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technological spillovers and sigmoid learning functions of multiproduct oligopolies.
We demonstrate how the presence of learning together with spillovers may generate
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1 Introduction

Technical progress is a key factor of economic growth in market economies. Both the gen-

eration of new capital goods as well as the improvement of existing methods of production

raise efficiency. The current debate on ways how to realize the transition to a green econ-

omy involves the discussion of an optimal industry structure to speed up the introduction

of new technologies (such as the transition to renewable energy sources). Yet, it is still not

clear whether existing large multi-product firms are more active in R&D, as it is claimed

in (Acemoglu and Cao 2015) for example, or whether new entrants invest more. It may

be the case that monopolistic firms are prone to preserve existing technologies rather than

inventing new ones, leading to a technology lock-in, as discussed in (Krysiak 2011) and

later on in (Greiner and Bondarev 2017), while competition may stimulate the industry

to move forward to new technologies. One important aspect in this transformation of the

market is the role of technological leadership.

This paper deals with the question of whether a constant technological leadership is

beneficial for the generation of new technologies or whether the taking over by an initial

follower can speed up the introduction of new technologies. A closely related question is

whether the competition in R&D is beneficial in terms of helping to avoid a technology

lock-in and what the limits for these benefits are.

To answer these questions we analyze a model of multiple innovating firms with doubly-

differentiated innovations (vertical and horizontal) where we take into consideration R&D

spillovers. The leader is defined as the firm with the highest developed technology i, but,

the leadership may change over time1, either temporarily or permanently. We obtain

three qualitatively different scenarios: a permanent technological leadership of one of the

companies, a catching-up by the initial follower with a constant leadership afterwards,

or a temporary loss of the leading position. The outcome depends on the technological

distance between the leader and the followers: once the distance is high, the leader is

permanent as in baby food industry with the permanent Nestle leadership, for example.

When the distance is lower, there may be a catching-up situation as it happened with

computer hardware manufacturing, which experienced the loss of AMD leadership that

has not been recovered (yet). The third type of dynamics may happen if the distance

1this notion of leader has nothing in common with the Stackelberg notion: all firms act simultaneously

and the leader does not have any advantage except for a higher technological level.
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is non-monotonic across applications and the follower can have an advantage in some

specific range of technologies, but not in others.

Empirical studies stress the importance of spillovers for an industry, like (Hender-

son 1993), (Bos, Economidou, and Sanders 2013) with the former finding that leading

firms invest more into incremental R&D while followers (new entrants) concentrate on

fundamental discoveries and the latter studying the non-monotonicity of relationships

across types of innovations over the industry life-cycle. The role of spillovers in R&D has

been empirically studied in (Henderson and Cockburn 1996), (Jaffe 1986), (Bernstein and

Nadiri 1989) and recently in (Bloom, Schankerman, and Van Reenen 2013), among others,

where an ambiguous effect of spillovers with respect to the generation of innovations has

been found.

There is a substantial literature on multi-product innovative monopolies, see e.g. (Lam-

bertini and Orsini 2001), (Lambertini 2003), (Lambertini 2009). In these papers multi-

product monopolies and oligopolies are considered, but no full dynamical analysis is per-

formed there. Further, these papers do not account for the possibility of both constant

leadership and leapfrogging. The papers on R&D cooperation, such as (D’Aspremont

and Jacquemin 1988), (Navas and Kort 2007), study the benefits of R&D cartels, but

do not allow for costless spillovers (imitations). Further, there exist papers on dynamic

strategic interactions in the field of R&D, such as (Reinganum 1982), (Hartwick 1984),

(Judd 2003), (Cellini and Lambertini 2002), and (Lambertini and Mantovani 2010), but

those do not allow for the multi-dimensionality of interactions, i.e. they do not consider

the simultaneous existence of cooperation and imitation.

The framework of heterogeneous innovations has been set forth in the papers (Belyakov,

Tsachev, and Veliov 2011), (Bondarev 2012), (Belyakov, Haunschmied, and Veliov 2014),

with the first being of a more rigorous nature while the second concentrates on the effect

of heterogeneity of a special type on the dynamic behaviour of the monopolist and the last

describing an OLG-type economy with heterogeneous products. Later on, that approach

has been extended to a setting with multi-agents in (Bondarev 2014).

Problems of market dynamics and oligopoly dynamics have been studied by Carl

Chiarella, too, who contributed a lot to the field of economics and finance. Especially

in the early stage of his career he analyzed problems of that subject. In (Chiarella,

Kemp, and van Long 1989) the authors develop a leader-follower model that analyzes the

interaction of R&D, the leakage of knowledge and product pricing. The leader invests
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in R&D and sets the product price. Newly developed technologies become available to

the follower with a time delay. The paper, then, derives the optimal trajectories and

derives several results with respect to comparative statics. The paper by (Chiarella 1991)

studies a Cournot oligopoly model with time delays in production and information. It

is demonstrated that a Hopf bifurcation can occur giving rise to limit cycles and the

conditions leading to that phenomenon are characterized. Imperfect competition on the

product and factor markets is allowed for in the model by (Chiarella and Okuguchi 1995).

There, the existence and stability of a Cournot duopoly with those characteristics are

analyzed and it is demonstrated that antisymmetric equilibria may exist and conditions

for local and global stability are derived.

In this paper we combine the two approaches presented in (Bondarev 2016) and in

(Greiner and Bondarev 2017). Our goal is to demonstrate how the shape of the learning

functions determine whether there is a constant leader or whether the follower catches-up

and the leader falls behind. Further, we demonstrate that the sigmoid learning functions

may give rise to technological lock-ins implying that the initial condition with respect to

the number of products produced is decisive whether the economy ends up in a situation

with a small number of low quality goods or whether there are many products produced

at a high quality. In addition, we analyze how the number of competitors affects the

results of our model.

The rest of the paper is organized as follows. The next section 2 presents the ba-

sic model and section 3 derives the optimality conditions and the differential equations

describing the dynamics. Section 4 analyzes the dynamics of the model and section 5,

finally, concludes.

2 The basic model

We consider an economy with N multiproduct firms engaged in R&D. The firms invest

both in horizontal innovations as well as in the improvement of the qualities of existing

products, i.e. in vertical innovations. As regards the structure of the R&D competition,

we assume that the firms cooperate in the development of new products while the quality

improvements of the products are undertaken by each firm separately where the followers

can benefit from the technological leader through spillovers. The reason for this model

structure is that it may be beneficial for firms to cooperate when the development of
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new products is expensive even if they are competitors otherwise. Further, there exists

empirical evidence for such a behavior and in the literature one sometimes refers to such

a situation as co-opetition, i.e. the simultaneous existence of cooperation and competi-

tion. (Gnyawali and Park 2009) find evidence that in particular small and medium sized

enterprises pursue such strategies because they face very large challenges in their attempt

to realize technological innovations and co-opetition is an effective means to achieve in-

novations. But large firms often cooperate, too, in particular in high technology sectors

because of several challenges such as shortened product life cycles, the need for large

investments in R&D and the importance of technological standards, for example, see

(Gnyawali and Park 2011).

Thus, the formal intertemporal optimization problem of the firms can be written as,

∀k ∈ N ⊂ IR++ : Jk
def
= max

u(·),g(·)

∫ ∞

0

e−rt

(

∫ n(t)

0

[

qk(i, t) −
1

2
gk(i, t)

2
]

di−
1

2
uk(t)

2

)

dt. (1)

As mentioned above, the evolution of the variety of products (technologies) is governed by

joint investments of the firms whereas the development of the quality of each new product

is individual and subject to the imitation effect:

ṅ(t) =
N
∑

k=1

uk(t) − δn(t),

q̇k(i, t) = ψk(i)gk(i, t) − βkqk(i, t) + θmax {0, q−k(i, t) − qk(i, t)} , ∀i ∈ I ⊂ IR+. (2)

The last term in the second equation of (2) gives the spillover effect, where θ determines

its magnitude.

We next define what is called leadership in this differential game. To this end we

restrict our attention to the case βk = β so that the leadership in development of each

technology i cannot change in time. Then we can define2

Definition 1 (Leader and followers).

The player k is the leader in development of technology i as long as this firm has maximal

efficiency of investments into i:

ψk(i) > ψ6k(i) (3)

2under different βk leadership may change for each i, as shown in (Bondarev 2016), for constant β

across players the leader in each technology remains constant as shown in (Bondarev 2014).
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Further, we impose a number of state and control constraints:

∀k ∈ N :

∀i ∈ I,∀t ≥ 0 : gk(i, t)|i>n(t)= 0; (4)

∀i ∈ I,∀t ≥ 0 : qk(i, t) ≥ 0; (5)

0 ≤ gk(i, t) <∞, 0 ≤ uk(t) <∞; (6)

n(t) ∈ I. (7)

Condition (4) states that each non-existent technology has zero investments while it is

out of the market. This makes sense from an economic point of view because it states

that there is a difference between the invention of a product and its innovation. Condition

(5) states that level of each technology cannot be negative. Condition (6) imposes non-

negativity constraints and the boundedness of investments, condition (7) constrains the

variety to be positive real range and maximum principle is understood in the sense of

(Skritek, Stachev, and Veliov 2014), (Aseev and Veliov 2015)3.

The functions ψk(i) determine the efficiency of R&D in quality innovations so that we

refer to them as efficiency functions. These are functions of the variety already invented

and we will allow for learning by doing effects implying that ψ(·) is an increasing function.

The relevance of learning by doing has been well explored in economics over the last 50

years so that we do not justify that assumption any further. In addition, we posit that ψ(·)

features non-linearities and assume that the efficiency function displays a convex-concave

shape. This assumption seems to be plausible because at early stages of development,

learning effects rise more than proportional since the stock of knowledge is still low such

that it is relatively easy to acquire new additional knowledge. However, that cannot go

on to infinity because the more knowledge has already been acquired, the more difficult

it becomes to acquire additional knowledge. Hence, once a certain level of knowledge has

been reached, the efficiency gain of additional knowledge becomes smaller. Therefore,

sooner or later the function takes a concave form and converges to a finite value.

Formally, the shape of the efficiency functions ψk(i) is described by the following

properties for all k ∈ N :

1. ψk(i) is continuously differentiable (at least C2 class)

3this last does not require compactness of the state space, transversality conditions converge to stan-

dard ones with constant discount rate
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2. ∂ψk(i)
∂i

> 0;

3. ∀k ∈ N : ∃!ik :
∂2ψk(i)|i<ik

∂i2
> 0,

∂2ψk(i)|i>ik

∂i2
< 0,

∂2ψk(i)|i=ik

∂i2
= 0.

One particular specification following this assumption is:

ψk(i) = a e−b·e
−d·i

, a, b, d > 0. (8)

This functional form captures the non-monotonic learning by doing effect. In particular,

due to learning by doing, the efficiency of investments increase across products at a rising

speed, then it declines for later products and at last converges to a constant for i → ∞.

The latter reflects the fact that learning effects are bounded such that the change in

productivity is not an ever accelerating process for a given level of R&D investment.

A different function that displays the same shape would be the logistic function. The

qualitative analysis, however, would not change with that function just as with any other

increasing sigmoid function.

We thus may have catching-up in the space of technologies, but not within each tech-

nology development, but instead leadership may change across technologies. We thus

define the leader of the game at time t as follows:

Definition 2 (Leader of the game).

At time t the player k is called the leader of the game if this player’s efficiency of invest-

ments into the next technology to be invented, n(t), is maximal:

ψk(n(t)) > ψ6k(n(t)) (9)

Given the assumption of a sigmoid efficiency function, one obtains already three qual-

itatively separate cases for N = 2: One with a strict domination of one of the players,

∀i : ψk(i) > ψ−k(i), a second one where the initial leader is caught-up and falls behind for

i > io, ψk(i) > (<,=)ψ−k(i), for i < (>,=)io, and, third, the situation where the follower

catches-up and the leader falls behind but catches-up for its part and takes the lead again,

ψk(i) < ψ−k(i), for io1 < i < io2, and ψk(i) > ψ−k(i), for i < io1 and for i > io2, with equality

of the efficiency functions for i = io1, i = io2. These different cases are illustrated in Figure

1, where we denote the situation with a one-time change of the leadership as the contested

leadership.

Now, observe that with convex-concave efficiency functions of the same type there

may exist multiple regimes of this differential game (and up to three steady-states for
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(a) Unique leader (b) Contested leader (c) Varying leader

Figure 1: Learning dynamics.

each regime), with low and high variety levels. If no intersection of efficiency functions

exist, the game has a constant leader (in the sense of (9)) and the dynamical system

possesses up to three steady-states, n̄1 < n̄2 < n̄3. In the low steady-state no or only few

new technologies with low quality are developed, in the high steady-state new technologies

are developed and they have higher quality for both firms4. If there exists an intersection,

as in Figure 1b, one player is the leader in the development of technologies up to the point

at which the efficiency functions intersect where the leadership changes. This piecewise-

defined system is more complicated and may again be characterized by three steady-states.

If a double intersection exists, there will be three different regimes in such a system with

up to three steady-states5.

In the following sections we formally characterize these scenarios, derive the optimality

conditions for the three regimes characterized by Figures 1a, 1b, 1c and we discuss the

characterization of the steady-states and their dynamics.

4we denote the steady-state with the lowest (largest) value of n as the low (high) steady-state.
5In fact, for both latter scenarios each of the regimes possesses up to three steady-states, but some

of them may lie above or at the boundary io, io
1
, io

2
. These are called virtual or boundary equilibria

respectively of the underlying system following (Di Bernardo, Budd, Champneys, Kowalczyk, Nordmark,

Olivar, and Piiroinen 2008).
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3 Optimality conditions and system dynamics

Observe that due to the presence of the imitation term in the quality dynamics, i.e. due to

the spillover effect, it is not straightforward to implement the Maximum Principle to the

original problem given by (1) subject to (2) since the leadership may switch across players,

depending on the regime of the game. Therefore, we have to consider three different cases.

3.1 Unique constant leader

We start with the simplest situation of a constant leadership across products, defined by

∀i ∈ Ī ∃!k : ψk(i) > ψ−k(i) (10)

In this case, the problem of the leader coincides with the single agent optimization problem

and the problems of all the followers (imitators) are similar. Thus, we can set without

loss of generality N = 2. The current-value Hamiltonians for both players, labeled from

now on leader and follower, are:

HL =

∫ n(t)

0

[

qL(i, t) −
1

2
gL(i, t)2

]

di−
1

2
uL(t)2 + λLn · (uL(t) + uF (t) − δ n(t)) +

+

∫ n(t)

0

λLq (i, t) ·
(

ψL(i)gL(i, t) − βqL(i, t))
)

di,

HF =

∫ n(t)

0

[

qF (i, t) −
1

2
gF (i, t)2

]

di−
1

2
uF (t)2 + λFn · (uL(t) + uF (t) − δ n(t)) +

+

∫ n(t)

0

λFq (i, t) ·
(

ψF (i)gF (i, t) − (β + θ)qF (i, t) + θqL(i, t)
)

di (11)

with L, F marking leader and follower quantities.

The first order conditions for this problem are given by,

uk(t) = λkn(t); (12)

gk(i, t) = ψk(i)λ
k
q(i, t); (13)

8



and the differential equation system for the co-state variables is:

∀k ∈ N ⊂ R+ :

λ̇kn(t) = rλkn(t) −
∂Hk

∂n
=

= (r + δ)λkn(t) +
1

2
gk(n(t), t)2 − λkq(n(t), t)ψk(n(t)) gk(n(t), t); (14)

∀i ≤ n(t) : λ̇Lq (i, t) = rλLq (i, t) −
∂HL

∂qL
= (r + β)λLq (i, t) − 1; (15)

λ̇Fq (i, t) = rλFq (i, t) −
∂HF

∂qF
= (r + β + θ)λFq (i, t) − 1. (16)

Proposition 1 (Dynamics of the R&D with constant leader).

The dynamics of the R&D are completely described by the following autonomous differen-

tial equation system6,

u̇L(t) = (r + δ)uL(t) −
ψL(n(t))2

2 (r + β)2
; (17)

u̇F (t) = (r + δ)uF (t) −
ψF (n(t))2

2 (r + β + θ)2
; (18)

ṅ(t) =
N
∑

k=1

uk(t) − δ n(t), n(0) = n0; (19)

∀i ≤ n(t) : qL(i, 0) = qF (i, 0) = q0(i),

q̇L(i, t) =
ψL(i)2

(r + β)
− β qL(i, t); (20)

∀k 6= L : q̇F (i, t) =
ψF (i)2

(r + β + θ)
− (β + θ) qF (i, t) + θqL(i, t). (21)

Proof. The system (17)-(21) follows from application of the Maximum principle to the

problem described by Hamiltonians (11) and thus completely describes the resulting dy-

namics.

We next define the new variable, which gives the total sum of variety investments:

U
def
=

N
∑

k

uk → U̇ = (r + δ)U −

(

N−1
∑

k=1,k 6=L

ψk(n(t))2

2 (r + β + θ)2

)

−
ψL(n(t))2

2 (r + β)2
(22)

6we always require the transversality conditions limt→∞ e−rtλk(t) = 0, k = L,F, with λk(t) = uk(t),

to be met without explicitly mentioning them from now on.
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The evolution of the whole system is then defined by the couple (U(t), n(t)) and could be

analyzed through conventional methods. It is important to notice that uk(t) are smoothly

differentiable functions only if the constant leadership condition (10) holds.

3.2 Contested leadership

If condition (10) fails, the Hamiltonians cannot be written down in a smooth way, since

there exists at least one point of intersection of the efficiency functions, indexed by io,

such that for all technologies beyond this point the other firm becomes the leader in

innovations. We first assume that there is only one point of intersection,

∃!io : ∀i < io : ψk(i) > ψ−k(i), ∀i ≥ io : ψk(i) ≤ ψ−k(i) (23)

Then, we may still construct Hamiltonians using the bounded domain of n(t) as fol-

lows7:

HLF =

∫ n(t)

0

[

qLF (i, t) −
1

2
gLF (i, t)2

]

di−
1

2
uLF (t)2 + λLFn · (uLF (t) + uFL(t) − δ n(t)) +

+

∫ n(t)

0

λLFq (i, t) ·
(

ψLF (i)gLF (i, t) − βqLF (i, t))
)

di+

∫ io

0

λLFq (i, t) · 0di+

∫

Ī

io
λLFq (i, t) · θ(qFL(i, t) − qLF (i, t))di,

HFL =

∫ n(t)

0

[

qFL(i, t) −
1

2
gFL(i, t)2

]

di−
1

2
uFL(t)2 + λFLn · (uLF (t) + uFL(t) − δ n(t)) +

+

∫ n(t)

0

λFLq (i, t) ·
(

ψFL(i)gFL(i, t) − βqFL(i, t)
)

di+

∫ io

0

λFLq (i, t) · θ(qLF (i, t) − qFL(i, t))di+

∫

Ī

io
λFLq (i, t) · 0di (24)

where FL,LF marks initial follower and subsequent leader and vice versa quantities. As

long as n(t) ∈ Ī, at any time t the Hamiltonian function is continuous in the states.

However, there is a switching point to : n(to) = io, where the players change their relative

positions.

7observe that the restriction N = 2 becomes essential in this case: with N > 2 more than one

intersection may exist.
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First-order necessary conditions as expressed through costates remain the same, (12),

(13), but the quality co-state equations now differ across the range of products:

λ̇LFq (i, t) =







(r + β)λLFq (i, t) − 1, i < io

(r + β + θ)λLFq (i, t) − 1, i > io
(25)

λ̇FLq (i, t) =







(r + β + θ)λFLq (i, t) − 1, i < io

(r + β)λFLq (i, t) − 1, i > io
(26)

This implies that for technologies before io one player acts as a leader and for technologies

beyond io the other player becomes the leader in qualities development. Still, for every

given i the co-state variable λ(t)kq(i, t) is a continuous function of time.

For the index io none of the firms is the leader and the symmetric special regime

occurs. In that regime we have8:

i = io : λ̇LFq (i, t) = (r + β + θ)λLFq (i, t) − 1, λ̇FLq (i, t) = (r + β + θ)λFLq (i, t) − 1 (27)

As a consequence, the differential equations giving the evolution of the co-states of

variety expansion are also defined piecewise:

λ̇kn(t)
(14)
= (r + δ)λkn(t) −

1

2
(λkq(n(t), t)ψk(n(t)))2;

λ̇FLn (t) =







(r + δ)λFLn (t) − 1
2
ψFL(n(t))2

(r+β+θ)2
, n(t) ≤ io

(r + δ)λFLn (t) − 1
2
ψFL(n(t))2

(r+β)2
, n(t) > io

(28)

λ̇LFn (t) =







(r + δ)λLFn (t) − 1
2
ψLF (n(t))2

(r+β)2
, n(t) < io

(r + δ)λLFn (t) − 1
2
ψLF (n(t))2

(r+β+θ)2
, n(t) ≥ io

(29)

with the n(t) dynamics being the same as above.

Thus, we can summarize our results in the following proposition:

Proposition 2 (Dynamics of the R&D with a contested leadership).

The dynamics of the R&D are completely described by the following differential equation

8it has been shown in (Bondarev 2016) that for θ > 0 both players behave as followers in symmetric

regime and as leaders if θ = 0. We thus assume θ > 0 everywhere.
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system,

u̇FL(t) =







(r + δ)uFL(t) − 1
2
ψFL(n(t))2

(r+β+θ)2
, n(t) ≤ io

(r + δ)uFL(t) − 1
2
ψFL(n(t))2

(r+β)2
, n(t) > io

; (30)

u̇LF (t) =







(r + δ)uLF (t) − 1
2
ψLF (n(t))2

(r+β)2
, n(t) < io

(r + δ)uLF (t) − 1
2
ψLF (n(t))2

(r+β+θ)2
, n(t) ≥ io

; (31)

ṅ(t) =
N
∑

k=1

uk(t) − δ n(t), n(0) = n0; (32)

∀i ≤ n(t) : qLF (i, 0) = qFL(i, 0) = q0(i),

q̇FL(i, t) =







ψFL(i)2

(r+β+θ)
− (β + θ)qFL(i, t) + θqLF (i, t), i ≤ io

ψFL(i)2

r+β
− βqFL(i, t), i > io

q̇LF (i, t) =







ψLF (i)2

(r+β)
− βqLF (i, t), i < io

ψLF (i)2

r+β+θ
− (β + θ)qLF (i, t) + θqFL(i, t), i ≥ io

. (33)

Proof. The same as for Proposition 1.

The total variety investments now follow the dynamic law:

U̇ =



















(r + δ)U − 1
2

(

ψFL(n(t))2

(r+β+θ)2
+ ψLF (n(t))2

(r+β)2

)

, n(t) < io

(r + δ)U − 1
2

(

ψFL(n(t))2

(r+β+θ)2
+ ψLF (n(t))2

(r+β+θ)2

)

, n(t) = io

(r + δ)U − 1
2

(

ψLF (n(t))2

(r+β+θ)2
+ ψFL(n(t))2

(r+β)2

)

, n(t) > io

(34)

Observe that at n(t) = io the so-called special regime occurs and both firms act as

followers.

3.3 Varying leadership

Finally, we consider the case of a varying leaderships as illustrated in Figure 1c (with

N = 2 as before) where a double intersection of the efficiency functions exists. The

formal condition for that case is:

∃i1 : ∀i < i1 : ψ−k(i) > ψk(i); (35)

∃i2 > i1 : ∀i1 < i < i2 : ψk(i) > ψ−k(i); (36)

∀i > i2 : ψ−k(i) > ψk(i). (37)
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We can use the boundedness of the state space to construct Hamiltonians for both players

in this case:

HLL =

∫ n(t)

0

[

qLL(i, t) −
1

2
gLL(i, t)

2
]

di−
1

2
uLL(t)

2 + λLLn · (uLL(t) + uFF (t) − δ n(t)) +

+

∫ n(t)

0

λLLq (i, t) ·
(

ψLL(i)gLL(i, t) − βqLL(i, t))
)

di+

+

∫ i2

i1
λLLq (i, t) · θ(qFF (i, t) − qLL(i, t))di,

HFF =

∫ n(t)

0

[

qFF (i, t) −
1

2
gFF (i, t)2

]

di−
1

2
uFF (t)2 + λFFn · (uLL(t) + uFF (t) − δ n(t)) +

+

∫ n(t)

0

λFFq (i, t) ·
(

ψFF (i)gFF (i, t) − βqFF (i, t)
)

di+

∫ i1

0

λFFq (i, t) · θ(qLL(i, t) − qFF (i, t))di+

∫

Ī

i2
λFFq (i, t) · θ(qLL(i, t) − qFF (i, t))di (38)

where LL marks initial and final leader and FF marks initial and final follower.

The dynamics of the co-states system is now characterized by three different regimes:

λ̇LLq (i, t) =



















(r + β)λLLq (i, t) − 1, i < i1

(r + β + θ)λLLq (i, t) − 1, i2 ≥ i ≥ i1

(r + β)λLLq (i, t) − 1, i > i2

(39)

λ̇FFq (i, t) =



















(r + β + θ)λFFq (i, t) − 1, i ≤ i1

(r + β)λFFq (i, t) − 1, i2 > i > i1

(r + β + θ)λFFq (i, t) − 1, i ≥ i2

(40)

and the same is true for the variety expansion dynamics.

From an economic point of view, the existence of two intersection points of the effi-

ciency functions implies that the initial leader is caught-up by the follower which then

becomes the leader. However, the new follower catches-up for its part and becomes again

the leader once the second intersection point of the efficiency functions is reached. Then,

the initial follower, which temporarily was the leader, becomes again the follower and the

initial leader takes its leading position again. The following Proposition 3 summarizes

the equations describing the dynamics in this situation.
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Proposition 3 (Dynamics of the R&D with a varying leadership).

The dynamics of the R&D are completely described by the following differential equation

system,

u̇FF (t) =



















(r + δ)uFF (t) − 1
2
ψFF (n(t))2

(r+β+θ)2
, n(t) ≤ i1

(r + δ)uFF (t) − 1
2
ψFF (n(t))2

(r+β)2
, i2 > n(t) > i1

(r + δ)uFF (t) − 1
2
ψFF (n(t))2

(r+β+θ)2
, n(t) ≥ i2

; (41)

u̇LL(t) =



















(r + δ)uLL(t) −
1
2
ψLL(n(t))2

(r+β)2
, n(t) < i1

(r + δ)uLL(t) −
1
2
ψLL(n(t))2

(r+β+θ)2
, i2 ≥ n(t) ≥ i1

(r + δ)uLL(t) −
1
2
ψLL(n(t))2

(r+β)2
, n(t) > i2

; (42)

ṅ(t) =
N
∑

k=1

uk(t) − δ n(t), n(0) = n0; (43)

∀i ≤ n(t) : qLL(i, 0) = qFF (i, 0) = q0(i),

q̇FF (i, t) =



















ψFF (i)2

(r+β+θ)
− (β + θ)qFF (i, t) + θqLL(i, t), i ≤ i1

ψFF (i)2

r+β
− βqFF (i, t), i2 > i > i1

ψFF (i)2

(r+β+θ)
− (β + θ)qFF (i, t) + θqLL(i, t), i ≥ i2

q̇LL(i, t) =



















ψLL(i)2

(r+β)
− βqLL(i, t), i < i1

ψLL(i)2

r+β+θ
− (β + θ)qLL(i, t) + θqFF (i, t), i2 ≥ i ≥ i1

ψLL(i)2

(r+β)
− βqLL(i, t), i > i2

. (44)

Proof. The same as for Proposition 1.

The total variety investments now follow the dynamic law:

U̇ =



































(r + δ)U − 1
2

(

ψFF (n(t))2

(r+β+θ)2
+ ψLL(n(t))2

(r+β)2

)

, n(t) < i1

(r + δ)U − 1
2

(

ψLL(n(t))2

(r+β+θ)2
+ ψFF (n(t))2

(r+β)2

)

, i2 > n(t) > i1

(r + δ)U − 1
2

(

ψFF (n(t))2

(r+β+θ)2
+ ψLL(n(t))2

(r+β)2

)

, n(t) > i2

(r + δ)U − 1
2

(

ψFF (n(t))2

(r+β+θ)2
+ ψLL(n(t))2

(r+β+θ)2

)

, n(t) = i1; n(t) = i2

(45)

Observe that in the case of a varying leadership, the total investments have two special

regimes where both firms act as followers: for n(t) = i1 and for n(t) = i2.
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4 Analysis of the dynamics of the model

We now turn to the study of the long-term dynamics of the model given in Propositions

1, 2 and 3.

4.1 Constant leader

If one of the firms has higher investment efficiency than the other for any i, the dynamics

of the system is fully characterized by the pair of equations (19), (22)9. This is a 2-

dimensional autonomous ODE system with steady-state equilibria characterized by10

ṅ = 0, U̇ = 0. (46)

We start with the description of the global dynamics of the game in this simplest case. It

is given by the following Proposition, where the¯denotes steady-state values:

Proposition 4 (Global dynamics of the game with constant leader).

The differential game characterized by (19), (22) has the following global properties:

1. It may have up to three open-loop equilibria, with n̄1 < n̄2 < n̄3 and Ū1 < Ū2 < Ū3;

2. Only situations with one equilibrium ({n̄1, Ū1} or {n̄3, Ū3}) or three equilibria are

structurally stable;

3. If one equilibrium exists, it is saddle-point stable;

4. If three equilibria exist, {n̄1, Ū1}, {n̄3, Ū3} are saddle-point stable and {n̄2, Ū2} is

either an unstable node or an unstable focus.

5. If {n̄2, Ū2} is an unstable focus and no heteroclinic connections exist across two

other equilibria, there exist thresholds nks , k = L, F , such that the industry ends up

at {n̄1, Ū1} if n0 < nks and at {n̄3, Ū3} if n0 > nks .

The proof involves several Lemmas, which can be found together with their proofs in

the Appendix.

9since q(i, t) dynamics is fully defined by these.
10this is indeed the case as long as ∀k,∀t : uk(t) ≥ 0 as required by (7).
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Proposition 4 demonstrates that multiple steady-states can exist. If the system con-

verges to the higher steady-state, new technologies are developed and the refinement of

existing technologies is going on. The leader invests more into the refinement of existing

technologies and the follower invests more into the expansion of the variety of technologies

up to n̄3. The resulting strategic behaviour is qualitatively similar to the one described

in (Bondarev 2014), but with different investment efficiency functions of the players. It

should also be noted that there can exist two such thresholds, one for the leader and one

for the follower, since this is a game.

If the system converges to the low steady-state, new technologies are not developed

at all, and some existing technologies are scrapped. All firms invest less than necessary

to support the existing research infrastructure up to the point when the variety of tech-

nologies stabilizes at the n̄1 level. The quality of those technologies which are scrapped is

stopped to be improved as soon as i > n(t) and declines to zero. Only those technologies

for which i ∈ n̄1 are improved up to the steady-state levels q̄k1(i), different for all players.

As long as βk = β−k the leader’s quality in the steady-state is always higher than that of

the follower(s) and the imitation effect is present.

Since optimal investments are given by (13) for all players it follows that the leader

invests more than followers in all technologies (either long-term surviving or those to be

scrapped) and the followers invest more into the support of the current variety, making

the convergence to the low steady-state slower than for the single monopolist case.

Proposition 5 (The role of competitive fringe with a constant leader).

If there exists a constant technological leader in the industry ( (10) holds) and multiple

steady-states exist (Prop. 4 holds), then the following holds true:

1. If n0 > ns the speed of variety expansion is increasing in the number of followers N ;

2. If n0 < ns the speed of variety reduction is the smaller the higher is the number of

followers N ;

3. The profit of the leader is increasing with the number of followers N in both cases.

Proof. The proof of points 1 and 2 amounts to a direct comparison of investments uk(t)

of followers with that of the leader and from the observation that U(t) is monotonically

increasing in N . Point 3 follows from the fact that the longer the given technology i is

present on the market, the higher is the profit the leader draws from it and the span of time
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technology i exists positively depends on the speed of variety expansion (i.e. negatively

on the speed of degradation).

Thus, we see that the presence of followers is beneficial for the leading firm, both in

the case of convergence to the low steady-state and in case the industry converges to the

high steady-state. This outcome is the result of joint efforts to expand the number of

products n(t) and from the endogenous specialization of investments. The multiplicity of

possible steady-states is the consequence of the assumed learning dynamics.

In order to illustrate the existence of a threshold, we next present an example where

we numerically calculate the value of the thresholds. It should be recalled that there exist

two such thresholds, one for the leader and one for the follower. Further, the thresholds

are either determined by the bounding trajectory of the unstable focus or by that value

of initial technologies where convergence to the low steady-state yields the same value for

the functional (1) as convergence to the high steady-state, in case when the starting value

of the technologies lies in the range that allows convergence to either the low or to the

high steady-state. In the latter case, one often denotes the threshold as a Skiba point.

As mentioned above, in principle the analysis is the same as the one in (Greiner and

Bondarev 2017). However, due to the fact that this is a game, the threshold of the

initial state of technologies nks cannot be determined by using (46) alone, but one needs in

addition the value of uL for the leader and of uF = U − uL for the follower, respectively.

To determine the threshold we compute the difference of the maximized Hamiltonians as

a function of the initial state and of the initial controls, ∆H0 = H0(u1
j(0), U1(0), n0, ·)/r−

H0(u2
j(0), U2(0), n0, ·)/r, j = L, F , with the superscript 1 and 2 denoting the inital controls

such that the system converges to the high and to the low steady-state, respectively.

Depending on whether the difference of the maximized Hamiltonians is positive or negative

for a certain {uj(0), U(0)}, j = L, F , and for a given n0, convergence to the high or to the

low steady-state is optimal. The threshold nks is reached when the maximized Hamiltonian

for the combination {uj(0), U(0)} leading to the low steady-state takes the same value as

for that combination converging to the high steady-state or when the bounding trajectory

is reached.

For the numerical example, we choose the following parameter values. The parameter

in the leader’s efficiency function ψL(·) are set to aL = 0.047, bL = 3 and dL = 1.5 and

the parameter in the follower’s efficiency function aF = 0.04, bF = 4 and dF = 1.8. The
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other parameter values are r = 0.035, β = 0.05, θ = 0.2 and δ = 0.21. The corresponding

steady-states are obtained as {n̄ = 7.98 · 10−3, Ū = 1.68 · 10−3, ūL = 1.66 · 10−3}, {n̄ =

1.229, Ū = 0.258, ūL = 0.241} and {n̄ = 2.949, Ū = 0.619, ūL = 0.241}, where the first

and the third are saddle-point stable while the second is an unstable focus.

With these parameter values, we then numerically solved the differential equation

system given by (17), (19) and (22) and computed the difference of the maximized Hamil-

tonians ∆H0(·) for the leader and for the follower. This shows that for n = nLs = 0.565

the maximized Hamiltonians for the leader take the same value independent of whether

the initial controls are set such that the system converges to the low or to the high steady-

state. Doing the same for the follower shows that convergence to the high steady-state

always gives a larger value for the objective functional (1) than convergence to the low

steady-state in the range between the bounding trajectories of the unstable focus, that

is in the range where the system could converge to either the low or to the high steady-

state. In that case, the bounding trajectory represents the threshold which is given by

nFs = 0.366.11

These computations show that the system converges to the low steady-state if the

initial number of technologies n0 is smaller than nFs = 0.366 and it converges to the high

steady-state for n0 > nLs = 0.565. But, this result implies that for initial technologies

n0 ∈ (nFs = 0.366, nLs = 0.565) it cannot be determined to which steady-state the system

converges. In that case the outcome of the game depends on which of the two players

can enforce his strategy. If the leader dominates, the system will converge to the low

steady-state, if the follower dominates the system will converge to the high steady-state.

The following figure 2 illustrates the result in the (n− uL −U) phase space where we

assumed that the leader is the dominating player12. The two grey trajectories marked

with arrows indicate the optimal paths converging to the low and to the high steady-

state, respectively, depending on whether the industry starts at a value below or above

the threshold nLs . The spirals in the phase space give the trajectories of the unstable

focus, i.e. of the middle steady-state, with the grey spirals showing the projection onto

the (n, uL) plane.

11However, the difference between the two Hamiltonians for that value is very small (1.9 ·10−4).
12we multiplied the values of uL by two for reasons of clearness of the graphic.
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Figure 2: Thresholds nFs , nLs and optimal paths in the (n − uL − U) phase space when

the leader dominates.

4.2 Regime switching with changing leadership

Next, we analyze the cases when the leadership changes. Conditions on efficiency functions

for it to happen are given by (23) and by (35)-(37), defining two and three different

regions of the state space, respectively. These situations are illustrated in Figures 1b and

1c. Assuming that such intersections exist, the initial range of technologies (which is the

same for all players) will define the regime of the game and whether a high or a low variety

of technologies will realize.

We start with the definition of regimes of the game.

Definition 3 (Regimes of the game).

The system (32), (34) is in the lower regime as long as n(t) < io holds. It is in the upper

regime as long as n(t) > io holds.

For the varying leadership case we have a lower, an upper and a medium regime which

appears for io2 > n(t) > io1.
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4.2.1 Contested leadership

First, we study the case of the contested leadership as the dynamics of the varying lead-

ership is in most cases qualitatively the same. Assume that n0 < io. Then, the initial

dynamics of the system is given by:

U̇O(t) = (r + δ)U −
1

2

(

ψFL(n(t))2

(r + β + θ)2
+
ψLF (n(t))2

(r + β)2

)

,

ṅO(t) = U(t) − δ n(t), (47)

where the subscript O denotes the lower regime.

For n(t0) = io the symmetric special regime is obtained, where both firms act as

followers. The dynamic system for this regime reads as

U̇S(t
0) = (r + δ)U −

1

2

(

ψFL(io)2

(r + β + θ)2
+

ψLF (io)2

(r + β + θ)2

)

,

ṅS(t
0) = U − δ io, (48)

where the subscript S denotes the special regime.

If the resulting dynamics of n(t) is positive, the system will leave the special regime

in the direction of the upper regime. There, the dynamics is given by:

U̇U(t) = (r + δ)U −
1

2

(

ψLF (n(t))2

(r + β + θ)2
+
ψFL(n(t))2

(r + β)2

)

,

ṅU(t) = U(t) − δ n(t), (49)

where the subscript U denotes the upper regime.

Due to the sigmoid learning function this system can have three steady-states and may

by characterized by a threshold that separates the two basins of attraction. It should be

noted that, as in the case with a unique leader, there can exist one threshold for the

leader and one for the follower. However, only the dominant player is decisive and it is

this threshold that determines the outcome of the game.

Every regime in the absence of the switch may have up to three steady-state equilibria

of the same type as the game with the constant leader. We denote by {n̄, Ū}1,2,3 and

{n̂, Û}1,2,3 steady-state equilibria of the lower and of the upper regime, respectively. We

distinguish then between regular, virtual and border equilibria following (Di Bernardo,

Budd, Champneys, Kowalczyk, Nordmark, Olivar, and Piiroinen 2008):
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Definition 4 (Types of equilibria).

The steady-state equilibrium {n̄, Ū}j, j ∈ {1, 2, 3}, of the lower regime is regular, if n̄j < io.

The steady-state equilibrium of the upper regime is regular if n̂j > io.

The steady-state equilibrium j of the lower (upper) regime is virtual, if n̄j > io(n̂j < io).

The steady-state equilibrium of the lower (upper) regime is a border equilibrium, if

n̄j = io(n̂j = io).

From the shape of the learning curves and due to the fact that they intersect once

it follows that at least one of the equilibria of every regime is a border or a virtual

equilibrium, i.e. it cannot be the case that all equilibria of one regime are situated at the

same side of the intersection13 io. Hence, it is always possible to find an initial value n0

such that the system will move to the switching manifold Σo : n(t) = io at least once.

Further, in analogy to the case of a permanent leadership, the situation with a con-

tested leadership is expected to be characterized by a threshold that separates the basins

of attraction. We denote that threshold for the contested leadership case by nas. In

Lemma 1 we give conditions such that the systems changes from one regime to the other.

Lemma 1. As long as initial conditions are such that either io > n0 > nas or io < n0 <

nas the game will reach the switching manifold Σo at least once.

Proof. By definition of the threshold level nas.

Now, assume that the system starts in the lower regime and that the initial number

of technologies n0 is larger than the threshold nas but lower than io. Then, investments

are made such that the number of technologies rises over time and reaches the special

regime at t = to that is characterized by n(to) = io. If the dynamics of n(t) is positive,

the system will leave the special regime in the direction of the upper regime and converge

to the high steady-state {n̂, Û}3. If the initial number of technologies n0 falls short of the

threshold nas, the system converges to the low steady-state {n̄, Ū}1 and no regime change

occurs.

As soon as a regime change is possible, three distinct types of dynamics are feasible14:

13The intersection n = io is known as the switching manifold that we denote by Σo following the

literature on piece-wise smooth systems.
14here, we adopt the more general definition from (Di Bernardo, Budd, Champneys, Kowalczyk, Nord-

mark, Olivar, and Piiroinen 2008) to our specific system.
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Definition 5. The dynamical system (32), (34) is said to be in the transversal mode if

{ṅO · ṅU}n=io > 0 holds and it is in the sliding mode for {ṅO · ṅU}n=io < 0. It is in the

tangent mode if either ṅO = 0 or ṅU = 0 at n = io.

Intuitively, the system is in transversal mode if the vector fields on both sides of the

io line have the same algebraic sign and it is in the sliding mode if the signes differ.

Thus, the game may enter the so-called sliding mode, when it stays along the line

n = io where the special dynamics arise. However, due to the special structure of the

switching manifold and the dynamical system at hand, we can demonstrate that the

sliding mode of the first order15 cannot occur:

Lemma 2. The system (32), (34) crosses the switching manifold Σo transversally every-

where except for the point n = io, U = δio, where the tangent mode occurs.

Proof. Follows immediately from the observation that ṅO = ṅU .

Therefore, we neglect the possible tangent mode in our numerical simulations we

present below to illustrate the dynamics of the contested leadership case.

Further, it is important to note that the optimal trajectory is continuous with a kink

at the boundary io in the case of a regime change. That holds because the continuation of

the stable manifold of the upper (lower) regime does not coincide with the trajectory of

the unstable focus of the lower (upper) regime. We summarize our results in the following

Proposition 6.

Proposition 6 (Dynamics for the contested leadership case).

The optimal trajectories of the contested leadership are generically continuous functions

of time with a kink at the boundary io in case of regime switching.

Assume there are no heteroclinic connections across {n̄, Ū}1, {n̂, Û}3. Then, there

exists a threshold nas such that the low steady-state of the lower regime {n̄, Ū}1 realizes if

n0 < nas. The high steady-state of the upper regime {n̂, Û}3 realizes otherwise.

Proof. The first claim follows from the fact that the sliding mode can be excluded for

the model except for the tangency point, Lemma 2. The second claim follows from the

15sliding mode of the first order occurs if first directional derivatives of the flow on both sides of the

switching manifold do not agree in sign. Higher order sliding mode may happen if one or both derivatives

are zero, but higher order derivatives are not. We leave this opportunity for now.
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definition of the threshold: for all values below it the low steady-state realizes as an

equilibrium of the game.

Remark : The assumption of the absence of heteroclinic connections is essential since,

otherwise, the system may leave one of the saddle-point steady-states and reach the other

one.

Hence, the player that is more efficient in quality improvements of the existing variety

of products ends up as the leader of the game. Thus, we can observe an endogenous

change in leadership: if the initial follower has an advantage in developing some future

technologies, this firm will eventually become the leader of the game provided the initially

known range of technologies is sufficiently high.

Next, we illustrate the regime change for the contested leadership case with the help of

a numerical example. To do so choose the following parameter values r = 0.035, δ = 0.22,

β = 0.05 and θ = 0.2 which are basically identical to those from the last section. Further,

we define

Ψ1 :=
ψFL(·)2(r + β)2

(r + β + θ)2
+ ψLF (·)2, Ψ2 :=

ψLF (·)2(r + β)2

(r + β + θ)2
+ ψFL(·)2 (50)

As regards the functions Ψ1 and Ψ2 we assume that they are given by Ψ1 = a1 e
−b1·e−d1·i ,

with a1 = 0.05, b1 = 3, d1 = 1.5, and Ψ2 = a2 e
−b2·e−d2·i , with a2 = 0.06, b2 = 3.75,

d2 = 1.2. With these parameter values, the efficiency functions ψLF and ψFL can be

obtained from (50). The point of intersection io of ψLF and ψFL is given by io = 2.047.

The functions ψLF and ψFL are illustrated in Figure 3.

With the definition of Ψ1 and Ψ2, the dynamics of the model is described by,

U̇(t) = (r + δ)U −
1

2

(

Ψ1(n(t))2

(r + β)2

)

, for n(t) < io,

U̇(t) = (r + δ)U −
1

2

(

Ψ2(n(t))2

(r + β)2

)

, for n(t) > io,

ṅ(t) = U(t) − δ n(t), n(0) = n0 (51)

Given our parameter values, we can solve the differential equation system (51) numeri-

cally. The next Figure 4 gives a picture of the global dynamics with the ṅ = 0 isocline and

the U̇ = 0 isocline that has a kink at n = io = 2.047. The trajectory of U is continuous at

that point but not differentiable. We should like to point out that we did not compute the
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Figure 3: Efficiency functions ψLF (dashed) and ψFL (solid) for the catching-up case.

exact value of the threshold for that system since the calculations are extremely complex

because a regime change can occur that must be taken into account in the computations.

In Figure 4 there is one trajectory going to the upper regime’s steady-state {n̂, Û}3,

which starts at the lower regime and the other one leading to the lower regime’s steady-

state {n̄, Ū}1. It can be seen, that the vector fields of the upper regime and of the lower

regime show the same sign over the switching manifold everywhere except for the tangency

at the ṅ = 0 and Σo intersection point. The U̇ = 0 isocline has a kink at the switching

manifold. Observe that there is only one trajectory in the lower regime which converges

to the stable manifold of the upper steady-state. It is obtained by integrating backward

in time the trajectory from the point at the switching manifold, where the upper regime’s

optimal trajectory converging to the stable manifold starts.

Next, we want to analyze how the emergence of a competitor that becomes the leader

at a certain point in time affects the outcome of our model. To do so we consider the

case of the contested leadership, as illustrated in Figure 4 for example, and compare it to

the hypothetical situation where the leader of the lower regime is the permanent leader.

The threshold for the case with the leader of the lower regime as the permanent leader

is denoted by ns. We limit our considerations to a situation as shown in Figure 4 where

ns and nas are to the left of the switching manifold Σo. With this assumption, Lemma 3

gives the location of the threshold nas relative to ns.

Lemma 3. Assume that the system is in the transversal mode and thresholds ns, nas to

the left of the switching manifold Σo exist. Then, the inequality nas < ns holds.
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Figure 4: Global dynamics with a change in leadership in the (n− U) phase diagram.

The proof can be found in Appendix B.

Denote nss the threshold for hypothetical situation where the leader of the upper

regime is the permanent leader. Then we observe the following:

Corollary 1. Assume n̄2 < io. Under assumptions of Lemma 3 nss ≤ io holds.

Proof. This is a simple consequence of the configuration of steady states of the system:

once n̄2 < io it follows that n̂2 ≤ io implying nss ≤ io (since both unstable steady states

lie at one side of the switching manifold by construction of Ψ functions).

From Lemma 3 it follows, that the presence of the competitor reduces the range of

initial variety values, n0, that leads to the technology lock-in, where the system converges

to the low steady state. For the history in the range (nas, ns) the contested leader regime
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avoids the technology lock-in and the best possible equilibrium (in terms of the range

and development of technologies) realizes, whereas the system would go to the low variety

outcome if the initial leader was the constant leader. In this sense we can claim that the

presence of competing R&D projects leading to a change in leadership is beneficial for the

industry. However, we note that this argument has its limits.

Replicating the analysis above for an arbitrary finite number of players N we note the

following: for every single crossing of efficiency functions the results above hold. Thus,

the N -player situation may be divided into a sequence of 2-player games with the leader

and the closest follower being of relevance. If more than one efficiency function intersect

at a given iok, the firm with the higher efficiency after iok is selected as the leader. The

ordering of steady-states follows the same way as for the 2-player case for each closest

competitor. The difference to the situation with 2 firms lies in the fact that there are

several switching manifolds and, thus, many possible tangent modes where the special

regime can occur.

Before we summarize our results in the next Proposition we need the following Defi-

nition.

Definition 6. The steady-state equilibrium Ũ , ñ is called a pseudoequilibrium if it is an

equilibrium of the sliding mode (special regime).

Denote the thresholds of the system with player k being the (virtual constant) leader

as {nks}, k ∈ N , by {nkas} thresholds for the overall system with switching leadership16

and associated steady-states n̄k1,2,3. We can now state the following result:

Proposition 7 (The role of competitive fringe with a contested leader).

If there is a contested leadership situation in the industry ( (23) holds for each iok) with the

assumptions underlying Proposition 6, Lemma 3 and Corollary 1 for every next closest

follower, then the following holds true:

For N < N∗ <∞:

1. If n0 < n1
s, the system may converge either to the low or to the high steady state. If

additionally n0 < n1
as the system converges to n̄1

1.

2. If n0 > n1
s, the highest steady-state n̄N3 realizes;

16thus n1

s
= ns, n

2

s
= nss , n1

as
= nas for N = 2
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3. For N∗ < N → ∞ the game consists of special regimes only and the pseudoequilib-

rium {ñ, Ũ} : ṅS|n=ñ = 0, U̇S|U=Ũ = 0 realizes with certainty.

Proof. Point 1 follows immediately from the analysis of the 2-firms case (Lemma 3):

n0 < n1
s is not the condition for convergence to the low steady state, but rather n0 <

n1
as < n1

s. Still nkas is difficult if possible to compute and we refer rather to nks thresholds

(which could be computed).

Point 2 follow from Corollary 1: once n0 > n1
s holds, it follows that n0 > n1

as and the

switch in leadership to player 2 occurs (and the next closest follower). This would define a

new n2
as, but n2

s < io1, and thus n2
as < io1 via Lemma 3, thus the optimal trajectory cannot

go back into the leadership of the player 1 (in the absence of heteroclinic connections,

Prop. 6). It would go via transversal mode to the leadership of player 3, since n̄3
3 > io2

otherwise there is no switch. Repeating this argument for every next leader-follower pair

we obtain point 2.

Point 3: In case the number of firms approaches infinity, there are infinitely many

switching manifolds of type Σk
o . The pseudoequilibrium can realize only if the trajectory

enters the switching manifold exactly at the point where ṅS|n=ñ = 0, U̇S|U=Ũ = 0, since no

sliding motion is possible. However, since N → ∞, the trajectory recovered by stitching

different regimes consists only of points at different switching manifolds. However, it is

continuous as long as the point lies in the transversal regime. At some point this trajectory

will thus hit the pseudoequilibrium.

At last take N∗ as any arbitrary large natural number and use continuum hypothesis

(so the case N > N∗ realizes only if N ⊂ R+).

Observe that the pseudoequilibrium, point 3 in Proposition 7, is an inefficient one,

since all the firms try to imitate each other with no avail so that underinvestments occur

for θ > 0. The exact variety of technologies and their qualities achieved depend on the

distribution of the efficiency functions of all players. This requires a more detailed analysis

left for future research.

Thus, we have found both positive and negative impacts of competition and of a change

in leadership on the R&D output in the contested leadership case: on the one hand, the

increase in the number of followers/imitators can help to avoid a technology lock-in with

a low variety of technologies. On the other hand, once the number of competitors is

very high, another lock-in appears in the form of a pseudoequilibrium. Again, what the
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exact number N∗ is when such a situation may occur, depends on the distribution of the

efficiency functions and how close they are to each other.

4.2.2 Regime switching in the varying leadership case

We now briefly address the case where conditions (35)-(37) hold. For the case of a varying

leadership we have three regimes, but in case of 2 firms two of them coincide with the low

regime of the contested leader case, (47), and the medium regime is the same as the upper

regime of the contested leader case, (49). There are two switching manifolds, denoted by

Σ1 : n = io1 and Σ2 : n = io2 where the dynamics is given by the special regime (48). Again,

at the boundaries, both players act as followers.

Depending on the location of the steady-states of both subsystems there are more

opportunities than for the contested leader case, namely:

1. Cases n̄1,2 < io1, n̂1,2 < io1 , n̄3 > io1, n̂3 > io1 and n̄1 < io1, n̂1 < io1 , n̄2,3 > io2, n̂2,3 > io2

correspond to the switching mode of the contested leadership case;

2. Case n̄1 < io1, n̂1 < io1, n̄3 > io2, n̂3 > io2, i
o
1 < n̄2, n̂2 < io2 is specific for the varying

leadership case.

In case 2 more than one regime change can occur. This can be observed when the system

starts in the lower regime, passes through the middle regime and enters the upper regime

where it converges to the high steady-state. Again, the optimal trajectory is continuous

with kinks at the boundaries io1 and io2. Depending on the parameters of the model, the

optimal trajectories may visit all three regions of the phase space recurrently making

multiple leadership changes possible. Still, the final result will be the convergence to

one of the saddle-point stable steady-states in the lower or upper regime. Leaving out

structurally unstable cases, we claim that the varying leadership case is qualitatively

similar to the contested one in this respect.

5 Conclusions

In this paper we study an R&D differential game of a standard type, like in (Ben Youssef

and Zaccour 2014), (Bondarev 2014), (Bondarev 2016), (Dawid, Greiner, and Zou 2010)

and take into account learning by doing of the participating firms with the learning curves
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displaying a sigmoid shape. It turns out that the form of the learning functions is crucial

as regards the outome of the model, in particular with respect to the question of whether

there is a constant leader or whether we can observe a catching-up of the follower or a

varying leadership. In addition, the sigmoid form of the learning curve may give rise to

the technology lock-in phenomenon.

The R&D multiproduct duopoly considered in the paper allows for different qualitative

regimes. As long as one of the players has a higher efficiency of quality investments into

all the technologies, no switch in technological leadership may occur, but we still can

observe the technology lock-in situation due to the potential multiplicity of steady-states

of the governing dynamic system. Depending on the initial range of technologies at the

disposal of both players, the system may end up in the steady-state with a low variety of

underdeveloped technologies or in the steady-state with the high variety of fully developed

technologies. This finding is in line with those of (Acemoglu, Gancia, and Zilibotti 2012),

(Krysiak 2011), but for a oligopoolistic setup.

When the learning curves of the players intersect, we observe a catch-up of the initial

follower that becomes the leader for its part while the initial leader falls behind. In

case there is one point of intersection, this situation is perpetuated meaning that the

new leader remains in that position. If there are two intersection points of the learning

curves, the new leader will fall behind again and the initial leader that became the follower

temporarily catches-up and takes the lead again.

We extended our findings to an arbitrary finite number of R&D firms and found

that the increase in competition in terms of the number of firms can help to avoid a

technology lock-in that may arise without a change in leadership. However, once the

number of firms approaches infinity another lock-in appears and the game ends up in

the pseudoequilibrium. This one is an improvement compared to the initial low variety

equilibrium, but does not utilize all possible technologies. Thus, competition has an

ambiguous effect in our model.

The suggested model has immediate policy implications. Once the situation with

multiple equilibria in R&D leadership arises, there exist thresholds separating the basins

of attraction of the low and high steady-states of the system. Thus, it suffices to design a

lump-sum tax/subsidy for one of the firms to avoid the technology lock-in of the first type

(i.e. the low variety equilibrium). However, this is not the case for the second type (i.e.

for the pseudoequilibrium), since any subsidy will move the system to a different (albeit
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higher) pseudoequilibrium. Hence, it is important to take into account the number of

R&D firms on the market and the distance between their investment efficiencies when

designing the appropriate R&D policy for a certain industry.

A Proof of Proposition 4

To prove Point 1 we note that the dynamics of U is given by the (finite) sum of Gompertz

functions, which are known to be sigmoid. It follows that the sum of these functions is

also a sigmoid function. Therefore, the differential equations (19), (22) have up to three

steady-states which is the direct consequence of the sigmoid shape of the efficiency function

being involved. Which of the steady-states would realize depends on the initial stock of

technologies, n0. This result is equivalent to the one in (Greiner and Bondarev 2017)

albeit for the differential game with N players.

To prove Point 2 to Point 5 we first state the following three Lemmas.

Lemma 4. As long as three steady-states exist in the system (19), (22), the following

holds:

1. Steady states {n̄1, Ū1} and {n̄3, Ū3} are saddle-point stable

2. The steady-state {n̄2, Ū2} is unstable

3. No limit nor heteroclinic cycles nor homoclinic loops occur around any of these

steady-states.

Proof. Consider the Jacobian matrix of the system (19), (22) and its eigenvalues. There

are two eigenvalues of the form:

λ1,2 =
1

2

r3 + (θ + 2β)r2 + (β + θ)βr

(r + β + θ)(r + β)
±

√

F (ψk(n(t)), ψ−k(n(t)))

(r + β + θ)(r + β)
(A.1)

The first term is always positive and real as long as {r, β, θ} ≥ 0, and square root yields

positive or complex value depending on the sign of F (ψk(n(t)), ψ−k(n(t))). Thus the only

possible combinations of eigenvalues for any point are:

• For positive F (ψk(n(t)), ψ−k(n(t))):
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– 1
2
(r3+(θ+2β)r2+(β+θ)βr) >

√

F (ψk(n(t)), ψ−k(n(t))) > 0 then ℜ(λ1,2) > 0:

unstable node equilibrium;

– 1
2
(r3 + (θ + 2β)r2 + (β + θ)βr) =

√

F (ψk(n(t)), ψ−k(n(t))) > 0 then ℜ(λ1) =

0,ℜ(λ2) > 0: saddle-node point;

–
√

F (ψk(n(t)), ψ−k(n(t))) > 1
2
(r3 + (θ + 2β)r2 + (β + θ)βr) > 0 then ℜ(λ1) >

0,ℜ(λ2) < 0: saddle-point equilibrium;

• For non-positive F (ψk(n(t)), ψ−k(n(t))):

– F (ψk(n(t)), ψ−k(n(t))) = 0 then ℜ(λ1,2) > 0: unstable node equilibrium;

– F (ψk(n(t)), ψ−k(n(t))) < 0 then ℜ(λ1,2) > 0 and ℑ(λ1,2) > 0: unstable focus

equilibrium.

Thus, no asymptotically stable steady-states may exist, and no limit cycles are possible

(this requires both eigenvalues to have zero real parts). Next we know that ψk(n(t)), ψ−k(n(t))

are sigmoid functions, and thus the function F (ψk(n(t)), ψ−k(n(t))) is non-monotonic over

n, as Figure 5 illustrates.

Figure 5: Regular form of the F (ψk(n(t)), ψ−k(n(t))) function.

We have at most two points with ℜ(λ1) > 0,ℜ(λ2) < 0 and one point with ℜ(λ1,2) > 0.

This proves major part of the Lemma. Absence of heteroclinic cycles and homoclinic

loops follows from Poincare-Bendixson theorem in the same way as shown in (Wagener

2003).
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Next, observe that only situations with 1 and 3 steady-states are generic. To see that,

consider changes in the parameters a, b, d that determine the efficiency functions for all

players. It turns out that only parameter a influences the number of steady-states, while

others influence only the exact location of n̄, Ū . We thus make a small exercise and run a

bifurcation analysis for a value in N = 2 case for the leader. We have the following result:

Lemma 5 (Saddle-node bifurcations).

The system (19), (22) undergoes 2 saddle-node bifurcations with respect to parameter ak:

there exist a0
k, a

1
k such that saddle-node bifurcation points exist: steady-states {n̄2, Ū2},

{n̄3, Ū3} merge into the saddle-node for ak = a0
k, and for ak = a1

k steady-states {n̄2, Ū2},

{n̄1, Ū1} merge into the saddle-node. For a1
k > ak > a0

k there exist three steady-states. For

ak < a0
k there exists only {n̄1, Ū1} and for ak > a1

k there exists only {n̄3, Ū3}.

Proof. The saddle-node bifurcation point is characterized by one of eigenvalues being

zero. In our case this can be only if ℜ(λ1) = 0,ℜ(λ2) > 0, and no imaginary parts are

present, making the bifurcation point a node. Hence this is an unstable point, as one of

eigenvalues is positive.

Figure 6 illustrates the argument: plotting the steady-state curve in n variable we find

steady-states as intersections of this curve with n axis. Varying parameter ak we observe

the saddle-node bifurcation: two steady-states of the system merge art a0
k and disappear

afterwards. We thus may without loss of generality consider the system to have either 1

or 3 steady-states.

As long as multiple (3) steady-states are present in the system, it is the bistable

system17. Thus, we may expect the existence of the so-called Skiba point(s) in this setup.

Necessary conditions for that are established in the following Lemma.

Lemma 6. The system (19),(22) possesses a threshold for a generic parameter range in

between possible heteroclinic connections if:

1. It has 3 steady-states (it is bistable);

2. The unstable steady-state is a focus, i.e. ℑ(λn̄2

1,2) 6= 0

17the dynamical system is called bistable if it has two stable equlibria and one unstable in between the

stable ones.

32



Figure 6: Number of steady-states under variation of ak parameter.

Proof. Largely follows that of (Wagener 2003), we have only to show that the system has

cusp bifurcation, which is granted by Lemma 5.

Now, we can easily prove the rest of the Proposition.

Proof. Point 2 to Point 5 are shown as follows:

• Point 2: Structural stability means the quantity of equilibria remains the same un-

der local perturbations. The situation with two equilibria arises only under saddle-

node bifurcations, as Lemma 5 demonstrates, thus it is structurally unstable.

• Points 3,4: Follow from Lemma 4.

• Point 5: Follows from Lemma 6.

This completes the proof of Proposition 4.

B Proof of Lemma 3.

Proof. First, we make statements about the location of the optimal trajectories. We

denote by nss the threshold for the upper system without a regime change in the case of
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a constant leadership of the leader in the upper regime. The trajectory optimal for the

upper regime converges to the stable manifold of {n̂, Û}3. Fix such a trajectory starting

from nss in the case of constant leadership of the leader in the upper regime. Fix the

point (io, U∗) on the switching manifold where this trajectory intersects Σo. Now, take the

trajectory optimal for the lower regime alone (i.e. without a regime change) converging to

{n̄, Ū}3 from ns in the case of constant leadership of the leader of the lower regime. Fix

the point of its intersection with the switching manifold and denote it by (io, U o). From

{n̂, Û}3 > {n̄, Ū}3 it follows that U∗ > U o. Since there is only one optimal trajectory

for any n0 (including ns, nss) converging to the upper steady-state for constant leadership

of both players, it follows that continuation of the upper regime’s optimal trajectory

backwards from the point U∗ is higher than the optimal trajectory for the lower regime.

Next, consider the overall optimal trajectory (i.e. in the case of a regime change)

converging to {n̂, Û}3. Denote its intersection with the switching manifold by (io, U∗∗).

In the upper regime, this trajectory coincides with the optimal trajectory when there is

no regime change (i.e. when the leader of the upper regime is the permanent leader), thus

U∗∗ = U∗ > U o. Now, note that to the left of the switching manifold Σo the efficiency

of investments is smaller for the upper regime than for the lower regime (i.e. Ψ2 < Ψ1,

for n < io), due to the definition of the switching mode. This implies that the growth of

investments, U̇ , is smaller for the upper regime than for the lower regime (to the left of

io), implying that the optimal trajectory of the system with a regime change is above the

optimal trajectory for the system when the leader of the upper regime is the permanent

leader.

Figure 7 shows the optimal trajectories indicated by arrows, where the dotted trajec-

tory gives the optimal trajectory for the case of a regime change.

Next, we compare the maximized Hamiltonians in the case of a regime change and

in the case where the initial leader is the permanent leader. Note that the optimal

trajectories converging to the low steady-state are identical in these two cases. This

implies that the maximized Hamiltonians converging to the low steady-state take the

same value.

Recall that the threshold of the system without a regime change (where the leader of

the lower regime is the permanent leader) is denoted by ns and the maximized Hamiltonian

of the lower regime with no regime change is denoted by H0
nc(ns, ·), for n(0) = ns. Now,

consider the maximized virtual Hamiltonian, H0
v (ns, ·), for n(0) = ns, in the lower regime
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Figure 7: Global dynamics with and without a change in leadership.

with U(0) on the optimal trajectory of the model with a regime change but that does not

converge to {n̂, Û}3, i.e. that has no kink at n = io. Obviously, U(0) is larger for H0
v (ns, ·)

than for H0
nc(ns, ·). Since a higher U(0) implies a higher uL(0) and a higher uF (0) and

since the maximized Hamiltonian rises with uL(0), uF (0), we get H0
v (ns, ·) > H0

nc(ns, ·).

Next, we compare the maximized virtual Hamiltonian H0
v (ns, ·) with the maximized

Hamiltonian for the case of a regime change, H0
rc(ns, ·), where the kink in the trajectory

must be taken into account. The maximized Hamiltonian for the system with a regime

change is given by

H0
rc = H0

O(ns,Ψ1, ·) −
H0
O(io,Ψ1, ·)

erto
+
H0
U(io,Ψ2, ·)

erto
,

where the subscript O (U) denotes values of the lower (upper) regime with a regime

change and to is the point in time when the system reaches the switching manifold Σo.

The maximized virtual Hamiltonian is

H0
v = H0

O(ns,Ψ1, ·) −
H0
O(io,Ψ1, ·)

erto
+
H0
O(io,Ψ1, ·)

erto
.

From our considerations above we know that UO(to) = UU(to) and uO,L(to) = uU,L(to).

Further, Ψ2 ≥ Ψ1 for n ≥ io implies H0
U(io,Ψ2, ·) ≥ H0

O(io,Ψ1, ·). This shows that

H0
rc ≥ H0

v holds.

Thus, we obtain H0
rc ≥ H0

v > H0
nc. Since the maximized Hamiltonian converging to

the higher steady-state is increasing in n, the inequality H0
rc > H0

nc implies nas < ns.
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