = b(1, 0, n − 2) − b(2, n − 2, 0) − c ≥ 0 iff c ≤ b(1, 0, n −
2) − b(2, n − 2, 0).

(iv) Consider the circle gc with n > 3 agents. Let i, j be arbitrary two agents such

that ij ∈ gc. The no-link-deletion condition uCU
i (gc)−uCU

i (gc − ij) ≥ 0 is equivalent

to (3.17).

Consider now the no-link-addition condition. It is sufficient to guarantee that a node

does not want to form a link with another node which is most far away from that

node, as connecting to any node in the circle which is not at a maximal distance

would be less profitable. Let n ≥ 8. The condition uCU
i (gc) − uCU

i (gc + ik) ≥ 0

for ik /∈ g is equivalent to (3.18). The first difference (b(1, 0, 2) − b(n
2 , n − 2, 0)) on

the right hand side of this inequality corresponds to node i’s gain of being directly

connected to node k which was before at distance n
2 from i. The second difference on

the right hand side of condition (3.18) corresponds to i’s gain from all other nodes

that can be reached by i by a shorter distance via node k. For n = 4 and n = 6 node

i’s total gain consists of the first difference only, that is, the gain of being directly

connected to k.

(v) It results immediately from the definition of PS. !

3.A.5 Proof of Proposition 3.5

Proof: (i) and (v) are obvious, since the conditions for PS do not depend on n.

(ii) Consider the star g∗ with n ≥ 3 agents. Let assumption (A1) be satisfied.

Then we have limk→+∞ b(l, x, k) > 0 for all l, x. The star is APS whenever (3.20)

is satisfied, as b(1, 0, 0) < limn→+∞ (b(1, 0, n − 2) + (n − 2)b(2, 1, n − 3)). Note that

the cost range is non-empty, since b(1, 0, 1) − limn→+∞ b(2, 1, n − 3) < b(1, 0, 0).

Suppose now that assumption (A2) is satisfied. The star is APS whenever (3.22) is

satisfied. If limn→+∞(n − 2)b(2, 1, n − 3) < b(1, 0, 1), then this cost range is empty.

On the contrary, if limn→+∞(n − 2)b(2, 1, n − 3) ≥ b(1, 0, 1), then there exists some

cost that satisfies (3.22), since b(1, 0, 1) < b(1, 0, 0).

(iii) Stability of the complete network requires (3.23) to be satisfied. If we have
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limn→+∞ b(1, 0, n − 2) > limn→+∞ b(2, n − 2, 0) then the right hand side of (3.23) is

positive and gN is APS. If limn→+∞ b(1, 0, n − 2) = limn→+∞ b(2, n − 2, 0), then the

right hand side of (3.23) is equal to 0, and consequently gN is not APS.

(iv) Consider the circle gc of n > 3 nodes. When going to the limit under n → +∞
in the right hand expressions in (3.17) and (3.18), we obtain condition (3.24). !

3.A.6 Proof of Conclusion 3.2

Proof: (i) By virtue of Lemma 3.4, g∗ is more efficient than g∅ if

2c < b(1, 0, 0) + b(1, 0, n − 2) + (n − 2)b(2, 1, n − 3)

and when moving to the limit with n → +∞, under assumption (A1), g∗ is always

more efficient than g∅, and therefore also for the cost range when g∅ is APS.

(ii) By virtue of Lemma 3.4, g∗ is more efficient than the structure of disjoint pairs

if

(n − 1)[b(1, 0, n − 2) + (n − 2)b(2, 1, n − 3)] > c(n − 2) + b(1, 0, 0)

which is equivalent to

c <
n − 1

n − 2
b(1, 0, n − 2) + (n − 1)b(2, 1, n − 3) − b(1, 0, 0)

n − 2
.

When moving to the limit with n → +∞, this condition is always satisfied under

assumption (A1), in particular when the structure of disjoint pairs is APS.

(iii) When moving to the limit in (3.25), by virtue of Lemma 3.4, g∗ is more efficient

than gN if

c ≥ lim
n→+∞

b(1, 0, n − 2) − lim
n→+∞

b(2, 1, n − 3).

From monotonicity of function b, and assumptions (3.13) and (3.26) we have

lim
n→+∞

b(1, 0, n − 2) ≥ lim
n→+∞

b(2, 1, n − 3) > lim
n→+∞

b(2, n − 2, 0)

and therefore from Proposition 3.5(iii), gN is APS and the cost range for its pairwise
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stability satisfies (3.23). Hence, if the cost range is such that

c ≥ lim
n→+∞

b(1, 0, n − 2) − lim
n→+∞

b(2, 1, n − 3)

and

c ≤ lim
n→+∞

b(1, 0, n − 2) − lim
n→+∞

b(2, n − 2, 0),

then gN is APS but not efficient. This cost range is non-empty under assumption

(3.26). !

3.A.7 Proof of Proposition 3.7

Proof: Let i be the agent who has a growth dummy neighbor j. If g is PS, then

uCU
i (g) − uCU

i (g − ij) ≥ 0. Let di = k. The growth dummy condition implies

that the only loss from cutting the link to j is that j himself moves further away:

uCU
i (g) − uCU

i (g − ij) ≤ b(1, 0, k − 1) − b(2, k − 1, k2) − c. By the assumption, there

exists l such that dil ≥ d and dl ≤ di. Suppose first that dl = di. PS requires that

uCU
i (g + il) − uCU

i (g) ≤ 0.

We have uCU
i (g + il) − uCU

i (g) ≥ b(1, 0, k) − b(dil, k, 0) +
∑

a∈Nl(g) b(2, k, xa) − b(dil −
1, k, xa) − c, where xa =

∑
m∈N 1dml(g)=2. Forming a link to l brings the k direct

neighbors of l to distance 2 from i, while they were previously at distance dil −
1. By symmetry, we also have uCU

l (g + il) − uCU
l (g) ≥ b(1, 0, k) − b(dil, k, 0) +

∑
a∈Nl(g) b(2, k, xa) − b(dil − 1, k, xa) − c. Thus pairwise stability of g will fail to hold

if

uCU
i (g) − uCU

i (g − ij) ≤

b(1, 0, k) − b(dil, k, 0) +
∑

a∈Nl(g)

b(2, k, xa) − b(dil − 1, k, xa) − c ⇐⇒

b(1, 0, k − 1) − b(2, k − 1, k2) ≤

b(1, 0, k) − b(dil, k, 0) +
∑

a∈Nl(g)

b(2, k, xa) − b(dil − 1, k, xa)

Since xa ≤ k2,
∑

a∈Nl(g) b(2, k, xa)−b(dil−1, k, xa) ≥ k min1≤x≤k2[b(2, k, x)−b(3, k, x)]

and by Conditions 3.1 and 3.2 we conclude that uCU
i (g) − uCU

i (g − ij) ≤ b(1, 0, k) −
b(dil, k, 0)+

∑
a∈Nl(g) b(2, k, xa)−b(dil, k, xa)−c ≤ min[uCU

l (g + il)−uCU
l (g), uCU

i (g +

il) − uCU
i (g)]. In other words, either i does not want to maintain the link ij ∈ g
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or i and l both wish to add the link il /∈ g, which contradicts g being PS. Finally,

if dl < di and dl = k′, then i gains at least b(1, 0, k′) − b(dil, k′ − 1, 0) − c >

b(1, 0, k − 1) − b(2, k − 1, k2) − c = uCU
i (g) − uCU

i (g − ij). Hence, in this case as well

by Condition 3.1, i would like to add il whenever he wants to maintain ij. !

3.A.8 Proof of Proposition 3.8

Proof: Consider agent ax,y. He will maintain a link to an agent on his own island

ax,z if uCU
ax,y

(g) − uCU
ax,y

(g − ax,yax,z) ≥ 0. uCU
ax,y

(g) − uCU
ax,y

(g − ax,yax,z) = b(1, 0, 2m −
1) − b(2, 2m − 1, n − (2m + 1)) + b(2, 2m − 1, n − (2m + 1)) − b(3, n − 2, 0) − c.

Note that by breaking the link to ax,z, there is an agent that moves from distance

2 to 3, namely agent ay+x(mod(m)),z . Indeed, agent ax,y is not directly linked to

this island. He can reach agent ay+x(mod(m)),y in two steps through some y label

agent on another island and then ay+x(mod(m)),z in another step, or reach some agent

ay+x(mod(m)),r in two steps, but reaching ay+x(mod(m)),z now requires 3 steps. Suppose

that agent ax,y breaks his inter island link to some av,y. We have uCU
ax,y

(g) − uCU
ax,y

(g −
ax,yav,y) ≥ 0 and uCU

ax,y
(g) − uCU

ax,y
(g − ax,yax,z) = b(1, 0, 2m − 1) − b(2, 2m − 1, n −

(2m + 1)) + b(2, 2m − 1, n − (2m + 1)) − b(3, n − 2, 0) − c. Indeed, there is an

agent that moves from distance 2 to 3, namely agent av,z with v = x + z (mod(m)).

By construction, agent ax,z is not linked to agent av,z. After breaking the link

to island v, it requires 3 steps to reach av,z. Now the utility of adding a link is

uCU
ax,y

(g+ax,yax+y(mod(m)),l)−uCU
ax,y

(g) = b(1, 0, 2m−1)−b(2, 2m−1, N −(2m−1))−c.

No agent except the one he links to moves closer since everyone is already at distance

2. If b(1, 0, 2m−1)−b(2, 2m−1, n−(2m+1)) < c < b(1, 0, 2m+1)−b(2, 2m−1, n−
(2m+1))+ b(2, 2m−1, n− (2m+1))− b(3, n−2, 0), then this network is PS. A cost

range where this holds will exist if b(2, 2m − 1, n − (2m + 1)) > b(3, n − 2, 0), and

b(2, 2m−1, n−(2m+1)) > b(2, 2m−1+n−(2m+1), 0) = b(2, n−2, 0) ≥ b(3, n−2, 0).

As long as the benefit at distance 2 is strictly greater than at distance 3, such a cost

range will exist. For finite n, this k-regular network is therefore PS for a non-empty

cost range, whereas other k-regular networks cannot be PS when benefits satisfy

Condition 3.1. However, the cost range for which the island network is PS goes to

zero if condition (A1) does not hold. Therefore it is not always APS. !
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3.A.9 Proof of Proposition 3.9

Proof: Suppose that k is bounded independently of n. Thus limn→∞ diam(gn) =

∞. To simplify the analysis we will assume that there exists a cut-off level d (d large)

above which benefits are zero. Suppose that lij(g) > d. If i links to j, then he gains

b(1, 0, k) in direct benefits. All the indirect neighbors of j were previously at distance

greater than d from i. Note by nk
l (g) =: |Nk

l (g)|, the number of agents at distance ex-

actly k from l. The indirect benefits are
∑k=d

k=2

∑
{l∈Nk−1

j (g)} b(k,
∑r=k−1

r=1 nr
l (g), nk

l (g)).

We should note that for all 1 ≤ k ≤ d and l ∈ Nk
j (g), nk

l (g) = nk
l (g + ij). Now, let

m be a neighbor of j. If m breaks the link to j, then his loss of direct benefits is

b(1, 0, k − 1). His loss of indirect benefits can potentially be much smaller than the

gain of i if many of the indirect neighbors of j are also indirect neighbors of m in g.

However an upper bound on the loss is
∑k=d

k=2

∑
{l∈Nk−1

j (g)}[b(k,
∑r=k−1

r=1 nr
l (g), nk

l (g))−
b(2, k, k2)]. Indeed, if i links to j, then agent m is at distance 2. Agent m himself

does not obtain this benefit from linking to j. Stability requires that m wishes to

maintain mj and i does not want to form ij. We have

uCU
i (g + ij) − uCU

i (g) = b(1, 0, k) +
k=d∑

k=2

∑

{l∈Nk−1
j

(g)}

b(k,
r=k−1∑

r=1

nr
l (g), nk

l (g)) − c

uCU
m (g) − uCU

i (g − jm) ≤ b(1, 0, k − 1)

+
k=d∑

k=2

∑

{l∈Nk−1
j (g)}

[b(k,
r=k−1∑

r=1

nr
l (g), nk

l (g)) − b(2, k, k2)] − c

So g cannot be pairwise stable if b(1, 0, k − 1) − b(1, 0, k) < b(2, k, k2). Now suppose

that g satisfies Condition 3.3. An implication of Condition 3.3 is that if ab ∈ g, then

(
⋃

l≤d N l
a(g)) ∩ (

⋃
l≤d N l

b(g)) = ∅. If Condition 3.3 holds, then

uCU
m (g) − uCU

i (g − jm) = b(1, 0, k − 1)+

+
k=d∑

k=2

∑

{l∈Nk−1
j (g)}

b(k,
r=k−1∑

r=1

nr
l (g), nk

l (g)) −
l=d∑

l=2

b(l, kl−1, kl) − c

Indeed, Condition 3.3 implies that none of m’s indirect neighbors at distance not

greater than d are indirect neighbors of j at distance not greater than d. Like before,

stability requires that m wishes to conserve mj and that i does not want to form
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ij. This is also a sufficient condition, because Condition 3.3 implies that neighbor

growth is tree like everywhere up to level d, and if agent i does not want to form link

ij, no agent wants to add a link that is not in g. This holds if b(1, 0, k−1)−b(1, 0, k) >
∑l=d

l=2 b(l, kl−1, kl). !

3.A.10 Proof of Proposition 3.10

Proof: Let us show that no APS network can have a diameter that is not bounded

independently of n. Suppose that the diameter d̄ verifies limn→∞ d̄(gn) = ∞. Con-

sider two agents who are at the maximal distance d̄ from each other. Each one of

them would gain at least b(1, 0, n − 2) − b(d̄, x, y) − c from forming a link. But

limd̄→∞ b(d̄, x, y) = 0 for any x and y, due to the assumption that the sum of utili-

ties converges. Moreover, we know that limn→∞ b(1, 0, n − 2) > c. This contradicts

the stability of the network with diameter d̄. From this it also follows that BC(gn)

cannot be empty. If it were, all agents would be in B(gn) and have degrees bounded

independently of n. The diameter of such a network is not bounded independently

of n which is, by the previous argument, impossible. To show that all agents with

asymptotically unbounded degree must be linked, note that the benefit of forming

a link with i ∈ BC(gn) if it does not exist is at least b(1, 0, n − 2) − b(2, di, 0). Since

limn→∞ di = ∞, limn→∞ b(2, di, 0) = 0. Moreover, if the complete graph is APS,

then b(1, 0, n − 2) − b(2, n − 2, 0) > c and limn→∞ b(2, n − 2, 0) = 0.

Suppose that limn→∞ |B(gn)| = ∞. Let M =: maxi∈B(gn)di < ∞. Set k(n) =:
log(|B(gn)|/2)

log(M) . Let gr be the restriction of g to B. For every i ∈ B, |Nk(i)| ≤ Mk ≤
|BC(gn)|/2. It follows that if we define Si =: {j|dij(gr) > k}, |Si| ≥ |B(gn)| −
|B(gn)|/2 = |B(gn)|/2. We deduce that for every j ∈ Si, i and j must have a

common neighbor in BC . Suppose that this is not the case. If there is not a path that

goes through BC and that is shorter than k, agent i gains b(1, dj, 0) − b(k(n), c1, c2)

from linking to j and the gain for j is similar. Since limn→∞ b(k(n), c1, c2) = 0, the

link is profitable. If |BC(gn)| is bounded independently of n, then automatically

every node in this set has an unbounded number of links to nodes in B(gn). Thus

suppose limn→∞ |BC(gn)| = ∞. If there is a path between i and j that goes through

BC that is shorter than k but involves at least two distinct nodes in BC , then there

are at least |BC(gn)| nodes who are closer to i than j and vice versa. Then the gain

for i and j of forming a direct link is at least b(1, dj, 0) − b(2, |BC(gn)|, c2) and since
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limn→∞ b(2, |BC(gn)|, c2), the link is profitable. This contradicts the stability of g.

Therefore there must be some node in l ∈ BC that is linked to i and to every j ∈ Si.

Since limn→∞ |Si| = ∞, the result follows. !

3.A.11 Proof of Proposition 3.12

Proof: Assume to the contrary that some node i has a degree that is not bounded

independently of n: limn→∞ di(gn) = ∞. Let j be a neighbor of i. j’s direct

benefit of maintaining link ij is b(1, 0, di(gn) − 1) which goes to zero as n grows.

The greatest possible indirect benefit of the link ij is achieved if i is the center

of a star (in all other configurations indirect benefits are smaller). In this case

uCU
j (g) − uCU

j (g − ij) = b(1, 0, di(gn) − 1) + (n − 2)b(2, 1, n − 2) − c but limn→∞ c −
b(1, 0, di(gn) − 1) − (n − 2)b(2, 1, n − 2) = −c < 0. Thus all nodes must have degrees

bounded independently of n. The result about the diameter comes from arguments

given previously.

Assumption (A2) in itself is not sufficient to ensure this weak degree heterogeneity.

For example, the star can still be APS. To see this, note that the conditions are

that the center does not want to break with the periphery (i.e., b(1, 0, 0) ≥ c), the

periphery does not want to break with the center (i.e., limn→∞((n − 2)b(2, 1, n −
2) + b(1, 0, n − 2)) − c ≥ 0) and two peripheral nodes do not want to form a link to

each other (i.e., limn→∞(b(1, 0, 1) − b(2, 1, n − 2)) − c ≤ 0). This gives b(1, 0, 1) ≤
c ≤ b(1, 0, 0) and limn→∞ b(1, 0, n) ≥ c. If the term b(1, 0, n) does not decline too

rapidly, the star can be APS but the cost range b(1, 0, 1) ≤ c ≤ b(1, 0, 0) is very

small. There are basically two effects that destabilize the star. The peripheral nodes

may want to break with the center if b(1, 0, n) declines rapidly with the number of

people being at the same distance to the sender. Moreover, agents’ incentive to form

direct links in the periphery is greater than in the Jackson-Wolinsky model since the

information that two peripheral agents receive from each other in the star is shared

with everyone else which gives them incentive to link directly. !
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Chapter 4

A modification of the connections

model with negative externalities

by overall connectivity

This chapter is based on work of my own and single-authored.

4.1 Introduction

Jackson and Wolinsky (1996) introduce in their seminal paper the so called connec-

tions model. It is an example for social communication between individuals where

benefits and costs for each individual are determined by the direct and indirect

connections among them. Each direct connection is costly and provides a certain

benefit. Additionally, (discounted) benefits spill over from and to more distant part-

ners to which only an indirect connection exists. Jackson and Wolinsky (1996) focus

on identifying pairwise stable and strongly efficient networks. A network is said to

be pairwise stable if no agent wants to sever a link, and if no two agents both want

to add a link. A network is said to be strongly efficient if it maximizes the total

utility of all agents. Jackson and Wolinsky (1996) point out that strongly efficient

networks may not be stable. This potential conflict between stability and efficiency

of networks is further analyzed in Dutta and Mutuswami (1997) and Buechel and

Hellmann (2012). For directed communication networks also see Dutta and Jackson
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(2000) and for directed connections and hybrid connections models Bala and Goyal

(2000).

There are numerous extensions of the connections model. Jackson and Rogers (2005)

assume geographic costs of forming links. Players are grouped on the so called

islands, and the costs of connecting to each other are low within an island and

high across islands. Other variations of the connections model with geographic

costs are investigated in, e.g., Johnson and Gilles (2000), Carayol and Roux (2005)

and Carayol and Roux (2009). Jackson and Watts (2002), Watts (2001) as well

as Watts (2002) embed the connections model in a dynamic framework. Although

the connections model was modified intensively over time, the issue of negative

externalities has been hardly considered in this framework.

Morrill (2011) introduces a degree-based utility and implements the idea that the

more connections a direct neighbor has, the less utility is provided through a linkage.

A simple example for this is the co-author model by Jackson and Wolinsky (1996):

A researcher benefits a lot from a connection to a co-author, but the more projects

he is already involved in, the less time is devoted to a single connection. Möhlmeier

et al. (2016) build up on that and propose a degree-distance-based extension of the

model by Morrill (2011) to capture the idea that increasing busyness of neighbors

(and neighbors of neighbors) causes negative externalities. Their generalized degree-

distance-based model subsumes the degree-based model by Morrill (2011) as well

as the distance-based model by Bloch and Jackson (2007) as special cases. Hence,

Möhlmeier et al. (2016) combine in the basic ideas from the connections model with

the ones from the co-auther model and provide a quite general framework with both

types of externalities, positive and negative.

Möhlmeier et al. (2017) integrate externalities due to connectivity associated with

two types of effects: First, competition for the access to information and second,

rivalrous use of information. Competition for the access to information can arise

if an agent with many contacts must share his time between his contacts and thus

has fewer/shorter opportunities to pass on information to each particular contact.

The main idea is that the probability that every neighbor receives the information

decreases with the number of contacts the sender has. In the second model there is

no competition for the access to information but the use of information is rivalrous.

It is assumed that when other agents receive the information before me, the harmful

effect is greater than when they receive the information at the same time as myself.
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Additional contributions on the role of externalities in social and economic networks

are provided, e.g. by Goyal and Joshi (2006),Currarini (2007), Billand et al. (2013)

and Hellmann (2013). Currarini (2007) investigates a game theoretic model of coop-

eration, in which critical structural features of an organization (which is represented

by a connected network) depend on the sign of the spillovers. Besides that, Billand

et al. (2013) provide existence results for a game with local spillovers, where the

payoff function simultaneously satisfies the convexity and the strategic substitutes

property. They use the notion of a pairwise stable network (Jackson and Wolinsky

(1996)) and its refinement, called pairwise equilibrium network (Goyal and Joshi

(2006)). A network is said to be a pairwise equilibrium network if there is a Nash

equilibrium strategy profile which supports the network, and no two agents both

want to add a link. Billand et al. (2013) characterize the architecture of a pairwise

stable network and the architecture of a pairwise equilibrium network. Hellmann

(2013) studies how externalities between links affect the existence and uniqueness

of pairwise stable networks.

Jackson and Wolinsky (1996) mention already that “... one might have a decreasing

value for each connection (direct or indirect) as the total amount of connected-

ness increases.” (p. 53.). Taking this as a starting point, we introduce the overall

connectivity model that incorporates the idea of adding negative externalities from

increasing overall connectivity to the connections model. Additional links may gen-

erate positive externalities by shorter distances, but also negative externalities, since

the total amount of connectedness increases.

Goyal and Joshi (2006) investigate two specific models which are closely related. The

first model is a playing the field game in which the payoff of an agent depends on

the number of his links and the aggregate number of links of the remaining agents.

The second one is a local spillovers game in which the payoff of an agent depends

on the distribution of links of all agents and the identity of neighbors.

The overall connectivity model is not covered either by the playing the field game nor

by the local spillovers game, and it identifies situations which cannot be distinguished

in the other two frameworks. In the overall connectivity model, an agent’s utility

aggregates benefits from direct and indirect connections and weighs them by a factor

considering the aggregate number of links of the other players in the network.

As an example, consider a stylized academic job market in which information about

job opportunities and candidates is distributed within a network of scientists (the
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nodes). In this network, some scientists offer vacancies which they cannot fill inter-

nally, while others need to place team members, e.g. their job market candidates or

untenured faculty. Establishing and maintaining a connection to a colleague (i.e., a

link) is costly, but increases the probability of receiving valuable information. Infor-

mation received from a neighboring node is passed on to all neighbors, but its value

is depreciated. For a given node, an additional link induces a positive externality

(if it reduces the distance to other nodes) and/or a negative externality (if it better

connects remote nodes, i.e., if it gives theses scientists a relative advantage).

For the overall connectivity model, we provide results on pairwise stable, asymp-

totically pairwise stable and strongly efficient networks and compare them with the

ones from the original connections model by Jackson and Wolinsky (1996). Our

main findings are the following:

As in Jackson and Wolinsky (1996), we provide the conditions for pairwise stability

of the empty network g∅, the complete network gN , the star network gs and the

circle network gc. All these structures are pairwise stable in the overall connectivity

model, but usually for smaller costs compared to the ones from the connections

model. This is due to the weighting factor from overall connectivity which reduces

the benefit terms. We show that pairwise stable networks with homogeneous degree

distribution, called regular networks, consist of at most one (non-empty) component

in the overall connectivity model. Furthermore, we prove that a regular network is

pairwise stable in the connections model for costs c if and only if it is pairwise

stable in the overall connectivity model for the fraction c′ = 1
1+L(g−i)c. For large n

we show that the star network gs is asymptotically pairwise stable, while the empty

network g∅, the complete network gN as well as the circle network gc are never

asymptotically pairwise stable. The set of strongly efficient networks may differ from

the architectures identified in Jackson and Wolinsky (1996). However, for general

n, we are not able to fully characterize the set of strongly efficient architectures,

but the star network gs appears to be a very good candidate. In terms of aggregate

utility, star network gs strictly dominates the complete network gN and the circle

network gc. The star network gs provides (relatively) short distances with a small

number of links and hence, (relatively) small negative externalities due to overall

connectivity.

The rest of the paper is structured as follows. In Section 4.2 we recapitulate some

preliminaries on networks, the connections model and the co-author model by Jack-

Philipp Möhlmeier Externalities in Social and Economic Networks



Chapter 4. A modification of the connections model with negative externalities by
overall connectivity 93

son and Wolinsky (1996) as well as some of the related extensions. Section 4.3

is concerned with our modification based on overall connectivity. We indicate the

central differences to the existing modifications and provide results on pairwise sta-

bility, asymptotic pairwise stability and strong efficiency. In Section 4.4 we finish

with some concluding remarks and present ideas for further research.

4.2 Notation and selected models with externali-

ties

In this section we first present the preliminaries on networks (see, e.g., Jackson and

Wolinsky (1996) and Jackson (2008)) and then briefly recapitulate the models which

are points of departure for our work: the connections model and the co-author model

introduced in Jackson and Wolinsky (1996), the playing the field game and the local

spillovers game presented by Goyal and Joshi (2006), the model with degree-based

utility functions by Morrill (2011) and the model with degree-distance-based utility

functions by Möhlmeier et al. (2016).

4.2.1 Definitions

Let N = {1, 2, . . . , n} denote the set of nodes, often also called agents or players. A

network g is a set of pairs {i, j}, denoted for convenience by ij, with {i, j} ∈ N2,

i ̸= j1, where ij indicates the presence of a pairwise relationship and is referred to

as a link between players i and j. Nodes i and j are directly connected if and only

if ij ∈ g. A degree ηi(g) of agent i counts the number of links i has in g, i.e.,

ηi(g) = |{j ∈ N | ij ∈ g}|.

As a convention, the terms graphs and networks are used as synonyms in this frame-

work.

Two simple structures are the empty network g∅ without any link between players,

and the complete network gN which is the set of all subsets of N of size 2. The set

1We do not allow for loo in this setting.
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of all possible networks g on N is

G := {g | g ⊆ gN}.

By g + ij and g − ij, we denote the networks obtained by adding link ij to g,

respectively deleting link ij from g. Furthermore, we denote the network obtained

by deleting player i and all his links from the network g by g−i.

Let N(g) (n(g), respectively) denote the set (the number, respectively) of players

with at least one link, i.e.,

N(g) = {i | ∃j s.t. ij ∈ g}, n(g) = |N(g)|.

A path in g connecting i1 and iK is a set of distinct nodes {i1, i2, . . . , iK} ⊆ N(g)

such that {i1i2, i2i3, . . . , iK−1iK} ⊆ g. A network g is connected if there exists a

path between any two nodes in g.

The network g′ ⊆ g is a component of g if for all i ∈ N(g′) and j ∈ N(g′), i ̸= j,

there exists a path in g′ connecting i and j, and for any i ∈ N(g′) and j ∈ N(g),

ij ∈ g implies that ij ∈ g′. Consequently, a network is connected if and only if it

consists of a single component.

The value of a graph is represented by v : G → R. By V we denote the set of

all such functions. In what follows we will assume that the value of a graph is an

aggregate of individual utilities, i.e., v(g) =
∑

i∈N ui(g), where ui : G → R.

A network g ⊆ gN is strongly efficient (SE) if v(g) ≥ v(g′) for all g′ ⊆ gN .

An allocation rule Y : G × V → RN describes how the value of a network is

distributed to the players. We will examine the allocation rule Yi(g) = ui(g), which

might correspond to models without side payment.

A network g ∈ G is said to be pairwise stable (PS) if:

(i) ∀ ij ∈ g, ui(g) ≥ ui(g − ij) and uj(g) ≥ uj(g − ij) and

(ii) ∀ ij /∈ g, if ui(g) < ui(g + ij) then uj(g) > uj(g + ij).

Additionally, we are interested in structures which are stable when n tends to be

large. Möhlmeier et al. (2017) suggest a notion of asymptotic (with respect to

network size) pairwise stability.
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Let S be a network structure (e.g., star, complete, circle, . . . ). We say that the struc-

ture S is asymptotically pairwise stable (APS) with respect to the utility function u

if:

(i) it is asymptotically well defined, i.e., we can define a sequence of networks

(gnk
)k≥1 of strictly increasing size nk such that every network gnk

has the

structure of network S, and

(ii) there exist fixed admissible parameters of the utility functions (ui)n
i=1 such

that for all i, j, i ̸= j

(a) lim
n→+∞

(ui(gn) − ui(gn − ij)) ≥ 0 and

(b) if lim
n→+∞

(ui(gn + ij) − ui(gn)) > 0 ⇒ lim
n→+∞

(uj(gn + ij) − uj(gn)) ≤ 0.

The set of admissible specifications (parameters) of the utility function for which

the network is APS is the asymptotic stability range. In the overall connectivity

model the asymptotic stability range is (c, δ), i.e., it is determined by the cost c > 0

and 0 < δ < 1.

APS is neither a refinement of PS, nor it is a weaker concept. A certain network

structure can be PS for some fixed n but not APS. The main interest of the concept

of APS is to reduce the parameter space since the parameter n disappears. The

conditions for APS tend to be less involved than those for PS which may depend on

n.

4.2.2 The connections model and the co-author model

In the symmetric connections model by Jackson and Wolinsky (1996), the utility of

each player i from network g is defined as

uJW
i (g) =

∑

j ̸=i

δtij −
∑

j:ij∈g

c =
∑

j ̸=i

δtij − cηi(g) (4.1)

where 0 < δ < 1 denotes the undiscounted valuation of a connection, tij describes

the number of links in the shortest path between i and j (with tij = ∞, if there is no

path connecting i and j) and c > 0 are the costs for a direct connection. Hence, the

first sum determines the benefits agent i receives via direct and indirect connections,

while the overall utility is reduced by the costs of maintaining the direct connections.
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Jackson and Wolinsky (1996) (Proposition 1) show that the complete network gN ,

the empty network g∅ or the star network gs can be uniquely SE (depending on c

and δ). More precisely, they prove that the unique SE network in the symmetric

connections model is:

(i) the complete network gN if c < δ − δ2,

(ii) the star network gs if δ − δ2 < c < δ + (n−2)δ2

2 and

(iii) the emtpy network g∅ if δ + (n−2)δ2

2 < c.

Furthermore they examine pairwise stability in the symmetric connections model

without side payments. Jackson and Wolinsky (1996) (Proposition 2) prove the

following for the symmetric connections model with Yi(g) = uJW
i (g):

(i) A PS graph has at most one (non-empty) component.

(ii) For c < δ − δ2, the unique PS network is the complete network gN .

(iii) For δ − δ2 < c < δ, a star network gs encompassing all players is PS, but not

necessarily the unique PS graph.

(iv) For δ < c, any PS network which is non-empty is such that every player has

at least two links (and thus is inefficient).

Jackson and Wolinsky (1996) also present the co-author model, in which the play-

ers are interpreted as researchers and a link represents a collaboration between two

researchers. The amount of time each researcher spends on a collaborations is in-

versely related to the number of projects in which he is involved in. The utility

function of player i in network g is given by

uco
i (g) =

∑

j:ij∈g

wi(ni, j, nj) − c(ni) (4.2)

where wi(ni, j, nj) is the benefit of i derived from a link with j when i and j are

involved in ni and nj projects, respectively, and c(ni) are the costs to i of maintaining

ni links.

Jackson and Wolinsky (1996) analyze the following specific utility function:

uco
i (g) =

∑

j:ij∈g

[
1

ni
+

1

nj
+

1

ninj

]

= 1 +
(

1 +
1

ni

) ∑

j:ij∈g

1

nj
(4.3)
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for ni > 0, uco
i (g) = 0 for ni = 0 and with costs c = 0.

Although there are no direct costs of a connection, every new link decreases the

strength of the existing links. Jackson and Wolinsky (1996) (Proposition 4) prove

for the model (4.3) the following:

(i) If n is even, then the SE network is a graph consisting of n
2 separate pairs and

(ii) a PS network can be partitioned into fully intraconnected components, each

of which has a different number of members.

4.2.3 Related frameworks to model externalities

As mentioned in the introduction, there are related frameworks which build up on

the connections model as well as the co-author model and which model externalities

in networks. In the following, we will present a selection of them in more detail.

Goyal and Joshi (2006) introduce two specific models of network formation. In the

first one, called a playing the field game, an agent’s aggregate payoff of an depends

only on the number of his links and the aggregate number of links of the remaining

agents. More precisely, the gross payoff of each player i is given by the function

πpfg
i (g) = Φ(ηi(g), L(g−i)) (4.4)

and its net payoff by

Πpfg
i (g) = Φ(ηi(g), L(g−i)) − ηi(g)c (4.5)

where ηi(g) is the degree of agent i and

L(g−i) =
∑

j ̸=i

ηj(g−i). (4.6)

Note that g−i is obtained by deleting i and all his links from g. It is assumed that for

all L(g−i), Φ(k, L(g−i)) is strictly increasing in own links k. Goyal and Joshi (2006)

study two externality effects – across links of the same player and across links of

different players (which are either positive or negative).

The second game investigated in Goyal and Joshi (2006) is called the local spillovers
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game. In that game, the aggregate payoff of an agent depends on the distribution

of links of all players and the identity of neighbors. More precisely, the aggregate

gross payoff of each player i is given by

πlsg
i (g) = Ψ1(ηi(g)) +

∑

j:ij∈g

Ψ2(ηj(g)) +
∑

j:ij /∈g

Ψ3(ηj(g)). (4.7)

Goyal and Joshi (2006) note that the marginal payoff to i from a link with j, ij /∈ g,

is given by

πlsg
i (g + ij) − πlsg

i (g) = Ψ1(ηi(g) + 1) − Ψ1(ηi(g)) + [Ψ2(ηj(g) + 1) − Ψ3(ηj(g))] .

Hence, it depends only on the number of links of i and j and is independent of the

number of links of k ̸= i, j.

Morrill (2011) models situations in which adding links causes negative externalities.

The payoff of each player from a link is a decreasing function of the number of

links maintained by his partner. A utility function is degree-based if there exists a

decreasing function φ such that

udeg
i (g) =

∑

ij∈g

φ(ηj(g)) − cηi(g). (4.8)

Möhlmeier et al. (2016) introduce a degree-distance-based variation that additionally

accounts for negative externalities by link addition of agents that are indirectly

connected to the relevant player. The utility of agent i is given by

udeg−dis
i (g) =

∑

j ̸=i

b(lij(g), ηj(g)) − cηi(g) (4.9)

where b : {1, . . . , n−1}2 → R+ is the benefit that an agent receives from a connection

and c > 0 are the costs of one direct connection. It is assumed that b(lij(g), k) is

nonincreasing in degree k for all lij(g) and nonincreasing in distance l for all ηj(g).

Moreover, if there is no path connecting i and j in g, i.e., if lij(g) = ∞, then we

set b(∞, ηj) = 0 for every ηj ∈ {0, 1, . . . , n − 1}. In particular, ũi(g∅) = 0 for every

i ∈ N . This generalizes the degree-based model by Morrill (2011) since

φ(ηj(g)) = b(1, ηj(g)), for all ηj(g) ∈ {1, . . . , n − 1}. (4.10)
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4.3 The overall connectivity model

We propose a modification of the connections model which takes into account the

overall connectivity in a network. Similar to Jackson and Wolinsky (1996), an agent

benefits from his direct and indirect connections, less distant connections are more

valuable than more distant ones and direct connections are costly. Our modification

additionally considers the aggregate number of links of the remaining agents in a

network. The higher the overall connectivity of the other agents, the smaller is

the benefit of an agent has from his own (direct and indirect) connections. The

idea of implementing negative externalities from increasing overall connectivity can

be motivated, for instance, by the academic job market example presented in the

introduction. In our model, which we call overall connectivity model, the utility of

agent i is given by

uoc
i (g) =

∑

j ̸=i

1

1 + L(g−i)
δtij −

∑

j:ij∈g

c =
1

1 + L(g−i)

∑

j ̸=i

δtij − cηi(g) (4.11)

where 0 < δ < 1, tij is the number of links in the shortest path between i and j,

c > 0 are the costs of a direct connection and L(g−i) is defined in (4.6).

To see that the overall connectivity model is not a special case of one of the existing

models, consider a few simple examples. The following figures show networks which

generate identical levels of utility for player 1 in at least one of the existing models,

but different (greater) levels of utility for player 1 in the overall connectivity model.

g

1 2 3 4

g′

1 2 3 4

Figure 4.1: The overall connectivity model versus the connections model, the co-
author model and the degree-based utility

If my co-author and me are the only ones who work on a specific topic, the benefit

from that collaboration should be greater than the benefit as if there was another

“couple” working on that topic. Figure 4.1 indicates these two networks. While

uJW
1 (g) = uJW

1 (g′) = δ − c, uco
1 (g) = uco

1 (g′) = w1(1, 2, 1) − c(1) and udeg
1 (g) =

udeg
1 (g′) = φ(1)−c, the overall connectivity results in uoc

1 (g) = δ−c > δ
3 −c = uoc

1 (g′).

For Figure 4.2 let us compare the overall connectivity model with the playing the

field game. We have Πpfg
1 (g) = Πpfg

1 (g′) = Φ(1, 4) − c, but uoc
1 (g) = 1

5(δ + 2δ2) − c >
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g

1 2

3

4 g′

1 2 3 4

Figure 4.2: Overall connectivity model versus the playing the field game

1
5(δ + δ2 + δ3) − c = uoc

1 (g′) for every δ ∈ (0, 1). Here, although both models account

for overall connectivity, the overall connectivity model additionally distinguishes

between different patterns of indirect connections.

g

1 2

3

4

5

6 7
g′

1 2

3

4 5

6

7

Figure 4.3: Overall connectivity model versus the local spillovers game

A comparison between the overall connectivity model and the local spillovers game

is illustrated in Figure 4.3. We see that πlsg
1 (g) = πlsg

1 (g′) = Ψ1(1)+Ψ2(3)+3Ψ3(1)+

Ψ3(3)+Ψ3(2), but uoc
1 (g) = 1

10 (δ + 2δ2 + 2δ3 + δ4)−c > 1
10 (δ + 2δ2 + δ3 + 2δ4)−c =

uoc
1 (g′) for every δ ∈ (0, 1). Again, while the local spillovers game treats equally the

indirect connections of agents with the same degree, the overall connectivity model

takes into account the exact length of the paths to all (indirectly connected) of

agent 1. Note that, moreover, g and g′ of Figure 4.3 are not distinguished also by

the remaining models mentioned before (except by the connections model).

4.3.1 Pairwise stability

First, we examine pairwise stability of the typical network structures, namely the

empty network g∅, the complete network gN , the star network gs and the circle

network gc. Furthermore, we are going to show that a PS regular network always

consists of (at most) one non-empty component. Additionally, we relate the condi-

tions for pairwise stability of regular networks in the overall connectivity model to

the ones in the original connections model.
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Proposition 4.1. Let the utility be defined by (4.11). The empty network g∅ is PS

if and only if δ ≤ c.

Proof: Consider any two agents i, j ∈ g∅. Forming a link would for each of agents

i, j result in uoc
i (g∅ + ij) − uoc

i (g∅) = uoc
j (g∅ + ij) − uoc

j (g∅) = δ − c. Hence, if δ > c,

then uoc
i (g∅ + ij) − uoc

i (g∅) > 0 and uoc
j (g∅ + ij) − uoc

j (g∅) > 0 which implies that

both players will profit from establishing a link, and therefore g∅ is not PS. If δ ≤ c,

then uoc
i (g∅ + ij) − uoc

i (g∅) ≤ 0 and uoc
j (g∅ + ij) − uoc

j (g∅) ≤ 0 which means that g∅

is PS. !

For high costs, c ≥ δ, no node wants to connect to another node so that the stability

range for the empty network g∅ in the overall connectivity model is the same as in

the connections model. This comes from the fact that the benefit term in the

utility function from (4.11) reduces to the one from (4.1) when checking for pairwise

stability of the empty network g∅, which means formally L(g∅
−i) = 0 ⇒ uoc

i (g∅) =

uJW
i (g∅) for every agent i.

Next, we analyze the pairwise stability of the complete network gN .

Proposition 4.2. Let the utility be defined by (4.11).

(i) The complete network gN with n = 2 is PS if and only if δ ≥ c.

(ii) The complete network gN with n ≥ 3 is PS if and only if the following condi-

tions hold:

c ≤ 1

4(n2 − 3n + 3)
≤ 1

12
and δ1 ≤ δ ≤ δ2, where (4.12)

δ1 =
1 −

√
1 − 4c(n2 − 3n + 3)

2
> 0 (4.13)

δ2 =
1 +

√
1 − 4c(n2 − 3n + 3)

2
< 1. (4.14)

Proof: (i) Let n = 2. Then uoc
i (gN) −uoc

i (gN − ij) = uoc
j (gN) −uoc

j (gN − ij) = δ − c,

and therefore gN is PS if and only if δ ≥ c.

(ii) Let n ≥ 3. Consider any two agents i, j ∈ gN . Because of symmetry, it suffices
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to verify uoc
i (gN) − uoc

i (gN − ij) ≥ 0. We have

uoc
i (gN)−uoc

i (gN −ij) =
(n − 1)δ

1 + (n − 1)(n − 2)
−c(n−1)− (n − 2)δ + δ2

1 + (n − 1)(n − 2)
+c(n−2)

and therefore

uoc
i (gN) − uoc

i (gN − ij) = uoc
j (gN) − uoc

j (gN − ij) =
δ(1 − δ)

n2 − 3n + 3
− c (4.15)

This term is nonnegative if and only if δ(1−δ)
n2−3n+3 ≥ c ⇔ δ2 − δ + c(n2 − 3n + 3) ≤ 0.

We therefore consider W (δ) = δ2 − δ + c(n2 − 3n + 3) with n ≥ 3 as a parameter,

and calculate for which δ the inequality W (δ) ≤ 0 holds.

Let ∆ = 1 − 4c(n2 − 3n + 3). Since n2 − 3n + 3 ≥ 3 for each n ≥ 3, we have

∆ ≥ 0 ⇔ c ≤ 1
4(n2−3n+3) ≤ 1

12 which gives (4.12). Moreover, W (δ) ≤ 0 ⇔ ∆ ≥
0 and δ1 ≤ δ ≤ δ2, where δ1, δ2 are given by (4.13) and (4.14), respectively. !

Corollary 4.1. Let the utility be defined by (4.11) and n ≥ 3.

(i) If δ(1−δ) < 3c, then the complete network gN is not PS (for arbitrary n ≥ 3).

(ii) If the costs of a direct connection are too high, namely if c > 1
12 , then the

complete network gN is never PS (independently of δ ∈ (0, 1) and n ≥ 3).

(iii) For every fixed n ≥ 3, there exist δn and sufficiently small cn > 0 such that gN

is PS. However, the larger the number of agents in the network is, the smaller

must be these required maximal costs cn > 0 (which are drastically decreasing

with n).

Proof: (i) The complete network gN is PS iff δ(1−δ)
n2−3n+3 ≥ c ⇔ n2 − 3n + 3 ≤ δ(1−δ)

c .

Since n2−3n+3 ≥ 3 for each n ≥ 3, if δ(1−δ)
c < 3, then it must be n2−3n+3 > δ(1−δ)

c .

Consequently, the complete network gN is never PS.

(ii) This comes immediately from condition (4.12).

(iii) Given n ≥ 3, the “proper” c > 0 is determined from (4.12), and δ1 ≤ δ ≤ δ2 from

(4.13) and (4.14). Note that
(

1
4(n2−3n+3)

)
is decreasing in n and limn→+∞

1
4(n2−3n+3) =

0. !

Compared to the original connections model, note two additional points about the
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stability conditions for the complete network gN . First, the stability region shrinks

down and gets more tiny. In (4.11) gN is PS iff c < δ−δ2

n2−3n+3 while in (4.1) gN is PS

iff c < δ − δ2. Second, the multiplicative constant 1
1+L(g−i)

from the functional form

of the overall connectivity model directly appears in the pairwise stability condition:

c < δ−δ2

n2−3n+3 = δ−δ2

1+(n−1)(n−2) = 1
1+L(g−i)(δ − δ2). Hence, for the complete network gN

the stability region in (4.11) is equivalent to the one in (4.1) multiplied by the factor
1

1+L(g−i)
. As we will see later on, this equivalence for the pairwise stability conditions

will hold true for arbitrary regular networks in the two frameworks.

Next, we determine the sufficient and necessary conditions for the star network gs

to be PS in the overall connectivity model.

Proposition 4.3. Let the utility be defined by (4.11). The star network gs with

n ≥ 3 is PS if and only if:

δ(1 − δ)

1 + 2(n − 2)
≤ c ≤ δ[1 + (n − 2)δ]

1 + 2(n − 2)
. (4.16)

Proof: Take the center i of the star network gs and two arbitrary peripheral agents

j, k, j ̸= k, such that ij ∈ gs, but jk /∈ gs. For pairwise stability the following

conditions must hold:

(A) uoc
i (gs) − uoc

i (gs − ij) ≥ 0 and

(B) uoc
j (gs) − uoc

j (gs − ij) ≥ 0 and

(C) uoc
j (gs + jk) − uoc

j (gs) ≤ 0.

Condition (A): uoc
i (gs)−uoc

i (gs −ij) = (n−1)δ−(n−1)c−(n−2)δ+(n−2)c = δ−c.

Hence, uoc
i (gs) − uoc

i (gs − ij) ≥ 0 ⇔ δ ≥ c.

Condition (B): uoc
j (gs) − uoc

j (gs − ij) = δ+(n−2)δ2

1+2(n−2) − c. Hence, uoc
j (gs) − uoc

j (gs − ij) ≥
0 ⇔ δ[1+(n−2)δ]

1+2(n−2) ≥ c. Note that if condition (B) is satisfied, then also condition (A)

is satisfied, since δ < 1 and therefore c ≤ δ[1+(n−2)δ]
1+2(n−2) < δ.

Condition (C): uoc
j (gs + jk) − uoc

j (gs) = 2δ+(n−3)δ2

1+2(n−2) − 2c − δ+(n−2)δ2

1+2(n−2) + c = δ−δ2

1+2(n−2) − c.

Hence, uoc
j (gs + jk) − uoc

j (gs) ≤ 0 ⇔ δ(1−δ)
1+2(n−2) ≤ c. !

Overall, in the star network gs costs must be high enough so that peripheral nodes

do not want to connect with each other, but at the same time small enough that

peripheral nodes want to stay linked to the center.

Corollary 4.2. Let the utility be defined by (4.11) and n ≥ 3.
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(i) If δ < c, then the star network gs is never PS.

(ii) If δ ≥ δ2

2 ≥ c, then the star network gs is PS for sufficiently large n (i.e., for

n ≥ 3
2 + δ(1−δ)

2c ). In particular, if δ ≥ δ2

2 ≥ c and δ(1 − δ) ≤ 3c, then the star

network gs is PS for every n ≥ 3.

(iii) If δ ≥ c ≥ δ2

2 and δ(1 + δ) < 3c, then the star network gs is never PS.

(iv) If δ ≥ c ≥ δ2

2 and δ(1 + δ) ≥ 3c, then the star network gs is PS for 3 ≤ n ≤
2 + δ−c

2c−δ2 .

Proof: (i) If δ < c, then also δ[1+(n−2)δ]
1+2(n−2) < c, and therefore condition (4.16) is not

satisfied.

(ii)-(iv) Conditions (4.16) are written equivalently as follows:

δ(1 − δ)

1 + 2(n − 2)
≤ c ⇔ n ≥ 3

2
+

δ(1 − δ)

2c
(4.17)

c ≤ δ[1 + (n − 2)δ]

1 + 2(n − 2)
⇔ (n − 2)(δ2 − 2c) ≥ c − δ (4.18)

Let δ ≥ δ2

2 ≥ c. Then (4.18) holds for every n ≥ 3, since c−δ ≤ 0 and (δ2 −2c) ≥ 0.

In particular, if also δ(1 − δ) ≤ 3c, then 3
2 + δ(1−δ)

2c ≤ 3, and therefore (4.17) holds

for every n ≥ 3.

Let δ ≥ c ≥ δ2

2 . Then (4.18) is equivalent to n ≤ 2 + δ−c
2c−δ2 . If δ(1 + δ) < 3c, then

δ−c
2c−δ2 < 1, and hence (4.18) holds only for n < 3. If δ(1 + δ) ≥ 3c, then δ−c

2c−δ2 ≥ 1, so

(4.18) holds for 3 ≤ n ≤ 2 + δ−c
2c−δ2 . Moreover, if δ(1 + δ) ≥ 3c, then δ(1−δ)

2c ≥ 3
2 − δ2

c ,

so 3
2 + δ(1−δ)

2c ≥ 3 − δ2

c , so (4.17) holds for all n ≥ 3. !

In the connections model, the star network gs is PS under the condition δ − δ2 <

c < δ. In comparison to that, the star network gs is PS in the overall connectivity

model whenever δ(1−δ)
1+2(n−2) ≤ c ≤ δ[1+(n−2)δ]

1+2(n−2) . We directly observe that this condition

depends on the network size n and that the upper as well as the lower bound lie

below the ones from the connections model. Intuitively, this makes sense again,

since the functional form differs by 1
1+L(g−i) that reduces the benefit terms by overall

connectivity. Hence, for given benefits δ, costs c can possibly be higher in the

connections model to guarantee pairwise stability of the star network gs. In contrast,

for given benefits δ, there exist costs c (small enough) such that the star network gs
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is PS in the overall connectivity model, but not in the connections model.

Next, we will look at the pairwise stability of structures with more than one com-

ponent. To start with an example, consider an arbitrary network g, existing of

(multiple) disconnected completely connected components. As we will see, this type

of structure cannot be PS in the overall connectivity model.

Example 4.1. Let the utility be defined by (4.11). Take an arbitrary agent ia in

component a and an arbitrary agent ib in component b. Without loss of generality

assume that the network g consists only of two completely connected components and

component a is of size na and component b is of size nb. For pairwise stability, we

have to check for the no link deletion and no link addition conditions:

(i) No link deletion condition:

(a) If na = 2 and nb ≥ 2, it must hold that:

uoc
ia

(g) − uoc
ia

(g − iaja) ≥ 0 ⇔ δ
1+nb(nb−1) − c − 0 ≥ 0 ⇔ δ

1+nb(nb−1) ≥ c

(b) If na ≥ 3 and nb ≥ 2, it must hold that:

uoc
ia

(g) − uoc
ia

(g − iaja) ≥ 0

⇔ (na−1)δ
1+(na−1)(na−2)+nb(nb−1) −(na−1)c− (na−2)δ+δ2

1+(na−1)(na−2)+nb(nb−1) +(na−2)c ≥ 0

⇔ δ−δ2

1+(na−1)(na−2)+nb(nb−1) ≥ c

(ii) No link addition condition (no case differentiation necessary, following form

is valid for all na ≥ 2 and nb ≥ 2):

uoc
ia

(g + iaib) − uoc
ia

(g) ≤ 0

⇔ naδ+(nb−1)δ2

1+(na−1)(na−2)+nb(nb−1) − nac − (na−1)δ
1+(na−1)(na−2)+nb(nb−1) + (na − 1)c ≤ 0

⇔ δ+(nb−1)δ2

1+(na−1)(na−2)+nb(nb−1) ≤ c

Obviously, the no link deletion and no link addition conditions can never hold jointly.

Therefore, any network g, consisting of disconnected completely connected compo-

nents, cannot be PS.

This result is in line with the connections model. There, also any network g, con-

sisting of disconnected completely connected components, cannot be PS.

Next, we provide additional results for networks with homogeneous degree distribu-

tion, called regular networks. A regular (non-empty) network greg
d is a network with

equal degree d (1 ≤ d ≤ n − 1) for every node i ∈ N . We show that a PS regular

network has at most one (non-empty) component in the overall connectivity model.
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Proposition 4.4. Let the utility be defined by (4.11). A PS regular network has at

most one (non-empty) component.

Proof: The proof follows the same line of thoughts as in Jackson and Wolinsky

(1996), p. 51. Suppose that greg
d is PS and has two or more (non-empty) components.

Let ∆ij
i denote the marginal utility which node i receives from a link to node j,

keeping the rest of network greg
d fixed. So, if ij /∈ greg

d it follows that ∆ij
i = uoc

i (greg
d +

ij) − uoc
i (greg

d ) and if ij ∈ greg
d we have ∆ij

i = uoc
i (greg

d ) − uoc
i (greg

d − ij). Consider

ij ∈ greg
d , then ∆ij

i ≥ 0. Consider a link kl which belongs to another component.

Since node i is already in a component with node j, but k is not, it follows that

∆kj
k > ∆ij

i ≥ 0. This holds true, since node k will also receive δ2

1+L(greg
d −k

) in value

from the indirect connection to node i, which is not included in ∆ij
i . For similar

reasons, it follows that ∆jk
j > ∆lk

l ≥ 0. This contradicts pairwise stability, since the

link jk /∈ greg
d . !

Hence, in the connections model as well as the overall connectivity model, a PS

regular network has at most one (non-empty) component.

After having discussed the conditions for pairwise stability of the empty network

g∅ (regular network of degree 0) and the complete network gN (regular network of

degree n − 1), we will additionally provide the conditions for the pairwise stability

of the circle gc (regular network of degree 2).

Proposition 4.5. Let the utility be defined by (4.11). The circle gc is PS if and

only if the following conditions hold:

(i) For n even:

1

2n − 3

⎛

⎝
n
2

−1∑

k=1

δk −
n−1∑

k= n
2

+1

δk

⎞

⎠ ≥ c

and

c ≥ 1

2n − 3

⎛

⎝δ + 2
⌊ n

4
⌋∑

k=2

δk − 2

n
2

−1∑

k=⌈ n
4

⌉+1

δk − δ
n
2

⎞

⎠

(ii) For n uneven:

1

2n − 3

⎛

⎜⎝

n−1
2∑

k=1

δk −
n−1∑

k= n−1

2
+1

δk

⎞

⎟⎠ ≥ c
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and

c ≥ 1

2n − 3

⎛

⎜
⎝

⌊ n−1

4
⌋∑

k=1

δk +
⌈ n−1

4
⌉∑

k=2

δk −
n−1

2∑

k=⌈ n−1
4

⌉+1

δk −
n−1

2∑

k=⌊ n−1
4

⌋+2

δk

⎞

⎟
⎠

Proof: (i) For n even:

• No link deletion condition:

uoc
i (gc) − uoc

i (gc − ij) ≥ 0

⇔ 1
2n−3

(
2
∑n

2
−1

k=1 δk + δ
n
2 −∑n−1

k=1 δk
)

− c ≥ 0

⇔ 1
2n−3

(
∑n

2
−1

k=1 δk −∑n−1
k= n

2
+1 δk

)
≥ c

• No link addition condition (n divisible by 4):

uoc
i (gc) − uoc

i (gc + il) ≥ 0

⇔ 1
2n−3

(
2
∑n

2
−1

k=1 δk + δ
n
2 −

(
3δ + 4

∑n
4

k=2 δk
))

+ c ≥ 0

⇔ c ≥ 1
2n−3

(
δ + 2

∑n
4

k=2 δk − 2
∑n

2
−1

k= n
4

+1 δk − δ
n
2

)

⇔ c ≥ 1
2n−3

(
δ + 2

∑⌊ n
4

⌋
k=2 δk − 2

∑n
2

−1

k=⌈ n
4

⌉+1 δk − δ
n
2

)

No link addition condition (n not divisible by 4):

uoc
i (gc) − uoc

i (gc + il) ≥ 0

⇔ 1
2n−3

(
2
∑n

2
−1

k=1 δk + δ
n
2 −

(
3δ + 4

∑⌊ n
4

⌋
k=2 δk + 2δ⌈ n

4
⌉
))

+ c ≥ 0

⇔ c ≥ 1
2n−3

(
δ + 2

∑⌊ n
4

⌋
k=2 δk − 2

∑n
2

−1

k=⌈ n
4

⌉+1 δk − δ
n
2

)

(ii) For n uneven:

• No link deletion condition:

uoc
i (gc) − uoc

i (gc − ij) ≥ 0

⇔ 1
2n−3

(
2
∑n−1

2

k=1 δk −∑n−1
k=1 δk

)
− c ≥ 0

⇔ 1
2n−3

(
∑n−1

2

k=1 δk −∑n−1
k= n−1

2
+1

δk
)

≥ c

• No link addition condition (n − 1 divisible by 4):

uoc
i (gc) − uoc

i (gc + il) ≥ 0

⇔ 1
2n−3

(
2
∑n−1

2

k=1 δk −
(

3δ + 4
∑n−1

4

k=2 δk + δ
n−1

4
+1
))

+ c ≥ 0

⇔ c ≥ 1
2n−3

(
δ + 2

∑n−1
4

k=2 δk − δ
n−1

4
+1 − 2

∑n−1
2

k= n−1
4

+2
δk
)

⇔ c ≥ 1
2n−3

(
∑⌊ n−1

4
⌋

k=1 δk +
∑⌈ n−1

4
⌉

k=2 δk −∑n−1

2

k=⌈ n−1

4
⌉+1

δk −∑n−1

2

k=⌊ n−1

4
⌋+2

δk
)

No link addition condition (n − 1 not divisible by 4):
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uoc
i (gc) − uoc

i (gc + il) ≥ 0

⇔ 1
2n−3

(
2
∑n−1

2

k=1 δk −
(

3δ + 4
∑⌊ n−1

4
⌋

k=2 δk + 3δ⌈ n−1

4
⌉
))

+ c ≥ 0

⇔ c ≥ 1
2n−3

(
δ + 2

∑⌊ n−1

4
⌋

k=2 δk + δ⌈ n−1
4

⌉ − 2
∑n−1

2

k=⌈ n−1

4
⌉+1

δk
)

⇔ c ≥ 1
2n−3

(
∑⌊ n−1

4
⌋

k=1 δk +
∑⌈ n−1

4
⌉

k=2 δk −∑n−1
2

k=⌈ n−1
4

⌉+1
δk −∑n−1

2

k=⌊ n−1
4

⌋+2
δk
)

!

While Jackson and Wolinsky (1996) do not compute pairwise stability conditions for

the circle gc, we will not provide a direct comparison here. However, as mentioned

before while analyzing the pairwise stability conditions for the complete network gN ,

we conjecture that the stability regions for regular networks in (4.11) are equivalent

to the ones in (4.1) multiplied by the factor 1
1+L(g−i)

. The next proposition proves

this result.

Proposition 4.6. A regular (non-empty) network is PS in the connections model

for costs c = (1 + L(g−i))c′ if and only if it is PS in the overall connectivity model

for costs c′.

Proof: Suppose that greg
d that is PS in Jackson and Wolinsky (1996). Due to sym-

metry and pairwise stability, for any two agents i and j who are directly connected

it must hold that uJW
i (greg

d ) − uJW
i (greg

d − ij) = uJW
j (greg

d ) − uJW
j (greg

d − ij) ≥ 0.

Let ∆ := uJW
j (greg

d ) − uJW
j (greg

d − ij) + c. With this, it follows that

uJW
j (greg

d ) − uJW
j (greg

d − ij) ≥ 0 ⇔ uJW
j (greg

d ) − uJW
j (greg

d − ij) + c ≥ c ⇔ ∆ ≥ c ⇔
1

1+L(g−i)
∆ ≥ 1

1+L(g−i)c ⇔ 1
1+L(g−i)

(uJW
j (greg

d ) − uJW
j (greg

d − ij) + c) ≥ 1
1+L(g−i)

c ⇔
uoc

j (greg
d ) − uoc

j (greg
d − ij) + c′ ≥ c′ ⇔ uoc

j (greg
d ) − uoc

j (greg
d − ij) ≥ 0.

Therefore, the no link deletion condition is satisfied for costs c′ = 1
1+L(g−i)c in the

overall connectivity model. The no link addition condition follows straightforward.

Since the above calculations are all equivalences, it holds true that a regular (non-

empty) network is PS in the connections model for costs c = (1 + L(g−i))c′ if and

only if it is PS in the overall connectivity model for costs c′. !

After having analyzed pairwise stability of some standard architectures and compar-

ing the results with the ones from the connections model, we will consider asymptotic

pairwise stability and strong efficiency of networks in the overall connectivity model

in the next section.
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4.3.2 Asymptotic pairwise stability

Asymptotic pairwise stability was introduced by Möhlmeier et al. (2017) and deals

with the pairwise stability of networks when the number of nodes tends to be very

large. Möhlmeier et al. (2017) show that structures which are PS, do not need to

be APS.

The following proposition checks whether, respectively under which conditions, the

standard architectures are APS in the overall connectivity model. As it turns out,

the empty network g∅ is APS whenever it is PS, the star network gs is APS under

some specific condition and the complete network gN as well as the circle network

gc are never APS.

Proposition 4.7. Let the utility be defined by (4.11).

(i) The empty network g∅ is APS whenever it is PS.

(ii) The star network gs is APS whenever c ≤ δ2

2 .

(iii) The complete network gN is never APS.

(iv) The circle network gc is never APS.

Proof: (i) This is obvious since the condition for pairwise stability does not de-

pend on n.

(ii) gs is PS ⇔ δ(1−δ)
1+2(n−2) ≤ c ≤ δ(1+(n−2)δ)

1+2(n−2) . Hence, gs is APS whenerver c ≤ δ2

2 .

(iii) gN is PS ⇔ δ(1−δ)
n2−3n+3 ≥ c. From this and due to the fact that c > 0 by

assumption it directly follows that the complete network gN is never APS.

(iv) For n even, the circle gc is PS if the following two conditions hold:

1

2n − 3

⎛

⎝
n
2

−1∑

k=1

δk −
n−1∑

k= n
2

+1

δk

⎞

⎠ ≥ c

and

c >
1

2n − 3

⎛

⎝δ + 2
⌊ n

4
⌋∑

k=2

δk − 2

n
2

−1∑

k=⌈ n
4

⌉+1

δk − δ
n
2

⎞

⎠ .

Since lim
n→∞

1
2n−3 = 0 and for n → ∞ the sum terms converge (because δ < 1),

the circle gc is never APS. For n uneven, the result follows analogously. !
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In the following, let us provide some further intuition for the results.

The empty network g∅ will always be APS whenever it is PS since the condition for

pairwise stability is independent of the network size n. To guarantee PS and APS as

well, one has to make sure that no node wants to establish a connection to another

node, which simply means that the costs must be at least as high as the potential

benefit (c ≥ δ). Since there are no possible links to be deleted in the empty network

g∅, this is the only condition which has to be satisfied.

For the star network gs the situation is different. For pairwise stability one has to

make sure that neither center nor the peripherals want to delete their links and the

peripherals do not want to add a link between them. By looking at the asymptotic

stability range, we see that the lower bound for the costs c goes to 0 and the upper

bound converges to δ2

2 . This upper bound guarantees that no peripheral node wants

to delete its connection to the center. On the one hand, for increasing n, the direct

benefit from the center starts to vanish, but on the other hand there are still benefits

coming in from the peripheral nodes. As long as the sum of the benefits is high

enough (c ≤ δ2

2 ), the peripheral nodes maintain their links to the center while n is

getting large. The positive impact of an additional peripheral node is δ2 divided by

the overall connectivity. By an additional peripheral node, the overall connectivity

increases by 2 what provides even more intuition for the condition c ≤ δ2

2 . In Figure

4.4 the (asymptotic) pairwise stability regions are plotted. We directly see that

there are parameter regions, in which the star network gs is PS, but not APS, APS

but not PS as well as PS and APS simultaneously.

Regarding the complete network gN we only have an upper bound on the costs

c to consider. As we see in Figure 4.5, the stability region quickly decreases and

vanishes when n is getting large. The intuition for this result is that due to the

high connectivity of the complete network gN , a node does not want to maintain a

direct connection to another node because it is able to reach the node at distance 2

for sure. With increasing n, the marginal benefit from a direct connection strictly

decreases, converging to 0. Hence, the complete network gN is never APS.

For the circle network gc the situation is similar to the complete network gN . The

stability region steadily shrinks and finally vanishes when n is increasing. However,

in Figure 4.6 we see that the speed of convergence is (relatively) slow. Additionally,

we observe that stability for increasing network size n is only possible for high values

of δ. Intuitively, this makes sense since then a node receives a high spillover and
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Figure 4.4: (Asymptotic) pairwise stability of the star network
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Figure 4.5: (Asymptotic) pairwise stability of the complete network
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Figure 4.6: (Asymptotic) pairwise stability of the circle network

even does not want to add a link to the node(s) most far away in the circle network

gc. Furthermore, a node does not want to delete one of its existing links (as long as

the costs c are low enough for increasing δ) because by maintaining one of its links

it brings (roughly) half of the nodes closer to it.

4.3.3 Strong efficiency

Next, we focus on the analysis of strong efficiency in the overall connectivity model.

To start, we look at strong efficiency for n = 3.

Example 4.2. Let the utility be defined by (4.11) and n = 3. The values for the

different possible architectures are the following (gI denotes the network consisting

of only one link):

uoc
1 (g∅) = uoc

2 (g∅) = uoc
3 (g∅) = 0 and hence

∑3
i=1 uoc

i (g∅) = 0.

uoc
1 (gI) = uoc

2 (gI) = δ − c, uoc
3 (gI) = 0 and hence

∑3
i=1 uoc

i (gI) = 2δ − 2c.

uoc
1 (gs) = uoc

2 (gs) = δ+δ2

3 −c, uoc
3 (gs) = 2δ−2c and hence

∑3
i=1 uoc

i (gs) = 8
3δ+ 2

3δ2−4c.

uoc
1 (gN) = u2(gN) = uoc

3 (gN) = 2
3δ − 2c and hence

∑3
i=1 uoc

i (gN) = 2δ − 6c.

(i) The complete network gN is never SE.
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This is obvious, since the value of the complete network gN is strictly domi-

nated by the value of the star network gs and the network gI.

(ii) The empty network g∅ is SE whenever c ≥ δ.

∑3
i=1 uoc

i (g∅) ≥ ∑3
i=1 uoc

i (gI) ⇔ 0 ≥ 2δ − 2c ⇔ c ≥ δ. For c ≥ δ it follows that
∑3

i=1 uoc
i (gs) = 8

3δ + 2
3δ2 −4c < 0 =

∑3
i=1 uoc

i (g∅) and hence, the empty network

g∅ is SE.

(iii) The network gI is SE whenever δ > c > 1
3δ + 1

3δ2.

For c < δ it follows that
∑3

i=1 uoc
i (gI) >

∑3
i=1 uoc

i (gs) ⇔ 2δ − 2c > 8
3δ + 2

3δ2 −
4c ⇔ 2c > 2

3δ + 2
3δ2 ⇔ c > 1

3δ + 1
3δ2. Therefore, the network gI is SE whenever

δ > c > 1
3δ + 1

3δ2.

(iv) The star network gs is SE whenever c ≤ 1
3δ + 1

3δ2.

For c < δ it follows that
∑3

i=1 uoc
i (gI) ≤ ∑3

i=1 uoc
i (gs) ⇔ 2δ − 2c ≤ 8

3δ + 2
3δ2 −

4c ⇔ 2c ≤ 2
3δ + 2

3δ2 ⇔ c ≤ 1
3δ + 1

3δ2. Therefore, the star network gs is SE

whenever c ≤ 1
3δ + 1

3δ2.

Corollary 4.3. Let the utility be defined by (4.11) and n = 3.

(i) The empty network g∅ is SE if and only if it is PS.

(ii) If the star network gs is PS, it is SE.

(iii) If the complete network gN is PS, it cannot be SE.

In Jackson and Wolinsky (1996) only three network structures, the empty network

g∅, the complete network gN and the star network gs turned out to be SE. In the

overall connectivity model, we already observe for n = 3 differences with respect

to this result. As shown before, we observe that the empty network g∅, the star

network gs and the network gI consisting of only one link, can be SE. In contrast,

the complete network gN turns out to be never SE.

For n = 3, the complete network gN is strictly dominated by the star network gs.

While it turns out to be relatively hard to obtain results on strong efficiency for

general n in the overall connectivity model due to the negative externalities, we are

at least able to compare the values of the star network gs, the complete network gN

and the circle network gc with each other. In the following, we show that the value

of the star network gs strictly dominates the value of the complete network gN as
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well as the circle network gc for general n.

Proposition 4.8. Let the utility be defined by (4.11) and n ≥ 3.

(i) The value of the star network gs is always higher than the one of the com-

plete network gN . Hence, the complete network gN is never SE in the overall

connectivity model.

(ii) The value of the star network gs is always higher than the one of the circle

network gc. Hence, the circle network gc is never SE in the overall connectivity

model.

Proof: (i) The values of the star network gs and the complete network gN are

given by
∑n

i=1 uoc
i (gs) = (n − 1)(δ − c) + (n − 1)

(
δ+(n−2)δ2

1+2(n−2) − c
)

and
∑n

i=1 uoc
i (gN) = n(n − 1)

(
δ

1+(n−1)(n−2) − c
)
.

Comparing these values yields:
∑n

i=1 uoc
i (gs) >

∑n
i=1 uoc

i (gN)

(n − 1)(δ − c) + (n − 1)
(

δ+(n−2)δ2

1+2(n−2) − c
)

> n(n − 1)
(

δ
1+(n−1)(n−2) − c

)

⇔ c(n − 1)(n − 2) > n(n−1)δ
1+(n−1)(n−2) − (n − 1)δ −

(
(n−1)(δ+(n−2)δ2)

1+2(n−2)

)

⇔ c(n − 2) > nδ
1+(n−1)(n−2) − δ −

(
δ+(n−2)δ2

1+2(n−2)

)

⇔ c(n−2)
δ > n

n2−3n+3 − 1 −
(

1+(n−2)δ
2n−3

)

⇔ c(n−2)(2n−3)(n2−3n+3)
δ > n(2n−3)−(2n−3)(n2 −3n+3)−(1+(n−2)δ)(n2 −

3n + 3)

For n ≥ 3 and δ > 0 the expression on the left hand side is positive. Next, we

consider the expression on the right hand side and check when it is 0 at most:

n(2n − 3) − (2n − 3)(n2 − 3n + 3) − (1 + (n − 2)δ)(n2 − 3n + 3) ≤ 0

⇔ n(2n − 3) − (n2 − 3n + 3)(2n − 3 + 1 + (n − 2)δ) ≤ 0

This inequality is fulfilled if:

n2 − 3n + 3 ≥ n

⇔ n2 − 4n + 3 ≥ 0

⇔ (n − 3)(n − 1) ≥ 0

⇔ n ≥ 3

Hence, c(n−2)(2n−3)(n2−3n+3)
δ ≥ n(2n − 3) − (2n − 3)(n2 − 3n + 3) − (1 + (n −

2)δ)(n2 − 3n + 3) holds true for every n ≥ 3 and δ > 0. Therefore, the value

of the star network gs strictly dominates the one of the complete network gN .
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(ii) The values of the star network gs and the circle network gc are given by
∑n

i=1 uoc
i (gs) = (n − 1)(δ − c) + (n − 1)

(
δ+(n−2)δ2

1+2(n−2) − c
)

and
∑n

i=1 uoc
i (gc) = 2n

2n−3

∑n−1
2

k=1 δk − 2nc (for n uneven).

Comparing these values yields:
∑n

i=1 uoc
i (gs) >

∑n
i=1 uoc

i (gc)

⇔ (n − 1)(δ − c) + (n − 1)
(

δ+(n−2)δ2

1+2(n−2) − c
)

> 2n
2n−3

∑n−1
2

k=1 δk − 2nc

⇔ (n − 1)δ + (n−1)(δ+(n−2)δ2)
2n−3 + 2c > 2n

2n−3

∑n−1
2

k=1 δk

⇔ (2n − 3)(n − 1)δ + (n − 1)(δ + (n − 2)δ2) + 2c(2n − 3) > 2n
∑n−1

2

k=1 δk

Since 2c(2n − 3) > 0 for n ≥ 3 and δ > 0, let us ignore it and compare the

benefit terms on both sides with each other:

(2n − 3)(n − 1)δ + (n − 1)(δ + (n − 2)δ2) ≥ 2n
∑n−1

2

k=1 δk

⇔ (n − 1)(δ + (n − 2)δ2 + (2n − 3)δ) ≥ 2n
∑n−1

2

k=1 δk

Next, we analyze the number and size of the benefit terms on both sides. On

the left hand side, we have (n − 1)(3n − 4) elements that are discounted by at

most distance 2. On the right hand side, we have (n − 1)n elements which are

(partly) additionally discounted due to higher distances. Obviously, the term

on the left hand side is always larger than the one on the right hand side.

We omit the calculations for the circle network gc with n even since they are

similar and lead to the same conclusions. Consequently, the value of the star

network gs strictly dominates the one of the circle network gc. !

For n ≥ 3, the value of the star network gs is always higher than the one of the

complete network gN as well as the circle network gc. Regarding the circle network

gc, this result is in line with Jackson and Wolinsky (1996) where this structure

cannot be SE, either (for n ≥ 4, since for n = 3, the circle network gc is structurally

identical to the complete network gN). However, the result for the complete network

gN is in sharp contrast to Jackson and Wolinsky (1996) where it is (uniquely) SE

whenever c < δ − δ2. In the overall connectivity model, this cannot be the case,

since the complete network gN is overconnected and always strictly dominated by

the star network gs.

Why does the star network gs perform so well in the overall connectivity model?

Intuitively, there are two reasons for this. First, it offers relatively short distances.

The center reaches every peripheral node by distance 1 and the peripheral nodes

every other node by distance 2 at most. Hence, the discount factor for the benefit
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terms in the aggreagte utility is at most 2. Second, the star network gs is minimally

connected. From graph theory we know that a graph is minimally connected if

and only if it is a tree. Any connected graph with n nodes and n − 1 links is a

tree. So, the star network gs is a tree and hence, minimally connected. Due to

this, the negative externalities from overall connectivity stay in total (relatively)

small. Nevertheless, the impact of the negative externality by overall connectivity

is extremely different for the two different types of nodes, namely the center and

the peripheral nodes. For the center, the factor 1
1+L(g−i) is simply 1 and hence, the

benefit terms in the utility are not reduced at all by overall connectivity. For the

peripheral nodes, the factor 1
1+L(g−i) in the utility function is equal to 1

1+2(n−2) and

hence, their benefit terms are quite heavily reduced in comparison to the center.

So, overall, the main part of the value of the star network gs is contributed by

the center. In contrast, in the other structures we looked at, such as the circle

network gc and the complete network gN , the benefits of every node are (negatively)

affected by overall connectivity. Due to the regularity of both structures, the induced

weight factor 1
1+L(g−i) for the benefit terms is the same for all nodes in the relevant

network. Apparently, some structural properties like an uneven degree distribution,

connectedness, a small number of nodes and short distances play a central role for

the total value of a network. The star network gs combines all of these structural

properties simultaneously and therefore performs so well.

However, we shall point out again that we did not prove that for general n the

star network gs is SE and if so, under which conditions. We only showed that it

dominates some other (connected) structures, like the circle network gc and the

complete network gN . Furthermore, we explained why we believe that the star

network gs is such a good candidate for being SE in the overall connectivity model.

Unfortunately, compared to Jackson and Wolinsky (1996) a general proof appears

to be much more complicated due to the negative externalities by link formation

on other nodes. Additionally, there are usually also positive externalities by link

formation on other nodes and then the question is always, which effect overweighs

in terms of total value of the network. In Jackson and Wolinsky (1996), the proof

on SE networks is quite straightforward because the externalities by link formation

on other nodes are purely positive and thus the calculations are (much) easier. We

tried to apply a similar argument as in the proof of Proposition 1(ii) in Jackson and

Wolinsky (1996), but general statements about the value are very hard to achieve due

the individual weights 1
1+L(g−i)

in the utility functions that are strongly dependent
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on the underlying network structure.

4.4 Concluding remarks and further research

Based on the connections model by Jackson and Wolinsky (1996) we introduce

a modification that accounts for negative externalities by overall connectivity. The

functional form of the utilities in the overall connectivity model is very closely related

to the ones in the connections model. We implement the externalities by additionally

weighting the benefit terms of the connections model by a factor depending on the

overall connectivity. Then, we discuss pairwise stable, asymptotically pairwise stable

and strongly efficient networks in this framework. By comparing the two models, we

observe some important similarities and differences between the connections model

(with purely positive link externalities) and the overall connectivity model with

negative externalities by overall connectivity.

As we have seen in the section on pairwise stability, the empty network g∅, the

complete network gN and the star network gs can be pairwise stable. However,

compared to the connections model, the stability regions become more tiny, since

the benefit terms are (partially) reduced by overall connectivity. Similarly to the

connections model, a pairwise stable regular network always consists of at most one

(non-empty) component in the overall connectivity model. Furthermore, we identify

the conditions for pairwise stability of the circle network gc and show that all regular

networks are PS in the connections model if and only if they are pairwise stable in

the overall connectivity model for a specific fraction of the costs.

In the section on asymptotic pairwise stability we provide conclusions regarding the

pairwise stability of networks when the number of nodes becomes large. We find out

that the empty network g∅ and star network gs can be asymptotically pairwise stable,

while the complete network gN and the circle network gc cannot be asymptotically

pairwise stable in the overall connectivity model.

Analyzing strong efficiency indicates already for n = 3 some central differences to

the connections model. First, a disconnected structure can be strongly efficient

and second, the complete network gN cannot be efficient in the overall connectivity

model. For n ≥ 3 we show that the value of the star network gs strictly dominates the

one of the complete network gN as well as the the circle network gc. Unfortunately,
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we are not able to provide the precise conditions to guarantee strong efficiency of

the star network gs. Due to tractability, we leave this and a full characterization of

the class of strongly efficient networks for further research.

Nevertheless, what is striking in the overall connectivity model is the fact that the

star network gs performs quite well in all areas we analyzed. The usual tension

between pairwise stability and strong efficiency seems to be reduced here. However,

to become more specific on this conjecture, we need to clarify additional points.

Thus, for further research we suggest to identify conditions under which the star

network gs is (uniquely) strongly efficient. As described before, it appears to be

a very good candidate for a strongly efficient network in the overall connectivity

model. The star network gs is strongly efficient (under some conditions) in the

connections model with purely positive externalitites. In a situation with negative

externalities due to overall connectivity it appears to be an even more favorable

architecture, since it combines short distances with a small number of links. As we

have seen for n = 3, even a disconnected structure can be strongly efficient in the

overall connectivity model. Hence, we need to find out whether this may also happen

for larger n and under which conditions a strongly efficient network is connected.

An additional hypothesis we have is that (connected) regular networks are always

dominated by the star network gs. We looked at the two extreme cases, the circle

network gc with degree 2 and the complete network gN with degree n − 1 of every

node, and eventually all regular networks with in-between degree, are dominated by

the star network gs as well.

Overall, a general discussion of strong efficiency in models with both, positive and

negative externalities, appears to be a fruitful area for further research and would

provide a valuable contribution to the existing literature.
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Chapter 5

Stability of customer relationship

networks

This chapter is based on a joint work with Claus-Jochen Haake and Sonja

Recker, both from Paderborn University, Faculty of Business Adminis-

tration and Economics.

5.1 Introduction

In many real-world economic situations, a company has to invest in customer rela-

tionships to sell their products, e.g. in form of organizing access to their distribution

channels. As examples one may think of a free product support, maintenance of user

accounts or royalties that have to be paid for each customer. Regarding competitors

and their products in the market, such a link formation problem is not a bare opti-

mization exercise, as customers’ demands play an important role for the incentives

to form links. An interesting question is, which link structure evolves under specific

market conditions. To answer this question, we investigate a duopoly, which is on

the one hand characterized by Cournot competition and horizontal product differ-

entiation and on the other hand by the network structure that is built up by the

firms to serve customers’ demands. Beyond the scope of the current model, the own

optimal positioning strategy might also be depending on additional factors, such

as the mode of competition, the connectedness of other market participants, the
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market size or the degree of substitutability of the own product compared to those

of other competitors.

More precisely, in this article we focus on two firms’ decisions to form links to their

customers, explicitly taking link costs and the degree of substitutability into account.

That means, the firms make strategic choices on which customer relationships they

are willing to establish at given link formation costs and to what degree customers

view their products as substitutes. One would expect that if customers consider the

two firms’ products as complements, then they shall be linked to both firms. How-

ever, if the firms’ products are considered to be substitutes, customers will rather

split and only trade with one firm. Our particular interest is in the network structure

that evolves under given link costs and degree of product differentiation. For this, we

analyze stable networks, which we define in two ways: Local stability requires that

neither firm benefits from rendering the link status of a single customer, whereas

Nash stability assures this for multiple customers. In the analysis we first concen-

trate on the general case with n customers. As the number of potential changes of

the network structure significantly increases with the number of customers, we put

emphasis on specific prominent network architectures and determine as well as de-

pict the regions of local stability for arbitrary n. In the limit case (Proposition 5.2)

it turns out that already a setting with few customers is a good proxy. This im-

plies that much of the market structure and the forces that drive the results can

already be understood in a model with few customers. Additionally, for networks

with an arbitrary number of customers we establish the existence of locally stable

networks for complementary or independent products (Proposition 5.3). For these

product types either the empty, the complete or both networks are locally stable.

Moreover, we link local and Nash stability for selected networks (Proposition 5.4)

and demonstrate for which degrees of substitutability the model is sound enough to

produce valid results (Propositions 5.1 and 5.5). Motivated by the fact that stability

regions quickly converge, we devote a whole section on the scenario with three cus-

tomers. The main result is a complete characterization of the set of stable networks,

identifying for each possible network the combinations of link costs and degrees of

substitutability under which it is stable. We display and compare such regions of

stability for the different networks and identify adjacency relations. It turns out

that in the case of complementary products, no asymmetric networks prevail and

that the firms are generally willing to accept higher costs of customer acquisition

as in the case of substitutes (Proposition 5.6) and that existence of locally stable
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networks is guaranteed for any degree of substitutability (Proposition 5.7).

Our work is linked to research in industrial organization, network and matching the-

ory. The model of a differentiated duopoly we use is most closely related to Häckner

(2000), which is based on the seminal work by Singh and Vives (1984). In our

article we basically adapt this framework, adding a customer relationship network

and putting emphasis on the impact of link costs and product differentiation on

its stability. A different strand of related literature deals with the strategic forma-

tion of networks for research and development collaborations. Departing from the

model of Goyal and Joshi (2003), it has been studied, e.g., by Goyal and Moraga-

González (2001), by Dawid and Hellmann (2014) or by Dawid and Hellmann (2016).

In these articles a link describes a research cooperation and the network is used to

model the externalities that are induced by transferring knowledge through such a

partnership. Forming a link reduces the production costs and, hence, endogenously

introduces asymmetries. A different type of network formation is studied in Billand

et al. (2016). They combine oligopolistic multimarket competition with a network

structure among firms, in which links represent spying activities between firms. The

article analyzes equilibria of the network formation game, in which payoffs are in-

fluenced by the impact of the network structure on product qualities. In contrast to

these network models, we interpret links as customer relationships that purely enable

trade and which directly impact equilibrium prices and equilibrium quantities on

the market. Likewise, Kranton and Minehart (2000a, 2001, 2000b) and Corominas-

Bosch (2004) interpret a link in this way. To model trade in buyer-seller networks

Kranton and Minehart (2000a) focus on the analysis of competitive prices whereas

Kranton and Minehart (2001) use an ascending bid auction and Corominas-Bosch

(2004) assumes non-cooperative bilateral bargaining. For vertically integrated firms

Kranton and Minehart (2000b) analyze equilibrium industrial structures including

a model of link formation. Also Wang and Watts (2006) analyze the formation

of links between buyers and sellers for quality differentiated products. Apart from

similarities in the research question, our work especially differs with respect to the

competition framework. We assume oligopolistic quantity competition between the

sellers and thus, drop the assumption of unit-supply to investigate perfectly divis-

ible goods. A more closely related contribution on oligopolistic competition and

an underlying network structure is Bimpikis et al. (2016). They directly investi-

gate quantity competition together with a network structure between m markets

and n firms. The main assumption connecting separate markets is a convex, i.e.,
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quadratic, cost function while at the same time products are assumed to be per-

fectly substitutable and the demand structure is linear. In contrast, we directly link

different markets by the degree of product differentiation between two firms using

the demand function and assuming that a firm charges the same price to all its

customers. Moreover, our cost structure is supposed to be linear. In recent years,

supply-chain (networks) have been investigated in matching theory with contracts,

e.g., in Ostrovsky (2008), Westkamp (2010) and Hatfield and Kominers (2012). A

common feature in all these matching models is that preferences over the set of

available contracts (trade relations) are assumed to be exogenous and do not result

from strategic interaction. Although various single aspects were studied in the lit-

erature, our work newly brings together the features of competition under product

differentiation of divisible products and strategic formation and stability of customer

relationship networks. In the latter, decisions depend on the competition and the

degree of product substitutability in the market.

Our article is structured as follows: Section 5.2 presents the model with product

differentiation for two firms and discusses (Cournot-Nash) equilibria for an arbitrary

number and network of customers as well as the used notions of stability (local and

Nash stability). The analysis for an arbitrary number of customers is in Section 5.3.

Here we discuss the shape of the stability regions for specific architectures when n is

getting large. In Section 5.4 we focus on the case of three customers and completely

characterize stable network architectures. Section 5.5 concludes. All proofs are

relegated to the Appendix.

5.2 The model

This section discusses the essential ingredients of our model such as the network

architecture, competition and resulting equilibria as well as the notions of network

stability. There are two firms and n > 1 customers in the market. The two firms offer

differentiated products to the customers. We assume that prior to sales a customer

has to be (costly) linked to the firm he wants to purchase from. Establishing links

are in the firms’ responsibilities and therefore costs are taken by them.
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5.2.1 Networks of customer relationships

When two firms form links to customers there are three different types of customers

that have at least one link to a firm. Customers that are only linked to firm 1

or only linked to firm 2 are termed exclusive customers (of firm 1 or 2, respec-

tively), whereas customers who are linked to both firms are called joint customers.

With n customers, we describe a customer relationship network architecture (or

simply network) by the numbers ne
1 of exclusive customers of firm 1, nj of joint

customers and ne
2 of exclusive customers of firm 2, i.e., by a triplet (ne

1, nj , ne
2) ∈ N3

+

with ne
1 + nj + ne

2 ≤ n. We denote the set of all networks with n customers by

Nn =
{
(ne

1, nj , ne
2) ∈ N3

+|ne
1 + nj + ne

2 ≤ n
}

. Examples for networks of customer

relationships with n = 3 customers are given in Figure 5.1 (the two firms are rep-

resented by the two nodes on the top, customers are represented by nodes on the

bottom). Note that to describe a network we always write the number of joint cus-

tomers in the middle and the exclusive customers of the two firms left and right.

This notation is intuitively related to the illustrations in Figure 5.1.

(a) (0, 3, 0) (b) (1, 1, 1) (c) (1, 0, 1)

(d) (1, 2, 0) (e) (2, 1, 0) (f) (2, 0, 1)

Figure 5.1: Examples of customer relationship networks

From a market perspective, we are interested in the structure of the network rather

than which particular customer is linked to which firm, as customers as well as firms

are assumed to be identical. Therefore, one natural distinction of networks is one

between symmetric networks, in which ne
1 = ne

2 holds, and asymmetric networks

with ne
1 ̸= ne

2. The networks in Figures 5.1a, 5.1b and 5.1c are symmetric, in

contrast to asymmetric networks in Figures 5.1d, 5.1e and 5.1f. Figure 5.1a shows a
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network of customer relationships where all customers are linked to both firms. This

implies that each firm has exactly three links and all customers are joint customers.

In contrast, in Figure 5.1f all customers are linked to either firm 1 or to firm 2

and in Figure 5.1c there is a customer without any link. Figure 5.1b illustrates

a symmetric network where both firms have exactly one exclusive customer, and,

in addition, there is one joint customer linked to both firms. The networks in

Figure 5.1d and Figure 5.1e are asymmetric and only one firm has some exclusive

customers. However, a network with no joint customers may also be asymmetric,

as in Figure 5.1f. These networks of customer relationships are just some examples

for n = 3 which are analyzed in full detail in Section 5.4 after the general model has

been introduced and investigated.

5.2.2 Customers’ demands

To describe the customers’ preferences we use a standard utility function on product

differentiation as in Singh and Vives (1984) and Häckner (2000). For this, we need

to specify a customer’s utility function, depending on whether he is an exclusive

or a joint customer. Recall that exclusive customers can only derive utility from

consuming the corresponding firm’s product, whereas both products enter a joint

customer’s utility function. Phrased differently, we understand a link as granting

access to a customer to purchase at that firm. In fact, creating (or deleting) a link

to a customer will alter his utility function and hence his demand for products.

Type e1 customers are exclusive customers from firm 1 and consume an amount of

qe
1 = (qe

1), type j customers are joint customers and consume qj = (qj
1, qj

2), whereas

type e2 customers are exclusively consuming qe
2 = (qe

2) from firm 2. So, qt
i denotes

the amount of firm i’s product that a customer of type t consumes (t ∈ {e, j}).

The vector q = (qe
1, qj, qe

2) = (qe
1, qj

1, qj
2, qe

2) collects all such quantities. Customers’

utilities are as follows:1

ue
i (q

e
i , I, γ) = aqe

i − 1

2
(qe

i )2 + I, (type ei)

uj(qj, I, γ) = aqj
1 + aqj

2 − 1

2

((
qj

1

)2
+
(
qj

2

)2
+ 2γqj

1qj
2

)
+ I, (type j)

1Singh and Vives (1984) postulate the utility function for joint customers, as all customers
have access to trade with both firms in their model. Besides that, we newly consider exclusive
customers.
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for i ∈ {1, 2}, where a > 0 can be interpreted as the products’ common quality

level and I as the consumption (expenditures) for other goods.2 The parameter

γ ∈ [−1, 1] reflects the degree of horizontal product differentiation (or the degree

of substitutability/complementarity) and only affects the utility of joint customers.

For γ = 1, the utility function uj effectively depends on the sum qj
1 + qj

2, showing

that a joint customer views the products as perfect substitutes. On the contrary, at

γ = −1 he considers two products as complements, as there the squared difference

of the quantities given by (qj
1 − qj

2)2 enters negatively in the utility function uj.

Finally, at γ = 0 the joint customers’ utility function is additively separable and

thus, the two firms can be considered as monopolists for their products. Note that

the utility function uj of a joint customer reduces to the utility function of an

exclusive customer, ue
i , when the according quantity qj

3−i is zero. Solving customers’

utility maximization problems3 at given firms’ prices p1 and p2 in a network of

customer relationships (ne
1, nj , ne

2) ∈ Nn, the first order conditions of firm i, i = 1, 2

read

a − qe
i − pi = 0 for ne

i customers of type ei, (5.1)

a − qj
i − γqj

3−i − pi = 0 for nj customers of type j. (5.2)

For ne
1, nj , ne

2 > 0 the above system of equations is equivalent to

pi = a − ne
i q

e
i + njqj

i + njγqj
3−i

ne
i + nj

and qe
i = qj

i + γqj
3−i for i = 1, 2. (5.3)

The inverse demand functions pi (q) in the first part of (5.3) will next serve as

primitive for the Cournot competition among firms. Due to differentiated products

they may be charged at different prices, but each price depends on the demands

for both firms’ products. The second part of (5.3) reflects the relation between

the demands of exclusive and joint customers from the firms’ perspective, given the

customers’ optimizing behavior.

2We assume that customers’ income is high enough, so that due to quasilinearity of the utility
function, expenditure I will not alter product demands.

3i.e., maxqe
i

ue
i (qe

i , I, γ) − pqe
i and maxqj uj(qj, I, γ) − pqj for appropriate price vector p.
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5.2.3 Duopoly with differentiated products

We now investigate the equilibrium prices and equilibrium quantities of two firms,

taking a network of customer relationships (ne
1, nj, ne

2) ∈ Nn as given. On the

market the two firms compete in quantities. Although there are exclusive and joint

customers, a firm charges the same price to all his customers. The firms maximize

profits given by the difference of price and costs times total quantity sold to either

exclusive or joint customers. The price follows the inverse demand as given in (5.3).

Firms have identical and constant marginal costs denoted by k.

Computing customers’ demands is necessary to determine firms’ (Cournot-Nash)

equilibrium profits for a given network and, hence, to analyze incentives for creating

new or deleting existing links. For this, we impose a technical assumption on γ to

ensure non-negativity of linked customers’ demands. The problem can be seen as

follows. Suppose both firms sell their product to their exclusive and joint customers

such that these demand according to equations (5.1) and (5.2) and there exists

at least one customer of each type, i.e., ne
1, nj , ne

2 > 0. If both firms sell positive

quantities to joint customers, then according to the second part of equation (5.3)

the quantities sold to exclusive customers are positive for γ ∈ [0, 1]. However, they

may become negative if γ ∈ [−1, 0). Therefore, to obtain non-negative equilibrium

quantities we require that for γ ∈ [−1, 0) and ne
3−i > ne

i > 0

(1 + γ)
(
nj + ne

3−i

) [
(2 − γ)

(
ne

i + nj
)

− γne
i

]
+ γ2nj

(
ne

i − ne
3−i

)
≥ 0 for i = 1, 2.

(5.4)

These inequalities ensure that the quantities traded in equilibrium will be non-

negative.4 As we will see below, they are vacuously satisfied for n ≤ 3 and satisfied

for a wide range of γ when n ≥ 4.

The profits of firm i are

π
(ne

1,nj ,ne
2)

i (q) =

(

a − ne
i q

e
i + njqj

i + njγqj
3−i

ne
i + nj

− k

)(
ne

i q
e
i + njqj

i

)
,

4See also equation (5.7) below.
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and, hence, the first order conditions are

∂π
(ne

1
,nj ,ne

2)
i (q)

∂qe
i

= ne
i a − 2 (ne

i )
2 qe

i + 2ne
i n

jqj
i + ne

i n
jγqj

3−i

ne
i + nj

− ne
i k = 0, (5.5)

∂π
(ne

1
,nj ,ne

2)
i (q)

∂qj
i

= nja − 2ne
i n

jqe
i + 2 (nj)

2
qj

i + (nj)
2

γqj
3−i

ne
i + nj

− njk = 0 (i ∈ {1, 2}) .

(5.6)

Note that equations (5.5) and (5.6) are linearly dependent. Using the first order

conditions resulting from (5.5) or (5.6) and the second part of equation (5.3) we

have for the equilibrium quantities

qe∗
i (k) = (a − k)

(1 + γ)
(
nj + ne

3−i

)
[(2 − γ) (ne

i + nj) − γne
i ] + γ2nj

(
ne

i − ne
3−i

)

4 (ne
i + nj) (nj + ne

3−i) − γ2 (2ne
i + nj) (nj + 2ne

3−i)
,

(5.7)

qj∗
i (k) = (a − k)

(
nj + ne

3−i

)
[(2 − γ) (ne

i + nj) − γne
i ]

4 (ne
i + nj) (nj + ne

3−i) − γ2 (2ne
i + nj) (nj + 2ne

3−i)
for i = 1, 2.

(5.8)

For a ≥ k, these equilibrium quantities are non-negative for γ ∈ [0, 1] by the non-

negativity of qj∗
i (k) and the second part of equation (5.3). Moreover, with the

condition (5.4) on γ and (ne
1, nj , ne

2) this also holds for qe∗
i (k) for a ≥ k. The price

of firm i, i = 1, 2, is

pi(q
∗) = a − (a − k)

(1 + γ)(nj + ne
3−i)[(2 − γ)(ne

i + nj) − γne
i ] + γ2nj(ne

i − ne
3−i)

4(ne
i + nj)(nj + ne

3−i) − γ2(2ne
i + nj)(nj + 2ne

3−i)
.

(5.9)

It is easy to verify that for a ≥ k these prices are indeed positive.

If nj > 0 and ne
1 = 0 or ne

2 = 0, to find the equilibrium quantities and prices we drop

the first order conditions on the according quantities and on the relationship of the

quantities. The according equilibrium quantities are as in equations (5.7) and (5.8)

and the equilibrium prices are as in equations (5.9) inserting the according values

for ne
1 and ne

2.

If nj = 0, there is no joint customer and thus, there is no dependence of the products

of the firms. Using the first order condition (5.5) of the exclusive customer the

equilibrium quantities reduce to qe∗
i (k) = a−k

2 , and equilibrium prices are given by
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pi (q∗) = a+k
2 for i = 1, 2.

We return to condition (5.4) that ensures non-negative equilibrium quantities. In

fact it can be viewed as a restriction on the degree of substitutability γ that may be

effective for γ ∈ [−1, 0). However, for a large range they are satisfied for all network

structures.

Proposition 5.1. For all networks of customer relationships with n ≥ 3 customers

there exists γn
min < 0 such that for all γ ∈ [γn

min, 0) condition (5.4) always holds. More

precisely, γ3
min = −1 and γn

min < −3
4 for all n ≥ 4.

The bound −3
4 is valid for all n ≥ 4, though it is not tight. As indicated in the

proof, in specific networks we may have positive equilibrium quantities even for a

greater range of complementarities.

5.2.4 Network formation and stability concepts

In the previous subsections we in particular calculated the firms’ profits in (Cournot-

Nash) equilibrium for a given network (ne
1, nj , ne

2) ∈ Nn. Comparing its profits for

different networks reveals a firm’s incentives to create or delete links to customers.

Thereby, establishing or deleting a link are solely the firms’ strategic decisions.

Moreover, firms pay the entire linking costs. Phrased differently, we analyze firms’

strategic decisions in customer acquisition. In our model, a customer cannot directly

influence whether a link is established or not. One way to motivate this is that

customers cannot influence receiving marketing benefits and there is no reason for

customers to reject such links.. In that sense one-sided link formation should be

interpreted as advertising a product that customers cannot discover themselves. A

well-known model of one-sided link formation in this spirit is Bala and Goyal (2000),

for instance.

Arguably, the central notion in network formation is stability. We are interested

in networks in which no firm has an incentive to alter the network and to enjoy a

higher profit. To define a stability concept, we need to specify which alterations of

networks are feasible for an firm. In our setup, deviations from a given network of

customer relationships are achieved by adding further links to acquire new exclusive

or joint customers or by deleting existing links to own exclusive or joint customers.

Figure 5.2 illustrates deviations with the addition or deletion of single links. Along
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the solid lines firm 1 alters exactly one link, whereas dashed lines correspond to

changes from firm 2. Deviations that involve exactly one customer and one firm are

called local.

(ne
1, nj , ne

2)(ne
1 + 1, nj, ne

2) (ne
1 − 1, nj, ne

2)

(ne
1, nj + 1, ne

2 − 1)

(ne
1, nj − 1, ne

2 + 1)

(ne
1, nj , ne

2 + 1) (ne
1 − 1, nj + 1, ne

2)

(ne
1, nj , ne

2 − 1)(ne
1 + 1, nj − 1, ne

2)

local deviations by firm 1
local deviations by firm 2

Figure 5.2: Local deviations from a network (ne
1, nj, ne

2) ∈ Nn

Apparently, not all of these local deviations are feasible for every network. The

reason is that given a particular network there has to be an according customer to

form or to delete a link. For example, as we consider the total number of customers

to be fixed, it is not possible to add a further link if all customers are already linked

to both firms. This is captured by defining which deviations are considered to be

locally feasible.

Definition 5.1. Given a total number of customers n ∈ N++ and a network of

customer relationships (ne
1, nj, ne

2) ∈ Nn.

A feasible local deviation of firm 1 from the network (ne
1, nj , ne

2) to a network

(ñe
1, ñj , ñe

2) requires

(
ñe

1, ñj, ñe
2

)
∈ Nn ∩

{(
ne

1 ± 1, nj, ne
2

)
,
(
ne

1, nj ± 1, ne
2 ∓ 1

)}

Analogously, a feasible local deviation of firm 2 from the network (ne
1, nj , ne

2)
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to a network (ñe
1, ñj , ñe

2) requires

(
ñe

1, ñj, ñe
2

)
∈ Nn ∩

{(
ne

1, nj, ne
2 ± 1

)
,
(
ne

1 ∓ 1, nj ± 1, ne
2

)}
.

We next turn to the notion of stability. For this, consider firm i’s equilibrium profit

π
(ne

1
,nj ,ne

2
)

i at network (ne
1, nj, ne

2) ∈ Nn. Recall that it is derived using the equilibrium

prices and quantities on the market from Subsection 5.2.3. By π̃
(ne

1
,nj ,ne

2
)

i denote the

equilibrium profits including costs of link formation. Assuming that each link incurs

a constant cost c ≥ 0, this implies

π̃
(ne

1
,nj ,ne

2
)

i = π
(ne

1
,nj ,ne

2
)

i −
(
ne

i + nj
)

c for i = 1, 2.

Roughly speaking, a network is stable if no firm has an incentive to feasibly mod-

ify the network by adding or deleting one or several links. Changing links has an

effect on customers’ demands, hence on the equilibrium prices, quantities, and prof-

its. We discuss two versons of stability, distinguished by the number of allowed

modifications.

The first concept, termed local stability, addresses modifications of single links, i.e.,

feasible local deviations as defined above. Nash stability considers the case in which

an firm may manipulate several links at the same time, or, put in other words,

iterates feasible local deviations.

Definition 5.2. A network of customer relationships (ne
1, nj, ne

2) ∈ Nn is locally

stable if for both i = 1, 2, π̃
(ne

1
,nj ,ne

2
)

i ≥ π̃
(ñe

1
,ñj ,ñe

2
)

i for all networks (ñe
1, ñj , ñe

2) that

result from a feasible local deviation of firm i .

The basic question we raise is at what combinations of link cost c and degree of

substitutability γ a given network is locally stable. For the analysis we start at the

network and determine the minimal and maximal c (as a function of γ) such that

adding or deleting a link does not result in a higher profit.

For given (ne
1, nj, ne

2) ∈ Nn denote by (ne
1, nj, ne

2)i+ a network that is obtained if firm

i feasibly adds one link and by (ne
1, nj, ne

2)i− a network if firm i feasibly deletes one
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link. Then, the conditions imposed on the costs c of link formation are

π
(ne

1
,nj ,ne

2
)

i ≥ π
(ne

1
,nj ,ne

2
)i+

i − c, (5.10)

π
(ne

1
,nj ,ne

2
)

i − c ≥ π
(ne

1
,nj ,ne

2
)i−

i for i = 1, 2. (5.11)

Inequality (5.10) defines a lower bound for the costs of link formation for the net-

work (ne
1, nj , ne

2)i+, and inequality (5.11) provides an upper bound for the network

(ne
1, nj , ne

2)i−. As there may be several possibilities to feasibly add or to delete links

we have to take the maximal lower and minimal upper bound. Therefore, define

c(ne
1
,nj ,ne

2
) := max

{
π

(ne
1
,nj ,ne

2
)i+

i − π
(ne

1
,nj ,ne

2
)

i | (ne
1, nj, ne

2)i+, i = 1, 2
}

,

c(ne
1
,nj,ne

2
) := min

{
π

(ne
1
,nj ,ne

2
)

i − π
(ne

1
,nj ,ne

2
)i−

i | (ne
1, nj, ne

2)i−, i = 1, 2
}

.

Hence, the network (ne
1, nj , ne

2) is locally stable if the costs of link formation are

c ∈
[
c(ne

1
,nj ,ne

2
), c(ne

1
,nj ,ne

2
)
]
. Intuitively, c must not be too low, so that adding one

link is not attractive, and it must not be too high, so that deletion would become

favorable. Besides the case that networks should be stable against manipulation of

single links, we also address the case of multiple changes and define Nash stability.

Definition 5.3. A network of customer relationships (ne
1, nj, ne

2) ∈ Nn is Nash

stable if π̃
(ne

1
,nj ,ne

2
)

i ≥ π̃
(ñe

1
,ñj ,ñe

2
)

i for all networks (ñe
1, ñj, ñe

2) that result from iterated

feasible local deviations of firm i for all i = 1, 2.

Note that Bala and Goyal (2000) refer to these networks as “Nash networks”. Local

deviations are depicted in Figure 5.2. The possibility for firm i to add or to delete

several links at the same time actually partitions the set of all networks. Two

networks are in the same set of this partition if there is a sequence of feasible local

deviations of firm i that leads from the one network to the other one. More precisely,

consider the network (0, 0, n̄), in which firm 2 has exactly n̄ links, all of them to

exclusive customers. Then firm 1 may iteratively add a further link to one of these

exclusive customers of firm 2, and/or to a new own exclusive customer who is not

yet linked. As firm 1 is only able to manipulate own links, it follows that exactly

all networks in which firm 2 has precisely n̄ links are reachable by iterated feasible

local deviations of firm 1. Hence, the partition Πn
i of networks with n customers

induced by local deviations of firm i contains n + 1 sets, indexed by the number of

links of the other firm. Formally, we may describe the partition induced by firm i
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by Πn
i := {Πn

i (0), . . . , Πn
i (n)} with Πn

i (n̄) := {(ne
1, nj , ne

2) ∈ Nn| nj + ne
2 = n̄} for

0 ≤ n̄ ≤ n for i = 1, 2. Then, a network (ne
1, nj, ne

2) ∈ Nn is Nash stable if it

provides the highest profit (including link costs) to firm 1 among all networks in

Πn
1 (nj + ne

2) and the highest profit to firm 2 among the networks in Πn
2 (ne

1 + nj).

As above, for fixed unit link costs the resulting inequalities can be translated into

bounds for c, such that the given network is Nash stable. Note that we may use this

partition of the networks to figure out how many networks exist for a given number

of customers n. Consider the partition for firm 1. Then, the set Πn
1 (n̄) contains those

networks in which firm 2 has exactly nj + ne
2 = n̄ links. The cardinality of Πn

1 (n̄) is

given by |Πn
1 (n̄)| = (n + 1 − n̄) (n̄ + 1). There are (n̄ + 1) possibilities how the links

of firm 2 are split into joint and exclusive customers. This is, for firm 2 there may be

n̄ exclusive customers and no joint customers, n̄ − 1 exclusive customers and 1 joint

customer and so on until there are no exclusive customers and n̄ joint customers of

firm 2. As for each given n̄ = n̄2 + n̄3 the links to joint customers need also to be

established by the other firm, firm 1 has n + 1 − n̄2 − n̄3 = n + 1 − n̄ possibilities to

further establish links to obtain own exclusive customers. Hence, we may compute

the number of existing networks for n customers by summing over all elements of

the partition for firm 1, given by

|Nn| =
n∑

n̄=0

|Πn
1(n̄)| =

n∑

n̄=0

(n + 1 − n̄) (n̄ + 1) =
(n + 3) (n + 2) (n + 1)

6

where the last equation can be show by induction. Thus, the series containing the

number of networks is given by

(|Nn|)n≥1 = (4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, . . .) .

Using these insights about how to partition Nn we can rephrase the conditions for

Nash stability considering the network (ne
1, nj , ne

2) ∈ Nn for firm 1 as

π
(ne

1
,nj ,ne

2)
1 − π

(ñe
1
,ñj ,ñe

2)
1 ≥

(
ne

1 + nj − ñe
1 − ñj

1

)
c

for all
(
ñe

1, ñj , ñe
2

)
∈ Πn

1

(
nj + ne

2

)
\
{(

ne
1, nj , ne

2

)}
.

If the analogous conditions also hold for firm 2, then the network is Nash stable.
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5.3 Stable networks

In this section, we examine local and Nash stability of networks with an arbitrary

number of customers. As the number of possible networks and, hence, the number

of possible deviations is large, we concentrate on specific networks and calculate and

display the regions of local stability. Surprisingly, the qualitative picture even in the

limit for n → ∞ is very similar to what we see for few customers. By Proposition 5.1,

we can ensure that the equilibrium quantities computed in equations (5.7) and (5.8)

are non-negative only for γ ∈
[
−3

4 , 1
]
. Then, condition (5.4) is satisfied for all

possible networks of customer relationships.

Our next Proposition collects local stability results of specific networks with n cus-

tomers, namely the complete network with only joint customers (0, n, 0) (“perfect”

oligopoly with two firms), the empty network (0, 0, 0), the asymmetric network with

exclusive customers for one firm given by (n, 0, 0) and (0, 0, n) (natural monopoly),

and, finally, the network with an equal number of exclusive customers for both firms(
n
2 , 0, n

2

)
(two coexisting monopolies). Moreover, the limiting cases for growing n is

included and some locally unstable networks are identified.

Proposition 5.2. Consider (ne
1, nj, ne

2) ∈ Nn and γ ∈
[
−3

4 , 1
]
.

(i) The complete network with (ne
1, nj, ne

2) = (0, n, 0) is locally stable if and only

if the link costs c satisfy

c ≤ (a − k)2 n (16n − 16nγ2 + (3n + 1) γ4)

(2 + γ)2 (4n − (n + 1) γ2)2 .

This upper bound converges to

lim
n→∞

(a − k)2 n (16n − 16nγ2 + (3n + 1) γ4)

(2 + γ)2 (4n − (n + 1) γ2)2 =
(a − k)2 (4 − 3γ2)

(2 − γ) (2 + γ)3 .

(ii) The empty network with (ne
1, nj , ne

2) = (0, 0, 0) is locally stable if and only if

the link costs c satisfy c ≥ (a−k)2

4 .

(iii) An asymmetric network with (ne
1, nj, ne

2) = (0, 0, n) or (ne
1, nj , ne

2) = (n, 0, 0)
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is locally stable if and only if the link costs c satisfy

c ∈
[

(a − k)2 n2 (2 − γ)2

(4n − (2n − 1) γ2)2 ,
(a − k)2

4

]

.

This lower bound converges to

lim
n→∞

(a − k)2 n2 (2 − γ)2

(4n − (2n − 1) γ2)2 =
(a − k)2 (2 − γ)2

4 (2 − γ2)2 .

(iv) For n even, the symmetric network with (ne
1, nj , ne

2) =
(

n
2 , 0, n

2

)
is locally stable

if and only if the link costs c satisfy

c ∈
[

(a − k)2 n2 (n + 2) (2 + n − γ − (n − 1) γ2)2

8 (n (n + 2) − (n − 1) (n + 1) γ2)2 − (a − k)2 n

8
,
(a − k)2

4

]

.

This lower bound converges to

lim
n→∞

(a − k)2 n2 (n + 2) (2 + n − γ − (n − 1) γ2)
2

8 (n (n + 2) − (n − 1) (n + 1) γ2)2 − (a − k)2 n

8
=

(a − k)2

4 (1 + γ)
.

(v) For n ≥ 3 the asymmetric networks with (ne
1, nj, ne

2) = (0, 1, n − 1) and

(ne
1, nj , ne

2) = (n − 1, 1, 0) are locally unstable for all γ ̸= 0 and for γ = 0 for

all c ̸= (a−k)2

4 .

(vi) Networks (ne
1, nj, ne

2) ∈ Nn with nj = 0 and 0 < ne
1 + ne

2 < n are locally

unstable for c ̸= (a−k)2

4 .

(vii) For γ = 0 and c = (a−k)2

4 all networks (ne
1, nj, ne

2) ∈ Nn are locally stable.

Figure 5.3 illustrates some of the findings of Proposition 5.2. The stability regions for

these networks for relatively small n already appear to be a good approximation to

the stability regions when the number of customers n becomes large. Graphically,

already for n = 20 there is hardly any visible difference compared to the limit

region. We observe that the perfect oligopoly with two firms may be locally stable

for any degree of product differentiation. In comparison the natural monopoly or

two coexisting monopolies of identical size are only locally stable for substitutable

products. The costs of link formation need to be relatively high for the monopolies

to be locally stable compared to the corresponding oligopoly (for a given degree of
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product differentiation for substitutable products).

n = 4
n = 10
n = 20
n = 50
n → ∞

0

0.1
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(a) (0, n, 0)

n = 4
n = 10
n = 20
n = 50
n → ∞

0

0.1

0.2

0.3

0.4

0.5

−0.75 −0.50 −0.25 0 0.25 0.50 0.75 1.00

γ

c

(b) (n, 0, 0), (0, 0, n)

n = 4
n = 10
n = 20
n = 50
n → ∞

0

0.1

0.2

0.3

0.4

0.5

−0.75 −0.50 −0.25 0 0.25 0.50 0.75 1.00

γ

c

(c) (n
2 , 0, n

2 )

Figure 5.3: Stable regions of networks with n customers for γ ∈
[
−3

4 , 1
]

(a − k = 1)

In general for the existence of locally stable networks we know the following.

Proposition 5.3. For all n ∈ N+, all combinations of degrees of substitutability

for complementary or independent products with γ ∈
[
−3

4 , 0
]
, and all costs of link

formation c ≥ 0 there exists at least one locally stable network. More precisely,

either the network (0, n, 0), the network (0, 0, 0) or both are locally stable. When

products are substitutable, then for all γ ∈ (0, 1] there exist costs of link formation

c ≥ 0, for which neither the complete nor the empty network is locally stable.

Figure 5.4 illustrates these findings graphically. Proposition 5.3 shows that for

complementary or independent products we are sure that a locally stable network

always exists. However, we also establish that for substitutable products this issue

is more complex. Among others, we further investigate this question in case of three

customers in Section 5.4.

The next proposition relates local and Nash stability for some particular networks
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(0, 0, 0)
(0, 0, 0)

(0, n, 0)

(0, n, 0)

0

0.1

0.2

0.3

0.4

0.5

−0.75 −0.50 −0.25 0 0.25 0.50 0.75 1.00

γ

c

Figure 5.4: Limit regions for local stability of the networks (0, n, 0) and (0, 0, 0)
(a − k = 1)

from Proposition 5.2.

Proposition 5.4.

(i) Consider networks (ne
1, nj, ne

2) ∈ Nn and γ ∈ [γn
min, 1]. The networks (0, n, 0),

(0, 0, n) / (n, 0, 0) and (0, 0, 0) are Nash stable if and only if they are locally

stable.

(ii) For γ = 0 and c = (a−k)2

4 all networks (ne
1, nj, ne

2) ∈ Nn are Nash stable.

(iii) Local and Nash stability do not coincide.

Proposition 5.4 (i) exemplarily shows that there is no difference between the concepts

of local and Nash stability for the prominent networks with only exclusive, only joint,

or no customers, i.e., the regions of stability for local and Nash stability coincide.

The proof in particular shows that if there is a beneficial deviation for a firm that

involves several links, then there must be a feasible local deviation that increases

the firm’s profit. The main intuition behind Proposition 5.4 (i) is that the incentives

for feasible deviations are provided by networks that are directly neighboring. For

networks within the set Πn
i (0) a local deviation by firm i (i ∈ {1, 2}) triggers the

same change in profits. Hence, they are increasing or decreasing in the number of

exclusive customers and therefore the conditions imposed by local and Nash stability

for deviations of firm i coincide. Proposition 5.4 (iii) reveals that the coincidence

of local and Nash stability that was established in Proposition 5.4 (i) for selected

networks with n customers does not generalize to arbitrary networks of customer
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relationships. We close this section by returning to the issue for which degrees of

substitutability γ our analysis in Proposition 5.2 is valid.

Proposition 5.5. The results on local stability for the networks (0, n, 0), (0, 0, 0),

(n, 0, 0) and (0, 0, n) as in Proposition 5.2 (i) to (iii) are valid for all γ ∈ [−1, 1]

and those for the network
(

n
2 , 0, n

2

)
as in Proposition 5.2 (iv) are valid for all γ ∈

[
−

√
3
√

163−3
20 , 1

]
≈ [−0.96, 1].

Proposition 5.5 states that for the specific networks we consider in Proposition 5.2 (i)

to (iv), equilibrium quantities are well defined for a broader range of γ than given

in Proposition 5.1. Readers that feel uncomfortable with not having the full range

[−1, 1] may be reconciled with the fact that there is not much difference between a

utility function of a joint customer for γ = −1 and γ = −3
4 . Unlike the use of Leontief

type utility functions that precisely capture the notion of perfect complements, the

utility functions used here (as well as in the literature on product differentiation)

still allow for some substitutability at γ = −1. Although it is only a good proxy

for perfect complements, the main advantage over taking a Leontief type utility

function is that equilibrium quantities are well-defined and, hence, we get a sound

basis for our analysis of stable customer relationship networks.

5.4 Networks with three customers

In this section we closer investigate a special case that allows us a complete char-

acterization of locally stable networks. More precisely, for networks with three

customers we completely identify conditions on link costs and the degree of substi-

tutability that renders specific networks locally stable. As shown in Proposition 5.1

we may consider γ ∈ [−1, 1] for n = 3. With three customers there are in total

20 different networks, presented in Figure 5.5. The complete network (0, 3, 0) and

empty network (0, 0, 0) are at the top and bottom. Symmetric networks (ne
1 = ne

2)

are found in the center “column”. The relations between those networks through

feasible local deviations from firm 1 are depicted by solid lines, those of firm 2 by

dashed lines. Observe that the partition Π3
1 resulting from the iteration of feasible

local deviations precisely contains the connected components when only considering

connections along solid lines (firm 1). Here, there are four sets in this partition.

Our first stability result investigates local stability and distinguishes between the
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(0, 3, 0)

(1, 1, 1)

(0, 2, 0)

(1, 0, 1)

(0, 1, 0)

(0, 0, 0)

(1, 2, 0)

(2, 0, 1)(2, 1, 0)(3, 0, 0)

(2, 0, 0)

(1, 0, 0)

(1, 1, 0)

(0, 2, 1)

(1, 0, 2) (0, 1, 2) (0, 0, 3)

(0, 0, 2)

(0, 0, 1)

(0, 1, 1)

feasible local deviations by firm 1
feasible local deviations by firm 2

Figure 5.5: Networks with (ne
1, nj, ne

2) ∈ N3

case with substitutes (γ > 0) and complements (γ < 0).

Proposition 5.6. Consider networks (ne
1, nj, ne

2) ∈ N3.

(i) For substitutable products with γ ∈ (0, 1] there exist costs of link formation

such that there are symmetric (ne
1 = ne

2) locally stable networks different from

the empty and complete network and there exist costs of link formation such

that there are asymmetric (ne
1 ̸= ne

2) locally stable networks.

(ii) For complementary products with γ ∈ [−1, 0) there are no asymmetric locally

stable networks for any costs c ̸= (a−k)2

4 of link formation. Moreover, there exist

costs of link formation such that there are symmetric locally stable networks

with 0 < ne
1 + nj + ne

2 < 3.

Apart from the results stated in Proposition 5.6, we have analytically determined the

regions (in γ/c space) of stability for all networks with three customers. Figure 5.6
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shows the regions of stability for stable networks with three customers (for a − k =

1). The displayed functions in γ are upper and lower bounds on c imposed by

local stability. The gray-shaded area indicates the region of (γ, c) combinations for

which the according network is locally stable. Note that the local instability of the

networks (2, 1, 0) and (0, 1, 2) has already been established in Proposition 5.2(v) for

a general number of customers. The networks not shown in Figure 5.6 are locally

stable only for very specific values of γ and c. More precisely, the networks (1, 1, 0)

and (0, 1, 1) are locally stable only for γ = 0 and c = (a−k)2

4 and the remaining

networks (2, 0, 0), (0, 0, 2), (1, 0, 0) and (0, 0, 1) for all γ ∈ [−1, 1] and c = (a−k)2

4 .

In view of Proposition 5.6 and Figure 5.6, we observe that with complementary

products we rather have symmetric networks among the locally stable ones, whereas

for substitutable products, asymmetric networks appear in the set of stable networks.

This confirms the intuition that complementary products trigger joint customers,

whereas substitutable products rather lead to exclusiveness.

Looking at Figure 5.6 there is a striking similarity between the shape of stability

regions depicted in Figure 5.3 for n customers in comparison to the corresponding

regions displayed for three customers. Qualitatively there is no difference when

comparing the regions for the complete network, the network with only one firm

being linked to all customers, or a proper dispersion of exclusive customers. For

the latter, compare the networks (n
2 , 0, n

2 ) and (2, 0, 1)/(1, 0, 2). We may therefore

conclude that the basic insights in stability of customer relationship networks seem

to be already observable in the n = 3 case. Comparing the different graphs in

Figure 5.6, we observe that the regions of stability may overlap or be adjacent for

different networks. As a consequence, for fixed costs of link formation and a fixed

degree of substitutability, there might be more than one locally stable network.

However, even if in some cases the regions of local stability intersect, we also observe

that there exist cases in which they are directly adjacent. The next proposition in

particular establishes that at least one locally stable network always exists.

Proposition 5.7. Consider networks (ne
1, nj, ne

2) ∈ N3. For all combinations of

degrees of substitutability γ ∈ [−1, 1] and all costs of link formation c ≥ 0 there

exists at least one locally stable network. More precisely, if we consider substitutable

products with γ ∈ (0, 1] and order the networks by increasing costs of link formation,

then the regions of local stability of the networks (0, 3, 0), (1, 2, 0) / (0, 2, 1), (1, 1, 1),

(1, 0, 2) / (2, 0, 1) and (0, 0, 0) are directly adjacent. For complementary products
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(i) (2, 1, 0), (0, 1, 2)

Figure 5.6: Regions of stability for networks with three customers (a − k = 1)
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with γ ∈ [−1, 0) or independent products with γ = 0 either the network (0, 3, 0), the

network (0, 0, 0) or both are locally stable.

Figure 5.7 illustrates the stability regions of the networks from Proposition 5.7.

(0, 0, 0)

(1, 0, 2) / (2, 0, 1)

(1, 1, 1)
(1, 2, 0) / (0, 2, 1)(0, 3, 0)

(0, 0, 0)

(0, 3, 0)

0

0.1

0.2

0.3

0.4

0.5

0.6

−1 −0.75 −0.50 −0.25 0 0.25 0.50 0.75 1.00

γ

c

Figure 5.7: Existence of locally stable networks for n = 3 (a − k = 1)

Note that the stability region of the networks (1, 2, 0) and (0, 2, 1) in Figure 5.7 also

Figure 5.6g is hardly visible. However, in the proof of Proposition 5.7, we establish

that it is indeed located between the stability region of the networks (0, 3, 0) and

(1, 1, 1). To see the adjacency result, first consider substitutable products with

γ ∈ (0, 1] in Figure 5.7. At very low costs of link formation c, the network (0, 3, 0)

is locally stable. Then, when the costs of link formation increase, first all links to

joint customers are successively deleted going from (0, 3, 0) to (1, 2, 0) / (0, 2, 1), then

to (1, 1, 1), and finally to (1, 0, 2) / (2, 0, 1). One may think of firms alternatingly

deleting links to joint customers. Finally, for relatively high costs of link formation,

also the links to exclusive customers are deleted, ending up with the empty network

(0, 0, 0). In contrast, for complementary or independent products with γ ∈ [−1, 0],

as indicated in Figure 5.7, the empty and the complete network already suffice to

find a locally stable network for any (γ, c). At intermediate costs of link formation

even both of them are locally stable. We add a final remark on the shape of the

local stability regions in Figures 5.6 and 5.7 to close our discussion on local stability.

When looking at lower and upper bounds, the profits in two networks (the stable

one and a deviation network) are considered. However, one should not fail not

recall that with a change of the structure of exclusive and joint customers, the
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environment for competition among firms may completely change. Intuitively, such

changes take more effect, the more complementary the products are. We use this

as an explanation for the fact that the functions describing lower and upper bounds

are not monotonic, especially for γ sufficiently close to −1. Lastly, we briefly recall

the results from Proposition 5.4 on the second notion of stability. From Figure 5.5

we readily identify the partitions from both firms induced by iterated feasible local

deviations. The proof of Proposition 5.4 (iii) indeed gives a counter example with

n = 3 showing that for a range of complementary products that the network (1, 1, 1)

is locally but not Nash stable as there is an incentive to deviate to the network

(0, 2, 0). This can also be observed in Figure 5.6. However, by Proposition 5.4 (i)

we also know that the networks (0, 3, 0), (0, 0, 3) / (3, 0, 0) and (0, 0, 0) are Nash

stable if and only if they are locally stable.

5.5 Conclusion

Interpreting links to customers as relationships that enable trade to sell a product,

we analyzed the stability of networks where two firms strategically form costly links

to customers. Given a network of customer relationships (ne
1, nj, ne

2) ∈ N3
+ with n

customers and ne
1 + nj + ne

2 ≤ n, we determined the equilibrium prices and quan-

tities for quantity competition between two firms. We identified a lower bound on

the products’ substitutability that is needed to ensure interior solutions in equilib-

rium and holds for all networks with n ≥ 3 customers (Proposition 5.1 and also

Proposition 5.5). Furthermore, we observed that the substitutability of the firms’

products, γ, and the costs of link formation, c, influence the firms’ equilibrium prof-

its and, thus, have an impact on the incentives to strategically form relationships to

customers. To analyze these incentives we introduced a notion of local and of Nash

stability to identify for a given network of customer relationships regions of (γ, c), in

which the given network is stable. In the general case with an arbitrary number of

customers, we determined the stability regions for selected networks and presented

the limit regions of stability when n goes to infinity (Proposition 5.2). It turned

out that the shape of the stability regions does not significantly change compared

to a setting with relatively small n. This implies that already for small n we obtain

a good picture of the general scenario. For the existence of locally stable networks

with n customers we showed that for complementary or independent products ei-
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ther the empty, the complete or both networks are locally stable, which is not true

for substitutable products (Proposition 5.3). In addition, for selected networks we

established that the stability regions for Nash and local stability indeed coincide

(Proposition 5.4). Thus, allowing for the addition or deletion of several links does

not influence the stability. For networks of customer relationships with three cus-

tomers, we observed that there is a tendency to have symmetric networks among

the locally stable ones for complementary products, whereas rather asymmetric net-

works are stable for substitutable products (Proposition 5.6). Moreover, a locally

stable network always exists (Proposition 5.7). In sum, the novelty of our model

compared to the existing literature is that instead of an indivisible good being ex-

changed along a link, it is possible to sell perfectly divisible goods and the division

of surplus between buyer and seller depends on equilibrium prices and quantities.

We close with two implications that should be mentioned. From a managerial per-

spective, the successful sales manager of a company should carefully observe these

parameters when deciding on which customers should be acquired next. One might

either go for exclusive or joint (i.e., shared) customers or even build up a specific

mixture of both customer types or stop acquiring new customers if the acquisition

costs are becoming too high. Given a network of customer relationships and a spe-

cific degree of substitutability, we will be able to provide conclusions regarding the

optimal behavior of the firms and the stability of the network. From a market de-

sign perspective, influencing link costs (e.g., through legal restrictions) ultimately

has an effect on the network structure in the market. If one, for instance, thinks of

the market as organized on a centralized (Internet) platform, link costs and, hence,

stable trade relations can be influenced by the platform owner. As we found out,

this will in particular be true, when products are well substitutable.

5.A Appendix A: Proofs

5.A.1 Proof of Proposition 5.1

Proof: For n = 3 there does not exist a network of customer relationships with

nj > 0 and ne
2 > ne

1 > 0 or ne
1 > ne

2 > 0 and, hence, condition (5.4) is vacuously

satisfied. Therefore, we have to consider networks with n ≥ 4 customers to see when

condition (5.4) may be violated.
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Consider a network (ne
1, nj , ne

2) with n ≥ 4, nj > 0 and ne
2 > ne

1 > 0, i.e., i = 1 in

condition (5.4). A necessary condition to find a network such that condition (5.4)

does not hold is a negative coefficient in front of ne
2, which is

(1 + γ)
[
(2 − γ)

(
ne

1 + nj
)

− γne
1

]
− γ2nj = 2

(
1 − γ2

) (
ne

1 + nj
)

+ γnj < 0.

Then, if there exists an ne
2 large enough in comparison to ne

1 and nj , condition (5.4)

no longer holds. However, the coefficient in front of ne
2 in condition (5.4) is always

positive for γ > −

√
16(ne

1
+nj)

2
+(nj)2−nj

4(ne
1
+nj)

which is bounded above for any ne
1 and nj by

−

√
16 (ne

1 + nj)2 + (nj)2 − nj

4 (ne
1 + nj)

−

√
16 (ne

1 + nj)2 − (nj + ne
1)

4 (ne
1 + nj)

= −3

4
.

This means for γ ≥ −3
4 that there does not exist a network with n ≥ 4 that violates

condition (5.4). Note that, however, this bound is not tight. We obtain for networks

with n ≥ 4 and ne
1 > ne

2 > 0 for condition (5.4) an analogous bound depending on

ne
2 and nj.

Suppose now n is fixed. Consider again networks with nj > 0 and ne
2 > ne

1 > 0 or

ne
1 > ne

2 > 0, i.e., i = 1 in condition (5.4). Let γ(ne
1
,nj ,ne

2) denote the value for γ

when condition (5.4) is satisfied with equality (for i = 1). To find the network over

all networks with at most n customers, which imposes the maximal lower bound on

γ, we choose ne
1 = 1 and nj as large as possible as

∂

⎛

⎝−

√
16(ne

1
+nj)

2
+(nj)2−nj

4(ne
1
+nj)

⎞

⎠

∂ne
1

= −
nj
(√

16 (ne
1 + nj)2 + (nj)2 − nj

)

4 (ne
1 + nj)2

√
16 (ne

1 + nj)2 + (nj)2
≤ 0,

∂

⎛

⎝−

√
16(ne

1
+nj)

2
+(nj)2−nj

4(ne
1
+nj)

⎞

⎠

∂nj
=

ne
1

(√
16 (ne

1 + nj)2 + (nj)2 − nj
)

4 (ne
1 + nj)2

√
16 (ne

1 + nj)2 + (nj)2
≥ 0.

As we consider now networks with at most n customers, this observation implies that

there is a tradeoff between choosing nj and ne
2 large enough for finding the network

that yields the lower bound for γ. This implies that the network that puts the lower

bound on γ is of the form (ne
1, nj, ne

2) = (1, n − ne
2 − 1, ne

2) with 2 ≤ ne
2 ≤ n − 2. For

symmetry reasons this holds analogously for i = 2 and ne
1 > ne

2 > 0 with networks
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of the form (ne
1, nj, ne

2) = (ne
1, n − ne

1 − 1, 1) with 2 ≤ ne
1 ≤ n − 2. Therefore,

γn
min = max

{

max
2≤ne

2
≤n−2

γ(1,n−ne
2
−1,ne

2), max
2≤ne

1
≤n−2

γ(ne
1
,n−ne

1
−1,1)

}

= max
2≤ne

1
≤n−2

−

√
16 (n − 1)2 + (n − ne

1 − 1)2 − (n − ne
1 − 1)

4 (n − 1)
. !

5.A.2 Proof of Proposition 5.2

Suppose γ ∈
[
−3

4 , 1
]
. The profits needed for the proof can be found in Table 5.1.

Table 5.1: Equilibrium profits for networks with n customers

(
ne

1, nj , ne
2

)
π

(ne
1
,nj ,ne

2)
1 π

(ne
1
,nj ,ne

2)
2

(0, n, 0) (a−k)2n
(2+γ)2

(a−k)2n
(2+γ)2

(0, n − 1, 1) (a−k)2n2(2−γ)2(n−1)

(4n−(n+1)γ2)2

(a−k)2n(2n−(n−1)γ−γ2)2

(4n−(n+1)γ2)2

(0, 1, n − 1) (a−k)2n2(2−γ)2

(4n−(2n−1)γ2)2

(a−k)2n(2n−γ−(n−1)γ2)2

(4n−(2n−1)γ2)2

(0, 2, n − 2) (a−k)2n2(2−γ)2

2(2n−(n−1)γ2)2

(a−k)2n(2n−2γ−(n−2)γ2)2

4(2n−(n−1)γ2)2

(0, 1, n − 2) (a−k)2(2−γ)2(n−1)2

(4(n−1)−(2n−3)γ2)2

(a−k)2(2−γ)2(n−1)(2(n−1)−γ−(n−2)γ2)
(4(n−1)−(2n−3)γ2)2

(n
2 , 0, n

2

) (a−k)2n
8

(a−k)2n
8

(n
2 , 1, n

2 − 1
) (a−k)2n2(n+2)(2+n−γ−(n−1)γ2)2

8(n(n+2)−(n−1)(n+1)γ2)2

(a−k)2n(n(n+2)−(n+2)γ−(n−2)(n+1)γ2)2

8(n(n+2)−(n−1)(n+1)γ2)2

(n
2 − 1, 0, n

2

) (a−k)2(n−2)
8

(a−k)2n
8

(0, 0, n) 0 (a−k)2n
4

(0, 0, n − 1) 0 (a−k)2(n−1)
4

(0, 0, 0) 0 0

Proof: (i) Because of symmetry we just consider within this proof deviations

of firm 1. From a local perspective, possible deviations from the complete

network (0, n, 0) are if firm 1 deletes a link to a joint customer yielding to

the network (0, n − 1, 1). For local stability we require π(0,n,0)
1 − c ≥ π(0,n−1,1)

1 .

Using the profits from Table 5.1 we obtain

c ≤ π(0,n,0)
1 − π(0,n−1,1)

1 =
(a − k)2 n (16n (1 − γ2) + (3n + 1) γ4)

(2 + γ)2 (4n − (n + 1) γ2)2 . (5.12)
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For the convergence we use L’Hôpital’s rule. First note that for γ ∈ [−1, 1] we

have

lim
n→∞

(a − k)2 n
(
16n

(
1 − γ2

)
+ (3n + 1) γ4

)
= ∞,

lim
n→∞

(a − k)2
(
32n

(
1 − γ2

)
+ 6nγ4 + γ4

)
= ∞,

lim
n→∞

(2 + γ)2
(
4n − (n + 1) γ2

)2
= ∞,

lim
n→∞

2 (2 + γ)2
(
4n − (n + 1) γ2

) (
4 − γ2

)
= ∞.

Therefore, applying L’Hôpital’s rule twice yields

lim
n→∞

(a − k)2 n (16n (1 − γ2) + (3n + 1) γ4)

(2 + γ)2 (4n − (n + 1) γ2)2 =
(a − k)2 (4 − 3γ2)

(2 − γ) (2 + γ)3 .

(ii) Consider the empty network with (0, 0, 0). Possible local deviations from the

empty network are if firm 1 forms a link yielding (1, 0, 0) (see Figure 5.5).

In this case, profits raise from zero to (a−k)2

4 (as computed in Table 5.1).

Therefore, if and only if the costs of link formation are c ≥ (a−k)2

4 , then the

empty network with (0, 0, 0) is locally stable.

(iii) Consider now the network (0, 0, n). The possible deviations are for firm 1 to

form a link to an exclusive customer of firm 2 yielding the network (0, 1, n−1).

The only possible deviation for firm 2 is to delete a link to an own exclusive

customer yielding the network (0, 0, n − 1). Therefore, we require

π(0,0,n)
1 ≥ π(0,1,n−1)

1 − c, π(0,0,n)
2 − c ≥ π(0,0,n−1)

2 . (5.13)

Using the profits from Table 5.1 this is equivalent to requiring from the first

inequality in (5.13) c ≥ (a−k)2n2(2−γ)2

(4n−(2n−1)γ2)2 and from the second inequality in (5.13)

c ≤ (a−k)2

4 . Thus, we have found an upper and a lower bound for the costs of

link formation such that the networks (0, 0, n) an (n, 0, 0) are locally stable. For

the convergence we use again L’Hôpital’s rule. First note that for γ ∈ [−1, 1]

we have

lim
n→∞

(a − k)2 n2 (2 − γ)2 = ∞, lim
n→∞

2 (a − k)2 n (2 − γ)2 = ∞,

lim
n→∞

(
4n − (2n − 1) γ2

)2
= ∞, lim

n→∞
4
(
4n − (2n − 1) γ2

) (
2 − γ2

)
= ∞.
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Therefore, applying L’Hôpital’s rule twice yields

lim
n→∞

(a − k)2 n2 (2 − γ)2

(4n − (2n − 1) γ2)2 =
(a − k)2 (2 − γ)2

4 (2 − γ2)2 .

(iv) Because of symmetry we just consider within this proof deviations of firm 1.

From a local perspective, possible deviations from the (n
2 , 0, n

2 ) are if firm 1

forms a link to an exclusive customer of firm 2 yielding (n
2 , 1, n

2 − 1) or deletes

a link to an own exclusive customer yielding to the network (n
2 − 1, 0, n

2 ). For

local stability we require

π
(n

2
,0, n

2 )
1 ≥ π

(n
2

,1, n
2

−1)
1 − c, π

(n
2

,0, n
2 )

1 − c ≥ π
(n

2
−1,0, n

2 )
1 (5.14)

Using the profits from Table 5.1 this is equivalent to requiring from the first

inequality in (5.14)

c ≥ (a − k)2 n2 (n + 2) (2 + n − γ − (n − 1) γ2)
2

8 (n (n + 2) − (n − 1) (n + 1) γ2)2 − (a − k)2 n

8

and from the second inequality in (5.14) c ≤ (a−k)2

4 . Thus, we have found an

upper and a lower bound for the costs of link formation such that the network

(n
2 , 0, n

2 ) is locally stable. For the convergence we use again L’Hôpital’s rule.

First note that for γ ∈ [−1, 1] the numerator of the lower bound is a polynomial

in n with non-negative coefficients given by

(a − k)2 n
(

2 (1 + γ) (1 − γ)2 n3 + (1 − γ)
(
8 − γ2 + γ3

)
n2

+ 2
(
4 − 4γ + 3γ2 − 2γ3 + γ4

)
n − γ4

)

and, analogously, the denominator is also a polynomial in n with non-negative

coefficients given by

8
((

1 − γ2
)2

n4 + 4
(
1 − γ2

)
n3 + 2

(
2 − γ2

) (
1 + γ2

)
n2 + 4γ2n + γ4

)
.

Hence, for n → ∞ the numerator as well as its first three derivatives, and also

the denominator as well as its first three derivatives, tend to ∞. Applying
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L’Hôpital’s rule four times yields

lim
n→∞

(a − k)2 n2 (n + 2) (2 + n − γ − (n − 1) γ2)2

8 (n (n + 2) − (n − 1) (n + 1) γ2)2 − (a − k)2 n

8

= lim
n→∞

(a − k)2

4 (1 + γ)
.

(v) For the network (0, 1, n − 1) to be locally stable we need to have that firm 1

is not willing to form a link to an exclusive customer of firm 2. Moreover,

firm 2 should not have an incentive to delete a link to neither a joint nor to

an exclusive customer. This requires

π(0,1,n−1)
1 ≥ π(0,2,n−2)

1 − c, (5.15)

π(0,1,n−1)
2 − c ≥ π(1,0,n−1)

2 , π(0,1,n−1)
2 − c ≥ π(0,1,n−2)

2 . (5.16)

Inequality (5.15) gives us a lower bound for the costs of link formation and

the inequalities in (5.16) define an upper bound. We use this conditions to

establish a contradiction between the requirements needed for local stability.

More precisely, we show that for all γ ̸= 0 one of the upper bounds always

exceeds the lower bound for the costs of link formation. We obtain

π(0,2,n−2)
1 − π(0,1,n−1)

1 =
(a − k)2 n2 (2 − γ)2

(
2 (2 − γ2)

2
n2 − γ4

)

2 (2n − (n − 1) γ2)2 (4n − (2n − 1) γ2)2 , (5.17)

π(0,1,n−1)
2 − π(1,0,n−1)

2 =
(a − k)2 n (2n − γ − (n − 1) γ2)2

(4n − (2n − 1) γ2)2 − (a − k)2 (n − 1)

4
,

(5.18)

π(0,1,n−1)
2 − π(0,1,n−2)

2 (5.19)

=
(a − k)2 n (2n − γ − (n − 1) γ2)

2

(4n − (2n − 1) γ2)2 (5.20)

− (a − k)2 (2 − γ)2 (n − 1) (2 (n − 1) − γ − (n − 2) γ2)

(4 (n − 1) − (2n − 3) γ2)2 .

First note that the lower bound on the costs of link formation in equation (5.17)

is increasing in n whereas the upper bounds in equations (5.18) and (5.21) are
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decreasing in n as

∂
[
π(0,2,n−2)

1 − π(0,1,n−1)
1

]

∂n

=
(a − k)2 n (2 − γ)2

(
6 (2 − γ2)3 n3 + 6γ2 (2 − γ2)3 n2 − γ6

)

2 (2n − (n − 1) γ2)3 (4n − (2n − 1) γ2)3 ≥ 0

and

∂π(0,1,n−1)
2

∂n
=

(a − k)2 (γ + (n − 1) γ2 − 2n) (2 (2 − γ2)
2

n2 − γ (2 + γ) (2 − γ2) n)

(4n − (2n − 1) γ2)3

+
(a − k)2 (γ + (n − 1) γ2 − 2n) γ3 (1 − γ)

(4n − (2n − 1) γ2)3

≤ 0.

Thus, it suffices to consider small n to establish instability. For n = 3 we have

π(0,2,1)
1 − π(0,1,2)

1 =
9 (a − k)2 (2 − γ)2 (72 − 72γ2 + 17γ4)

8 (3 − γ2)2 (12 − 5γ2)2 , (5.21)

π(0,1,2)
2 − π(1,0,2)

2 =
(a − k)2 (72 − 72γ − 18γ2 + 24γ3 − γ4)

2 (12 − 5γ2)2 ,

π(0,1,2)
2 − π(0,1,1)

2 =

(a − k)2 (2304 − 3744γ2 + 2284γ4 − 20γ5 − 607γ6 + 8γ7 + 58γ8)

(12 − 5γ2)2 (8 − 3γ2)2 ,

(
π(0,1,2)

2 − π(1,0,2)
2

)
−
(
π(0,2,1)

1 − π(0,1,2)
1

)
=

− γ2 (a − k)2 (432 − 720γ2 + 252γ3 + 201γ4 − 96γ5 + 4γ6)

8 (3 − γ2)2 (12 − 5γ2)2 ,

(
π(0,1,2)

2 − π(0,1,1)
2

)
−
(
π(0,2,1)

1 − π(0,1,2)
1

)
=

γ (a − k)2 (165888 − 131328γ − 290304γ2 + 248256γ3)

8 (3 − γ2)2 (8 − 3γ2)2

+
γ (a − k)2 (185472γ4 − 177312γ5 − 51168γ6 + 59252γ7)

8 (3 − γ2)2 (8 − 3γ2)2

+
γ (a − k)2 (4964γ8 − 9017γ9 + 64γ10 + 464γ11)

8 (3 − γ2)2 (8 − 3γ2)2 .
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Note that the polynomial in the numerator of the first equation does not

possess a zero for γ ∈ (0, 1] and is strictly positive for γ = 1.

Hence, the first equation is strictly negative for γ ∈ (0, 1]. The second equation

is strictly negative for γ ∈ [−1, 0). Thus, for complementary as well as for

substitutable products there is always one lower bound imposed on the costs

of link formation that exceeds an upper bound. This means that the network

(0, 1, 2) is locally unstable for all γ ̸= 0. Also considering γ = 0 and inspecting

the conditions we observe local instability for c ̸= (a−k)2

4 .

(vi) The networks (ne
1, nj , ne

2) ∈ Nn with nj = 0 and 0 < ne
1 + ne

2 < n are locally

unstable for c ̸= (a−k)2

4 , as there is always a profitable deviation of one firm to

either add or delete a link to an exclusive customer. Therefore, they may only

be locally stable for very specific costs, i.e., c = (a−k)2

4 (for all γ ∈ [−1, 1]).

(vii) For γ = 0 the profits of the intermediaries reduce to

π
(ne

1
,nj ,ne

2)
1 =

(ne
1 + nj) (a − k)2

4
, π

(ne
1
,nj ,ne

2)
2 =

(nj + ne
2) (a − k)2

4
.

Therefore, for c = (a−k)2

4 both intermediaries are indifferent between deleting

and adding links. !

5.A.3 Proof of Proposition 5.3

Proof: We show that there is an overlap of the local stability regions of the complete

network (0, n, 0) and the empty network (0, 0, 0). First note that the stability region

for the network (0, n, 0) shrinks as n grows. This is taking c(0,n,0) from equation (5.12)

and

∂c(0,n,0)

∂n
=

∂
[

(a−k)2n(16n(1−γ2)+(3n+1)γ4)
(2+γ)2(4n−(n+1)γ2)2

]

∂n

=
(a − k)2 γ2 (−32n + 28γ2n − γ4 (5n + 1))

(2 + γ)2 (4n − (n + 1) γ3)3 ≤ 0
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(for n ≥ 1). We investigate the difference of the limit of c(0,n,0) and c(0,0,0)

lim
n→∞

c(0,n,0) − c(0,0,0) =
γ (a − k)2 (−16 − 12γ + 4γ2 + γ3)

4 (2 − γ) (2 + γ)3 ≥ 0 for γ ∈ [−1, 0].

This implies that there is an overlap between the stability regions of the networks

(0, n, 0) and (0, 0, 0) for complementary or independent products. Note that for

substitutable products the above inequality shows that the regions are not even

directly adjacent. !

5.A.4 Proof of Proposition 5.4

Suppose γ ∈ [γn
min, 1]. The profits needed for the proof can be found in Table 5.2.

Table 5.2: Equilibrium profits for networks with n customers

(
ne

1, nj , ne
2

)
π

(ne
1
,nj ,ne

2)
1 π

(ne
1
,nj ,ne

2)
2

(0, n − ne
2, ne

2)
(a−k)2n2(2−γ)2(n−ne

2)
(4n−γ2(n+ne

2))
2

(a−k)2n(n(2−γ)+ne
2
γ(1−γ))2

(4n−γ2(n+ne
2))

2

(
0, nj , n − nj

) (a−k)2n2(2−γ)2nj

(4n−γ2(2n−nj))2

(a−k)2n(n(2−γ)+(n−nj)γ(1−γ))2

(4n−γ2(2n−nj))2

Proof: (i) Consider the complete network with (0, n, 0). For the Nash stability,

we compare the according profits with those of a network (0, n − ne
2, ne

2) in

which ne
2 links have been deleted by firm 1. These are all the networks in

Πne
1(n) The network (0, n, 0) is Nash stable if none of the firms is willing

to delete a link. This requires for firm 1 π(0,n,0)
1 − π

(0,n−ne
2
,ne

2)
1 ≥ ne

2c for all

0 < ne
2 ≤ n.

Using the profits from Table 5.2 we obtain for

π(0,n,0)
1 − π

(0,n−ne
2
,ne

2)
1

ne
2

=
(a − k)2 n ((4 − γ2) (4 − 3γ2) n + γ4ne

2)

(2 + γ)2 (4n − γ2 (n + ne
2))2
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and observe that this difference is increasing in ne
2 by noting that

∂
[
(a − k)2 n ((4 − γ2) (4 − 3γ2) n + γ4ne

2)
]

∂ne
2

= (a − k)2 nγ4 ≥ 0

∂
[
ne

2 (2 + γ)2 (4n − γ2 (n + ne
2))

2
]

∂ne
2

= −2γ2 (2 + γ)2
(
4n − γ2 (n + ne

2)
)

≤ 0

and applying the quotient rule. Thus, for the Nash stability region we require

for firm 1

min
0<ne

2
≤n

π(0,n,0)
1 − π

(0,n−ne
2
,ne

2)
1

ne
2

≥ c.

Using the observation that this difference is increasing in ne
2 this minimum is

attained at ne
2 = 1. This means the network that defines the Nash stability

region for the network (0, n, 0) considering deviations of firm 1 is the the

directly neighboring network (0, n − 1, 1). Thus, by symmetry of the firms for

the network (0, n, 0) the stability regions for local and Nash stability coincide.

Consider the empty network with (0, 0, 0). There is no incentive of firm 1 to

add further links if π(0,0,0)
1 − π

(ne
1
,0,0)

1 ≥ −ne
1c. We obtain for

π(0,0,0)
1 − π

(ne
1
,0,0)

1

ne
1

=
0 − (a − k)2 ne

1

−4ne
1

=
(a − k)2

4
.

which implies for the Nash stability region considering deviations of firm 1

c ≥ (a−k)2

4 . This means that the change of marginal profits is constant between

all networks in Πne
1(0). Thus, by symmetry of the firms for the network (0, 0, 0)

the stability regions for local and Nash stability coincide.

Consider the network with (0, 0, n). This network is asymmetric. Therefore,

we have consider the conditions imposed on Nash stability separately for both

firms. Firm 1 may add links to customers of firm 2. This is we have to establish

for the Nash stability of the network (0, 0, n) considering deviations of firm 1

π
(0,nj ,n−nj)
1 − π(0,0,n)

1 ≤ njc for all 0 < nj ≤ n. We look at

π
(0,nj ,n−nj)
1 − π(0,0,n)

1

nj
=

(a − k)2 n2 (2 − γ)2 nj

nj (4n − γ2 (2n − nj))2 =
(a − k)2 n2 (2 − γ)2

(4n − γ2 (2n − nj))2

Philipp Möhlmeier Externalities in Social and Economic Networks



Chapter 5. Stability of customer relationship networks 153

and observe that this difference is decreasing in nj by noting that

∂
[

(a−k)2n2(2−γ)2

(4n−γ2(2n−nj))2

]

∂nj
= −2γ2 (a − k)2 n2 (2 − γ)2

(4n − γ2 (2n − nj))3 ≤ 0.

For the Nash stability region we require for firm 1

max
0<nj≤n

π
(0,nj ,n−nj)
1 − π(0,0,n)

1

nj
≤ c

and this maximum is attained at nj = 1, which is the network (0, 1, n − 1).

Firm 2 already has n links in the network (0, 0, n). Therefore, firm 2 may

only delete links. As already observed the change of marginal profits is con-

stant between all networks in Πnj
(0), we require for the Nash stability for the

network (0, 0, n) for firm 2 c ≤ (a−k)2

4 .

Summing up the Nash stability region for the network (0, 0, n) is determined

by deviations to the directly adjacent networks (0, 1, n − 1) for firm 1 and

(0, 0, n − 1) for firm 2. Thus, for the networks (0, 0, n) and (n, 0, 0) local and

Nash stability coincide.

(ii) For γ = 0 and c = (a−k)2

4 we have already established in Proposition 5.2 (vii)

that the firms are indifferent between adding and deleting links and it is

straightforward to see that all networks are Nash stable.

(iii) Consider the network (ne
1, nj , ne

2) = (1, 1, 1) and γ ∈ (−1, 0). For local stability

we require

c ∈
[

(a − k)2 (576 + 288γ − 660γ2 − 264γ3 + 184γ4 + 52γ5 − 5γ6)

16 (3 − γ2)2 (4 + 3γ)2 ,

2 (a − k)2 (2 − γ2) (64 + 96γ + 12γ2 − 36γ3 − 9γ4)

(4 + 3γ)2 (8 − 3γ2)2

]

.

The difference between the upper and lower bound is equal to (a − k)2 γ mul-
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tiplied by

36864 + 33792γ − 54528γ2 − 45504γ3 + 30176γ4

16 (3 − γ2)2 (4 + 3γ)2 (8 − 3γ2)2

+
22164γ5 − 7416γ6 − 4584γ7 + 684γ8 + 333γ9

16 (3 − γ2)2 (4 + 3γ)2 (8 − 3γ2)2

and has just one zero for γ ∈ (−1, 0) at γ ≈ −0.95. Noting that for γ = −1 this

expression is positive, we know that the network (1, 1, 1) is locally stable for

γ ∈ [−1, 0.95]. This can also be seen directly looking at Figure 5.6c. However,

the network (1, 1, 1) is not Nash stable for γ ∈ (−1, 0.95] as

π(1,1,1)
1 − π(0,2,0)

1 =
2 (a − k)2 (2 + γ)2

(4 + 3γ)2 − 2 (a − k)2

(2 + γ)2

=
2γ (a − k)2 (1 + γ) (8 + 7γ + γ2)

(4 + 3γ)2 (2 + γ)2 < 0

for γ ∈ (−1, 0) and firm 1 has an incentive to first delete a link to an exclusive

customer and then to establish a link to a customer of firm 2 yielding the

network (0, 2, 0). !

5.A.5 Proof of Proposition 5.5

Proof: Among the directly neighboring networks of (0, n, 0), (0, 0, 0), (n, 0, 0) and

(0, 0, n), there is no network in which condition (5.4) is not satisfied. Therefore, we

may immediately consider γ ∈ [−1, 1]. However, for the network
(

n
2 , 0, n

2

)
, the two

neighboring networks
(

n
2 , 1, n

2 − 1
)

and
(

n
2 − 1, 1, n

2

)
may violate condition (5.4).

For the two networks
(

n
2 , 1, n

2 − 1
)

and
(

n
2 − 1, 1, n

2

)
condition (5.4) reduces to

1

2

[
n (n + 2 + γ) − γ2n (n + 1) + 2γ

]
(5.22)
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with a zero for γ ∈ [−1, 1] of −
√

4n4+12n3+9n2+4n+4−n−2
2n(n+1) . We have that (5.22) is

increasing in n as

(n + 1) [(n + 3 + γ) − γ2 (n + 2)] + 2γ − [n (n + 2 + γ) − γ2n (n + 1) + 2γ]

2

=
(1 + γ) (2n (1 − γ) + 3 − 2γ)

2
≥ 0 for n ≥ 4 and γ ∈ [−1, 1].

Moreover, (5.22) as a function in γ is a parabola that opens downward with a

maximum at γ = n+2
2n(n+1) as

∂
[

1
2 [n (n + 2 + γ) − γ2n (n + 1) + 2γ]

]

∂γ
=

n − 2γn (n + 1) + 2

2
,

∂2
[

1
2 [n (n + 2 + γ) − γ2n (n + 1) + 2γ]

]

∂γ2
= −n (n + 1) < 0.

These two observations imply that the lower bound for γ over all networks with n ≥ 4

is at n = 4 for the networks (1, 1, 2) and (2, 1, 1) given by −
√

3
√

163−3
20 ≈ −0.96. !

5.A.6 Proof of Proposition 5.6

For this proof we use the lower and upper bounds that local stability imposes on

the costs of link formation.

Proof: (i) A symmetric network that is locally stable for appropriately chosen

costs of link formation is the network
(
ne

1, nj, ne
2

)
= (1, 1, 1). For local stabil-

ity we require

π(1,1,1)
1 ≥ π(1,2,0)

1 − c, π(1,1,1)
1 − c ≥ π(1,0,2)

1 , π(1,1,1)
1 − c ≥ π(0,1,1)

1 .

Note that for symmetry reasons we just investigate deviations of firm 1. Thus,

for γ ∈ [0, 1] local stability imposes the costs of link formation

c ∈
[

(a − k)2 (576 + 288γ − 660γ2 − 264γ3 + 184γ4 + 52γ5 − 5γ6)

16 (3 − γ2)2 (4 + 3γ)2 ,

(a − k)2 (16 + 8γ − γ2)

4 (4 + 3γ)2

]

.
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The difference between the upper and the lower bound imposed for local sta-

bility on the costs of link formation for γ ∈ [0, 1] is

(a − k)2 (16 + 8γ − γ2)

4 (4 + 3γ)2

− (a − k)2 (576 + 288γ − 660γ2 − 264γ3 + 184γ4 + 52γ5 − 5γ6)

16 (3 − γ2)2 (4 + 3γ)2

=
(a − k)2 γ2 (240 + 72γ − 96γ2 − 20γ3 + γ4)

16 (3 − γ2)2 (4 + 3γ)2 ≥ 0.

For an asymmetric network consider
(
ne

1, nj, ne
2

)
= (3, 0, 0). For local stability

we require

π(0,0,3)
1 ≥ π(0,1,2)

1 − c, π(0,0,3)
2 − c ≥ π(0,0,2)

2 .

Thus, local stability imposes the costs of link formation

c ∈
[

9 (a − k)2 (2 − γ)2

(12 − 5γ2)2 ,
(a − k)2

4

]

.

The difference between the upper and the lower bound imposed for local sta-

bility on the costs of link formation is

(a − k)2

4
− 9 (a − k)2 (2 − γ)2

(12 − 5γ2)2 =
(a − k)2 γ (6 − 5γ) (24 − 6γ − 5γ2)

4 (12 − 5γ2)2 ≥ 0

for γ ∈ [0, 1].

(ii) Suppose ne
1 < ne

2. Then, asymmetric networks are

(
ne

1, nj , ne
2

)
∈ {(0, 0, 1) , (0, 0, 2) , (0, 1, 1) , (0, 0, 3) , (0, 1, 2) , (0, 2, 1) , (1, 0, 2)} .

The networks (0, 0, 1) / (0, 0, 2) are always locally unstable for c ̸= (a−k)2

4 .

There is always a profitable deviation of firm 2 to either add or delete a

link to an exclusive customer. The local instability of the network (0, 1, 2)

for γ ̸= 0 and for γ = 0 and c ̸= (a−k)2

4 has already been established in Propo-

sition 5.2(v) for n customers. From (i) we immediately observe that for the

network (0, 0, 3) the interval for the conditions of local stability is empty for
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γ ∈ [−1, 0). For the network (0, 1, 1) to be locally stable we require for the

costs of link formation

c ≥ max
{
π(1,1,1)

1 − π(0,1,1)
1 , π(0,2,0)

1 − π(0,1,1)
1 , π(0,1,2)

2 − π(0,1,1)
2

}
,

c ≤ min
{
π(0,1,1)

1 − π(0,0,2)
1 , π(0,1,1)

2 − π(0,1,0)
2 , π(0,1,1)

2 − π(1,0,1)
2

}
.

However, these conditions imposed on the costs of link formation cannot hold

simultaneously for complementary products as

(
π(0,2,0)

1 − π(0,1,1)
1

)
−
(
π(0,1,1)

2 − π(0,1,0)
2

)

= −(a − k)2 γ (64 + 24γ − 56γ2 − 13γ3 + 12γ4 + 2γ5)

(2 + γ)2 (8 − 3γ2)2 > 0 for γ ∈ [−1, 0).

For the network (0, 2, 1) to be locally stable we require for the costs of link

formation

c ≥ π(0,3,0)
1 − π(0,2,1)

1 ,

c ≤ min
{
π(0,2,1)

1 − π(0,1,2)
1 , π(0,2,1)

2 − π(1,1,1)
2 , π(0,2,1)

2 − π(0,2,0)
2

}
.

However, these conditions imposed on the costs of link formation cannot hold

simultaneously for complementary products as

(
π(0,3,0)

1 − π(0,2,1)
1

)
−
(
π(0,2,1)

2 − π(0,2,0)
2

)

= −(a − k)2 γ (144 + 60γ − 120γ2 − 26γ3 + 24γ4 + 3γ5)

16 (2 + γ)2 (3 − γ2)2 > 0 for γ ∈ [−1, 0).

For the network (1, 0, 2) to be locally stable we require for the costs of link

formation

c ≥ max
{
π(1,1,1)

1 − π(1,0,2)
1 , π(0,1,2)

2 − π(1,0,2)
2

}
,

c ≤ min
{
π(1,0,2)

1 − π(0,0,2)
1 , π(1,0,2)

2 − π(1,0,1)
2

}
.

However, these conditions imposed on the costs of link formation cannot hold

simultaneously for complementary products as

(
π(1,1,1)

1 − π(1,0,2)
1

)
−
(
π(1,0,2)

1 − π(0,0,2)
1

)
= −(a − k)2 γ (8 + 5γ)

2 (4 + 3γ)2 > 0
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for γ ∈ [−1, 0). Examples for the second claim are the networks (0, 2, 0) and

(0, 1, 0). !

5.A.7 Proof of Proposition 5.7

Proof: Table 5.3 summarizes the networks imposing conditions on the costs of

link formation. For complementary products this has already be shown in Proposi-

Table 5.3: Networks imposing conditions on the costs of link formation

networks defining
(
ne

1, nj, ne
2

)
c(ne

1
,nj ,ne

2) c(ne
1
,nj ,ne

2)

(0, 3, 0) — (1, 2, 0), (0, 2, 1)

(1, 1, 1) (1, 2, 0), (0, 2, 1) (1, 1, 0), (0, 1, 1) (for γ ∈ [−1, 0]),
(2, 0, 1), (1, 0, 2) (for γ ∈ [0, 1])

(0, 2, 0) (1, 2, 0), (0, 2, 1) (1, 1, 0), (0, 1, 1)

(0, 1, 0) (1, 1, 0), (0, 1, 1) (1, 0, 0), (0, 0, 1)

(1, 2, 0) (0, 3, 0) (0, 2, 0) (for γ ∈ [−1, 0]),
(1, 1, 1) (for γ ∈ [0, 1])

(0, 2, 1) (0, 3, 0) (0, 2, 0) (for γ ∈ [−1, 0]),
(1, 1, 1) (for γ ∈ [0, 1])

(2, 0, 1) (1, 1, 1) (2, 0, 0), (1, 0, 1)

(1, 0, 2) (1, 1, 1) (0, 0, 2), (1, 0, 1)

(3, 0, 0) (2, 1, 0) (2, 0, 0)

(0, 0, 3) (0, 1, 2) (0, 0, 2)

(0, 0, 0) (1, 0, 0), (0, 0, 1) —

tion 5.3. For substitutable products with γ ∈ (0, 1], the statement of Proposition 5.7

can be directly seen from Table 5.3. The according networks are marked in bold. The

non-emptiness of the adjacency regions can be seen in Figures 5.6a, 5.6c, 5.6g, 5.6h

and 5.6b. As the stability region in Figure 5.6g is hardly visible, Figure 5.8 redraws

the area for γ ∈ [0.9, 1]. !
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Figure 5.8: Local stability of (0, 2, 1) , (1, 2, 0) for γ ∈ [0.9, 1] (a − k = 1)

5.B Appendix B: Conditions on the costs of link

formation for local stability for networks with

three customers

5.B.1 Equilibrium profits

The equilibrium profits are summarized in Table 5.4. Indeed, from an individual

perspective and with no costs of link formation the complete network with three

joint customers yields the highest payoff for firm 1 for complementary products,

whereas this is the network with three own exclusive customers for substitutable

products.

5.B.2 Symmetric networks

Because of symmetry we just consider within this subsection deviations of firm 1.

•
(
ne

1, nj, ne
2

)
= (0, 3, 0)

For local stability we require π(0,3,0)
1 −π(0,2,1)

1 ≥ c. Using inequality (5.12) from
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Table 5.4: Equilibrium profits of firm 1 for networks with three customers

(
ne

1, nj, ne
2

)
π

(ne
1,nj ,ne

2)
1

(0, 3, 0) 3(a−k)2

(2+γ)2

(1, 1, 1) 2(a−k)2(2+γ)2

(4+3γ)2

(0, 2, 0) 2(a−k)2

(2+γ)2

(0, 1, 0) (a−k)2

(2+γ)2

(1, 2, 0)
3(a−k)2(6−2γ−γ2)2

16(3−γ2)2

(2, 1, 0) 3(a−k)2(2+γ)2(3−2γ)2

(12−5γ2)2

(1, 1, 0)
2(a−k)2(4−γ−γ2)2

(8−3γ2)2

(0, 2, 1) 18(a−k)2(2−γ)2

16(3−γ2)2

(0, 1, 2) 9(a−k)2(2−γ)2

(12−5γ2)2

(0, 1, 1) 4(a−k)2(2−γ)2

(8−3γ2)2

(
ne

1, nj , ne
2

)
π

(ne
1,nj ,ne

2)
1

(1, 0, 1) (a−k)2

4

(2, 0, 1) 2(a−k)2

4

(1, 0, 2) (a−k)2

4

(3, 0, 0) 3(a−k)2

4

(2, 0, 0) 2(a−k)2

4

(1, 0, 0) (a−k)2

4

(0, 0, 3) 0

(0, 0, 2) 0

(0, 0, 1) 0

(0, 0, 0) 0

the poof of Proposition 5.2 we obtain

π(0,3,0)
1 − π(0,2,1)

1 =
3 (a − k)2

(2 + γ)2 − 9 (a − k)2 (2 − γ2)
2

8 (3 − γ2)2

=
3 (a − k)2 (24 (1 − γ2) + 5γ4)

8 (3 − γ2)2 (2 + γ)2 .

•
(
ne

1, nj, ne
2

)
= (0, 0, 0)

For local stability we require π(0,0,0)
1 − π(1,0,0)

1 ≥ c which is c ≥ (a−k)2

4 .

•
(
ne

1, nj, ne
2

)
= (1, 1, 1)

Firm 1 may add a link to an exclusive customer of firm 2 delete a link to a

joint customer or to an own exclusive customer. For local stability we require

π(1,1,1)
1 ≥ π(1,2,0)

1 − c, (5.23)

π(1,1,1)
1 − c ≥ π(1,0,2)

1 , π(1,1,1)
1 − c ≥ π(0,1,1)

1 . (5.24)
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Inequality (5.23) defines a lower bound for the costs of link formation

c ≥ (a − k)2 (576 + 288γ − 660γ2 − 264γ3 + 184γ4 + 52γ5 − 5γ6)

16 (3 − γ2)2 (4 + 3γ)2 ,

and the inequalities in (5.24) give an upper bound. First note

max
{

π(1,0,2)
1 , π(0,1,1)

1

}
=

⎧
⎪⎨

⎪⎩

4(a−k)2(2−γ)2

(8−3γ2)2 for γ ∈ [−1, 0],

(a−k)2

4 for γ ∈ [0, 1].

This implies

c ≤ π(1,1,1)
1 − max

{
π(1,0,2)

1 , π(0,1,1)
1

}

=

⎧
⎪⎨

⎪⎩

2(a−k)2(2−γ2)(64+96γ+12γ2−36γ3−9γ4)
(4+3γ)2(8−3γ2)2 for γ ∈ [−1, 0],

(a−k)2(16+8γ−γ2)
4(4+3γ)2 for γ ∈ [0, 1].

•
(
ne

1, nj, ne
2

)
= (0, 2, 0)

Firm 1 may add a link to obtain an exclusive customer or has the possibility

to delete a link to a joint customer. Thus, for local stability we require

π(0,2,0)
1 ≥ π(1,2,0)

1 − c, (5.25)

π(0,2,0)
1 − c ≥ π(0,1,1)

1 . (5.26)

Inequality (5.25) defines a lower bound for the costs of link formation

c ≥ (a − k)2 (144 + 144γ − 84γ2 − 120γ3 + 4γ4 + 24γ5 + 3γ6)

16 (3 − γ2)2 (2 + γ)2 ,

and inequality (5.26) gives an upper bound

c ≤ 2 (a − k)2 (32 − 32γ2 + 7γ4)

(2 + γ)2 (8 − 3γ2)2 .

•
(
ne

1, nj, ne
2

)
= (0, 1, 0)

Firm 1 may add a link to obtain an exclusive customer or firm 1 has the

possibility to delete a link to a joint customer. Thus, for local stability we
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require

π(0,1,0)
1 ≥ π(1,1,0)

1 − c, (5.27)

π(0,1,0)
1 − c ≥ π(0,0,1)

1 . (5.28)

Inequality (5.27) defines a lower bound for the costs of link formation

c ≥ (a − k)2 (64 + 64γ − 40γ2 − 56γ3 + γ4 + 12γ5 + 2γ6)

(8 − 3γ2)2 (2 + γ)2 ,

and inequality (5.28) gives an upper bound c ≤ (a−k)2

(2+γ)2 .

•
(
ne

1, nj, ne
2

)
= (1, 0, 1)

For nj = 0 the profits from Figure 5.4 are linearly increasing if a link is added

by firm 1 and are linearly decreasing if a link is deleted. Therefore, if the costs

of link formation are sufficiently small, c < (a−k)2

4 , then a further link is added,

and for c > (a−k)2

4 a link is deleted.

5.B.3 Asymmetric networks

•
(
ne

1, nj, ne
2

)
∈ {(0, 0, 3) , (3, 0, 0)}

For local stability we require

π(0,0,3)
1 ≥ π(0,1,2)

1 − c, (5.29)

π(0,0,3)
2 − c ≥ π(0,0,2)

2 . (5.30)

From the poof of Proposition 5.2 we obtain c ≥ 9(a−k)2(2−γ)2

(12−5γ2)2 and from inequal-

ity (5.30) c ≤ (a−k)2

4 .

•
(
ne

1, nj, ne
2

)
∈ {(0, 2, 1) , (1, 2, 0)}

Consider the network (0, 2, 1). Possible deviations are for firm 1 to add or

to delete link to a joint customer and for firm 2 to delete a link either to a

joint or to an exclusive customer. For local stability of the network (0, 2, 1)
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we therefore require for the costs of link formation

π(0,2,1)
1 ≥ π(0,3,0)

1 − c, (5.31)

π(0,2,1)
1 − c ≥ π(0,1,2)

1 , π(0,2,1)
2 − c ≥ π(1,1,1)

2 , π(0,2,1)
2 − c ≥ π(0,2,0)

2 . (5.32)

Inequality (5.31) poses an lower bound on the costs of link formation given by

c ≥ π(0,3,0)
1 − π(0,2,1)

1 =
3 (a − k)2 (24 − 24γ2 + 5γ4)

8 (3 − γ2)2 (2 + γ)2 .

The inequalities in (5.32) give us a upper bound. Thus, for local stability of

(0, 2, 1) we need to have

c ≤ min
{

π(0,2,1)
1 − π(0,1,2)

1 , π(0,2,1)
2 − π(1,1,1)

2 , π(0,2,1)
2 − π(0,2,0)

2

}

=

⎧
⎪⎨

⎪⎩

(a−k)2(144+144γ−84γ2−120γ3+4γ4+24γ5+3γ6)
16(3−γ2)2(2+γ)2 for γ ∈ [−1, 0],

(a−k)2(576+288γ−660γ2−264γ3+184γ4+52γ5−5γ6)
16(3−γ2)2(4+3γ)2 for γ ∈ [0, 1].

•
(
ne

1, nj, ne
2

)
∈ {(1, 0, 2) , (2, 0, 1)}

Consider the network (1, 0, 2). Possible deviations are for firm 1 to add a link

to an exclusive customer of firm 2 or to delete a link to an own exclusive

customer. firm 2 has the analogous deviation possibilities. For local stability

of the network (1, 0, 2) we therefore require for the costs of link formation

π(1,0,2)
1 ≥ π(1,1,1)

1 − c, π(1,0,2)
2 ≥ π(0,1,2)

2 − c, (5.33)

π(1,0,2)
1 − c ≥ π(0,0,2)

1 , π(1,0,2)
2 − c ≥ π(1,0,1)

2 . (5.34)

The inequalities in (5.33) pose a lower bound on the costs of link formation

given by

c ≥ max
{

π(1,1,1)
1 − π(1,0,2)

1 , π(0,1,2)
2 − π(1,0,2)

2

}
=

(a − k)2 (16 + 8γ − γ2)

4 (4 + 3γ)2 .

The inequalities in (5.34) pose an upper bound on the costs of link formation

given by

c ≤ min
{

π(1,0,2)
1 − π(0,0,2)

1 , π(1,0,2)
2 − π(1,0,1)

2

}
=

(a − k)2

4
.
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•
(
ne

1, nj, ne
2

)
∈ {(0, 1, 1) , (1, 1, 0)}

Consider the network (0, 1, 1). Possible deviations are for firm 1 to add a link

to an own exclusive customer, or to an exclusive customer of firm 2, or to

delete a link to a joint customer. firm 2 may add a link to an own exclusive

customer or delete a link to either an own exclusive or a joint customer. For

local stability of the network (0, 1, 1) we therefore require for the costs of link

formation

π(0,1,1)
1 ≥ π(1,1,1)

1 − c, π(0,1,1)
1 ≥ π(0,2,0)

1 − c, π(0,1,1)
2 ≥ π(0,1,2)

2 − c, (5.35)

π(0,1,1)
1 − c ≥ π(0,0,2)

1 , π(0,1,1)
2 − c ≥ π(0,1,0)

2 , π(0,1,1)
2 − c ≥ π(1,0,1)

2 . (5.36)

The inequalities in (5.35) pose a lower bound on the costs of link formation

given by

c ≥ max
{
π(1,1,1)

1 − π(0,1,1)
1 , π(0,2,0)

1 − π(0,1,1)
1 , π(0,1,2)

2 − π(0,1,1)
2

}
.

The inequalities in (5.36) pose an upper bound on the costs of link formation

given by

c ≤ min
{
π(0,1,1)

1 − π(0,0,2)
1 , π(0,1,1)

2 − π(0,1,0)
2 , π(0,1,1)

2 − π(1,0,1)
2

}
.

In the proof of Proposition 5.6 we have already shown that the network (0, 1, 1)

is locally unstable for γ ∈ (0, 1]. We now show that it is also locally unstable

for γ ∈ (0, 1]. Figure 5.9 graphically shows these conditions imposed by local

stability on the costs of link formation.

To see this, consider

(
π(1,1,1)

1 − π(0,1,1)
1

)
−
(
π(0,1,1)

1 − π(0,0,2)
1

)

=
2 (a − k)2 γ (4 − 3γ2) (32 + 12γ − 12γ2 − 3γ3)

(4 + 3γ)2 (8 − 3γ2)2 > 0

for γ ∈ (0, 1]. This means that the conditions imposed on the costs of link

formation cannot hold simultaneously for substitutable products with γ ∈
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Figure 5.9: Conditions for local stability for (ne
1, nj, ne

2) = (1, 1, 0) , (0, 1, 1) (a − k =
1)

(0, 1]. For γ = 0 we have

max
{

π(1,1,1)
1 − π(0,1,1)

1 , π(0,2,0)
1 − π(0,1,1)

1 , π(0,1,2)
2 − π(0,1,1)

2

}
=

(a − k)2

4
,

min
{

π(0,1,1)
1 − π(0,0,2)

1 , π(0,1,1)
2 − π(0,1,0)

2 , π(0,1,1)
2 − π(1,0,1)

2

}
=

(a − k)2

4
.

Therefore, the network (0, 1, 1) is locally stable for γ = 0 and c = (a−k)2

4 .

•
(
ne

1, nj, ne
2

)
∈ {(0, 1, 2) , (2, 1, 0)}

The local instability of the network (0, 1, 2) for γ ̸= 0 and for γ = 0 and

c ̸= (a−k)2

4 has already been established in Proposition 5.2(v) for n customers.

•
(
ne

1, nj, ne
2

)
∈ {(2, 0, 0) , (0, 0, 2) , (1, 0, 0) , (0, 0, 1)}

These networks are locally unstable for c ̸= (a−k)2

4 , as there is always a prof-

itable deviation of one firm to either add or delete a link to an exclusive

customer.

Philipp Möhlmeier Externalities in Social and Economic Networks



Bibliography

V. Bala and S. Goyal. A noncooperative model of network formation. Econometrica,

68(5):1181–1229, 2000.

P. Billand, C. Bravard, and S. Sarangi. Directed networks with spillovers. Journal

of Public Economic Theory, 14(6):849–878, 2012.

P. Billand, C. Bravard, and S. Sarangi. A note on local spillovers, convexity and the

strategic substitutes property in networks. Theory and Decision, 75(2):293–304,

2013.

P. Billand, C. Bravard, S. Chakrabarti, and S. Sarangi. Business intelligence and

multimarket competition. Journal of Public Economic Theory, 18(2):248–267,

2016.

K. Bimpikis, S. Ehsani, and R. Ilkılıç. Cournot competition in networked markets.

Stanford University, Working Paper, 2016.

F. Bloch and B. Dutta. Communication networks with endogenous link strength.

Games and Economic Behavior, 66(1):39–56, 2009.

F. Bloch and M. O. Jackson. The formation of networks with transfers among

players. Journal of Economic Theory, 133(1):83–110, 2007.

B. Bollobas. Random Graphs. New York: Academic Press, 2001.

S. A. Boorman. A combinatorial optimization model for transmission of job infor-

mation through contact networks. The Bell Journal of Economics, 6(1):216–249,

1975.

Y. Bramoullé, A. Galeotti, and B. Rogers. The Oxford Handbook of the Economics

of Networks. Oxford University Press, 2016.

166



Bibliography 167

B. Buechel and T. Hellmann. Under-connected and over-connected networks: the

role of externalities in strategic network formation. Review of Economic Design,

16(1):71–87, 2012.

P. Cahuc and F. Fontaine. On the efficiency of job search with social networks.

Journal of Economic Behavior and Organization, 11(3):411–439, 2009.

A. Calvó-Armengol. Job contact networks. Journal of Economic Theory, 115(1):

191–206, 2004.

N. Carayol and P. Roux. ‘Collective innovation’ in a model of network formation with

preferential meeting. In T. Lux, E. Samanidou, and S. Reitz, editors, Nonlinear

Dynamics and Heterogeneous Interacting Agents, pages 139–153. Lecture Notes

in Economics and Mathematical Systems, Vol. 550, Springer, 2005.

N. Carayol and P. Roux. Knowledge flows and the geography of networks: A strate-

gic model of small world formation. Journal of Public Economic Theory, 71(2):

414–427, 2009.

B. Charoensook. Network formation with productivity as decay. Munich Personal

RePEc Archive, Working Paper, MPRA Paper No. 37099, 2012.

F. Cingano and A. Rosolia. People i know: Job search and social networks. Journal

of Labor Economics, 30(2):291–332, 2012.

M. Corominas-Bosch. Bargaining in a network of buyers and sellers. Journal of

Economic Theory, 115(1):35–77, 2004.

S. Currarini. Network design in games with spillovers. Review of Economic Design,

10(4):305–326, 2007.

H. Dawid and T. Hellmann. The evolution of R&D networks. Journal of Economic

Behavior and Organization, 105:158–172, 2014.

H. Dawid and T. Hellmann. R&D investments under endogenous cluster formation.

Center for Mathematical Economics, Working Paper, No. 555, 2016.

K. De Jaegher and J. J. A. Kamphorst. Two-way flow networks with small decay.

Journal of Economic Behavior and Organization, 109:217–239, 2015.

B. Dutta and M. O. Jackson. The stability and efficiency of directed communication

networks. Review of Economic Design, 5(3):251–272, 2000.

Philipp Möhlmeier Externalities in Social and Economic Networks



Bibliography 168

B. Dutta and S. Mutuswami. Stable networks. Journal of Economic Theory, 76(2):

322–344, 1997.

P. Erdős and A Rényi. On the evolution of random graphs. In Publication of the

mathematical institute of the hungarian academy of sciences, pages 17–61, 1960.

S. Goyal. Connections: An Introduction to the Economics of Networks. Princeton

University Press, 2007.

S. Goyal and S. Joshi. Networks of collaboration in oligopoly. Games and Economic

Behavior, 43(1):57–85, 2003.

S. Goyal and S. Joshi. Unequal connections. International Journal of Game Theory,

34(3):319–349, 2006.

S. Goyal and J. L. Moraga-González. R&D networks. Rand Journal of Economic,

31(4):686–707, 2001.

M. Grabisch and A. Rusinowska. A model of influence in a social network. Theory

and Decision, 69(1):69–96, 2010.

M. Grabisch, A. Mandel, A. Rusinowska, and E. Tanimura. Strategic influence in

social networks. Mathematics of Operations Research, 2017. Forthcoming.

M. Granovetter. The strength of weak ties. American Journal of Sociology, 78(6):

1360–1380, 1973.

M. Granovetter. Getting a Job: A Study of Contacts and Careers. The University

of Chicago Press, 1974.

J. Häckner. A note on price and quantity competition in differentiated oligopolies.

Journal of Economic Theory, 93(2):233–239, 2000.

H. Haller. Network extension. Mathematical Social Sciences, 64(2):166–172, 2012.

J. W. Hatfield and S. D. Kominers. Matching in networks with bilateral contracts.

American Economic Journal: Microeconomics, 4(1):176–208, 2012.

T. Hellmann. On the existence and uniqueness of pairwise stable networks. Inter-

national Journal of Game Theory, 42(1):211–237, 2013.

M. O. Jackson. Social and Economic Networks. Princeton University Press, 2008.

Philipp Möhlmeier Externalities in Social and Economic Networks



Bibliography 169

M. O. Jackson and B. W. Rogers. The economics of small worlds. Journal of the

European Economic Association, 3(2-3):617–627, 2005.

M. O. Jackson and A. van den Nouweland. Strongly stable networks. Games and

Economic Behavior, 51(2):420–444, 2005.

M. O. Jackson and A. Watts. The evolution of social and economic networks. Journal

of Economic Theory, 106(2):265–295, 2002.

M. O. Jackson and A. Wolinsky. A strategic model of social and economic networks.

Journal of Economic Theory, 71(1):44–74, 1996.

C. Johnson and R. Gilles. Spatial social networks. Review of Economic Design, 5

(3):273–299, 2000.

P. D. Killworth and H. R. Bernhard. The reversal small-world wxperiment. Social

Networks, 1(1978/79):159–192, 1978.

E. R. Kranton and D. F. Minehart. Networks versus vertical integration. The RAND

Journal of Economics, 31(3):570–601, 2000a.

E. R. Kranton and D. F. Minehart. Competition for goods in buyer-seller networks.

Review of Economic Design, 5(3):301–331, 2000b.

E. R. Kranton and D. F. Minehart. A theory of buyer-seller networks. The American

Economic Review, 91(3):485–508, 2001.

Y. Lim, A. Ozdaglar, and A. Teytelboym. A simple model of cascades in networks.

Laboratory for Information and Decision Systems, MIT, Working Paper, 2015.

P. Möhlmeier, A. Rusinowska, and E. Tanimura. A degree-distance-based connec-

tions model with negative and positive externalities. Journal of Public Economic

Theory, 18(2):168–192, 2016.

P. Möhlmeier, A. Rusinowska, and E. Tanimura. Competition for the access to and

use of information in networks. Mathematical Social Sciences, 2017. Forthcoming.

T. Morrill. Network formation under negative degree-based externalities. Interna-

tional Journal of Game Theory, 40(2):367–385, 2011.

M. Ostrovsky. Stability in supply chain networks. The American Economic Review,

98(3):897–923, 2008.

Philipp Möhlmeier Externalities in Social and Economic Networks



Bibliography 170

N. Singh and X. Vives. Price and quantity competition in a differentiated duopoly.

The RAND Journal of Economics, 15(4):546–554, 1984.

P. Wang and A. Watts. Formation of buyer-seller trade networks in a quality-

differentiated product market. Canadian Journal of Economics/Revue canadienne

d’économique, 39(3):971–1004, 2006.

A. Watts. A dynamic model of network formation. Games and Economic Behavior,

34(2):331–341, 2001.

A. Watts. Non-myopic formation of circle networks. Economic Letters, 74(2):277–

282, 2002.

A. Westkamp. Market structure and matching with contracts. Journal of Economic

Theory, 145(5):1724–1738, 2010.

Philipp Möhlmeier Externalities in Social and Economic Networks



Short Curriculum Vitae of Philipp Möhlmeier

Education

2010-2017 Member of the International Research Training Group Econo-

mic Behavior and Interaction Models (EBIM) at Bielefeld Uni-
versity, Germany, in collaboration with Université Paris 1 – Panthéon-
Sorbonne, France.
Member of the Bielefeld Graduate School of Economics and

Management (BiGSEM) at Bielefeld University, Germany.
Member of the Center for Mathematical Economics (IMW) at
Bielefeld University, Germany.

2005-2011 Diploma in Business Administration at Bielefeld University, Ger-
many.

2003-2010 Diploma in Mathematical Economics at Bielefeld University, Ger-
many.

2003 Abitur at Erich-Gutenberg-Berufskolleg Bünde, Germany.

Publications

2017 Competition for the access to and use of information in net-

works, Mathematical Social Sciences, forthcoming, 2017 (joint with
A. Rusinowska and E. Tanimura).

2016 A degree-distance-based connections model with negative and

positive externalities, Journal of Public Economic Theory, 18(2),
pp. 168-192, 2016 (joint with A. Rusinowska and E. Tanimura).



This thesis was printed on non-ageing paper in compliance with DIN-ISO 9706.


