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Abstract

This paper presents a numerical method for the characterization of Markov-perfect
equilibria of symmetric differential games exhibiting coexisting stable steady states.
The method relying on the calculation of ’local value functions’ through collocation
in overlapping parts of the state space, is applicable for games with multiple state
variables. It is applied to analyze a piecewise deterministic game capturing the dy-
namic competition between two oligopolistic firms, which are active in an established
market and invest in R&D. Both R&D investment and an evolving public knowledge
stock positively influence a breakthrough probability, where the breakthrough gener-
ates the option to introduce an innovative product on the market. Additionally, firms
engage in activities influencing the appeal of the established and new product to con-
sumers. Markov-perfect equilibrium profiles are numerically determined for different
parameter settings and it is shown that for certain constellations the new product
is introduced with probability one if the initial strength of the established market is
below a threshold, which depends on the initial level of public knowledge. In case the
initial strength of the established market is above this threshold, the R&D effort of
both firms quickly goes to zero and with a high probability the new product is never
introduced. Furthermore, it is shown that after the introduction of the new product
the innovator engages in activities weakening the established market, although it is
still producing positive quantities of that product.

Keywords: Markov-Perfect Equilibrium, Skiba Curve, Collocation, R&D Competition,
Product Innovation

1 Introduction
Since the seminal contributions of Sethi (1977), Skiba (1977) and Dechert and Nishimura
(1983), it has been shown that rational planning over an infinite planning horizon can go
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along with outcomes that crucially depend on initial conditions. Such outcomes are de-
noted as history-dependent solutions, and the basins of attraction of the different long-run
equilibria are separated by Skiba thresholds. Apart from Environmental and Resource
Economics, where such path dependencies have received a lot of attention (e.g. Wagener
(2003)), Skiba phenomena have also been identified in different dynamic Industrial Or-
ganization problems (e.g. Hinloopen et al. (2013), Caulkins et al. (2015), Dawid et al.
(2015)). Due to the non-linear structure underlying such problems with multiple long-
run equilibria, which are mostly represented by stable steady states, (partial) analytical
characterizations of optimal dynamics in Skiba scenarios can typically be given only for
dynamic optimization models with one-dimensional state spaces. Therefore, different nu-
merical approaches have been developed to characterize optimal solutions in problems with
multiple stable steady states. These methods rely on the numerical calculation of stable
paths in the state-costate system derived from the Maximum Principle (Haunschmied et
al. (2003), Grass (2012)), nonlinear model predictive control (Grüne et al. (2015)), or
collocation (Dawid et al. (2015)).

In spite of this rich literature, relatively little attention has so far been paid to Skiba
phenomena arising in dynamic models with multiple decision makers, where strategic
interactions occur. Dechert and O’Connel (2006) show path dependency of the state
trajectory in a Markov-Perfect Equilibrium of a stochastic discrete time shallow lake game.
Dockner and Wagener (2014) obtain a similar insight in a deterministic and continuous
time version of the game. Both of these contributions deal with games with one state
variable. To the best of our knowledge, for no differential game with more than one state
variable has a Markov-perfect equilibrium exhibiting multiple locally stable steady states
been calculated.

The aim of this paper is to fill this gap. The difficulty is that numerical methods
relying on the canonical system derived from the Maximum Principle typically cannot be
used to characterize Markov-perfect equilibria, since knowledge about the derivatives of
the feedback strategies is needed to formulate the co-state equations. Instead, we employ
Hamilton-Jacobi-Bellman equations to characterize the value functions of the players and
the feedback strategies. The technical challenge in this respect is that in scenarios with co-
existing stable steady states the feedback strategies of the players typically exhibit jumps,
which result in kinks in the value functions so that they are not everywhere differentiable.
Standard collocation methods based on polynomial approximations of the value functions
are not able to capture such kinks. Therefore, we propose an adaptation of a collocation
algorithm, where ’local value functions’ on parts of the state space are generated and
the actual value function of the game is found as the upper envelope of these local value
functions.

We use our method to solve a problem in the area of Industrial Organization where
incumbent firms have an option to innovate. In particular, we consider a duopoly in
which the two firms compete on a homogenous established product market, while at the
same time they are involved in an innovation race. The one who obtains the innovation
breakthrough first gains the opportunity to introduce a new product on the market. The
new product is a strategic substitute of the established one, and it is better than the old
one. Due to, e.g., patent protection, the innovation laggard will never innovate, so it will
keep on operating just on the established product market.

It is an investment problem where initially the firms can invest in means (e.g., public
relations, lobbying) to increase the reservation price of the established product. At the
same time they can invest in R&D to raise the innovation probability. R&D investments
of both firms have an additional effect in that they increase a public knowledge stock,
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which in turn has a positive effect on the innovation hazard rate. After the innovation
breakthrough, the winner of the innovation race can invest to increase the reservation price
of the new product.

As such, this technically leads to a multi-mode differential game (see Dockner et al.
(2000)). Mode 1 describes the situation before the innovation breakthrough where we have
two state variables, namely the reservation price of the established product and the public
knowledge stock. Mode 1 passes into mode 2 at the uncertain point in time where firm 1
wins the innovation race. The two state variables in mode 2 are the reservation prices of
the established and the new product. In case firm 2 wins the race, mode 1 is followed by
mode 3, which has the same state variables as mode 2 with the difference that now firm 2
controls the development of the reservation price of the new product.

Essentially, three different solutions will prevail. First, for high R&D costs, either in-
novation will not occur, or the innovation probability will be very low in the extraordinary
case of a very high initial public knowledge stock. Second, in the opposite case, thus
where R&D costs are low, either one of the firms will eventually innovate with probability
one. Third, in case R&D costs are neither low nor high, technically the most interesting
situation arises where history dependent equilibria occur. In a state plane with the es-
tablished product reservation price on the horizontal axis and the public knowledge stock
on the vertical axis, an upward-sloping Skiba curve separates the initial situations lead-
ing to different solutions. Below the Skiba curve the initial knowledge stock is too low
to guarantee a profitable innovation policy. Therefore, the firms refrain from innovating
and the resulting trajectory converges to a steady state where nobody innovates and both
firms are active on the established product market. Above the Skiba curve the firms are
engaged in an innovation race where the resulting trajectory converges to a steady state
with a relatively high public knowledge stock. Since both firms keep on investing in R&D,
with probability one either one of the firms will eventually innovate.

If we review the existing literature from an application point of view, thus considering
dynamic innovative duopolies, two papers have to be mentioned. First, we note that Breton
et al. (2006) also analyze a setup with a public knowledge stock. Their result is similar
to our Skiba solution in that initial public knowledge should be high enough to guarantee
that the innovation will be obtained in the long run. The difference is that in Breton et
al. (2006) the R&D decision is binary, they consider process innovation instead of product
innovation, and they have a discrete-time model, whereas our model is in continuous time.
Employing a piecewise deterministic dynamic oligopoly game like the present paper, is also
done in Haurie and Roche (1994). However, where we consider Markov-perfect equilbria,
they develop Open-loop Nash equilibria with jumps that relate to market size, rather than
designing a new product as in our case. An important observation at this point is that, to
our knowledge, our paper is the first to develop history dependent equilibria in a piecewise
deterministic game.

The paper is organized as follows. Section 2 develops the model, whereas Section
3 computes the equilibria. Solutions with a unique steady state, thus where either R&D
investment costs are high or low, are discussed in Section 4. The Skiba scenario is presented
in Section 5, and Section 6 discusses the post-innovation phase. Section 7 concludes.

2 The Model
We consider the interaction of two firms producing a homogeneous established product
based on an old technology. The inverse demand for the established product at any time
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t is given by
po(t) = αo(t)− (q1o(t) + q2o(t)),

where qfo(t) is the output of firm f = 1, 2 of the old product. The reservation price
αo(t), which is influenced by the public acceptance of the old product and its production
technology as well as by potential market obstacles due to regulatory measures, evolves
over time with αo(0) = αinio . Due to growing environmental concerns the reservation price
would converge over time towards a level α̃o ≤ αinio if firms do not engage in measures
enhancing the acceptance of the old technology. Such measures of firm f = 1, 2 boosting
the acceptance of the established product, including public relations activities or lobbying
with policy makers, are subsumed as Ifo(t) ∈ IR. The market size then evolves according
to

α̇o = (I1o + I2o)− δo(αo − α̃o). (1)

At the same time both firms engage in R&D investments Ifr ≥ 0, f = 1, 2 in order to
develop a new product based on a cleaner technology. For simplicity it is assumed that
the firm which develops the new product first will be able to prevent the competing firm
from entering that market due to patent protection or other technological reasons. The
hazard rate of firm f is given by

h(Ifr, z) = γIfrz, γ > 0

where z(t) is the public knowledge stock. This formulation of the hazard rate captures that
the firms need to invest in own R&D in order to transform the publicly available knowledge
into an innovation breakthrough. Furthermore, we assume that there are spillovers from
the firms’ R&D investment to the public knowledge stock. Hence, the dynamics of the
knowledge stock reads

ż = β(I1r + I2r)− δr(z − z̃), β, δr > 0 (2)

where z̃ would be the stationary level of the public knowledge stock in the absence of
firms’ R&D.

Once one of the firms has reached the innovation breakthrough it is able to offer a
new cleaner product, which is horizontally differentiated from the old product and has a
reservation price αn. The inverse demand system now reads

po = αo − (q1o + q2o)− ηqfn
pn = αn − η(q1o + q2o)− qfn,

(3)

where it is assumed that firm f ∈ {1, 2} is the innovator and η ∈ (−1, 1) denotes the
horizontal differentiation parameter. For positive values of η the established and the new
product are substitutes and in what follows we will focus on such a scenario. Similar to
the established market, also the reservation price of the new product evolves over time
and can be influenced by activities of the firm producing the new product, denoted by
Iin ∈ IR. In particular, we have

α̇n = Iin − δn(αn − α̃n) (4)

and αn(0) = αinin < α̃n. The new product is assumed to be based on a more appealing
and cleaner technology, which implies that in the absence of any firm activities in the long
run the reservation price for the new product would be higher than that of the established
product. Hence, we assume α̃n > α̃o. Marginal production costs are assumed to be
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constant, symmetric across firms and identical for both products. To save notation we
normalize them to zero.

We model the interaction between the firms as a multi-mode differential game (see
e.g. Dockner et al. (2000) or Dawid et al. (2013)). The initial mode m1 denotes the
time period before the new product is introduced, whereas the mode m2 corresponds to
scenario where firm 1 has innovated (and firm 2 therefore will stick to the old product
forever) and mode m3 to the analogous case with firm 2 as the innovator. The mode
process m(t) is a Markov process on the set of modes M := {m1,m2,m3} in continuous
time with m(0) = m1. The transition rate from m1 to m2 is given by h(I1r, z), that from
m1 to m3 by h(I2r, z) and all other transition rates are zero.

In each mode quantities are determined by Cournot competition and straightforward
calculations yield for mode m1

qm1
1o = qm1

2o = αo
3 , πm1

1 = πm1
2 =

(
αo
3

)2
(5)

for quantities and market profits.
Furthermore, in mode m2 we obtain, under the assumption that all quantities are

positive,

qm2
1o = (2 + η2)αo − 3ηαn

6(1− η2) , qm2
2o = αo

3 , qm2
1n = αn − ηαo

2(1− η2) . (6)

Prices are obtained by inserting these expressions into (3) and the market profits read

πm2
1 = qm2

1o po(q
m2
1o , q

m2
2o , q

m2
1n ) + qm2

in pn(qm2
1o , q

m2
2o , q

m2
1n ), πm2

2 = qm2
2o po(q

m2
1o , q

m2
2o , q

m2
1n ). (7)

Analogous results arise in mode m3 with firm 2 as the innovator. Concerning the costs of
the different firm activities it should first be noted that R&D investments are always non-
negative, whereas the activities Ifo, Ifn influencing the general acceptance of a product
could in principle be negative, in particular for a firm that is active on both markets.
Hence, we assume quadratic costs for such activities, where cost functions are symmetric
across firms, i.e. ξh = νh

2 I
2
fh with h ∈ {o, n}, whereas R&D costs are of the form ξr =

µrIrh + νr
2 I

2
fr. The instantaneous payoff of firm f in the different modes is therefore given

by
Fmk
i = πmk

i − ξo(Ifo)− ξn(Ifn)− ξr(Ifr), i = 1, 2.

The objective of firm f is to maximize its infinite horizon expected discounted payoff under
discount rate r > 0, subject to the state dynamics (1), (2) and (4), the mode process m(t)
as well as the control constraints Ifr ≥ 0, f = 1, 2 and

I1n = I2n = 0 m(t) = m1

I2n = 0 m(t) = m2

I1n = 0 m(t) = m3.

(8)

These constraints capture that a firm can only influence the reservation price of a product
if it is active on the corresponding market.

3 Computation of Equilibria
In order to analyze the investment behavior of the firms in this model we consider station-
ary Markov-perfect equilibria (MPE) of the game. A stationary Markovian strategy of firm
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f is given by a triple (φfo, φfr, φfn), where each of these feedback strategies has the form
φfh : [0, ᾱo]× [0, z̄]× [0, ᾱn]×M 7→ IR for h ∈ {o, n} and φfr : [0, ᾱo]× [0, z̄]× [0, ᾱn]×M 7→
IR+

0 . The upper bounds of the state variables, ᾱo, z̄, ᾱn are assumed to be sufficiently large
to ensure that the stable steady states characterized in the following analysis are interior.
Although we write the feedback in this general form, clearly some components are irrele-
vant in some modes. In particular, due to (8), φfn = 0 has to hold in mode m1 and for the
non-innovator also in mode m2 respectively m3. Furthermore, φfr = 0 in modes m2 and
m3 since no more innovations are possible. Also, the state variable αn is constant in mode
m1 and the knowledge stock z irrelevant in modes m2 and m3. To ease notation in what
follows we will drop these arguments in the corresponding modes. In accordance with
the literature (see Dockner et al. (2000)) we consider only non-anticipating strategies, i.e.
strategies where firms cannot condition their actions on realizations on the time of mode
transitions which lie in the future.

3.1 Post-Innovation Phase

In order to characterize the equilibrium strategy profile and the induced dynamics, we
start by considering modes m2 and m3. Since these modes are structurally symmetric we
can restrict attention to m2. No transition out of this mode is possible, which means that
the firms are essentially engaged in an infinite horizon time-autonomous deterministic
differential game. Taking into account that the state z is irrelevant in m2 the value
functions of the two firms can therefore be written as V m2

f (αo, αn). The Hamilton-Jacobi-
Bellman (HJB) equations for the two firms read

rV m2
1 (αo, αn) = max

I1o,I1n

[
πm2

1 (αo, αn)− ξo(I1o)− ξn(I1n) + ∂V m2
1

∂αo
(I1o + φ2o(αo, αn)− δo(αo − α̃o))

+∂V m2
1

∂αn
(I1n − δn(αn − α̃n))

]
, (9)

rV m2
2 (αo, αn) = max

I2o

[
πm2

2 (αo, αn)− ξo(I2o) + ∂V m2
2

∂αo
(φ1o(αo, αn) + I2o − δo(αo − α̃o))

+∂V m2
2

∂αn
(φ1n(αo, αn)− δn(αn − α̃n))

]
. (10)

Maximization of the right hand sides of these two HJB equations gives

φm2
fo (αo, αn) = 1

νo

∂V m2
f (αo, αn)
∂αo

, f = 1, 2, φm2
1n (αo, αn) = 1

νn

∂V m2
1 (αo, αn)
∂αn

. (11)

The interpretation of these terms is standard and straightforward. Due to the quadratic
cost functions, the optimal effort in changing the reservation prices is proportional to the
marginal value of such a change in terms of future discounted profit for the considered firm.
Taking into account (7) it is easy to see that the game in mode m2 has a linear-quadratic
structure and we therefore consider value functions that are quadratic polynomials of the
states, i.e.

V m2
f = Af +Bfαo + CFαn +Dfα

2
o + Efα

2
n + Ffαoαn, f = 1, 2.

Inserting this expression into (11) and the HJB equations (9) and (10) and comparing
the coefficients of the different terms on the left and the right hand side of the HJBs
generates a system of 12 non-linear equations for the 12 unknown parameters in the value
function. This system can be easily solved numerically using standard algorithms like
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a Newton method. Similar to the case of capital accumulation games with asymmetric
product ranges (see Dawid et al. (2010)), typically there are multiple solutions among
which only a single one induces stable dynamics in the state space and therefore implies
that the transversality conditions for the firms’ optimization problems are satisfied. The
equilibrium dynamics in modem2 is then characterized by a unique stable steady state and
in what follows we will only consider parameter constellations where both firms produce
positive quantities of all the products they are offering in that steady state. The analysis
of mode m3 is analogous to that of mode m2 with the roles of the two firms inverted.

3.2 Pre-Innovation Phase

In mode m1 the two firms are competing to generate the breakthrough to the new product
and technology. Hence, in this mode the situation of the two firms is symmetric and we will
restrict attention to symmetric equilibria where φm1

1h (αo, z) = φm1
2h (αo, z) = φm1

h (αo, z), h ∈
{o, r} for all (αo, z) ∈ [0, ᾱo]× [0, z̄]. In such a scenario the two firms also have symmetric
value functions and denoting this value function by V m1

1 = V m1
2 = V m1 we obtain the

following HJB equation in mode m1:

rV m1(αo, z) = max
Io,Ir

[(
αo
3

)2
− ξo(Io)− ξr(Ir) + ∂V m1

∂αo
(Io + φm1

o (αo, z)− δo(αo − α̃o))

+ ∂V m1

∂z
(β(Ir + φm1

r )− δr(z − z̄)) + γIrz
(
V m2

1 (αo, αinin )− V m1(αo, z)
)

+γφr(αo, z)z
(
V m2

2 (αo, αinin )− V m1(αo, z)
)]
. (12)

The feedback functions in mode m1 therefore are given by

φm1
o (αo, z) = 1

νo

∂V m1(αo, z)
∂αo

, (13)

φm1
r (αo, z) = 1

νr
max

[
β
∂V m1(αo, z)

∂z
+ γz

(
V m2

1 (αo, αinin )− V m1(αo, z)
)
− µr, 0

]
. (14)

The above expression for φr highlights that the optimal level of R&D investment is deter-
mined by three effects. First, R&D carried out by the firm increases the public knowledge
stock thereby influencing the future value of the game for the firm. Second, own R&D
positively affects the probability of a breakthrough at time t, which would make the firm
monopolist thereby inducing a jump in the value function of

(
V m2

1 (αo, αinin )− V m1(αo, z)
)
.

Third, investment is (negatively) influenced by the R&D cost parameters νr and µr.
Inserting these strategies into (12) yields a non-linear partial differential equation for

V m1 and it is easy to see that contrary to the situation in mode m2 the general form
of the solution of this equation cannot be guessed and a closed form solution seems in-
feasible. Hence, we rely on a numerical collocation method to calculate an approximate
solution for (12), see e.g. Dawid et al. (2015) or Vedenov and Miranda (2001) . In par-
ticular, for a considered state-space [αlo, αho ]× [zl, zh] we construct a set of base functions
{Bio,iz (αo, z), io = 1, .., no, iz = 1, .., nz} such that

bio,iz (αo, z) = Tio−1

(
−1 + 2(αo − αlo)

αho − αlo

)
Tiz−1

(
−1 + 2(z − zl)

zh − zl

)
where Ti(x) denotes the i-th Chebychev polynomial and no, nz are parameters determining
the number of base functions. The value function is then approximated by

V̂ m1(αo, z) =
no∑
io=1

nz∑
iz=1

cio,izbio,iz (αo, z).
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In order to determine the parameters cio,iz we require that V̂ m1 satisfies the HJB equation
(12) on a set of nodes N = No × Nz, where No (respectively Nz) denote the set of
no(nz) Chebychev nodes on the interval [αlo, αho ]([zl, zh]).1 The set of nonz non-linear
equations is solved using a standard iterative method. The quality of the solution is
judged by considering the maximum of the relative deviation in (12) from zero, i.e. ε =
max

[
∆(αo,z)
V̂ m1(αo,z)

|αo ∈ [αlo, αho ], z ∈ [zl, zh]
]
, where ∆(αo, z) denotes the absolute value of the

difference between the left hand side and the right side in the HJB equation (12) for
V m1 = V̂ m1 . Since the value function is in our game strictly positive on the entire
considered state space, this indicator is well defined. For all results presented in this
paper we have ε < 10−3. Inserting V̂ m1 into (13) and (14) gives the (approximate) feedback
functions in the considered MPE. If the state dynamics induced by these feedback functions
is bounded, the transversality conditions of both players are satisfied.

4 Scenarios with Unique Steady States in Mode m1

Figure 1 illustrates the results generated with the method described in the previous section
by showing the value function in mode m1, the equilibrium feedback function for R&D
investment in mode m1, as well as the dynamics in the state space for a base parameter
setting2 and two different values of the R&D cost parameter µr. Considering the R&D
investment functions and the state dynamics, it can be clearly seen that qualitatively
different equilibrium behavior emerges under these two levels of R&D costs. For low
values of µr (left panels) firms invest in R&D for almost all levels of the public knowledge
stock and public R&D investment alone is sufficient to move the level of the knowledge
stock into the regions where firms choose a positive level of R&D. Accordingly, the unique
stable steady state under this MPE profile is characterized by positive R&D investments
of both firms, which also implies a positive hazard rate. Hence, with probability one the
innovation breakthrough will eventually be reached by one of the firms, and a transition
to mode m2 or m3 occurs. A substantially different picture emerges for high levels of
R&D costs (right panels). In such a setting the minimal knowledge stock needed to induce
positive R&D investments of firms is so large that it is never reached in the absence of
firms’ R&D. Furthermore, even if the initial stock would be above this threshold the firms
R&D investment would be too small compared to the speed by which knowledge becomes
obsolete such that the knowledge stock would still decrease. Hence, in the unique steady-
state both firms abstain from R&D investment, which implies that, although the public
knowledge stock converges to a positive level z̃, the hazard rates of both firms are zero.
This means that, whenever the initial value of the knowledge stock is in the part of the
state-space where φm1

r = 0, with probability one the breakthrough is never reached and
both firms stay only active on the established product market.

Comparing the value functions for the two values of µr, one can make the at first sight
1Since the state space is only two dimensional in our game the use of the full tensor product of one-

dimensional base functions and collocation nodes is computationally feasible for the problem at hand and
turns out to imply good convergence and approximation properties. For higher dimensional state-spaces
the use of sparse grids methods, like Smolyak bases and nodes (e.g. Maliar and Maliar (2014)), is required
in order to obtain acceptable approximations of the value functions in MPEs of similar games, see Dawid
et al. (2016a).

2The base parameter setting has been chosen in a way such that the different assumptions made are
satisfied and quantities of both firms remain positive through the game. It is given by α̃o = 1, α̃n =
1.25, z̃ = 0.2, δo = δn = δz = 0.2, γ = 0.3, β = 0.5, νo = νn = 50, νr = 4, r = 0.05, αini

n = 0.75, αl
o =

0.75, αh
o = 1.35, zl = 0, zh = 2.
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Figure 1: Value functions in mode m1 (upper panels), R&D investment (middle panels)
and induced state dynamics (lower panels) for µr = 0.2 (left) and µr = 1 (right).

9



surprising observation that for high values of the acceptance of the established product (αo)
and low levels of the public knowledge stock (z) an increase in the R&D cost parameter
µr induces an increase in the value function of the firms. For such values of the state
variables it is profitable for the firms to coordinate on not engaging in the R&D race.
However for low values of µr it is rational for each firm to invest in R&D regardless of
whether the competitor pursues the innovation breakthrough or not. A high value of the
R&D cost parameter then allows the firms to coordinate in equilibrium on not investing,
which increases their profit compared to a situation where both engage in R&D. The
situation is different if the acceptance of the established product is low and the public
knowledge stock is high. In such a scenario firms gain substantially from introducing the
new product and at the same time the hazard rates are relatively large, which implies that
the expected duration of R&D expenditures till the breakthrough are relatively small.
Here the expected gain from innovation outweighs the costs and hence the value for the
firms is larger if the R&D costs are so small that in equilibrium there is positive R&D
investment and transition to modes m2 or m3 occurs with probability one.

5 Scenarios with Co-existing Stable Steady States in Mode
m1

Figure 1 as well as the intuitive discussion above shows that the firms’ incentive to invest
in R&D is an increasing function of the public knowledge stock as well as a decreasing
function of the acceptance of the old product. Considering now values of the R&D cost
parameter between the two used in Figure 1, one would expect that for some values of
µr firms have no incentive to invest in R&D if the knowledge stock is close to the level
z̃, but in equilibrium engage with sufficient effort in R&D for large values of z such that
a knowledge stock substantially above z̃ can also be sustained in the long run. For such
values of µr the MPE of the game in mode m1 exhibits co-existing stable steady states.
Although such phenomena so far have hardly been treated in the framework of MPEs in
differential games, the extensive literature on co-existing stable steady states in dynamic
optimization problems (e.g. Haunschmied et al. (2003), Dawid et al. (2015), Caulkins
et al. (2015)) implies that generically the actions of the players exhibit a jump along the
curve separating the basins of attraction of the two stable steady states, which in the
literature is referred to as Skiba curve.

In general this insight generates two potential problems for the analysis. First, there
is a conceptual problem, since in general the jump in the action of the opponent along
a curve induces a discontinuity of the value function of a player. For asymmetric games
this implies that generically the player has an incentive to keep the state on one side of
the curve, namely the side where her value function is strictly larger. This implies that in
such a game an MPE inducing two co-existing stable steady-states separated by a Skiba
curve can only exist under rather restrictive conditions. This issue is discussed in more
detail in Dawid et al. (2016b).

The second problem arises with respect to the numerical computation of the value
function in scenarios with co-existing steady states. A jump of the firms’ actions along the
Skiba curve implies that the value function V m1 exhibits a kink along this curve. The fact
that the collocation method relies on a polynomial approximation of the value function
implies that the approximate value function V̂ m1 by definition is smooth on the considered
state space and therefore cannot exhibit a kink. Hence, the procedure described above has
to be adjusted if we deal with parameter constellations under which the MPE feedback
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strategies induce state dynamics with multiple stable steady states. In what follows, we
deal with both of these issues, demonstrating how an MPE can be numerically determined
in such a setting.

To address the first of the two issues we show in the following proposition that in
the framework of our symmetric game MPEs with coexisting stable steady states can in
principle exist and the boundary between the basins of attraction of these two equilibria
is determined by the intersection of the ’local value functions’. These capture the value
of the game under trajectories which result from optimal behavior of both players under
the constraint that the state converges to a certain (locally stable) steady state. More
formally, let us assume that the state space in mode m1 can be separated into two closed
regions Sa,Sb such that Sa ∪ Sb = [αlo, αho ]× [zl, zh] and the intersection S = Sa ∩ Sb is a
connected curve in the state space. Assume further that there exist functions V m1

a , V m1
b

which are continuous on Sa (respectively Sb) and are continuously differentiable in the
interior of these regions. Furthermore, V m1

a (V m1
b ) satisfies the HJB equation (12) on

the interior of Sa (Sb) and we have V m1
a = V m1

b along the curve S. Finally, we define
φm1
hx , h = o, r, x = a, b as the feedback function resulting from inserting V m1

x into (13)
(respectively (14)).

The fact that the two feedback functions exhibit jumps along the curve S in the
state space raises some conceptual and technical problems when considering the dynamic
optimization problem of firm f that results from inserting the feedback function of the
other firm into the state dynamics and the transition rates between modes. After this
insertion neither the state-dynamics nor transition rates between modes are continuous
on the entire state-space and therefore the assumptions required for the standard result
that the value function is the unique solution (in the viscosity sense) of the HJB equation
(see e.g. Theorems 2.8 and 2.12 in Bardi and Capuzzo-Dolcetta (2008)) do no longer
hold. Actually, without these continuity assumptions in general the dynamic optimization
problem might not even be well defined, since for an own control path inducing that the
set of points in time at which the state crosses S has positive measure, the solution to the
state dynamics would not be well defined. Addressing this general technical issue, which
arises quite naturally in differential games if the feedback strategies are not restricted
to functions that are continuous with respect to the state is beyond the scope of this
paper. Hence, in what follows we restrict attention to strategy profiles, where for each
initial condition the firms’ controls do not jump for an infinite number of times along the
induced state trajectory. As will become clear from our numerical analysis below, in the
game considered here this restriction of the strategy space is not restrictive.

Given that we consider this strategy space, the following proposition shows that the
combination of the two local profiles described above generates a Markov-perfect equilib-
rium.

Proposition 1. The symmetric profile φfh = φh, h = o, r, f = 1, 2 with

φh(αo, z) =


φha(αo, z) (αo, z) ∈ Sa
φhb(αo, z) else

constitutes a Markov-perfect equilibrium of the game in mode m1 if the two regions Sx, x =
a, b are invariant under the state dynamics (1, 2) for Ifh = φh(αo, z), h = o, r, f = 1, 2.

Proof. Consider the optimization problem of firm 1 assuming that firm 2 is choosing the
considered strategy (φo, φr). Since V m1

x is a smooth function satisfying the HJB equation
of firm 1 in the region Sx, x = a, b and trajectories stay bounded in Sx if firm 1 uses the
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feedback function (φox, φrx), it follows from standard arguments that no other feedback
strategy can generate a larger expected value for firm 1 as long as the state trajectory
does not leave the region Sx. Consider now an initial condition (αo, z)ini in the region
Sx, x = a, b and assume that there is an alternative feedback function (φ̃o, φ̃r) generating
a strictly higher expected value for firm 1 than (φo, φr) does. Due to the argument given
above it must be that the state trajectory induced by the profile (φ̃o, φ̃r), (φo, φr) crosses at
least once the boundary S between the two regions. Due to our restriction of the considered
strategy space, for any strategy profile the induced trajectory can only exhibit a finite
number of jumps, which means that there can only be a finite number of intersections with
S. Denote by (α̂o, ẑ) the last point where the trajectory hits S. And assume without loss
of generality that the trajectory is in region Sa before it hits (α̂o, ẑ). Since V m1

a (α̂o, ẑ) =
V m1
b (α̂o, ẑ) the expected discounted payoff under the trajectory after hitting (α̂o, ẑ) must

be V m1
a (α̂o, ẑ). Since V m1

a is the value function for firm 1 for the problem on Sa this implies
that for all states on the trajectory between (α̂o, ẑ) and the previous point where S is hit,
the expected value from that state on cannot be larger than V m1

a . The same argument
can then be applied to the previous part of the trajectory running in Sb and so on until
the initial condition is reached. Hence the value at (αo, z)ini cannot be larger than V m1

x ,
which yields a contradiction.

Proposition 1 implies that pasting in a continuous way two functions, which satisfy the
mode m1 HJB equation on parts of the state space, yields the symmetric value function
in this mode for a symmetric Markov-perfect equilibrium. In order to generate the ’local
value functions’ around the two coexisting steady states, we first generate two overlapping
regions of the state space on which the local value functions are calculated such that each
region contains only one steady state. The curve S is then determined as the intersection
of the two local value functions. It is obvious that at a potential steady state with no
R&D investment we must have z = z̃. On the other hand, Figure 1 and the consideration
of the complementarity between knowledge stock and R&D investment suggests that the
steady state with positive R&D is characterized by a knowledge stock substantially above
z̃. Hence, we choose the two overlapping regions of the state space as Ra = [αlo, αho ]×[0, zha ]
and Rb = [αlo, αho ]× [zlb, zh], where αlo, αho , zl, zh are given according to our base parameter
setting and we have zbl < zah. For values of the R&D costs µr between the values considered
in Figure 1 the collocation algorithm is applied separately to these two regions. It is then
checked whether each of the two regions is invariant under the induced state dynamics,
and, if this is the case, the (approximate) value functions are appropriate local value
functions on the considered part of the state space3.

In order to foster the generation of such appropriate local value functions, which induce
dynamics under which the region is invariant, it is useful to carefully select the initial guess
of the value function for the iteration in the collocation algorithm. To this end, when
considering the region surrounding the low investment equilibrium (i.e. Ra), we initially
calculate the value function for a value of µr, which is sufficiently large such that the zero
R&D steady state is the only stable fixed point in the whole state space (e.g. µr = 1, see
Figure 1). The initial guess for the collocation for the actual value of µr is then obtained
by a continuation method by decreasing µr in small steps and always recalculating the
approximate value function with the initial guess in the collocation given by the value
function of the previous step. Alternatively, a homotopy method could be used. However
in multi-mode problems, in which typically numerically determined value functions from

3To be more precise, in such a scenario for each initial condition in the considered region there is no
path staying in the region which generates a larger expected value than the local value function.
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other modes appear in the HJB equation, the derivative of the right hand side of that
equation with respect to the changing parameter, which is needed for the homotopy, is
often not available. Similarly, the approximate value function on Rb is obtained through
a continuation method increasing µr from a value where the unique stable steady state in
the state space exhibits positive R&D investment.

Figure 2 shows the result of such a procedure for µr = 0.27 and zlb = 0.35, zha = 0.6.
The local value function on Ra is depicted in red, whereas that on Rb is blue. The Skiba
curve S, determined by the intersection of the two functions, can be clearly seen and the
value function V m1 is the upper envelope of the two local value functions.

z

o

1mV

Figure 2: Local value functions in modem1 in region Ra (red) and Rb (blue) for µr = 0.27.

It follows from Proposition 1 that the value function V m1 corresponds to a symmetric
Markov-perfect equilibrium in modem1 and in Figure 3 we depict the equilibrium feedback
functions for activities building up acceptance of the established product and for R&D
investment. We observe that both feedback functions exhibit jumps along the Skiba curve
S. The state dynamics induced by this symmetric equilibrium strategy profile is shown
in Figure 4. It can be clearly seen that indeed two locally stable steady states exist and
their basins of attraction are separated by the Skiba curve S indicated as a black line. We
denote the equilibrium in the lower part of the state space, characterized by zero R&D as
(αo, z)l∗m1 and the steady state with positive R&D as (αo, z)h∗m1 .

Considering again the equilibrium feedback functions it can be observed that, when
moving from the basin of attraction of (αo, z)h∗m1 to that of (αo, z)l∗m1 , not only the invest-
ment in R&D exhibits a downward jump, but also the firms’ activities for strengthening
the old market jumps upwards. This is quite intuitive since in the basin of attraction
of (αo, z)l∗m1 there is a positive probability that the new product is never introduced and
therefore the expected future returns of increasing the reservation price for the established
product are larger compared to a scenario where the state converges to (αo, z)h∗m1 . This
is also reflected in the observation that αl∗o,m1 > αh∗o,m1 . Furthermore, quite in accordance
with intuition, investment in the strength of the established market decreases with the
level of public knowledge stock in the basin of attraction of the positive innovation steady
state. The fact that the expected time till the introduction of the new product decreases
with z is driving this effect. No significant effect of z on φm1

o can be observed in the basin of
attraction of the no-innovation steady state. Investment in the strength of the established
market increases with αo in both basins of attraction. This is due to the fact that the
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quantities of the established product firms sell increase with αo and therefore the marginal
profit from increasing αo becomes larger the larger the established market already is.

z

oα

1m
oφ

z

oα

1m
rφ

Figure 3: Equilibrium feedback strategies for activities on the established market (left)
and R&D investment (right).

Turning to the firms’ equilibrium investment in R&D we observe the same qualitative
properties as in the two cases depicted in Figure 1. Due to the complementarity between
public knowledge and firms R&D these investments increase with z. Furthermore, a large
reservation price on the established market reduces the firms’ incentive to invest in R&D.
Together, these two properties imply that the Skiba curve, along which the firms’ strategies
jump, is upward sloping in the state space. This in turn implies that for a given level of
the public knowledge stock the initial strength of the established market (captured by αo)
can determine whether in equilibrium there is persistent investment in the development of
the new product, which would mean that the product is introduced with probability one.
Such a scenario arises only if the initial strength of the established market is sufficiently
small (i.e. (αo, z) is left of the Skiba curve in Figure 4). If the established market is strong,
then, apart from a short transient phase, firms abstain from investment in R&D, which
implies that the probability that the new product reaches the market is close to zero.

These insights have important implications for the understanding of the introduction
of a new product which is (abstracting from the firms’ activities to influence acceptance of
the products) more attractive for consumers than the established one. The result suggests
that under certain constellations of the R&D cost parameters and the level of public
knowledge stock, the strength of the established market might prevent the development
and the introduction of the new product. This insight has clear policy implications, which
are discussed in more detail in Section 7. Our results are also interesting from a technical
perspective, since to our knowledge this is the first instance of an MPE with co-existing
stable steady states in a differential game in which the dimension of the state space is larger
than one and also the first instance of such a phenomenon in a multi-mode differential
game.

6 Economic Analysis of the Post-Innovation Phase
After one firm has introduced the new product, the market dynamics and the incentives
of the competitors to invest in activities strengthening the established (as well as the
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Figure 4: State dynamics under the equilibrium feedback strategies and equilibrium tra-
jectories for zini = 0.5 and αinio = 1 (green line) respectively αinio = 1.25 (red line).

new) market, change significantly. Without loss of generality we focus on the case of
mode m2 where firm 1 has been successful in introducing the new product. According
to our assumption that the new market for technical reasons or due to patent protection
is characterized by such high entry costs for firm 2 that this firm never enters, we have
an asymmetric scenario, in which firm 1 can influence the development of the strength of
both markets, whereas the activities of firm 2 are restricted to the established market.

Figure 5 shows the feedback functions of both firms in mode m2 for our base parameter
setting. Considering firm 2, which is only active on the established market, it can be
observed that investments in strengthening that market are positively affected by the size
of that market (like in modem1) and negatively affected by an increase in αn. The intuition
for this effect is similar to the one discussed for m1, namely that an increase in αn reduces
the quantity firm 2 sells on the established market, which reduces the incentive to invest
in an increase of the (reservation) price of the established product. The monotonicity
properties of firm 1’s activities for influencing αo are the same as those of the investment
of firm 2, however, Figure 5 shows that it can actually be optimal for firm 1 to engage
in costly activities to reduce the strength of the established market although the firm is
still active on that market. In particular, this is true if the strength of the new market
is above a certain threshold, where, as is to be expected, this threshold is an increasing
function of the strength of the established market. The activities of firm 1 with respect to
the strength of the new market are always directed towards an increase of the size of that
market. Analogous to the established market the level of these activities are positively
influenced by the strength of the market itself and negatively affected by the size of the
other market.

Figure 6 shows the evolution of the reservation prices in the two markets and the
corresponding trajectories of investments in both modes under the assumption that the
realization of stochastic innovation time is τ = 40. This means that we consider a situation
where the size of the established market has more or less reached the steady state value
of the pre-innovation phase before the innovation occurs. It can be clearly seen that
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Figure 5: Equilibrium feedback functions for investment in the established market (upper
panels) and the new market (lower panel) in mode m2.

the innovation leads to a downward jump in the investment of firm 1 in the established
market and at the same time to an upward jump of the activities of firm 2 on that market.
The effort of firm 1 to strengthen the new market after its emergence are substantially
larger than both the firms’ efforts on the established market prior to innovation and also
those of firm 2 on the established market after the innovation. This is due to the large
market power of firm 1 with respect to the new product, which results in large output
quantities. Shortly after the innovation, the investments of firm 1 with respect to the
evolution of αo become negative and stay negative in the long run. Therefore, the size of
the established market shrinks to a value which is only slightly above the level α̃o which
would emerge in the long run without any firm effort to influence the reservation price on
that market. The reservation price of the new product in the long run is larger than that
of the established product, which does not only reflect the higher basic attractiveness of
that market (captured by α̃n > α̃o) but also the substantially larger (net) investments in
activities boosting the acceptance of that product and its underlying technology.

The dynamics of output quantities corresponding to this scenario (see Figure 7) high-
lights the close connection between the firms investments in the evolution of the different
markets and their output quantities on these markets. Contrary to the investments, the
output of firm 2 on the established market exhibits however no upward jump after the
innovation. The effects of the downward jump in the output of firm 1 on the established
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Figure 6: Equilibrium dynamics of the reservation prices of both markets (left panel) and
of investments in the dynamics of the reservation prices (right panel) in both modes and
(αo, z)ini = (1, 0.5). The time of the introduction of the new product is assumed to be
τ = 40.

market is exactly neutralized by the positive quantity of the new product, such that ini-
tially the quantity of firm 2 remains unchanged after the innovation and only eventually
decreases as the reservation price on the old market goes down. Furthermore, the Figure
shows that for the considered parameter setting the innovator over time reduces its output
on the established market essentially to zero thereby realizing a full transition from the
old product and technology to the new one. It should however be noted that firm 1 starts
engaging in activities decreasing the size of the established market at a point in time where
it still produces substantial positive quantities of that product. Overall, we end up in a
scenario where each of the two firms completely focuses on one of the two markets.

7 Conclusions
The most important contribution of this paper is technical in the sense that, to our belief,
this is the first paper generating a history dependent solution in the setting of a Markov-
perfect equilibrium of a differential game with more than one state variable. In a model
with two state variables a Skiba curve separates the basins of attraction of the different
locally stable steady states. We design an adaptation of a collocation algorithm to develop
the numerical solution.

We apply our method to a duopoly model where the two incumbent firms both have
an option to carry out a product innovation. In a state plane with public knowledge on
the vertical axis and the reservation price of the established product on the horizontal
axis, the Skiba curve is upward sloping. If the initial values of the state variables are such
that this point is situated below the Skiba curve, the firms do not innovate. On the other
hand, if this point is located above the Skiba curve, it follows that with probability one
the new product will eventually be introduced on the market.

The location of a Skiba curve forms an important input for the policy maker. Consider
a situation where the new product is more environmental friendly and the initial values
of the state variables are such that it is located below the Skiba curve. Then the market
outcome will be that the cleaner new product will not be invented. Essentially the policy
maker has two methods to still make innovation work. The first method is to move the

17



20 40 60 80

0.1

0.2

0.3

0.4

0.5

0.6

t

oq1

oq2

nq1

Figure 7: Quantity dynamics under the equilibrium feedback strategies in both modes and
(αo, z)ini = (1, 0.5). The time of the introduction of the new product is assumed to be
τ = 40.

initial point in the state plane in such a way that it enters the desired area, which is above
the Skiba curve. To do so, the policy maker could either move the point of the initial
states upwards by increasing public knowledge, for instance by subsidizing universities to
do research in this area. Or the policy maker could move this point to the left by taxing
the use of the more dirty established product, which reduces the reservation price.

The second method is to enlarge the basin of attraction of the innovation steady state,
thus moving the Skiba curve downwards. This can be done by subsidizing R&D invest-
ments.

It is important to note that the Skiba curve is only an input for the policy maker: it just
shows what is needed to change an (undesired) market outcome. However, to determine
whether it is in fact optimal to do so requires a richer setting in which welfare should
be optimized such that, besides firm profits, also costs of the specific policy measure and
consumer surplus are taken into consideration.
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