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Abstract.
In this paper we are concerned with developing information extraction models that support the extraction of common sense

knowledge from a combination of unstructured and semi-structured datasets. Our motivation is to extract manipulation-relevant
knowledge that can support robots’ action planning. We frame the task as a relation extraction task and, as proof-of-concept,
validate our method on the task of extracting two types of relations: locative and instrumental relations. The locative relation
relates objects to the prototypical places where the given object is found or stored. The second instrumental relation relates
objects to their prototypical purpose of use. While we extract these relations from text, our goal is not to extract specific textual
mentions, but rather, given an object as input, extract a ranked list of locations and uses ranked by ‘prototypicality’. We use
distributional methods in embedding space, relying on the well-known skip-gram model to embed words into a low-dimensional
distributional space, using cosine similarity to rank the various candidates. In addition, we also present experiments that rely
on the so called NASARI vectors, which compute embeddings for disambiguated concepts and are thus semantically aware.
While this distributional approach has been published before, we extend our framework by additional methods relying on neural
networks that learn a score to judge whether a given candidate pair actually expresses a desired relation. The network thus learns
a scoring function using a supervised approach. While we use a ranking-based evaluation, the supervised model is trained using
a binary classification task. The resulting score from the neural network and the cosine similarity in the case of the distributional
approach are both used to compute a ranking.

We compare the different approaches and parameterizations thereof on the task of extracting the above mentioned relations. We
show that the distributional similarity approach performs very well on the task. The best performing parameterization achieves
an NDCG of 0.913, a Precision@1 of 0.400 and a Precision@3 of 0.423. The performance of the supervised learning approach,
in spite of having being trained on positive and negative examples on the relation in question, is not as good as expected and
achieves an NCDG of 0.908, a Precision@1 of 0.454 and a Precision@3 of 0.387, respectively.
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1. Introduction

Embodied intelligent systems such as robots require
world knowledge to reason on top of their perception
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of the world in order to decide which actions to take.
Consider the example of a robot having the task to tidy
up an apartment by storing all objects in their appropri-
ate place. In order to perform this task, a robot would
need to understand where the “correct” or at least the
“prototypical” location for each object is in order to
come up with an overall plan on which actions to per-
form to reach the goal of having each object stored in
its corresponding location.

In general, in manipulating objects, robots might
have questions such as the following:

– Where should a certain object typically be stored?
– What is this object typically used for?
– Do I need to manipulate a certain object with

care?

The answers to these questions require common
sense knowledge about objects, in particular prototyp-
ical knowledge about objects that, in absence of ab-
normal situations or specific contextual conditions or
preferences, can be assumed to hold.

We are concerned in this article with extracting such
common sense knowledge from a combination of un-
structured and semi-structured data. We are in partic-
ular interested in extracting default knowledge, that is
prototypical knowledge comprising relations that typi-
cally hold in ‘normal’ conditions (see [42]). For exam-
ple, given no other knowledge, in a normal situation,
we could assume that milk is typically stored in the
kitchen, in the fridge in particular. However, if a per-
son is currently having breakfast and eating cornflakes
at the table in the living room, then the milk might
also be temporarily located in the living room. In this
sense, inferences about the location of an object are to
be regarded as non-monotonic inferences that can be
retracted given some additional knowledge about the
particular situation. We model such default or proto-
typical knowledge through a degree of prototypicality,
that is, we do not claim that the kitchen is ‘the pro-
totypical location’ for the milk, but instead we model
that the degree of prototypicality for the kitchen being
the default location for the milk is very high. This leads
naturally to the attempt to computationally model this
degree of prototypicality and rank locations or uses for
each object according to this degree of prototypical-
ity. We attempt to do so following two approaches. On
the one hand, we follow a distributional approach and
approximate the degree of prototypicality by the co-
sine similarity measure in a space into which entities
and locations are embedded. We experiment with dif-
ferent distributional spaces and show that both seman-

tic vector spaces as considered within the NASARI
approach as well as embedded word representations
computed on unstructured texts as produced by predic-
tive language models such as skip-grams provide al-
ready a reasonable performance on the task. A linear
combination of both approaches has the potential to
improve upon both approaches in isolation. We have
presented this approach before including empirical re-
sults for the locatedAt relation mentioned above in
previous work [5]. As a second approach to approxi-
mate the degree of prototypicality, we use a machine
learning approach trained on positive and negative ex-
amples using a binary classification scheme. The ma-
chine learning approach is trained to produce a score
that measures the compatibility of a given pair of ob-
ject and location/use in terms of their prototypicality.
We compare these two approaches in this paper, show-
ing that the machine learning approach does not per-
form as well as expected. Counter to our intuitions, the
unsupervised approach relying on cosine similarity in
embedding space represents a very strong baseline dif-
ficult to beat.

The prototypical knowledge we use to train and
evaluate the different methods is on the one hand based
on a crowdsourcing experiment in which users had
to explicitly rate the prototypicality of a certain loca-
tion for a given object. On the other hand, we also
use extracted relations from ConceptNet and the SUN
database [70]. Objects as well as candidate locations or
candidate uses in the case of the instrumental relation
are taken from DBpedia. While we apply our models
to known objects, locations and uses, our model could
also be applied to candidate objects, locations and uses
extracted from text.

We have different motivations for developing such
an approach to extract common sense knowledge from
unstructured and semi-structured data.

First, from the point of view of cognitive robotics
[40] and cognitive development, acquiring common
sense knowledge requires many reproducible and sim-
ilar experiences from which a system can learn how
to manipulate a certain object. Some knowledge can
arguably even not be acquired by self experience as
relevant knowledge also comprises the mental proper-
ties that humans ascribe to certain objects. Such men-
tal properties that are not intrinsic to the physical ap-
pearance of the object include for instance the intended
use of an object. There are thus limits to what can
be learned from self-guided experience with an object.
In fact, several scholars have emphasized the impor-
tance of cultural learning, that is of a more direct trans-
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mission of knowledge via communication rather than
self-experience. With our approach we are simulating
such a cultural transmission of knowledge by allowing
cognitive systems, or machines in our case, to acquire
knowledge by ‘reading’ texts. Work along these lines
has, for instance, tried to derive plans on how to pre-
pare a certain dish by machine reading descriptions of
household tasks written for humans that are available
on the Web [67]. Other work has addressed the acqui-
sition of scripts from the Web [55].

Second, while there has been a lot of work in the
field of information extraction on extracting relations,
the considered relations differ from the ones we in-
vestigate in this work. Standard relations considered
in relation extraction are: is-a, part-of, succession, re-
action, production [53,11] or relation, parent/child,
founders, directedBy, area_served, containedBy, ar-
chitect, etc. [57], or albumBy, bornInYear, currencyOf,
headquarteredIn, locatedIn, productOf, teamOf [6].
The literature so far has concentrated on relations that
are of a factual nature and further are explicitly men-
tioned in text. In contrast we are concerned with rela-
tions that are i) typically not mentioned explicitly in
text, and ii) they are not of a factual nature, but rather
represent default or prototypical knowledge. These are
thus quite different tasks.

We present and compare different approaches to col-
lect manipulation-relevant knowledge by leveraging
textual corpora and semi-automatic extracted entity
pairs. The extracted knowledge is of symbolic form
and represented as a set of (Subject, Relation,
Object) triples. While this knowledge is not phys-
ically grounded [24], this model can still help robots
or other intelligent systems to decide on how to act,
support planning and select the appropriate actions to
manipulate a certain object.

The paper is structured as follows: In Section 2, we
discuss related work from the fields of relation extrac-
tion, knowledge base population and knowledge bases
for robotics. In Section 3, we describe our approach
to relation extraction in general and continue by intro-
ducing two models based on semantic relatedness as
a ranking measure. These two models have been de-
scribed in earlier work [5] and are described here again
for the sake of completeness and due to the fact that
we compare this previous work to a novel approach
we introduce in Section 3.3. The model introduced in
Section 3.3 is a supervised model that is trained to ex-
tract specific relations. Afterwards, in Section 4, we
present our datasets that are used for training and eval-
uating the proposed models. We evaluate and compare

all models in Section 5, showing that both unsuper-
vised approaches and their combination perform very
well on the task, outperforming two naive baselines.
The supervised approach, while being superior with re-
spect to Precision@1, does not show any clear benefit
compared to the unsupervised approach, a surprising
result.

In Section 6, we exploit insights gained from the
evaluation to populate a knowledge base of manipula-
tion-relevant data using the presented semi-automatic
methods. Finally, in Section 7, we summarize our re-
sults and discuss directions for future work.

2. Related Work

Our work relates to the four research lines discussed
below, i.e.: i) machine reading, ii) supervised relation
extraction, iii) encoding common sense knowledge in
domain-independent ontologies and knowledge bases,
and iv) grounding of knowledge from the perspective
of cognitive linguistics.

The machine reading paradigm. In the field of knowl-
edge acquisition from the Web, there has been sub-
stantial work on extracting taxonomic (e.g. hyper-
nym), part-of relations [23] and complete qualia struc-
tures describing an object [14]. Quite recently, there
has been a focus on the development of systems that
can extract knowledge from any text on any domain
(the open information extraction paradigm [21]). The
DARPA Machine Reading Program [1] aimed at en-
dowing machines with capabilities for lifelong learn-
ing by automatically reading and understanding texts
(e.g. [20]). While such approaches are able to quite ro-
bustly acquire knowledge from texts, these models are
not sufficient to meet our objectives since: i) they lack
visual and sensorimotor grounding, ii) they do not con-
tain extensive object knowledge. While the knowledge
extracted by our approach presented here is also not
sensorimotorically grounded, we hope that it can sup-
port planning of tasks involving object manipulation.
Thus, we need to develop additional approaches that
can harvest the Web to learn about usages, appearance
and functionality of common objects. While there has
been some work on grounding symbolic knowledge in
language [51], so far there has been no serious effort to
compile a large and grounded object knowledge base
that can support cognitive systems in understanding
objects.
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Supervised Relation Extraction. While machine read-
ing attempts to acquire general knowledge by reading
texts, other works attempt to extract specific relations
using classifiers trained in a supervised approach using
labeled data. A training corpus in which the relation of
interest is annotated is typically assumed (e.g. [11]).
Another possibility is to rely on the so called distant
supervision assumption and use an existing knowl-
edge base to bootstrap the process by relying on triples
or facts in the knowledge base to label examples in
a corpus (e.g. [28,29,28,64]). Some researchers have
modeled relation extraction as a matrix decomposi-
tion problem [57]. Other researchers have attempted to
train relation extraction approaches in a bootstrapping
fashion, relying on knowledge available on the Web,
e.g. [7].

Recently, scholars have tried to build models that
can learn to extract generic relations from the data,
rather than a set of pre-defined relations (see [38] and
[8]). Related to these models are techniques to pre-
dict triples in knowledge graphs by relying on the em-
bedding of entities (as vectors) and relations (as matri-
ces) in the same distributional space (e.g. TransE [10]
and TransH [69]). Similar ideas were tested in com-
putational linguistics in the past years, where relations
and modifiers are represented as tensors in the distri-
butional space [3,18].

Ontologies and KB of common sense knowledge.
DBpedia1 [36] is a large-scale knowledge base auto-
matically extracted from the infoboxes of Wikipedia.
Besides its sheer size, it is attractive for the purpose
of collecting general knowledge given the one-to-one
mapping with Wikipedia (allowing us to exploit the
textual and structural information contained in there)
and its position as the central hub of the Linked Open
Data cloud.

YAGO [63] is an ontology automatically extracted
from WordNet and Wikipedia. YAGO extracts facts
from the category system and the infoboxes of Wiki-
pedia, and combines these facts with taxonomic rela-
tions derived from WordNet. Despite its high cover-
age, for our goals, YAGO suffers from the same draw-
backs as DBpedia, i.e., a lack of knowledge about com-
mon objects, that is, about their purpose, functionality,
shape, prototypical location, etc.

ConceptNet2 [39] is a semantic network containing
lots of things computers should know about the world.

1http://dbpedia.org
2http://conceptnet5.media.mit.edu/

However, we cannot integrate ConceptNet directly in
our pipeline because of the low coverage of the map-
ping with DBpedia— of the 120 DBpedia entities in
our gold standard (see Section 4) only 23 have a corre-
spondent node in ConceptNet.

NELL (Never Ending Language Learning) is the
product of a continuously-refined process of knowl-
edge extraction from text [49]. Although NELL is a
large-scale and quite fine-grained resource, there are
some drawbacks that prevent it to be effectively used
as a commonsense knowledge base. The inventory of
predicates and relations is very sparse, and categories
(including many objects) have no predicates.

OpenCyC3 [37] attempts to assemble a comprehen-
sive ontology and knowledge base of everyday com-
mon sense knowledge, with the goal of enabling AI
applications to perform human-like reasoning.

Several projects worldwide have attempted to de-
velop knowledge bases for robots through which
knowledge, e.g. about how to manipulate certain ob-
jects, can be shared among many robots. Examples of
such platforms are the RoboEarth project [68], Robo-
Brain [59] or KnowRob [66].

While the above resources are without doubt very
useful resources, we are interested in developing an
approach that can extract new knowledge leveraging
text corpora, complementing the knowledge contained
in ontologies and knowledge bases such as the ones
described above.

Grounded Knowledge and Cognitive Linguistics Many
scholars have argued that, from a cognitive perspec-
tive, knowledge needs to be grounded [24] as well as
modality-specific to support simulation, a mental ac-
tivity that is regarded as ubiquitous in cognitive intel-
ligent systems [4]. Other seminal work has argued that
cognition is categorical [25,26] and that perceptual and
cognitive reasoning rely on schematic knowledge. In
particular, there has been substantial work on describ-
ing the schemas by which we perceive and understand
spatial knowledge [65].

The knowledge we have gathered is neither grounded
nor schematic, nor modality-specific in the above
senses, but rather amodal and symbolic. This type of
knowledge is arguably useful in high-level planning
but clearly is not sufficient to support simulation or
event action execution. Developing models by which
natural language can be grounded in action has been

3http://www.opencyc.org/ as RDF representations:
http://sw.opencyc.org/
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the concern of other authors, e.g. Misra et al. [47] as
well as Bollini et al. [9]. Some work has considered ex-
tracting spatial relations in natural language input [33].
Differently from the above mentioned works, we are
neither interested in interpreting natural language with
respect to grounded action representations nor in ex-
tracting spatial relations from a given sentence. Rather,
our goal is to extract prototypical common sense back-
ground knowledge from large corpora.

3. Extraction of Relations by a Ranking Approach
based on Distributional Representations

This section presents our framework to extract re-
lations between pairs of entities for the population of
a knowledge base of manipulation-relevant data. We
frame the task of relation extraction between entities as
a ranking problem as it gives us great flexibility in gen-
erating a knowledge base that balances between cov-
erage and confidence. Given a set of triples (s, r, o),
where s is the subject entity, r the relation (or predi-
cate) and o the object entity4, we want to obtain a rank-
ing of these triples. The produced ranking of triples
should reflect the degree of prototypicality of the ob-
jects with respect to the respective subjects and rela-
tions.

Our general approach to produce these rankings is to
design a scoring function f (s, r, o) that assigns a score
to each triple, depending on s, r, and o. The scoring
function is designed in such a way that prototypical
triples are assigned a higher score than less prototypi-
cal triples. Sorting all triples by their respective scores
produces the desired ranking. With a properly chosen
function f (s, r, o), it is possible to extract relations be-
tween entities to populate a knowledge base. This is
achieved by scoring candidate triples and inserting or
rejecting them based on their respective scores, e.g. if
the score is above a certain threshold.

In this work, we present different scoring functions
and evaluate them in the context of building a knowl-
edge base of common sense triples. All of our pro-
posed approaches rely on distributional representa-
tions of entities (and words). We investigate different
vector representations and scoring functions, all with
different strengths and weaknesses. In the following,
for the sake of making the article self-contained, we

4Here we use the terminology subject and object from the
Semantic Web literature instead of the terminology head and tail
that is typically found in relation extraction literature.

give a short introduction to distributional representa-
tions.

Word space models (or distributional space models,
or word vector spaces) are abstract representations of
the meaning of words, encoded as vectors in a high-
dimensional space. Traditionally, a word vector space
is constructed by counting cooccurrences of pairs of
words in a text corpus, building a large square n-by-n
matrix where n is the size of the vocabulary and the
cell i, j contains the number of times the word i has
been observed in cooccurrence with the word j. The
i-th row in a cooccurrence matrix is an n-dimensional
vector that acts as a distributional representation of the
i-th word in the vocabulary. The similarity between
two words is geometrically measurable with a metric
such as the cosine similarity, defined as the cosine of
the angle between two vectors:

similarity(~x, ~y)cos =
~x · ~y

‖ ~x ‖‖ ~y ‖

This is the key point to linking the vector represen-
tation to the idea of semantic relatedness, as the dis-
tributional hypothesis states that “words that occur in
the same contexts tend to have similar meaning” [27].
Several techniques can be applied to reduce the di-
mensionality of the cooccurrence matrix. Latent Se-
mantic Analysis [34], for instance, uses Singular Value
Decomposition to prune the less informative elements
while preserving most of the topology of the vector
space, and reducing the number of dimensions to 100-
500.

Recently, neural network based models have re-
ceived increasing attention for their ability to compute
dense, low-dimensional representations of words. To
compute such representation, so called word embed-
dings, several models rely on huge amounts of natural
language texts from which a vector representation for
each word is learned by a neural network. Their rep-
resentations of the words are based on prediction as
opposed to counting [2].

Vector spaces created on word distributional rep-
resentations have been successfully proven to encode
word similarity and relatedness relations [54,56,15],
and word embeddings have proven to be a useful fea-
ture in many natural language processing tasks [16,35,
19] in that they often encode semantically meaningful
information of a word.

We argue that it is possible to extract interaction-
relevant relations between entities, e.g. (Object,
locatedAt, Location), using appropriate entity
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vectors and the cosine similarity since the domain and
range of the considered relations are sufficiently nar-
row. In these cases, the semantic relatedness might be
a good indicator for a relation.

3.1. Ranking by Cosine Similarity and Word
Embeddings

In Section 3, we motivated the use of distributional
representations for the extraction of relations in order
to populate a database of common sense knowledge.
As outlined, we frame the relation extraction task as
a ranking problem of triples (s, r, o) and score them
based on a corresponding set of vector representations
V for subject and object entities.

In this section, we propose a neural network-based
word embedding model to obtain distributional repre-
sentations of entities. By using the relation-agnostic
cosine similarity5 as our scoring function f (s, r, o) =
similaritycos(~vs,~vo), with ~vs,~vo ∈ V, we can interpret
the vector similarity as a measure of semantic related-
ness and thus as an indicator for a relation between the
two entities.

Many word embedding methods encode useful se-
mantic and syntactic properties [32,48,44] that we
leverage for the extraction of prototypical knowledge.
In this work, we restrict our experiments to the skip-
gram method [43]. The objective of the skip-gram
method is to learn word representations that are useful
for predicting context words. As a result, the learned
embeddings often display a desirable linear structure
[48,44]. In particular, word representations of the skip-
gram model often produce meaningful results using
simple vector addition [44]. For this work, we trained
the skip-gram model on a corpus of roughly 83 million
Amazon reviews [41].

Motivated by the compositionality of word vectors,
we derive vector representations for the entities as fol-
lows: considering a DBpedia entity6 such as Public_
toilet, we obtain the corresponding label and clean
it by removing parts in parenthesis, if any, convert it
to lower case, and split it into its individual words.
We retrieve the respective word vectors from our pre-
trained word embeddings and sum them to obtain a
single vector, namely, the vector representation of the
entity: ~vPublic_toilet = ~vpublic + ~vtoilet. The generation

5We also experimented with APSyn [58] as an alternative similar-
ity measure which, unfortunately, did not work well in our scenario.

6For simplicity, we only use the local parts of the entity URI, ne-
glecting the namespace http://dbpedia.org/resource/

of entity vectors is trivial for “single-word” entities,
such as Cutlery or Kitchen, that are already con-
tained in our word vector vocabulary. In this case, the
entity vector is simply the corresponding word vec-
tor. By following this procedure for every entity in our
dataset, we obtain a set of entity vectors Vsg, derived
from the original skip-gram word embeddings. With
this derived set of entity vector representations, we can
compute a score between pairs of entities based on the
chosen scoring function, the cosine vector similarity7.
Using the example of locatedAt-pairs, this score is
an indicator of how typical the location is for the ob-
ject. Given an object, we can create a ranking of loca-
tions with the most prototypical location candidates at
the top of the list (see Table 1). We refer to this model
henceforth as SkipGram/Cosine.

Table 1
Locations for a sample object, extracted by computing cosine simi-
larity on skip-gram-based vectors.

Object Location Cos. Similarity
Dishwasher Kitchen .636

Laundry_room .531
Pantry .525
Wine_cellar .519

3.2. Ranking by Cosine Similarity and
Semantically-Aware Entity Representations

Vector representations of words (Section 3.1) are at-
tractive since they only require a sufficiently large text
corpus with no manual annotation. However, the draw-
back of focusing on words is that a series of linguis-
tic phenomena may affect the vector representation.
For instance, a polysemous word as rock (stone, musi-
cal genre, metaphorically strong person, etc.) is repre-
sented by a single vector where all the senses are con-
flated.

NASARI [12], a resource containing vector rep-
resentations of most of DBpedia entities, solves this
problem by building a vector space of concepts. The
NASARI vectors are actually distributional represen-
tations of the entities in BabelNet [52], a large mul-
tilingual lexical resource linked to WordNet, DBpe-
dia, Wiktionary and other resources. The NASARI ap-
proach collects cooccurrence information of concepts

7For any entity vector that can not be derived from the word em-
beddings due to missing vocabulary, we assume a similarity of -1 to
every other entity.
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from Wikipedia and then applies a cluster-based di-
mensionality reduction. The context of a concept is
based on the set of Wikipedia pages where a mention
of it is found. As shown by Camacho-Collados et al.
[12], the vector representations of entities encode some
form of semantic relatedness, with tests on a sense
clustering task showing positive results. Table 2 shows
a sample of pairs of NASARI vectors together with
their pairwise cosine similarity ranging from -1 (oppo-
site direction, i.e. unrelated) to 1 (same direction, i.e.
related).

Table 2
Examples of cosine similarity computed on NASARI vectors.

Cherry Microsoft
Apple .917 .325
Apple_Inc. .475 .778

Following the hypothesis put forward in Section 3,
we focus on the extraction of interaction relevant re-
lations by computing the cosine similarities of enti-
ties. We exploit the alignment of BabelNet with DB-
pedia, thus generating a similarity score for pairs of
DBpedia entities. For example, the DBpedia entity
Dishwasher has a cosine similarity of .803 to the
entity Kitchen, but only .279 with Classroom,
suggesting that the prototypical location for a generic
dishwasher is the kitchen rather than a classroom.
Since cosine similarity is a graded value on a scale
from -1 to 1, we can generate, for a given object, a
ranking of candidate locations, e.g. the rooms of a
house. Table 3 shows a sample of object-location pairs
of DBpedia labels, ordered by the cosine similarity of
their respective vectors in NASARI. Prototypical loca-
tions for the objects show up at the top of the list as ex-
pected, indicating a relationship between the semantic
relatedness expressed by the cosine similarity of vec-
tor representations and the actual locative relation of
entities. We refer to this model as NASARI/Cosine.

3.3. Ranking by a Trained Scoring Function

In the previous sections, we presented models of se-
mantic relatedness for the extraction of relations. The
employed cosine similarity function of these models
is relation-agnostic, that is, it only measures whether
there is a relation between two entities but not which
relation in particular. The question that naturally arises
is: Instead of using a single model that is agnostic to
the relation, can we train a separate model for each re-
lation in order to improve the extraction performance?

Table 3
Locations for a sample object, extracted by computing cosine simi-
larity on NASARI vectors.

Object Location Cos. Similarity
Dishwasher Kitchen .803

Air_shower_(room) .788
Utility_room .763
Bathroom .758
Furnace_room .749

Paper_towel Air_shower_(room) .671
Public_toilet .634
Bathroom .632
Mizuya .597
Kitchen .589

Sump_pump Furnace_room .699
Air_shower_(room) .683
Basement .680
Mechanical_room .676

In this section we try to answer this question by intro-
ducing a new model, based on supervised learning.

To extend the proposed approach to any kind of re-
lation we modify the model presented in Section 3.1
by introducing a parameterized scoring function. This
scoring function replaces the cosine similarity which
was previously employed to score pairs of entities (e.g.
Object-Location). By tuning the parameters of this
new scoring function in a data-driven way, we are able
to predict scores with respect to arbitrary relations.

We define the new scoring function f (s, r, o) as a
bilinear form:

f (s, r, o) = tanh(~v>s Mr~vo + br) (1)

where ~vs,~vo ∈ V ⊆ Rd are the corresponding em-
bedding vectors for the subject and object entities s
and o, respectively, br is a bias term, and Mr ∈ Rd×d

is the scoring matrix corresponding to the relation r.
Our scoring function is closely related to the ones pro-
posed by Jenatton et al. [30] as well as Yang et al. [71],
however, we make use of the tanh activation func-
tion to map the scores to the interval (−1, 1). In part,
this relates to the Neural Tensor Network proposed by
Socher et al. [60]. By initializing Mr as the identity
matrix and br with 0, the inner term of the scoring
function corresponds initially to the dot product of ~vs

and ~vo which is closely related to the originally em-
ployed cosine similarity.

In order to learn the parameters Mr and br of the
scoring function, we follow a procedure related to
Noise Contrastive Estimation [50] and Negative Sam-



8 S. Jebbara et al. /

pling [44] which is also used in the training of the skip-
gram embeddings. This method uses “positive” and
“negative” triples, T +

train and T −train, to iteratively adapt
the parameters. The positive triples T +

train are triples
that truly express the respective relation. In our case,
these triples are obtained by crowdsourcing and lever-
aging other resources (see Section 4). Given these pos-
itive triples, the set of corrupted negative triples T −train
is generated in the following way: We generate nega-
tive triples (s′, r, o) and (s, r, o′) for each positive triple
(s, r, o) ∈ T + by selecting negative subject and object
entities s′ and o′ randomly from the set of all possible
subjects and objects, respectively. The exact number
of negative triples that we generate per positive triple
is a hyper-parameter of the model which we set to 10
triples8 for all our experiments.

The training of the scoring function is framed as a
classification where we try to assign scores of 1 to all
positive triples and scores of −1 to (randomly gener-
ated) negative triples. We employ the mean squared er-
ror (MSE) as the training objective:

L =
1

N

( ∑
(s,r,o)∈T +

train

(1− f (s, r, o))2

+
∑

(s,r,o)∈T −
train

(−1− f (s, r, o))2
) (2)

where N = |T +
train| + |T

−
train| is the size of the com-

plete training set. During training, we keep the embed-
ding vectors V fixed and only consider Mr and br as
trainable parameters to measure the effect of the scor-
ing function in isolation. Presumably, this allows for a
better generalization to previously unseen entities.

Due to the moderate size of our training data, we
regularize our model by applying Dropout [62] to the
embedding vectors of the head and tail entity. We set
the dropout fraction to 0.1, thus only dropping a small
portion of the 100 dimensional input vectors.

The supervised model differs from the unsupervised
approaches in that the scoring function is tuned to a
particular relation, e.g. the locatedAt relation from
Section 4. In the following, we denote this model as
SkipGram/Supervised.

85 triples (s′, r, o) where we corrupt the subject entity and 5 triples
(s, r, o′) where the object entity is replaced.

4. Datasets

The following section introduces the datasets that
we use for this work. We consider three types of
datasets: i) a crowdsourced set of triples express-
ing the locatedAt relation with human judgments,
ii) a semi-automatically extracted set of triples ex-
pressing the locatedAt relation, and iii) a semi-
automatically extracted set of usedFor triples.

4.1. Crowdsourcing of Object-Location Rankings

In order to acquire valid pairs for the locatedAt
relation we rely on a crowdsourcing approach. In par-
ticular, given a certain object, we used crowdsourcing
to collect judgments about the likelihood to find this
object at a set of predefined locations.

To select the objects and locations for this exper-
iment, every DBpedia entity that falls under the cat-
egory Domestic_implements, or under one of
the narrower categories than Domestic_imple-
ments according to SKOS9, is considered an object.
The SPARQL query is given as:
select distinct ?object where {
{
?object
<http://purl.org/dc/terms/subject>
dbc:Domestic_implements

} UNION {
?object
<http://purl.org/dc/terms/subject>
?category .

?category
<http://www.w3.org/2004/02/skos/core#broader>
dbc:Domestic_implements .

}
}

Every DBpedia entity that falls under the category
Rooms is considered a location. The respective query
is:
select distinct ?room where {
?room
<http://purl.org/dc/terms/subject>
dbc:Rooms

}

These steps result in 336 objects and 199 locations
(as of September 2016). To select suitable pairs ex-
pressing the locatedAt relation for the creation of
the gold standard, we filter out odd or uncommon
examples of objects or locations like Ghodiyu or
Fainting_room. We do this by ordering the objects
by the number of incoming links to their respective
Wikipedia page10 in descending order and select the

9Simple Knowledge Organization System: https://www.w3.
org/2004/02/skos/

10We use the URI counts extracted from the parsing of Wikipedia
with the DBpedia Spotlight tool for entity linking [17].
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100 top ranking objects for our gold standard. We pro-
ceed analogously for the locations, selecting 20 com-
mon locations and thus obtain 2,000 object-location
pairs in total.

In order to collect the judgments, we set up a crowd-
sourcing experiment on the CrowdFlower platform11.
For each of the 2,000 object-location pairs, contribu-
tors were asked to rate the likelihood of the object to
be in that location on a four-point scale:

– -2 (unexpected): finding the object in the room
would cause surprise, e.g. it is unexpected to find
a bathtub in a cafeteria.

– -1 (unusual): finding the object in the room
would be odd, the object feels out of place, e.g. it
is unusual to find a mug in a garage.

– 1 (plausible): finding the object in the room
would not cause any surprise, it is seen as a nor-
mal occurrence, e.g. it is plausible to find a funnel
in a dining room.

– 2 (usual): the room is the place where the ob-
ject is typically found, e.g, the kitchen is the usual
place to find a spoon.

Contributors were shown ten examples per page, in-
structions, a short description of the entities (the first
sentence from the Wikipedia abstract), a picture (from
Wikimedia Commons, when available12), and the list
of possible answers as labeled radio buttons.

After running the crowdsourcing experiment for
a few hours, we collected 12,767 valid judgments,
whereas 455 judgments were deemed “untrusted” by
CrowdFlower’s quality filtering system. The quality
control was based on 57 test questions that we pro-
vided and a required minimum accuracy of 60% on
these questions for a contributor to be considered trust-
worthy. In total, 440 contributors participated in the
experiment.

The pairs received on average 8.59 judgments. Most
of the pairs received at least 5 separate judgments, with
some outliers collecting more than one hundred judg-
ments each. The average agreement, i.e. the percent-
age of contributors that answered the most common
answer for a given question, is 64.74%. The judgments
are skewed towards the negative end of the spectrum,
as expected, with 37% pairs rated unexpected, 30% un-
usual, 24% plausible and 9% usual. The cost of the ex-
periment was 86 USD.

11http://www.crowdflower.com/
12Pictures were available for 94 out of 100 objects.

To use this manually labeled data in later experi-
ments, we normalize, filter and rearrange the scored
pairs and obtain three gold standard datasets:

For the first gold standard dataset, we reduce mul-
tiple human judgments for each Object-Location pair
to a single score by assigning the average of the nu-
meric values. For instance, if the pair (Wallet,
Ballroom) has been rated -2 (unexpected) six times,
-1 (unusual) three times, and never 1 (plausible)
or 2 (usual), its score will be about -1.6, indicat-
ing that a Wallet is not very likely to be found
in a Ballroom. For each object, we then produce
a ranking of all 20 locations by ordering them by
their averaged score for the given object. We refer to
this dataset of human-labeled rankings as locatedAt-
Human-rankings.

The second and third gold standard datasets are pro-
duced as follows: The contributors’ answers are ag-
gregated using relative majority, that is, each object-
location pair has exactly one judgment assigned to it,
corresponding to the most popular judgment among all
the contributors that answered that question. We ex-
tract two sets of relations from this dataset to be used
as a gold standard for experimental tests: one list of
the 156 pairs rated 2 (usual) by the majority of con-
tributors, and a larger list of the 496 pairs rated either
1 (plausible) or 2 (usual). The aggregated judgments
in the gold standard have a confidence score assigned
to them by CrowdFlower, based on a measure of inter-
rater agreement. Pairs that score low on this confidence
measure (6 0.5) were filtered out, leaving 118 and 496
pairs, respectively. We refer to these two gold standard
sets as locatedAt-usual and locatedAt-usual/plausible.

4.2. Semi-Supervised Extraction of Object-Location
Triples

The SUN database [70] is a large-scale resource for
computer vision and object recognition in images. It
comprises 131,067 single images, each of them anno-
tated with a label for the type of scene, and labels for
each object identified in the scene. The images are an-
notated with 908 categories based on the type of scene
(bedroom, garden, airway, ...). Moreover, 313,884 ob-
jects were recognized and annotated with one out of
4,479 category labels.

Despite its original goal of providing high-quality
data for training computer vision models, the SUN
project generated a wealth of semantic knowledge that
is independent from the vision tasks. In particular, the
labels are effectively semantic categories of entities
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Table 4
Most frequent pairs of object-scene in the SUN database.

Frequency Object Scene
1041 wall b/bedroom
1011 bed b/bedroom

949 floor b/bedroom
663 desk_lamp b/bedroom
650 night_table b/bedroom
575 ceiling b/bedroom
566 window b/bedroom
473 pillow b/bedroom
463 wall b/bathroom
460 curtain b/bedroom
406 painting b/bedroom
396 floor b/bathroom
393 cushion b/bedroom
380 wall k/kitchen
370 wall d/dining_room
364 chair d/dining_room
355 table d/dining_room
351 floor d/dining_room
349 cabinet k/kitchen
344 sky s/skyscraper

such as objects and locations (scenes, using the lexical
conventions of the SUN database).

Objects are observed at particular scenes, and this
relational information is retained in the database. In to-
tal, we extracted 31,407 object-scene pairs from SUN,
together with the number of occurrences of each pair.
The twenty most occurring pairs are shown in Table 4.

According to its documentation, the labels of the
SUN database are lemmas from WordNet. However,
they are not disambiguated and thus they could refer to
any meaning of the lemma. Most importantly for our
goals, the labels in their current state are not directly
linked to any LOD resource. Faced with the problem
of mapping the SUN database completely to a resource
like DBpedia, we adopted a safe strategy for the sake
of the gold standard creation. We took all the object
and scene labels from the SUN pairs for which a re-
source in DBpedia with matching label exists. In order
to limit the noise and obtain a dataset of “typical” lo-
cation relations, we also removed those pairs that only
occur once in the SUN database. This process resulted
in 2,961 pairs of entities. We manually checked them
and corrected 118 object labels and 44 location labels.
In some cases the correct label was already present, so
we eliminated the duplicates resulting in a new dataset

of 2,935 object-location pairs13. The collected triples
are used in Sections 5.1 and 5.2 as training data. We
refer to this dataset as locatedAt-Extracted-triples.

4.3. Semi-Supervised Extraction of Object-Action
Triples

While the methods we propose for relation ex-
tractions are by design independent of the particu-
lar relations they are applied to, we have focused
most of our experimental effort towards one kind of
relation between objects and locations, namely the
typical location where given objects are found. As
a first step to assess the generalizability of our ap-
proaches to other kinds of relations, we created an
alternative dataset revolving around a relation with
the same domain as the location relation, i.e., objects,
but a very different range, that is, actions. The rela-
tion under consideration will be referred to in the rest
of the article as usedFor, for example the predi-
cate usedFor(soap, bath) states that the soap is
used for (or, during, in the process of) taking a bath.

We built a dataset of object-action pairs in a used-
For relation starting from ConceptNet 5 [39], a large
semantic network of automatically collected common-
sense facts (see also Section 2). From the entire Con-
ceptNet, we extracted 46,522 links labeled usedFor.
Although ConceptNet is partly linked to LOD re-
sources, we found the coverage of such linking to be
quite low, especially with respect to non-named enti-
ties such as objects. Therefore, we devised a strategy
to link as many of the labels involved in usedFor re-
lations to DBpedia, without risking to compromise the
accuracy of such linking. The strategy is quite simple
and it starts from the observation of the data: for the
first argument of the relation, we search DBpedia for
an entity whose label matches the ConceptNet labels.
For the second argument, we search DBpedia for an
entity label that matches the gerund form of the Con-
ceptNet label, e.g. Bath→Bathing. We perform this
step because we noticed how actions are usually re-
ferred to with nouns in ConceptNet, but with verbs in
the gerund form in DBpedia. We used the morphology
generation tool for English morphg [46] to generate
the correct gerund forms also for irregular verbs. The
application of this linking strategy resulted in a dataset
of 1,674 pairs of DBpedia entities. Table 5 shows a few
examples of pairs in the dataset.

13Of all extracted triples, 24 objects and 12 locations were also
among the objects and locations of the crowdsourced dataset.
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Table 5
Examples of DBpedia entities in a usedFor relation, according to
ConceptNet and our DBpedia linking strategy.

Object Action
Machine Drying

Dictionary Looking

Ban Saving

Cake Jumping

Moon Lighting

Tourniquet Saving

Dollar Saving

Rainbow Finding

Fast_food_restaurant Meeting

Clipboard Keeping

To use this data as training and test data for the pro-
posed models, we randomly divide the complete set of
positive (Object, usedFor, Action) triples
in a training portion (527 triples) and a test portion (58
triples). We combine each object entity in the test por-
tion with each action entity to generate a complete test
set, comprised of positive and negative triples14. To ac-
count for variations in the performance due to this ran-
dom partitioning, we repeat each experiment 100 times
and report the averaged results in the experiments in
Section 5.3. The average size of the test set is ≈ 2059.
We refer to this dataset as usedFor-Extracted-triples.

5. Evaluation

This section presents the evaluation of the pro-
posed framework for relation extraction (Sections 3.1,
3.2 and 3.3). We apply our models to the data de-
scribed in Section 4, consisting of sets of (Object,
locatedAt, Location) and (Object, usedFor,
Action) triples. These experiments verify the feasi-
bility of our approach for the population of a knowl-
edge base of manipulation relevant data.

We start our experiments by evaluating how well
the produced rankings of (Object, locatedAt,
Location) triples match the ground truth rank-
ings obtained from human judgments. For this, we
i) present the evaluations for the unsupervised meth-
ods SkipGram/Cosine and NASARI/Cosine (Section
5.1.1), ii) show the performance of combinations
thereof (Section 5.1.2) and iii) evaluate the newly pro-
posed SkipGram/Supervised method (Section 5.1.3).

14We filter out all generated triples that are falsely labeled as neg-
ative in this process.

The second part of our experiments evaluates how
well each proposed method performs in extracting
a knowledge base. The evaluation is performed for
(Object, locatedAt, Location) and (Object,
usedFor, Action) triples (Sections 5.2 and 5.3, re-
spectively).

5.1. Ranking Evaluation

With the proposed methods from previous sections,
we are able to produce a ranking of e.g. locations for a
given object that expresses how prototypical the loca-
tion is for that object. To test the validity of our meth-
ods, we compare their output against the gold standard
rankings locatedAt-Human-rankings that we obtained
from the crowdsourced pairs (see Section 4.1).

As a first evaluation, we investigate how well the
unsupervised baseline methods perform in creating
object-location rankings. Secondly, we show how
to improve these results by combining different ap-
proaches. Thirdly, we evaluate the supervised model in
comparison to our baselines.

5.1.1. Unsupervised Object-Location Ranking
Evaluation

Apart from the NASARI-based method (Section
3.2) and the skip-gram-based method (Section 3.1) we
employ two simple baselines for comparison: For the
location frequency baseline, the object-location pairs
are ranked according to the frequency of the location.
The ranking is thus the same for each object, since the
score of a pair is only computed based on the location.
This method makes sense in absence of any further in-
formation on the object: e.g. a robot tasked to find an
unknown object should inspect “common” rooms such
as a kitchen or a studio first, rather than “uncommon”
rooms such as a pantry.

The second baseline, the link frequency, is based
on counting how often every object appears on the
Wikipedia page of every location and vice versa. A
ranking is produced based on these counts. An issue
with this baseline is that the collected counts could be
sparse, i.e., most object-location pairs have a count of
0, thus sometimes producing no value for the ranking
for an object. This is the case for rather “unusual” ob-
jects and locations.

For each object in the dataset, we compare the
location ranking produced by our algorithms to the
crowdsourced gold standard ranking and compute two
metrics: the Normalized Discounted Cumulative Gain
(NDCG) and the Precision at k (Precision@k or P@k).
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Table 6
Average Precision@k for k = 1 and k = 3 and average NDCG of
the produced rankings against the gold standard rankings.

Method NDCG P@1 P@3
Location frequency baseline .851 .000 .008
Link frequency baseline .875 .280 .260
NASARI/Cosine .903 .390 .380
SkipGram/Cosine .912 .350 .400

The NDCG is a measure of rank correlation used in
information retrieval that gives more weight to the re-
sults at the top of the list than at its bottom. It is defined
as follows:

NDCG(R) =
DCG(R)
DCG(R∗)

DCG(R) = R1 +

|R|∑
i=2

Ri

log2(i + 1)

where R is the produced ranking, Ri is the true rele-
vance of the element at position i and R∗ is the ideal
ranking of the elements in R. R∗ can be obtained by
sorting the elements by their true relevance scores.
This choice of evaluation metric follows from the idea
that it is more important to accurately predict which
locations are likely for a given object than to decide
which are unlikely candidates.

While the NDCG measure gives a complete account
of the quality of the produced rankings, it is not easy to
interpret apart from comparisons of different outputs.
To gain a better insight into our results, we provide
an alternative evaluation, the Precision@k. The Preci-
sion@k measures the number of locations among the
first k positions of the produced rankings that are also
among the top-k locations in the gold standard rank-
ing. It follows that, with k = 1, precision at 1 is 1 if
the top returned location is the top location in the gold
standard, and 0 otherwise. We compute the average of
Precision@k for k = 1 and k = 3 across all the objects.

Table 6 shows the average NDCG and Precision@k
across all objects: methods NASARI/Cosine (Sec-
tion 3.2) and SkipGram/Cosine (Section 3.1), plus the
two baselines introduced above.

Both our methods that are based on semantic relat-
edness outperform the simple baselines with respect
to the gold standard rankings. The location frequency
baseline performs very poorly, due to an idiosyncrasy
in the frequency data, that is, the most “frequent” lo-
cation in the dataset is Aisle. This behavior reflects the
difficulty in evaluating this task using only automatic

metrics, since automatically extracted scores and rank-
ings may not correspond to common sense judgment.

The NASARI-based similarities outperform the
skip-gram-based method when it comes to guessing
the most likely location for an object (Precision@1),
as opposed to the better performance of SkipGram/Co-
sine in terms of Precision@3 and rank correlation.

We explored the results and found that for 19 ob-
jects out of 100, NASARI/Cosine correctly guesses
the top ranking location where SkipGram/Cosine fails,
while the opposite happens 15 out of 100 times. We
also found that the NASARI-based method has a lower
coverage than the skip-gram method, due to the cov-
erage of the original resource (NASARI), where not
every entity in DBpedia is assigned a vector15. The
skip-gram-based method also suffers from this prob-
lem, however, only for very rare or uncommon ob-
jects and locations (as Triclinium or Jamonera).
These findings suggest that the two methods could
have different strengths and weaknesses. In the follow-
ing section we show two strategies to combine them.

5.1.2. Hybrid Methods: Fallback Pipeline and Linear
Combination

The results from the previous sections highlight that
the performance of our two main methods may differ
qualitatively. In an effort to overcome the coverage is-
sue of NASARI/Cosine, and at the same time experi-
ment with hybrid methods to extract location relations,
we devised two simple ways of combining the Skip-
Gram/Cosine and NASARI/Cosine methods. The first
method is based on a fallback strategy: given an ob-
ject, we consider the pair similarity of the object to
the top ranking location according to NASARI/Cosine
as a measure of confidence. If the top ranked loca-
tion among the NASARI/Cosine ranking is exceeding
a certain threshold, we consider the ranking returned
by NASARI/Cosine as reliable. Otherwise, if the sim-
ilarity is below the threshold, we deem the result un-
reliable and we adopt the ranking returned by Skip-
Gram/Cosine instead. The second method produces
object-location similarity scores by linear combination
of the NASARI and skip-gram similarities. The simi-
larity score for the generic pair s, o is thus given by:

simα(s, o) = α · simNAS ARI(s, o)

+ (1− α) · simS kipGram(s, o),
(3)

15Objects like Backpack and Comb, and locations like Loft
are all missing.
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Table 7
Rank correlation and precision at k for the method based on fallback
strategy.

Method NDCG P@1 P@3
Fallback strategy (threshold=.4) .907 .410 .393
Fallback strategy (threshold=.5) .906 .400 .393
Fallback strategy (threshold=.6) .908 .410 .406
Fallback strategy (threshold=.7) .909 .370 .396
Fallback strategy (threshold=.8) .911 .360 .403

Linear combination (α=.0) .912 .350 .400
Linear combination (α=.2) .911 .380 .407
Linear combination (α=.4) .913 .400 .423
Linear combination (α=.6) .911 .390 .417
Linear combination (α=.8) .910 .390 .410
Linear combination (α=1.0) .903 .390 .380

where parameter α controls the weight of one method
with respect to the other.

Table 7 shows the obtained results, with varying
values of the parameters threshold and α. While the
NDCG is only moderately affected, both Precision@1
and Precision@3 show an increase in performance
with Precision@3 showing the highest score of all in-
vestigated methods.

5.1.3. Supervised Object-Location Ranking
In the previous experiments, we investigated how

well our (unsupervised) baseline methods perform
when extracting the locatedAt relation. In the fol-
lowing, we compare the earlier results to the per-
formance of a scoring function trained in a super-
vised fashion. For this experiment we train the scor-
ing function in Eq. (1) to extract the locatedAt re-
lation between objects and locations. The underlying
embeddings V on which the scoring function com-
putes its scores are fixed to the skip-gram embed-
dings Vsg (see Section 3.1). We train the supervised
method on the semi-automatically extracted triples
locatedAt-Extracted-triples described in Section 4.2.
These triples act as the positive triples T +

train in the
training procedure, from which we also generate the
negative examples T −train following the procedure in
Section 3.3. As described in Section 3.3, we train the
model by generating 10 negative triples per positive
triple and minimizing the mean squared error from Eq.
(2). We initialize Mr with the identity matrix, br with
0, and train the model parameter using stochastic gra-
dient descent (SGD) using a learning rate of 0.001.
SGD is performed in mini batches of size 100 with 300
epochs of training. The training procedure is realized
with Keras [13].

Table 8
Average precision at k for k = 1 and k = 3 and average NDCG
of the produced rankings against the crowdsourced gold standard
rankings. SkipGram/Supervised denotes the supervised model based
on skip-gram embeddings trained for the locatedAt relation.

Method NDCG P@1 P@3
Location frequency baseline .851 .000 .008
Link frequency baseline .875 .280 .260
NASARI/Cosine .903 .390 .380
SkipGram/Cosine .912 .350 .400
Linear combination (α=.4) .913 .400 .423
SkipGram/Supervised .908 .454 .387

As before, we test the model on the human-rated set
of objects and locations locatedAt-Human-rankings
described in Section 4.1 and produce a ranking of lo-
cations for each object. Table 8 shows the performance
of the extended model (SkipGram/Supervised) in com-
parison to the previous approaches.

Overall, we can observe mixed results. All of our
proposed models (supervised and unsupervised) im-
prove upon the baseline methods with respect to all
evaluation metrics. Compared to the SkipGram/Co-
sine model, the SkipGram/Supervised model decreases
slightly in performance with respect to the NDCG
and more so for the Precision@3 score. Most striking,
however, is the increase in Precision@1 of SkipGram/-
Supervised, showing a relative improvement of 30% to
the SkipGram/Cosine model and constituting the high-
est overall Precision@1 score by a large margin. How-
ever, the linear combination (α=.4) still scores higher
with respect to Precision@3 and NDCG.

While the presented results do not point to a clear
preference for one particular model, Section 5.2 will
investigate the above methods more closely in the con-
text of the generation of a knowledge base.

5.2. Retrieval Evaluation

In the previous section, we tested how the proposed
methods perform in determining a ranking of locations
given an object. For the purpose of evaluation, the tests
have been conducted on a closed set of entities. In
this section we return to the original motivation of this
work, that is, to collect manipulation-relevant informa-
tion about objects in an automated fashion in the form
of a knowledge base.

All the methods introduced in this work are based
on some scoring function of triples expressed as a real
number in the range [-1,1] and thus interpretable as a
sort of confidence score relative to the target relation.
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Fig. 1. Evaluation on automatically created knowledge bases (“usual” locations).
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Fig. 2. Evaluation on automatically created knowledge bases (“plausible” and “usual” locations).

Therefore, by imposing a threshold on the similar-
ity scores and selecting only the object-location pairs
that score above said threshold, we can extract a high-
confidence set of object-location relations to build a
new knowledge base from scratch. Moreover, by using
different values for the threshold, we are able to control
the quality and the coverage of the produced relations.
We test this approach on:

– the locatedAt-usual and locatedAt-usual/plausible
datasets (Section 4.1) for the locatedAt rela-
tion between objects and locations, and

– the usedFor-Extracted-triples dataset (Section
4.3) for the usedFor relation between objects
and actions.

We introduce the usedFor relation in order to assess
the generalizability of our supervised scoring function.

In general, we extract a knowledge base of triples by
scoring each possible candidate triple, thus producing
an overall ranking. We then select the top k triples from
the ranking, with k being a parameter. This gives us the
triples that are considered the most prototypical. We
evaluate the retrieved set in terms of Precision, Recall

and F-score against the gold standard sets with varying
values of k. Here, the precision is the fraction of cor-
rectly retrieved triples in the set of all retrieved triples,
while the recall is the fraction of retrieved triples that
also occur in the gold standard set. The F-score is the
harmonic mean of precision and recall:

Precision =
|G ∩ Rk|
|Rk|

Recall =
|G ∩ Rk|
|G|

F1 =
2 · Precision · Recall
Precision + Recall

with G denoting the set of gold standard triples andRk

the set of retrieved triples up to rank k.
For the locatedAt relation, we also add to the

comparison the results of the hybrid, linear combina-
tion method from Section 5.1.2, with the best perform-
ing parameters in terms of Precision@1, namely the
linear combination with α = 0.4.
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Figures 1 and 2 show the evaluation of the four
methods evaluated against the two aggregated gold
standard datasets for the locatedAt relation de-
scribed above. Figures 1c and 2c, in particular, show
F-score plots for a direct comparison of the perfor-
mance. The SkipGram/Supervised model achieves the
highest F-score on the locatedAt-usual dataset, peak-
ing at k = 132 with an F-score of 0.415. The Skip-
Gram/Cosine model and the linear combination out-
perform both the NASARI/Cosine and the SkipGram/-
Supervised in terms of recall, especially for higher
k. This also holds for the locatedAt-usual/plausible
dataset. Here, the SkipGram/Supervised model stands
out by achieving high precision values for small val-
ues of k. Overall, SkipGram/Supervised performs bet-
ter for small k (50 – 400) whereas SkipGram/Cosine
and the linear combination obtain better results with
increasing k. This seems to be in line with the re-
sults from previous experiments in Table 8 that show a
high Precision@1 for the SkipGram/Supervised model
but higher scores for SkipGram/Cosine and the linear
combination in terms of Precision@3.

5.3. Evaluation of Object-Action pairs extraction

One of the reasons to introduce a novel technique
for relation extraction based on a supervised statis-
tical method, as stated previously, is to be able to
scale the extraction across different types of rela-
tions. To test the validity of this statement, we ap-
ply the same evaluation procedure introduced in the
previous part of this section to the usedFor rela-
tion. For the training and evaluation sets we use the
dataset usedFor-Extracted-triples comprising of semi-
automatically extracted triples from ConceptNet (Sec-
tion 4.3).

Figure 3 displays precision, recall and F-score for
retrieving the top k results. The results are averaged
scores over 100 experiments to account for variations
in performance due to the random partitioning in train-
ing and evaluation triples and the generation of nega-
tive samples. The standard deviation for precision, re-
call and F-score for all k is visualized along the mean
scores.

The supervised model achieves on average a max-
imum F-score of about 0.465 when extracting 70
triples. This is comparable to the achieved F-scores
when training the scoring function for the locatedAt
relation. To give an insight into the produced false pos-
itives, Table 9 shows the top 30 extracted triples for
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Fig. 3. Evaluation of knowledge base generation for the usedFor
relation between objects and actions. Precision, Recall and F-score
are given with respect to extracting the to k scored triples.

the usedFor relation of one trained instance of the
supervised model.

6. Building a Knowledge Base of Object Locations

Given these results, we can aim for a high-confidence
knowledge base by selecting the threshold on object-
location similarity scores that produces a reason-
ably high precision knowledge base in the evalua-
tion. For instance, the knowledge base made by the
top 50 object-location pairs extracted with the lin-
ear combination method (α = 0.4) has 0.52 preci-
sion and 0.22 recall on the locatedAt-usual gold stan-
dard (0.70 and 0.07 respectively on the locatedAt-
usual/plausible set, see Figures 1a and 2a). The simi-
larity scores in this knowledge base range from 0.570
to 0.866. Following the same methodology that we
used to construct the gold standard set of objects
and locations (Section 4.1), we extract all the 336
Domestic_implements and 199 Rooms from
DBpedia, for a total of 66,864 object-location pairs.
Selecting only the pairs whose similarity score is
higher than 0.570, according to the linear combina-
tion method, yields 931 high confidence location rela-
tions. Of these, only 52 were in the gold standard set of
pairs (45 were rated “usual” or “plausible” locations),
while the remaining 879 are new, such as (Trivet,
Kitchen), (Flight_bag, Airport_lounge) or
(Soap_dispenser, Unisex_public_toilet).
The distribution of objects across locations has an
arithmetic mean of 8.9 objects per location and stan-
dard deviation 11.0. Kitchen is the most represented
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Table 9
A list of the top 30 extracted triples for the usedFor relation. The
gray highlighted rows mark the entity pairs that are part of the gold
standard dataset (Section 4.3).

Score Object Action

1.00000 Snack Snacking
0.99896 Snack Eating
0.99831 Curry Seasoning
0.99773 Drink Drinking
0.98675 Garlic Seasoning
0.98165 Oatmeal Snacking
0.98120 Food Eating
0.96440 Pistol Shooting
0.95218 Drink Snacking
0.94988 Bagel Snacking
0.94926 Wheat Snacking
0.93778 Laser Printing
0.92760 Food Snacking
0.91946 Typewriter Typing
0.91932 Oatmeal Eating
0.91310 Wok Cooking
0.89493 Camera Shooting
0.85415 Coconut Seasoning
0.85091 Stove Frying
0.85039 Oatmeal Seasoning
0.84038 Bagel Eating
0.83405 Cash Gambling
0.81985 Oatmeal Baking
0.80975 Lantern Lighting
0.80129 Calculator Typing
0.78279 Laser Shooting
0.77411 Camera Recording
0.75712 Book Writing
0.72924 Stove Cooking
0.72280 Coconut Snacking

location with 89 relations, while 15 out of 107 loca-
tions are associated with one single object.16

The knowledge base created with this method is the
result of one among many possible configurations of a
number of methods and parameters. In particular, the
creator of a knowledge base involving the extraction of
relations is given the choice to prefer precision over re-
call, or vice-versa. This is done, in our method, by ad-
justing the threshold on the similarity scores. Employ-
ing different algorithms for the computation of the ac-
tual similarities (word embeddings vs. entity vectors,

16The full automatically created knowledge base and used
resources are available at https://project.inria.fr/
aloof/data/.

supervised vs. unsupervised models) is also expected
to result in different knowledge bases. A qualitative as-
sessment of such impact is left for future work.

7. Conclusion and Future Work

We have presented a framework for extracting
manipulation-relevant knowledge about objects in the
form of (binary) relations. The framework relies on a
ranking measure that, given an object, ranks all enti-
ties that potentially stand in the relation in question
to the given object. We rely on a representational ap-
proach that exploits distributional spaces to embed en-
tities into low-dimensional spaces in which the rank-
ing measure can be evaluated. We have presented re-
sults on two relations: the relation between an object
and its prototypical location (locatedAt) as well as
the relation between an object and one of its intended
uses (usedFor).

We have shown that both an approach relying on
standard word embeddings computed by a skip-gram
model as well as an approach using embeddings com-
puted for disambiguated concepts rather than lemmas
perform very well compared to two rather naive base-
lines. Both approaches were presented already in pre-
vious work. As main contribution of this paper, we
have presented a supervised approach based on a neu-
ral network that, instead of using the cosine similarity
as measure of semantic relatedness, uses positive and
negative examples to train a scoring function in a su-
pervised fashion. In contrast to the other two unsuper-
vised approaches, the latter learns a model that is spe-
cific for a particular relation while the other two ap-
proaches implement a general notion of semantic re-
latedness in distributional space.

We have shown that the improvements of the super-
vised model are not always clear compared to the two
unsupervised approaches. This might be attributable to
the fact that the types of both relations (usedFor and
locatedAt) are specific enough to predict the rela-
tion in question. Whether the unsupervised approach
would generalize to relations with a less specific type
signature remains to be seen.

As an avenue for future work, the generalizability of
the proposed methods to a wider set of relations can
be considered. In the context of manipulation-relevant
knowledge for a robotic system, other interesting prop-
erties of an object include its prototypical size, weight,
texture, and fragility. Additionally, we see possibili-
ties to address relations as can be found in ConceptNet
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5 [61] such as MadeOf, Causes, CausesDesire,
CapableOf, and more that all help a robot to interact
with humans and objects in its environment.

We also plan to employ retrofitting [22] to enrich
our pretrained word embeddings with concept knowl-
edge from a semantic network such as ConceptNet or
WordNet [45] in a post-processing step. With this tech-
nique, we might be able to combine the benefits of the
concept-level and word-level semantics in a more so-
phisticated way to bootstrap the creation of an object-
location knowledge base. We believe that this method
is a more appropriate tool than the simple linear com-
bination of scores. By specializing our skip-gram em-
beddings for relatedness instead of similarity [31] even
better results could be achieved.

In the presented work, we used the frequency of en-
tity mentions in Wikipedia as a measure of common-
ality to drive the creation of a gold standard set for
evaluation. This information, or equivalent measures,
could be integrated directly into our relation extrac-
tion framework, for example in the form of a weighting
scheme or hand-crafted features, to improve its predic-
tion accuracy.
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