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Global warming and technical change: Multiple

steady-states and policy options

Anton Bondarev∗ Alfred Greiner†

Abstract

In this paper we develop an economic growth model that includes anthropogenic
climate change. We include a publicly funded research sector that creates new tech-
nologies and simultaneously expands the productivities of existing technologies. The
environment is affected by R&D activities both negatively, through the increase of
output from productivity growth, as well as positively as new technologies are less
harmful for the environment. We find that there may exist two different steady-
states of the economy, depending on the amount of research spending: one with less
new technologies being developed and the other with more technologies. Thus, a
lock-in effect may arise that, however, can be overcome by raising R&D spending
sufficiently such that the steady-state becomes unique. We derive the combinations
of fiscal policy instruments for which that can be achieved and we study the impli-
cations for the economy and for the environment. In particular, the double dividend
hypothesis may hold only under some specific conditions.

Keywords: Climate change, doubly-differentiated R&D, double dividend, fiscal pol-

icy instruments, technology lock-in

JEL classification: C61, C62, O38, O44, Q54, Q58

∗Faculty of Business and Economics, University of Basel, Peter Merian-Weg 6, 4002 Basel, Switzerland,

e-mail: anton.bondarev@unibas.ch
†Department of Business Administration and Economics, Bielefeld University, Universitätstraße 25,

33615 Bielefeld, Germany, e-mail: agreiner@wiwi.uni-bielefeld.de

Financial support from the Bundesministerium für Bildung und Forschung (BMBF) (grant

01LA1105C) and from Swiss Commission for Technology and Innovation (CTI) (contract KTI.2014.0114)

is gratefully acknowledged. This research was part of the project ’Climate Policy and the Growth Pattern

of Nations (CliPoN)’.



1 Introduction

Since the publication of the influential book (Meadows, Meadows, Randers, and Behrens

1972) by the Club of Rome, the role of the natural environment in the process of eco-

nomic development has gained increased attention. Since then, numerous publications

have been generated that raised our understanding of the interrelation between the en-

vironment and the economy. Even if some progress in the fight against the deterioration

of the environment can be observed in a couple of areas, such as the better air quality

in industrialized countries for example, the problem of environmental degradation is far

from being resolved and strategies how to tackle that problem are needed.1 In particular,

global warming presents rather a severe threat because the global emissions of greenhouse

gases (GHGs) as result of mankind burning fossil fuels are still far above the sustainable

level, a problem already pointed out in (Meadows, Meadows, Randers, and Behrens 1972)

(see Figure 15, p. 72).

There exist quite a many approaches dealing with climate change in the economics

literature, starting with the seminal papers (Nordhaus 1992) and (Nordhaus 2007) which

present an integrated assessment model that treats technical progress as an exogenous

variable. In the middle- to long-run, however, neglecting the fact that technical change

results from costly R&D can have significant implications. For example, (Popp 2004)

shows that ignoring induced technical change overstates the welfare costs of an optimal

carbon tax policy considerably. The importance of technical change has been pointed

out in the paper (Acemoglu, Aghion, Bursztyn, and Hemous 2012), too. There the

authors study the effects of endogenous directed technical change, where the final good

is produced with dirty and clean input factors. The analysis of the model demonstrates

that sustainable growth can be achieved with the help of taxes and subsidies that redirect

innovations toward clean inputs.

Another problem in this respect arises when the long-run situation is characterized by

multiple steady-states giving rise to a so-called lock-in phenomenon. Then, a situation

can occur where an economy may be stuck in an equilibrium that yields a worse outcome

1see for example (OECD 2011) and (TheWorldBank 2012) that propose practical strategies to achieve

green growth.
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compared to the one associated with the other steady-state. For example, (Kalkuhl,

Edenhofer, and Lessmann 2012) demonstrate that market imperfections can lead to a

situation where an incumbant less efficient energy technology dominates a more efficient

technology leading to welfare losses, in addition to those resulting from the market im-

perfections alone. The authors derive optimal policy measures to overcome this lock-in

and show that they are welfare improving.

Multiple steady-states arise in the contributions by (Greiner and Semmler 2005) and

(Greiner, Grüne, and Semmler 2010), too. There, it is the feedback effect of higher temper-

atures on Earth that generates a non-linearity in the climatic energy balance model which

leads to multiple steady-states generating a lock-in effect. The main message of those pa-

pers is that delaying abatement activities that reduce greenhouse gas emissions can lead

to a situation where the convergence to the equilibrium with a moderate temperature rise

is not feasible any longer. Rather, the world converges to the second steady-state that is

characterized by a higher greenhouse gas concentration and a higher surface temperature

leading to larger damages.

In this paper we want to contribute to the environmental literature featuring multiple

steady-states and lock-in effects, where we pay special attention to the role of technical

progress. To do so, we develop a simple growth model of an economy which takes into

account environmental damages resulting from global warming. The main focus of our

paper is the effect of different forms of publicly funded technical change on the evolution

of the economy and the environment. As regards technical change we allow for both hor-

izontal and vertical innovations, i.e. we consider the improvement of existing technologies

and the generation of newer ones, where we assume a lower emission intensity of newer

technologies. Hence, the main departure from the majority of the literature on economic

growth with environmental degradation concerns the way how the technological change

is modelled. Further, we pay special attention to the role of fiscal policy instruments that

can overcome the lock-in.

There are four main findings in the paper. First, the publicly funded R&D may lead

to the multiplicity of (inefficient) equilibria and to a technology lock-in in the economy

similar to (Acemoglu, Aghion, Bursztyn, and Hemous 2012). Second, this lock-in may be
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avoided by a sufficient increase in public R&D spending which leads to higher productivity

and consumption. Third, the switch of the economy to the efficient path does not neces-

sarily come along with a slowdown of environmental degradation. Nevertheless, situations

are feasible such that both consumption and the state of the environment improve when

the economy transits form the inefficient equilibrium to the efficient one. But, once the

efficient allocation is realized, any further increase in consumption can be achieved only

at the cost of a deteriorating environment. Thus, our findings are partially supporting

the double dividend hypothesis. We further explore the available fiscal policy options of

the government in reallocating the tax revenue between abatement activities and R&D

spending. Our last finding is that there always exists a minimal tax rate which is neces-

sary to realize the efficient R&D and environmental policies and not all combinations of

environmental and fiscal policies enable the economy to avoid the technology lock-in.

The rest of the paper is organized as follows. The next section presents the structure

of our model. Section 3 shows when multiple steady-states may emerge and section

4 analyzes the fiscal policy that guarantees a unique steady-state. Section 5, finally,

concludes the paper.

2 The model

To start with, we describe the basic growth model featuring environmental degradation.

The economy is populated by a continuum of homogeneous consumers normalized to

one that can be represented by one consumer which maximizes the stream of discounted

utilities from a consumption good over an infinite time horizon. Output can be consumed

or invested and is a function of physical capital and of the stock (or state) of technology

as production factors. The stock of technology is a purely public good that results from

research and development (R&D) spending funded by the government. The stock of

technology consists of a continuous range of single technologies that differ with respect

to their productivities.2 Finally, output is negatively affected by a stock of pollution that

2the stock of technology could alternatively be interpreted as a stock of public capital, such as telecom-

munication infrastructure, transportation infrastructure and health capital, for example.
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equals accumulated weihgted past emissions. The emissions in the economy result from

output as a negative externality and can be reduced by devoting resources to abatement

activities.

2.1 The household sector and the environment

The representative household maximizes the stream of discounted utility from the con-

sumption good, C, subject its budget constraint. Neglecting labour as input factor3 the

optimisation problem can be written as,

JH = max
C

{∫ ∞
0

e−ρt
[
C1−γ − 1

1− γ

]
dt

}
(1)

with consumption being the single control variable subject to a flow budget constraint:

K̇ = (1− τ)Y − C, (2)

where τ is the income tax rate imposed by the government, 1/γ the intertemporal elasticity

of substitution of consumption, Y denotes output and we neglect depreciation of the

physical capital stock K. It should be noted that the household does not take into account

neither the negative pollution externality of output nor the positive externalities of taxes

on the stock of technology since these are external to him. Further, the outcome of this

optimisation problem is equivalent to that of a decentralised economy with a competitive

factor market such that the marginal product of capital equals the interest rate.

Output is a function of physical capital and of the stock of technology, A, and nega-

tively affected by the stock of pollution, M .Thus, the output is given by

Y = φ(M)AKα (3)

with 0 < φ(M) ≤ 1, φ(0) = 1, φ′(.) < 0, and α ≤ 1. The function φ(M) reflects the

damages from environmental pollution where M = 0 denotes the unspoiled environment

that does not go along with damages on output.

3we omit the time argument t whenever this does not lead to confusion.

4



Application of the standard Maximum Principle to the problem given by (1) and (2)

leads to the following current-value Hamiltonian

H =
C1−γ − 1

1− γ
+ λK ((1− τ)φ(M)AKα − C) , (4)

which yields the necessary optimality conditions:

∂H
∂C

= C−γ + λK = 0, (5)

and co-state equation

λ̇K = ρλK − (1− τ)αKα−1φ(M)A. (6)

In addition, the limiting transversality condition

lim
t→∞

e−ρtλKK = 0 (7)

must hold.

The environment is affected by the economy through the usual transmission mecha-

nism:

Ṁ = −νM + (1− a)eY (8)

where a ∈ (0, 1) is the rate of abatement activities financed by the government, e is the

intensity of emissions from the output, being a function of the technology, and ν ∈ (0, 1)

is the rate at which the environment recovers. In the next subsection, we will show how

the technology determines the emissions intensity. The emissions can be interpreted as

greenhouse gas (GHG) emissions that raise the stock of GHGs in the atmosphere that

negatively affects output in the economy.

2.2 The government and the R&D sector

The government collects taxes and distributes them between abatement efforts, a, and

R&D spending R:

T = τY = aY +R,

R = (τ − a)Y (9)
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The total R&D spending is next distributed between investments into the expansion

of the variety of technologies, u, and investments into the increase of productivity of each

individual technology, g(i, t):

R = u+

∫ n(t)

0

g(i, t)di. (10)

The R&D sector optimally allocates the R&D budget to vertical and horizontal invest-

ments into technologies. The results of R&D are free to use at the economy wide level.

There are no patents and profits from R&D since the research is publicly funded. The

alternative with market-funded R&D would yield equivalent results as long as one im-

poses free entry condition and if one assumes that the rate of return to R&D investments

is equal to the discount rate of firms, r, see (Peretto and Connolly 2007) for example of

such a treatment of R&D.

Formally, the R&D sector is described as a joint optimization problem of maximizing

the output of innovations subject to the constraint (10):

JTech
def
= max

u(·),g(·)

∫ ∞
0

e−rt

(∫ n(t)

0

[
q(i, t)− 1

2
g(i, t)2

]
di− 1

2
u(t)2

)
dt. (11)

with:

• u(t) - investments into variety expansion;

• g(i, t) - investments into the productivity growth of technology i at time t.

The dynamics of variety expansion is linear in investments:

ṅ = ξ u, (12)

with ξ > 0 a constant parameter reflecting the efficiency of investments. The dynamics

of productivity of each technology increases as a result of investments and declines in

the absence of such proportionally to the achieved level of productivity (reflecting the

fact that the more refined a technology is, the more costly it is to support the necessary

infrastructure):

∂q(i, t)

∂t
= ψ(i)g(i, t)− βq(i, t), (13)
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where ψ(i) is the efficiency of increasing productivity of technology i, different across

technologies, and β is the rate of decay of productivity of technology i. The fact that the

efficiency of investments differ across technologies is important since this is the main reason

why a technology lock-in can arise in the economy. With equal efficiencies, ψ(i) = ψc

the dynamics of R&D is qualitatively the same as without a multiplicity of technologies

(provided there is no out-dating).

We assume that each new technology has zero initial productivity upon the time of

its invention,

∀i ∈ [0;n] : q(i, t)i=n(t) = 0. (14)

The time of invention for the technology, ti(0), is the inverse function of the variety

expansion process, n(t):

ti(0) = f−1(n(t))|n(t)=i. (15)

The overall productivity of the economy is the total of productivities of individual

technologies,

A =

n(t)∫
0

q(i, t)di, (16)

All technologies differ from each other as concerns the environmental damage they cause,

with newer technologies yielding lower damages. Each technology i has a cleanliness

index, ι(i), which defines the extent to which the sector driven by technology i affects the

environment.

Then, the overall intensity of emissions, e(t), is an aggregate of the intensities of all

the existing technologies at time t:

e(t)
def
= (e0/n(t)) ·

∫ n(t)

0

ι(i)di, (17)

with e0 > 0 a constant.

The economy is affected by R&D through 3 different channels: first, overall R&D

investments, R, are deduced from the income of the agent; second, the total productivity

in the economy, A, grows as a result of R&D; third, the intensity of emissions, e, from

output gradually changes due to the adoption of cleaner technologies.
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2.3 The steady-state

In this subsection, we derive the steady-state for our economy. Noting the relationship

Ċ

C
= −1

γ

λ̇K
λK

(18)

yields the evolution of consumption as:

Ċ =
C

γ

(
(1− τ)αKα−1φ(M)A− ρ

)
. (19)

The evolution of capital is given by (2) with output from (3):

K̇ = (1− τ)φ(M)AKα − C (20)

Finally, the evolution of the environment, i.e. of the stock of pollution, is given by:

Ṁ = −νM + (1− a)eφ(M)AKα (21)

The system (19), (20), (21) together with the transversality condition (7) fully describes

the economic-environmental system apart from technology. The steady-state of this sys-

tem is given by a rest point of the dynamic system described by the three differential

equations (19), (20), (21).

Proposition 1 demonstrates that the steady-state is unique for a given value of the

state of technology.

Proposition 1 (Uniqueness of steady-states).

For a given stock of the technology, A, there exists a unique steady-state {C̄, K̄, M̄} of

the economy described by the dynamic system (19), (20), (21).

Proof. From (21) the Ṁ = 0 isocline is obtained as:

K = c1

(
M

φ(M)

)1/α

, c1 = (ν/((1− a)eA))1/α , (22)

with K = 0 for M = 0 and

dK

dM
= c1(1/α)

(
M

φ(M)

)−1+1/α(
φ(M)−Mφ′(M)

φ2(M)

)
> 0 (23)
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From (19) the Ċ = 0 isocline can be computed as:

K = c2φ(.)1/(1−α), c2 = (A(1− τ)α/ρ)1/(1−α) , (24)

with K = c2 > 0 for M = 0 and

dK

dM
= c2(1/(1− α))φ(.)α/(1−α)φ′(.) < 0 (25)

Hence, there exists a unique intersection point of the two isoclines giving a unique

{K̄, M̄}. Inserting that in (20) yields the unique C̄ = (1− τ)φ(M̄)AK̄α. 2

Proposition 1 shows that the technological sector determines the long-run behaviour of

the economy. Thus, if the technology has a unique steady-state the whole environmental-

economic system is characterised by a unique steady-state. However, the R&D sector may

exhibit a multiplicity of steady-states even for this simple setup, as we will demonstrate

in the next subsection.

Further, it should be pointed out that for the case α = 1, the steady-state can be

explicitly computed as a function of the technology, A, from (19)-(21):

M̄ = φ−1
(

ρ

(1− τ)A

)
,

K̄ =

(
νM̄

(1− a)eφ(M̄)A

)
,

C̄ = (1− τ)φ(M̄)AK̄. (26)

3 Multiplicity and uniqueness of steady-states

The budget constraint of the government limits R&D expenditures distributed to the

R&D sector. When the constraint is binding, the problem of the R&D sector becomes

an optimal control problem subject to a resource constraint, similar to the one studied in

(Bondarev and Greiner 2017) for the case of a single firm. There, it is demonstrated that

the R&D sector may possess one or two steady-states, depending on the value of R, with

an associated variety of developed technologies and their productivities.

Denote by λq(i, t) the shadow costs of investments into the productivity of technology

i, q(i, t), and by λn(t) the shadow costs of investing into the increase of the variety of
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technologies, n(t). To begin our analysis, we start with the definition of a steady-state

for the R&D sector.

Definition 1 (R&D steady-state).

The steady-state of the R&D sector is characterized by the following conditions:

∀i ∈ [0; 1] : q̇(i, t) = 0,

λ̇q(i, t) = 0,

ṅ(t) = 0,

λ̇n(t) = 0. (27)

In order to illustrate the possibility of multiple steady-states and the technology lock-

in phenomenon, we make use of a particular choice of the efficiency function ψ(i) and of

the emissions intensity function e described below in detail.

We assume the form of efficiency function ψ(i) which reflects the increased difficulty

of improving newer technologies:

ψ(i) = ψc
√

1− i, ψc > 0. (28)

Such a specific functional form is chosen for two reasons: first, it is a decreasing func-

tion and second it provides an opportunity for an analytical solution unlike most other

decreasing monotonic functions. However it should be noted that results remain robust

under the choice of this efficiency function as long as certain regularity conditions on ψ(i)

hold:

• It is decreasing in i,

• It is invertible,

• It is continuous but not necessarily continuously differentiable.

The emissions intensity e is defined in (17) and depends on the cleanliness index ι(i).

This index is assumed to be a decreasing function of the technology:

ι(i) = 1− i. (29)
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Again, the function ι(i) is chosen to be linearly decreasing for simplicity. Because of the

choice of the efficiency and of the emissions intensity functions, the variety of technologies

is bounded from above:

n(t) ∈ [0; 1], (30)

and emissions intensity may be expressed as

e(t) =
e0
n(t)

(
n(t)− 1

2
n2(t)

)
(31)

being a decreasing function of the available variety of technologies n.

Note that for any pair n(t), λn(t) the dynamics of all technologies’ productivities is fully

defined and once the variety expansion reaches a steady-state, so does every individual

technology state, q(i, t) (see Appendix A). Thus, to fully characterize the steady-state of

the R&D sector it suffices to characterize the λn(t), n(t) dynamics.

Proposition 2 (Uniqueness and multiplicity of steady-states of the R&D sector).

The dynamic system λ̇n, ṅ, given by (A.15), (A.16), has at most two steady-states. Other

things equal the R&D budget R defines the number of steady-states of the system. For

R < R? there exist two steady-states with a low and a high variety of technologies. With

R ≥ R? there exists only one steady-state with n̄ = 1.

Proof. See Appendix A. 2

Figure 1 illustrates the case of a unique steady-state and of two steady-states for this

system depending on the level of R. To draw Figure 1 we resorted to the parameter values

given in table 1. The research budget is set to R = 0.9 for the multiple steady-states case

and to R = 4 for the unique steady-state case.

The lower the level of the R&D budget is, the higher is the chance for a multiplicity

of steady-states where one of the steady-states goes along with a lower level of variety of

technologies and higher shadow costs of investments than the other. That holds because

a decline in R&D shifts the ṅ(t) = 0 isocline upward and a sufficiently high R leads to

the collapse of the two steady-states into a unique one for the system (A.15), (A.16). The

unique steady-state implies n̄ = 1 and λ̄n = 0. Using this, one can easily compute the
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Table 1: Parameters values used in Figure 1.

Parameter Value

n0 0

r 0.05

ψc 0.9

ξ 0.8

β 0.1

threshold level of the research budget, R∗, from ṅ(t) = 0 as:

R∗ =
2

3

ψc
r + β

. (32)

With the parameters given in table 1 one obtains R∗ = 4.

It should be pointed that in the case of multiple steady-states both steady-states are

inefficient in the sense that they do not allow the introduction of all potential technologies

in the economy. Thus, we characterize the latter as an inefficient situation and we refer to

the unique steady-state as the efficient one since it goes along with the maximum number

of technologies.

Further, setting R > R? implies a unique steady-state. However, that would be ineffi-

cient since the same result can be obtained for R = R? because this gives the maximum

value n̄ = 1. Any additional R&D spending is a waste of resources that reduces the

steady-state capital stock and output and, thus, welfare. We state our result in the

following proposition:

Proposition 3 (Technology lock-in with a constrained R&D sector).

In the R&D sector described by the system (A.13), (A.15), (A.16), the budget constraint

R is crucial as concerns the emergence of a technology lock-in.

1. For R < 2
3
ψc

r+β
, the economy is characterized by a technology lock-in with two ineffi-

cient steady-states;
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(a) Unique steady-state, R = 4 (b) Multiple steady-states, R = 0.9

Figure 1: Multiplicity of R&D steady-states

2. For R ≥ 2
3
ψc

r+β
, no lock-in effect arises and the variety of technologies reaches its

maximum steady-state level n̄ = 1;

3. Efficient R&D expenditures are given by R? = 2
3
ψc

r+β
.

In the case of an efficient allocation, both the number of technologies and overall pro-

ductivity are maximized. However, the effect on the environment is ambiguous because,

on the one hand, a higher productivity implies higher output and, thus, more environ-

mental degradation whereas, on the other hand, newer technologies go a long with a lower

emissions intensity which can be seen from (31).

Now, recall that the total productivity of the economy is the integral over individual

productivities:

A =

∫ n

0

q(i, t)di. (33)
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Differentiating and taking into account (14) one obtains the dynamics of overall produc-

tivity A (for the case R ≤ R?),

ȦR(t) =

∫ nR(t)

0

∂qR(i, t)

∂t
di =

=

∫ nR(t)

0

{
ψ(i)

(
ψ(i)

r + β
− 1

1 + nR(t)

(
ξλRn (t)−R +

1

r + β

∫ nR(t)

0

ψ(i)di

))
−βq(i, t)

}
di=

=
R− ξλRn
1 + nR(t)

∫ nR(t)

0

ψ(i)di+
1

r + β

∫ nR(t)

0

(ψ(i))2 di−

(∫ nR(t)

0
ψ(i)di

)2
(r + β)(1 + nR(t))

− βAR(t)

(34)

while in the unconstrained case it is simply,

Ȧ?(t) =
1

r + β

∫ n?(t)

0

(ψ(i))2 di− βA?(t) (35)

In the situation of constant steady-state research expenditures the total productivity will

stay constant and its level is defined by the variety of technologies being developed, n,

by its shadow price, λ, and by the efficiency function, ψ(i), and by the level of R&D

spending, R.

Next, we study how the total steady-state productivity affects the environment at the

efficient steady-state. This is the contents of Corollary 1.

Corollary 1 (Overall productivity of the economy and the evironment).

Assume that ĀL < ĀH < Ā? and n̄L < n̄H < n̄? holds, where the subscript L (H) denotes

the low (high) steady-state and ? the efficient one.

Then, M̄L < M̄H < M̄?, for α = 1. For α < 1, M̄L > M̄H > M̄? can hold only if

K̄L < K̄H < K̄?.

Proof. This follows from Ċ = 0↔ ρ = (1− τ)αKα−1φ(M)A

Corollary 1 states that a higher productivity always goes along with a higher stock of

pollution at the steady-state for the case of a linear production function, i.e. for α = 1.

The reason for that outcome is that the marginal product of capital is constant in steady-

state and independent of the capital stock with α = 1. It must be pointed out that this

14



is independent of the damages, determined by the function φ(M), and also independent

of the emissions intensity e(t). In the case of decreasing returns to capital, a higher

steady-state total productivity may go along with a lower steady-state pollution if the

steady-state capital stock rises. However, it must be pointed out that this is only a

necessary condition and it is more likely that both total productivity, the capital stock

and pollution increase in steady-state. Further, it must be noted that a lower steady-state

pollution together with a higher total productivity can only occur if the reduction of the

emissions intensity, as a result of introducing newer and cleaner technologies, is sufficiently

high. This follows from Ṁ = 0↔ νM̄ = (1− a)e(n̄)φ(M̄)ĀK̄α. To get additional insight

we will resort to numerical examples next.

Our analysis up to now has assumed that the R&D spending is exogenously given.

This allowed us to draw clear-cut conclusions as regards the dynamics of the R&D sec-

tor. However, in equilibrium R&D spending is endogenously determined by the budget

constraint of the government (9) and a steady-state of the economy is given by a rest

point of the differential equations (19), (20), (21), (34), (A.15) and (A.16). But, since

(A.15) is a polynomial of second order in λRn , see Appendix A, multiple steady-states can

occur in the economy in equilibrium, too. A formal analytical proof of that conjecture is

not possible so that we confine our investigation to the analysis of a numerical example

demonstrating that Propostion 2 remains valid. Further, we want to shed light on the

question of how total steady-state productivity Ā varies with the variety of technologies

at the steady-state, n̄, and how this affects the economy and the environment.

To do so, we set α = 1 so that the steady-state values {C̄, K̄, M̄} are given by (26).

A rest point of (34), (A.15) and (A.16), with R = R(K̄, Ā, τ, a, ·) gives a steady-state,

then. To analyze that system, we choose the parameter values assumed in table 1 and,

in addition, we set τ = 0.08, a = 0.02, e0 = 0.9, ν = 0.1 and ρ = 0.05. The function φ is

specified as φ = 1− a1M , with a1 = 0.01. This is our benchmark example.

Then, the first steady-state with the lower number of technologies is given by:

{ȲL = 15.6, C̄L = 14.35, K̄L = 287.05, M̄L = 99.76, ĀL = 24.48, n̄L = 0.55, λ̄Rn = 4.22}

and the second steady-state is:

{ȲH = 19.38, C̄H = 17.83, K̄H = 356.65, M̄H = 99.83, ĀH = 31.76, n̄H = 0.83, λ̄Rn = 3.85}
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The efficient steady-state is obtained for τ = 0.1966 and the steady-state values are:

{Ȳ ? = 22.65, C̄? = 18.2, K̄? = 363.9, M̄? = 99.88, Ā? = 51, n̄? = 1, λ̄Rn = 0}

This example shows that a higher variety of steady-state technologies goes along with

a higher total steady-state productivity and more output and consumption. However, it

is also associated with a higher steady-state pollution as predicted by Corollary 1.

According to Corollary 1 this could only change in the case of decreasing returns to

capital. Therefore, we next chose α = 0.3 and again computed steady-state values. It

turned out that the qualitative results remain unchanged, that is a higher number of

steady-state technologies goes along with a higher steady-state productivity, a rise in

output and a higher stock of pollution. Further, setting e0 to a higher value, e0 = 2, in

the emissions intensity function does not change the qualitative result, just as choosing

the different emissions intensity function e(t) = e0/(1 + a2n), with e0 = 0.9 and a2 = 1

and, alternatively, a2 = 2.

The same holds if we choose a lower value for e0. Setting e0 = 0.05, in the example

presented above, leads to the same qualitative outcome with a1 = 0.25. It must be pointed

out that the parameter reflecting the damages, a1, must be set to a higher value than in

the example above, once e0 falls short of a certain threshold. Otherwise, a steady-state

does not exist. However, if a steady-state exists, for a lower e0 together with a higher a1,

the qualitative properties are identical to those in the example presented above.

This example demonstrates that the economy can escape the lock-in by devoting more

resources to R&D leading to a higher total productivity, to a larger variety of technologies

and to a higher production in steady-state. However, that goes at the expense of the envi-

ronment since the positive effect of newer, less polluting technologies on the environment

is dominated by the negative effect of a higher productivity generating more output and

pollution.

But, the government can combine policy instruments in order to achieve an efficient

steady-state that keeps the state of the environment at the same level as in the inefficient

situation. In this case, a certain part of the gain in output, compared to the inefficient

situation, must be used for abatament, at the expense of consumption. Thus, a sec-

ond efficient steady-state is obtained for τ = 0.5902 and by simultaneously raising the
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abatement share to a = 0.5. The corresponding steady-state values are now:4

{Ȳ ? = 44.34, C̄? = 18.17, K̄? = 363.38, M̄? = 99.76, Ā? = 51, n̄? = 1, λ̄Rn = 0}

One realizes that this second steady-state gives the same steady-state level of pollution as

the low steady-state in the inefficient economy, whereas consumption is larger. Consump-

tion is also larger than consumption at the high steady-state of the inefficient economy.

Comparing the two efficient steady-states, one realizes that the first, with τ = 0.1966

and a = 0.02, yields a slightly higher consumption level and a larger stock of pollution

compared to the second one with τ = 0.5902 and a = 0.5.

If we increase the tax rate and the abatement share further and set a = 0.6 and

τ = 0.6722 we obtain the following steady-state values:

{Ȳ ? = 55.39, C̄? = 18.16, K̄? = 363.12, M̄? = 99.70, Ā? = 51, n̄? = 1, λ̄Rn = 0}

Now, consumption is higher than in both inefficient steady-states and the stock of pol-

lution is lower so that the efficient steady-state is clearly preferable to the inefficient

steady-states. However, comparing the efficient steady-states we realize that there is

again a trade-off: when both the abatement share and the tax rate rise, the state of the

environment improves, but, that goes at the expense of consumption which declines.

We should like to point out that this result holds in the case of decreasing returns to

capital, too. Setting α = 0.3, as above, and a = 0.1, τ = 0.282 and a = 0.2, τ = 0.3641

and a = 0.5, τ = 0.6107 shows that there is a trade-off between consumption and pollution

along different efficient steady-states. Further, an inefficient steady-state can be overcome

by an appropriate choice of the income tax rate and the abatement share.

Thus, we can state that a double dividend can occur when economic policy moves

the economy from an inefficient situation to an efficient one with a unique steady-state.

But, it must be stressed that this is only possible by a combination of fiscal policies, i.e.

by raising both the tax rate and the abatement share. To achieve an efficient situation,

the policy maker can choose between different combinations of τ and a that all avoid the

lock-in and that give rise to a unique steady-state. However, once an efficient situation

4the strong rise in Ȳ ? compared to the first efficient steady-state is due to the increase of φ(M?) by

about 96 percent.
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has been reached, there is a trade-off between the level of consumption and environmental

quality: a higher level of consumption implies a higher stock of pollution and vice versa.

The question of feasibility of efficient research spending and abatement policy is stud-

ied in the next section.

4 Feasible R&D and efficient policies

The government in our economy has three policy instruments: the overall income tax

rate, τ , the abatement rate, a, and the research budget, R, that are interrelated by the

government budget constraint (9).

At the steady-state the economy only depends on the variety of technologies, n̄. We

first express the policy equation, relating R&D spending to the tax rate and to the abate-

ment rate, in terms of this variety by substituting ĀR, obtained from ȦR(t) = 0, into (26)

and the resulting output level into (9), where we confine ourselves to the case α = 1. We

then express the R&D expenditures R as a function of the tax rate τ , of the abatement

rate a and of the steady-state variety of technologies n, where we set λ̄Rn = 0 which must

hold for the efficient steady-state. This gives:

R = 2
(τ − a)ν

e0(1− a)(2− n)
− 1

2

X(a, n, τ)

Y (a, n,R)
(36)

where X(a, n, τ), Y (a, n,R) are polynomials (B.1), provided in the Appendix B.

Following the discussion from the previous section we know that the only efficient

steady-state for the variety n is n̄ = 1. This can be achieved only if R ≥ R∗. Therefore,

we set n in (36) equal to n̄ = 1. This leads to R− a combinations as an implicit function

of τ . We next plot this R − a combination for different values of τ against the R∗ line

using the parameters from our benchmark example presented in the previous section.

Figure 2 illustrates the fact that it is not possible for any tax rate to find a combina-

tion of abatement and research expenditures granting convergence of the economy to the

efficient steady-state. In particular, for the chosen parameter values of our benchmark

example, a tax rate of 8 percent will inevitably lead to the inefficient equilibrium implying

a lock-in: the R∗ line does not intersect the R−a line for any positive a ≤ τ as illustrated

by Figure 2a. Once the tax rate is higher, there is a range of a values for which R∗ is
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(a) τ = 0.08 (b) τ = 0.2 (c) τ = 0.5

Figure 2: Research and abatement expenditures for different tax regimes

feasible. For τ = 0.2 this is the range of a below about 0.05 as illustrated by the Figure

2b and for τ = 0.5 the feasible abatement rate is bounded by about 40 percent, see Figure

2c.

It has to be noted, that the result is not independent of the choice of parameters.

For any tax rate, there are parameter ranges such that the efficient research budget is

infeasible, as illustrated by the Figure 3.

(a) e0 = 3 (b) ψc = 3 (c) a1 = 0.03

Figure 3: Infeasible efficient research for τ = 0.5

In this figure we have selected three key parameters and multiplied them by three,

keeping all other parameters as in our benchmark example except the tax rate that is set
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to τ = 0.5. It can be seen that in all these simulations the efficient allocation is infeasible

and a higher tax rate is necessary to reach the efficient size of the research budget. There

could be situations when there does not exist any tax rate τ < 1 such that R∗ becomes

feasible. For example, letting the damage parameter a1 increase above a1 = 0.046 makes

the efficient research budget infeasible for any tax rate (with the other parameters as in

the benchmark example).

On the other hand, setting R equal to the efficient value R∗ we obtain the geometric

place of points in the a − τ plane, which gives the efficient R∗: for any abatement rate

higher than this, the efficient R&D expenditure level is infeasible and any abatement rate

lower than this value is sub-optimal, since no further increase in R above R∗ may provide

a rise in the variety of technologies. The value for a? can be computed as:

a∗ =
6 τ ((τ/2− 1/2)ψ + ρ β (r + β)) (r + β) ν − ψ2e0 (τ − 1) a1

6 ((τ/2− 1/2)ψ + ρ β (r + β)) (r + β) ν − ψ2e0 (τ − 1) a1

(37)

This a∗−τ curve is illustrated in Figure 4 for different structural parameters with respect

to the environment and with respect to its impact on the economy: the regeneration rate

ν (Figure 4b), the initial emissions intensity e0 (Figure 4c) and the damage intensity a1

(Figure 4a).

Figure 4: Efficient abatement rate as function of the tax rate

This Figure illustrates the fact that the stronger is the problem of environmental

pollution (as measured by this triple of parameters), the higher the tax rate and the

abatement rate should be because it is more difficult to escape the technology lock-in in
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this case. Therefore, we define the environmental stress of the economy as a norm of the

vector S := ||a1, 1− ν, e0||1: the higher is this norm, the more resources are to be devoted

to fight off environmental degradation.

It must also be noted that different efficient combinations of τ and a? imply different

steady-state consumption levels and different levels of environmental pollution. Our nu-

merical example form the previous section has shown that low values of τ and a∗ generate

a high level of consumption and a high stock of environmental pollution, whereas high

values of τ and a? lead to a small level of consumption with a low stock of pollution.

Thus, there is a trade-off between the level of consumption and a clean environment at

the efficient steady-state.

We summarize those observations in the following Proposition 4.

Proposition 4 (Characteristics of an efficient policy and environmental stress).

A) Given the efficient abatement rate a∗ via (37), the following holds:

1. For every set of parameters there exists a minimal and a maximal tax rate, 0 ≤
τmin(S) ≤ τmax(S) ≤ 1 such that the efficient research budget is feasible only for

τ ∈ (τmin, τmax)

2. The smaller is the environmental stress of the economy, the larger is the admissible

range of the tax rates τmin(S), τmax(S).

B) In the efficient state of the economy, there exists a trade-off between consumption and

the environment: higher consumption goes along with a larger stock of pollution.

Proof. The first claim of A) follows from the observation that the roots of (37) are defined

by the numerator which is a second degree polynomial in τ so that there exist up to 2

intersections with the a = 0 line, which we denote by τmin, τmax. The second claim of

A) follows from the observation that ∂τmin/∂S < 0 holds, since a1, e0 affect the roots

negatively and ν positively.

To prove B) we note that (26) implies for the efficient steady-state:

C̄ =

(
1− τ
1− a?

)
νM̄

e0/2
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The budget constraint of the government (9) gives, τ = a? + R?/(φ(M̄)ĀK̄). Using this

to substitute for τ in C̄ leads to

C̄ =
νM̄

e0/2
−R?,

showing that a higher C̄ goes along with a higher M̄ .

We have seen that the economy may experience a technology lock-in for a given state

of the environment that can be avoided by increasing the research budget sufficiently.

When we treat the environmental pressure as a parameter, it turns out that the higher

this pressure is, the more difficult it is to escape the technology lock-in, since more and

more resources have to be devoted to fight off climate changes. Finally, when the efficient

steady-state of the economy is reached, there is a trade-off between consumption and

the environment: a higher level of consumption always goes along with a more polluted

environment and vice versa.

5 Conclusion

In this paper we have developed a model of economic growth that takes into account

climate change, where simultaneous vertical and horizontal innovations are decisive as

regards the economic outcome and as regards the state of the environment. The key

feature of these innovations is that all of the new technologies are different from each

other as concerns their productivities and with respect to their GHG emissions.

We have seen that a constraint on the R&D budget can give rise to multiple steady-

states. This multiplicity is the result of an uneven distribution of investments between the

introduction of new technologies and the development of older ones. With limited research

expenditures it is likely that the majority of resources will be spent on the development of

existing technologies, rather than on the introduction of newer ones. This will lead to the

technology lock-in phenomenon, as described in the literature, when newer technologies

are underdeveloped or even non-existent. However, due to the structure of the R&D

process considered in our paper, this lock-in may be overcome by an increase of R&D

spending above a certain threshold which depends on the structure of the R&D process.
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When the lock-in is eliminated the economic performance in terms of total steady-state

productivity, in terms of the variety of technologies and in terms of steady-state output

improves. However, that goes at the expense of the environment that is characterized

by a higher steady-state pollution if this is achieved through a single fiscal policy, i.e.

by a higher income tax rate for example. It is true that newer technologies have a

lower emissions intensity and, therefore, are less polluting, but, this positive effect on the

environment is compensated by the increase in total productivity that raises output and

pollution.

But, it must be noted that it is also possible to escape the lock-in and to reach an

efficient unique steady-state by a combination of fiscal policies, such as jointly varying

the tax rate and the abatement share. Then, a certain part of the gain in output is used

for abatement to reduce the environmental pollution. In this case, consumption can rise

without raising environmental pollution, when moving from the inefficient economy to the

efficient one. Hence, there is a sort of double dividend in the sense that it is possible to

raise consumption without damaging the environment. It must be underlined that this

can only be achieved by a combination of fiscal policy measures.

Further, such a double dividend can occur only when moving from the inefficient state

of the economy to the efficient one. Once the efficient steady-state is reached, economic

policy cannot further raise output and consumption without damaging the environment.

Instead, there is a trade-off: either raise output further and accept a more polluted

environment or vice versa.

As regards an efficient economic policy that eliminates the lock-in, we could show that

it is excluded for low values of the income tax rate, irrespective of the abatement share. In

addition, we could demonstrate that the higher is the environmental stress, defined by the

structural parameters of the environmental-economic system, the smaller is the range of

combinations of the tax rate and of the abatement share that allow an efficient economic

policy. Finally, we found that an efficient policy is excluded if the environmental stress

exceeds a certain critical value. In that case, the lock-in cannot be overcome.

Hence, whenever the lock-in can be eliminated, one policy option for the government

is to escape the lock-in and to raise economic efficiency and, thus, output and consump-
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tion, which leads to a deterioration of the environment. Another option is to increase

economic efficiency and to use a certain part of the gain in GDP for abatement in order

to reduce the resulting higher environmental pollution. Thus, the policy maker can keep

the environmental pollution at the low level of the inefficient situation and simultaneously

raise consumption.

A Derivation for the R&D sector

With a constraint on research expendituresR the problem of R&D is a resource-constrained

distributed optimal control problem, given by the objective functional (11), dynamic con-

straints (12) and (13) and resource constraint (10) plus static constraint (14). The as-

sociated augmented Hamiltonian is constructed by adjoining a resource constraint to the

standard Hamiltonian function:

HR =

∫ n(t)

0

[
q(i, t)− 1

2
g(i, t)2

]
di− 1

2
u(t)2 + λn(t) · ξu(t)+

∫ n(t)

0

λq(i, t) · (ψ(i)g(i, t)− βq(i, t)) + l(t) ·
(
R− u(t)−

n(t)∫
0

g(i, t)di
)
, (A.1)

with the resource constraint being the complementary slackness condition, i.e. if R >

u(t) +
n(t)∫
0

g(i, t)di then l(t) = 0. We denote this threshold by R?.

First-order conditions for controls are

u(t) = ξλn(t)− l(t); (A.2)

g(i, t) = ψ(i)λq(i, t)− l(t); (A.3)

R− u(t)−
n(t)∫
0

g(i, t)di = 0, (A.4)

where (A.4) holds only if R < R?. Otherwise l(t) = 0 and the model of R&D fully

resembles the unconstrained one as in (Bondarev 2012). Indeed, investments u(t), g(i, t)

increase up to the steady-state and are maximal there. Then, it follows that, once the

allocated budget exceeds this maximal overall R&D investments level R?, complementary
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slackness requires l(t) = 0. Moreover, once R = const and u(t), g(i, t) monotonically

increase, it follows l(R, t) has only one switching point in R and is always either zero or

given by (A.4).

The co-state system is:

λ̇n(t) = rλn(t)− ∂HR

∂n
= rλn(t)− q(i, t)|i=n(t) +

1

2
g2(i, t)|i=n(t)−

− 1

r + β

(
ψ(n(t))g(i, t)|i=n(t) − βq(i, t)|i=n(t)

)
+ l(t)g(i, t)|i=n(t), (A.5)

∀i ≤ n(t) : λ̇q(i, t) = (r + β)λq(i, t)− 1, (A.6)

giving immediately with the usual transversality condition limt→∞ e(r+β)tλq(i, t) = 0 con-

stant shadow costs for productivity investments:

λq(i, t) =
1

r + β
. (A.7)

First, we make use of the necessary conditions to obtain expression for the resource

Lagrange multiplier l(t):

l(t) =


1

1+n(t)

(
ξλn(t)−R + 1

r+β

∫ n(t)
0

ψ(i)di
)
, R ≤ R?

0, R > R?
(A.8)

We derive results for the case R < R? first (marked by superscript R) and obtain the

unconstrained case by letting l(t) = 0 in every case for completeness (marked with ?).

The constrained control functions of research expenditures are given by:

uR(t) = λRn (t)− 1

1 + nR(t)

(
ξλRn (t)−R +

1

r + β

∫ nR(t)

0

ψ(i)di

)
(A.9)

gR(i, t) =
ψ(i)

r + β
− 1

1 + nR(t)

(
ξλRn (t)−R +

1

r + β

∫ nR(t)

0

ψ(i)di

)
(A.10)

with unconstrained counterparts

u?(t) = λ?n(t) (A.11)

g?(i, t) =
ψ(i)

r + β
. (A.12)
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The dynamics of individual productivities are given by

∂

∂t
qR(i, t) = ψ(i)

(
ψ(i)

r + β
− 1

1 + nR(t)

(
ξλRn (t)−R +

1

r + β

∫ nR(t)

0

ψ(i)di

))
−βqR(i, t)

(A.13)

for the constrained case and simply by

∂

∂t
q?(i, t) =

ψ2(i)

r + β
−βq?(i, t) (A.14)

for the unconstrained case.

Using the fact q(i, t)|i=n(t) = 0, the expressions for the controls, (A.3), and for the

Lagrange multiplier, (A.8), and efficiency of investments into the boundary technology,

ψ(n) = ψc
√

1− n(t), one obtains the explicit expression for the evolution of the co-state

variable as a function of n(t) and of the R&D budget R as:

λ̇Rn (t) =

(
− β ξ2r

(nR(t) + 1)2 (r + β)2
− 1/2

r2ξ2

(nR(t) + 1)2 (r + β)2
− 1/2

β2ξ2

(nR(t) + 1)2 (r + β)2

)
·

·
(
λRn (t)

)2
+
r2ξ R− 2/3ψc rξ + β2ξ R + 2 β ξ rR− 2/3ψc β ξ + 2/3ψc (1− n (t))3/2 β ξ

(n (t) + 1)2 (r + β)2
·

· λn(t) +

(
ψc
√

1− n (t)β ξ + ψc
√

1− nR (t)rξ

(r + β)2 (nR (t) + 1)
+ r + 2/3

ψc
(
1− nR (t)

)3/2
rξ

(n (t) + 1)2 (r + β)2

)
λRn (t)−

− 7/6
ψc

2 (n (t))2

(nR (t) + 1)2 (r + β)2
− 5

18

ψc
2
(
nR (t)

)3
(nR (t) + 1)2 (r + β)2

− 2/3
ψc (1− n (t))3/2 β R

(nR (t) + 1)2 (r + β)2
−

− 2/3
ψc
(
1− nR (t)

)3/2
rR

(nR (t) + 1)2 (r + β)2
+ 1/3

ψc
2
(
nR (t)

)2
(r + β)2 (n (t) + 1)

+ 2/3
ψc

2
√

1− n (t)

(r + β)2 (nR (t) + 1)
−

− 1/2
R2β2

(nR (t) + 1)2 (r + β)2
−

ψc
√

1− nR (t)β R

(r + β)2 (nR (t) + 1)
−

ψc
√

1− n (t)rR

(r + β)2 (nR (t) + 1)
+

+ 2/3
ψcRr

(n (t) + 1)2 (r + β)2
− R2β r

(nR (t) + 1)2 (r + β)2
− 1/2

R2r2

(nR (t) + 1)2 (r + β)2
+

+ 7/6
ψc

2n (t)

(n (t) + 1)2 (r + β)2
− 5/3

ψc
2

(r + β)2 (nR (t) + 1)
+ 4/9

ψc
2 (1− n (t))3/2

(nR (t) + 1)2 (r + β)2
+

+ 4/3
ψc

2nR (t)

(r + β)2 (nR (t) + 1)
+ 2/3

ψcRβ

(nR (t) + 1)2 (r + β)2
+ 1/18

ψc
2

(nR (t) + 1)2 (r + β)2

(A.15)
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Substitution of (A.2) with l(t) defined by (A.8) into the dynamics of variety expansion

from (12) yields the following dynamics of n(t):

ṅR(t) = ξ2λRn (t)
nR(t)

1 + nR(t)
−
(

1

3

)
ξ
(
2ψc − 2ψc(1− nR(t))3/2 − 3R(r + β)

)
(r + β)(1 + nR(t))

, (A.16)

The inspection of the equation (A.15) shows that the steady-state condition for the

shadow price λRn is a polynomial of second order in this variable. From fundamental

algebra we know that such a polynomial has exactly two roots5. Thus, for every value

of nR(t) there are two steady-state values of the shadow price. At the same time, the

equation (A.16) is linear in the shadow price so that there is only one steady-state of

nR(t) for every value of λRn . These considerations demonstrate that the system (A.15),

(A.16) can have at most two different steady-states. The isocline λ̇Rn = 0 generates two

lines with one origin at nR ≤ 1, and the isocline ṅR(t) = 0 is an initially rising concave

function that becomes vertical at n = 1. Two steady-states arise when the ṅR(t) = 0

isocline intersects the λ̇Rn = 0 isocline for values of n < 1 and a unique steady-state is

obtained when the isoclines intersect at n = 1.

The unique steady-state implies n̄ = 1 and λ̄n = 0. Given this, the threshold level of

the research budget, R?, is easily obtained from ṅR(t) = 0 as R? = 2ψc/(3(r + β)).

B Policy tools derivations

Function for the research expenditures equation (36):

Y (a, n,R) = (1− τ)a1 e(1− a)ψ ((−4/3ψ +R(r + β))(−1 + n)
√

1− n+ (2/3ψ − 3/4)n3+

+ (−2ψ + 3/4)n2 + (2ψ + 3/2)n− 4/3ψ +R(r + β)),

X(a, n, τ) = −3ν ρ (τ − a)(1 + n)(r + β)β (B.1)

5we do not distinguish between complex and real roots, since this affects only stability and not the

existence of steady states.
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