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1 | Introduction

1.1 Motivation

We are interested in submodule closed subcategories of abelian length cate-
gories A, that is, (full, additive) subcategories, which are closed under subob-
jects. IfA is a module category, these subcategories are also called submodule
closed.

While submodule closed subcategories have not yet been extensively stud-
ied, they are a very interesting topic with many connections to different parts
of representation theory. For example, if A is a finite dimensional algebra,
then every infinite submodule closed subcategory of modA contains a mini-
mal infinite submodule closed category, see [16].

Submodule closed subcategories can also be used to prove that there is
a filtration of the Ziegler spectrum that is indexed by the Gabriel-Roiter
filtration, see [12].

Furthermore, if A is a hereditary Artin algebra, then there is a natural
bijection between the elements of the Weyl group of A and the full, additive
cofinite submodule closed subcategories of modA. This has been proved in
[14] for algebras over finite and algebraically closed fields and is proved in
general in this thesis.

Another connection arises in the second main part of the thesis: If A is
of colocal type, then the lattice formed by full, additive submodule closed
subcategories of modA is distributive. Algebras of colocal type have been
studied repeatedly: for example, a first characterization dates back to H.
Tachikawa in 1959, see [20]; two gaps in the proof were filled by T. Sumioka
in 1984, see [19].

In this thesis, we give a new characterisation for algebras of colocal type,
which is especially simple for algebras over an algebraically closed field.

For algebras of colocal type over such fields, we can completely describe
the lattice S(modA). In fact, we get another connection to an important
item in representation theory: Young diagrams.
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6 CHAPTER 1. INTRODUCTION

1.2 Main results
In Chapter 3 we take a look at hereditary Artin algebras A. Let modA be
the category of finitely generated right modules over A.

A full, additive subcategory of modA is called cofinite if it contains all
but finitely many indecomposable modules in modA.

We get the following result:

Theorem 1.2.1. Let A be a hereditary Artin algebra. Then there exists a
natural bijection between the elements of the Weyl group of A and the full,
additive cofinite submodule closed subcategories of modA.

To prove this theorem, we first show the following result, which is impor-
tant in its own right. We use the notation X | Y if the module X is a direct
summand of Y and X - Y if X is not a direct summand of Y :

Proposition 1.2.2. Let A be a hereditary Artin algebra and M ∈ modA
indecomposable and preinjective. Suppose that U ∈ modA, and M is not a
direct summand of U . There is a monomorphism M � U if and only if there
is some m ∈ N with three sequences of modules

(X1, X2, . . . , Xm)

(X ′
1, X

′
2, . . . , X

′
m)

(Y1, Y2, . . . , Ym)

that fulfil the following conditions:

(S1) There is an Auslander-Reiten sequence

0 //M // X1 ⊕X ′
1

// Y1 // 0 .

(S2) For all 1 ≤ i < m, there is some αi ∈ N so that Xαi
i is a direct summand

of Xi ⊕X ′
i, but not of U .

(S3) For 1 ≤ i < m, there is an Auslander-Reiten sequence of the form

0 // Xi
// Zi // τ−1Xi

// 0 . (1.1)

Let Y ′
i be the maximal module that is both a direct summand of Yi and

Zi. Write Yi = Y ′
i ⊕ Y ′′

i and Zi = Y ′
i ⊕ Z ′

i.
If τ−1Xi | X ′

i, then let X ′′
i be the module so that X ′

i = τ−1Xi ⊕X ′′
i and

set Y ′′′
i := 0. Otherwise, set X ′′

i := X ′
i and Y ′′′

i := τ−1Xi.
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The following equations hold:

Xi+1 ⊕X ′
i+1 = X ′′

i ⊕ Z ′
i

Yi+1 = Y ′′
i ⊕ Y ′′′

i .

(S4) If for any 1 ≤ i ≤ m, the module Xi ⊕ X ′
i has an injective direct

summand I, then I | U .

(S5) Xm ⊕X ′
m is a direct summand of U .

In Chapter 4, we proceed to consider a much broader case: abelian length
categories, a generalization of module categories. On the other hand, the
question that we answer is much less general: we ask, in which cases such
a category is of colocal type (that is, every subobject of an indecomposable
object is itself indecomposable). Partly, we can also answer the question,
in which cases the lattice of full, additive subobject closed subcategories is
distributive.

To state the answers, we first need some notation:

Definition 1.2.3. For all simple objects S, T ∈ A let

d1S(S, T ) := dimEnd(S)op Ext
1(S, T )

and
d1T (S, T ) := dimEnd(T ) Ext

1(S, T ).

Then we can show the following. For simplicity, we are equating objects
with isomorphism classes of objects:

Theorem 1.2.4. The category A is of colocal type if and only if the following
conditions hold:

(C1) For all simple objects S ∈ A∑
T simple

d1T (S, T ) ≤ 1.

(C2) For all simple objects S ∈ A∑
T simple

d1T (T, S) ≤ 2.
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(C3) If there is a simple object S ′ with Ext1(S, S ′) ̸= 0, let T be the set of
simple objects T for which d1T (T, S) ̸= 0 and there is an indecomposable
object Z of length 3 with topZ ∼= T and socZ ∼= S ′. Then∑

T∈T

d1T (T, S) ≤ 1.

While the last condition is more complicated then the first two, there are
several ways to state it. In particular, it is often equivalent to a condition on
the 2-extensions between simple objects:

Proposition 1.2.5. Suppose that (C1) holds for all simple objects in A.
For fixed simple objects S and S ′ with Ext1(S, S ′) ̸= 0, the following

classes of objects are the same:

(a) the class of simple objects T so that d1T (T, S) ̸= 0 and there is some
indecomposable object Z of length 3 with socZ ∼= S ′ and topZ ∼= T

(b) the class of simple objects T so that d1T (T, S) ̸= 0 and there is some
indecomposable object Z of length greater or equal 3 with socZ ∼= S ′ and
topZ ∼= T

If Ext(S ′, S ′) = 0, then these classes are the same as

(c) the class of simple objects T so that d1T (T, S) ̸= 0 and there is some
indecomposable object Z with socZ ∼= S ′ and topZ ∼= T

If S ′ is not part of an oriented cycle in the Ext-quiver of A, then this class
is even the same as

(d) the class of simple objects T so that d1T (T, S) ̸= 0 and Ext2(T, S ′) = 0

For all abelian length categories A of colocal type, the lattice S(A) is
distributive.

Finally, we look at the categories of the form A := modA for some Artin
algebra A over an algebraically closed field k. If A is of colocal type, then it
is equivalent to mod kQ/I for an especially simple quiver Q with admissible
ideal I and we can completely describe the lattice S(A) up to isomorphism:

For every vertex m in Q, consider the paths that end in m and do not
contain any relation in I. Under these paths, either one or two are maximal.

If there is only one, then we denote its length with km and set lm := 0.
If there are two maximal paths, we denote their lengths with km and lm.
For a partition λ = (λ1, λ2, λ3, . . . , λn) of a natural number, the Young

diagram of λ is an array of squares with n rows and exactly λi squares in the
i-th row.
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The partitions of natural numbers form a lattice Y , ordered by the inclu-
sion order on the Young diagrams. It is called Young’s lattice.

Denote by Y m,n that sublattice of Young’s lattice that contains exactly
the partitions λ = (λ1, λ2, λ3, . . . , λm′) where λi ≤ n for all 1 ≤ i ≤ m′ and
m′ ≤ m.

Then we get the following lattice isomorphism:

Theorem 1.2.6. Suppose modA ≡ mod kQ/I with quiver Q = (Q0, Q1) and
admissible ideal I. If A is of colocal type, then

S(mod A) ∼=
∏
m∈Q0

Y km+1,lm+1.

1.3 Outline
In the second chapter of this thesis, we collect definitions and results needed
for the formulation and proofs of our results. We start with an overview of
abelian categories, in particular module categories. Then we concentrate on
Auslander-Reiten sequences, the main tool to prove the first theorem in this
thesis. The next section introduces hereditary algebras and one of their most
important examples: quiver algebras.

In the fourth section we define the Weyl group. In a slight deviation
of the usual practice, we give (and work with) the definition of the Weyl
group as a Coxeter group, thus not defining the reflections on A, except as
generators of the Weyl group.

We conclude this chapter with a section about string algebras, which are
the path algebras of quivers with relations that have a special form. Since
the modules over theses algebras are well known, they are very useful for
some of the proofs in the fourth chapter.

In the third chapter, we prove that there is a natural bijection between
the elements of the Weyl group of A and the full, additive cofinite submodule
closed subcategories of modA. Oppermann, Reiten and Thomas have shown
this in [14] for algebraically closed fields and finite fields. While we use the
same bijection, we give a different method of proof that does not depend on
the field.

First, we define an order on the Weyl group and show some properties of
this order. The next section is devoted to an algorithm which, given a prein-
jective module M , constructs all modules which contain M as a submodule.

In the third section, we show how the structure of the Weyl group is
connected to the submodule relations between preinjective modules. In the
next sections, after proving two auxiliary results, we show first that the
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bijection is well defined and then that it is surjective. Since the injectivity
is clear by definition, this concludes the proof. In the last section of this
chapter, we draw some corollaries.

The fourth chapter is devoted to abelian length categories A where S(A)
is distributive. In particular, we characterize abelian length categories of
colocal type.

First, we show that the distributivity of the lattice is equivalent to a
simple condition on submodule relations in A. Then we introduce categories
of colocal type and prove that S(A) is distributive if A is of colocal type.

In the third section, we prove that certain conditions on the Ext-quiver
of A must be fulfilled if S(A) is distributive; stricter conditions have to be
fulfilled if A is of colocal type.

In the next section, we collect some auxiliary lemmas about 2-extensions.
We need these to show in the fifth section that several different formulations
of a condition are equivalent under certain assumptions. Afterwards, we
prove that abelian length categories of colocal type fulfil this condition.

In the sixth section, we show that the conditions formulated in the third
and fifth section are even sufficient for A being of colocal type. This proof
also draws on the auxiliary lemmas in the fourth section.

We complete this chapter with a description of the lattice S(A): First we
show that it is a Cartesian product of certain sublattices. Then, we take a
closer look at categories A of colocal type which are equivalent to mod kQ/I
for some field k, quiver Q and admissible ideal I, and see that S(A) has an
especially simple form.



2 | Abelian length categories and
Artin algebras

We are interested in abelian length categories, in particular in the module
categories of Artin algebras. For a more detailed introduction into abelian
categories, see for example [8]; for an introduction into Artin algebras and
Auslander-Reiten theory consult for example [2].

2.1 Abelian categories and module categories
We start by giving the definition of an additive category, which we need to
define abelian categories:

Definition 2.1.1. A category C is called additive if

• For all objects A,B ∈ C, the morphism set Hom(A,B) is an abelian
group.

• For all objects A,B,C ∈ C, the composition morphism

Hom(A,B)× Hom(B,C)→ Hom(A,C) (2.1)

is bilinear over Z.

• The category C has finite sums.

A stronger concept is the following, see [21], Definition 3.3.4:

Definition 2.1.2. An additive category C is called abelian if the following
three conditions hold:

• Every morphism has a kernel and a cokernel.

• Every monomorphism is the kernel of a morphism.

11
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• Every epimorphism is the cokernel of a morphism.

Abelian categories have pushouts and pullbacks:

Definition 2.1.3. Let V,X1, X2 be objects in an abelian category A and
f1 : V → X1, f2 : V → X2 be morphisms. Then there exist an object Y and
morphisms g1, g2 so that the following diagram is commutative

V
f1 //

f2
��

X1

g1
��

X2 g2
// Y

(2.2)

and for every object Z with morphisms g′1 : X1 → Z, g′2 : X2 → Z which
form a commutative diagram

V
f1 //

f2
��

X1

g′1
��

X2
g′2

// Z

,

there is a unique morphism ϕ : Y → Z with ϕg1 = g′1 and ϕg2 = g′2.
If f1 is a monomorphism, then g2 is also a monomorphism.
The diagram (2.2) is called a pushout.
Dually, for two morphisms g1 : X1 → Y , g2 : X2 → Y , there exists a

pullback, that is, a commutative diagram

V
f1 //

f2
��

X1

g1
��

X2 g2
// Y

,

so that for every object U with morphisms f ′
1 : U → X1, f ′

2 : U → X2, which
form a commutative diagram

U
f ′1 //

f ′2
��

X1

g1
��

X2 g2
// Y

,

there is a unique morphism ϕ : U → V with f1ϕ = f ′
1 and f2ϕ = f ′

2.
If g1 is an epimorphism, then f2 is also an epimorphism.
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Pullbacks and pushouts are closely linked to short exact sequences:

Proposition 2.1.4. Let V,X1, X2, Y ∈ modA with morphisms f1 : V → X1,
f2 : V → X2, g1 : X1 → Y , g2 : X2 → Y . Then the following statements are
equivalent:

1. The diagram
V

f1 //

f2
��

X1

g1
��

X2
g2 // Y

(2.3)

is a pushout and a pullback.

2. The sequence

0 // V

[−f1
f2

]
// X1 ⊕X2

[ g1 g2 ]// Y // 0

is exact.

In fact, if
[
−f1
f2

]
is a monomorphism, then it suffices to demand that (2.3)

is a pushout. If
[
g1 g2

]
is an epimorphism, then it suffices to demand that

(2.3) is a pullback.

Pushouts and pullbacks have the following important property:

Proposition 2.1.5. If
V

e1 //

e2
��

X1

f1
��

X2
f2 // Y1

and
X1

g //

f1
��

Y2

h2
��

Y1
h1 // Z

are both pullbacks (pushouts), then the square

V
ge1 //

e2
��

Y2

h2
��

X2
h1f2 // Z

is itself a pullback (pushout).
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Recall that an object is called simple if is does not contain proper, non-
zero subobjects.

In this thesis, we consider abelian length categories, that is, abelian cat-
egories where every object is of finite length and the isomorphism classes of
objects form a set (see for example [7], p. 81).

Definition 2.1.6. Let A be an abelian category. An object X ∈ A is said
to be of finite length if there is a filtration X = X0 ⊃ X1 ⊃ · · · ⊃ Xn = 0 so
that Xi−1/Xi is simple for all 1 ≤ i ≤ n. We call l(X) := n the length of X.

Definition 2.1.7. An object of finite length is called indecomposable if it
cannot be written as a direct sum of proper subobjects.

Let A be an Artin algebra. Then modA, the category of finitely generated
right modules over A, is an abelian length category.

On the other hand, we have the following, see for example [21], Theorem
3.3.6:

Theorem 2.1.8. Every abelian category is a full subcategory of a category
A−Mod for some algebra A, where A−Mod denotes the left modules over
A.

For an object X ∈ A define the Loewy length of X to be the smallest
n ∈ N with a filtration

X = X0 ⊃ X1 ⊃ · · · ⊃ Xn = 0

so that Xi−1/Xi is semisimple (i.e. a direct summand of simple objects) for
all 1 ≤ i ≤ n.

Then the following holds, see [7], 8.2:

Theorem 2.1.9. The abelian length category A is equivalent to the module
category of an Artin ring if and only if

1. A has only finitely many simple objects.

2. dimEnd(T )(S, T ) <∞ for all simple objects S, T ∈ A.

3. The supremum of the Loewy lengths of the objects in A is finite.

Denote by Aop the opposite algebra of A, that is, the algebra where left
and right multiplication are exchanged (see for example [21], Definition 1.1.7).
Then the left modules over Aop are just the right modules over A:

Proposition 2.1.10. There is a duality D : mod(Aop)→ modA.
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Thus, the following property of finitely generated modules generalizes to
abelian length categories:

Definition 2.1.11. Let A be an abelian length category and X an object in
A. Then there are indecomposable objects X1, . . . , Xn so that

X ∼=
n⊕
i=1

Xi.

The objects X1, . . . , Xn are unique up to order and isomorphism.

If the object Y is isomorphic to a direct summand of X, we will use the
notation Y | X. Accordingly, we will write Y - X if Y is not isomorphic to
a direct summand of X.

Now we define subcategories:

Definition 2.1.12. We call C ′ a subcategory of C if all objects and morphisms
of C ′ are objects and morphisms in C. Such a subcategory is called full if for
all objects A,B ∈ C ′, the equality HomC(A,B) = HomC′(A,B) holds.

We are interested in the following kind of subcategories:

Definition 2.1.13. A full, additive subcategory C of an abelian length cate-
gory A is called subobject closed if for every object X ∈ C and all subobjects
X ′ of X, we have X ′ ∈ C.

Definition 2.1.14. A full, additive subcategory C of the module category
modA of an Artin algebra A is called cofinite if all indecomposable modules,
except finitely many, lie in C.

As in [3], Definition 2.6.1, for n ∈ N, we can define an n-fold extension of
an object X by an object X ′ as an exact sequence

0 // X ′ // Xn−1
// . . . // X0

// X // 0 .

A map between two extensions is a commutative diagram

0 // X ′ //

��

Xn−1
//

��

. . . // X0
//

��

X //

��

0

0 // X ′ // X ′
n−1

// . . . // X ′
0

// X // 0

.

By adding symmetry and transitivity, this can be completed to an equivalence
relation and we can define Extn(X,X ′) to be the set of equivalence classes of
n-fold extensions of X by X ′.
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These are groups; in particular, for Ext1(X,X ′), the abelian group struc-
ture corresponds to the Baer sum, see [21], section 1.8.2:

For
η1 : 0 // X ′ f1 // X0

g1 // X // 0

and
η2 : 0 // X ′ f2 // X ′

0

g2 // X // 0

there is an object Z1 with a commutative diagram

0 // X ′ ⊕X ′ // Z1
//

��

X //

[ id
id ]

��

0

0 // X ′ ⊕X ′

[
f1 0
0 f2

]
// X0 ⊕X ′

0

[
g1 0
0 g2

]
// X ⊕X // 0

and an object Z with a commutative diagram

0 // X ′ ⊕X ′ //

[ id id ]
��

Z1
//

��

X // 0

0 // X ′ // Z // X // 0

.

The object Z1 can be found by taking the pullback, while Z can be found
via the pushout.

Then
0 // X ′ // Z // X // 0

is the exact sequence η1 + η2.
It is possible to view Ext1(X,X ′) as a module over End(X ′, X ′) and over

End(X,X)op.

2.2 Auslander-Reiten sequences
An important tool for our proofs are Auslander-Reiten sequences, which we
introduce in this section.

Let A be an Artin algebra. First, we need the definition of certain special
modules:

Definition 2.2.1. A module P ∈ modA is projective if for any epimorphism
g : X → Y with X,Y ∈ modA and morphism h : P → Y , there is a
morphism s : P → X such that gs = h.

A module I ∈ modA is injective if for any monomorphism f : X → Y
with X,Y ∈ modA and morphism h : X → I, there is a morphism s : Y → I
such that sf = h.
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Now, we can define projective covers:

Definition 2.2.2. Let X, Y,W ∈ modA. An epimorphism f : X � Y
is called an essential epimorphism if for all morphisms g : W → X the
morphism fg : W → Y is an epimorphism if and only if g is an epimorphism.

Definition 2.2.3. Let X ∈ modA. A projective cover of X is an essential
epimorphism P � X so that P is a projective module.

An analogous definition exists for injective modules:

Definition 2.2.4. For X ⊂ Y ∈ modA, we say that Y is an essential
extension of X if W ∩X ̸= 0 for all submodules W of Y . A monomorphism
X → I is called an injective envelope of X if I is injective and an essential
extension of B.

For simplicity, when referring to the modules P and I, we will also call
them projective covers and injective envelopes, respectively.

We have the following:

Theorem 2.2.5. Every module X ∈ modA has projective covers and injec-
tive envelopes which are unique up to isomorphism.

The indecomposable simple, projective and injective modules are con-
nected:

Proposition 2.2.6. Every Artin algebra A has a finite number n of non-
isomorphic simple modules S1, . . . , Sn. Their projective covers P1, . . . , Pn are
a complete list of non-isomorphic indecomposable projective A-modules.

Their injective envelopes I1, . . . , In are a complete list of non-isomorphic
indecomposable injective A-modules. For all 1 ≤ i ≤ n, we have soc Ii = Si.

Using the duality D : mod(Aop) → modA, we can define the Auslander-
Reiten translation τ :

Proposition 2.2.7. There is a map Tr : modA → mod(Aop), so that for
τ = DTr the following holds:

1. τ (
⊕n

i=1Mi) ∼=
⊕n

i=1 τMi for M1, . . . ,Mn ∈ modA.

2. τM = 0 if and only if M is projective.

3. τ−1M = 0 if and only if M is injective.

4. τM is non-injective for all M ∈ modA.
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5. If no direct summand of M,N is projective, then τM ∼= τN if and only
if M ∼= N .

Next, we introduce almost split morphisms:

Definition 2.2.8. Let X, Y ∈ modA. A morphism f : X → Y is called a
split epimorphism if the identity 1Y : Y → Y factors through f , that is, if
there is some g : Y → X so that 1Y = fg.

The morphism f is called a split monomorphism if the identity 1X : X →
X factors through f .

Definition 2.2.9. A morphism f : X → Y is called right almost split if the
following conditions are fulfilled:

1. f is not a split epimorphism.

2. Any morphism M → Y with M ∈ modA, which is not a split epimor-
phism factors through f .

A morphism f : X → Y is called left almost split if the following conditions
are fulfilled:

1. f is not a split monomorphism.

2. Any morphismX →M withM ∈ modA, which is not a split monomor-
phism factors through f .

Especially important are exact sequences where the morphisms are almost
split:

Definition 2.2.10. Let X,Y, Z ∈ modA. Then the exact sequence

0 // X
f // Y

g // Z // 0 (2.4)

is called an almost split sequence or Auslander-Reiten sequence if f is left
almost split and g is right almost split.

For every indecomposable, non-injective moduleX, there is an Auslander-
Reiten sequence (2.4). The same holds for every indecomposable, non-
projective module Z:

Theorem 2.2.11. Let X,Z ∈ modA. Then the following assertions are
equivalent:

1. There is some module Y ∈ modA with an Auslander-Reiten sequence

0 // X // Y // Z // 0 .



2.2. AUSLANDER-REITEN SEQUENCES 19

2. X is indecomposable, non-injective and Z ∼= τ−1X.

3. Z is indecomposable, non-projective and X ∼= τZ.

In fact, we have the following:

Theorem 2.2.12. Auslander-Reiten sequences are unique up to isomor-
phism, that is, if

0 // X
f // Y

g // Z // 0

and
0 // X

f ′ // Y ′ g′ // Z // 0

are Auslander-Reiten sequences, then there is a commutative diagram

0 // X
f //

∼=
��

Y
g //

∼=
��

Z

∼=
��

// 0

0 // X
f ′ // Y ′ g′ // Z // 0

.

There is another important kind of morphisms:

Definition 2.2.13. A morphism f : X → Y is called irreducible if the
following conditions are fulfilled:

1. f is neither a split epimorphism nor a split monomorphism.

2. If there are t : X →M and s :M → Y so that f = st, then either s is
a split monomorphism or t is a split epimorphism.

An irreducible morphism is either a monomorphism or an epimorphism.

Irreducible morphisms are the components of almost split morphisms:

Theorem 2.2.14. (a) Let X be an indecomposable, non-injective module
and f : X → Y a morphism. Then f is irreducible if and only if there are
some modules Y ′, Z, morphisms f ′ : X → Y ′, g : Y → Z, g′ : Y ′ → Z
and an Auslander-Reiten sequence

0 // X

[
f
f ′

]
// Y ⊕ Y ′ [ g g′ ] // Z // 0 . (2.5)

(b) Dually, let Z be an indecomposable, non-projective module and g : Y → Z
a morphism. Then g is irreducible if and only if there are some modules
X, Y ′ and morphisms f : X → Y , f ′ : X → Y ′, g : Y → Z, g′ : Y ′ → Z
so that (2.5) is an Auslander-Reiten sequence.
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2.3 Hereditary algebras and quivers
In this section, we take A to be a hereditary algebra, that is, an algebra,
where all left ideals are projective. For such an algebra, every submodule of
a projective module is itself projective. We collect some properties that we
need in particular in Chapter 3.

Equivalently, we can give the following definition (see [15], Section 4.1):

Definition 2.3.1. An algebra A is hereditary if for all simple modules S, T ∈
modA, we have Ext2(S, T ) = 0.

We are mainly working with the following kind of modules:

Definition 2.3.2. An indecomposable module X ∈ modA is called prepro-
jective if there is some non-zero projective module P and a non-negative
integer n so that τnX = P .

We set ν(X) := n.
An arbitrary M ∈ modA is called preprojective if its indecomposable

direct summands are preprojective.
An indecomposable module X ∈ modA is called preinjective if there

is some non-zero injective module I and a non-negative integer n so that
τ−nX = I.

We set µ(X) := n.
An arbitrary M ∈ modA is called preinjective if its indecomposable direct

summands are preinjective.

Let P be the full subcategory of modA that consists of the preprojec-
tive modules and I be the full subcategory of modA that consists of the
preinjective modules.

Proposition 2.3.3. The duality D : modA → modAop induces a duality
between P and I.

So results for preprojective modules induce analogous results for prein-
jective modules and the other way around.

We need the following properties of preinjective modules:

Proposition 2.3.4. Let M be in P or I. If there are indecomposable modules
M = M0,M1, . . . ,Mn−1,Mn = M and non-zero morphisms fi : Mi−1 → Mi

for 1 ≤ i ≤ n, then fi is an isomorphism for all 1 ≤ i ≤ n.

Lemma 2.3.5. Let A be a hereditary Artin algebra and X, Y ∈ modA be
indecomposable. If there is an irreducible morphism f : X → Y , then X ∈ I
if and only if Y ∈ I.
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Lemma 2.3.6. Let A be a hereditary Artin algebra and X,Y ∈ I be inde-
composable. If there is an irreducible morphism f : X → Y , then

1. If X is injective, then Y is injective.

2. If X is not injective, then 0 ≤ µ(X)− 1 ≤ µ(Y ) ≤ µ(X).

Proposition 2.3.7. Let f : X → Y be an irreducible morphism. Then the
following holds:

(a) If no direct summand of X is projective, then τf : τX → τY is irre-
ducible.

(b) If no direct summand of Y is injective, then τ−1X → τ−1Y is irreducible.

(c) The translation τ preserves monomorphisms.

Lemma 2.3.8. Let S1, . . . , Sn be a complete list of simple A-modules up
to isomorphism. Then for all 1 ≤ i, j ≤ n either Ext1(Si, Sj) = 0 or
Ext1(Sj, Si) = 0.

Furthermore, Ext1(Si, Sj) ̸= 0 if and only if there is an irreducible mor-
phism Ij → Ii for the injective envelopes Ii, Ij of Si, Sj.

Lemma 2.3.9. Let Ii, Ij be the injective envelopes of Si, Sj with an irre-
ducible morphism Ij � Ii. Then the multiplicity of Ij in the Auslander-
Reiten sequence that ends in Ii is dimEndA(Si)op(Ext

1(Si, Sj)). On the other
hand, the multiplicity of τIi in the Auslander-Reiten sequence that ends in
Ij is dimEndA(Sj)(Ext

1(Si, Sj)).

An important example for hereditary algebras are path algebras of quiv-
ers:

Definition 2.3.10. A quiver Q = (Q0, Q1) is an oriented graph where Q0 is
the set of vertices, while Q1 is the set of arrows between vertices. If α : i→ j
is an arrow, its start point is s(α) = i and its end point is e(α) = j.

For all i ∈ Q0, there is a trivial path ei with s(ei) = e(ei) = i.
A path in this quiver is either a trivial path or a sequence p = αn . . . α1

of arrows so that e(αi) = s(αi+1) for all 1 ≤ i < n. In this case, we define
s(p) = s(α1) and e(p) = e(αn).

An oriented cycle is a non-trivial path so that e(p) = s(p).
A quiver is called finite if Q0 is a finite set.

It is natural to define the following algebra:
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Definition 2.3.11. Let k be a field and kQ be the vector space with the
paths of Q as a basis. Then there is an algebra structure on kQ induced by
the concatenation of paths. That is, the product of αn . . . α1 and α′

n′ . . . α′
1

is αn . . . α1α
′
n′ . . . α′

1 if s(α1) = e(α′
n′) and 0 otherwise.

Analogously, for every path p, we have eip = p if e(p) = i and 0 otherwise;
pei = p if s(p) = i and 0 otherwise.

The module category of every Artin algebra is equivalent to the module
category of a basic Artin algebra. So the following result in fact describes the
module categories of all hereditary Artin algebras over algebraically closed
fields:

Proposition 2.3.12. Let k be a field and Q be a finite Quiver without ori-
ented cycles. Then kQ is a hereditary Artin algebra.

If k is algebraically closed, then for every basic hereditary Artin algebra
A over k, there is some quiver Q so that A is isomorphic to kQ.

We can furthermore define representations over quivers:

Definition 2.3.13. Let Q = (Q0, Q1) be a quiver and k a field. A repre-
sentation (V, f) of Q over k is a set of vector spaces {Vi | i ∈ Q0} over k
together with linear maps fα : Vi → Vj for each arrow α : i→ j.

A morphism h : (V, f) → (V ′, f ′) between representations is a collection
{hi : Vi → V ′

i }i∈Q0 of linear maps so that the diagrams

Vi
hi //

fα

��

V ′
i

f ′α
��

Vj hj
// V ′
j

commute for all arrows α : i→ j in Q1.
The composition of morphisms is of course induced by the composition

of linear maps.

Then we get the following:

Proposition 2.3.14. The category of representations of Q over k is equiv-
alent to the category of finite dimensional modules over kQ.

For every abelian length category A, we can define its Ext-quiver: The
vertices are given by a complete set of non-isomorphic simple objects in A.
If S and T are simple objects, there is an arrow S → T if Ext1(S, T ) ̸= 0.
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If A is equivalent to the module category of a hereditary Artin algebra,
then its Ext-quiver has no oriented cycle.

Furthermore, for every Artin algebra A, one can define its Auslander-
Reiten quiver : Its vertices are the isomorphism classes of modules in modA
and there is an arrow between two isomorphism classes [M ] and [N ] if there
is an irreducible morphism M → N .

Attached to such an arrow is the label (a, b), where a is the maximal pos-
itive integer with an irreducible morphism Ma → N , while b is the maximal
positive integer with an irreducible morphism M → N b.

Let A be a hereditary algebra and [M ] → [N ] have the valuation (a, b).
If ταM and ταN are non-zero for some integer α, then the valuation of
[ταM ] → [ταN ] is also (a, b). If τβ+1N and τβM are non-zero for some
integer β, then [τβ+1N ]→ [τβM ] has the valuation (b, a).

The following holds:
Proposition 2.3.15. Let A be an Artin algebra. If the Auslander-Reiten
quiver of A has a finite component, then A is representation finite.

Moreover, if A is hereditary and representation finite, then every module
in modA is both preinjective and preprojective and the number of components
of the Auslander-Reiten quiver of A is the same as the number of blocks of A.
So if A is indecomposable as an algebra, then the Auslander-Reiten quiver of
A consists only of one component.

For simplicity, when drawing an Auslander-Reiten quiver, we will omit
all labels (a, b) where a = b = 1 and use representatives of the isomorphism
classes as vertices.

In the same vein, we will not always differentiate between modules (or ob-
jects) and isomorphism classes of modules (or objects) when the meaning is
clear. For example, when we have a complete set I1, . . . , In of non-isomorphic
injective modules over a hereditary Artin algebra A, we will simply call
I1, . . . , In the injective modules over A and say that every indecomposable,
preinjective module M is of the form τ rIi for some 1 ≤ i ≤ n and some
r ∈ N, when it actually is only isomorphic to such a module.

2.4 The Weyl group as a Coxeter group
We define words following [13]:
Definition 2.4.1. Let S be a set. We call S an alphabet and its elements
letters. A word over the alphabet S is a finite sequence

(s1, s2, . . . , sn), si ∈ S.
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The product of two words is just the concatenation of the sequences. This
product is associative and by identifying a letter s ∈ S with the sequence (s),
we can write the word (s1, s2, . . . , sn) as the product s1s2 . . . sn. The neutral
element for this product is the empty word, which we accordingly denote as
1. Thus, the set of words over S together with the concatenation forms a
monoid S∗.

If w := s1s2 . . . sn is a word over S, then l(w) := n is called the length of
w. Furthermore, a word of the form v = si1si2 . . . sim with

1 ≤ i1 < i2 < · · · < im ≤ n

and m ≤ n is a subword of w.
If v = s1s2 . . . sm with m ≤ n, then we say that v is an initial subword of

w.

An introduction into Coxeter groups can be found in [4]. We only need
the following properties:

Definition 2.4.2. Let S be a set and W a group generated by S. Then W
is called a Coxeter group if all relations have the form (ss′)m(s,s′) = 1 with
s, s′ ∈ S so that

1. m(s, s′) = 1 if and only if s = s′.

2. If m(s, s′) exists, then m(s′, s) also exists and m(s, s′) = m(s′, s).

If there is no relation between s and s′, then we writem(s, s′) = m(s′, s) =∞.

We can describe the Coxeter group W through the monoid S∗:

Proposition 2.4.3. Let S be a set and S∗ the monoid of words over S. Let
W be a Coxeter group generated by S with relations (ss′)m(s,s′) = 1.

Set ≡ to be the equivalence relation on S∗ which is generated by allowing
the insertion or deletion of words of the form

(ss′)m(s,s′) = ss′ss′ . . . ss′︸ ︷︷ ︸
2m(s,s′) letters

for all m(s, s′) <∞. Then S∗/ ≡ is isomorphic to W .

We will use the following notation:

Definition 2.4.4. Set {ss′}a := ss′ss′ . . .︸ ︷︷ ︸
a letters

.

The next lemma makes it easier to work with the relations:
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Lemma 2.4.5. Let S, W and ≡ be as in Proposition 2.4.3 and s, s′ ∈ S.
The equivalence of words {s′s}a ≡ {ss′}a holds if and only if m(s, s′) is a
factor of a.

Let S1, . . . Sn with n ∈ N be a complete list of non-isomorphic simple
modules of the Artin algebra A.

We can associate to A a Cartan matrix, as in [2], pp 69, 241 and 288:

Definition 2.4.6. To a hereditary Artin algebra A we associate the Cartan
matrix C = (cij)nn of the underlying graph of the quiver Aop.

That is, we set cii = 2. If i ̸= j and Ext1(Si, Sj) = Ext1(Sj, Si) = 0, then
cij = cji = 0. Finally, if Ext1(Si, Sj) ̸= 0, set

cij = − dimEndA(Si)op Ext
1(Si, Sj)

and
cji = − dimEndA(Sj) Ext

1(Si, Sj).

A description of the Weyl group as a Coxeter group can be found in [11],
Proposition 3.13:

Proposition 2.4.7. The Weyl group associated to A with the Cartan ma-
trix (cij)nn is a Coxeter group generated by the reflections s1, s2, . . . , sn with
relations s2i = 1 for all 1 ≤ i ≤ n and (sisj)

mij = 1 for all i ̸= j, where mij

depends on cijcji in the following way:

cijcji 0 1 2 3 ≥ 4
mij 2 3 4 6 ∞ .

We can write all relations as (sisj)
mij if we set mij := 1 for i = j.

Every element of the Weyl group is the equivalence class of several dif-
ferent words over the alphabet S := {s1, s2, . . . , sn}. To distinguish between
the elements of the Weyl group and the words over S, we will always use un-
derlined letters to denote words and normal letters for Weyl group elements.
Remark 2.4.8. For A = kQ with a field k and a quiver Q without oriented
cycles, the relations depend only on the edges in the underlying graph of Q,
see e.g. [14], p. 570:

We have mij = 2 if there is no edge between the vertices i and j and
mij = 3 if there is exactly one edge between i and j. If there are two or more
edges between i and j, then mij =∞.

Example 2.4.9. Let Q be the quiver

1 //

��
3

4 2oo

OO .
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The Weyl group of A = kQ is a Coxeter group with the relations (sisj)mij = 1
and the following values for mij:

1 2 3 4
1 1 2 3 3
2 2 1 3 3
3 3 3 1 2
4 3 3 2 1

.

2.5 String Algebras
To define string algebras, we need quivers with relations:

Definition 2.5.1. Let k be a field and Q a quiver. A relation on Q over k is
a k-linear combination a1p1+ · · ·+anpn of paths p1, . . . , pn with a1, . . . , an ∈
k, e(p1) = · · · = e(pn) and s(p1) = · · · = s(pn). Let I be an ideal in
kQ generated by a set of relations ρ. Then (Q, ρ) is called a quiver with
relations and kQ/I is called the path algebra of (Q, ρ). Furthermore, we call
I admissible if J t ⊂ I ⊂ J2, for some t ∈ N, where J is the ideal generated
by all arrows.

We can define the representations (V, f) of (Q, ρ) analogously to the rep-
resentations of Q in Definition 2.3.13, but with the following additional con-
dition:

For a path p = α1α2 . . . αn where αi is an arrow for 1 ≤ i ≤ n, we set
fp := fα1fα2 . . . fαn . Then for every relation a1p1+· · ·+anpn in ρ, we demand
a1fp1 + · · ·+ anfpn = 0.

As before, mod kQ/I is equivalent to the category of representations of
(Q, ρ).
Remark 2.5.2. Let Q be a finite quiver and k a field. If Q has no oriented
cycles, then to every vertex i corresponds a simple module Si ∈ mod kQ. If
the number of arrows i→ j is denoted by n, then

dimEnd(Si)op Ext
1(Si, Sj) = dimEnd(Sj) Ext

1(Si, Sj) = n.

The same result holds for arbitrary finite quivers with an admissible ideal
I and mod kQ/I.

Furthermore, Ext2(Si, Sj) ̸= 0 if and only if there is a relation a1p1+ · · ·+
anpn in the set that generates I with e(p1) = i and s(p1) = j.

Similarly to the hereditary case, the following theorem describes the mod-
ule categories of all Artin algebras over algebraically closed fields:



2.5. STRING ALGEBRAS 27

Theorem 2.5.3. Every basic, finite dimensional algebra over an algebraically
closed field k is isomorphic to kQ/I for some quiver Q and admissible ideal
I.

A special kind of quiver algebras are string algebras as described in [5]:

Definition 2.5.4. Suppose that Q is a quiver and I an ideal in kQ which is
generated by a set of zero relations.

Then A = kQ/I is a string algebra if and only if

1. Any vertex of Q is starting point of at most two arrows.

2. Any vertex of Q is end point of at most two arrows.

3. Given an arrow β, there is at most one arrow γ with s(β) = e(γ) and
βγ /∈ I.

4. Given an arrow γ, there is at most one arrow β with s(β) = e(γ) and
βγ /∈ I

5. Given an arrow β1, there is some bound n(β) such that any path
β1β2 . . . βn(β) contains a subpath in I.

6. Given an arrow β, there is some bound n′(β) such that any path
β1β2 . . . βn′(β) with βn′(β) = β contains a subpath in I.

Definition 2.5.5. We can take the formal inverse β−1 of an arrow β by
defining e(β−1) := s(βn) and s(β−1) := e(β).

A string is a word w = β1β2 . . . βn so that

• βi is either an arrow or the inverse of an arrow for all 1 ≤ i ≤ n

• s(βi) = e(βi+1) for all 1 ≤ i ≤ n

• w does not contain a relation in I

The multiplication of strings is analogous to the multiplication of paths
of a quiver.

A band is a string w = β1β2 . . . βn such that every power of w is defined
and does not contain a relation in I; furthermore w may not be a power of
a string w′ ̸= w.

String algebras are especially useful, since their modules are well known,
also from [5]:
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Definition 2.5.6. Suppose that w = β1β2 . . . βn is a string. Set u(i) =
e(βi+1), for 0 ≤ i < n, and u(n) = s(βn). The string module M(w) is defined
as the representation where for every v ∈ Q0, the vector space M(w)v has as
basis

{zi | u(i) = v}
with zi ̸= zj for i ̸= j. If βi is an arrow, then fβi(zi−1) = zi, otherwise
fβ−1

i
(zi) = zi−1. For all other arrows α, we have fα = 0.

Now suppose that w is even a band and ϕ : Z → Z is an automor-
phism on a vector space over k. The band module M(w, ϕ) is defined as the
representation with

M(w, ϕ)v =
⊕

e(βi+1)=v

Zi

where Zi = Z.
If β1 is an arrow and z ∈ Z1, then fβ1(z) = ϕ(z1) ∈ Z0. If β−1

1 is an
arrow, then for z ∈ Z0, fβ−1

1
(z) = ϕ−1(z) ∈ Z1.

Let 2 ≤ i ≤ n. If βi is an arrow and z ∈ Zi, then fβi(z) = z ∈ Zi−1; if
β−1
i is an arrow and z ∈ Zi−1, then fβ−1

i
(z) = z ∈ Zi.

For all other arrows α, we have fα = 0.

Lemma 2.5.7. Let A = kQ be a string algebra with a string w = β1β2 . . . βn.

1. All A-modules are isomorphic to a string module or a band module

2. Two string modules M(w) and M(w′) are isomorphic if and only if
w = w′ or w′ = w−1 := β−1

n β−1
n−1 . . . β

−1
1 .

3. Two band modules M(w, ϕ) and M(w′, ϕ′) are isomorphic if and only
if ϕ and ϕ′ are similar and w or w−1 is a cyclic permutation of w′.

4. No band module is isomorphic to a string module.

In [6], p. 34 there is a result about morphisms between tree modules that
reduces very nicely to monomorphisms between string modules:

Lemma 2.5.8. M(w) is a submodule of M(w′) if and only if there are arrows
α, β and strings w1, w2 so that w′ is of the form

w1α
−1wβw2

or
wβw2

or
w1α

−1w.



3 | Submodule closed categories
and the Weyl group

In this chapter, let A be a hereditary Artin algebra over an arbitrary field.
We aim to prove that there is a natural bijection between the Weyl group

and the set of full additive cofinite submodule closed subcategories of the
module category. Oppermann, Reiten and Thomas have shown this in [14] for
algebraically closed fields and finite fields. While we use the same bijection,
we will give a completely different method of proof that does not depend on
the field.

First of all, we regard the Weyl group as a Coxeter group. This allows
us to regard the Weyl group elements as equivalence classes of words. In
Section 3.1, we define a total order on these words and call the smallest word
of each equivalence class leftmost. Then we collect some results about this
order.

We conclude Section 3.1 by stating the bijection, which is induced by a
map between words of Weyl group elements and sets of preinjective modules.
In Section 3.4 to Section 3.6, we will prove that a cofinite, full additive
subcategory is submodule closed if and only if a leftmost word is mapped
to its complement. Since we can assign a unique leftmost word to every
element of the Weyl group, this gives a bijection between the full additive
cofinite submodule closed subcategories and the Weyl group.

For this proof, we will use the results of Section 3.2, which is devoted
to monomorphisms between preinjective modules. In particular, we give a
way to construct all modules that contain a given preinjective module as a
submodule. This allows us to draw some lemmas in Section 3.3 about the
structure of full additive cofinite submodule closed subcategories and how
they are related to the words of Weyl group elements.

In the sections 3.4 to 3.6, we use this to prove inductively that the pro-
posed bijection exists. Finally, we conclude this chapter with some corollar-
ies.

Note that in the following, a submodule closed subcategory will always

29
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mean a full additive submodule closed subcategory of modA. Furthermore,
we are equating modules with isomorphism classes of modules, since sub-
module closed subcategories are closed under isomorphisms.

3.1 Leftmost words
Let A be a hereditary Artin algebra and modA the category of finitely pre-
sented modules over A. Furthermore, let I be the subcategory of modA
consisting of all preinjective modules.

We order the simple modules S1, . . . , Sn of A with injective envelopes
I1, . . . , In in such a way that Hom(Ii, Ij) = 0 if i < j. This is possible by
Lemma 2.3.8.

Furthermore, let W be the Weyl group of A. Denote by

S := {s1, s2, . . . , sn}

the set of generators of W and by

(sisj)
mij = 1

the defining relations of W .

Definition 3.1.1. Consider N = (N0 × {1, 2, . . . , n}, <), where < is the
lexicographic order: for pairs (r, i), (r′, j) ∈ N , we have (r, i) < (r′, j) if and
only if one of the following holds:

1. r < r′

2. r = r′ and i < j.

Let w = si1si2 . . . sim be a word over the alphabet S and 0 = r1 ≤ r2 ≤ · · · ≤
rm ∈ N0 the smallest non-negative integers so that

(r1, i1) < (r2, i2) < · · · < (rm, im)

is fulfilled. Then we define

ρ(w) := (r1, i1)(r2, i2) . . . (rm, im).

Example 3.1.2. Consider the Weyl group of the quiver Q from Example
2.4.9. If we set w := s2s3s1s3s4s1 then

ρ(w) = (0, 2)(0, 3)(1, 1)(1, 3)(1, 4)(2, 1).
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Now we can define a total order <l on the words of W ; this is again a
lexicographic order:
Definition 3.1.3. Consider two words w,w′ with

ρ(w) = (r1, i1)(r2, i2) . . . (rm, im)

and
ρ(w′) = (r′1, i

′
1)(r

′
2, i

′
2) . . . (r

′
m′ , i′m′).

We write w <l w
′ if one of the following holds:

1. m < m′

2. m = m′ and there is a j ∈ N so that

(r1, i1) = (r′1, i
′
1), (r2, i2) = (r′2, i

′
2), . . . , (rj−1, ij−1) = (r′j−1, i

′
j−1)

and
(rj, ij) < (r′j, i

′
j).

Now we define the leftmost word; this definition can be found for example
in [1], p. 411:
Definition 3.1.4. We call a word w for w ∈ W leftmost if for every other
word w′ for w the inequality w <l w

′ holds.
Example 3.1.5. For the Weyl group from Example 2.4.9, the words

s3 <l s2s3 <l s3s2 <l s2s3s2

are all leftmost words and

s2s3s2 <l s3s2s3 <l s2s3s1s2s1

are all words for the same element of the Weyl group.
Since <l is a total order, every element w ∈ W has a unique leftmost

word. Obviously, the leftmost word is reduced, that is, it has the smallest
possible length for a word of w.

We follow with a Lemma about the order <l and the relations:
Lemma 3.1.6. Suppose that w1 = u{sisj}mijv for some reflections si, sj,
i ̸= j, words u, v. Set

ρ(w1) = ρ(u) (p, i)(q, j)(p+ 1, i) . . .︸ ︷︷ ︸
mij pairs

ρ1

for some p, q ∈ N0 and a sequence of pairs ρ1. Set

w2 = u{sjsi}mijv.

Then w2 <l w1 if and only if both of the following conditions are fulfilled:
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1. 1 ≤ q.

2. Let (r, k) be a pair in ρ(u). Then (r, k) < (q − 1, j).

Proof. Let ρ(w2) = ρ(u) (q′, j)(p′, i) . . .︸ ︷︷ ︸
mij pairs

ρ2 for some sequence of pairs ρ2.

Suppose that w2 <l w1. Then (q′, j) < (p, i) by Definition 3.1.3 and thus
q = q′ + 1. So the first condition is fulfilled.

Now consider a pair (r, k) in ρ(u). Then (r, k) < (q′, j) = (q − 1, j) and
the second condition is fulfilled.

On the other hand, suppose that the conditions 1 and 2 are fulfilled.
Then q′ is the smallest integer so that (q′, j) is bigger than all (r, k) in ρ(u).
By the second condition, (q′, j) ≤ (q − 1, j).

Furthermore, q is the smallest integer so that (p, i) < (q, j). It follows
that (q − 1, j) < (p, i), since i ̸= j.

Together, (q′, j) ≤ (q − 1, j) < (p, i) and by Definition 3.1.3, we have
w2 <l w1.

The following lemmas are important for the induction with which we
prove the main theorem of this chapter:

Lemma 3.1.7. Let x, x′, y be words and si ̸= sj reflections. We suppose
that the words w = xsiy and w′ = x′sjy are equivalent, x is reduced and
w <l w

′. Let z be the longest initial subword that w and w′ share. If there
is no x′′ ≡ x′ that shares an initial subword with w which is longer than z,
then there are pairs (r, h), (s, i), (t, j) and series of pairs ρ1, ρ2, ρ3, ρ4 so that
ρ(x) = ρ1(r, h)ρ2

ρ(w) = ρ1(r, h)ρ2(s, i)ρ3

and there is some word w′′ ≡ w with

ρ(w′′) = ρ1ρ2(s, i)(t, j)ρ4. (3.1)

Either ρ3 = ρ4, or a pair (q, g) is in ρ4 if and only if (q − 1, g) is in ρ3.
If v is the initial subword of w with ρ(v) = ρ1, then no relation on reflec-

tions in v is needed to transform w into w′′.

Proof. We prove this inductively on the number of relations that are needed
to transform w′ into w. Without loss of generality, we assume that mij is
odd. If mij is even, we only need to relabel si and sj in the arguments below.

If there is some word x1 so that

w = x1{sisj}mijy <l x1{sjsi}mijy = w′ (3.2)
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then w′′ := x1{sjsi}mijy fulfils the assertions by Lemma 3.1.6.
To conclude the basis of our induction, we note that for two words

x1{sjsi}mijy <l x1{sisj}mijy,

weget a similar result: Then

ρ(x1{sjsi}mij) = ρ1ρ
′
2(s− 1, i)(t− 1, j)ρ′4,

where a pair (q − 1, g) is in ρ′2 if and only if (q, g) is in ρ′2. Furthermore,
either ρ′4 = ρ3 or a pair (q − 1, g) is in ρ′4 if and only if (q, g) is in ρ3.

Now suppose that w = u{slsk}mklv is not of the form in equation (3.2),
but the assertion is true for w1 = u{sksl}mklv.

If w1 <l w
′, then there is some word w′′

1 with

ρ(w1) = ρ′1(r
′, h′)ρ′2(s, i)ρ

′
3

and
ρ(w′′

1) = ρ′1ρ
′
2(s, i)(t, j)ρ

′
4.

for some pair (r′, h′) and series of pairs ρ′1, ρ′2, ρ′3, ρ′4. Either ρ′3 = ρ′4, or a pair
(q, g) is in ρ′4 if and only if (q − 1, g) is in ρ′3.

There is some u′ so that ρ′1 = ρ(u′).
Furthermore, there is a pair (q, l) and a series of pairs ρ so that

ρ(w) = ρ(u)(q, l)ρ.

If u′ = u or u′ = u{slsk}mlk−1, then we set (r, h) := (q, l). Since w <l w
′,

we can assume that w <l w1 and by Lemma 3.1.6, the assertion is true.
Since x is reduced, there is only one other case: the word w′′

1 has {sksl}mkl

as a subword and the relation {sksl}mkl ≡ {slsk}mkl gives a word w′′ that
fulfils (3.1).

It remains to prove the assertion if w′ <l w1.
Then we can inductively assume that there is some w′′

1 so that

ρ(w′′
1) = ρ1ρ

′
2(s− 1, i)(t− 1, j)ρ′4,

where a pair (q − 1, g) is in ρ′2 if and only if (q, g) is in ρ′2. Furthermore,
either ρ′4 = ρ3 or a pair (q − 1, g) is in ρ′4 if and only if (q, g) is in ρ3.

But there is no x′′ ≡ x′ that shares an initial subword with w which is
longer than z, the longest initial subword that w and w′ share.

Since w′′
1 and w1 share the initial subword u′ with ρ(u1) = ρ1, this is only

possible if u′ = u{slsk}mlk−1.
Again, we set (r, h) := (q, l). Since x is leftmost , w <l w1 and by Lemma

3.1.6, the assertion is true.
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Completely analogously, we can prove the following:

Lemma 3.1.8. Let x, x′, y be words and si ̸= sj reflections. If the words
w = xsiy and w′ = x′sjy are equivalent, x is leftmost and w′ <l w, then there
are pairs (r, h), (s, i) and series of pairs ρ1, ρ2, ρ3, ρ4 so that ρ(x′) = ρ1ρ2

ρ(w) = ρ1ρ2(s, i)ρ3

and there is some word w′′ ≡ w with

ρ(w′′) = ρ1(r, h)ρ2ρ4

with (r, h) ̸= (s, i) or ρ2 ̸= 0.
Either ρ3 = ρ4, or a pair (q, g) is in ρ4 if and only if (q + 1, g) is in ρ3.
If v is the initial subword of w with ρ(v) = ρ1, then no relation on reflec-

tions in v is needed to transform w into w′′.

We get the following corollary:

Corollary 3.1.9. If u{sisj}mij−1 and usj are leftmost, then either u{sisj}mij

is leftmost or usj < usi.

Proof. If we have u{sjsi}mij <l u{sisj}mij , then usj < usi.
Furthermore, if u{sisj}mij is not leftmost, but u{sisj}mij−1 is, then we

can write w = xsiy and there is some w′ = x′sjy so that w ≡ w′, x is leftmost
and w′ <l w.

By Lemma 3.1.8, there are some words u1, u2 and a reflection sh so that

u = u1u2

w′′ = u1shu2{sisj}mij−1 ≡ w

and w′′ <l w.
So usj ≡ u1shu2 and u1shu2 <l usj.

Remark 3.1.10. Note that in Lemma 3.1.8, we do not actually need to assume
that x is leftmost; it is sufficient that x is reduced and the following holds: let
x′′ ≡ x so that x′′ <l x. Furthermore, assume that x2 is the maximal initial
subword that x′ and x share. Then there is some w′ ≡ w with w′ <l x

′siy.
So analogously to 3.1.9, we see: Suppose that there is some word w′ so

that u{sisj}mij ≡ w′ and for all u′ ≡ u{sisj}mij−1, we have w′ <l u
′si if

mij = 3 and w′ <l u
′sj otherwise. Then usj is not leftmost.

Lemma 3.1.11. Suppose that w ≡ u{sisj}mij with mij ≥ 3 and u reduced.
If there is some i ̸= j ̸= k with w = u′sk{sisj}mij−m for some even m ≥ 2 or
w = u′sk{sjsi}mij−m for some odd m ≥ 3, then mik = 2 or mjk = 2.
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Proof. This is a simple, inductive proof: without loss of generality, we can
assume that w = u1sk{sisj}mij−2 and mjk = 3. Then there is some u2 so
that

w ≡ u2sksjsk{sisj}mij−2 ≡ u2sjsk{sjsi}mij−1.

So there is some u3 so that

u2sjsk ≡ u3{sisk}mik .

If mik ≥ 3, then we have the same situation as before, only considering a
shorter word. Since w is finite, we see with induction on the length of w that
mik = 2 or mjk = 2.

Similarly, we can prove the following:

Lemma 3.1.12. Suppose that usj is leftmost, but usjsi is not leftmost for
some word u and some reflections si, sj with mij ≥ 4.

Then there are s, t ∈ N so that ρ(usjsi) = ρ(u)(t, j)(s, i) and ρ(u) con-
tains the pair (s− 1, i). If mij = 6, then ρ(u) additionally contains the pairs
(s− 2, i) and (t− 1, j).

Proof. Suppose that the assertions are not fulfilled.
We can without loss of generality assume that there is some u′ and re-

flections sk1 , . . . , skm , sl1 , . . . , slm′ so that

usjsi = u′sjsk1 . . . skmsisl1 . . . slm′{sjsi}mij−2 =: u′′{sjsi}mij−2

Then there are s′, t′, t′′, q1, . . . , qm, r1, . . . , rm′ ∈ N so that

ρ(u′′sj) = ρ(u′)(t′, j)(q1, k1) . . . (qm, km)(s
′, i)(r1, l1) . . . (rm′ , lm′)(t′′, j).

If (t′′−1, j) < (s′, i), then the assertions of the lemma are fulfilled. Otherwise,
we get one of the following cases:

(a) There is some 1 ≤ o ≤ m′ with (t′′ − 1, j) < (ro, lo) with mlo,j ≥ 3.

(b) The words sisl1 . . . slm′sj and usi are not leftmost, contrary to the as-
sumptions.

So we can assume that the first case is fulfilled. Furthermore, without loss
of generality, we can assume o = m′.

If mil1 = · · · = mim′ = 2, then

u′′ ≡ u′sjsk1 . . . skmsl1 . . . slm′si =: u′′′.



36 CHAPTER 3. A CONNECTION TO THE WEYL GROUP

Either u′′′ <l u
′′, contrary to the assumptions, or there is some s′′ > s′ so

that

ρ(u′′′) = ρ(u′)(t′, j)(q1, k1) . . . (qm, km)(r1, l1) . . . (rm′ , lm′)(s′′, i).

Since usj is leftmost, but usjsi is not, there is some v1 so that

usjsi ≡ v1{sjsi}mij . (3.3)

Thus,
u′′ ≡ u′{sjslm′}mjlm′ si

and we are in an analogous situation to before, only considering a shorter
word. Since the length of w is finite, the assertions of the lemma are induc-
tively true under these assumptions.

So we can assume without loss of generality that mil1 ≥ 3. Furthermore,
we have (s′+1, i) < (t′′−1, j) < (rm′ , lm′). So there is at least one 1 ≤ o ≤ m′

so that molm′ ≥ 3, since otherwise sjsk1 . . . skmsisl1 is equivalent to a smaller
word (that begins with sj), contrary to the assumption that usj is leftmost.

Then there is some v2 so that

u′sjsk1 . . . skmsisl1 ≡ v2{sisl1}mil1 .

Because of (3.3), Lemma 3.1.7, Lemma 3.1.8 and mil1 ≥ 3, we get some
v3 so that

u′′ ≡ v3sjsisl1 . . . slmsi.

Since mjlm ≥ 3 and mlolm ≥ 3, we are in the same situation as before, only
considering a word of shorter length. Inductively, the proof is complete.

Now we can define an assignment which maps the words of the Weyl
group to the cofinite full additive subcategories of modA. We will show that
this map yields a bijection between the Weyl group and the set of cofinite
submodule closed subcategories.

Let τ = DTr be the Auslander-Reiten translation, see Proposition 2.2.7.
By Definition 2.3.2, every indecomposable preinjective module is isomorphic
to τ rIi for some r ∈ N and 1 ≤ i ≤ n.

Definition 3.1.13. We can identify the pairs in N and the indecomposable
preinjective modules by setting (r, i) = τ rIi.

Not only does this give us a natural order on the preinjective modules,
but this also yields an injective map from the words of the Weyl group to
the cofinite full additive subcategories of modA: If

ρ(w) = (r1, i1)(r2, i2) . . . (rm, im),
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then w 7→ Cw, where Cw is the full additive category with

ind Cw = indA \ {(r1, i1), (r2, i2), . . . , (rm, im)}.

For a Weyl group element w with the leftmost word w, define Cw := Cw.

Example 3.1.14. Let A be as in Example 2.4.9 and w = s1s2s3s2s4s1. Then

ρ(w) = (0, 1)(0, 2)(0, 3)(1, 2)(1, 4)(2, 1)

and

ind Cw = indA \ {I1, I2, I3, τI2, τI4, τ 2I1}.

We will prove that the restriction of this map on the leftmost words is a
bijection between those and the cofinite submodule closed subcategories.

Since every element of the Weyl group has a unique leftmost word, this
gives a bijection between the elements of the Weyl group and the cofinite
submodule closed subcategories.

The same bijection is used in [14].

3.2 Monomorphisms between preinjective mod-
ules

An observation makes the aim of the chapter much simpler to achieve: the
cofinite submodule closed subcategories of the module category correspond
naturally to the cofinite submodule closed subcategories of I, the category
of the preinjective modules.

Thus we devote this section to preinjective modules. In particular, we
give a way to construct all modules U that contain a given preinjective,
indecomposable module M as a submodule.

In Section 3.3 we will use this to show the connection to the Coxeter
structure of the Weyl group. In Section 3.4 to 3.6, we will use this connection
to prove that the bijection that we described exists.

Proposition 3.2.1. There is a bijection between full additive cofinite sub-
module closed subcategories of modA and full additive cofinite submodule
closed subcategories of I. It maps the category C to the category C ′ = C ∩ I.
Furthermore,

indA \ C = ind I \ C.
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Proof. This is completely analogous to [14], Proposition 2.2:
If A is representation finite, then modA = I and there is nothing to

prove. Suppose that A is not representation finite. Since C is cofinite, there
is some r ∈ N, so that τ rI1, τ rI2, . . . , τ rIn ∈ C. Now suppose that M is
a preprojective or regular module. Then τ−rM exists and has an injective
envelope I. Since τ r preserves monomorphisms by 2.3.7, M ⊆ τ rI ∈ C. So
M ∈ C and indA \ C = ind I \ C.

Thus the assignment C 7→ C ∩ I is a bijection between the full additive
cofinite submodule closed subcategories of modA and the full additive cofinite
submodule closed subcategories of I.

We start the construction of exact sequences with a lemma that holds for
all Artin algebras:

Lemma 3.2.2. Let A be an arbitrary Artin algebra and M,X ∈ modA
indecomposable. Let

0 //M

[
f1
f2

]
// X ⊕X ′

[ g11 g12
0 g22

]
// Y ⊕ Y ′ // 0 (3.4)

be an exact sequence for some X ′, Y, Y ′ ∈ modA, so that there is some
Z ∈ modA and an AR-sequence

0 // X

[ g11
f ′2

]
// Y ⊕ Z

[ g′1 g
′
2 ] // τ−1X // 0 . (3.5)

If for some U ∈ modA, a monomorphism h : M � U factors through
f =

[
f1
f2

]
and X - U , then h also factors through f ′′ =

[
−f ′2f1
f2

]
and the

following sequence is exact:

0 //M

[
−f ′2f1
f2

]
// Z ⊕X ′

[
g′2 g

′
1g12

0 g22

]
// τ−1X ⊕ Y ′ // 0 .

Proof. By (3.5), the sequence

0 // X

[
g11
f ′2
0

]
// Y ⊕ Z ⊕ Y ′

[
g′1 g

′
2 0

0 0 idY ′

]
// τ−1X ⊕ Y ′ // 0

is also exact. By Proposition 2.1.4, the diagrams

M
f1 //

−f2
��

X

[ g110 ]
��

X ′
[ g12g22 ]

// Y ⊕ Y ′

(3.6)
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and
X

−f ′2 //

[ g110 ]
��

Z[
g′2
0

]
��

Y ⊕ Y ′ [
g′1 0
0 idY ′

]// τ−1X ⊕ Y ′

are both pushouts and pullbacks. So the diagram

M
−f ′2f1 //

−f2
��

Z[
g′2
0

]
��

X ′ [
g′1g12
g22

] // τ−1X ⊕ Y ′

is itself a pushout and a pullback by Proposition 2.1.5. Therefore, the se-
quence

0 //M

[
−f ′2f1
f2

]
// Z ⊕X ′

[
g′2 g

′
1g12

0 g22

]
// τ−1X ⊕ Y ′ // 0

is exact. It remains to show that h :M � U factors through f ′′ =
[
−f ′2f1
f2

]
.

Since we have assumed that h factors through f =
[
f1
f2

]
, there is a mor-

phism s = [s1s2] : X ⊕X ′ → U so that

h = [ s1 s2 ]
[
f1
f2

]
= s1f1 + s2f2

By the Definition 2.2.10, the morphism s1 : X → U factors through
[ g11
f ′2

]
:

there is a morphism s′ = [s′1s
′
2] : Y ⊕ Z → U so that

s1 = [ s′1 s′2 ]
[ g11
f ′2

]
= s′1g11 + s′2f

′
2.

So we get
h = s′1g11f1 + s′2f

′
2f1 + s2f2.

Since (3.6) is commutative, we have

h = −s′1g12f2 + s′2f
′
2f1 + s2f2 = [ −s′2 s2−s′1g12 ]

[
−f ′2f1
f2

]
(3.7)

and h factors through f ′′.

We can even say more:
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Lemma 3.2.3. Let A be a hereditary Artin algebra, M ∈ I and U ∈ modA.
Suppose that the sequences of modules

(X1, X2, . . . , Xm)

(X ′
1, X

′
2, . . . , X

′
m)

(Y1, Y2, . . . , Ym)

fulfil the following conditions:

(S1) There is an Auslander-Reiten sequence

0 //M // X1 ⊕X ′
1

// Y1 // 0 .

(S2) For all 1 ≤ i < m, there is some αi ∈ N so that Xαi
i | Xi ⊕ X ′

i, but
Xαi
i - U .

(S3) For 1 ≤ i < m, there is an Auslander-Reiten sequence of the form

0 // Xi
// Zi // τ−1Xi

// 0 .

Let Y ′
i be the maximal module that is a direct summand of both Yi and

Zi. Write Yi = Y ′
i ⊕ Y ′′

i and Zi = Y ′
i ⊕ Z ′

i.
If τ−1Xi | X ′

i, then let X ′′
i be the module so that X ′

i = τ−1Xi ⊕X ′′
i and

set Y ′′′
i := 0. Otherwise, set X ′′

i := X ′
i and Y ′′′

i := τ−1Xi.
The following equations hold:

Xi+1 ⊕X ′
i+1 = X ′′

i ⊕ Z ′
i

Yi+1 = Y ′′
i ⊕ Y ′′′

i .

Then for all 1 ≤ i ≤ m there is an exact sequence

0 //M
fi // Xi ⊕X ′

i

gi // Yi // 0 . (3.8)

Furthermore, if a monomorphism M � U exists, then it factors through all
fi.

To prove Lemma 3.2.3, we need the following observation:
Remark 3.2.4. Suppose that

Xi ⊕X ′
i = Xi ⊕Xi+1 ⊕Bi
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and that Ci is the maximal module that is both a direct summand of Yi and
Zi+1. Furthermore, write Yi = Ci⊕C ′

i and Zi+1 = Ci⊕Di. Set Bi = B′
i and

C ′′
i = τ−1Xi if τ−1Xi - Bi and Bi = B′

i ⊕ τ−1Xi and C ′′
i = 0 if τ−1Xi | Bi.

Then the sequences of modules

(X1, X2 . . . , Xi−1, Xi+1, Xi, Xi+2, Xi+3, . . . , Xm)

(X ′
1, X

′
2 . . . , X

′
i−1, Xi ⊕Bi, B

′
i ⊕Di, X

′
i+2, X

′
i+3, . . . , X

′
m)

(Y1, Y2, . . . , Yi−1, Yi, C
′
i ⊕ C ′′

i , Yi+2, Yi+3, . . . , Ym)

also fulfil the conditions (S1) - (S3).
Note that only the i-th and (i + 1)-th elements of these sequences differ

from the elements in the original sequences.
We can easily generalize this to the following: If i < j1 < j2 < · · · < jl,

there is an irreducible morphism Xjk � Xjk+1
for all 1 ≤ k ≤ l and Xj1 | Xi,

then there are two sequences with X ′
m and Ym as their m-th elements that

together with

(X1, . . . , Xi−1, Xj1 , Xj2 , . . . , Xjl , Xi, Xi+1, . . . Xj1−1, Xj1+1, . . .

. . . , Xj2−1, Xj2+1, . . . , Xjl−1, Xjl+1, . . . , Xl)
(3.9)

fulfil (S1) - (S3).
Furthermore, there are sequences of modules that fulfil (S1) - (S3) with

Xm, X
′
m, Ym as their m-th elements so that X ′′

i = X ′
i for all 1 ≤ i ≤ m:

By Definition 3.1.13, if there is a morphism Xi → Xj, then Xj < Xi. So
we can use the above to get sequences that fulfils (S1) -(S3) with Xm, X

′
m, Ym

as their m-th elements so that X1 ≥ X2 ≥ · · · ≥ Xm−1. Then X > τ−1Ii for
all X | X ′

1 and X | Zj with j ≤ i and thus X ′′
i = X ′

i for all 1 ≤ i < m.

Proof of Lemma 3.2.3. We prove the lemma inductively. By Remark 3.2.4,
it is sufficient to prove the assertion for all sequences so that X ′′

i = X ′
i for all

1 ≤ i < m.
For these sequences, we additionally show the following: If there is an

indecomposable direct summand X of Xm ⊕ X ′
m and τXi of Ym so that an

irreducible morphism X → τXi exists, then one of the following holds:

(a) There is a direct summand X ′ ∼= X of Xm ⊕X ′
m so that the component

X ′ → Ym of gm is irreducible and gm(X
′) ⊆ τ−1Xi

(b) Either X ∼= Xj for some i < j < m or X is isomorphic to a direct
summand of Y ′

i .

If m = 1, the assertion is obvious by definition of the Auslander-Reiten
sequence.
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Now suppose that it holds for all series of modules of length m ∈ N or
smaller. We want to show that it also holds for sequences of length m+1 by
applying Lemma 3.2.2.

To do this, we need to prove that there is an exact sequence of the form

0 //M // Xm ⊕X ′
m

[ gm1 gm2
0 gm3

]
// Y ′
m ⊕ Y ′′

m
// 0. (3.10)

so that gm1 is irreducible.
Suppose that Y ′

m has some direct summands Y ′
m1, Y

′
m2, . . . , Y

′
mk and gm

has a component

diag(g11, g22, . . . , gkk) : X
k
m →

k⊕
l=1

Y ′
ml

where g11, g22, . . . , gkk are irreducible and diag(g11, g22, . . . , gkk) is the diago-
nal matrix with entries g11, g22, . . . , gkk. Then there is a copy of Xm on which
this restricts to 

g11
g22
...
gkk

 : Xm →
k⊕
l=1

Y ′
ml,

an irreducible morphism.
By condition (S3) and since Y ′′

1 = 0, every indecomposable direct sum-
mand of Ym has the form τ−1Xi for some 1 ≤ i < m.

If for all τ−1Xi | Y ′
m, there is some copy X of Xm so that the component

X → τ−1Yi of gm is irreducible and gm(X) ⊆ τ−1Xi, then the above and the
induction hypothesis mean that we can apply Lemma 3.2.2.

Suppose that there is some τ−1Xi | Y ′
m, so that the above is not the case.

Since Y ′
m | Zm, there is an irreducible morphism between Xm and τ−1Xi.

By the inductive hypothesis, one of the following holds:

(a) Xm
∼= Xj for some i < j ≤ m

(b) Xm | Y ′
i .

We show that there are sequences

(X
(1)
1 , X

(1)
2 , . . . , X(1)

m )

(X
′(1)
1 , X

′(1)
2 , . . . , X ′(1)

m )

(Y
(1)
1 , Y

(1)
2 , . . . , Y (1)

m )

(3.11)
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that fulfil (S1)-(S3) and have Xm, X ′
m, Ym as their m-th elements so that

τ−1Xi = τ−1X
(1)
i′ , but Xm � X

(1)
j for all i′ < j ≤ m and Xm - Y ′(1)

i′ .
Furthermore, we want to show that X ′′(1)

l = X
′(1)
l for all 1 ≤ l < m. Since

Xm = X
(1)
m , X ′

m = X
′(1)
m , Ym = Y

(1)
m , this is already clear for i = m.

Obviously, we have Xm | Xm ⊕ X ′
m, so either Xm | X ′

1 or Xm | Z ′
k for

some 1 ≤ k ≤ m, k ̸= i.
In the first case, (b) is not possible, since Yi andXi⊕X ′

i do not share direct
summands. In case (a), Remark 3.2.4 yields a sequence (X

(2)
1 , . . . , X

(2)
m ),

where Xj comes before Xi.
In the second case, we can get a new sequence where Xk comes before

Xi, since Z ′
i | Xm ⊕ X ′

m (otherwise, τ−1Xi would not be a direct summand
of Ym). In case (b), this sequence is already the one we need; in case (a), we
can again get a another sequence by Remark 3.2.4 where Xj comes before
Xi.

If we call this new exact sequence (X(2)
1 , . . . , X

(2)
m ), then it is clear by (3.9)

that X ′′(2)
l = X

′(2)
l holds for all 1 ≤ l < m.

Since there are only finitely many j with i′ < j ≤ m, we get sequences of
the form (3.11) after finitely many steps.

The inductive assumption gives us an exact sequence

0 //M
f ′m // Xm ⊕X ′

m

g′m // Ym // 0 (3.12)

where the component Xm → Ym of g′m is irreducible and g′m(Xm) ⊆ τ−1Xi.
If τ−1Xi = Ym, then it is sufficient to look at the sequence (3.12) instead

of
0 //M

fm // Xm ⊕X ′
m

gm // Ym // 0 . (3.13)

If there is some τ−1Xk so that τ−1Xi ⊕ τ−1Xk | Ym, then we can assume
that gm induces an indecomposable morphism Xm → τ−1Xk and gm(Xm) ⊂
τ−1Xk.

So together (3.13) and (3.12) give a new exact sequence

0 //M
f ′′m // Xm ⊕X ′

m

g′′m // Ym // 0 ,

where the induced morphisms Xm → τ−1Xi and Xm → τXk of g′′m are
irreducible and gm(Xm) ⊂ τ−1Xi ⊕ τ−1Xk.

Inductively, there is an exact sequence of the form (3.10), where gm1 is
irreducible and we can use Lemma 3.2.2 to get an exact sequence

0 //M
fm+1 // Xm+1 ⊕X ′

m+1

gm+1 // Ym+1
// 0 .
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If there is a monomorphism M � U , then it factors through fm+1.
This gives us not only the assertion of the lemma but also the additional

assumptions we have made:
Let

gm =
[
g′m1 g′m2

]
: Y ′

m ⊕ Z ′
m → τ−1Xm

be the epimorphism of the AR-sequence. By (3.10) and Lemma 3.2.2, we get

gm+1 =

[
g′m2 g′m1gm2

0 gm3

]
: Z ′

m ⊕X ′
m → τ−1Xm ⊕ Y ′′

m.

Let X be a direct summand of Z ′
m ⊕ X ′

m and τ−1Xi a direct summand of
τ−1Xm ⊕ Y ′′

m so that there is an irreducible morphism X → τ−1Xi.
If i = m, then X is a direct summand of Zm. If it is also a direct summand

of Z ′
m, then gm+1(X) =

[
g′m2
0

]
(X) and (a) holds. Otherwise, X is a direct

summand of Y ′
m.

If i ̸= m and X is a direct summand of X ′
m, then either (b) holds or[

gm2

gm3

]
(X ′

m) ⊂ τ−1Xi.

Thus gm2(X
′
m) = 0 and gm+1(X) =

[
0
gm3

]
(X). So (a) holds.

Finally, suppose that i ̸= m and X is not a direct summand of X ′
m.

Because of the irreducible morphism between X and τ−1Xi, the former is a
direct summand of Zi. By (S3), either it is a direct summand of Y ′

i or of Xj

for some i < j < m.

A perhaps simpler way to interpret the sequences of modules used in the
lemma above is the following:

Remark 3.2.5. Suppose that Xi, X
′
i, Yi are the i-th elements of sequences that

fulfil (S1) - (S3). Then Xi+1⊕X ′
i+1 are defined by taking the exact sequence

0 //M // Xi ⊕X ′
i

// Yi // 0 .

and the Auslander-Reiten sequence

0 // Xi
// Zi // τ−1Xi

// 0 .

We can add these sequences together and get

0 //M ⊕Xi
// Xi ⊕X ′

i ⊕ Zi // Yi ⊕ τ−1Xi
// 0 .



3.2. MONOMORPHISMS BETWEEN PREINJECTIVE MODULES 45

Then Xi is the maximal module that is a direct summand of both the first
and the second term: we still get an exact sequence if we delete it in both
terms:

0 //M // X ′
i ⊕ Zi // Yi ⊕ τ−1Xi

// 0 .

The same holds for Gi, the maximal module that is both a direct summand
of the middle term and the last term. Deleting this in both terms gives us
an exact sequence

0 //M // Xi+1 ⊕X ′
i+1

// Yi+1
// 0 .

These modules have some interesting properties:

Corollary 3.2.6. If there is a monomorphism h : M � U , then for se-
quences of modules

(X1, X2, . . . , Xm)

(X ′
1, X

′
2, . . . , X

′
m)

(Y1, Y2, . . . , Ym),

which fulfil (S1) - (S3), there is a monomorphism Xi ⊕X ′
i � Yi ⊕ U for all

1 ≤ i < m.
Thus, every injective direct summand of Xi ⊕X ′

i is a direct summand of
U .

Proof. By Lemma 3.2.3, there is an exact sequence

0 //M
fi // Xi ⊕X ′

i

gi // Yi // 0

for 1 ≤ i ≤ m so that h factors through fi. Thus, there is some morphism hi
with h = hifi. So hi is a monomorphism on Im fi. Since Ker gi = Im fi, the
morphism [

gi
hi

]
: Xi ⊕X ′

i � Yi ⊕ U

is a monomorphism.
So every injective direct summand I of Xi ⊕X ′

i is a direct summand of
Yi ⊕ U . Since Xi ⊕X ′

i and Yi do not share any direct summands, I is even
a direct summand of U .

We can use the following lemma to show that there is an algorithm that,
for given indecomposable, preinjective module M constructs all U with M �
U .
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Lemma 3.2.7. Suppose there is an irreducible morphism between (s, i) =
τ sIi and (t, j) = τ tIj. Then either s = t and i > j or s = t+ 1 and i < j.

Proof. By 2.3.6,
s− 1 ≤ t ≤ s.

Furthermore, we have ordered the injective modules so that Hom(Ii, Ij) = 0
if i < j.

By 2.3.7, we get Hom(τ sIi, τ
sIj) = 0 if i < j. By 2.2.14, there is an

irreducible morphism τ sIi → τ s−1Ij if and only if there is an irreducible
morphism τ sIj → τ sIi.

So if s = t, then i > j and if s = t+ 1 then i < j.

Proposition 3.2.8. Let A be a hereditary Artin algebra with M ∈ modA
indecomposable and preinjective. Let U ∈ modA, so that M is not a direct
summand of U . There is a monomorphism M � U if and only if for some
m ∈ N there are three sequences of modules

(X1, X2, . . . , Xm)

(X ′
1, X

′
2, . . . , X

′
m)

(Y1, Y2, . . . , Ym)

that fulfil the conditions (S1) - (S3) and furthermore

(S4) If for some 1 ≤ i ≤ m the module Xi ⊕ X ′
i has an injective direct

summand I, then I | U .

(S5) Xm ⊕X ′
m is a direct summand of U .

Proof. To prove this, we use Lemma 3.2.3: since the sequences fulfil (S1)-
(S3), there are exact sequences of the form

0 //M
fi // Xi ⊕X ′

i

gi // Yi // 0

for all 1 ≤ i ≤ m. If a monomorphism M � U exists, it factors through fi
for all 1 ≤ i ≤ m.

Thus one direction is obvious: if such sequences of modules exist, fm :
M � U is a monomorphism.

On the other hand, suppose that no series of modules fulfil (S1) - (S5).
If M is injective, then it cannot be a submodule of U . Otherwise, there

are series of modules that fulfil (S1) - (S3), since there is an AR-sequence
that starts in M and we can set m = 1.

If (S4) is not fulfilled, then M cannot be a submodule of U by Corollary
3.2.6.
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Otherwise, there is some non-injective Xm+1 and some αm+1 ∈ N so that
X
αi+1

m+1 | Xm⊕X ′
m, but Xαi+1

m+1 - U . So we can extend the sequences of modules
to

(X1, X2, . . . Xm, Xm+1)

(X ′
1, X

′
2, . . . X

′
m, X

′
m+1)

(Y1, Y2, . . . Ym, Ym+1)

so that these series fulfil (S1) - (S3). If these sequences fulfil (S4), we can
extend them again to sequences of length m+ 2.

We have M = (r, i) for some r ∈ N and 1 ≤ i ≤ n. Every indecomposable
direct summand of X1 ⊕ X ′

1 is of the form (r′, j) < (r, i) for some r′ ∈ N0

and 1 ≤ j ≤ n. Furthermore, if X1 = (r′, j), then every direct summand of
Z ′

1 is of the form (r′′, k) < (r′, j), and analogously for X2, X3, . . . .
So after finitely many steps, either we find sequences that do not fulfil

(S4), or there is some m′ so that every direct summand of Xm ⊕ X ′
m is

injective. If (S4) is still fulfilled, then (S5) is also fulfilled, a contradiction to
our assumption.

The proof of Proposition 3.2.8 shows the following:
Corollary 3.2.9. Let M and U be preinjective modules over A. If M ⊂
U , then all sequences of modules that fulfil (S1) - (S3) can be extended to
sequences of modules that fulfil (S1) - (S5).

If M ̸⊂ U , then all sequences of modules that fulfil (S1) - (S3) can be
extended to sequences that fulfil (S1) - (S3) so that Xm⊕X ′

m has an injective
direct summand that is not a direct summand of U .
Remark 3.2.10. By Corollary 3.2.9, we can use the proposition as an algo-
rithm that finds out for given indecomposable, preinjective M and modules
U , if there is a monomorphism M � U . Alternatively, we can use it to
construct all U with M ⊂ U .

Note that it is very simple to generalize this for arbitrary preinjective M :
Corollary 3.2.11. Let M be a preinjective module so that M =

⊕m
i=1Mi

with Mi indecomposable. Let U be some module in modA. Denote the middle
term of the Auslander-Reiten sequence that starts in Mi by Ni.

Furthermore, order M1, . . . ,Mm so that there is some 0 ≤ k ≤ m with
Mi | U if and only if i ≤ k.

Suppose that the sequences of modules
(X1, X2, . . . , Xm)

(X ′
1, X

′
2, . . . , X

′
m)

(Y1, Y2, . . . , Ym)
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fulfil (S2), (S3) and

(S’1) We have

X1 ⊕X ′
1 =

k⊕
i=1

Mi ⊕
m⊕

i=k+1

Ni

and

Y1 =
m⊕

i=k+1

τ−1Mi.

Then for all 1 ≤ i ≤ m, there is an exact sequence

0 //M
fi // Xi ⊕X ′

i

gi // Yi // 0 .

There is a monomorphism M � U if and only if there is some m′ > m and
modules Xm+1, . . . Xm′, X ′

m+1, . . . X
′
m′, Ym+1, . . . Ym′ so that the sequences

(X1, X2, . . . , Xm′)

(X ′
1, X

′
2, . . . , X

′
m′)

(Y1, Y2, . . . , Ym′)

fulfil (S’1) and (S2) - (S5).
Furthermore, if a monomorphism M � U exists, then it factors through

all fi.

Example 3.2.12. Take A as in Example 2.4.9. A part of the preinjective
component of the AR-quiver of A is:

. . . //

!!C
CC

CC
CC

CC τI3 //

!!C
CC

CC
CC

C τI1 //

  A
AA

AA
AA

A I3 //

��?
??

??
??

I1

. . . //

=={{{{{{{{{{ τI4 //

=={{{{{{{{
τI2 //

>>}}}}}}}}
I4 //

??�������
I2

Suppose that we want to know whether M = τI3 is a submodule of, say,
U = I2 ⊕ I3 ⊕ I4.

Then by (S1), X1 ⊕ X ′
1 = τI1 ⊕ τI2 and Y1 = I3. Since neither τI1 nor

τI2 is a direct summand of U , we arbitrarily set X1 := τI1.
The AR-sequence

0 // τI1 // I3 ⊕ I4 // I1 // 0

and (S3) show that X2 ⊕ X ′
2 = τI2 ⊕ I4 and Y2 = I1. Since I4 is a direct

summand of U , we set X2 := τI2 to fulfil (S2). Using the AR-sequence

0 // τI2 // I3 ⊕ I4 // I2 // 0
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we get X3 ⊕ X ′
3 = I3 ⊕ I24 and Y3 = I1 ⊕ I2. Since I24 is injective, but not

a direct summand of U , the condition (S4) is not fulfilled and there is no
monomorphism between M and U .

We have one more lemma:

Lemma 3.2.13. Let M be an indecomposable, preinjective module and U ∈
modA. If the sequences

(X1, X2, . . . , Xm)

(X ′
1, X

′
2, . . . , X

′
m)

(Y1, Y2, . . . , Ym)

(3.14)

fulfil (S1) - (S3), then for every 1 ≤ i ≤ m, there is an exact sequence

0 // Xi ⊕X ′
i

// Yi ⊕Xm ⊕X ′
m

// Ym // 0 . (3.15)

Furthermore, if there is an exact sequence

0 // Xi ⊕X ′
i

// Yi ⊕ U // Z // 0 (3.16)

then there is also an exact sequence

0 //M0
// U // Z // 0 . (3.17)

Proof. Let Y be the maximal module so that Y | Yi and Y | Ym. Furthermore,
suppose that Yi = Y ⊕ Y ′ and Ym = Y ⊕ Y ′′.

We use Corollary 3.2.11 on Xi⊕X ′
i and Y ⊕U . Take i < j1 < j2 · · · < jl so

that Xjk are those modules in the sequence (Xi+1, . . . Xm) which are already
a direct summand of Xi ⊕X ′

i. Then

(Xm+1, . . . , Xj1−1, Xj1+1, . . . , Xj2−1, Xj2+1, . . . , Xjl−1, Xjl+1, . . . , Xm)

is part of a triple of sequences that fulfil (S’1) and (S2) - (S5) with respect
to Xi ⊕X ′

i and Y ′ ⊕ U .
So the same construction that yields an exact sequence

0 //M // Xm ⊕X ′
m

// Ym // 0 ,

also gives an exact sequence

0 // Xi ⊕X ′
i

// Y ′ ⊕Xm ⊕X ′
m

// Y ′′ // 0 ,

when used on Xi ⊕X ′
i and Y ′ ⊕ U instead of M and U . Adding Y to both

the middle and the last term gives (3.15).
The exact sequence (3.16) is given by a sequence of modules that fulfil

(S’1) and (S2) - (S5). Together with the sequences (3.14), this yields the
exact sequence 3.17.
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3.3 Preinjective modules and the Weyl group
In this section we connect our results about preinjective modules with the
relations of the Weyl group.

First we give a Lemma that shows the connection between the AR-
sequences and the relations:

Lemma 3.3.1. Fix two integers 1 ≤ i, j ≤ n. Set

α := max{v | there are s, t with an irreducible morphism (s, i)→ (t, j)v}
β := max{v | there are s, t with an irreducible morphism (t, j)→ (s, i)v}

Let (sisj)mijbe the defining relation of the Weyl group as in Lemma 2.4.7.
Then the value of mij depends on αβ in the following way:

αβ 0 1 2 3 ≥ 4
mij 2 3 4 6 ∞.

Proof. From 2.3.7, we know that α and β do not depend on s. Let (cij)nn be
the Cartan matrix. By Lemma 2.3.9, either α = cij and β = cji or β = cij
and α = cji. Lemma 2.4.7 gives the stated values for mij.

Now we define a recursion that plays a fundamental role in the proof of
the bijection:

Definition 3.3.2. For given α, β ∈ N define a recursion formula by

E(0) = 1

E(1) = α

E(2m) = max(βE(2m− 1)− E(2m− 2), 0)

E(2m+ 1) = max(αE(2m)− E(2m− 1), 0)

for all m ∈ N.

This recursion is directly linked to the Weyl group:

Lemma 3.3.3. Let α, β be as in Lemma 3.3.1. Then

E(m) = 0⇐⇒ m ≥ mij − 1.

Proof. If αβ < 4, then we get the following values for m ≤ 6:
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αβ mij E(0) E(1) E(2) E(3) E(4) E(5) E(6)
0 2 1 0 0 0 0 0 0
1 3 1 1 0 0 0 0 0
2 4 1 α 1 0 0 0 0
3 6 1 α 2 α 1 0 0

(3.18)

Obviously, E(m) = 0 if αβ < 4 and m > 6.
If αβ ≥ 4, then mij = ∞ by Lemma 3.3.1 and we need to show that

E(m) ̸= 0 for all m ∈ N.
Since E(2) = αβ − 1 > E(0) > 0, we get inductively for m > 1:

E(2m) = βE(2m− 1)− E(2m− 2)

= (αβ − 1)E(2m− 2)− βE(2m− 3)

= (αβ − 1)E(2m− 2)− E(2m− 2)− E(2m− 4)

> (αβ − 3)E(2m− 2)

≥ E(2m− 2).

The proof that E(2m+ 1) > E(2m− 1) > 0 is completely analogous.

Next, we need some notation:

Definition 3.3.4. Fix s ∈ N0 and 1 ≤ i ̸= j ≤ n and let M0 := τ sIi. If
s ≥ 1 or j < i, let t be the integer with (s − 1, i) < (t, j) < (s, i). Denote
M1 := τ tIj, M2 := τ s−1Ii, M3 := τ t−1Ij, . . . .

The following lemma is a key part in the proof that there is a bijection
between cofinite, submodule closed subcategories and the elements of the
Weyl group:

Lemma 3.3.5. Let U be a module so that Mk - U for all Mk ̸= 0 with
0 ≤ k ≤ mij − 1. Furthermore, let α, β be as in Lemma 3.3.1. Then for all
m ≥ 1 with Mm+1 ̸= 0 and E(m − 1) > 0, there are series of modules that
fulfil (S1) - (S3) and yield exact sequences

0 //M0
fm //M

E(m)
m ⊕ Um //M

E(m−1)
m+1

// 0 (3.19)

so that no Mk - Um for all Mk ̸= 0 with 0 ≤ k ≤ mij − 1.
If there is a monomorphism M0 � U , then it factors through fm for all

m.
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Proof. If M0 is injective, there is nothing to show. So we can assume that
an AR-sequence starts in M0.

Let α, β be as in Lemma 3.3.1. Then there are modules M ′, N ′ so that

0 //M0
//Mα

1 ⊕N ′ //M2
// 0 (3.20)

and
0 //M1

//Mβ
2 ⊕M ′ //M3

// 0

are AR-sequences. Note that by 2.3.7, for all non-injective M2m−1, m ∈ N0,
there are AR-sequences of the form

0 //M2m−1
//Mβ

2m ⊕ τmM ′ //M2m+1
// 0 . (3.21)

For all non-injective M2m, m ∈ N they are of the form

0 //M2m
//Mα

2m+1 ⊕ τmN ′ //M2m+2
// 0 .

If we set U1 := N ′, the AR-sequence that starts in M0 is the exact
sequence

0 //M0
//M

E(1)
1 ⊕ U1

//M
E(0)
2

// 0 .

If M1 is injective, then the proof is complete. So we can assume that an
AR-sequence starts in M1 and use Lemma 3.2.3.

Since M1 - U , we set

X1 := X2 := X3 := · · · := XE(1) :=M1,

Then we get sequences that fulfil conditions (S1) - (S3) by setting

X ′
1 :=M

E(1)−1
1 ⊕N ′,

X ′
2 :=M

E(1)−2
1 ⊕Mβ−1

2 ⊕N ′ ⊕M ′,

. . .

X ′
E(1) :=M

(E(1)−1)β−1
2 ⊕N ′ ⊕ (M ′)E(1)−1

and

Y1 :=M2,

Y2 :=M3,

Y3 :=M2
3 ,

. . .

YE(1) :=M
E(1)−1
3
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We get

XE(1)+1 ⊕X ′
E(1)+1 =M

E(1)β−1
2 ⊕N ′ ⊕ (M ′)E(1)

and YE(1)+1 = M
E(1)
3 . Thus by Lemma 3.2.3 there is some f1 so that the

following sequence is exact:

0 //M0
f1 //M

E(1)β−1
2 ⊕N ′ ⊕ (M ′)E(1) //M

E(1)
3

// 0 .

If there is a monomorphism M � U , then it factors through f1.
Since U2 := N ′ ⊕ (M ′)E(1), we can write the exact sequence as

0 //M0
f1 //M

E(2)
2 ⊕ U2

//M
E(1)
3

// 0 .

We show the rest inductively: Suppose that

0 //M0
//M

E(2m−1)
2m−1 ⊕ U2m−1

//M
E(2m−2)
2m

// 0

is an exact sequence and E(2m − 1) ̸= 0. Furthermore, suppose that this
exact sequence is yielded by sequences of modules of the length m′−1. Then

Xm′ :=M2m−1, X
′
m′+1 :=M

E(2m−1)−1
2m−1 ⊕ U2m−1, Ym′ :=M

E(2m−2)
2m

are elements of sequences that fulfil the condition (S1) - (S3) of Lemma 3.2.3.
If M2m−1 is injective, then M2m+1 = τM2m−1 = 0 and there is nothing

to prove. If M2m−1 is not injective, then the AR-sequence (3.21) exists. As
above, we set

Xm′+1 := · · · := Xm′+E(2m−1)−1 :=M2m−1.

This determinesX ′
m′+1, . . . , X

′
m′+E(2m−1)−1 and Ym′+1, . . . , Ym′+E(2m−1)−1 com-

pletely.
Since E(2m) = βE(2m− 1)− E(2m− 2), we get

Xm′+E(2m−1) ⊕X ′
m′+E(2m−1) =M

E(2m)
2m ⊕ U2m−1 ⊕ (τm−1M ′)E(2m−1)

Ym′+E(2m−1) =M
E(2m−1)
2m+1

Together with U2m := U2m−1⊕(τm−1M ′)E(2m−1), this yields an exact sequence

0 //M0
f2m //M

E(2m)
2m ⊕ U2m

//M
E(2m−1)
2m+1

// 0

for some f2m. By Lemma 3.2.3, M � U factors through f2m.
Analogously, we can construct

0 //M0
f2m+1 //M

E(2m+1)
2m+1 ⊕ U2m+1

//M
E(2m)
2m+2

// 0

if E(2m) ̸= 0 and M2m+2 ̸= 0.
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Corollary 3.3.6. Let Um be as in Lemma 3.3.5. If (r, l) | Um, then M0 >
(r, l) > Mm+1.

If M0 > (r, l) > M1, then (r, l) | Um if and only if mil ≥ 3.
If M1 > (r, l) > Mm, then (r, l) | Um if and only if mil +mjl ≥ 5.
If Mm > (r, l) > Mm+1 and m is even, then (r, l) | Um if and only if

mil ≥ 3. If m is odd, then (r, l) | Um if and only if mjl ≥ 3.

Proof. This is obvious from the proof of Lemma 3.3.5.

Remark 3.3.7. Note that mij = mji. If we fix s, t as in Definition 3.3.4, we
can set M ′

0 := τ tIj, M ′
1 := τ s−1Ii, M ′

2 := τ t−1Ij, M ′
3 := τ s−2Ii, . . . and

E ′(0) = 1

E ′(1) = β

E ′(2m) = αE(2m− 1)− E(2m− 2)

E ′(2m+ 1) = βE(2m)− E(2m− 1).

With this definition, we get analogous results to 3.3.3, 3.3.5 and 3.3.6.

3.4 Preliminaries for the main theorem
This section collects some preliminaries which are necessary to prove that
there is a bijection between the Weyl group and the cofinite, submodule
closed subcategories: First, we show that every cofinite submodule closed
subcategory is of the form Cw for some word w.

Then we will prove an auxiliary result that will make the inductions in
the next section possible.

Lemma 3.4.1. If a cofinite, full additive subcategory C of modA is submod-
ule closed, then there is a word w over S = {s1, s2, . . . sn} with C = Cw.

Proof. By Lemma 3.2.1,

indA \ C = ind I \ C =: {(r1, i1), (r2, i2), . . . (im, rm)}.

for some m ∈ N and modules (r1, i1) < (r2, i2) < · · · < (rm, im).
Suppose that for all words w over S

ρ(w) ̸= (r1, i1)(r2, i2) . . . (rm, im).

By Definition 3.1.1, either r1 > 0 or there is some 1 ≤ j ≤ m− 1 so that

(rj, ij) < (rj+1, ij+1 − 1).
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In the first case, C contains the middle term of the AR-sequence that starts
in (r1, i1) by Lemma 3.2.7. In the second case, C contains the middle term of
the AR-sequence that starts in (rj+1, ij+1). In both cases, C is not submodule
closed.

So by Definition 3.1.13, there is some w with

ρ(w) = (r1, i1)(r2, i2) . . . (rm, im)

and C = Cw.

Recall that Cw = Cw, where w is the leftmost word for w. So we need to
prove that the word w in Lemma 3.4.1 is leftmost. Furthermore, we need the
other direction, namely, that Cw is submodule closed if w is leftmost.

We will use the following lemma for the proofs of both directions:

Lemma 3.4.2. Suppose that the words w and w′′ are equivalent and there
are pairs (r, h), (s, i), (t+ 1, j) and series of pairs ρ1, ρ2, ρ4 so that

ρ(w) = ρ1(r, h)ρ2(s, i)ρ3,

ρ(w′′) = ρ1ρ2(s, i)(t+ 1, j)ρ4

and either ρ3 = ρ4, or a pair (q, g) is in ρ4 if and only if (q − 1, g) is in ρ3.
Furthermore, suppose that the word x with ρ(x) = ρ1(r, h)ρ2 is reduced

and mij ≥ 3.
If M0 = (s, i),M1 = (t, j),M2, . . . ,Mmij−3 /∈ Cw, then there are sequences

of modules as in Lemma 3.2.3 (used on M0 and any U ∈ Cw) that yield some
U ′, Y ∈ I so that

0 //M0
//Mmij−2 ⊕ U ′ // Y // 0 (3.22)

is an exact sequence and either Y ∈ Cw or both Y = (r, h)E(mij−3) and U ′ ∈ Cw
hold.

Proof. We show this by induction on the number m of Coxeter relations
needed to transform w into w′′.

Furthermore, we show that a few additional assertions hold, which we
need for the inductive proof:

(A1) Let (r′, h′) be a module so that (r′, h′)γ | Y . If Z ∈ Cw is a direct
summand of the middle term of the AR-sequence that ends in (r′, h′),
then Zγ | U ′.
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(A2) Let V be the maximal direct summand of U ′, so that for every (q, g) | V
there is some (r′, h′) | Y with an indecomposable morphism (q, g) →
(r′, h′). Furthermore, let (q′, g′) be the biggest indecomposable direct
summand of V and (r′′, h′′) the smallest indecomposable direct sum-
mand of Y .
If there is some o ∈ N0 so that Y, τ−1Y, . . . , τ−oY ∈ Cw and τ−o−1Y /∈
Cw, then one of the following holds:

(a) τ−o−1Y = (r, h)E(mij−3) and

τ−1V, τ−2V, . . . , τ−o−1V ∈ Cw.

(b) Let V ′ be the maximal direct summand of V so that for every
(q, g) | V ′ there is some 0 ≤ k ≤ o + 1 so that (q − k, g) /∈ Cw.
Then there is some module Y ′ with an exact sequence

0 // τ−o−1V ′ // τ−o−1Y ⊕ U ′′ // Y ′ // 0 . (3.23)

Either Y ′ ∈ Cw or both Y ′ = (r, h)E(mij−3) and U ′′ ∈ C ′ hold,
where

ind C ′ = ind Cw \M

with

M =

M ∈ ind I | ∃0 ≤ k ≤ o :


τ k+1M /∈ Cw

(r′′, h′′) < τ k+1M
τ k+1M < (q′ − 1, g′)




For all U ∈ C ′, there are sequences of modules that fulfil (S’1),
(S2) and (S3) with respect to τ−o−1V ′ and U and yield (3.23) as
in Corollary 3.2.11.
Furthermore, (A1) and (A2) still hold if we exchange U ′, Y and
Cw for U ′′, Y ′ and C ′ respectively.

If there are some reflections sk, sl and words u, v so that

w = u{sksl}mklv and w′′ = u{slsk}mklv,

then this is the result of Lemma 3.3.5.
Now suppose that w = u{sksl}mklv and the lemma, (A1) and (A2) are

proved for the word w1 = u{slsk}mklv. Furthermore, assume that the trans-
formation of w into w1 is the first step in the transformation of w into w′′.
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Either there are modules U ′
(1), Y(1) so that the exact sequence given by

the inductive assumptions is

0 //M0
//Mmij−2 ⊕ U ′

(1)
// Y(1) // 0 , (3.24)

or we can write the exact sequence given by the inductive assumption as a
τ -translate or a τ−1-translate of (3.24).

Let w1 ≡ w′′
1 with

ρ(w1) = ρ′1(r1, h1)ρ
′
2(s

′, i)ρ′3

and
ρ(w′′

1) = ρ′1ρ
′
2(s

′, i)(t′ + 1, j)ρ′4.

so that either ρ′3 = ρ′4, or a pair (q, g) is in ρ′4 if and only if (q− 1, g) is in ρ′3.
Furthermore, we can assume without loss of generality that mkl is even.

Then there are q1, q2 ∈ N0 and a series of pairs ρ′′ so that

ρ(w) = ρ(u)(q1 −
mkl

2
+ 1, k)(q2 −

mkl

2
+ 1, l) . . . (q1, k)(q2, l)ρ

′′.

We can assume that (r, h) is in the series of pairs ρ(u)(q1 − mkl

2
+ 1, k)(q2 −

mkl

2
+ 1, l) . . . (q1, k)(q2, l), since otherwise there is nothing to show. Analo-

gously, we assume that the pair (r1, h1) is in the series of pairs ρ(u{slsk}mkl).
Furthermore, we can assume w′′

1 ̸= w′′ and M0 > (q2, l): Let x be the word
with ρ(x) = ρ1(r, h)ρ2(s, i) and x′ be the word so that w = xx′. Then there
is some x′′ so that w′′ = x′′x′.

Analogously to Lemma 3.3.5, if mlk ≥ 3, then there is some X ∈ Cw so
that

0 // (q2, l) // (q1, k)⊕X // (q1 − mkl

2
+ 1, k) (3.25)

is an exact sequence.

We have two different cases to consider:
First, assume that u is also an initial subword of w′′. Then u{slsk}mkl−1

is an initial subword of w′′
1, since x with ρ(x) = ρ1(r, h)ρ2 is reduced. Fur-

thermore, w <l w1 and (q1 − mkl

2
+ 1, k) = (r, h).

If (r1, h1) ∈ Cw, then we can set Y := Y(1) and we have (q1, k) = (r1 −
1, h1).

(A1) holds by the inductive assumption, (A2) holds by (3.25), (A1) and
Lemma 3.2.13.

On the other hand, if (r1, h1) /∈ Cw, then (q1, k) = (r1, h1). Furthermore,
if we have Y(1) = (r1, h1)

E(mij−3), then (A1), (3.25) and Lemma 3.2.13 give
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an exact sequence of the form (3.22) with Y = (r, h)E(mij−3). (A1) holds
obviously.

If Y(1) ̸= (r1, h1)
E(mij−3), then we set Y := Y(1) and we only need to prove

that (A2) holds. Analogously to above, this is the result of Lemma 3.2.13
and (3.25).

It remains to prove the assumption in the case that u is not an initial
subword of w′′.

If w <l w1, then ρ(w1) contains the series of pairs

ρ(u)(q2 −
mkl

2
+ 1, l) . . . (q1, k)(q2, l)(q1 + 1, k)

and the exact sequence given by the induction is either (3.24) or the τ -
translate of (3.24). We can assume without loss of generality, that some
indecomposable direct summand of Y(1) or τY(1) respectively is smaller than
(q1 + 1, k). Otherwise, the arguments below hold analogously for an exact
sequence given by (A2).

By Proposition 3.2.8, the exact sequence yielded by the inductive assump-
tion is given by sequences of modules

(X1, X2, . . . , Xm)

(X ′
1, X

′
2, . . . , X

′
m)

(Y1, Y2, . . . , Ym)

that fulfil (S1) - (S3). By Remark 3.2.4, we can assume that X ′′
γ = X ′

γ for
all X ′

γ.
In the following we begin with the case where the exact sequence given

by the inductive assumption is (3.24).
Since M0 > (q1 +1, k) and by Lemma 3.2.3, these series of modules yield

an exact sequence

0 //M0
// Xγ ⊕X ′

γ
// Yγ // 0 (3.26)

so that for every (r′1, h
′
1) | Yγ the inequality (q1, k) < (r′1, h

′
1) holds. By the

inductive assumption, we can even assume that (q1, k) < (r′1, h
′
1) ≤ (q1+1, k)

for all (r′1, h′1) /∈ Cw1
. So either (r′1, h

′
1) = (q2, l) or (r′1, h

′
1) = (q1 + 1, k)

Furthermore, there is an irreducible morphism Xγ → (r′1, h
′
1) and (q1 +

1, k) ≤ Xγ /∈ Cw. Analogously to Lemma 3.3.5, if mlk ≥ 3, then there is some
X ∈ Cw so that

0 // (q1 + 1, k) // (q2, l)⊕X // (q1 − mij

2
+ 1, k) (3.27)
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withX ∈ Cw1
. Together with the τ -translate of the exact sequence (3.25), this

shows that Xγ ̸= (q2+1, l) and Xγ ̸= (q1+1, k): Otherwise, by Lemma 3.2.13,
we would get an exact sequence where either (q1−mkl

2
+1, k) or (q2−mkl

2
+1, l)

is a direct summand of the last term, but every direct summand of the middle
term is in Cw. This is a contradiction to the inductive assumption.

Since (q1 + 2, k) > Xγ > (q1 + 1, k), we have τ−1Xγ ∈ Cw1
. Inductively,

Y(1) ∈ Cw and (q1, k) < (r′1, h
′
1) for every (r′1, h

′
1) | Y(1).

If (q1 + 1, k) | Yγ for any exact sequence of the form (3.26), then there is
such a sequence so that Yγ ∈ Cw, but Yγ /∈ Cw1

.
Otherwise, the sequence (3.24) is already of the form (3.22).
In the latter case, it is easily seen that this sequence fulfils (A1) and

(A2): the former holds by the inductive assumption. Define V , V ′, C ′ as in
(A2) and let V(1), V ′

(1) be the corresponding modules, C ′(1) the corresponding
category for the sequence (3.24). Then V = V(1), V ′ = V ′

(1) and C ′ = C ′(1).
Thus, assertion (2) also holds.

So assume that there is some γ with (q1 + 1, k) | Yγ ∈ Cw. This sequence
is of the form (3.22) and (A1) holds. Let α ∈ N be the maximal exponent so
that (q1 + 1, k)α | Yγ

By construction, we can write Xγ⊕X ′
γ = B1⊕B′

1⊕Mmij−2 so that there
is an exact sequence

0 // B1
// C1 ⊕ (q1 + 1, k)α // τ−1B1 .

By Remark 3.2.4 and Lemma 3.2.13, U ′
(1) = B′

1⊕C1. If Yγ = D⊕(q1+1, k)α,
then Y(1) = D ⊕ τ−1B1.

So we can write V ′
(1) = B′′

1 ⊕ C ′′
1 with B′′

1 | B′
1 and C ′′

1 | C1. We get
V ′ = B′′

1 ⊕ B1. By Proposition 3.2.8, Lemma 3.2.13 and the inductive as-
sumption, assertion (2) is fulfilled.

If we still have w <l w1, but the exact sequence given by the inductive
assumption is the τ -translate of (3.24), then analogously we have τY(1) ∈ Cw1

and (q1, k) < (r′1, h
′
1) for all direct summands (r′1, h

′
1) of τY(1). Suppose that

τY(1), Y(1), . . . , τ
−o+1Y(1) ∈ Cw and τ−oY /∈ Cw. If o > 0, then (3.24) is of the

form (3.22). By the inductive hypothesis, (A2) is fulfilled.
If o = 0, then we use assertion (A2) of the inductive hypothesis: by

Lemma 3.2.13, there is an exact sequence of the form (3.22) that fulfils (A1)
and (A2).

It only remains to prove the case w1 <l w. Then ρ(w1) contains the series
of pairs

ρ(u)(q2 −
mkl

2
, l)(q1 −

mkl

2
+ 1, k) . . . (q2 − 1, l)(q1, k).
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The exact sequence given by the inductive assumption is either (3.24) or
the τ−1-translate. In the first case, we show (analogously to above) that
Y(1) ∈ Cw1

and (q1, k) < (r′1, h
′
1) for all (r′1, h′1) | Y(1).

If (q2, l) - Y(1), then the sequence (3.24) is already of the form (3.22) and
the assertions hold.

Otherwise, τ−1Y(1) /∈ Cw1
. Analogously to before, (q1, k) - τ−1X ′

(1) by
Lemma 3.3.5 and (A2): If (q1, k) | τ−1X ′

(1) we use Lemma 3.2.13 and get an
exact sequence

0 // τ−o−1V ′
(1)

// τ−o−1Y(1) ⊕ U ′′
(1)

// Y ′
(1)

// 0 .

where (q1 − mkl

2
, k) | Y ′

(1) or (q2 − mkl

2
, l) | Y ′

(1) but every direct summand of
U ′′
(1) is in C ′(1). This is a contradiction to the inductive assumption.

For every module B with an irreducible morphism B → (q2, l), we have
(q2−1, l) < τ−1B < (q2, l). If B | X ′

(1), then τ−1B ∈ Cw: all modules between
(q1, k) and (q2, l) are in Cw1

, since the exact sequence given by the inductive
assumption is (3.24).

So B /∈ Cw1
by the definition of X ′

(1). Thus, we also have B /∈ Cw.
Let α be the maximal integer so that (q2, l)

α | Y(1).
Analogously to the arguments above, we can define B1 | X ′

(1) so that
there is an exact sequence

0 // B1
// C1 ⊕ (q1 + 1, k)α // τ−1B1 .

As before, the assertion (A2) of the inductive hypothesis and Lemma
3.2.13 show that there is an exact sequence of the form (3.22) and that (A1)
and (A2) are fulfilled.

If the exact sequence yielded by the inductive hypothesis is the τ−1-
translate of (3.24), then similar to the arguments above we get an exact
sequence (3.22) so that Y ∈ Cw and (q1, k) < (r′, h′) for every direct summand
(r′, h′) of Y . This exact sequence fulfils (A1) and (A2).

3.5 The first direction
In this section we show inductively that for every w ∈ W , the category Cw is
submodule closed. Afterwards, it only remains to show that every cofinite,
submodule closed category is of the form Cw.

We begin with the basis of the induction:
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Lemma 3.5.1. Let mij < ∞ and U1, . . . , Umij−1 be as in Lemma 3.3.5. If
U1, . . . , Umij−1 ∈ Cw and M0 /∈ Cw, then Cw is not submodule closed and w is
not leftmost.

Proof. Since M0 ⊆ Umij−1, the category Cw is not submodule closed. Let
w be a word for the element w ∈ W . By Definition 3.3.4, M0 = (s, i) and
M1 = (t, j).

Suppose that M1 ∈ Cw. Let u be the initial subword of w that is defined
through the inequality (r, k) ≤ (s− 1, i) for every pair (r, k) in ρ(u).

Then there are reflections sk1 , sk2 , . . . , skm and a word v so that

w = usk1sk2 . . . , skmsiv.

Since U1 ∈ Cw, we have

mk1i = mk2i = · · · = mkmi = 2

by Lemmas 3.3.1 and 3.2.7. So

w′ = usisk1sk2 . . . skmv

is equivalent to w and thus a word for w. Since (r, k) ≤ (s − 1, i) for all
reflections (r, k) in ρ(u), we see that either w′ <l w, or w is not reduced.

Clearly, the same argument holds if Mm ∈ Cw for some 1 ≤ m ≤ mij − 1.
It remains to prove that Cw is not submodule closed if M0, . . . ,Mmij−1 /∈

Cw. Without loss of generality, we can assume that Mmij−1 = (p, i) for some
p ∈ N and Mmij−2 = (q, j) for some q ∈ N. Suppose that (r, k) is a pair in
w. If (q − 1, j) < (r, k) < (t, j) then we use that U1, U2, . . . Umij−1 ∈ Cw and
get mjk = 2 by 3.3.6. If (p, i) < (r, k) < (s, i) then mik = 2.

Let u′ be the initial subword of w that is defined through the inequality
(r, k) ≤ (q − 1, j) for every pair (r, k) in ρ(u).

Then there are reflections sk1 , . . . skm with

mk1j = mk2j = · · · = mkmj = 2

so that w ≡ w′ for
w′ = u′sk1 . . . skm{sisj}mijv′. (3.28)

So w is also equivalent to

w′′ = u′sjsk1 . . . skm{sisj}mij−1v′ (3.29)

and either w′′ <l w or w is not reduced.

This proof even shows the following:
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Corollary 3.5.2. If mij < ∞, M0,M1, . . . ,Mmij−1 /∈ Cw and w is reduced,
then there is a word w′ ≡ w with w′ <l w, pairs (r, h) = Mmij−1, (r′, h′) ̸=
(r, h) and series of pairs ρ1, ρ2, ρ3 so that

ρ(w′) = ρ1(r, h)ρ2 and ρ(w) = ρ1(r
′, h′)ρ3.

For the inductive step, we still need some lemmas:

Lemma 3.5.3. Suppose that for some w, we have M0 /∈ Cw and M0 is
a submodule of U ∈ C. Let Umij−1 be as in Lemma 3.3.5 with modules
(rk, lk) /∈ Cw for 1 ≤ k ≤ a so that

⊕a
k=1(rk, lk) | Umij−1.

Let

(X1, X2, . . . , Xm)

(X ′
1, X

′
2, . . . , X

′
m)

(Y1, Y2, . . . , Ym)

(3.30)

be the sequences of modules that yield the exact sequences

ηk : 0 //M0
fk //M

E(k)
k ⊕ Uk //M

E(k−1)
k+1

// 0

for all 1 ≤ k ≤ mij − 1.
Then one of the following holds:

(a) There is some 1 ≤ m′ ≤ mij−1 and some U ′ ∈ Cw with a monomorphism
Mm′ � U ′

(b) If (X1, . . . Xm, Xm+1, . . . Xm′) is part of a triple of sequences that fulfils
(S1) - (S5), there is some 1 ≤ k ≤ m′ so that Mmij

| Xk ⊕ X ′
k. Fur-

thermore, for l ∈ N, 1 ≤ k ≤ a and Mmij−1 < (rk − l, lk), we have
(rk − l, lk) /∈ Cw.

(c) a = 1, mil1 +mjl1 = 5 and there is no indecomposable morphism Mm′′ →
(r1, l1) for m′′ < mij − 3.

(d) a = 1 and (r1, l1) < Mmij−1.

If (rk − 1, lk) ∈ Cw for some 1 ≤ k ≤ a, then (a) holds.

Proof. By Corollary 3.3.6, for all 1 ≤ k ≤ a, there are some X ∈ I, βk ∈ N
and 2 ≤ mk ≤ mij so that the AR-sequence that starts in (rk, lk) is of the
form

0 // (rk, lk) //Mβk
mk
⊕X // (rk − 1, lk) // 0 .
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First, suppose that a > 1. By Lemma 3.3.3 and Lemma 3.3.5, there is an
exact sequence

0 //M0
// Umij−1

//Mmij
// 0 .

and we can assume that Xm ⊕X ′
m = Umij−1 and Ym = Mmij

. By Corollary
3.2.9, we can set Xm := (r1, l1) and Xm+1 := (r2, l2). If Mm1 =Mm2 =Mmij

,
then Mmij

| Xm+2 ⊕X ′
m+2 by (S3). Thus (b) is fulfilled.

Otherwise, set γ = m+mij + 2−m1 , δ = γ +mij −m2

Xm+3 :=Mm1 , Xm+4 :=Mm1+1, . . . , Xγ :=Mmij−1

and
Xγ+1 :=Mm2 , Xγ+2 :=Mm2+1, . . . Xδ :=Mmij−1.

Then Mmij
| Xδ+1 ⊕X ′

δ+1 and (b) holds.
On the other hand, suppose that there is an indecomposable morphism

Mm′′ → (r1, l1) for somem′′ < mij−3. By Corollary 3.3.6, we have (r1−1, l1) |
Umij−1. By the construction of ηm′′+1 from ηm′′+1, there must be a module
U ′
m′′+1 so that we can write ηm′′+1 as the following:

0 //M0
//M

E(m′′+1)
m′′+1 ⊕ (r1, l1)

E(m′′) ⊕ U ′
m′′+1

//M
E(m′′)
m′′+2 .

So there is a module U ′ with an exact sequence

0 //M0
//M

E(m′′+1)
m′′+1 ⊕ U ′ // (r1 − 1, l1)

E(m′′+1) // 0 .

By Corollary 3.2.6 and the monomorphismM0 � U , we get a monomorphism

Mmij−1 � U ⊕ (r1 − 1, l1).

So either (a) is fulfilled or (r − 1, l1) /∈ Cw. In this case, a > 1 and (b) is
fulfilled.

Finally, suppose that mil1 + mjl1 > 5 and a = 1. By Lemma 3.3.1,
β1 > 1 if either mil1 ≥ 4 or mil2 ≥ 4. We can set Xm+1 := (r1, l1) and
Xm+2 := Xm+3 := Mm1 . Analogously to the case a > 1, this yields some
m′ ∈ N so that Mmij

| Xm′ ⊕X ′
m′ .

If mil1 = mjl1 = 3, then either (d) holds, or we can write the AR-sequence
that starts in (r1, l1) as

0 // (r1, l1) //Mm1 ⊕Mm1+1 ⊕X ′ // (r1 − 1, l1) // 0 (3.31)

for some X ′ ∈ I and some 1 ≤ m1 ≤ mij − 1. Since Xm+1 := (r1, l1),
Xm+2 :=Mm1 and Xm+3 =Mm1+1, we see that (b) holds.
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We can generalize this lemma in the following way, which we will need
for an induction:
Remark 3.5.4. Let us assume that the assumptions of Lemma 3.5.3 hold,
except that M0 is not a submodule of some U ∈ Cw but of X ⊕ U for some
indecomposable X /∈ Cw. If X = Mk for some 1 ≤ k ≤ mij − 1, we alter
the assumptions on the sequences (3.30) accordingly so that they fulfil (S1)
- (S3) with respect to M0 and X ⊕ U .

Furthermore, we assume that X2 | Xk ⊕ X ′
k for some 1 ≤ k ≤ m: then

for every sequence (X1, . . . , Xm, Xm+1, . . . , Xm′) which is part of a triple of
sequences that fulfils (S1) - (S5), we have some 1 ≤ k ≤ m′ so that Xk = X.

So every argument in the proof of 3.5.3 still holds and we still get that
one of the conditions (a) - (d) must be fulfilled.

If we take a look at case (b) of 3.5.3 and suppose that a = 1, then by
Lemma 3.2.13, there is a monomorphism (r1, l1) � Mmij

⊕ U . So there are
sequences of modules

(1X1,
1X2, . . . ,

1Xo)

(1X ′
1,

1X ′
2, . . . ,

1X ′
o)

(1Y1,
1 Y2, . . . ,

1 Yo)

which fulfil (S1) - (S5) with respect to (r1, l1) and Mmij
⊕ U . Since Mmij

|
Xk⊕X ′

k for some 1 ≤ k ≤ m′, there must be some k′ so that M2
mij
|1 Xk′⊕X ′

k′ .
We still need a result about the case a > 1:

Lemma 3.5.5. Suppose that for some w, we have M0 /∈ Cw and M0 is
a submodule of U ∈ C. Let Umij−1 be as in Lemma 3.3.5 with modules
(rk, lk) /∈ Cw for 1 ≤ k ≤ a so that

⊕a
k=1(rk, lk) | Umij−1.

Furthermore, suppose that for all 1 ≤ k ≤ a, there is an irreducible
morphism Mm → (rk, lk) for some 0 ≤ m < mij − 2.

If a > 1, then one of the following holds:

(a) There is some N < M , N /∈ Cw that is a submodule of some U ′ ∈ Cw.

(b) We have a = 2, ml1l2 = 2, milk = 3, mjlk = 2 for 1 ≤ k ≤ 2 and mij = 3.

(c) We have a = 2, l1 = l2, mil1 = 3 and mij = 3.

In case (b),
Mmij

,Mmij+1,Mmij+2,Mmij+3 /∈ Cw.

and
(r1 − 1, l1), (r2 − 1, l2), (r1 − 2, l1), (r2 − 2, l2) /∈ Cw.
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Proof. The proof is analogous to that of Lemma 3.3.5. First note that if
mij = 3, we get milk ≥ 3 for 1 ≤ k ≤ a, since there is an irreducible
morphism Mm → (rk, lk) for some 0 ≤ m < mij − 2.

If ml1l2 ̸= 2, we can exchange j and l2 in the calculations below.
Define αki, βki, αkj, βkj analogous to α and β with i, lk and j, lk instead

of i, j. If ml1l2 = 2, but (b) is not fulfilled, then

αβ +
a∑
k=1

(αki + αkj)(βki + βkj) ≥ 4.

By Corollary 3.2.11, we can do completely analogous calculations to the case
αβ = 4. In these calculations, we construct exact sequences which contain
modules of the form Mo, (o′, l1) and (o′′, l2) for some o, o′, o′′ ∈ N.

It remains to show that (a) is fulfilled if any of these modules is in Cw.
By Lemma 3.5.3, if (rk − 1, lk) ∈ Cw for some 1 ≤ k ≤ a, then (a) holds.

The rest follows inductively with the same argument as in 3.5.3.

Now we can show the following, which is the last lemma that we need to
prove the first direction of the main theorem:

Lemma 3.5.6. Let w be a word so that (s, i) = M0,M1, . . . ,Mmij−1 /∈ Cw.
Then there are words u, v so that w = usiv and there is some ρ with ρ(w) =
ρ(u)(s, i)ρ. Suppose that there is some U ∈ Cw with a monomorphism M0 �
U and for every X < M0 with some U ′ ∈ Cw and a monomorphism X � U ′,
we have X ∈ Cw.

Then there exists some u′ so that

w ≡ u′{sisj}mijv. (3.32)

Proof. By Lemma 3.3.3 and 3.3.5, Proposition 3.2.8 yields an exact sequence

0 //M0
// Umij−1

//Mmij
// 0 . (3.33)

If (r, l) ∈ Cw for all (r, l) | Umij−1 with (r, l) > Mmij−1, then (3.33) is obvious
by Corollary 3.3.6.

Otherwise, we get Mmij
/∈ Cw, since there is a monomorphism Umij−1 �

Mmij
⊕ U by Lemma 3.2.6.

There are direct summands (r1, l1), . . . , (ra, la) /∈ Cw of Umij−1 so that
Mmij−1 < (rk, lk) for all 1 ≤ k ≤ a.

We can assume without loss of generality that mij is odd; otherwise we
only need to exchange sj and si in the arguments below.
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If for all 1 ≤ k ≤ a, there is no morphism Mm → (rk, lk) for any 0 ≤ m <
mij − 2, then mlki = 2 and for some word x we have

w = xsisl1 . . . sla{sjsi}mij−1 ≡ xsl1 . . . sla{sisj}mij−1.

So we can assume that for some (rk, lk), there is a morphismMm → (rk, lk)
for some 0 ≤ m < mij − 2.

By Lemma 3.5.3, one of the following cases hold:

(a) a = 1, mil1 +mjl1 = 5 and there is no indecomposable morphism Mm′′ →
(r1, l1) for m′′ < mij − 3.

(b) There is some m′ so that Mmij
| Xm′ ⊕X ′

m′

In case (a) there are words u′′, v, so that either

w = u′′sisl1{sjsi}mij−1v (3.34)

or both mjl1 = 2 and

w = u′′sisjsl1{sisj}mij−2v. (3.35)

Then there is some word u1 so that w ≡ u1sl1{sisj}mijv: If mil1 = 2, there
is nothing to show. If mjl1 = 2, then we use that Mmij

is of the form (q, j)
for some q and there is a monomorphism Umij−1 �Mmij

⊕U : Let u2 be the
subword of u1 that does not contain the reflection that corresponds to (q, j).
By the inductive assumption, u2sisl1 is equivalent to a word u3{sisl1}mil1 .

Now we go back to looking at u1, not u2. Since mil1 = 3 and mjl1 , there
is some word u4 with u1sisl1 ≡ u4{sisl1}mil1 and thus

w ≡ u′′sl1{sisj}mijv

for some word u′′.
On the other hand, suppose that

Mmij
| Xm′ ⊕X ′

m′ . (3.36)

Since we have
⊕a

k=1(rk, lk) | Umij
, there is a monomorphism

a⊕
k=1

(rk, lk) � U ⊕Mmij
. (3.37)

Assume that (r1, l1) ≤ (r2, l2) ≤ · · · ≤ (ra, la).
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Let the AR-sequence that starts in (ra, la) be

0 // (ra, la) //Mm1 ⊕ Z1
// (ra − 1, l1) // 0 .

If a = 1, then by Lemma 3.5.3, w must have the form (3.34) or (3.35).
The only difference to case (a) is that mil1 +mjl2 > 5.

We can use case (a) as the basis of an induction: Instead of the modules
M0,M1, (r1, l1), we take (r1, l1),Mm1 ,Mm1+1 and use the same arguments as
before. Since Mmij

| Xm′ ⊕ X ′
m′ , we can use Remark 3.5.4 and either we

get the analogue to case (a) above or the analogue to the case (b). In the
first case, we get mil1 +mij = 5 or mjl1 +mij = 5 and there is some u′1 so
that w is equivalent to a word with the subword {sl1si}mil1 if m1 is even and
{sl1sj}mjl1 is odd. Thus we also get w ≡ u′{sisj}mijv for some words u′, v.
In the case (b), we continue this inductively.

After finitely many steps we get

w ≡ u′{sisj}mijv.

If a ̸= 1, then a = 2 by Lemma 3.5.5. If l1 = l2, then l1 = l2, mil1 = 3
and mij = 3. We can exchange j and l1 to get the case a = 1. Otherwise,
ml1l2 = 2, milk = 3, mjlk = 2 for 1 ≤ k ≤ 2 and mij = 3. Furthermore,

Mmij
,Mmij+1,Mmij+2,Mmij+3 /∈ Cw.

and
(r1 − 1, l1), (r2 − 2, l2), (r1 − 2, l1), (r2 − 2, l2) /∈ Cw.

Analogously to before, we see inductively that w is equivalent to a word with
the subword

sl1sl2sjsisl1sl2sjsisl1sl2sjsi.

(For the purpose of this induction, we can treat the word above completely
analogously to a word of the form {sisj}mij with mij = 6. As in the proof of
3.5.5, all calculations are the same by Corollary 3.2.11.)

We have the following equivalences, where bold reflections denote those
which differ from the reflections in the word above:

sl1sl2sjsisl1sl2sjsisl1sl2sjsi

≡sl1sl2sjsisjsl1sl2sisl2sl1sjsi
≡sl1sl2sisjsisl1sisl2sisl1sjsi
≡sl1sl2sisjsl1sisl1sl2sisl1sjsi
≡sl1sl2sisjsl1sisl2sl1sisl1sjsi
≡sl1sl2sisjsl1sisl2sisl1sisjsi.



68 CHAPTER 3. A CONNECTION TO THE WEYL GROUP

So w is equivalent to a word with the subword sisjsi and the assertion is
true.

Finally, we can prove the first direction of our main result:

Lemma 3.5.7. If w is a leftmost word, then Cw is submodule closed.

Proof. Suppose that Cw is not submodule closed. Then there is some M0 ∈
ind I\Cw and some U ∈ Cw with a monomorphism M0 � U . Furthermore, we
can assume that for every X < M0 with some U ′ ∈ Cw and a monomorphism
X � U ′, we have X ∈ Cw.

We use induction on the length m of the sequences of modules in Propo-
sition 3.2.8 applied on M0 and U . If m = 1, then w is not leftmost by Lemma
3.5.1.

Now suppose that w is not leftmost if the sequences have the length m
or smaller. We prove that this is also the case if they have length m+ 1:

We can assume without loss of generality that M1 /∈ Cw, since m+1 > 1.
On the other hand, by Lemma 3.3.5, the sequences of modules induce an
exact sequence

0 //M0
//M

E(1)
1 ⊕ U1

//M2
// 0 .

So by Corollary 3.2.6, there is a monomorphism M
E(1)
1 � M2 ⊕ U . Since

M1 < M0, our assumptions yield M2 /∈ Cw. By the same argument, we get
M3,M4, . . . ,Mmij−1 /∈ Cw and by (S4) this means mij <∞.

By Lemma 3.5.6, if we choose u and v so that w = usiv and there is some
ρ so that ρ(w) = ρ(u)(s, i)ρ, then w ≡ u′{sisj}mijv for some word u′.

We still need to show that u′{sisj}mijv is equivalent to a word which is
smaller than w.

To do this, we use Lemma 3.1.7. Either there is nothing to show, or there
are ρ1, . . . , ρ4 and a pair (r, h) so that

ρ(w) = ρ1(r, h)ρ2(s, i)ρ3 (3.38)

and there is some w′′ ≡ w with

ρ(w′′) = ρ1ρ2(s, i)(t+ 1, j)ρ3. (3.39)

We can assume that the word x with ρ(x) = ρ1(r, h)ρ2 is reduced, because
otherwise there is nothing to prove. So by Lemma 3.4.2, there are some
sequences of modules as in Lemma 3.2.3 that yield some U ′ ∈ I and an
exact sequence

0 //M0
//Mmij−2 ⊕ U ′ // Y // 0
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with either Y ∈ Cw or Y = (r, h)E(mij−3).
By Corollary 3.2.6, there is a monomorphism

Mmij−2 � U ⊕ Y ∈ Cw′′ .

By (3.38), (3.39) and the induction hypothesis, w′′ is not leftmost.
So there is some w3 ≡ w′′ with w3 <l w

′′. We still need to show that
w3 <l w.

If w′′ is not reduced, this is obvious. If Y ∈ Cw, we can use the inductive
assumption.

So suppose that w′′ is reduced and Y = (r, h)E(mij−3). We denote the
sequences of modules that fulfil (S1) - (S5) with respect to M0 and U by

(X1, X2, . . . , Xm)

(X ′
1, X

′
2, . . . , X

′
m)

(Y1, Y2, . . . , Ym).

There are sequences of modules

(1X1,
1X2, . . . ,

1Xm′)

(1X ′
1,

1X ′
2, . . . ,

1X ′
m′)

(1Y1,
1 Y2, . . . ,

1 Ym′)

that fulfil (S1) - (S5) with respect to Mmij−2 and U⊕(r, h)E(mij−3). Let (r′, h′)
be the smallest indecomposable direct summand of 1Ym′ . Then (r′, h′) <
(r, h).

If there is a pair (r′′, h′′) ̸= (r′, h′) and series of pairs ρ′1, ρ′2, ρ′3 so that we
can write

ρ(w3) = ρ′1(r
′, h′)ρ′2 and ρ(w) = ρ′1(r

′′, h′′)ρ′3,

then w3 <l w
′′ implies w3 <l w.

A simple induction on m′ shows that this is indeed the case: If m′ = 1,
then (r, h) = Mmij−1, (r′, h′) = Mmij

and the assertion is true by Corollary
3.5.2.

By 3.2.13, the smallest direct summand of 1Ym′ is also the smallest direct
summand of Ym and the inductive step is obvious.

So w is not leftmost and the proof is complete.

3.6 The other direction
In this section we finally conclude the proof that the map between words
and full additive cofinite subcategories of modA introduced in Definition
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3.1.13 gives rise to a bijection between the leftmost words and the cofinite
submodule closed subcategories. Since every element of the Weyl group has
a unique leftmost element, this gives a bijection between the Weyl group
elements and the cofinite, submodule closed subcategories.

Again, we start with the basis of an induction:

Lemma 3.6.1. (a) Let w := u{sisj}mijv. If Cw is submodule closed, then

w <l u{sjsi}mijv.

(b) The category Cusisiv is not submodule closed.

(c) Let w′ := u{sjsi}mij+1v. Then Cw′ is not submodule closed.

Proof. We prove (a) by contraposition. By Definition 3.1.13, ind I \ Cw con-
sists of the modules which correspond to the reflections in w.

Assume that
u{sjsi}mijv <l u{sisj}mijv = w

and
ρ(w) = ρ(u) (p, i)(q, j)(p+ 1, i) . . .︸ ︷︷ ︸

mij pairs

ρ1

for a sequence of pairs ρ1.
By Lemma 3.1.6, the module (q−1, j) exists and by Definition 3.1.13, Cw

contains all indecomposable, preinjective modules M with (q − 1, j) < M <
(p, i) or (p, i) < M < (q, j).

First, suppose that mij = 2. In this case, Cw contains the middle term
of the AR-sequence that starts in (q, j) by Lemmas 3.2.7 and 3.3.1. Since
(q, j) /∈ Cw, the subcategory is not submodule closed.

Now let mij ≥ 3. In 3.3.4, we defined M0 := (s, i), M1 := (t, j), . . . for
some arbitrary, fixed s, t. By Remark 3.3.7, we can assume without loss of
generality that mij is odd and we can choose s, t so that Mmij−1 = (p, i).

Then Mmij
= (q − 1, j) ̸= 0 and by Lemma 3.3.3, E(mij − 2) ̸= 0. By

Lemma 3.3.5, there is an exact sequence

0 //M0
// (Mmij−1)

E(mij−1) ⊕ Umij−1
//M

E(mij−2)
mij

// 0

so that no M0,M1, . . . ,Mmij−1 is a direct summand of Umij−1. By Lemma
3.3.3 we have E(mij − 1) = 0, so there is a monomorphism

M0 � Umij−1.
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It remains to show that Umij−1 ∈ Cw2
by Corollary 3.3.6: If X be a direct

summand of Umij−1, then Mmij
< X < M0 and thus X ∈ Cw.

By Lemma 3.2.7, part (b) is obvious.
The proof of (c) is completely analogous to the proof of (a).

Finally, we are prepared to prove that Definition 3.1.13 gives a bijection.
Recall that Cw = Cw if w is the leftmost word for w:

Theorem 3.6.2. The map w 7→ Cw is a bijection between the elements of the
Weyl group of A and the cofinite submodule closed subcategories of modA.

Proof. The map is well defined by Lemma 3.5.7 and obviously injective. It
remains to prove that it is surjective, i.e. that for all cofinite submodule
closed subcategories C of modA, there is a w ∈ W , so that C = Cw.

We already know that C = Cw for some word from Lemma 3.4.1, so we
only need to show that w is leftmost.

Assume that the word w for the element w ∈ W is not leftmost. We
show that Cw is not submodule closed by induction on the number of Coxeter
relations that are needed to transform w into a smaller word.

If only one relation is needed, then the theorem is the result of Lemma
3.6.1. Now suppose that the assertion is true if we need m or less relations
and that we need m+ 1 relations to transform w into a smaller word.

Then there are some 1 ≤ i, j ≤ n and some words x, x′, y so that

w = xsiy ≡ x′sjy = w′ (3.40)

and
w′ <l w

with i ̸= j.
Thus, there are some words w′′, x′′ so that

w ≡ w′′ = x′′{sisj}mijy.

Because of the inductive assumption, we can suppose that w ≤l w′′ and that
x is leftmost. Obviously, we can choose x′′ to be leftmost.

Let the reflection si in (3.40) correspond to M0. We can assume that
mij ≥ 3, since there is nothing to show if the middle term of the Auslander-
Reiten sequence that starts in M0 is contained in Cw. We can also assume
that there is some word x′′ so that x = x′′sj: If there are sk1 , . . . skm with
mk1,i = · · · = mkm,i and x = x′′sjsk1 . . . skm , then xsi ≡ x′′sjsisk1 . . . skm and
if there is some U ∈ Cx′′sjsi with a monomorphism M0 � U , then U ∈ Cw.

Without loss of generality, we can assume that mij is odd; otherwise we
relabel i and j and get the same arguments by Remark 3.3.7.
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By Lemma 3.1.12, we can suppose that M0,M1, . . . ,Mmij−3,Mmij−2 ∈ Cw.
We show that there is some U ∈ Cw with a monomorphism M0 � U .

Let (q, j) :=Mmij−2. We use Lemma 3.1.7: Because m > 1, there is some
w3 ≡ w with series of pairs ρ1, . . . , ρ4 and a pair (r, h) so that

ρ(w) = ρ1(r, h)ρ2(q, j)ρ3(s, i)ρ4 (3.41)

and
ρ(w3) = ρ1ρ2(q, j)ρ3(s, i)(t+ 1, j)ρ4. (3.42)

By Lemma 3.4.2, if mij ≥ 3, then there is an exact sequence

0 //M0
//Mmij−2 ⊕ U ′ // Y // 0

so that either Y ∈ Cw or both Y = (r, h)E(mij−3) and U ′ ∈ Cw hold.
We want to show that there is some U ′′ ∈ Cw and a monomorphism

Mmij−2 = (q, j) � U ′′ ⊕ Y. (3.43)

We prove this inductively: First, note that the word x′′sj is not leftmost
Lemma 3.1.9 and 3.1.10.

If w = w′′, then (r, h) =Mmij−1. So by the inductive hypothesis, there is
a monomorphism (q, j) � U ′′ ⊕ (r, h)γ.

Since E(1) = E(mij − 3) by table (3.18), we see that Y = (r, h)E(mij−3)

and γ = E(mij − 3).
The inductive step is completely analogous to the one in Lemma 3.4.2.
By our assumptions, x is leftmost and thus Y /∈ Cw by Lemma 3.5.7. So

U ′ ∈ Cw.
By Lemma 3.2.13, there is a monomorphism M0 � U ′⊕U ′′ ∈ Cw and Cw

is not submodule closed.

3.7 Some consequences
We conclude the chapter with a generalization and a corollary:

As in [14], Section 8 we can extend the notion of leftmost words:

Definition 3.7.1. Define infinite words analogously to words, only as infinite
instead of finite sequences. We say that an (infinite) word is leftmost if any
initial subword of finite length is leftmost.

Analogously to [14], Theorem 8.1, we get the following:
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Theorem 3.7.2. There is a bijection between the (finite and infinite) leftmost
words over S = {s1, s2, . . . sn} and the submodule closed subcategories of I,
the preinjective component of modA.

Proof. This is completely analogous to [14], 8.1:
Let C be a submodule closed subcategory of I. Since I contains at most

a countable number of indecomposable modules, we can set

ind I \ C =: {(r1, i1), (r2, i2), . . . }

and (r1, i1) < (r2, i2) < . . . . Then the subcategory Cm with

ind I \ Cm = {(r1, i1), (r2, i2), . . . , (rm, im)}

is submodule closed for all m ∈ N. By Lemma 3.2.1 and Theorem 3.6.2, the
words wm with

ρ(wm) = (r1, i1)(r2, i2) . . . (rm, im)

are leftmost for all m ∈ N. By Definition 3.7.1, the (infinite) word w with

ρ(w) = (r1, i1)(r2, i2) . . .

is leftmost and C = Cw.
On the other hand assume that the (infinite) word w with

ρ(w) = (r1, i1)(r2, i2) . . .

is leftmost. Then the words with

ρ(wm) = (r1, i1)(r2, i2) . . . (rm, im)

are leftmost for all m ∈ N. By 3.6.2, the categories Cwm
are submodule

closed. Thus Cw is also submodule closed: if there was a module M /∈ Cw
and some module U ∈ Cw with a monomorphism M � U , then U ∈ Cwm

for
all m ∈ N and there is some m ∈ N so that M /∈ Cwm

, since M is finitely
generated.

We can draw a further corollary. Let A′ be a hereditary and let the module
category modA′ be equivalent to the subcategory of modA with the simple
modules Sj, j ∈ J for some J ⊆ {1, 2, . . . n}. Let IA′ be the subcategory of
modA′ consisting of all preinjective modules.

Corollary 3.7.3. There is a bijection between the submodule closed subcat-
egories of IA′ and the submodule closed subcategories of I which contain all
τ rIi with r ∈ N0 and i ∈ N \ J .

Proof. The words in the Weyl group of A′ are exactly the words in the Weyl
group of A which only consist of reflections sj with j ∈ J .
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4 | Distributive lattices of sub-
object closed subcategories

In this chapter we consider abelian length categories, a generalization of
module categories over Artin algebras. For a category A we are interested
in the lattice S(A) of full additive subobject closed subcategories of A. In
particular, we are trying to find cases in which the lattice S(A) is distributive.

In Section 4.1, we show that the distributivity of S(A) is equivalent to
a condition on the submodule relations in A, which is much easier to work
with. We can show in the next section that the following is an even stronger
property: every subobject of an indecomposable object in A is itself inde-
composable. Such categories are said to be of colocal type.

We characterize these categories in Section 4.3 to 4.6: First, we show
that two conditions on the Ext-quiver hold. Weaker conditions hold if S(A)
is distributive. In Section 4.4, we collect some auxiliary lemmas that are
mainly concerned with 2-extensions.

These results are needed in Section 4.5, in which we give different formu-
lations and a proof of the third condition that abelian length categories of
colocal type fulfil. Again, we see that a weaker condition is fulfilled if S(A)
is distributive.

In Section 4.6, we use the results of Section 4.4 to prove that every abelian
length category which fulfils the three conditions is of colocal type.

Returning to the lattice S(A), we prove in the next section that it is the
Cartesian product of certain sublattices.

Finally, in the last section, we assume that A ≡ mod kQ/I for some field
k, quiver Q with an admissible ideal I. In this case, A is of colocal type if
and only if A is a string algebra and no vertex in Q is starting point of more
than one arrow. For these algebras, we get a complete, explicit description
of the lattice S(mod A).

Note that in this chapter, we are equating objects with isomorphism
classes of objects. In particular, all sums over simple objects are actually
sums over isomorphism classes of simple objects.
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4.1 Conditions on indecomposable objects
Let A be an abelian length category. The main result of this section is a
characterisation of abelian length categories with distributive lattices S(A)
in terms of the subobject relations between the objects of A.

We start with the definition of a distributive lattice, as given for example
in [17], p. 69:

Definition 4.1.1. A lattice L is called distributive if

(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)

for all a, b, c ∈ L.

Now let S(A) be the set of full additive subobject closed subcategories as
in [12]. It is partially ordered by inclusion and a complete lattice.

The join a ∨ b for two categories a, b ∈ S(A) is the smallest full additive
subobject closed subcategory, which contains both a and b. The meet a ∧ b
is of course the largest category in S(A) that is contained in both a and b.

The meet coincides with the intersection a ∩ b: all subobjects of direct
sums of objects in a∩ b are again objects in a∩ b, since a and b are subobject
closed. The join consists of all subobjects of direct sums of objects in a and
b.

Every category in S(A) is completely determined by the isomorphism
classes of indecomposable objects it contains.

For a class X of objects let subX be the category that consists of all
subobjects of direct sums of objects in X . This is the smallest category in
S(A) that contains X . Set subX := sub{X}.

In the following case, S(A) is not distributive:

Lemma 4.1.2. If there exists an indecomposable object X ∈ A, and objects
Y1, Y2 ∈ A so that X ∈ subY1 ∨ subY2 but X /∈ subYi for all 1 ≤ i ≤ 2, then

(subY1 ∨ subY2) ∧ subX ̸= (subY1 ∧ subX) ∨ (subY2 ∧ subX).

Proof. By the assumption

X ∈ subY1 ∨ subY2

and by definition
X ∈ subX,
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so
X ∈ (subY1 ∨ subY2) ∧ subX.

But
X /∈ (subY1 ∧ subX) ∨ (subY2 ∧ subX),

since otherwise there were some objects

Xi ∈ subYi ∧ subX

for 1 ≤ i ≤ 2 with a monomorphism

f : X � X1 ⊕X2.

But since X1 ⊕X2 ∈ subX, there is some α ∈ N and a monomorphism g

g : X1 ⊕X2 � Xα.

Since gf is a monomorphism, its image is isomorphic to X and g induces a
morphism g′ : X1 ⊕X2 → X so that g′f is an isomorphism on X. Thus, f
splits.

Because X is indecomposable, there is an i ∈ I, so that X is a direct
summand of Xi. Since Xi ∈ subYi, this means that X ∈ subYi, contrary to
the assumption.

So

(subY1 ∨ subY2) ∧ subX ̸= (subY1 ∧ subX) ∨ (subY2 ∧ subX)

and the proof is complete.

In fact, we get the following equivalence:

Proposition 4.1.3. The following statements are equivalent:

1. The lattice S(A) is distributive

2. If X ∈ A is indecomposable and there are objects Y1, Y2 ∈ A, so that
X ∈ subY1 ∨ subY2 then X ∈ subYi for some 1 ≤ i ≤ 2.

3. For all index sets I and categories ai ∈ S(A), i ∈ I we have

ind(
∨
i∈I

ai) =
∪
i∈I

ind ai.
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Proof. (1)⇒ (2) is clear from the Lemma 4.1.2.
(2)⇒ (3): The direction

ind(
∨
i∈I

ai) ⊇
∪
i∈I

ind ai

is clear. For the other direction, we look at an indecomposable object

X ∈
∨
i∈I

ai.

There are objects Ai ∈ ai with a monomorphism

X �
⊕
i∈I

Ai

and thus
X ∈

∨
i∈I

subAi.

The object
⊕

i∈I Ai must be of finite length; thus Ai = 0 for all except finitely
many i ∈ I. By (2) and an induction, we get

X ∈ subAi

for at least one i ∈ I and thus

X ∈ ai.

So
X ∈

∪
i∈I

ind ai

and
ind(

∨
i∈I

ai) =
∪
i∈I

ind ai.

(3)⇒ (1): Let a, b, c ∈ S(A). Then

ind((a ∨ b) ∧ c) = (ind a ∪ ind b) ∩ ind c

= (ind a ∩ ind c) ∪ (ind a ∩ ind c)

= ind((a ∧ c) ∨ (a ∧ c)).

Since a, b, c are completely determined by their indecomposable objects,

(a ∨ b) ∧ c = (a ∧ b) ∨ (a ∧ c)

and S(A) is distributive.
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We can generalize the notion of a distributive lattice as e.g. in [9], p.
1227:

Definition 4.1.4. A complete lattice Λ is a frame if for all index sets I and
elements a, bi with i ∈ I the equation

a ∧

(∨
i∈I

bi

)
=
∨
i∈I

(a ∧ bi)

holds.

Obviously, every frame is also distributive. But in general, not every
distributive lattice is a frame. An exception are lattices of subobject closed
categories:

Corollary 4.1.5. The lattice S(A) is distributive if and only if it is a frame.

Proof. This follows from part (3) of Proposition 4.1.3.

4.2 Categories of colocal type
For the following categories, S(A) is always distributive:

Definition 4.2.1. We call a category A of colocal type if any subobject of
an indecomposable object is itself indecomposable. If there is some Artin
algebra A so that A = modA, then we also say that A is of colocal type.

To show this, we need the following lemma:

Lemma 4.2.2. (a) If there are objects V1, V2, X with a monomorphism

f =
[
f1 f2

]
: V1 ⊕ V2 � X,

then there is also a monomorphism

X � Coker f1 ⊕ Coker f2.

(b) If there are objects X, Y1, Y2 with a monomorphism

f =

[
f1
f2

]
: X � Y1 ⊕ Y2,

then there is also a monomorphism

Ker f1 ⊕ Ker f2 � X.
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Proof. First, we prove that (a) holds: There is an exact sequence

0 // V1 ⊕ V2

[
f1 0
0 f2

]
// X ⊕X g // Coker f1 ⊕ Coker f2 // 0

for some morphism g with Ker g ∼= V1 ⊕ V2. So g induces a monomorphism

X � Coker f1 ⊕ Coker f2.

The proof of (b) is similar: We get a morphism f ′ with an exact diagram

0

��

0

��

0

��
0 // 0

��

// X

��

X //

f ′

��

0

0 // Ker f1 ⊕ Ker f2 // X ⊕X

[
f1 0
0 f2

]
//

��

Im(f1)⊕ Im(f2) //

��

0

Ker f1 ⊕ Ker f2

��

X

��

Coker f ′

��
0 0 0

.

So
0 // Ker f1 ⊕ Ker f2 // X // Coker f // 0

is an exact sequence and there is a monomorphism Ker f1⊕Ker f2 � X.

Proposition 4.2.3. If A is of colocal type, then S(A) is distributive. Fur-
thermore, for all objects X, Y1, Y1 ∈ A with a monomorphism X � Y1 ⊕ Y2,
there is a monomorphism X � Y1 or X � Y2.

Proof. Assume that every subobject of an indecomposable object is inde-
composable. Further suppose that there are objects X, Y1, Y2, so that X is a
subobject of Y1 ⊕ Y2. Then there is a monomorphism

f =

[
f1
f2

]
: X � Y1 ⊕ Y2

and by Lemma 4.2.2, we get a monomorphism Ker f1 ⊕ Ker f2 � X.
Since A is of colocal type, either Ker f1 = 0 or Ker f2 = 0. Thus there

is a monomorphism X � Y1 or X � Y2. By Proposition 4.1.3, the lattice
S(A) is distributive.
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Lemma 4.2.4. If A is not of colocal type, then there are objects V1, V2, non-
simple objects Y1, Y2, an indecomposable object X and a simple object S with
exact sequences

0 // V1 ⊕ V2 // X // S // 0 , (4.1)

0 // X // Y1 ⊕ Y2 // S // 0 . (4.2)
For such objects, the following sequences are exact

0 // Vj // Yi // S // 0 (4.3)

for i, j = 1, 2 and i ̸= j.

Proof. Suppose that X is an indecomposable object and there is a monomor-
phism

f =
[
f1 f2

]
: V1 ⊕ V2 � X

with V1 ̸= 0 ̸= V2.
Let S be a simple factor module of Coker f . Then there is some V with

V1 ⊕ V2 ⊆ V and an exact sequence

0 // V // X // S // 0 .

If V is indecomposable, then it is of smaller length than X and we can regard
V instead of X. So we can assume that Coker f = S and V1 ⊕ V2 = V . By
Lemma 4.2.2, there is a monomorphism

g : X � Coker f1 ⊕ Coker f2.

The following diagram is exact for all i, j ∈ {1, 2}, i ̸= j, since all columns
and the first and second row are exact:

0

��

0

��

0

��
0 // Vi

��

Vi //

��

0 //

��

0

0 // V1 ⊕ V2 //

��

X //

��

S // 0

0 // Vj //

��

Coker fi //

��

S //

��

0

0 0 0

.



82 CHAPTER 4. DISTRIBUTIVE LATTICES

By this, we know that the following diagram is exact, since all columns and
the first and second row are exact:

0

��

0

��

0

��
0 // V1 ⊕ V2 // X //

g

��

S //

��

0

0 // V1 ⊕ V2 //

��

Coker f1 ⊕ Coker f2 //

��

S2 //

��

0

0 // 0 //

��

Coker g //

��

S //

��

0

0 0 0

.

So Coker g = S. With Y1 = Coker f1 and Y2 = Coker f2, we get the exact
sequences (4.1) - (4.3).

4.3 Conditions on the Ext-quiver
Using pullbacks and pushouts, we show in this section that every abelian
length category A of colocal type has to fulfil the conditions (C1) and (C2)
in Theorem 1.2.4. Weaker conditions hold if S(A) is distributive.

Recall that we defined for simple objects S, T ∈ A

d1S(S, T ) := dimEnd(S)op Ext
1(S, T )

and
d1T (S, T ) := dimEnd(T ) Ext

1(S, T ).

We begin with an auxiliary lemma:

Lemma 4.3.1. Let A be an abelian length category and S, T1, T2 simple ob-
jects. Then the following holds:

(a) Let there be indecomposable objects X1, X2 with exact sequences

0 // T1
f1 // X1

g1 // S // 0

and
0 // T2

f2 // X2
g2 // S // 0.
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If T1 ∼= T2, we suppose that these exact sequences are linearly independent
over End(T1).

Then the object Y in the following pullback is indecomposable:

Y //

��

X1

g1
��

X2 g2
// S

. (4.4)

Furthermore, there is an exact sequence

0 // T1 ⊕ T2 // Y // S // 0 .

(b) Let there be indecomposable objects X1, X2 with exact sequences

0 // S
f1 // X1

g1 // T1 // 0

and

0 // S
f2 // X2

g2 // T2 // 0.

If T1 ∼= T2, we suppose that these exact sequences are linearly independent
over End(T1)

op.

Then the object Y in the following pushout is indecomposable:

S
f1 //

f2
��

X1

��
X2

// Y

.

Furthermore, there is an exact sequence

0 // S // Y // T1 ⊕ T2 // 0 .

Proof. We only prove (a), since (b) is completely analogous. In this case, the
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following diagram is exact by 2.1.4:

0

��

0

��

0

��
T1 ⊕ T2 Y

��

S

��
0 // T1 ⊕ T2 //

��

X1 ⊕X2
//

��

S2 //

��

0

0 // 0 //

��

S

��

S //

��

0

0 0 0

and we get some morphisms f ′
1 : T1 → Y and f ′

2 : T2 → Y so that

0 // T1 ⊕ T2
[ f ′1 f

′
2 ] // Y // S // 0

is an an exact sequence.
Suppose that Y was decomposable. Since X1 and X2 are indecomposable,

S cannot be a direct summand of Y .
So we can assume that Y = T1⊕X for some object X of length 2. Since

(4.4) is commutative, this yields a commutative diagram

X
f ′1 //

f ′2
��

X1

g1
��

X2
g2 // S

with Im(g1f
′
1) = S = Im(g2f

′
2). Furthermore, Im(f ′

1) � S, since otherwise
Im(f ′

1) � X1 � S splits. Taking the length of X1 into consideration, it
is obvious that Im(f ′

1) = X1 is the only remaining possibility and f ′
1 is an

isomorphism. Analogously, Im(f ′
2) = X2.

Thus, X is isomorphic to both X1 and X2, T1 ∼= T2 and for 1 ≤ i ≤ 2,
there are commutative diagrams

0 // T1 //

∼=
��

X

f ′i
��

gif
′
i // S // 0

0 // Ti // Xi
gi // S // 0

.
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Since g1f ′
1 = g2f

′
2, this is a contradiction to the assumption that η1 and η2

are linearly independent over End(T1).
So Y must be indecomposable.

Now we can prove that condition (C1) holds if A is of colocal type:

Lemma 4.3.2. Let A be an abelian length category. The following is true
for all simple objects S ∈ A:

(a) If A is of colocal type, then∑
T simple

d1T (S, T ) ≤ 1.

(b) If S(A) is distributive, then there is at most one T with d1T (S, T ) ̸= 0.

Proof. We begin with the proof of (a). If∑
T simple

d1T (S, T ) ≥ 2,

then there are simple objects T1, T2 and indecomposable objects X1, X2 with
exact sequences

η1 : 0 // T1
f1 // X1

g1 // S // 0

and
η2 : 0 // T2

f2 // X2
g2 // S // 0

which are linearly independent over End(T1) if T1 ∼= T2.
By Lemma 4.3.1, the object Y in the following pullback is indecompos-

able:
Y //

��

X1

g1
��

X2 g2
// S

and has T1 ⊕ T2 as a subobject.
SoA is not of colocal type.

To prove (b), we suppose that T1 � T2. Then X1 � X2 and for every
epimorphism hi : Y � Xi, we have Ker hi ∼= Tj with 1 ≤ i ̸= j ≤ 2.
If h′i : Y → Xi is not an epimorphism, then Im(h′i)

∼= Ti and thus Tj |
soc(kerh′i). But T 2

j is not a subobject of Y and by Lemma 4.2.2, there is
no monomorphism Y � Xn

i for any 1 ≤ i ≤ 2 and n ∈ N. So S(A) is not
distributive by Proposition 4.1.3.
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To show that (C2) holds if A is of colocal type, we use the following
auxiliary lemma:

Lemma 4.3.3. Let A be an abelian category and S, T1, . . . , Tn simple objects
in A so that there are exact sequences with indecomposable middle terms

ηi : 0 // S
fi // Xi

// Ti // 0

for 1 ≤ i ≤ n. Furthermore, suppose that 2 ≤ n. Let f :=

 f1
f2
...

fn−1

 and sup-

pose that there is a isomorphism g :
⊕n−1

i=1 Xi →
⊕n−1

i=1 Xi and a monomor-
phism gn : Xn �

⊕n−1
i=1 Xi so that the following diagram is commutative

S
f //

fn

��

⊕n−1
i=1 Xi

g

��

Xn gn
//
⊕n−1

i=1 Xi

(4.5)

or an isomorphism g′n : Xn → Xn and an epimorphism g′ :
⊕n−1

i=1 Xi � Xn

so that the following diagram is commutative

S
f //

fn
��

⊕n−1
i=1 Xi

g′

��
Xn

g′n

// Xn

. (4.6)

Then there are 1 ≤ i1, . . . , im ≤ n− 1 so that Ti1 ∼= Tn, . . . , Tim
∼= Tn and ηn

is linearly dependent of ηi1 , . . . , ηim over Tn.

Proof. We only prove this for (4.5), since the proof for (4.6) is analogous.
Since S2 is not a subobject of Xn, the image of the concatenation

ϕ : Sn−1 �
n−1⊕
i=1

Xi � Coker g−1gn

is Sn−2. Set

F :=

 f1 0 0 ... 0
0 f2 0 ... 0

...
0 0 ... 0 fn−1

 .
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Then the following diagram is exact, because all rows and the first and second
column are exact:

0

��

0

��

0

��

0 // S

[ id ... id ]
��

fn // Xn

g−1gn
��

// Tn //

��

0

0 // Sn−1 F //

��

⊕n−1
i=1 Xi

//

��

⊕n−1
i=1 Ti

��

// 0

0 // Sn−2 ϕ //

��

Coker g−1gn //

��

Coker ϕ

��

// 0

0 0 0

.

Thus, there are 1 ≤ i1, . . . , im ≤ n− 1 so that Ti1 ∼= Tn, . . . , Tim
∼= Tn and ηn

is linearly dependent of ηi1 , . . . , ηim over Tn.

Now we prove in particular that (C2) holds if A is of colocal type:

Lemma 4.3.4. Let A be an abelian length category. The following holds for
all simple objects S ∈ A:

(a) If A is of colocal type, then∑
T simple

d1T (T, S) ≤ 2. (4.7)

(b) If S(A) is distributive, then there are at most two non-isomorphic simple
modules T with d1T (T, S) ̸= 0.

Proof. We start with the proof of (a). If∑
T simple

d1T (T, S) ≥ 3,

then we have three exact sequences

ηi : 0 // S
fi // Xi

// Ti // 0
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for some indecomposable objects Xi ∈ A and simple Ti with i ∈ 1, 2, 3. If
Ti ∼= Tj for some i ̸= j, then ηi and ηj are linearly independent over End(Ti)op.
If T1 ∼= T2 ∼= T3, then over End(Ti)

op none of the exact sequences is a linear
combination of the other two.

There is a pushout

S

[
f1
f2

]
//

f3
��

X1 ⊕X2

[ g1 g2 ]
��

X3 g3
// Y

.

We show that Y is indecomposable: By 2.1.3,
[
g1 g2

]
and g3 are monomor-

phisms.
Furthermore, l(Xi) = 2, l(X1 ⊕X2) = 4 and by 2.1.4, l(Y ) = 5.
Suppose that Y = Y1 ⊕ Y2 for some indecomposable Y1 and write

gi =

[
g1i
g2i

]
with gji : Xi → Yj for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2.

Without loss of generality, we can assume that g13f3 ̸= 0 and g11f1 ̸=
0. Then g11 and g13 are both monomorphisms; otherwise their image was
isomorphic to S and they would split. By Lemma 4.3.3, none of them is an
isomorphism and thus l(Y1) ≥ 3. If g23f3 ̸= 0, we analogously get l(Y2) ≥ 3,
a contradiction to l(Y ) = 5.

So we can assume that g23f3 = 0. If g22f2 ̸= 0, then g21f1+g22f2 = 0. By
Lemma 4.3.3, we get again l(Y2) ≥ 3 and thus l(Y1⊕Y2) = 6, a contradiction
to l(Y ) = 5.

So g11, g12, g13 are all monomorphisms and g23f3 = g22f2 = g12f1 = 0.
Since

[
g1 g2

]
is a monomorphism by 2.1.3, we get

S2 � Im
[
g11 g12

]
� Y1. (4.8)

Thus Ker
[
g11 g12

]
= 0 and this morphism is a monomorphism. We get

4 = l(X1 ⊕X2) < Y1 and Y1 ∼= Y .
By (4.8), A is not of colocal type.

To prove (b), we can assume that the objects T1, T2 and T3 are pairwise
non-isomorphic.

Since
[
g1 g2

]
: X1 ⊕ X2 � Y is a monomorphism, there is also a

monomorphism Y � Coker g1 ⊕ Coker g2 by Lemma 4.2.2.
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For 1 ≤ i ̸= j ̸= k ≤ 3, the following diagrams are exact, because all rows
and the first and second column are exact:

0

��

0

��
0 //

��

Xk ⊕Xj

��

Xk ⊕Xj
//

��

0

0 // S // X1 ⊕X2 ⊕X3
//

��

Y //

��

0

0 // S //

��

Xi
//

��

Ti //

��

0

0 0 0

and

0

��

0

��

0

��
0 // S //

��

Xk ⊕Xj
//

��

Coker gi // 0

0 // Xi
gi //

��

Y //

��

Coker gi //

��

0

0 // Ti

��

Ti //

��

0

0 0

.

By Lemma 4.3.1, Coker gi is indecomposable and there is an exact sequence

0 // S // Coker gi // Tj ⊕ Tk // 0 .

In particular, the socle of Coker gi is S and Ti is not a subobject of any
indecomposable object Z � Coker gi with an epimorphism (Coker gi)

n � Z.
If there was any n ∈ N with a monomorphism ϕ : Y � (Coker gi)

n, then
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there was some Z ′ so that the following diagram was exact:

0

��

0

��

0

��
0 // S2 // Y //

ϕ
��

T1 ⊕ T2 ⊕ T3

��

// 0

0 // S2 //

��

(Coker gi)
n //

��

Z ′ //

��

0

0 // Coker ϕ

��

Coker ϕ //

��

0

0 0

.

But for the smallest n with such a monomorphism, the component Y →
Coker gi of ϕ is non-zero for every copy of Coker gi, so no direct summand of
Z ′ is isomorphic to Coker gi, a contradiction.

By Proposition 4.1.3, S(A) is not distributive.

The following lemma is especially important if A = modA for some Artin
algebra A over an algebraically closed field k, since in this case, End(S) ∼=
End(T ) for all simple modules S, T ∈ modA, since modA is equivalent to the
module category of a quiver algebra, see 2.5.3.

Lemma 4.3.5. Let S(A) be distributive. Then for all simple modules S, T
with End(S) ∼= End(T ), we have

d1S(S, T ) = 1 = d1T (S, T ). (4.9)

Proof. Suppose that 4.9 is not fulfilled. Then

2 ≤ d1S(S, T ) = d1T (S, T ) = dimEnd(S)op Ext
1(S, T ) = dimEnd(T ) Ext

1(S, T ).

There are η′1, η′2 ∈ Ext1(S, T ) which are linearly independent over End(S)op
and η′3, η

′
4 ∈ Ext1(S, T ) which are linearly independent over End(T ). We can

choose η1, η2 out of these so that they are linearly independent over both
End(S)op and End(T ): If η′1, η′2 are linearly dependent over End(T ), then at
least one of η′3, η′4 is linearly independent of both of them over End(T ). We
can assume this to be η′3. Over End(S)op, η′3 is linearly independent of at
least one of η′1 and η′2.

There are indecomposable objects X1, X2 so that we can write η1 and η2
as

ηi : 0 // T
fi // Xi

gi // S // 0
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with 1 ≤ i ≤ 2.
First, assume that X1

∼= X2.
If g1f2 ̸= 0, then Im g1f2 ∼= S ∼= T , since S and T are simple. Because

End(S) is a division ring, the identity factors through g1f2. So these mor-
phisms split, contrary to the assumption that X1

∼= X2 is indecomposable.
Analogously, we get g2f1 = 0.

So Im f1 = Im f2 = Ker g1 = Ker g2. Thus there are isomorphisms ϕ : T →
T and ψ : S → S so that f2 = f1ϕ and g2 = ψg1.

But End(S) ∼= End(T ), so we can also regard ψ as an isomorphism over
T and ϕ as an isomorphism over S. Over End(S)op, we get η2 = η1ϕψ

−1 and
over End(T ), we have η2 = ϕ−1ψη1, contrary to the assumption that η1 and
η2 are linearly independent over these division rings.

So X1 � X2. By Lemma 4.3.1, there is a pullback

Y
f //

g

��

X1

��
X2

// S

so that Y is indecomposable. Furthermore,

T ⊕ T ∼= Ker f ⊕ Ker g ⊂ Y.

Suppose that for 1 ≤ i ≤ 2, there is some monomorphism hi : T � Y so
that Xi

∼= Coker hi. Then [
h1 h2

]
: T 2 � Y

is a monomorphism.
Since there is only one way to embed T ⊕ T into Y , h1 and h2 form a

basis of Hom(T, Y ) over End(T ).
If there are objects X ′

1, X
′
2 which are middle terms of exact sequences

η′1, η
′
2 in Ext1(S, T ) and a monomorphism

Y � X ′
1 ⊕X ′

2,

then there is a monomorphism[
h′1 h′2

]
: T 2 � Y

so that X ′
1 = Coker h′1 and X ′

2 = Coker h′2, since l(Y ) = 3, l(X ′
1) = l(X ′

2) = 2
and socY = T 2.
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There are some α, β,∈ End(T ) so that h′1 = h1α + h2β. Without loss of
generality, we can assume that β ̸= 0.

Since
[
h′1 h′2

]
is a monomorphism, h′1 and h′2 must be orthogonal to

each other: h′2 = (h2α − h1β)γ for some γ ∈ End(T ). Thus, there are exact
sequences with h′1 and h′2 as monomorphisms that are linearly independent
of each other over both End(S)op and End(T ). So X ′

1 � X ′
2 and in particular,

Y /∈ subX1 and Y /∈ subX2.
By Proposition 4.1.3, the proof is complete.

4.4 2-Extensions

In this section, we collect some results about exact sequences in Ext2(S, T ),
where S and T are simple objects. We will need these results in the later
sections.

Lemma 4.4.1. Suppose that S ′, T are simple objects. If

η : 0 // S ′ //M // N // T // 0

is an exact sequence in Ext2(T, S ′), then there is some exact sequence

η′ : 0 // S ′ //M ′ // N ′ // T // 0

with a map η′ → η in Ext2(S ′, T ) and topN ′ ∼= T . The induced morphisms
of objects M ′ � M and N ′ � N are monomorphisms. Furthermore, there
is an exact sequence

η′′ : 0 // S ′ //M ′′ // N ′′ // T // 0

with a map η → η′′ in Ext2(S ′, T ) and socM ′′ ∼= S ′. The induced morphisms
of objects M �M ′′ and N � N ′′ are epimorphisms.

Proof. We only prove the first part, since the second one is completely anal-
ogous.

If topN = T ⊕ T ′ for some non-zero object T ′, let h : N � T ′ be
an epimorphism. The concatenation Ker h � N � T is non-zero, so T |
top(Ker h). If top(Ker h) ̸= T , we repeat the construction. Since the object
T has finite length, we get an object N ′ with topN ′ = T after finitely many
steps.
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Let g be the epimorphism of the exact sequence. Then there are mor-
phisms f, g′ with an exact diagram

0

��

0

��

0

��
0 // Ker g′ //

��

N ′ g′ //

f

��

T // 0

0 // Ker g //

��

N
g //

��

T //

��

0

0 // Coker f

��

Coker f //

��

0

0 0

. (4.10)

Furthermore, there is a concatenation of epimorphismsM � Ker g � Coker f
and thus some object M ′ with an exact diagram

0

��

0

��

0

��

0

��
0 // S ′ //M ′ //

��

N ′ //

f
��

T // 0

0 // S ′ //

��

M //

��

N //

��

T //

��

0

0 // Coker f

��

Coker f //

��

0

0 0

. (4.11)

Note that the exact sequences η′ and η′′ are not unique: in the con-
struction of N ′, we have used an arbitrary epimorphism h : N � T ′, where
topN = T ⊕ T ′. If T 2 | topN , there can be such epimorphisms with non-
isomorphic kernels.

But let m be the maximal integer so that Tm | topN . Then there is some
T ′′ so that topN = Tm ⊕ T ′′. If there are two epimorphisms h1 : N � T ′′

and h2 : N � T ′′, then there is some isomorphism χ : T ′′ → T ′′ so that
h1 = χh2. So Ker h1 ∼= Ker h2.
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Furthermore, the following diagram is exact, since all columns and the
second and third row are exact:

0

��

0

��

0

��
0 // Ker h // Ker h1 //

��

Sm−1 //

��

0

0 // Ker h //

��

N
h //

h1
��

T ′ //

��

0

0 // T ′′

��

T ′′ //

��

0

0 0

. (4.12)

Note that neither η′ nor η′′ in the lemma above are necessarily unique: If T 2 |
topN or S2 | socM respectively, then we can choose different epimorphisms
N � T to construct N ′ or monomorphisms S � N to construct M ′′.

We still need two auxiliary lemmas:

Lemma 4.4.2. Let A be an abelian length category. Let there be simple
objects S1, . . . , Sn ∈ A with Ext1(Si, Si+1) ̸= 0 for all 1 ≤ i < n and for all
simple S ∈ A ∑

T simple

d1T (S, T ) ≤ 1.

Suppose that there is some indecomposable object Z with socZ = Sn and
S1 | topZ or alternatively Sn | socZ and S1 = topZ.

Then for all 1 ≤ i ≤ j ≤ n, there is some indecomposable Xij with
socXij = Sj and topXij = Si so that for all 1 ≤ i ≤ n, there is a chain of
monomorphisms

Xii � Xi−1,i � · · ·� X1,i

and a chain of epimorphisms

Xin � Xi,n−1 � · · ·� Xii.

If socZ is simple, we can choose these objects so that there is a monomor-
phism X1,n � Z. If topZ is simple, we can choose these objects so that
there is an epimorphism Z � X1,n.

Proof. We show this inductively. If n = 1, this is clear. So suppose that the
assertion is proved for n− 1.
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We can assume that socZ is simple, since the proof is completely analo-
gous if topZ is simple. Let

Sn = Zm � Zm−1 � · · ·� Z0 = Z

be a filtration of Z so that Zi/Zi+1 is simple. Then socZi is simple and Zi
is indecomposable for all 0 ≤ i ≤ m. Furthermore, for every simple T with
a morphism f : Z � T , we can choose Z1 to be Ker f . If T ⊕ S1 | topZ,
then the concatenation of morphisms Z1 � Z � S1 is non-zero and thus
S1 | topZ1.

So there is some object Zi with socZi = Sn and topZi = S1.
Note that every submodule and every factor module of Zi is indecompos-

able.
Then Zi/Zi+1 = S1. There is some simple object T1 and an indecompos-

able object X so that the following diagram is exact:

0

��

0

��

0

��
0 // Zi+2

// Zi+1

��

// T1 //

��

0

0 // Zi+2
//

��

Zi //

��

X //

��

0

0 // S1

��

S1
//

��

0

0 0

.

So Ext1(S1, T ) ̸= 0. Analogously, there is some i2 > i with T2 | topZi2 and
Ext1(T, T2) ̸= 0. Inductively, we get some k ∈ N with

T3 | topZi3 , . . . , Tk | topZik and Tk+1 = Sn

and Ext(Tj, Tj+1) ̸= 0. Since the only object Tk with Ext1(Tk, Sn) ̸= 0, is
Sn−1, inductively the sequence (T1, . . . , Tk+1) must either be of the form

(S1, . . . , Sn−1, Sn)

or (if Ext1(Sn, Sn) ̸= 0) of the form

(S1, . . . , Sn−1, Sn, Sn, . . . , Sn)
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or (if S1 → S2 · · · → Sn → S1 is an oriented cycle in the Ext-quiver of A) of
the form

(S1, . . . , Sn−1, Sn, S1, . . . , Sn−1, Sn, . . . , S1, . . . , Sn−1, Sn).

Thus socZi+1 = Sn and S2 | topZi+1. By the inductive assumption, the
objects Xj1,j2 and the chains of monomorphisms and epimorphisms exist for
all 2 ≤ j1 ≤ j2 ≤ n. We can choose them so that there is a chain of
monomorphisms X2,n � Zi+1 � Zi =: X1,n.

We construct the remaining objects X1,i inductively for all i = n −
1, . . . i = 1: We choose them to be the objects that make the middle col-
umn in the following diagram exact. Then all columns and the first and
second row of the diagram are exact; thus the last row is also exact:

0

��

0

��
0 // Ker f2

��

Ker f2

��

// 0

��
0 // X2,i+1

f1 //

f2
��

X1,i+1
//

��

Coker f1 // 0

0 // X2,i
//

��

X1,i
//

��

Coker f1 //

��

0

0 0 0

.

These objects fulfil all assertions made in the lemma and the proof is com-
plete.

From the proof above, we can see:

Corollary 4.4.3. Let A be an abelian length category with∑
T simple

d1T (S, T ) ≤ 1

for all simple objects S ∈ A.
Let Z be an object. If topZ = T is simple and there is an object Z ′ with

an exact sequence

0 // Z ′ // Z // T // 0 ,

then for every simple T ′ | topZ ′, we have Ext1(T, T ′) ̸= 0.



4.4. 2-EXTENSIONS 97

Now we can prove the following:

Lemma 4.4.4. Let A be an abelian length category. Suppose that there are
simple objects S1, . . . , Sn ∈ A with Ext1(Si, Si+1) ̸= 0 for all 1 ≤ i < n and
for all simple S ∈ A we have∑

T simple

d1T (S, T ) ≤ 1. (4.13)

Then for every indecomposable object Z with topZ = S1 and socZ =
⊕n

i=1 S
mi
i

we have
⊕n

i=1mi = 1.

Proof. Suppose that a Z exists with
⊕n

i=1mi > 1. By Corollary 4.4.3, there
is some n′ ≥ n, so that we can define

Sn+1 = S1, . . . , S2n = Sn, S2n+1 = S1, . . . , Sn′ = Sn

and there is a filtration

Smn
n = Zn′ � Zn′−1 � · · ·� Z0 = Z

so that Zi−1/Zi = S
m′

i
i for all 0 < i ≤ n′ and some m′

i ∈ N. We prove the
assertion by induction on n′.

Suppose that n′ = 1. Then there is some Y with

0 // S // Z // Y // 0 .

The object Y is indecomposable, since topY ∼= topZ ∼= T . Furthermore,
socY = Smn−1. Inductively, we can assume that mn = 2. Then socZ ∼= S2

and the cokernel of S � Z is some X that is an indecomposable middle
term of an exact sequence in Ext1(S1, S2). By 2.1.4 and Lemma 4.2.2, there
are such middle terms X1, X2 so that the following is both a pushout and a
pullback:

Z
f1 //

f2
��

X1

g1
��

X2
g2 // T

. (4.14)

By (4.13), X1 and X2 are the middle terms of exact sequences which are
linearly dependent over T . But then X1

∼= X2 and there is a commutative
diagram

X1
e1 //

e2
��

X1

g1
��

X2
g2 // T

,
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a contradiction to (4.14): If there was any ϕ so that e1 = f1ϕ, then f1 would
split.

Now suppose that the assertion is proved for n′ − 1 ≥ 2. By Corollary
4.4.3, topZ1 = S

m′
2

2 and thus m′
2 > 1. There is some Z ′ which makes the

following diagram exact:

0

��

0

��

0

��
0 // Z2

��

Z2

��

// 0

��
0 // Z1

��

// Z

��

// S1
// 0

0 // Sm2
2

��

// Z ′

��

// S1

��

// 0

0 0 0

Since topZ is simple, topZ ′ = topZ = S1, the object Z ′ is indecomposable
and the proof is complete.

We can say even more:

Lemma 4.4.5. Let A be an abelian length category. Suppose that there are
simple objects S1, . . . , Sn ∈ A with Ext1(Si, Si+1) ̸= 0 for all 1 ≤ i < n and
for all simple S ∈ A ∑

T simple

d1T (S, T ) ≤ 1. (4.15)

Then the following holds:

(a) If the objects Xij in Lemma 4.4.2 exist, then we can choose them so that
l(Xij) = j − i+ 1 for all 1 ≤ i ≤ j ≤ n.

(b) For every object Z of length n′ > n with topZ = S1 and socZ = Sn, we
can define

Sn+1 = S1, . . . , S2n = Sn, S2n+1 = S1, . . . , Sn′ = Sn (4.16)

so that Z ∼= X1,n′.
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Proof. We prove (a) first: From the construction of Xij it is obvious that
l(Xij) ≥ j − i + 1. If i = j, we can choose Xij = Si with length 1. Suppose
that l(Xij) = j − i+ 1 for all j − i ≤ m. Then we can also find such Xij for
j − i = m+ 1:

If l(Xij) > j − i+ 1, then the cokernel Y of Sj � Xij is indecomposable
and not isomorphic to Xi,j−1, but there is an epimorphism Y � Xi,j−1.
By (4.15) and Lemma 4.4.4, the socle of Y is simple; by Corollary 4.4.3,
socY = Sj−1.

We can repeat this construction and since Sj is the only simple object
with Ext1(Sj−1, Sj) ̸= 0, we get an indecomposable object Y ′ with an exact
sequence

0 // Sj // Y ′ // Xi,j−1
// 0 .

Then l(Y ) = j − i + 1. Set X ′
i′,j′ := Y ′ for i′ = i and j′ = j. Furthermore,

X ′
i′,j′ := Xi′,j′ if i ≤ i′ ≤ j′ ≤ j − 1. Then we can construct X ′

i′,j inductively,
analogous to the construction in 4.4.2. These objects fulfil socX ′

ij = Sj and
topX ′

ij = Si and for all 1 ≤ i ≤ n, there is a chain of monomorphisms

X ′
ii � X ′

i−1,i � · · ·� X ′
1,i

and a chain of epimorphisms

X ′
in � X ′

i,n−1 � · · ·� X ′
ii.

To prove (b), we note that by Lemma 4.4.2, there is an epimorphism Z �
X1,n and by (a) we can assume that l(X1,n) = n. So we can use an analogous
construction as in (a) to get a filtration

X1,n � Zn+1 � · · ·� Zn′ = Z

where Zi/Zi−1 is simple. Denoting Si := Zi/Zi−1 for n < i ≤ n′, we see that
this Definition fulfils (4.16) by Corollary 4.4.3 and (4.15).

Now we can show the following:
Lemma 4.4.6. For all simple objects S ∈ A let∑

T simple

d1T (S, T ) ≤ 1. (4.17)

Suppose that there are fixed simple objects S ′, S, T and indecomposable objects
X,Z so that Ext1(T, S) ̸= 0 and the following sequences are exact:

0 // S ′ // X // S // 0

and
0 // X // Z // T // 0 . (4.18)

Then the following holds:
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(a) If for all S ′ ∼= S1, S2, . . . , Sn ∼= T with Ext1(Si, Si+1) ̸= 0 for 1 ≤ i < n,
so that X1,n−1 and X2,n as in Lemma 4.4.5 exist, we have n = 3 and
S2
∼= S, then Ext2(S ′, T ) = 0.

(b) All exact sequences of the form (4.18) are equivalent over End(X), while
all exact sequences of the form

0 // S ′ // Z // X ′ // 0 (4.19)

with indecomposable X ′ are equivalent over End(S ′). In particular, all
objects Z so that (4.18) exists are isomorphic.

Proof. First, we prove (a): Suppose that

η : 0 // S ′ //M // N // T // 0

is an exact sequence in Ext2(S ′, T ) that does not split. By Lemma 4.4.1,
there is an exact sequence

η′ : 0 // S ′ b //M ′ // N ′ // T // 0

with topN ′ = T and η′ → η. Thus η and η′ are equivalent. Again by
Lemma 4.4.1, we can assume that socM ′ ∼= S ′. There is an epimorphism
M ′ � Coker b and a monomorphism Coker b � N ′. If Coker b = 0, then η′

splits and there is nothing to show.
Otherwise, there are some objects R and R′, so that the following diagram

is exact, since all columns and the first and second row are exact:

0

��

0

��
0 // S

��

S //

��

0

��
0 // R //

��

M ′ //

��

topM ′ // 0

0 // R′ //

��

Coker b //

��

topM ′ //

��

0

0 0 0

Thus, topM ′ ∼= topCoker b and analogously, socCoker b = socN ′. By Corol-
lary 4.4.3, there are some S ′ ∼= S1, S2, . . . , Sn ∼= T with Ext1(Si, Si+1) ̸= 0 for
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1 ≤ i < n. Furthermore, Sn−1 | topM ′ and S1 | socN ′. By the assumption,
Coker b ∼= topM ′ ∼= socN ′ ∼= Sm for some m ∈ N.

By Lemma 4.4.4, we get m = 1 and thus M ′ ∼= X, where X is the middle
term of an exact sequence in Ext(S, S ′) and N ′ ∼= X ′, where X ′ is the middle
term of an exact sequence in Ext(T, S).

It remains to show that all exact sequences of the form

η1 : 0 // S ′ f // X
g′g // X ′ h // T // 0

with g : X � S, g′ : S � X ′ are equivalent to the split exact sequence

0 // S ′ // S ′ // T // T // 0 .

We show that for all monomorphisms c : S ′ � Z and c′ : X � Z, there is
some monomorphism b and some epimorphism d with an exact sequence

η2 : 0 // S ′ [ id
b ] // S ′ ⊕X [ c c′ ] // Z d // T // 0

and a morphism of exact sequences η2 → η1. Since there is obviously a
morphism from η2 into the split exact sequence, this proves that Ext2(S ′, T ) =
0.

By Lemma 4.4.2, there is an epimorphism ϕ : Z � X ′. Obviously,
Im(ϕc′) ∼= S. There is an isomorphism ψ so that the following diagram is
commutative:

0 // Im(ϕc′) �
� //

ψ

��

X ′ h // T // 0

0 // S
g′ // X ′ h // T // 0

.

Since (4.17) holds, there are isomorphisms ψ′, ψ′′ and a monomorphism f ′

so that the following diagram is commutative

0 // S ′ b //

ψ′′

��

X
ϕc′ //

ψ′

��

Im(ϕc′) //

ψ
��

0

0 // S ′ f // X
g // S // 0

.

We can set d := hϕ and get the commutative diagram

0 // S ′ [ id
b ] //

ψ′′

��

S ′ ⊕X [ c c′ ] //

[ 0 ψ′ ]
��

Z

ϕ
��

d // T // 0

0 // S ′ f // X
g′g // X ′ h // T // 0

. (4.20)
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So Ext2(S ′, T ) = 0.

Part (b) is simple to show: By (4.17), every isomorphism on T induces an
isomorphism on X ′ and thus on S. On the other hand, every isomorphism
on S induces an isomorphism on X. So every isomorphism on T induces
an isomorphism on X and all exact sequences of the form (4.18) must be
equivalent over End(X).

Analogously, all exact sequences of the form (4.19) are equivalent over S ′.

It is possible to generalize this to the following:

Lemma 4.4.7. For all simple objects S ∈ A let∑
T simple

d1T (S, T ) ≤ 1. (4.21)

Then the following holds if there are some fixed simple objects S, T with an
object Z so that soc(Z) = S and top(Z) = T :

(a) If there are unique objects S ′ ∼= S0, S1, . . . , Sn ∼= T with Ext1(Si, Si+1) ̸= 0
for 0 ≤ i < n, so that X0,n−1 and X1,n as in Lemma 4.4.5 exist, then
Ext2(S, T ) = 0.

(b) If T ∼= S1, S2, . . . , Sn ∼= S and the objects Xij are defined as in 4.4.5,
then all exact sequences of the form

0 // S // X1,n
// X2,n

// 0

are equivalent over End(S) and all exact sequences of the form

0 // X2,n
// X1,n

// T // 0

are equivalent over End(X2,n); in particular all objects of the form X1,n

are isomorphic.

Proof. By (4.21), there are up to isomorphism uniquely determined simple
objects T ∼= S1, S2, . . . , Sn ∼= S with Ext(Si, Si+1) ̸= 0. Furthermore, by
Lemma 4.4.2, there are X1,n−1 and X2,n so that the following sequence is
exact:

η : 0 // S // X1,n−1
// X2,n

// T // 0 .

We prove the lemma with induction on n. For n = 2, the lemma is obvious;
for n = 3 it is the result of Lemma 4.4.6. Suppose that the assertion holds
for n− 1.
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By Lemma 4.4.2, there is a monomorphism X1,n−1 � X1,n and an epi-
morphism X1,n � X2,n.

Now we can show both (a) and (b) completely analogously to 4.4.6.

Now we show the other direction of 4.4.6:

Lemma 4.4.8. Suppose that for all simple objects S ∈ A∑
T simple

d1T (S, T ) ≤ 1.

Let S, S ′, T ∈ A be fixed simple objects with Ext1(S, S ′) ̸= 0 ̸= Ext1(T, S) so
that for all T ∼= S1, S2, . . . , Sn ∼= S ′ with Ext1(Si, Si+1) ̸= 0 for 1 ≤ i < n, we
have n = 3 and S2

∼= S.
If Ext2(T, S ′) = 0, then there is some indecomposable object Z of length

3 with socZ = S ′ and topZ = T .

Proof. By the assumptions, there are indecomposable objects X, X ′ with
exact sequences

0 // S ′ f // X
g // S // 0 (4.22)

0 // S
g′ // X ′ h // T // 0 . (4.23)

So the following sequence is also exact:

η1 : 0 // S ′ f // X
g′g // X ′ h // T // 0 .

If Ext2(S ′, T ) = 0, then η1 is equivalent to the split exact sequence

0 // S ′ // S ′ // T // T // 0 .

So there are maps of exact sequences η1 → η2 ← η3 → · · · ← ηm or η1 ←
η2 → η3 ← · · · → ηm so that ηm or ηm+1 with ηm → ηm+1 splits for some
m ∈ N.

Let η be an exact sequence with η → η1. If we start with an exact
sequence η with η1 → η, the proof is analogous.

Then there are objectsM,N , morphisms c, d, e, ϕ1, ψ1, and a commutative
diagram

0 // S ′ c //M
d //

ϕ1
��

N
e //

ψ1
��

T // 0

0 // S ′ f // X
g′g // X ′ h // T // 0

.
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By Lemma 4.4.1, there is some exact sequence

η′ : 0 // S ′ //M ′ // N ′ // T // 0

with a map η′ → η in Ext2(S ′, T ) and topN ′ ∼= T . Since η′ → η → η1, we
can assume that η = η′ and thus topN = T . Then η′′ as defined in Lemma
4.4.1 fulfils socM ′′ = S ′ and topN ′′ = T .

We can assume that some

η′′ : 0 // S ′ f ′′ //M ′′ g′′ // N ′′ h′′ // T // 0

exists, which is not isomorphic to η1.
Let ϕ2 : M → M ′′ and ψ2 : N → N ′′ be the morphisms that are induced

by η → η′′. The morphisms ψ1 and ψ2 are epimorphisms: since topX ′ =
T = topN ′′ and hψ1 = h′′ψ2 = e ̸= 0, the cokernels of these morphisms are
zero. Thus, ϕ1 and ϕ2 are also epimorphisms, since

g′gϕ1 = ψ1d ̸= 0 ̸= ψ2d = g′′ϕ2

and
ϕ1c = f ̸= 0 ̸= f ′′ = ϕ2c.

Similarly to the arguments in Lemma 4.4.1, Ker ϕ is a subobject of Im d and
thus there is a monomorphism χ : Ker ϕ � N . Obviously, there is also a
monomorphism χi : Ker ϕ � Ker ϕi ∼= Kerψi for 1 ≤ i ≤ 2. The following
diagram is exact, since all rows and the first and second column are exact:

0

��

0

��

0

��
0 // Ker ϕ

χi // Kerψi

��

// Cokerχi

��

// 0

0 // Ker ϕ

��

χ // N

��

// Cokerχ

��

// 0

0 //

��

Imψi

��

Imψi //

��

0

0 0 0

So there is an exact sequence

θ : 0 // S ′ // Imϕ // Cokerχ // T // 0
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with maps θ → η1 and θ → η′′. Thus, we can assume that ϕ =

[
ϕ1

ϕ2

]
is a

monomorphism.
If socM = S ′, then ϕ1 is not only an epimorphism, but also monomor-

phism and thus an isomorphism. Since η is an exact sequence, ϕ2 is also an
isomorphism. But the same holds for ϕ2 and ψ2, so η′′ ∼= η1, contradictory
to our assumptions.

We get S ′2 | socM and thus S ′ | socN .
By the assumption, we have n = 3 and S2

∼= S for all S ′ ∼= S1, S2, . . . , Sn ∼=
T with Ext1(Si, Si+1) ̸= 0 for 1 ≤ i < n. Furthermore, dS(S, S ′) = 1 =
dT (T, S).

By Corollary 4.4.3 and Lemma 4.4.4, we see that either N ′′ ∼= X ′ or
N ′′ ∼= T , since all exact sequences in Ext1(T, S) are equivalent over T . In the
first case, length considerations yield M ′′ ∼= X. Since the morphisms of η1
are arbitrarily chosen, we can assume that the second case holds. Then η′′

splits and M ′′ ∼= S ′.

So the epimorphism ψ2 splits and we get M = X ⊕ S ′. We get c =
[
f
h

]
and its cokernel is isomorphic to X. If we set N =: Z, then there are short
exact sequences

0 // X // Z // T // 0

and
0 // S ′ // Z // X ′ // 0

and Z fulfils the assertions.

4.5 The third condition
In this section, we prove that (C3) holds if A is of colocal type.

First note that the following equivalence holds:

Proposition 4.5.1. Suppose that for all simple objects S ∈ A∑
T simple

d1T (S, T ) ≤ 1.

For fixed simple objects S and S ′ with Ext1(S, S ′) ̸= 0, the following classes
of objects are the same:

(a) the class of simple objects T so that dT (T, S) ̸= 0 and there is some
indecomposable object Z of length 3 with socZ ∼= S ′ and topZ ∼= T
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(b) the class of simple objects T so that dT (T, S) ̸= 0 and there is some
indecomposable object Z of length greater or equal 3 with socZ ∼= S ′ and
topZ ∼= T

If Ext(S ′, S ′) = 0, then these classes are the same as

(c) the class of simple objects T so that dT (T, S) ̸= 0 and there is some
indecomposable object Z with socZ ∼= S ′ and topZ ∼= T

If S ′ is not part of an oriented cycle in the Ext-quiver of A, then this class
is even the same as

(d) the class of simple objects T so that dT (T, S) ̸= 0 and Ext2(T, S ′) = 0

Proof. The equivalence of (a) and (b) is just Lemma 4.4.2 and Lemma 4.4.5.
Part (c) is obvious, since under these assumptions S � S ′, Ext(S, S) = 0,
T � S and Ext1(T, S ′) = 0. Part (d) is proved in Lemma 4.4.6 (a) and
Lemma 4.4.8: If there is a cycle in the Ext-quiver of A, then it is oriented.
So if S ′ is not part of an oriented cycle in the Ext-quiver of A, then for all
T ∼= S1, S2, . . . , Sn ∼= S ′ with Ext1(Si, Si+1) ̸= 0 for 1 ≤ i < n, we have n = 3
and S2

∼= S.

We still need one lemma before we can prove that (C3) holds if A is of
colocal type:

Lemma 4.5.2. Let A be an abelian length category. Suppose that there are
simple objects S, S ′ with Ext1(S, S ′) ̸= 0 and for 1 ≤ i ≤ 2 there are objects
Ti, Xi and Zi with exact sequences

0 // S
gi // Xi

hi // Ti // 0 , (4.24)

which are linearly independent over End(T1)
op if T1 ∼= T2 and

0 // S ′ // Zi // Xi
// 0 .

If T1 ∼= T2, we furthermore assume that dS′(S, S ′) = 1.
Then there is a pushout

S ′ //

��

Z1

��
Z2

// Y

so that Y is indecomposable.
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Proof. If Z1 � Z2, we can choose the monomorphisms f1 : S ′ � Z1 and
f2 : S

′ � Z2 arbitrarily.
Otherwise, we denote the kernel of Z1 � T1 with X3. Since l(Z1) = 3,

there is an exact sequence

0 // S ′ f // X3
g // S // 0 .

We have Im ggi ∼= S ∼= socXi. The image of the concatenation ϕi : X3 �
Zi � Xi is also socXi and because of dS′(S, S ′) = 1, there is some isomor-
phism ψi so that ϕiψi = ggi.

So we can choose f ′
1 and f ′

2 so that the following diagrams are exact for
1 ≤ i ≤ 2:

0

��

0

��

0

��
0 // S ′

f
��

S ′ //

ff ′i
��

0 //

��
0 // X3

f ′i //

g

��

Zi //

��

Ti //

��

0

0 // S
gi //

��

Xi
hi //

��

Ti //

��

0

0 0 0

. (4.25)

We set f1 = f ′
1f and f2 = f ′

2f and form the pushout:

S ′ f1 //

f2
��

Z1

g1
��

Z2 g2
// Y

.

Now, we show that Y is indecomposable:
Since socZ1 = socZ2 = S ′, there is some indecomposable direct summand

Y ′ of Y with monomorphisms Z1 � Y ′ and Z2 � Y ′. The following diagram
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is exact for 1 ≤ i ̸= j ≤ 2, since its rows and the first two columns are exact:

0

��

0

��
0 //

��

Zi

��

Zi //

��

0

0 // S ′ // Z1 ⊕ Z2

��

// Y

��

// 0

0 // S ′ //

��

Zj //

��

Xj

��

// 0

0 0 0

. (4.26)

Note that l(Y ) = 5 and l(Y ′) ≥ l(Z1) = 3. Thus, the cokernel of ϕi : Zi � Y ′

cannot be simple; otherwise the cokernel of Zi � Y would be semisimple.
So either Y ∼= Y1 or Y1 ∼= Z1. But the last case would give us a commutative
diagram

S ′ f1 //

f2
��

Z1

∼=
��

Z2 ∼=
// Y1

.

So T1 ∼= T2 and with (4.25), this contradicts the assumption that the exact
sequences (4.24) are linearly independent over End(Ti)

op.
So Y is indecomposable.

The next Lemma shows in particular that (C3) is fulfilled if A is colocal.

Lemma 4.5.3. Let A be an abelian length category. The following holds for
all simple objects S ∈ A:

(a) Let A be of colocal type. If there is a simple object S ′ with Ext(S, S ′) ̸= 0
and a set T of simple objects T so that dT (T, S) ̸= 0 and there is an
indecomposable object Z of length 3 with topZ ∼= T and socZ ∼= S ′, then∑

T∈T

dT (T, S) ≤ 1.

(b) Let S(A) be distributive. Assume that there is a simple object S ′ � S
with Ext(S, S ′) ̸= 0 and a set T of simple objects T so that dT (T, S) ̸= 0
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and there is an indecomposable object Z of length 3 with topZ ∼= T and
socZ ∼= S ′. If dS(S, S ′) ≥ dS′(S, S ′) or there are two non-isomorphic
objects in T , then ∑

T∈T

dT (T, S) ≤ 1.

Proof. We show (a) first: Since A is colocal,

dS(S, S
′) ≥ dS′(S, S ′) = 1

by Lemma 4.3.2. By Lemma 4.5.2, there are some T1, T2 ∈ T , an indecom-
posable middle term X3 of an exact sequence in Ext1(S, S ′), indecomposable
objects Z1, Z2 with

0 // X3
// Zi // Ti // 0

and an indecomposable object Y so that the following is a pushout:

S ′ //

��

Z1

��
Z2

// Y

.

In the following, we use the same notation as in Lemma 4.5.2: in its proof,
we either have chosen or can choose f, f1, f2 so that the upper left square
of the following diagram is commutative. Thus, the diagram is commutative
and exact, since its columns and the first two rows are exact:

0

��

0

��
0 // S ′

[ f f ]
��

S ′ //

[ f1 f2 ]
��

0

��
0 // X3 ⊕X3

��

// Z1 ⊕ Z2

��

// T1 ⊕ T2 // 0

0 // S ⊕X3
//

��

Y //

��

T1 ⊕ T2

��

// 0

0 0 0

. (4.27)

So socY = S ⊕ S ′ and A is not of colocal type.
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To show (b), we assume that S � S ′. Let k : S � Y and l : S ′ � Y be
induced by the last row of the diagram (4.27). Then there is a monomorphism
Y � Coker k ⊕ Coker l by Lemma 4.2.2.

For 1 ≤ i ̸= j ≤ 2, we get the following exact diagram, since all columns
and the first and second row are exact:

0

��

0

��
0 // S

��

S //

k
��

0

��
0 // S ⊕ Zi

��

// Y

��

// Tj // 0

0 // Zi //

��

Coker k //

��

Tj

��

// 0

0 0 0

. (4.28)

By Lemma 4.2.2, there is an indecomposable direct summand of Coker k of
which Z1 is a subobject. The last row of the diagram above cannot split,
since Y is indecomposable. So Coker k is also indecomposable and has the
socle S ′. Thus, socY ∼= S ′⊕S is not a subobject of any direct sum of copies
of Coker k and neither is Y . Analogously, the next diagram is exact for all
1 ≤ i ̸= j ≤ 2:

0

��

0

��
0 //

��

S ′

��

S ′ //

��

0

0 // Zi // Z1 ⊕ Z2

��

// Zj

��

// 0

0 // Zi //

��

Y //

��

Xj

��

// 0

0 0 0

.

And finally, the following diagram is exact, because all columns and the
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second and third row are exact:

0

��

0

��

0

��
0 // S ′

��

l // Y //

��

X1 ⊕X2
// 0

0 // Z1 ⊕ Z2

��

// Y ⊕ Y

��

// X1 ⊕X2

��

// 0

0 // Y

��

Y //

��

0

0 0

.

Thus, we have Coker l ∼= X1 ⊕X2, socCoker l ∼= S2 and Y is not a subobject
of any direct sum of copies of Coker l.

4.6 An Equivalence Theorem
We begin with the following special case, from which the general statement
follows:

Lemma 4.6.1. Let A be a hereditary Artin algebra and A ≡ modA. Assume
that A fulfils the following conditions:

(C1) For all simple objects S ∈ A∑
T simple

d1T (S, T ) ≤ 1.

(C2) For all simple objects S ∈ A∑
T simple

d1T (T, S) ≤ 2.

(C’3) If there is a simple object S ∈ A with∑
T simple

d1T (T, S) = 2,

then Ext1(S, S ′) = 0 for all simple S ′ ∈ A.
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Then the following holds:
(a) A is of colocal type.

(b) A is representation finite.
Proof. We can assume without loss of generality that A is indecomposable
as an algebra. To show both (a) and (b), we construct the preinjective com-
ponent of the Auslander-Reiten quiver of A. We will see that this component
is finite and thus the complete Auslander-Reiten quiver of A by Proposition
2.3.15.

The Ext-quiver of A does not contain oriented cycles, since A is hereditary.
By (C1), the Ext-quiver does not contain other cycles, either. So there are
two possible cases:
(a) We have d1T (S, T ) ≤ 1 and d1S(S, T ) ≤ 1 for all simple modules S, T ∈

modA. Then we can order the simple modules S1, S2, . . . , Sn of modA
so that for some 1 ≤ l ≤ n we have Ext1(Si, Si+1) ̸= 0 for all 1 ≤ i < l
and Ext1(Si+1, Si) ̸= 0 for all l ≤ i < n. By (C1) - (C2) and (C’3),
Ext1(S, T ) = 0 for all other simple modules S, T .

(b) We can denote the simple modules by S1, . . . , Sn so that
d1Si

(Si, Si+1) = 1 = d1Si+1
(Si, Si+1)

for all 1 ≤ i ≤ n − 2, d1Sn
(Sn−1, Sn) = 1, d1Sn−1

(Sn−1, Sn) = 2 and
Ext1(S, T ) = 0 for all other simple modules S, T .

We will only prove the assertion in case (a). In case (b), we can construct
the Auslander-Reiten quiver completely analogously to the first case and thus
show the assertion completely analogously. The result of this construction is
the following Auslander-Reiten quiver:

τn−1I1
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��6
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6

τn−2I1
��

��6
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. . .

��
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6

τI1
��

��6
66
6

I1

τn−1I2

DD
DD����

��

��6
66

66
τn−2I2

��

��6
66

66

DD����

. . .

DD������

��

��6
66

66
6

. . .

DD�����

��

��6
66

66
6

I2

DD����

. . .
DD

DD�����

��

��6
66

66
6

. . .
DD

DD�����

��

��6
66

66
6

. . .

DD������

��

��6
66

6
. . .

DD������

��

��6
66
66

. . .

DD�����

τn−1In−1

DD

DD����

�� (2,1)
��6

66
. . .

��
(2,1)

��6
66

66
6

DD

DD������
. . .

��
(2,1)
��6

66
66

DD

DD������
τ 1In−1

DD����

�� (2,1)
��6

66
6

��6
66
6

In−1

DD�����

τn−1In

DD (1,2)

DD���

τn−1In

DD (1,2)

DD����

. . .
DD

(1,2)

DD������
τIn

DD (1,2)

DD����

In

(1,2)

DD����



4.6. AN EQUIVALENCE THEOREM 113

The arrows of the form � denote monomorphisms.
Now suppose that (a) holds. Additionally, we assume without loss of

generality that l > n − l. Then the following is part of the preinjective
component of the Auslander-Reiten quiver of A by 2.3.7 and 2.3.9:
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If the arrows of the form � correspond to monomorphisms, it is obvious
that the above is a complete component of the Auslander-Reiten quiver of
A and thus the complete Auslander-Reiten quiver: We have τ lI1 = 0 and
τn−l+1In = 0, since no Auslander-Reiten sequence can start in these modules.
Inductively,

τ lI2 = · · · = τ lIn−l+1 = 0

and
τn−l+1In−1 = · · · = τn−l+1Il = τn−l+2Il−1 = · · · = τ l−1In−l+2 = 0.

To show that the arrows of the form � denote indeed monomorphisms, we
use Lemma 3.2.13: There are Auslander-Reiten sequences

0 // τ iI1 // τ i−1I2 // τ i−1I1 // 0
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for τ iI1 ̸= 0 and

0 // τ iIj // τ i−1Ij+1 ⊕ τ iIj−1
// τ i−1Ij // 0

for all 1 < j ≤ l − 1 and i with τ iIj ̸= 0. If there is an exact sequence

0 // τ iIj−1
// τ i−1Ij // τ i−1I1 // 0

then there is also an exact sequence

0 // τ iIj // τ i−1Ij+1
// τ i−1I1 // 0 . (4.29)

It possible to show that τ iIj−1, τ
iIj−2, . . . , τ

iI1 are non-zero and thus, we get
indeed the exact sequences above. But this is not necessary for our proof,
since we are only interested in the monomorphisms of the exact sequences
and if τ iIj−1 = 0, there is obviously a monomorphism τ iIj � τ i−1Ij+1, just
with a different cokernel.

Analogously, we can assume in the following that all modules in the exact
sequences below are non-zero.

There are Auslander-Reiten sequences

0 // τ iIn // τ i−1In−1
// τ i−1In // 0

for τ iIn ̸= 0 and

0 // τ iIj // τ i−1Ij−1 ⊕ τ iIj+1
// τ i−1Ij // 0

for all l < j ≤ n− 1 with τ iIj ̸= 0. We get an exact sequence

0 // τ iIj // τ i−1Ij−1
// τ i−1In // 0 (4.30)

for m < j ≤ n and i with τ iIj ̸= 0.
The remaining Auslander-Reiten sequences are

0 // τ iIl // τ iIl−1 ⊕ τ iIl+1
// τ i−1Il // 0

for τ iIl ̸= 0.
Together with (4.29) and (4.30), we get exact sequences

0 // τ iIl // τ iIl+1
// τ i−1I1 // 0

and
0 // τ iIl // τ iIl−1

// τ i−1In // 0 .
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Inductively, we get exact sequences

0 // τ iIj // τ iIj−1
// τ i−l+j−1In // 0 (4.31)

for all τ iIj ̸= 0 with 1 < j ≤ l and l − j < i. Analogously,

0 // τ iIj // τ iIj+1
// τ i+l−j−1I1 // 0 (4.32)

is exact for all τ iIj ̸= 0 with l ≤ j ≤ n and j − l ≤ i.
We can find the injective envelope (see 2.2.4) of every indecomposable

module M by taking the product of irreducible monomorphisms.
So M has an indecomposable injective envelope I with simple socle (see

2.2.6) and socM = soc I. Thus every submodule of M is indecomposable
and A is of colocal type.

Now we can prove Theorem 1.2.4:

Theorem 4.6.2. The category A is of colocal type if and only if the following
conditions hold:

(C1) For all simple objects S ∈ A∑
T simple

d1T (S, T ) ≤ 1.

(C2) For all simple objects S ∈ A∑
T simple

d1T (T, S) ≤ 2.

(C3) If there is a simple object S ′ with Ext1(S, S ′) ̸= 0, let T be the class of
simple objects T for which d1T (T, S) ̸= 0 and there is an indecomposable
object Z of length 3 with topZ ∼= T and socZ ∼= S ′. Then∑

T∈T

d1T (T, S) ≤ 1.

Proof. If A is of colocal type, then condition (C1) holds by Lemma 4.3.2,
condition (C2) holds by Lemma 4.3.4 and condition (C3) by Lemma 4.5.3.

For the other direction, we use Lemma 4.2.4: If A is not of colocal type,
there are objects X, Y1, Y2, S so that X is indecomposable, Y1, Y2 are not
simple and there is an exact sequence

0 // X // Y1 ⊕ Y2
[ g1 g2 ] // S // 0 . (4.33)
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If Y | Y1 ⊕ Y2 is indecomposable, we can assume that socY is simple.
On the other hand, S | topY , since Y - X.
First, we assume that for every T | soc(Y1 ⊕ Y2) there are up to isomor-

phism unique objects S ∼= S1, S2, . . . , Sn ∼= T with Ext1(Si, Si+1) ̸= 0 for
1 ≤ i < n so that X1,n−1 and X2,n as in Lemma 4.4.5 exist. By 4.4.2 and
Lemma 4.4.7, these are objects in a full abelian subcategory A′ of A so that
Ext2(S, T ) = 0 for all simple S, T ∈ A′.

By 2.3.1, we can be embed A′ into the module category of a hereditary
Artin algebra A. With Lemma 4.6.1, at least one of the conditions (C1),
(C2) or (C’3) is not fulfilled by modA. For a hereditary Artin algebra, the
condition (C’3) is equivalent to (C3) by 4.5.1 and thus A′ and A do not fulfil
(C1) - (C3).

Now suppose that for some T | soc(Y1 ⊕ Y2), there are non-isomorphic
objects S ∼= S1, S2, . . . , Sn ∼= T and S ∼= S ′

1, S
′
2, . . . , S

′
n′
∼= T so that we

have Ext1(Si, Si+1) ̸= 0 for 1 ≤ i < n, Ext1(S ′
i, S

′
i+1) ̸= 0 for 1 ≤ i < n′

and there are indecomposable objects X1,n−1, X2,n as in Lemma 4.4.5 and
X ′

1,n−1 with socX ′
1,n−1

∼= S ′
n−1, topX ′

1,n−1
∼= S ′

1 and X ′
2,n with socX ′

2,n
∼= S ′

n,
topX ′

2,n
∼= S ′

2.
If we assume that n′ ≤ n, then S1

∼= S ′
1, . . . , Sn′ ∼= S ′

n′ by (C1), so n′ < n.
By Lemma 4.4.2 and Lemma 4.4.5, there are objects Xi,i+2 of length 3 with
socXi,i+2 = Si+2 and topXij = Si. So by condition (C3), we get

dSi
(Si, Si+1) = 1

for all 1 ≤ i ≤ n. Analogously, every T ′ | soc(Y1 ⊕ Y2) must be of the form
Si for some 1 ≤ i ≤ n.

So we can choose T so that for all indecomposable objects Y | Y1 ⊕ Y2
there is some 1 ≤ i ≤ n with socY = Si. By (C1), there are some mi ∈ N
for 1 ≤ i ≤ n so that topY =

⊕n
i=1 S

mi
i . Analogously to Lemma 4.4.4,

dSi
(Si, Si+1) = 1 means topY = S = S1.
By Lemma 4.4.7, all objects with socle Si and top S1 are isomorphic to

X1,i and all exact sequences of the form

0 // X2,i
// X1,i

// S1
// 0

are equivalent over End(X2,i). So for all epimorphisms g : X1,i � S1 and
g′ : X1,i � S1, there is some isomorphism χ on X1,i so that g′ = χg.

Since S = S1 and T | socY1 ⊕ Y2, we get X1,n | Y1 ⊕ Y2 and can assume
that Y1 = Y ′

1 ⊕X1,n. By Lemma 4.4.2, there is an epimorphism X1,n � Xi,n.
There are morphisms f1, f2 so that the following is a commutative dia-
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gram:

X1,n

[ id
f1

]
//

f2
��

X1,n ⊕ Y ′
1

g1

��
Y2

g2 // T

.

But by (4.33), there is a pullback

X //

��

Y1

g1
��

Y2
g2 // T

.

Thus, X cannot be indecomposable, a contradiction to the assumption and
the proof is complete.

We can draw the following corollary:

Corollary 4.6.3. If A is a colocal Artin algebra, then A is of finite repre-
sentation type.

Proof. Since A is an Artin algebra, it has finitely many non-isomorphic simple
modules S1, S2, . . . , Sn. The proof of Theorem 4.6.2 shows that every module
in modA can be either be regarded as a module in modA′, where A′ is a
hereditary subalgebra of A with simple modules Si1 , Si2 , . . . , Sim for some
m ≤ n. Or there is a path S ′

1 → S ′
2 → · · · → S ′

n′ in the Ext-quiver of A
which is part of an oriented cycle so that the module is of the form X1,n′ and
of length n′. Since A is an Artin algebra, there are only finitely many objects
of the latter form.

By Lemma 4.6.1, every hereditary subalgebra of A is representation finite.
Because there are only finitely many possibilities for i1, . . . , im, the algebra
A is also representation finite.

4.7 The lattice S(A)

We show in this section that the lattice S(A) is in fact the Cartesian product
of certain sublattices.

For Artin algebras A over algebraically closed fields, we will use this in
the next section.

We begin with the following lemma:
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Lemma 4.7.1. Suppose X is an indecomposable object and there is an index
set I so that X ⊆

⊕
i∈I Yi. Set

I ′ = {i ∈ I | there is a simple object S with S ⊆ X and S ⊆ Xi}.

Then X ⊆
⊕

i∈I′ Xi.

Proof. There is a morphism[
f1
f2

]
: X �

⊕
i∈I′

Yi ⊕
⊕
i∈I\I′

Yi

with
f1 : X →

⊕
i∈I′

Yi and f2 : X →
⊕
i∈I\I′

Yi.

Furthermore, Ker(f1) ⊕ Ker(f2) ⊆ X and Ker(f1) ⊆
⊕

i∈I\I′ Yi. So there
is no simple S ⊂ Ker(f1) and thus Ker(f1) = 0, which implies that f1 is a
monomorphism and X ⊆

⊕
i∈I′ Yi.

To simplify the notation, we define:

Definition 4.7.2. For a class M of indecomposable objects in A let

S(M) := S(addM).

Under certain assumptions, S(M) is a sublattice of S(A).

Lemma 4.7.3. Let M be a class of indecomposable objects in A. If

ind subM =M, (4.34)

then S(M) is a sublattice of S(A).

Proof. We need to show that for C,C ′ ∈ S(M), the join and the meet are
again in S(M). The first direction is obvious: C ∧ C ′ = C ∩ C ′ and thus

ind (C ∧ C ′) = indC ∩ indC ′ ⊆M,

since indC, indC ′ ⊆M. So C ∧ C ′ ∈ S(M).
On the other hand, the join C ∨ C ′ consists of all subobjects of direct

sums of objects in C and C ′. Thus, if M ∈ ind(C ∨C ′) then M ∈ subM. By
(4.34), M ∈M. So C ∨ C ′ ∈ S(M) and S(M) is a sublattice of S(A).

We get the following homomorphism between lattices:
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Lemma 4.7.4. Let A be an abelian length category. Suppose that there is
an index set I, and classes of indecomposable objectsMi, i ∈ I exist, so that

(M1)
∪
i∈IMi = indA

(M2) Mi ∩Mj = ∅ for all i, j ∈ I with i ̸= j

(M3) ind subMi =Mi for all i ∈ I.

Denote M = {Mi | i ∈ I}. Then

fM : S(mod A)→
∏
i∈I

S(Mi)

C →
∏
i∈I

Ci

where Ci is given by
indCi = indC ∩Mi

is a lattice homomorphism.

Proof. By Lemma 4.7.3 and (M3), S(Mi) is a lattice for every i ∈ I and
the Cartesian product exists. We have to show that fM preserves meets and
joins. Take C,C ′ ∈ S(Mi). Then fM preserves meets, since

ind(C ∧ C ′) = indC ∩ indC ′

and

ind(C ∧ C ′)i = ind(C ∧ C ′) ∩Mi = (indC ∩ indC ′) ∩Mi = indCi ∩ indC ′
i.

Thus (C ∧ C ′)i = Ci ∧ C ′
i and

fM(C∧C ′) =
∏
i∈I

(C∧C ′)i =
∏
i∈I

(Ci∧C ′
i) =

∏
i∈I

Ci∧
∏
i∈I

C ′
i = fM(C)∧fM(C ′).

The function also preserves joins: For some object M , we have M ∈
ind(C ∨ C ′)i if and only if M ∈ Mi and there are objects x1, . . . , xc ∈ indC
and x′1, . . . , x

′
c′ ∈ indC ′ for some c, c′ ∈ N so that

M ⊆
c⊕

k=1

xk ⊕
c′⊕
k=1

x′k.

Suppose that there is some xk /∈ Mi for some 1 ≤ k ≤ c. By (M1), there is
some j ̸= i with xk ∈ Mj. For every simple object S ⊆ xk, we get S ∈ Mj
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with (M3) and thus S /∈ Mi by (M2). So S is not a subobject of M and by
Lemma 4.7.1, we get

M ⊆
c⊕

k=1
k ̸=l

xk ⊕
c′⊕
k=1

x′k.

So we can assume that x1, . . . xc, x′1, . . . x′c′ ∈Mi and thus M ∈ ind(Ci ∨C ′
i).

Since Ci∨C ′
i ∈ S(Mi) and Ci∨C ′

i ≤ C∨C ′, the other direction is obvious.
We get ind(Ci ∨ C ′

i) = ind(C ∨ C ′)i and Ci ∨ C ′
i = (C ∨ C ′)i. So

fM(C∨C ′) =
∏
i∈I

(C∨C ′)i =
∏
i∈I

(Ci∨C ′
i) =

∏
i∈I

Ci∨
∏
i∈I

C ′
i = fM(C)∨fM(C ′)

and fM is a lattice homomorphism.

Even better, fM is an isomorphism:

Proposition 4.7.5. Let A be an abelian length category andM = {Mi | i ∈
I} be a family of classes of indecomposable objects that fulfil (M1) - (M3).
Then fM as defined in Lemma 4.7.4 is a lattice isomorphism between S(A)
and

∏
i∈I S(Mi).

Proof. By Lemma 4.7.4, fM is a homomorphism between lattices. To show
that fM is an isomorphism, we need to prove that f is injective and surjective.

Suppose that fM(C) = fM(C ′) for some C,C ′ ∈ S(mod A). Then∏
i∈I

Ci =
∏
i∈I

C ′
i

and by (M2), we have Ci = C ′
i for all i ∈ I . This means

indC ∩Mi = indC ′ ∩Mi

for all i ∈ I. By (M1), indC = indC ′ and fM is injective.
Now take ∏

i∈I

Ci ∈
∏
i∈I

S(Mi).

Since all Ci are subobject closed subcategories of A, we have Ci ∈ S(A) for
all i ∈ I. We will show that

fM(
∨
i∈I

Ci) =
∏
i∈I

Ci.

It is obvious that Cj ⊆
(∨

i∈I Ci
)
j

for all j ∈ I which implies∏
i∈I

Ci ⊆ fM(
∨
i∈I

Ci).



4.8. THE STRUCTURE OF THE LATTICE 121

For the other direction, we need to show that
(∨

i∈I Ci
)
j
⊆ Cj for all j ∈ I,

which is equivalent to (
ind
∨
i∈I

Ci

)
∩Mj ⊆ indCj. (4.35)

Suppose that M ∈
(
ind
∨
i∈I Ci

)
∩Mj. Then there are objects Ni ∈ Ci, so

that
M ⊆

⊕
i∈I

Ni.

Set

I ′ = {i ∈ I | there is a simple object S with S ⊆M and S ⊆ Ni}.

By Lemma 4.7.1,
M ⊆

⊕
i∈I′

Ni.

By (M3), we have S ∈ Mj for all simple modules S ⊆ M ∈ Mj. On the
other hand, if S ⊆ Ni ∈Mi, then S ∈Mi and by (M2) we get I ′ = {j}. So
(4.35) holds, fM is surjective and thus a lattice isomorphism.

4.8 The structure of the lattice
Let modA ≡ mod kQ/I for some quiver Q and some admissible ideal I. This
is always the case if A is an algebra over a closed field k. If A is of colocal
type, then the lattice S(mod A) is relatively simple and can be described
completely.

By Theorem 4.6.2 we get the following:

Proposition 4.8.1. Let A be an Artin algebra and modA ≡ mod kQ/I for
some quiver Q and an admissible ideal I.

(a) The algebra A is of colocal type if and only if S(mod A) is distributive
and for every subquiver of Q of the form

1
β // 2 α

yy

αβ ∈ I or α2 ∈ I.

(b) The algebra A is of colocal type if and only if it is a string algebra and
no vertex in Q is starting point of more than one arrow.
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Proof. First, we prove (a): By Lemma 4.2.3, S(mod A) is distributive if A is
of colocal type.

On the other hand, suppose that S(mod A) is distributive and fulfils
the condition above. We have dS(S, T ) = dT (S, T ) for all simple modules
S, T ∈ modA by 2.5.2. Since mod kQ/I is equivalent to the category of
representations of Q with the relations that generate I, we have End(S) ∼=
End(T ). So

dS(S, T ) = dT (S, T ) ≤ 1

for all S, T by Lemma 4.3.5. Thus Lemma 4.3.2 (b), 4.3.4 (b) and 4.5.3 (b)
show that modA fulfils (C1) - (C3). By Theorem 4.6.2, A is of colocal type.

To show (b), suppose that A fulfils (C1) - (C3). By 2.5.2, this is equivalent
to the following:

1. No vertex in Q is starting point of more than one arrow.

2. No vertex in Q is end point of more than two arrows.

3. Given an arrow β, there is at most one arrow γ with s(β) = e(γ) and
βγ /∈ I.

Since A is an Artin algebra, the quiver Q must be finite.
Comparing this to Definition 2.5.4, it only remains to show that I is an

ideal generated by zero relations. If Q does not contain oriented cycles, then
for any given vertices i and j, there is at most one path ρ with s(ρ) = i and
e(ρ) = j.

In fact, any relation which is not a zero relation is of the following form,
where ρ is an oriented cycle, ρ′ is a subpath of ρ with s(ρ′) = e(ρ) = s(ρ),
a1, . . . an ∈ k and α1 < α2 < · · · < αn ∈ N:

a1ρ
′ρα1 + a2ρ

′ρα2 + · · ·+ anρ
′ραn = 0. (4.36)

Now, we use that I is admissible: there must be some t ∈ N, so that
ρt = 0. So for every representation V of Q, there is some m so that

0 = Im fρm ( Im fρm−1 ( · · · ( Im fρ,

where fρi denotes the map of the representation defined by the path ρi. We
get ρα1 = · · · = ραn = 0, since otherwise

Im(fρ′ρα2 + · · ·+ fρ′ραn ) ⊆ Im fρ′ρα2 ( Im fρ′ρα1 ,

a contradiction to (4.36).

Furthermore, we get some useful properties:
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Lemma 4.8.2. If A = kQ/I for some quiver Q = (Q0, Q1) with admissible
ideal I and A is of colocal type, then the following holds:

(a) If Q contains a cycle, this cycle is oriented.

(b) At most two paths are maximal under all paths without relations that end
in i.

(c) Every module in indA is a string module.

(d) Every string is of the form

w = α−1
l1
α−1
l1−1 . . . α

−1
1 β1β2 . . . βl2 ,

for some l1, l2 ∈ N0, and arrows α1, . . . , αl1 , β1, . . . , βl2 or of the form em
for some vertex m.

(e) We have M(w′) ⊆ M(w) if and only if there are 1 ≤ j1 ≤ l1 and 1 ≤
j2 ≤ l2 so that

w = α−1
j1
α−1
j1−1 . . . α

−1
1 β1β2 . . . βj2 ,

or w = em with m = e(α1) = e(β1).

Proof. (a) Every non-oriented cycle contains a vertex which is starting point
of two arrows.

(b)Since A is a string algebra, there are at most two arrows which end in
i by Definition 2.5.4 (2). By 2.5.4 (3), each of those arrows is part of only
one maximal path that ends in i.

(c) From definition 2.5.5, it is obvious that every band corresponds to a
cycle without relations. Since I is an admissible ideal, every oriented cycle
of Q contains a relation in I. By (1), A = kQ/I has no band modules and
indA consists only of string modules.

(d) There are no arrows α, β with e(β−1) = s(β) = s(α).
(e) This follows from Lemma 2.5.8.

We use Proposition 4.7.5 to simplify the problem of describing S(mod A)
and start with the definition of a suitable family M:

By Lemma 4.8.2 (2), there are at most two maximal paths without rela-
tion that end in a vertex m ∈ Q0:

Definition 4.8.3. Suppose that there is at most one arrow α with e(α) = m.
Then there is only one path that is maximal under the paths without relation
that ends in m. We denote its length with km and set lm := 0.

If there are two arrows that end in m, there are two maximal paths. We
denote their lengths with km and lm.
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Definition 4.8.4. Let A = kQ/I for some quiver Q = (Q0, Q1), m ∈ Q0,
and Mm :=M(wm) be the module with

wm = α−1
km
α−1
l1−1 . . . α

−1
1 β1β2 . . . βlm

so that αkmα1 and βlm . . . β1 are the maximal paths that end in m. By Lemma
2.5.7 (2) and Lemma 4.8.2 (2), this module is well defined.

Furthermore, we define

Mm := {M ∈ modA | M ⊂Mm}.

Lemma 4.8.5. If A is of colocal type, then

S(mod A) ∼=
∏
m∈Q0

S(Mm).

Proof. We need to prove that the sets Mm, m ∈ Q0 fulfil the conditions of
Proposition 4.7.5:

(M1) is fulfilled by Lemma 4.8.2 (3), (4) and (5); (M2) and (M3) are
fulfilled by Lemma 4.8.2 (5).

The lattices S(Mm) for m ∈ Q0 have a very simple description: they are
all sublattices of Young’s lattice, which is defined in [18], p. 58 and Example
3.4.4(b):

Definition 4.8.6. Take a partition λ = (λ1, λ2, λ3, . . . , λn) of a natural num-
ber, ordered so that λ1 ≥ λ2 ≥ · · · ≥ λn. The Young diagram of λ is an array
of squares with n rows and exactly λi squares in the i-th row.

These partitions form a lattice Y , ordered by the inclusion order on the
Young diagrams. It is called Young’s lattice.

Let λ′ := (λ′1, λ
′
2, λ

′
3, . . . , λ

′
n), suppose that n ≤ n′ and set λi := 0 for

i > n. Then
λ ∧ λ′ = (min(λ1, λ

′
1), . . .min(λn, λ

′
n)))

and
λ ∨ λ′ = (max(λ1, λ

′
1, . . .max(λn′ , λ′n′))).

Example 4.8.7. The Young diagram of the partition (5, 3, 2, 1) has the fol-
lowing form:
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We will need the following lattices to describe S(Mm) for m ∈ Q0:

Definition 4.8.8. Denote by Y m,n that sublattice of Young’s lattice that
contains exactly the partitions λ = (λ1, λ2, λ3, . . . , λm′) where m′ ≤ m and
λi ≤ n for all 1 ≤ i ≤ m′. Equivalently, we can define Y m,n as the lattice
given by all Young diagrams with at most m rows and at most n columns.

Example 4.8.9. The Hasse diagram of the lattice Y 3,3 is

(3, 3, 3)

(3, 3, 2)

(3, 2, 2)

ssssssssss
(3, 3, 1)

KKKKKKKKKK

(2, 2, 2)

ssssssssss
(3, 2, 1)

KKKKKKKKKK

ssssssssss
(3, 3)

IIIIIIIII

(2, 2, 1)

KKKKKKKKKK

ssssssssss
(3, 1, 1) (3, 2)

KKKKKKKKKK

uuuuuuuuu

(2, 1, 1)

ssssssssss
(2, 2)

KKKKKKKKKK

ssssssssss
(3, 1)

KKKKKKKKKK

(1, 1, 1)

ssssssssss
(2, 1)

KKKKKKKKKK

ssssssssss
(3)

IIIIIIIIII

(1, 1)

KKKKKKKKKK

ssssssssss
(2)

KKKKKKKKKK

uuuuuuuuuu

(1)

KKKKKKKKKK

sssssssssss

(0)

Remark 4.8.10. Note that for m,n ∈ N, we have Y m,n ∼= Y n,m and Y 1,n ∼=
({0, 1 . . . , n}, <) ∼= Y n,1.

Now, we can completely describe the distributive lattices S(mod A):
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Theorem 4.8.11. Suppose A = kQ/I with quiver Q = (Q0, Q1) and admis-
sible ideal I. If A is of colocal type, then

S(mod A) ∼=
∏
m∈Q0

Y km+1,lm+1.

Proof. By Lemma 4.8.5,

S(mod A) ∼=
∏
m∈Q0

S(Mm).

If only one path α1α2 . . . αkm ends in m, it is obvious from Lemma 4.8.2 (5)
that we can order the modules in Mm the following way:

M(em) ⊆M(α−1
1 ) ⊆M(α−1

2 α−1
1 ) ⊆ · · · ⊆M(α−1

km
α−1
km−1 . . . α

−1
1 )

Thus
S(Mm) ∼= ({0, . . . , km + 1}, <) = Y km+1,1.

If there are two paths without relations α1α2 . . . αl2 and β1β2 . . . βl2 are max-
imal under those that end in m, then by 4.8.2 (5) all modules in Mm are of
the form M(em) =:M(w0,0) or M(wij) with

wij = α−1
i α−1

i−1 . . . α
−1
1 β1β2 . . . βj,

with 0 ≤ i ≤ km, 0 ≤ j2 ≤ lm and at least one of them non-zero. Fur-
thermore, M(em) ⊆ M(wij) and M(wij) ⊆ M(i′j′) if and only if i ≤ i′ and
j ≤ j′.

For a submodule closed subcategory C ∈ Mm, there is some 0 ≤ c ≤
km ∈ N with

lm ≥ j0 ≥ j1 ≥ · · · ≥ jc ≥ 0

so that

indC = {M(wij) ∈ indA | there is some 0 ≤ h ≤ c with i ≤ h, j ≤ jh}.

We define
λC := (j0 + 1, j1 + 1, . . . jc + 1).

Then
f : S(Mm)→ Y km+1,lm+1, C → λC

is obviously injective and surjective. We need to prove that f is a lattice
homomorphism, that is, that it preserves joins and meets: Since S(Mm) is
distributive, for any two categories C1, C2 ∈ S(Mm),

ind(C1 ∧ C2) = indC1 ∩ indC2
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and
ind(C1 ∨ C2) = indC1 ∪ indC2

by Proposition 4.1.3. From the definition of the joins and meets in Y km+1,lm+1,
it is clear that f preserves them.
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5 | Conclusion and outlook

The first result of this thesis is that for all hereditary Artin algebras A, there
exists a natural bijection between the elements of the Weyl group associated
to A and the cofinite submodule closed subcategories in modA. So we have
shown that a result for algebraically closed fields holds for arbitrary fields.

Next, we get a new characterization of algebras and abelian length cate-
gories of colocal type with three conditions that are simple to check, especially
if we work over an algebraically closed field, where the module category of
an Artin algebra is equivalent to that of a quiver with relations.

In this case, we can completely describe the lattice S(modA) for all A of
colocal type. It is the Cartesian product of sublattices of Young’s lattice.

While these connections to several topics show the importance of sub-
object closed subcategories, there are still a myriad of questions that can
be asked about them. The most obvious question with regard to the re-
sults above is the following: how does a characterization of arbitrary abelian
length categories with distributive lattice S(A) looks like?

But we can also ask other questions: Is there a description for the finite
submodule closed categories of a hereditary Artin algebra that is similar to
the description of the cofinite ones? Is it possible to give a simple descrip-
tion for the lattices of submodule closed categories of all string algebras A,
not only those with distributive lattice S(modA)? Can we use submodule
relations to characterize string algebras?

129
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Glossary

Notation Description Page
List

| we write X | Y if X is a direct summand of Y 15
- we write X - Y if X is not a direct summand

of Y
15

{ss′}a a shorter notation for the word ss′ss′ . . .︸ ︷︷ ︸
a letters

24

(r, i) an alternative notation for the module τ rIi 36
<l a total order defined on the words over the

alphabet {s1, . . . , sn}
31

Aop the opposite algebra of A 14
(C1) - (C3) conditions on a triple of sequences of modules 7
Cw the category defined by the word w 37
Cw the category defined by the Weyl group ele-

ment w
37

d1S(S, T ) a shorter notation for dimEnd(S)op Ext
1(S, T ) 7

d1T (S, T ) a shorter notation for dimEnd(T ) Ext
1(S, T ) 7

E(m) a recursion formula 50
E ′(m) a recursion formula that is similar to E(m) 54
Extn(X,X ′) set of equivalence classes of n-fold extensions

of X by X ′
15

km for a vertex m in a string algebra, this is the
length of a maximal path without relations
that ends in m

123

lm for a vertex m in a string algebra, lm = 0 if at
most one arrow has m as end point; otherwise
this is the length of the maximal path without
relations that ends in m and does not define
km

123

l(X) the length of the object X 14

131



132 Glossary

Notation Description Page
List

mij the defining relations of the Weyl group are
(sisj)

mij = 1
25

Mk a certain preinjective module 51
M ′

k a preinjective module that is defined similarly
to Mk

54

modA the category of finitely generated right mod-
ules over A

14

M(w) the module defined by the string w 27
M(w, ϕ) the module defined by the band w and the

linear map ϕ
28

Q0 the set of vertices of the quiver Q 21
Q1 the set of arrows of the quiver Q 21
ρ(w) a series of pairs defined by the word w 30
(S1) - (S3) conditions on a triple of sequences of modules 40
(S4) - (S5) conditions on a triple of sequences of modules 46
(S’1) condition on a triple of sequences of modules 48
S(A) the lattice of full additive subobject closed

subcategories of A
75

S(M) for a class of indecomposable objects M, this
is a shorter notation for S(addM)

118

subX the category that consists of all subobjects of
direct sums of objects in the class X

76

subX for an object X, this is a shorter notation for
sub{X}

76

τ the Auslander-Reiten translation 17
Y m,n the lattice that contains the partitions whose

Young diagrams have ≤ m rows and ≤ n
columns

125
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