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1 Introduction

1.1 Motivation

We are interested in submodule closed subcategories of abelian length cate-
gories A, that is, (full, additive) subcategories, which are closed under subob-
jects. If A is a module category, these subcategories are also called submodule
closed.

While submodule closed subcategories have not yet been extensively stud-
ied, they are a very interesting topic with many connections to different parts
of representation theory. For example, if A is a finite dimensional algebra,
then every infinite submodule closed subcategory of mod A contains a mini-
mal infinite submodule closed category, see [16].

Submodule closed subcategories can also be used to prove that there is
a filtration of the Ziegler spectrum that is indexed by the Gabriel-Roiter
filtration, see [12].

Furthermore, if A is a hereditary Artin algebra, then there is a natural
bijection between the elements of the Weyl group of A and the full, additive
cofinite submodule closed subcategories of mod A. This has been proved in
[14] for algebras over finite and algebraically closed fields and is proved in
general in this thesis.

Another connection arises in the second main part of the thesis: If A is
of colocal type, then the lattice formed by full, additive submodule closed
subcategories of mod A is distributive. Algebras of colocal type have been
studied repeatedly: for example, a first characterization dates back to H.
Tachikawa in 1959, see [20]; two gaps in the proof were filled by T. Sumioka
in 1984, see [19].

In this thesis, we give a new characterisation for algebras of colocal type,
which is especially simple for algebras over an algebraically closed field.

For algebras of colocal type over such fields, we can completely describe
the lattice S(mod A). In fact, we get another connection to an important
item in representation theory: Young diagrams.
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1.2 Main results

In Chapter 3 we take a look at hereditary Artin algebras A. Let mod A be
the category of finitely generated right modules over A.

A full, additive subcategory of mod A is called cofinite if it contains all
but finitely many indecomposable modules in mod A.

We get the following result:

Theorem 1.2.1. Let A be a hereditary Artin algebra. Then there exists a
natural bijection between the elements of the Weyl group of A and the full,
additive cofinite submodule closed subcategories of mod A.

To prove this theorem, we first show the following result, which is impor-
tant in its own right. We use the notation X | Y if the module X is a direct
summand of Y and X 1Y if X is not a direct summand of Y

Proposition 1.2.2. Let A be a hereditary Artin algebra and M € mod A
indecomposable and preinjective. Suppose that U € mod A, and M is not a
direct summand of U. There is a monomorphism M — U if and only if there
is some m € N with three sequences of modules

(X1, X, .-, Xom)
(X1, X5, .-, X0)
(Y1, Y2,..., Vi)

that fulfil the following conditions:

(S1) There is an Auslander-Reiten sequence

0—>M—X, & X, —Y;, —=0.

(S2) Foralll < i < m, there is some c; € N so that X" is a direct summand
of X; ® X!, but not of U.

(S3) For 1 <i < m, there is an Auslander-Reiten sequence of the form

Let Y] be the mazimal module that is both a direct summand of Y; and
Zi. WriteY; =Y/ ®Y/ and Z; =Y/ & Z.

If 771X, | X!, then let X! be the module so that X! =177'X; ® X! and
set V" := 0. Otherwise, set X!" := X! and V" := 771 X;.
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The following equations hold:

Xin® X, =X/ ®Z
Y;'+]_ — }/;// EB }/;l/l.

(S4) If for any 1 < i < m, the module X; ® X has an injective direct
summand I, then I | U.

(S5) X, ® X! is a direct summand of U.

In Chapter 4, we proceed to consider a much broader case: abelian length
categories, a generalization of module categories. On the other hand, the
question that we answer is much less general: we ask, in which cases such
a category is of colocal type (that is, every subobject of an indecomposable
object is itself indecomposable). Partly, we can also answer the question,
in which cases the lattice of full, additive subobject closed subcategories is
distributive.

To state the answers, we first need some notation:

Definition 1.2.3. For all simple objects S, T € A let
dg (S, T) == dimgng(s)er Ext' (S, T)

and
di(S,T) = dimgng(r) Ext' (S, T).

Then we can show the following. For simplicity, we are equating objects
with isomorphism classes of objects:

Theorem 1.2.4. The category A is of colocal type if and only if the following
conditions hold:

(C1) For all simple objects S € A

> dp(S,T)< 1.

T simple
(C2) For all simple objects S € A

> AT, S) <2

T simple
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(C3) If there is a simple object S" with Ext'(S,S") # 0, let T be the set of
simple objects T for which di-(T,S) # 0 and there is an indecomposable
object Z of length 8 with top Z =T and soc Z = S'. Then

> di(T,8) < 1.

TeT

While the last condition is more complicated then the first two, there are
several ways to state it. In particular, it is often equivalent to a condition on
the 2-extensions between simple objects:

Proposition 1.2.5. Suppose that (C1) holds for all simple objects in A.
For fired simple objects S and S' with Ext*(S,S") # 0, the following

classes of objects are the same:

(a) the class of simple objects T so that d-(T,S) # 0 and there is some
indecomposable object Z of length 3 with soc Z =2 S" and top Z =T

(b) the class of simple objects T so that d-(T,S) # 0 and there is some
indecomposable object Z of length greater or equal 8 with soc Z = S" and
topZ =T

If Ext(S’,S") = 0, then these classes are the same as

(c) the class of simple objects T so that d-(T,S) # 0 and there is some
indecomposable object Z with soc Z = S" and top Z =T

If S" is not part of an oriented cycle in the Ext-quiver of A, then this class
is even the same as

(d) the class of simple objects T so that d-(T,S) # 0 and Ext*(T,S") = 0

For all abelian length categories A of colocal type, the lattice S(.A) is
distributive.

Finally, we look at the categories of the form A := mod A for some Artin
algebra A over an algebraically closed field k. If A is of colocal type, then it
is equivalent to mod kQ /I for an especially simple quiver ) with admissible
ideal I and we can completely describe the lattice S(.4) up to isomorphism:

For every vertex m in (), consider the paths that end in m and do not
contain any relation in /. Under these paths, either one or two are maximal.

If there is only one, then we denote its length with k,, and set [,, := 0.

If there are two maximal paths, we denote their lengths with &, and [,,.

For a partition A = (A1, Ao, A3, ..., A\,) of a natural number, the Young
diagram of X\ is an array of squares with n rows and exactly A\; squares in the
1-th row.
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The partitions of natural numbers form a lattice Y, ordered by the inclu-
sion order on the Young diagrams. It is called Young’s lattice.

Denote by Y™™ that sublattice of Young’s lattice that contains exactly
the partitions A = (A, A2, Az, ..., Ap) where \; < n forall 1 <i < m' and
m <m.

Then we get the following lattice isomorphism:

Theorem 1.2.6. Suppose mod A = mod kQ /I with quiver @ = (Qo, Q1) and
admissible ideal I. If A is of colocal type, then

S(mod A) = H y km ALl

meQo

1.3 Outline

In the second chapter of this thesis, we collect definitions and results needed
for the formulation and proofs of our results. We start with an overview of
abelian categories, in particular module categories. Then we concentrate on
Auslander-Reiten sequences, the main tool to prove the first theorem in this
thesis. The next section introduces hereditary algebras and one of their most
important examples: quiver algebras.

In the fourth section we define the Weyl group. In a slight deviation
of the usual practice, we give (and work with) the definition of the Weyl
group as a Coxeter group, thus not defining the reflections on A, except as
generators of the Weyl group.

We conclude this chapter with a section about string algebras, which are
the path algebras of quivers with relations that have a special form. Since
the modules over theses algebras are well known, they are very useful for
some of the proofs in the fourth chapter.

In the third chapter, we prove that there is a natural bijection between
the elements of the Weyl group of A and the full, additive cofinite submodule
closed subcategories of mod A. Oppermann, Reiten and Thomas have shown
this in [14] for algebraically closed fields and finite fields. While we use the
same bijection, we give a different method of proof that does not depend on
the field.

First, we define an order on the Weyl group and show some properties of
this order. The next section is devoted to an algorithm which, given a prein-
jective module M, constructs all modules which contain M as a submodule.

In the third section, we show how the structure of the Weyl group is
connected to the submodule relations between preinjective modules. In the
next sections, after proving two auxiliary results, we show first that the
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bijection is well defined and then that it is surjective. Since the injectivity
is clear by definition, this concludes the proof. In the last section of this
chapter, we draw some corollaries.

The fourth chapter is devoted to abelian length categories A where S(.A)
is distributive. In particular, we characterize abelian length categories of
colocal type.

First, we show that the distributivity of the lattice is equivalent to a
simple condition on submodule relations in .A. Then we introduce categories
of colocal type and prove that S(A) is distributive if A is of colocal type.

In the third section, we prove that certain conditions on the Ext-quiver
of A must be fulfilled if S(A) is distributive; stricter conditions have to be
fulfilled if A is of colocal type.

In the next section, we collect some auxiliary lemmas about 2-extensions.
We need these to show in the fifth section that several different formulations
of a condition are equivalent under certain assumptions. Afterwards, we
prove that abelian length categories of colocal type fulfil this condition.

In the sixth section, we show that the conditions formulated in the third
and fifth section are even sufficient for A being of colocal type. This proof
also draws on the auxiliary lemmas in the fourth section.

We complete this chapter with a description of the lattice S(A): First we
show that it is a Cartesian product of certain sublattices. Then, we take a
closer look at categories A of colocal type which are equivalent to mod k@) /1
for some field k, quiver () and admissible ideal 7, and see that S(.A) has an
especially simple form.



2 Abelian length categories and
Artin algebras

We are interested in abelian length categories, in particular in the module
categories of Artin algebras. For a more detailed introduction into abelian
categories, see for example [8]; for an introduction into Artin algebras and
Auslander-Reiten theory consult for example [2].

2.1 Abelian categories and module categories

We start by giving the definition of an additive category, which we need to
define abelian categories:

Definition 2.1.1. A category C is called additive if

e For all objects A, B € C, the morphism set Hom(A, B) is an abelian
group.

e For all objects A, B,C € C, the composition morphism
Hom(A, B) x Hom(B,C) — Hom(A, C) (2.1)
is bilinear over Z.
e The category C has finite sums.
A stronger concept is the following, see [21], Definition 3.3.4:

Definition 2.1.2. An additive category C is called abelian if the following
three conditions hold:

e Every morphism has a kernel and a cokernel.

e Every monomorphism is the kernel of a morphism.

11
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e Every epimorphism is the cokernel of a morphism.
Abelian categories have pushouts and pullbacks:

Definition 2.1.3. Let V, X, X5 be objects in an abelian category A and
fi: V= Xy, fo: V — X5 be morphisms. Then there exist an object Y and
morphisms ¢, go so that the following diagram is commutative

v x, (2.2)

e

Xo——>Y

and for every object Z with morphisms ¢; : X1 — Z, ¢ : Xo — Z which
form a commutative diagram

Vi>X1 s

le igi

Xy ——
92
there is a unique morphism ¢ : Y — Z with ¢g; = ¢} and ¢gs = gb.
If fi is a monomorphism, then ¢, is also a monomorphism.
The diagram (2.2) is called a pushout.
Dually, for two morphisms ¢, : X1 — Y, g2 : Xo — Y, there exists a

pullback, that is, a commutative diagram

Vi>X1 s

o

Xo——>Y

so that for every object U with morphisms f| : U — Xy, f; : U — X5, which
form a commutative diagram

Ui>X1 5

|

XQTY

there is a unique morphism ¢ : U — V with fi¢ = f] and fo0 = f5.
If g1 is an epimorphism, then f5 is also an epimorphism.
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Pullbacks and pushouts are closely linked to short exact sequences:

Proposition 2.1.4. Let V, X1, X5, Y € mod A with morphisms f1 : V — X,
fo: V=X, 1: X1 =Y, go: Xo =Y. Then the following statements are
equivalent:

1. The diagram

vy, (2.3)
e
Xo -2y
is a pushout and a pullback.
2. The sequence
(7] (91 92]

OHVHXl @XQHYHO
15 exact.
In fact, if {_ffl} is a monomorphism, then it suffices to demand that (2.3)
2

is a pushout. If [gl gg] is an epimorphism, then it suffices to demand that
(2.3) is a pullback.

Pushouts and pullbacks have the following important property:

Proposition 2.1.5. If
VX

and

are both pullbacks (pushouts), then the square

Vﬂ)yé

l€2 ihg
hif2

X24>Z

is itself a pullback (pushout).
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Recall that an object is called simple if is does not contain proper, non-
zero subobjects.

In this thesis, we consider abelian length categories, that is, abelian cat-
egories where every object is of finite length and the isomorphism classes of
objects form a set (see for example [7], p. 81).

Definition 2.1.6. Let A be an abelian category. An object X € A is said
to be of finite length if there is a filtration X = X D X; D --- D X,, =0 so0
that X;_1/X; is simple for all 1 <1i <n. We call [(X) := n the length of X.

Definition 2.1.7. An object of finite length is called indecomposable if it
cannot be written as a direct sum of proper subobjects.

Let A be an Artin algebra. Then mod A, the category of finitely generated
right modules over A, is an abelian length category.

On the other hand, we have the following, see for example [21], Theorem
3.3.6:

Theorem 2.1.8. Fvery abelian category is a full subcategory of a category
A — Mod for some algebra A, where A — Mod denotes the left modules over
A.

For an object X € A define the Loewy length of X to be the smallest
n € N with a filtration

X=XoD0X1D---D2X,=0

so that X; 1/X; is semisimple (i.e. a direct summand of simple objects) for
all 1 < i <n.
Then the following holds, see [7], 8.2:

Theorem 2.1.9. The abelian length category A is equivalent to the module
category of an Artin ring if and only if

1. A has only finitely many simple objects.
2. dimEnd(T)(S, T) < oo for all simple objects S, T € A.
3. The supremum of the Loewy lengths of the objects in A is finite.

Denote by A° the opposite algebra of A, that is, the algebra where left
and right multiplication are exchanged (see for example [21], Definition 1.1.7).
Then the left modules over A% are just the right modules over A:

Proposition 2.1.10. There is a duality D : mod(A°) — mod A.
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Thus, the following property of finitely generated modules generalizes to
abelian length categories:

Definition 2.1.11. Let A be an abelian length category and X an object in
A. Then there are indecomposable objects X1, ..., X, so that

X = éX
=1

The objects Xy, ..., X, are unique up to order and isomorphism.

If the object Y is isomorphic to a direct summand of X, we will use the
notation Y | X. Accordingly, we will write Y ¥ X if Y is not isomorphic to
a direct summand of X.

Now we define subcategories:

Definition 2.1.12. We call C’ a subcategory of C if all objects and morphisms
of C' are objects and morphisms in C. Such a subcategory is called full if for
all objects A, B € C’, the equality Hom¢(A, B) = Home (A, B) holds.

We are interested in the following kind of subcategories:

Definition 2.1.13. A full, additive subcategory C of an abelian length cate-
gory A is called subobject closed if for every object X € C and all subobjects
X' of X, we have X' € C.

Definition 2.1.14. A full, additive subcategory C of the module category
mod A of an Artin algebra A is called cofinite if all indecomposable modules,
except finitely many, lie in C.

As in [3], Definition 2.6.1, for n € N, we can define an n-fold extension of
an object X by an object X’ as an exact sequence

00— X' —

n—1 Xo X 0.

A map between two extensions is a commutative diagram

04>)(/H n—1 XO X O
0—X'—= X/, X} X 0

By adding symmetry and transitivity, this can be completed to an equivalence
relation and we can define Ext" (X, X’) to be the set of equivalence classes of
n-fold extensions of X by X'.



16 CHAPTER 2. CATEGORIES AND ALGEBRAS

These are groups; in particular, for Ext'(X, X’), the abelian group struc-
ture corresponds to the Baer sum, see [21], section 1.8.2:

For

fi X, g1 X 0

7’]120 X/

and

f2

Ny : 0 X' X)-2-Xx 0

there is an object Z; with a commutative diagram

0 X o X A X 0
i
!/ /[Of:| /[OQQ}
0 XoX ——Xoo Xj——=X X 0

and an object Z with a commutative diagram

00— X' o X' Z1 X 0.
o |
0 X' A X 0

The object Z; can be found by taking the pullback, while Z can be found
via the pushout.
Then
0 X' Z X 0

is the exact sequence 7y + 7.
It is possible to view Ext' (X, X’) as a module over End(X’, X’) and over
End(X, X)°P.

2.2 Auslander-Reiten sequences

An important tool for our proofs are Auslander-Reiten sequences, which we
introduce in this section.

Let A be an Artin algebra. First, we need the definition of certain special
modules:

Definition 2.2.1. A module P € mod A is projective if for any epimorphism
g: X — Y with XY € modA and morphism h : P — Y, there is a
morphism s : P — X such that gs = h.

A module I € mod A is injective if for any monomorphism f : X — Y
with XY € mod A and morphism h : X — I, there is a morphism s : Y — [
such that sf = h.
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Now, we can define projective covers:

Definition 2.2.2. Let X, Y, W € modA. An epimorphism f : X — Y
is called an essential epimorphism if for all morphisms g : W — X the
morphism fg: W — Y is an epimorphism if and only if g is an epimorphism.

Definition 2.2.3. Let X € mod A. A projective cover of X is an essential
epimorphism P — X so that P is a projective module.

An analogous definition exists for injective modules:

Definition 2.2.4. For X C Y € mod A, we say that Y is an essential
extension of X if W N X # 0 for all submodules W of Y. A monomorphism
X — I is called an injective envelope of X if I is injective and an essential
extension of B.

For simplicity, when referring to the modules P and I, we will also call
them projective covers and injective envelopes, respectively.
We have the following;:

Theorem 2.2.5. Every module X € mod A has projective covers and injec-
tive envelopes which are unique up to isomorphism.

The indecomposable simple, projective and injective modules are con-
nected:

Proposition 2.2.6. FEvery Artin algebra A has a finite number n of non-

isomorphic simple modules Sy, ...,S,. Their projective covers Py, ..., P, are
a complete list of non-isomorphic indecomposable projective A-modules.
Their injective envelopes I, ..., I, are a complete list of non-isomorphic

indecomposable injective A-modules. For all 1 < i < n, we have socI; = S;.

Using the duality D : mod(A°) — mod A, we can define the Auslander-
Reiten translation :

Proposition 2.2.7. There is a map Tr : mod A — mod(A), so that for
7 = DTr the following holds:

1. 7P, M;) =@, TM,; for M,..., M, € mod A.
2. M = 0 if and only if M s projective.
3. 7'M = 0 if and only if M is injective.

4. ™M is non-injective for all M € mod A.
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5. If no direct summand of M, N is projective, then TM = 7N if and only
if M = N.
Next, we introduce almost split morphisms:

Definition 2.2.8. Let X,Y € mod A. A morphism f : X — Y is called a
split epimorphism if the identity 1y : Y — Y factors through f, that is, if
there is some g : Y — X so that 1y = fg.

The morphism f is called a split monomorphism if the identity 1x : X —
X factors through f.

Definition 2.2.9. A morphism f : X — Y is called right almost split if the
following conditions are fulfilled:

1. f is not a split epimorphism.

2. Any morphism M — Y with M € mod A, which is not a split epimor-
phism factors through f.

A morphism f: X — Y is called left almost split if the following conditions
are fulfilled:

1. f is not a split monomorphism.

2. Any morphism X — M with M € mod A, which is not a split monomor-
phism factors through f.

Especially important are exact sequences where the morphisms are almost
split:

Definition 2.2.10. Let X,Y,Z € mod A. Then the exact sequence

f

0 X y 2>z 0 (2.4)

is called an almost split sequence or Auslander-Reiten sequence if f is left
almost split and g is right almost split.

For every indecomposable, non-injective module X, there is an Auslander-
Reiten sequence (2.4). The same holds for every indecomposable, non-
projective module Z:

Theorem 2.2.11. Let X,Z € modA. Then the following assertions are
equivalent:

1. There is some module Y € mod A with an Auslander-Reiten sequence

0 X Y A 0.
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2. X is indecomposable, non-injective and Z = 771X .
3. Z 1is indecomposable, non-projective and X = 177.
In fact, we have the following:

Theorem 2.2.12. Auslander-Reiten sequences are unique up to isomor-
phism, that is, if

and

f/ Y, g/

0 X Z 0

are Auslander-Reiten sequences, then there is a commutative diagram

o—>x-—toy 9.7 0.

bk

0 x 1oy 9. 7 0

There is another important kind of morphisms:

Definition 2.2.13. A morphism f : X — Y is called irreducible if the
following conditions are fulfilled:

1. f is neither a split epimorphism nor a split monomorphism.

2. If therearet: X — M and s: M — Y so that f = st, then either s is
a split monomorphism or ¢ is a split epimorphism.

An irreducible morphism is either a monomorphism or an epimorphism.
Irreducible morphisms are the components of almost split morphisms:

Theorem 2.2.14. (a) Let X be an indecomposable, non-injective module
and f : X — 'Y a morphism. Then f is irreducible if and only if there are
some modules Y', Z, morphisms f': X =Y, g:Y - Z, ¢ :Y = Z
and an Auslander-Reiten sequence

7

0——x yayltdy o (2.5)

(b) Dually, let Z be an indecomposable, non-projective module and g : Y — Z
a morphism. Then g is irreducible if and only if there are some modules
X, Y and morphisms f: X =Y, f - X =Y, ¢g:Y - Z,¢:Y - Z
so that (2.5) is an Auslander-Reiten sequence.
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2.3 Hereditary algebras and quivers

In this section, we take A to be a hereditary algebra, that is, an algebra,
where all left ideals are projective. For such an algebra, every submodule of
a projective module is itself projective. We collect some properties that we
need in particular in Chapter 3.

Equivalently, we can give the following definition (see [15], Section 4.1):

Definition 2.3.1. An algebra A is hereditary if for all simple modules S, T €
mod A, we have Ext*(S,T) = 0.

We are mainly working with the following kind of modules:

Definition 2.3.2. An indecomposable module X € mod A is called prepro-
jective if there is some non-zero projective module P and a non-negative
integer n so that 7" X = P.

We set v(X) := n.

An arbitrary M € mod A is called preprojective if its indecomposable
direct summands are preprojective.

An indecomposable module X € mod A is called preinjective if there
is some non-zero injective module I and a non-negative integer n so that
T "X =1.

We set p(X) := n.

An arbitrary M € mod A is called preinjective if its indecomposable direct
summands are preinjective.

Let P be the full subcategory of mod A that consists of the preprojec-
tive modules and Z be the full subcategory of mod A that consists of the
preinjective modules.

Proposition 2.3.3. The duality D : mod A — mod A? induces a duality
between P and T.

So results for preprojective modules induce analogous results for prein-
jective modules and the other way around.
We need the following properties of preinjective modules:

Proposition 2.3.4. Let M be inP orZ. If there are indecomposable modules
M = My, M, ...,M,_1, M, = M and non-zero morphisms f; - M;_y — M;
for 1 <i <mn, then f; is an isomorphism for all 1 < i < n.

Lemma 2.3.5. Let A be a hereditary Artin algebra and X,Y € mod A be
indecomposable. If there is an irreducible morphism f : X —Y, then X € T
if and only if Y € T.
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Lemma 2.3.6. Let A be a hereditary Artin algebra and X,Y € T be inde-
composable. If there is an irreducible morphism f : X — Y, then

1. If X s injective, then Y 1is injective.
2. If X is not injective, then 0 < u(X) —1 < u(Y) < u(X).

Proposition 2.3.7. Let f : X — Y be an irreducible morphism. Then the
following holds:

(a) If no direct summand of X is projective, then 7f : 7X — 7Y ‘s irre-
ducible.

(b) If no direct summand of Y is injective, then 771X — 771Y is irreducible.
(¢) The translation T preserves monomorphisms.

Lemma 2.3.8. Let Sq,...,S, be a complete list of simple A-modules up
to isomorphism. Then for all 1 < i,5 < n either Ext'(S;,S;) = 0 or
Ext'(S;, S;) = 0.

Furthermore, Ext*(S;, S;) # 0 if and only if there is an irreducible mor-
phism I; — I; for the injective envelopes 1;,1; of S, S;.

Lemma 2.3.9. Let I;, I; be the injective envelopes of S;, S; with an irre-
ducible morphism I; — I,. Then the multiplicity of I; in the Auslander-
Reiten sequence that ends in I; is dimgng ,(s;)or (Ext'(S;, S;)). On the other
hand, the multiplicity of TI; in the Auslander-Reiten sequence that ends in
]j 18 diIIlEndA(S].)<EXt1(S¢, S]))

An important example for hereditary algebras are path algebras of quiv-
ers:

Definition 2.3.10. A quiver Q = (Qo, Q1) is an oriented graph where Q) is
the set of vertices, while (), is the set of arrows between vertices. If a1 7 — j
is an arrow, its start point is s(a) = i and its end point is e(a) = j.

For all i € Qo, there is a trivial path e; with s(e;) = e(e;) = 1.

A path in this quiver is either a trivial path or a sequence p = «, ...
of arrows so that e(;) = s(a;41) for all 1 < i < n. In this case, we define
s(p) = s(ay1) and e(p) = e(ay).

An oriented cycle is a non-trivial path so that e(p) = s(p).

A quiver is called finite if () is a finite set.

It is natural to define the following algebra:
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Definition 2.3.11. Let k& be a field and k() be the vector space with the
paths of () as a basis. Then there is an algebra structure on k@ induced by
the concatenation of paths. That is, the product of a,,...a; and o, ...}
is ay . ..oqad, ... ) if s(aq) = e(al,) and 0 otherwise.

Analogously, for every path p, we have e;p = p if e(p) = i and 0 otherwise;
pe; = p if s(p) =i and 0 otherwise.

The module category of every Artin algebra is equivalent to the module
category of a basic Artin algebra. So the following result in fact describes the

module categories of all hereditary Artin algebras over algebraically closed
fields:

Proposition 2.3.12. Let k be a field and Q) be a finite Quiver without ori-
ented cycles. Then kQ is a hereditary Artin algebra.

If k is algebraically closed, then for every basic hereditary Artin algebra
A over k, there is some quiver ) so that A is isomorphic to kQ.

We can furthermore define representations over quivers:

Definition 2.3.13. Let Q = (Qo, Q1) be a quiver and k a field. A repre-
sentation (V, f) of Q over k is a set of vector spaces {V; | i € Qo} over k
together with linear maps f, : V; — Vj for each arrow o : 7 — j.

A morphism h : (V, f) — (V’, f') between representations is a collection
{hi : V; = V/}ieq, of linear maps so that the diagrams

1

commute for all arrows a: 7 — 7 in Q).
The composition of morphisms is of course induced by the composition
of linear maps.

Then we get the following:

Proposition 2.3.14. The category of representations of Q) over k is equiv-
alent to the category of finite dimensional modules over kQ).

For every abelian length category A, we can define its Ext-quiver: The
vertices are given by a complete set of non-isomorphic simple objects in \A.
If S and T are simple objects, there is an arrow S — T if Ext' (S, T") # 0.
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If A is equivalent to the module category of a hereditary Artin algebra,
then its Ext-quiver has no oriented cycle.

Furthermore, for every Artin algebra A, one can define its Auslander-
Reiten quiver: Its vertices are the isomorphism classes of modules in mod A
and there is an arrow between two isomorphism classes [M] and [N] if there
is an irreducible morphism M — N.

Attached to such an arrow is the label (a, b), where a is the maximal pos-
itive integer with an irreducible morphism M® — N, while b is the maximal
positive integer with an irreducible morphism M — N°.

Let A be a hereditary algebra and [M] — [N] have the valuation (a,b).
If 7M and 7N are non-zero for some integer «, then the valuation of
[T*M] — [r®N] is also (a,b). If 7*'N and 7°M are non-zero for some
integer 3, then [TPT1N] — [77M] has the valuation (b,a).

The following holds:

Proposition 2.3.15. Let A be an Artin algebra. If the Auslander-Reiten
quiver of A has a finite component, then A is representation finite.

Moreover, if A is hereditary and representation finite, then every module
in mod A is both preinjective and preprojective and the number of components
of the Auslander-Reiten quiver of A is the same as the number of blocks of A.
So if A is indecomposable as an algebra, then the Auslander-Reiten quiver of
A consists only of one component.

For simplicity, when drawing an Auslander-Reiten quiver, we will omit
all labels (a,b) where a = b = 1 and use representatives of the isomorphism
classes as vertices.

In the same vein, we will not always differentiate between modules (or ob-
jects) and isomorphism classes of modules (or objects) when the meaning is
clear. For example, when we have a complete set I1, ..., I,, of non-isomorphic
injective modules over a hereditary Artin algebra A, we will simply call
I, ..., I, the injective modules over A and say that every indecomposable,
preinjective module M is of the form 7"I; for some 1 < i < n and some
r € N, when it actually is only isomorphic to such a module.

2.4 The Weyl group as a Coxeter group

We define words following [13]:

Definition 2.4.1. Let S be a set. We call S an alphabet and its elements
letters. A word over the alphabet S is a finite sequence

(81,82, .,5n),8; € 5.
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The product of two words is just the concatenation of the sequences. This
product is associative and by identifying a letter s € S with the sequence (s),
we can write the word (s1, s, ..., s,) as the product $18s...s,. The neutral
element for this product is the empty word, which we accordingly denote as
1. Thus, the set of words over S together with the concatenation forms a
monoid S*.

If w:= s185...5, is a word over S, then [(w) := n is called the length of
w. Furthermore, a word of the form v = s;,s;, ...s;, with

1<ii<ta < <t <

and m <n is a subword of w.
Ifv=s18...5, with m < n, then we say that v is an initial subword of
w.

An introduction into Coxeter groups can be found in [4]. We only need
the following properties:

Definition 2.4.2. Let S be a set and W a group generated by S. Then W
is called a Cozeter group if all relations have the form (ss')™®*) = 1 with
s,8 € S so that

1. m(s,s’) =1 if and only if s = &'
2. If m(s, ') exists, then m(s, s) also exists and m(s,s") = m(s,s).

If there is no relation between s and §', then we write m(s, s’) = m(s, s) = oc.
We can describe the Coxeter group W through the monoid S*:

Proposition 2.4.3. Let S be a set and S* the monoid of words over S. Let
W be a Cozeter group generated by S with relations (ss’)m(s’s/) =1.

Set = to be the equivalence relation on S* which is generated by allowing
the insertion or deletion of words of the form

(s8")™5) = s5'ss ... 55
—_—
2m(s,s’) letters
or all m(s,s’) < oco. Then S*/ = is isomorphic to W.
P
We will use the following notation:

Definition 2.4.4. Set {ss'}* :=ss'ss’....

a letters

The next lemma makes it easier to work with the relations:



24. THE WEYL GROUP AS A COXETER GROUP 25

Lemma 2.4.5. Let S, W and = be as in Proposition 2.4.8 and s,s' € S.
The equivalence of words {s's}* = {ss'}* holds if and only if m(s,s’) is a
factor of a.

Let Sy,...5, with n € N be a complete list of non-isomorphic simple
modules of the Artin algebra A.
We can associate to A a Cartan matrix, as in [2], pp 69, 241 and 288:

Definition 2.4.6. To a hereditary Artin algebra A we associate the Cartan
matriz C' = (c;j)nn of the underlying graph of the quiver A%.

That is, we set ¢; = 2. If i # j and Ext'(S;, S;) = Ext!(S;, S;) = 0, then
¢ij = ¢j; = 0. Finally, if Ext!(S;, S;) # 0, set

Cij = — dimEndA(Si)op Eth(Sl', S])
and
Cj; = — dimEndA(Sj) Eth(Si, Sj)
A description of the Weyl group as a Coxeter group can be found in [11],
Proposition 3.13:

Proposition 2.4.7. The Weyl group associated to A with the Cartan ma-
triz (¢ij)nn is a Coxeter group generated by the reflections sq,sa, ..., S, with
relations s? =1 for all 1 < i <n and (s;s;)™7 =1 for all i # j, where m;
depends on c;;c;; in the following way:

Cijcji‘o 1 2 3 24
my |2 3 4 6 oo

We can write all relations as (s;s;)™4 if we set m;; := 1 for i = j.

Every element of the Weyl group is the equivalence class of several dif-
ferent words over the alphabet S := {s1, s9,...,$,}. To distinguish between
the elements of the Weyl group and the words over .S, we will always use un-

derlined letters to denote words and normal letters for Weyl group elements.

Remark 2.4.8. For A = k(@) with a field k£ and a quiver () without oriented
cycles, the relations depend only on the edges in the underlying graph of @),
see e.g. [14], p. 570:

We have m;; = 2 if there is no edge between the vertices ¢« and j and
m;; = 3 if there is exactly one edge between ¢ and j. If there are two or more
edges between ¢ and j, then m;; = oo.

Example 2.4.9. Let () be the quiver

—_—

>~ <
DN —= W
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The Weyl group of A = k() is a Coxeter group with the relations (s;s;)™7 =1
and the following values for m,;:

1 2 3 4
111 2 3 3
212 1 3 3.
313 3 1 2
413 3 2 1

2.5 String Algebras

To define string algebras, we need quivers with relations:

Definition 2.5.1. Let k be a field and @) a quiver. A relation on @) over k is
a k-linear combination aypy + - - - + a,p, of paths py,...,p, with ay,...,a, €
k, e(py) = -+ = e(p,) and s(p;) = --- = s(p,). Let I be an ideal in
kQ generated by a set of relations p. Then (Q,p) is called a quiver with
relations and kQ/I is called the path algebra of (Q, p). Furthermore, we call
I admissible if J* C I C J?, for some t € N, where J is the ideal generated
by all arrows.

We can define the representations (V, f) of (@), p) analogously to the rep-
resentations of () in Definition 2.3.13, but with the following additional con-
dition:

For a path p = ajas ..., where «; is an arrow for 1 < i < n, we set
fp = farfas - - - fan- Then for every relation aip; +- - - +a,p, in p, we demand
arfp, + -+ anfp, =0.

As before, mod kQ/I is equivalent to the category of representations of

(Q. p).

Remark 2.5.2. Let () be a finite quiver and k£ a field. If () has no oriented
cycles, then to every vertex ¢ corresponds a simple module S; € mod kQ). If
the number of arrows ¢ — j is denoted by n, then

diInEnd(Si)Op Eth(Si, S]) = diInEnd(Sj) EXt1<Si, SJ) =n.

The same result holds for arbitrary finite quivers with an admissible ideal
I and mod kQ/I.

Furthermore, Ext®(S;, S;) # 0 if and only if there is a relation a;p; +- - -+
a,p, in the set that generates I with e(p;) = and s(p;) = .

Similarly to the hereditary case, the following theorem describes the mod-
ule categories of all Artin algebras over algebraically closed fields:
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Theorem 2.5.3. Every basic, finite dimensional algebra over an algebraically
closed field k is isomorphic to kQ/I for some quiver Q) and admissible ideal

I.

A special kind of quiver algebras are string algebras as described in [5]:

Definition 2.5.4. Suppose that () is a quiver and I an ideal in k() which is
generated by a set of zero relations.
Then A = kQ/I is a string algebra if and only if

1.

2.

Any vertex of () is starting point of at most two arrows.
Any vertex of () is end point of at most two arrows.

Given an arrow [, there is at most one arrow v with s(f3) = e(y) and

By ¢l

Given an arrow =, there is at most one arrow  with s(5) = e(y) and

Byé¢l

Given an arrow [y, there is some bound n(f) such that any path
P12 ... Bn(p) contains a subpath in 1.

Given an arrow [, there is some bound n'() such that any path
P12 ... Bu(p) With B,/s) = B contains a subpath in I.

Definition 2.5.5. We can take the formal inverse 3~' of an arrow 3 by
defining e(87!) := s(8,) and s(871) := e(B).
A string is a word w = (1, ... 3, so that

e [3; is either an arrow or the inverse of an arrow for all 1 <i <n

s(B;) = e(Biz1) forall1 <i<n

e w does not contain a relation in 1

The multiplication of strings is analogous to the multiplication of paths
of a quiver.

A band is a string w = (15 ... 3, such that every power of w is defined
and does not contain a relation in I; furthermore w may not be a power of
a string w' # w.

String algebras are especially useful, since their modules are well known,
also from [5]:



28 CHAPTER 2. CATEGORIES AND ALGEBRAS

Definition 2.5.6. Suppose that w = (15;...05, is a string. Set u(i) =
e(Biz1), for 0 <i < n, and u(n) = s(B,). The string module M (w) is defined
as the representation where for every v € @, the vector space M (w), has as

basis
{zi | u(t) =v}

with z; # z; for ¢ # j. If §; is an arrow, then fs (2,_1) = 2z;, otherwise
f6;1(zi) = z;_1. For all other arrows «, we have f, = 0.

Now suppose that w is even a band and ¢ : Z — Z is an automor-
phism on a vector space over k. The band module M (w, ¢) is defined as the

representation with
Mw,¢),= @B 2z

e(Biv1)=v
where Z; = 7.
If 3, is an arrow and z € Z;, then fs,(2) = ¢(21) € Zo. If B;' is an
arrow, then for z € Zo, fy-1(z) = ¢7'(2) € Z1.
Let 2 < i < n. If §; is an arrow and z € Z;, then fs,(2) = z € Z;_4; if
B; ! is an arrow and z € Z;_;, then fﬂ;1(z) =z € Z.
For all other arrows «, we have f, = 0.

Lemma 2.5.7. Let A = kQ be a string algebra with a stringw = 155 ... B,.

1. All A-modules are isomorphic to a string module or a band module

2. Two string modules M(w) and M(w') are isomorphic if and only if

w=w orw =wl:=1p"1 .. 8"

3. Two band modules M(w,¢) and M(w',¢") are isomorphic if and only
if ¢ and ¢ are similar and w or w™! is a cyclic permutation of w'.

4. No band module is isomorphic to a string module.

In [6], p. 34 there is a result about morphisms between tree modules that
reduces very nicely to monomorphisms between string modules:

Lemma 2.5.8. M(w) is a submodule of M(w') if and only if there are arrows
a, B and strings wy,ws so that w' is of the form

wloz_lwﬁwg

or
wPws

or
wloflw.



3 Submodule closed categories
and the Weyl group

In this chapter, let A be a hereditary Artin algebra over an arbitrary field.

We aim to prove that there is a natural bijection between the Weyl group
and the set of full additive cofinite submodule closed subcategories of the
module category. Oppermann, Reiten and Thomas have shown this in [14] for
algebraically closed fields and finite fields. While we use the same bijection,
we will give a completely different method of proof that does not depend on
the field.

First of all, we regard the Weyl group as a Coxeter group. This allows
us to regard the Weyl group elements as equivalence classes of words. In
Section 3.1, we define a total order on these words and call the smallest word
of each equivalence class leftmost. Then we collect some results about this
order.

We conclude Section 3.1 by stating the bijection, which is induced by a
map between words of Weyl group elements and sets of preinjective modules.
In Section 3.4 to Section 3.6, we will prove that a cofinite, full additive
subcategory is submodule closed if and only if a leftmost word is mapped
to its complement. Since we can assign a unique leftmost word to every
element of the Weyl group, this gives a bijection between the full additive
cofinite submodule closed subcategories and the Weyl group.

For this proof, we will use the results of Section 3.2, which is devoted
to monomorphisms between preinjective modules. In particular, we give a
way to construct all modules that contain a given preinjective module as a
submodule. This allows us to draw some lemmas in Section 3.3 about the
structure of full additive cofinite submodule closed subcategories and how
they are related to the words of Weyl group elements.

In the sections 3.4 to 3.6, we use this to prove inductively that the pro-
posed bijection exists. Finally, we conclude this chapter with some corollar-
ies.

Note that in the following, a submodule closed subcategory will always

29
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mean a full additive submodule closed subcategory of mod A. Furthermore,
we are equating modules with isomorphism classes of modules, since sub-
module closed subcategories are closed under isomorphisms.

3.1 Leftmost words

Let A be a hereditary Artin algebra and mod A the category of finitely pre-
sented modules over A. Furthermore, let Z be the subcategory of mod A
consisting of all preinjective modules.

We order the simple modules Si,...,S, of A with injective envelopes
I,...,I, in such a way that Hom(Z;,I;) = 0 if ¢ < j. This is possible by
Lemma 2.3.8.

Furthermore, let W be the Weyl group of A. Denote by

S :={s1,82,--.,5n}
the set of generators of W and by
(sis;)™ =1
the defining relations of W.

Definition 3.1.1. Consider N' = (Ng x {1,2,...,n},<), where < is the
lexicographic order: for pairs (r,4), (r',7) € N, we have (r,i) < (1, 7) if and
only if one of the following holds:

1.r<y
2. r=r"and i < j.

Let w = s;,8i, .. .s;,, beaword over the alphabet Sand 0 =7 <ry <--- <
rm € Ny the smallest non-negative integers so that

(Tl,il) < (Tg,ig) < e K (T‘m,im)
is fulfilled. Then we define
p(M) = (7“1,2'1)(7“2,2'2) ce (T'm,’im).

Example 3.1.2. Consider the Weyl group of the quiver ) from Example
2.4.9. If we set w := $95351535451 then

p(w) = (07 2)(0’ 3)(17 1)(1’ 3)(17 4)<27 1)'
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Now we can define a total order <; on the words of W this is again a
lexicographic order:

Definition 3.1.3. Consider two words w, w’ with
P(M) = (Tl, 7:1><T2, Z2> S (rm7 Zm)

and

p(w) = (r1, 1) (ry, i) - (v o)

We write w <; w' if one of the following holds:

L. m<m
2. m = m' and there is a 7 € N so that

(ri i) = (11, 1), (ra,12) = (r,85), -5 (rjo1y 1) = (71, 850)

and
! !

(rj> 15) < (15, 15).
Now we define the leftmost word; this definition can be found for example
in [1], p. 411:

Definition 3.1.4. We call a word w for w € W leftmost if for every other
word w’ for w the inequality w <; w’ holds.

Example 3.1.5. For the Weyl group from Example 2.4.9, the words
S3 <[ S283 < S3S2 <| S25352
are all leftmost words and
598352 <] S35253 < 253515251
are all words for the same element of the Weyl group.

Since <; is a total order, every element w € W has a unique leftmost
word. Obviously, the leftmost word is reduced, that is, it has the smallest
possible length for a word of w.

We follow with a Lemma about the order <; and the relations:

Lemma 3.1.6. Suppose that w, = u{s;s;}™v for some reflections s;, s;,
i # jJ, words u, v. Set

plw,) = p(w) (p,1)(q,5)(p+1,7) ... p1

.

w
m4j pairs

for some p,q € Ny and a sequence of pairs py. Set
wy = u{s;si}"v.

Then wy <; wy if and only if both of the following conditions are fulfilled:
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1. 1 <q.

2. Let (r,k) be a pair in p(u). Then (r,k) < (¢ —1,7).

Proof. Let p(ws) = p(w) (¢, 7) (@, 1) ... pa for some sequence of pairs ps.
—————
m;; pairs

Suppose that w, <; w;. Then (¢, j) < (p,?) by Definition 3.1.3 and thus
g = ¢ + 1. So the first condition is fulfilled.

Now consider a pair (r, k) in p(u). Then (r,k) < (¢/,5) = (¢ — 1,7) and
the second condition is fulfilled.

On the other hand, suppose that the conditions 1 and 2 are fulfilled.
Then ¢ is the smallest integer so that (¢/, j) is bigger than all (r, k) in p(w).
By the second condition, (¢’,j) < (¢ — 1, 7).

Furthermore, ¢ is the smallest integer so that (p,i) < (q,j). It follows
that (¢ — 1,7) < (p, ), since i # j.

Together, (¢',7) < (¢ — 1,j) < (p,i) and by Definition 3.1.3, we have
Wy <j Wy O

The following lemmas are important for the induction with which we
prove the main theorem of this chapter:

Lemma 3.1.7. Let z,2',y be words and s; # s; reflections. We suppose
that the words w = xs;y and w' = 2'sjy are equivalent, x is reduced and
w <, w. Let z be the lo_ngest initial subword that w and w' share. If there
is no x” = 2’ that shares an initial subword with w which is longer than z,
then there are pairs (r,h), (s,1), (t,7) and series of pairs p1, p2, p3, ps So that
p(x) = pi(r, h)ps

p(w) = pi(r; h)p2(s,i)ps

and there is some word w” = w with

p(w") = p1p2(s,i)(t, 5)pa- (3.1)

Fither ps = py, or a pair (q,9) is in py if and only if (¢ — 1,g) is in ps.
If v is the initial subword of w with p(v) = p1, then no relation on reflec-
tions in v is needed to transform w into w”.

Proof. We prove this inductively on the number of relations that are needed

to transform w’ into w. Without loss of generality, we assume that m;; is

odd. If m;; is even, we only need to relabel s; and s; in the arguments below.
If there is some word z; so that

/

w=z{s;5;}"y <z {8}y = w (3.2)
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then w” := x,{s;s;}™y fulfils the assertions by Lemma 3.1.6.
To conclude the basis of our induction, we note that for two words

21{3j3i}mijg <1 Zy {Sisj}mij%

weget a similar result: Then

p(x{s;s:i}™7) = p1py(s — 1,9)(t — 1, 7)oy,

where a pair (¢ — 1,g) is in p} if and only if (¢, g) is in p,. Furthermore,
either p) = ps or a pair (¢ — 1, ¢) is in p} if and only if (¢, g) is in ps.

Now suppose that w = u{s;s;}"* v is not of the form in equation (3.2),
but the assertion is true for w; = u{ss; }"™*v.

If w, <; w', then there is some word w} with

plwy) = pr(r', W) p(s, 1)
and
" / . . /
p(wy) = pipa(s,i)(t, 7)ps-
for some pair (1, ') and series of pairs p, p, ps, py. Either pi = pl, or a pair
(q,9) is in pj if and only if (¢ — 1, g) is in pj.
There is some u’ so that pj = p(u).
Furthermore, there is a pair (¢,1) and a series of pairs p so that

p(w) = p(u)(q,1)p

If w = wor v = u{ssp}™ !, then we set (r,h) := (q,1). Since w <; W',
we can assume that w <; w; and by Lemma 3.1.6, the assertion is true.

Since z is reduced, there is only one other case: the word w/ has {sys;}"*
as a subword and the relation {sgs;}"* = {s;5x}™* gives a word w” that
fulfils (3.1).

It remains to prove the assertion if w’ <; w,.

Then we can inductively assume that there is some w! so that

pwy) = prps(s — 1,4)(t — 1, 5)pl,

where a pair (¢ — 1,g) is in p} if and only if (¢, g) is in p,. Furthermore,
either p) = ps or a pair (¢ — 1, ¢) is in p} if and only if (¢, g) is in ps.

But there is no 2” = 2’ that shares an initial subword with w which is
longer than z, the longest initial subword that w and w’ share.

Since w} and w; share the initial subword »" with p(u,) = py, this is only
possible if u' = u{s;s}™* 1.

Again, we set (r, h) := (q,1). Since z is leftmost , w <; w,; and by Lemma
3.1.6, the assertion is true. O]
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Completely analogously, we can prove the following:

Lemma 3.1.8. Let z,2',y be words and s; # s; reflections. If the words
w = zs;y and w' = z's;y are equivalent, z is leftmost and w’ <; w, then there
are pairs (r,h), (s,1) and series of pairs p1, p2, ps, pa so that p(x') = p1p2

p(w) = p1p2(s,i)ps

and there is some word w” = w with
p(w”) = p1(r, h)p2pa

with (r,h) # (s,1) or ps # 0.
FEither p3 = py, or a pair (q,g) is in py if and only if (¢ + 1,9) is in ps.
If v is the initial subword of w with p(v) = p1, then no relation on reflec-
tions in v is needed to transform w into w”.

We get the following corollary:

Corollary 3.1.9. If u{s;s;}™i~' and us; are leftmost, then either u{s;s;}™
is leftmost or us; < us;.

Proof. 1f we have u{s;s;}™ <; u{s;s;}™, then us; < us;.

Furthermore, if u{s;s;}™ is not leftmost, but u{s;s;}"~! is, then we
can write w = zs;y and there is some w’ = z's;y so that w = w’, z is leftmost
and v’ <; w. B B

By Lemma 3.1.8, there are some words u,, u, and a reflection s;, so that

1

U = UjUsy

" o_ e Amii—1 —
W' = uSpus{sis; T = w

and w” <; w.
S0 uS; = U SpUy and u, SpUy < US;. O

Remark 3.1.10. Note that in Lemma 3.1.8, we do not actually need to assume
that z is leftmost; it is sufficient that x is reduced and the following holds: let
z” = x so that 2" <; z. Furthermore, assume that z, is the maximal initial
subword that 2’ and x share. Then there is some w’' = w with w’ <; 2’s;y.

So analogously to 3.1.9, we see: Suppose that there is some word w’ so
that u{s;s;}™ = w' and for all ¥’ = u{s;s;}™~!, we have w' <; u's; if
mi; = 3 and w’' <; u's; otherwise. Then us; is not leftmost.

Lemma 3.1.11. Suppose that w = u{s;s;}"™ with m;; > 3 and w reduced.
If there is some i # j # k with w = u'sg{s;s;}"™~™ for some even m > 2 or
w = u'sg{s;s;}" ™ for some odd m > 3, then my, =2 or mjj, = 2.
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Proof. This is a simple, inductive proof: without loss of generality, we can
assume that w = gls/yﬁ{sz-sj}’mj*2 and mj; = 3. Then there is some u, so
that

w= QQSksjsk{sisj}mij_Q = u,s;sp{s;8 "

So there is some u4 so that
UySjSk = Us{sisk} "

If m; > 3, then we have the same situation as before, only considering a
shorter word. Since w is finite, we see with induction on the length of w that
M = 2 or mj, = 2. ]

Similarly, we can prove the following:

Lemma 3.1.12. Suppose that us; is leftmost, but us;s; is not leftmost for
some word u and some reflections s;, s; with m;; > 4.

Then there are s,t € N so that p(us;s;) = p(w)(t,5)(s,4) and p(u) con-
tains the pair (s —1,1). If m;; = 6, then p(u) additionally contains the pairs
(s —2,1) and (t — 1, ).

Proof. Suppose that the assertions are not fulfilled.
We can without loss of generality assume that there is some ¢’ and re-
flections sy, , ..., Sk, 1, -+, 81, so that

/ mgi—2 /] msi—2
US;S; = U SjSky ... Sk, SiSyy .- 51,4858} T = u {58 )™
Then there are s', ¢, t", q1,...,Gm,71,...,mm € N so that

p(u"s;) = p()(#',5)(qr kr) - (g, k) (8, 1) (11, 1) - (v, L) (2 )

If (t"—1,7) < (¢,1), then the assertions of the lemma are fulfilled. Otherwise,
we get one of the following cases:

(a) There is some 1 < o < m’ with (" — 1, j) < (10,1,) with my, ; > 3.

(b) The words s;sy, ... 51 ,s; and us; are not leftmost, contrary to the as-
sumptions.

So we can assume that the first case is fulfilled. Furthermore, without loss
of generality, we can assume o = m/.

If my, =+ = my =2, then

n_— .1 R/
u :’l_LSjSkl...SkmSll...Slm,Si =u .
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Either v <; u”, contrary to the assumptions, or there is some s” > s’ so
that

p(glﬁ> = p(ﬂl)(t/J)(QI; kl) s (ana km)(r17 ll) s (Tm/a lm/)<5”> Z)
Since us; is leftmost, but us;s; is not, there is some v; so that
us;s; = vy{s;si}". (3.3)

Thus
)
"no_ mg;
u'=u{s;s, ,} " s

and we are in an analogous situation to before, only considering a shorter
word. Since the length of w is finite, the assertions of the lemma are induc-
tively true under these assumptions.

So we can assume without loss of generality that m;, > 3. Furthermore,
we have (s'+1,4) < (t"—1,7) < (rms, Ly ). So there is at least one 1 < o < m/
so that m,_, > 3, since otherwise s;sy, . .. sk, $:5;, is equivalent to a smaller
word (that begins with s;), contrary to the assumption that us; is leftmost.

Then there is some v, so that

!/ — mi
WSSk, - .. Sk, SiSl, = Ug{sisy, } .

m

Because of (3.3), Lemma 3.1.7, Lemma 3.1.8 and m;, > 3, we get some
V4 so that
u' = 58881, - . . S, Si-

m

Since mj;,, > 3 and my,;,, > 3, we are in the same situation as before, only

considering a word of shorter length. Inductively, the proof is complete.
O

Now we can define an assignment which maps the words of the Weyl
group to the cofinite full additive subcategories of mod A. We will show that
this map yields a bijection between the Weyl group and the set of cofinite
submodule closed subcategories.

Let 7 = DTr be the Auslander-Reiten translation, see Proposition 2.2.7.
By Definition 2.3.2, every indecomposable preinjective module is isomorphic
to 771, for some r € Nand 1 <i <n.

Definition 3.1.13. We can identify the pairs in N and the indecomposable
preinjective modules by setting (r,7) = 7"1;.

Not only does this give us a natural order on the preinjective modules,
but this also yields an injective map from the words of the Weyl group to
the cofinite full additive subcategories of mod A: If

p(@) = (7‘1, il)(r% i2) <. (va im)’
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then w — C,, where C, is the full additive category with
ind Cﬂ =ind A \ {(7’1, i1>, (7”2, iQ), cey (T’m,’lm)}
For a Weyl group element w with the leftmost word w, define C,, := C,,.

Example 3.1.14. Let A be as in Example 2.4.9 and w = $152835825481. Then
p(w) = (0,1)(0,2)(0,3)(1,2)(1,4)(2,1)
and
indCy,, = ind A\ {11, Iy, I3, 7Ly, 71,, 7°1, }.

We will prove that the restriction of this map on the leftmost words is a
bijection between those and the cofinite submodule closed subcategories.

Since every element of the Weyl group has a unique leftmost word, this
gives a bijection between the elements of the Weyl group and the cofinite
submodule closed subcategories.

The same bijection is used in [14].

3.2 Monomorphisms between preinjective mod-
ules

An observation makes the aim of the chapter much simpler to achieve: the
cofinite submodule closed subcategories of the module category correspond
naturally to the cofinite submodule closed subcategories of Z, the category
of the preinjective modules.

Thus we devote this section to preinjective modules. In particular, we
give a way to construct all modules U that contain a given preinjective,
indecomposable module M as a submodule.

In Section 3.3 we will use this to show the connection to the Coxeter
structure of the Weyl group. In Section 3.4 to 3.6, we will use this connection
to prove that the bijection that we described exists.

Proposition 3.2.1. There is a bijection between full additive cofinite sub-
module closed subcategories of mod A and full additive cofinite submodule
closed subcategories of Z. It maps the category C to the category C' =CNI.
Furthermore,

indA\C=indZ\C.
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Proof. This is completely analogous to [14], Proposition 2.2:

If A is representation finite, then mod A = 7 and there is nothing to
prove. Suppose that A is not representation finite. Since C is cofinite, there
is some r € N, so that 7"I;,7"I,,...,7"I,, € C. Now suppose that M is
a preprojective or regular module. Then 77"M exists and has an injective
envelope I. Since 7" preserves monomorphisms by 2.3.7, M C 7"I € C. So
MeCandind A\C=indZ\C.

Thus the assignment C — C NZ is a bijection between the full additive
cofinite submodule closed subcategories of mod A and the full additive cofinite
submodule closed subcategories of 7. O]

We start the construction of exact sequences with a lemma that holds for
all Artin algebras:

Lemma 3.2.2. Let A be an arbitrary Artin algebra and M, X € mod A
indecomposable. Let

(7]

be an exact sequence for some X',YY' € modA, so that there is some
Z € mod A and an AR-sequence

[911 912]
0 g22

XeX —22yey — -0 (3.4)

0 M

. v %] vz Hal iy

0. (3.5)

If for some U € mod A, a monomorphism h : M ~— U factors through
f= [g] and X 1 U, then h also factors through f" = [_J;éfl] and the
following sequence is exact:

{—féﬁ}

g5 91912
f2

0 g22

0 M

7 ® X' TTIXpY!

Proof. By (3.5), the sequence
g11

%)
0

is also exact. By Proposition 2.1.4, the diagrams

4% ]
0 0 idys
0 X R

Y®ZpY' T IXpY!

M x (3.6)

| |5

X —=YaoaY

[522]
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and
P 7z
1] |14]
YovY — XY
91 0
|:0 idy/:|

are both pushouts and pullbacks. So the diagram

M _fgfl Z

-5 |14]

X ——1'XoY
[9522]

is itself a pushout and a pullback by Proposition 2.1.5. Therefore, the se-
quence

g5 91912
0 g22

[*féfl}
0 M-t e x X3y 0

is exact. It remains to show that h : M — U factors through f” = [ﬂ}éf ! ]
f1

Since we have assumed that h factors through f = [ o }, there is a mor-
phism s = [s159] : X & X’ — U so that

h = [s1 5] [}cﬂ = s1f1+ s2f2

By the Definition 2.2.10, the morphism s; : X — U factors through [gfl;}:
there is a morphism s’ = [s]s}] : Y @ Z — U so that

s1 =[] s5] [gflﬂ = $1011 + Sh [

So we get
h = sigifi + sy fsfi + safo

Since (3.6) is commutative, we have

h = —S/1g12f2 + S/Qféfl + 52f2 = [—5/2 82—8’1912] |:_]}é2f1] (37)
and h factors through f”. a

We can even say more:
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Lemma 3.2.3. Let A be a hereditary Artin algebra, M € 7 and U € mod A.
Suppose that the sequences of modules

(X1, Xoy ooy Xn)
(X1, X5,....X,,)
(Y1,Y5,..., Yi)

fulfil the following conditions:

(S1) There is an Auslander-Reiten sequence

0—M—=X 86X, —=Y, —=0.

(S2) For all 1 < i < m, there is some a; € N so that X" | X; ® X|, but
XM 1U.

(S3) For 1 <i < m, there is an Auslander-Reiten sequence of the form

0 X,L Z,L T_IX,L' —0.

Let Y/ be the maximal module that is a direct summand of both Y; and
Zi. WriteY; =Y/ @Y/ and Z;, =Y/ & Z.

If 771X, | X!, then let X! be the module so that X! =17'X; ® X! and
set V" := 0. Otherwise, set X' := X! and V" := 771 X.

The following equations hold:

Xin @ Xy =X/ ®Z;
}/;‘_i,_]_ — }/;// @ }/;///'

Then for all 1 < i < m there is an exact sequence

0—=M-Lo X, 0 X! 2>V, — 0. (3.8)

Furthermore, if a monomorphism M — U exists, then it factors through all

fi-

To prove Lemma 3.2.3, we need the following observation:

Remark 3.2.4. Suppose that
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and that C; is the maximal module that is both a direct summand of Y; and
Ziy1. Furthermore, write Y; = C; & C! and Z; 1, = C; ® D;. Set B; = B! and
C!'=7'X,if 77'X; ¢ B; and B; = Bl& 7'X, and C/ =0 if 771X, | B;.
Then the sequences of modules

(Xl, X2 . 7Xi—17 Xi+17 Xi, Xi+2’ Xi+37 . ,Xm)
(X1, X5.... X 1,X;®B;,Bi®D;, X; 5, X/ ,5,..., X},
(}/17 Yv?a s 7}/2717 Yvia Czl D 1{/7 Y;+27 Yvi+37 s 7Ym)

also fulfil the conditions (S1) - (S3).

Note that only the i-th and (i + 1)-th elements of these sequences differ
from the elements in the original sequences.

We can easily generalize this to the following: If i« < j; < jo < -+ < 7y,
there is an irreducible morphism X, — X, forall1 <k <[and X}, | Xj,
then there are two sequences with X/, and Y,, as their m-th elements that
together with

(Xl, ce ,Xi_l,le,X]é, e ,le,XZ‘,XZ‘+1, .. .le_l,Xj1+1, NN

(3.9)
.- 7Xj2—17Xj2+17 s Jle—17le+17 s 7Xl)

fulfil (S1) - (S3).

Furthermore, there are sequences of modules that fulfil (S1) - (S3) with
X, X, Y, as their m-th elements so that X/ = X/ for all 1 <i <m:

By Definition 3.1.13, if there is a morphism X; — X, then X; < X;. So
we can use the above to get sequences that fulfils (S1) -(S3) with X,,,, X/, Yo,
as their m-th elements so that X; > Xy > --- > X,,,_1. Then X > 7711, for

all X | X{ and X | Z; with j <+ and thus X! = X/ for all 1 <i < m.

Proof of Lemma 3.2.3. We prove the lemma inductively. By Remark 3.2.4,
it is sufficient to prove the assertion for all sequences so that X = X/ for all
1<i<m.

For these sequences, we additionally show the following: If there is an
indecomposable direct summand X of X, ® X/, and 7X; of Y}, so that an
irreducible morphism X — 7X; exists, then one of the following holds:

(a) There is a direct summand X’ = X of X, & X/, so that the component
X' —Y,, of g, is irreducible and g,,(X’) C 771X;

(b) Either X = X; for some i < j < m or X is isomorphic to a direct
summand of Y.

If m = 1, the assertion is obvious by definition of the Auslander-Reiten
sequence.
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Now suppose that it holds for all series of modules of length m € N or
smaller. We want to show that it also holds for sequences of length m + 1 by
applying Lemma 3.2.2.

To do this, we need to prove that there is an exact sequence of the form

|:gm1 gm2}
0 gms

0 M X @ X, — 28V @Y ——0. (3.10)

so that g,,; is irreducible.
Suppose that Y, has some direct summands Y, ,,Y,,,.... Y, and ¢,
has a component

k
diag(glthQa oo 7gk‘k) : XS’L - @Yr;ll
=1

where g11, g22, - - - , grr are irreducible and diag(g11, goo, - - - , gkx) is the diago-
nal matrix with entries g1, g22, - - ., grx- Then there is a copy of X, on which
this restricts to

g1

g22 y

| X > Py
=1
kk

an irreducible morphism.

By condition (S3) and since Y{" = 0, every indecomposable direct sum-
mand of Y,, has the form 771X, for some 1 <i < m.

If for all 771X, | Y/, there is some copy X of X,, so that the component
X — 77YY; of g,, is irreducible and g,,(X) C 771 X;, then the above and the
induction hypothesis mean that we can apply Lemma 3.2.2.

Suppose that there is some 771X; | Y/, so that the above is not the case.

Since Y/ | Z,,, there is an irreducible morphism between X,, and 771 X.
By the inductive hypothesis, one of the following holds:

(a) X, =2 X for somei < j<m
(b) X | Y7
We show that there are sequences
<X1(1)7 Xé1)7 ctt 7X’I§V;I:))
1 1
(Xi( ),X;( )

X/ (3.11)
SRS IS 40

e, X))
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that fulfil (S1)-(S3) and have X,,, X|,, Y,, as their m-th elements so that
X =X, but X, 2 XY for all # < j < m and X, 1Y,

Furthermore, we want to show that Xl"(l) = Xl/(l) forall 1 <[ < m. Since
X, = T(,}), X = X;,(LI), Y, = ngl), this is already clear for i = m.

Obviously, we have X,, | X,,, & X/, so either X,, | X] or X,, | Z; for
some 1 <k <m,k#1.

In the first case, (b) is not possible, since Y; and X;@® X/ do not share direct
summands. In case (a), Remark 3.2.4 yields a sequence (Xl(Q), . ,X,(i)),
where X; comes before Xj.

In the second case, we can get a new sequence where X comes before
X, since Z! | X,, ® X! (otherwise, 771 X; would not be a direct summand
of Y,,). In case (b), this sequence is already the one we need; in case (a), we
can again get a another sequence by Remark 3.2.4 where X; comes before
X;.

If we call this new exact sequence (Xf), ce Xr(f)), then it is clear by (3.9)
that X, = X/ holds for all 1 < < m.

Since there are only finitely many j with i < j < m, we get sequences of
the form (3.11) after finitely many steps.

The inductive assumption gives us an exact sequence

0—=M I X, ®x, 2y, =0 (3.12)

where the component X, — Y,, of ¢/, is irreducible and ¢/, (X,,) C 771 X,.
If 771 X; =Y,,, then it is sufficient to look at the sequence (3.12) instead
of

0— M-I X, & X!, 2"y, —0. (3.13)

If there is some 771X} so that 771 X; @ 771X}, | Y,,,, then we can assume
that g,, induces an indecomposable morphism X,, — 771X} and g,,(X,,) C
Tﬁle.

So together (3.13) and (3.12) give a new exact sequence

fll 1
m

0—=M-">X, & X Y, —0,

where the induced morphisms X,, — 77'X; and X,, — 7X} of g/, are
irreducible and g,,(X,,) C 77'X; ® 771X},

Inductively, there is an exact sequence of the form (3.10), where g,,; is
irreducible and we can use Lemma 3.2.2 to get an exact sequence

f7n+1 9m+1
0— M X, he X, Iy, ——0.
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If there is a monomorphism M — U, then it factors through f,, 1.

This gives us not only the assertion of the lemma but also the additional
assumptions we have made:

Let

Im = [g;nl 9%2} Y, @2, =T X
be the epimorphism of the AR-sequence. By (3.10) and Lemma 3.2.2, we get

/ /
41 = {9752 9“;15:2} 2, XL, T X DY
Let X be a direct summand of Z/ @& X! and 77'X; a direct summand of
771X, ® Y/ so that there is an irreducible morphism X — 771X,.

If i = m, then X is a direct summand of Z,,,. If it is also a direct summand
of Z/ | then ¢p,1(X) = [9482} (X) and (a) holds. Otherwise, X is a direct
summand of Y, .

If i #m and X is a direct summand of X/, then either (b) holds or

{gm} (X)) Cr X,
gm3

Thus gma(X},) =0 and g,41(X) = [,2,] (X). So (a) holds.

Finally, suppose that ¢ # m and X is not a direct summand of X/ .
Because of the irreducible morphism between X and 77'Xj;, the former is a
direct summand of Z;. By (S3), either it is a direct summand of Y; or of X

for some 7 < j < m. O]

A perhaps simpler way to interpret the sequences of modules used in the
lemma above is the following:

Remark 3.2.5. Suppose that X;, X/, Y; are the i-th elements of sequences that
fulfil (S1) - (S3). Then X1 ® X/, are defined by taking the exact sequence

0—M—=X;® X —=Y,—=0.

and the Auslander-Reiten sequence

0 Xl Zl T_lXi —0.
We can add these sequences together and get
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Then X, is the maximal module that is a direct summand of both the first
and the second term: we still get an exact sequence if we delete it in both
terms:

0—>M—=X'&Z —Y,orX,—0.

The same holds for G;, the maximal module that is both a direct summand
of the middle term and the last term. Deleting this in both terms gives us
an exact sequence

04>M4>XZ'+1€BXZ«/+1 }/;-1-1 0.

These modules have some interesting properties:

Corollary 3.2.6. If there is a monomorphism h : M — U, then for se-
quences of modules

(X1, X, ..., X0n)
(X1, X5, ..., X))

m

(Y1, Y, ... Vi),

which fulfil (S1) - (S3), there is a monomorphism X; ® X! — Y; ® U for all
1< <m.
Thus, every injective direct summand of X; ® X! is a direct summand of

U.

Proof. By Lemma 3.2.3, there is an exact sequence

0—=M- o X, 00X %y, ——0

for 1 <7 < m so that h factors through f;. Thus, there is some morphism h;
with h = h; f;. So h; is a monomorphism on Im f;. Since Kerg; = Im f;, the
morphism
{ﬂ:&@X}eK@U

is a monomorphism.

So every injective direct summand [ of X; @ X/ is a direct summand of
Y; ® U. Since X; & X/ and Y; do not share any direct summands, [ is even
a direct summand of U. m

We can use the following lemma to show that there is an algorithm that,
for given indecomposable, preinjective module M constructs all U with M —
U.
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Lemma 3.2.7. Suppose there is an irreducible morphism between (s,i) =
751 and (t,j) = 7'1;. Then either s=t andi>j ors=t+1 andi < j.

Proof. By 2.3.6,
s—1<t<s.

Furthermore, we have ordered the injective modules so that Hom(Z;, ;) =0
ifi < j.

By 2.3.7, we get Hom(7°[;,7°I;) = 0 if ¢ < j. By 2.2.14, there is an
irreducible morphism 75I; — 757'[; if and only if there is an irreducible
morphism 7°1; — 7°I;.

Soif s =t, theni > jand if s =t + 1 then i < j. m

Proposition 3.2.8. Let A be a hereditary Artin algebra with M € mod A
indecomposable and preinjective. Let U € mod A, so that M is not a direct
summand of U. There is a monomorphism M ~— U if and only if for some
m € N there are three sequences of modules

(XI)X27 . 7Xm)
(X1, X5,..., X))
(}/1’}/2""7}/777,)

that fulfil the conditions (S1) - (S3) and furthermore

(S4) If for some 1 < i < m the module X; & X! has an injective direct
summand I, then I | U.

(S5) X ® X! is a direct summand of U.

Proof. To prove this, we use Lemma 3.2.3: since the sequences fulfil (S1)-
(S3), there are exact sequences of the form

0—M-To X, 0 X! 2>V, ——0

for all 1 < ¢ < m. If a monomorphism M — U exists, it factors through f;
forall 1 <i¢<m.

Thus one direction is obvious: if such sequences of modules exist, f,, :
M — U is a monomorphism.

On the other hand, suppose that no series of modules fulfil (S1) - (S5).

If M is injective, then it cannot be a submodule of U. Otherwise, there
are series of modules that fulfil (S1) - (S3), since there is an AR-sequence
that starts in M and we can set m = 1.

If (S4) is not fulfilled, then M cannot be a submodule of U by Corollary
3.2.6.
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Otherwise, there is some non-injective X,, 1 and some «,,,1 € N so that
Xt | X @ X, but X 4 U. So we can extend the sequences of modules
to

(X1, Xoy .o X, Xona1)
(Xiv X§> c 'X;m X7/n+l)
(}/17 }/27 s Ym7 Ym-i—l)

so that these series fulfil (S1) - (S3). If these sequences fulfil (S4), we can
extend them again to sequences of length m + 2.

We have M = (r,4) for some r € Nand 1 < i < n. Every indecomposable
direct summand of X; & X is of the form (r/,5) < (r,7) for some 1" € Ny
and 1 < j < n. Furthermore, if X; = (r/,j), then every direct summand of
Z1 is of the form (r”, k) < (r',j), and analogously for Xs, X3, .. ..

So after finitely many steps, either we find sequences that do not fulfil
(S4), or there is some m' so that every direct summand of X,, & X/, is
injective. If (S4) is still fulfilled, then (S5) is also fulfilled, a contradiction to
our assumption. O]

The proof of Proposition 3.2.8 shows the following:

Corollary 3.2.9. Let M and U be preinjective modules over A. If M C
U, then all sequences of modules that fulfil (S1) - (S3) can be extended to
sequences of modules that fulfil (S1) - (S5).

If M ¢ U, then all sequences of modules that fulfil (S1) - (S3) can be
extended to sequences that fulfil (S1) - (S3) so that X, ® X has an injective
direct summand that is not a direct summand of U.

Remark 3.2.10. By Corollary 3.2.9, we can use the proposition as an algo-
rithm that finds out for given indecomposable, preinjective M and modules
U, if there is a monomorphism M — U. Alternatively, we can use it to
construct all U with M C U.

Note that it is very simple to generalize this for arbitrary preinjective M:
Corollary 3.2.11. Let M be a preinjective module so that M = @;", M;
with M; indecomposable. Let U be some module in mod A. Denote the middle
term of the Auslander-Reiten sequence that starts in M; by Nj.

Furthermore, order My, ..., M,, so that there is some 0 < k < m with
M; | U if and only if 1 < k.

Suppose that the sequences of modules

(Xla XQa s 7Xm)
(X1, X5,..., X))
(Y1, Yo, ., Vi)
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fulfil (S2), (88) and
(S’1) We have

k m
X1 © X :@Mi@ @ N;
i=1 i=k+1
and .
Y, = @ M.
i=k+1

Then for all 1 < i < m, there is an exact sequence
0—=M-ToX;@ X 2oy, —~0.

There is a monomorphism M »— U if and only if there is some m' > m and
modules X1, ... Xor, Xpoi1y - X, Yog1, .. Yo 50 that the sequences

(X1, Xoy oo, Xowr)
(X1, X5,..., X))
(3/17)/27‘ o JYT)’L,>
fulfil (S’1) and (S2) - (S5).
Furthermore, if a monomorphism M ~— U exists, then il factors through

all f;.

Example 3.2.12. Take A as in Example 2.4.9. A part of the preinjective
component of the AR-quiver of A is:

N TIg TIl [3 [1
...><7'I4 Tl 1, I
Suppose that we want to know whether M = 713 is a submodule of, say,
U - _[2 @ 13 EB I4.
Then by (S1), X; ® X| = 711 @ 7l and Y} = I3. Since neither 7/; nor

715 is a direct summand of U, we arbitrarily set X := 71;.
The AR-sequence

OHT[14>[3@[44>114>0

and (S3) show that Xy & X} = 71, & I, and Y2 = I. Since I, is a direct
summand of U, we set X, := 715 to fulfil (S2). Using the AR-sequence

OHT[24>13@[44>124>0
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we get X3® X; = I3® I7 and Y3 = I} ® I,. Since I is injective, but not
a direct summand of U, the condition (S4) is not fulfilled and there is no
monomorphism between M and U.

We have one more lemma:

Lemma 3.2.13. Let M be an indecomposable, preinjective module and U €
mod A. If the sequences

(XlaXQa o 7Xm)
(X1, X5, 0, X0) (3.14)
(Y1,Ys, ..., Vo)

fulfil (S1) - (S3), then for every 1 < i < m, there is an exact sequence
0— X, X —Y. e X,0X, —Y,—0. (3.15)
Furthermore, if there is an exact sequence
0— X, X —Y, 00U —2——0 (3.16)
then there is also an exact sequence
0 M, U Z 0. (3.17)

Proof. Let Y be the maximal module so that Y | Y; and Y | Y,,,. Furthermore,
suppose that V; =Y @Y  and Y,, =Y & Y".

We use Corollary 3.2.11 on X;® X and Y@U. Takei < j; < jo--- < jiso
that X, are those modules in the sequence (X;;1,...X,,) which are already
a direct summand of X; @ X!. Then

(Xm+17 s 7Xj1—17Xj1+17 R 7Xj2—17Xj2+17 s 7le—17le+17 s 7Xm>

is part of a triple of sequences that fulfil (S'1) and (S2) - (S5) with respect
to X; @& X/ and Y & U.
So the same construction that yields an exact sequence

0O— M —X,, X, —=Y,,—=0,
also gives an exact sequence
0—X, 06X —YoX,06X —Y'—0,

when used on X; & X; and Y’ @ U instead of M and U. Adding Y to both
the middle and the last term gives (3.15).

The exact sequence (3.16) is given by a sequence of modules that fulfil
(S’1) and (S2) - (S5). Together with the sequences (3.14), this yields the
exact sequence 3.17. O
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3.3 Preinjective modules and the Weyl group

In this section we connect our results about preinjective modules with the
relations of the Weyl group.

First we give a Lemma that shows the connection between the AR-
sequences and the relations:

Lemma 3.3.1. Fiz two integers 1 < 1,5 < n. Set

« := max{v | there are s,t with an irreducible morphism (s,i) — (t,7)"

— (s,1)"

Let (s;s;)™19be the defining relation of the Weyl group as in Lemma 2.4.7.
Then the value of m;; depends on a3 in the following way:

}
}

B := max{v | there are s,t with an irreducible morphism (t, j)

4

>
0.

1 2 3
3 4 6
Proof. From 2.3.7, we know that o and 8 do not depend on s. Let (¢;;)nn be
the Cartan matrix. By Lemma 2.3.9, either o« = ¢;; and 8 = ¢;; or 8 = ¢;;
and a = ¢j;. Lemma 2.4.7 gives the stated values for m;;. ]

Now we define a recursion that plays a fundamental role in the proof of
the bijection:

Definition 3.3.2. For given «a, 5 € N define a recursion formula by

EW0)=1
E(1l) =«
E(2m) = max(BE(2m — 1) — E(2m — 2),0)
E@2m +1) = max(aE(2m) — E(2m — 1),0)

for all m € N.
This recursion is directly linked to the Weyl group:
Lemma 3.3.3. Let o, B be as in Lemma 3.3.1. Then
E(m)=0<=m>m; — L.

Proof. Tf aff < 4, then we get the following values for m < 6:
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af | my | EQ0) E() E@2) E(3) E4) E(5) E(6)

0|2 [I 0 o0 0 0 0 0

1|3 |1 1 0o 0 0 0 0 (3.18)
2 /14 /1 a 1 0 0 0 0

316 1 a 2 a 1 0 0

Obviously, E(m) =0 if a8 < 4 and m > 6.

If o > 4, then m;; = oo by Lemma 3.3.1 and we need to show that
E(m) # 0 for all m € N,

Since E(2) = af —1 > E(0) > 0, we get inductively for m > 1:

E@2m)=pE2m —1)— E(2m —2)
= (af — 1)E(2m — 2) — BE(2m — 3)
= (af —1)E(2m —2) — E(2m — 2) — E(2m — 4)
> (aff —3)E(2m — 2)
> E(2m —2).

The proof that E(2m + 1) > E(2m — 1) > 0 is completely analogous. O]

Next, we need some notation:

Definition 3.3.4. Fix s € Nyand 1 < i # j < n and let My := 7°[;. If
s > 1or j < i, let t be the integer with (s — 1,7) < (¢,7) < (s,7). Denote
M1 = Tth, M2 = 7'5_112', M3 = Tt_llj, e

The following lemma is a key part in the proof that there is a bijection
between cofinite, submodule closed subcategories and the elements of the
Weyl group:

Lemma 3.3.5. Let U be a module so that My 1 U for all My # 0 with
0 <k <m;; — 1. Furthermore, let o, B be as in Lemma 3.5.1. Then for all
m > 1 with M,,+1 # 0 and E(m — 1) > 0, there are series of modules that
fulfil (S1) - (83) and yield exact sequences

0—> My -1 ME™ & U, — MEmD g (3.19)

so that no My 1 Uy, for all My # 0 with 0 < k < m;; — 1.
If there is a monomorphism My — U, then it factors through f,, for all
m.
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Proof. If My is injective, there is nothing to show. So we can assume that
an AR-sequence starts in M.
Let o, 8 be as in Lemma 3.3.1. Then there are modules M’, N’ so that

0—> My —> M ® N —> My —0 (3.20)

and

0—> M, —= M} & M —— My —>0
are AR-sequences. Note that by 2.3.7, for all non-injective My, 1, m € Ny,
there are AR-sequences of the form

00— Myp_y —= MY & 7" M’ — Mypyy —0. (3.21)

m

For all non-injective Ms,,,, m € N they are of the form

0 ——> My —> Mg, & TN’ —> My g — 0.

If we set U; := N’, the AR-sequence that starts in M, is the exact
sequence

If M, is injective, then the proof is complete. So we can assume that an
AR-sequence starts in M; and use Lemma 3.2.3.
Since M t U, we set

X1 = X2 = X3 = = XE(l) = Ml,
Then we get sequences that fulfil conditions (S1) - (S3) by setting

X, =MD g N,
X, =M M e N @ M,

X,E(l) — MQ(E(I)_:L)IB_I e N @ (M/)E(l)—l

and
}/1 _M27
Yé _M3a
Yy = M;,
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We get
Xy ® Xy = My 7 @ N (b))

and Ygi)41 = M:,,E(l). Thus by Lemma 3.2.3 there is some f; so that the
following sequence is exact:

0—> My 1 MFPOP " gy N' @ (M7)ED) — (P g
If there is a monomorphism M — U, then it factors through f;.
Since Uy := N’ @ (M")PM) | we can write the exact sequence as
0—> My M@ & Uy —> MFV 0.
We show the rest inductively: Suppose that

0——> My——> MEP" D g Uy, —= MEE™2 g

is an exact sequence and E(2m — 1) # 0. Furthermore, suppose that this
exact sequence is yielded by sequences of modules of the length m’ —1. Then

m— 2m

are elements of sequences that fulfil the condition (S1) - (S3) of Lemma 3.2.3.

If My, is injective, then My, 1 = 7Ms,,_1 = 0 and there is nothing
to prove. If Ms,, 1 is not injective, then the AR~sequence (3.21) exists. As
above, we set

X1 1= -0 = m/+E(@2m—1)—1 ‘= Moy, 1.
!/
This determines X/ , 1 X I+ B@m—1)—-1 and Yy q1, ..., Yo 4 B2m—1)—1 com-

pletely.
Since E(2m) = BE(2m — 1) — E(2m — 2), we get
Xm’—i—E(?m—l) % X/ '+E(2m—1) — ME(Qm) P U1 ( m= IM/)E(Qm_l)
Yo Bom-1) = Moy "

Together with Us,, := Usp, 1@ (7™ 1 M')PEm=1 this yields an exact sequence

f2m

0 —= My 22 MEC™ & Uy, —= ML 0

for some fy,,. By Lemma 3.2.3, M ~— U factors through fs,,.
Analogously, we can construct

00— My 222 My @ Uy —— My ——0

if £(2m) # 0 and My,,2 # 0. O
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Corollary 3.3.6. Let U, be as in Lemma 3.3.5. If (r,1) | Uy, then My >
(7", l) > Mm+1~

If My > (r,1) > My, then (r,1) | U, if and only if my > 3.

If My > (r,1) > My, then (r,1) | Uy, if and only if my +mj > 5.

If M, > (r,1) > Mp41 and m is even, then (r,l) | Uy, if and only if
my > 3. If m is odd, then (r,1) | Uy, if and only if mj > 3.

Proof. This is obvious from the proof of Lemma 3.3.5. m

Remark 3.3.7. Note that m;; = mj;. If we fix s,t as in Definition 3.3.4, we
can set M} :=7'1;, Mj := 7571 1;, M}y := 7' I;, M} := 75721, ... and

With this definition, we get analogous results to 3.3.3, 3.3.5 and 3.3.6.

3.4 Preliminaries for the main theorem

This section collects some preliminaries which are necessary to prove that
there is a bijection between the Weyl group and the cofinite, submodule
closed subcategories: First, we show that every cofinite submodule closed
subcategory is of the form C, for some word w.

Then we will prove an auxiliary result that will make the inductions in
the next section possible.

Lemma 3.4.1. If a cofinite, full additive subcategory C of mod A is submod-
ule closed, then there is a word w over S = {s1, S, ... S, } with C = C,.

Proof. By Lemma 3.2.1,
ind A \ C= de\C =. {(7’1, ’il), (T27i2)7 e (Zm, T'm)}

for some m € N and modules (r1,71) < (re,i2) < -+ < (T, im)-
Suppose that for all words w over S

p(w) # (r1,11)(r2,2) -« (P, T ).

By Definition 3.1.1, either 1 > 0 or there is some 1 < 7 < m — 1 so that

(rj,15) < (rj4n, 2541 — 1)
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In the first case, C contains the middle term of the AR-sequence that starts
in (r1,4;) by Lemma 3.2.7. In the second case, C contains the middle term of
the AR-sequence that starts in (741, 7;11). In both cases, C is not submodule
closed.

So by Definition 3.1.13, there is some w with

p(w) = (r1,01)(r2,2) - . (Fon, Im)

and C = C,. [

Recall that C,, = C,, where w is the leftmost word for w. So we need to
prove that the word w in Lemma 3.4.1 is leftmost. Furthermore, we need the
other direction, namely, that C,, is submodule closed if w is leftmost.

We will use the following lemma for the proofs of both directions:

Lemma 3.4.2. Suppose that the words w and w” are equivalent and there
are pairs (r,h), (s,1), (t + 1,7) and series of pairs p1, p2, ps so that

p(w) = p1(r, h)p2(s,i)ps,

p(w") = p1pa(s,i)(t+1,7)pa

and either ps = py, or a pair (q,g) is in py if and only if (¢ — 1,9) is in ps3.
Furthermore, suppose that the word x with p(x) = pi(r, h)ps is reduced
and m;; > 3.
If My = (s,1), My = (t,§), My, ..., My, 3 ¢ Cy, then there are sequences
of modules as in Lemma 3.2.3 (used on My and any U € C,) that yield some
U.Y €T so that

00— My——> My, »®U —=Y —>0 (3.22)

is an ezxact sequence and either Y € Cy or both Y = (r, h)Pmia=3) and U’ € C,
hold.

Proof. We show this by induction on the number m of Coxeter relations
needed to transform w into w”.

Furthermore, we show that a few additional assertions hold, which we
need for the inductive proof:

(A1) Let (r',h') be a module so that (+',r')Y | Y. If Z € C, is a direct
summand of the middle term of the AR-sequence that ends in (1, h'),
then Z7 | U'.
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(A2) Let V be the maximal direct summand of U’ so that for every (¢, g) | V

there is some (1/,h') | Y with an indecomposable morphism (¢, g) —
(r',h'). Furthermore, let (¢, g’) be the biggest indecomposable direct
summand of V' and (r”, k") the smallest indecomposable direct sum-
mand of Y.

If there is some o € Ny so that Y, 77'Y,...,77°Y € C, and 77°7'Y ¢
Cy, then one of the following holds:

(a) 77°7YY = (r, h)P(mu5—3) and

T_1V, T_QV, LTV e Cu.

(b) Let V' be the maximal direct summand of V' so that for every

(q,9) | V' there is some 0 < k < 0+ 1 so that (¢ — k,g) ¢ Cy.
Then there is some module Y’ with an exact sequence

0—7 W —rYoU'—Y —0. (323)

Either Y’ € C, or both Y’ = (r,h)E(mi=3) and U” € C’ hold,
where

indC' =indC, \ M
with

Tk+1M ¢ Cw
M={MeindZT|I0<k<o:{ (1) <rEiM
M < (¢ —1,9)

For all U € C’, there are sequences of modules that fulfil (S’1),
(S2) and (S3) with respect to 77°7'V’ and U and yield (3.23) as
in Corollary 3.2.11.

Furthermore, (Al) and (A2) still hold if we exchange U’, Y and
Cy for U”, Y" and C' respectively.

If there are some reflections s, s; and words u, v so that

w = Q{SkSz}msz and w' = Q{Slsk}mk127

then this is the result of Lemma 3.3.5.

Now suppose that w = u{sgs;}"*v and the lemma, (A1) and (A2) are

proved for the word w; = u{s;s;}"*v. Furthermore, assume that the trans-
formation of w into w, is the first step in the transformation of w into w”.
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Either there are modules U(’l)7 Y1) so that the exact sequence given by
the inductive assumptions is

0—— My—— Mmij_g D U(ll) YV(U 0, (324)

or we can write the exact sequence given by the inductive assumption as a
T-translate or a 7~ !-translate of (3.24).
Let w, = w] with

p(w,) = pi(r1, ha)py(s’, 1)l

and
p(wy) = prpo(s', i) (" + 1, 7)pl-
so that either p} = plj, or a pair (¢, g) is in p} if and only if (¢ — 1, ¢g) is in pf.
Furthermore, we can assume without loss of generality that my,; is even.
Then there are ¢, g2 € Ny and a series of pairs p” so that

plw) = plu) (@ = 5* + LK) a2 — 55+ 1.0)- (a1, ) (a1

We can assume that (r, h) is in the series of pairs p(u)(q1 — "5 + 1, k) (g2 —
T+ 1,1) ... (q1, k) (g2, 1), since otherwise there is nothing to show. Analo-
gously, we assume that the pair (11, hy) is in the series of pairs p(u{s;s;}"").
Furthermore, we can assume w} # w” and My > (¢q2,1): Let x be the word
with p(z) = p1(r, h)p2(s,7) and 2’ be the word so that w = za’. Then there
is some z” so that w” = 2”2’

Analogously to Lemma 3.3.5, if my, > 3, then there is some X € C, so
that

0 (g2, 1) (qi. k) & X — (@1 — 2L + 1, k) (3.25)

is an exact sequence.

We have two different cases to consider:

First, assume that u is also an initial subword of w”. Then u{s;s}" !
is an initial subword of w/, since z with p(z) = pi(r, h)ps is reduced. Fur-
thermore, w <; w; and (g — " +1,k) = (r, h).

If (r1,h1) € Cy, then we can set Y := Y(y) and we have (qi,k) = (r —
1,hy).

(A1) holds by the inductive assumption, (A2) holds by (3.25), (Al) and
Lemma 3.2.13.

On the other hand, if (ry, h1) ¢ Cy, then (g1, k) = (r1, hq). Furthermore,
if we have Y{;) = (r1, h1)Emi5=3) then (A1), (3.25) and Lemma 3.2.13 give



o8 CHAPTER 3. A CONNECTION TO THE WEYL GROUP

an exact sequence of the form (3.22) with Y = (r, h)P(mi=3)_ (A1) holds
obviously.

If Y1) # (r1, h1)P0mi=3)  then we set Y := Y{;) and we only need to prove
that (A2) holds. Analogously to above, this is the result of Lemma 3.2.13
and (3.25).

It remains to prove the assumption in the case that w is not an initial
subword of w”.
If w <; wy, then p(w;) contains the series of pairs

p(W)(@s — =24 1,0) . (g1, B) (g, D) (g1 + 1,F)

2

and the exact sequence given by the induction is either (3.24) or the 7-
translate of (3.24). We can assume without loss of generality, that some
indecomposable direct summand of Y(;y or 7Y{;) respectively is smaller than
(g1 + 1,k). Otherwise, the arguments below hold analogously for an exact
sequence given by (A2).

By Proposition 3.2.8, the exact sequence yielded by the inductive assump-
tion is given by sequences of modules

(X17X27 s 7Xm)
(X1, X5, ..., X))
(Y17Y27 s 7Ym)

that fulfil (S1) - (S3). By Remark 3.2.4, we can assume that X7 = X! for
all X7

In the following we begin with the case where the exact sequence given
by the inductive assumption is (3.24).

Since My > (q1 + 1, k) and by Lemma 3.2.3, these series of modules yield
an exact sequence

0—>My—>X, ®X, —=Y,—=0 (3.26)

so that for every (1], h}) | Y, the inequality (¢1,k) < (r], h}) holds. By the
inductive assumption, we can even assume that (g1, k) < (1, h}) < (g1 +1,k)
for all (r{,h}) € Cy,. So either (ry, h}) = (q2,1) or (v}, h}) = (1 + 1, k)

Furthermore, there is an irreducible morphism X., — (r{,h}) and (¢ +
1,k) < X, ¢ Cy. Analogously to Lemma 3.3.5, if my, > 3, then there is some
X € Cy so that

0— (1 + L,k) — (2, ) # X — (n — 5L + 1, k) (3.27)
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with X € C,,. Together with the 7-translate of the exact sequence (3.25), this
shows that X, # (¢2+1,1) and X, # (¢1+1, k): Otherwise, by Lemma 3.2.13,
we would get an exact sequence where either (¢, — "4 41, k) or (g2 — "5 +1,1)
is a direct summand of the last term, but every direct summand of the middle
term is in C,. This is a contradiction to the inductive assumption.

Since (q1 +2,k) > X, > (q1 + 1, k), we have 77X, € C,,. Inductively,
Yy € Cy and (g1, k) < (ry, hY) for every (11, h}) | Y.

If (¢ +1,k) | Y, for any exact sequence of the form (3.26), then there is
such a sequence so that Y, € Cy, but Y, ¢ C,, .

Otherwise, the sequence (3.24) is already of the form (3.22).

In the latter case, it is easily seen that this sequence fulfils (A1) and
(A2): the former holds by the inductive assumption. Define V', V', C’ as in
(A2) and let V), V(/1) be the corresponding modules, Cél) the corresponding
category for the sequence (3.24). Then V' = V(;), V' = V/}j and C" = (.
Thus, assertion (2) also holds.

So assume that there is some v with (¢; +1,k) | Y, € C,,. This sequence
is of the form (3.22) and (A1) holds. Let @ € N be the maximal exponent so
that (91 + 1, k)a | ny

By construction, we can write X, X; = B1® B| ® M,,,; 2 so that there
is an exact sequence

OHBlﬂcl@(ql—l—l,k)aHTilBl .

By Remark 3.2.4 and Lemma 3.2.13, U}, = B1®Cy. Y, = D& (1 +1, k)%,
then Y3y = D@ 71 By.

So we can write V) = By @ C{ with B | By and Cf | Ci. We get
V' = B @ By. By Proposition 3.2.8, Lemma 3.2.13 and the inductive as-
sumption, assertion (2) is fulfilled.

If we still have w <; w,, but the exact sequence given by the inductive
assumption is the 7-translate of (3.24), then analogously we have 7Y{;y € Cy,
and (qi, k) < (r1, h}) for all direct summands (1], k) of 7Y(3). Suppose that
™Yy, Yy, .., 7MYy € Cy and 77°Y ¢ Cy. If 0 > 0, then (3.24) is of the
form (3.22). By the inductive hypothesis, (A2) is fulfilled.

If o = 0, then we use assertion (A2) of the inductive hypothesis: by
Lemma 3.2.13, there is an exact sequence of the form (3.22) that fulfils (A1)
and (A2).

It only remains to prove the case w, <, w. Then p(w;) contains the series
of pairs

Mgl Mg

(g — — +1,k) ... (2 — 1,1 (qu, k).

p(u) (g2 — N 5
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The exact sequence given by the inductive assumption is either (3.24) or
the 7~ !-translate. In the first case, we show (analogously to above) that
Y1y € Cy, and (qi, k) < (ry, hy) for all (v, hY) | Y.

If (g2,1) 1 Y1), then the sequence (3.24) is already of the form (3.22) and
the assertions hold.

Otherwise, 77'Y(1) ¢ Cy,. Analogously to before, (qi,k) { T_IXEI) by
Lemma 3.3.5 and (A2): If (¢1, k) | Tle(’l) we use Lemma 3.2.13 and get an
exact sequence

0 770y =7 Vi © Uy —= Yy —0.

where (¢1 — "%, k) | Y} or (g2 — %3, 1) | Y/}, but every direct summand of
U(H1) is in CEI). This is a contradiction to the inductive assumption.

For every module B with an irreducible morphism B — (g2,1), we have
(@2—1,1) < 77'B < (go,1). If B | X{,, then 77'B € C,: all modules between
(q1,k) and (g2,1) are in C, , since the exact sequence given by the inductive
assumption is (3.24).

So B ¢ Cy, by the definition of X{,,. Thus, we also have B ¢ Cy.

Let a be the maximal integer so that (g2, 1)* | Y(1).

Analogously to the arguments above, we can define B; | XE1) so that
there is an exact sequence

OHBlﬁol@(ql+1,k)a*>TilBl .

As before, the assertion (A2) of the inductive hypothesis and Lemma
3.2.13 show that there is an exact sequence of the form (3.22) and that (A1)
and (A2) are fulfilled.

If the exact sequence yielded by the inductive hypothesis is the 77!-
translate of (3.24), then similar to the arguments above we get an exact
sequence (3.22) so that Y € C,, and (g1, k) < (r', h’) for every direct summand
(r',h") of Y. This exact sequence fulfils (A1) and (A2). O

3.5 The first direction

In this section we show inductively that for every w € W the category C,, is
submodule closed. Afterwards, it only remains to show that every cofinite,
submodule closed category is of the form C,.

We begin with the basis of the induction:
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Lemma 3.5.1. Let m;; < oo and Uy, ..., Up,;—1 be as in Lemma 3.3.5. If
Ui, ..., Un;—1 € Cy and My & Cy, then Cy, is not submodule closed and w is
not leftmost.

Proof. Since My C Up,;—1, the category C, is not submodule closed. Let
w be a word for the element w € W. By Definition 3.3.4, My = (s,4) and
M1 = (t,j)

Suppose that M; € C,. Let u be the initial subword of w that is defined
through the inequality (r, k) < (s — 1,4) for every pair (r, k) in p(u).

Then there are reflections sg,, Sk,, . .., Sk, and a word v so that

W = USk, Sky - - - » Sk, Sil.
Since U € Cy, we have
Migyi = Mgy = ==+ = Mp; = 2
by Lemmas 3.3.1 and 3.2.7. So

W = US;iSk, Sky - - - Sk U

m

is equivalent to w and thus a word for w. Since (r,k) < (s — 1,1) for all
reflections (r, k) in p(u), we see that either w’ <; w, or w is not reduced.

Clearly, the same argument holds if M, € C,, for some 1 <m < m;; — 1.

It remains to prove that C, is not submodule closed if Mo, ..., My, 1 ¢
Cw. Without loss of generality, we can assume that M, 1 = (p,7) for some
p € Nand M, _» = (q,j) for some ¢ € N. Suppose that (r, k) is a pair in
w. If (¢ —1,75) < (r,k) < (t,7) then we use that Uy, Uy, ...Up,,—1 € Cy, and
get my, = 2 by 3.3.6. If (p,i) < (r, k) < (s,4) then my, = 2.

Let «/ be the initial subword of w that is defined through the inequality
(r,k) < (qg—1,7) for every pair (r, k) in p(u).

Then there are reflections s, . .. sx,, with

mklj:kaj:“':mkijQ

so that w = w’ for
w' =u'sy, ... sk, {sis; 0. (3.28)

So w is also equivalent to

" / mi;i—1,./
w' =u's;sp, ... sk, {Sis; T v (3.29)
and either w” <; w or w is not reduced. n

This proof even shows the following:
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Corollary 3.5.2. If m;; < oo, My, My,...,Mp,,_1 ¢ Cy, and w is reduced,
then there is a word w' = w with w' <; w, pairs (r,h) = My, 1, (7', h') #
(r,h) and series of pairs p1, pa, p3 So that

p(w') = pi(r,h)pa  and  p(w) = pu(r', h')ps.
For the inductive step, we still need some lemmas:

Lemma 3.5.3. Suppose that for some w, we have My ¢ C, and M, is
a submodule of U € C. Let Uy, 1 be as in Lemma 5.3.5 with modules
(7 lk) & Cw for 1 < k < a so that @5_; (1, lk) | Upy,—1-

Let
(XI)X2) s 7Xm)
(X0, X, X)) (3.30)
(Y1,Ys,..., )

be the sequences of modules that yield the exact sequences

M OHMOLM:J(M @UkHMkEﬁ_l) —0
foralll <k <m;; — 1.
Then one of the following holds:

(a) There is somel < m' < m;;—1 and some U’ € C,, with a monomorphism
Mm/ — U’

(b) If (X1, ... Xy Xons1, - - - Xow) 08 part of a triple of sequences that fulfils
(51) - (S5), there is some 1 < k < m’ so that My, | X © Xj. Fur-
thermore, for I € N, 1 < k < a and My, 1 < (rp — 1,1x), we have
(’f‘k - l,lk) é Cﬂ.

(¢c) a=1, my, +mj, =5 and there is no indecomposable morphism M,,» —
(r1,0h) for m” < my;; — 3.

(d) a=1 and (r1,l1) < My, 1.
If (r, — 1,1x) € Cy for some 1 < k < a, then (a) holds.

Proof. By Corollary 3.3.6, for all 1 < k < a, there are some X € 7, £, € N
and 2 < my, < m;; so that the AR-sequence that starts in (ry,lx) is of the
form

OH(Tk,lk)HME{Z @X%(rk— 1,lk)*>0 .
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First, suppose that a > 1. By Lemma 3.3.3 and Lemma 3.3.5, there is an
exact sequence

OHMOHU ij*lHMminO'

and we can assume that X, ® X! = Uny—1 and Yy, = M, .. By Corollary
3.2.9, we can set X, := (r1,01) and Xy, 11 := (12, lo). If My, = My, = My,
then My, | Xiny2 @ X, 5 by (S3). Thus (b) is fulfilled.

Otherwise, set y =m +m;; +2—my , 0 = v+ my; —mo

Xonts = Moy, Xonya = My i1, o, Xy = M,y

and
X7+1 = MmQ,X7+2 = Mm2+17 Ce X(; = Mmij—l-

Then M,,,; | Xs41 @ Xj,, and (b) holds.

On the other hand, suppose that there is an indecomposable morphism
M, — (11, 1) for some m” < m;;—3. By Corollary 3.3.6, we have (r1—1,1;) |
Un;;—1- By the construction of 7,7, from 7,711, there must be a module
U4, s0 that we can write 7,,7,1 as the following:

0 —_— MO —_— Mrg/(/ﬁlll—‘rl) @ (r17 ZI)E(mN) @ Urln//+1 e Mﬁ/(/rz;) .

So there is a module U’ with an exact sequence

0— My —— Mn]f’(’ﬂlﬂ) QU — (r — 1, ll)E(mn-i-l) 0.

By Corollary 3.2.6 and the monomorphism M, — U, we get a monomorphism
Mmij_l — U D (Tl — 1,[1).

So either (a) is fulfilled or (r — 1,1;) ¢ C,. In this case, a > 1 and (b) is
fulfilled.

Finally, suppose that m;, + mj, > 5 and a = 1. By Lemma 3.3.1,
pf1 > 1 if either my, > 4 or my, > 4. We can set X,,41 := (r1,0;) and
Xmt2 = Xy := M,,,. Analogously to the case a > 1, this yields some
m' € N so that My, | Xpw @ X,

If my, = my;, = 3, then either (d) holds, or we can write the AR-sequence
that starts in (r1,[;) as

04>(7"1,l1)4>Mm1 @Mm1+1@X,4>(T1 — 1,[1)4>O (331)

for some X’ € 7 and some 1 < m; < my; — 1. Since X,41 = (11, h),
Xmio := My, and X413 = M, 11, we see that (b) holds. O
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We can generalize this lemma in the following way, which we will need
for an induction:

Remark 3.5.4. Let us assume that the assumptions of Lemma 3.5.3 hold,
except that M is not a submodule of some U € C,, but of X & U for some
indecomposable X ¢ C,. If X = M for some 1 < k < m;; — 1, we alter
the assumptions on the sequences (3.30) accordingly so that they fulfil (S1)
- (S3) with respect to My and X & U.

Furthermore, we assume that X2 | X @ X, for some 1 < k < m: then
for every sequence (X, ..., X, Xini1, ..., Xy) which is part of a triple of
sequences that fulfils (S1) - (S5), we have some 1 < k < m/ so that X = X.

So every argument in the proof of 3.5.3 still holds and we still get that
one of the conditions (a) - (d) must be fulfilled.

If we take a look at case (b) of 3.5.3 and suppose that a = 1, then by
Lemma 3.2.13, there is a monomorphism (ry,l1) = M, ® U. So there are
sequences of modules

X X, X))
XX, XD)

<1Y171 }/27 cee 71 }/o)
which fulfil (S1) - (S5) with respect to (ry,l1) and M, @© U. Since M, |
X @X, forsome 1 < k < m/, there must be some &’ so that My, = [* Xp® X},
We still need a result about the case a > 1:
Lemma 3.5.5. Suppose that for some w, we have My ¢ C, and My is
a submodule of U € C. Let Uy, 1 be as in Lemma 5.5.5 with modules
(7, lk) & Cw for 1 <k < a so that @j_, (rk, lk) | Up,,—1-
Furthermore, suppose that for all 1 < k < a, there is an irreducible

morphism M, — (ry, 1) for some 0 < m < m;; — 2.
If a > 1, then one of the following holds:

(a) There is some N < M, N ¢ C,, that is a submodule of some U’ € C,,.
(b) We have a =2, my,;, =2, my, =3, mj, =2 for1 <k <2 andm;; = 3.
(¢c) We have a =2, l; =1y, my, =3 and m;; = 3.

In case (b),
Mmija Mmij+17 Mmij+27 Mmij+3 ¢ Cm'

and
(7'1 — 1,[1), (7’2 — 1,[2), (7”1 — 2, ll), (7"2 — 2, lg) §é CQ
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Proof. The proof is analogous to that of Lemma 3.3.5. First note that if
m;; = 3, we get my, > 3 for 1 < k < a, since there is an irreducible
morphism M, — (ry, l);) for some 0 < m < m;; — 2.

If my,;, # 2, we can exchange j and [, in the calculations below.

Define au;, Bri, ouj, Brj analogous to o and 8 with 4,1l and j, [ instead
of i,j. If my,;, = 2, but (b) is not fulfilled, then

af + Z(aki + o) (Bri + Bry) > 4.
k=1

By Corollary 3.2.11, we can do completely analogous calculations to the case
aff = 4. In these calculations, we construct exact sequences which contain
modules of the form M, (¢/,1;) and (0", 1ly) for some o0,0’,0” € N.
It remains to show that (a) is fulfilled if any of these modules is in C,,.
By Lemma 3.5.3, if (rp — 1,1) € C, for some 1 < k < a, then (a) holds.
The rest follows inductively with the same argument as in 3.5.3. O]

Now we can show the following, which is the last lemma that we need to
prove the first direction of the main theorem:

Lemma 3.5.6. Let w be a word so that (s,i) = Mo, My,..., My, 1 & Cy.
Then there are words u,v so that w = us;v and there is some p with p(w) =
p(u)(s,i)p. Suppose that there is some U € C,, with a monomorphism My ~—
U and for every X < My with some U’ € C,, and a monomorphism X ~— U’,
we have X € Cy.

Then there exists some u' so that

w = u'{s;s;} . (3.32)
Proof. By Lemma 3.3.3 and 3.3.5, Proposition 3.2.8 yields an exact sequence
0—— My ——Up;-1 — Mp,; —0. (3.33)

If (r,1) € Cy, for all (r,1) | Up,,—1 with (r,1) > M,,,,_1, then (3.33) is obvious
by Corollary 3.3.6.

Otherwise, we get My, ¢ Cy, since there is a monomorphism U,,,_1 —
M,,,; ® U by Lemma 3.2.6.

There are direct summands (r1,01),..., (ra;la) & Cy Of Upy—1 so that
M1 < (13, [g) forall 1 <k <a.

We can assume without loss of generality that m;; is odd; otherwise we
only need to exchange s; and s; in the arguments below.
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If for all 1 < k < a, there is no morphism M,, — (1, l;) for any 0 < m <
m;; — 2, then my,; = 2 and for some word z we have

W= Ts;Sy - sla{sjsi}m“_l =8y, ... sla{sisj}m”_l.

So we can assume that for some (7, l;), there is a morphism M,, — (7, lx)
for some 0 < m < m;; — 2.
By Lemma 3.5.3, one of the following cases hold:

(a) a=1, my, +my, =5 and there is no indecomposable morphism M,,» —
(’I“l, l1> for m” < mMs; — 3.

(b) There is some m' so that M, | X © X7,
In case (a) there are words u”, v, so that either

w=u"s;s,{s;5:}"" v (3.34)

or both mj, =2 and
w = u"s;s;81,{si8;} ™ 0. (3.35)

Then there is some word u; so that w = wys;, {s;s;}™v: If my, = 2, there
is nothing to show. If mj, = 2, then we use that M,,,; is of the form (g, j)
for some ¢ and there is a monomorphism Uy, 1 — M,,; ® U: Let u, be the
subword of u, that does not contain the reflection that corresponds to (g, j).
By the inductive assumption, u,s;s;, is equivalent to a word us{s;s;, }™".

Now we go back to looking at u,;, not u,. Since m;, = 3 and mj;,, there
is some word u, with u;s;s;, = uy{s;s;, }"™" and thus

w=u"s; {sis;}™v

for some word u”.
On the other hand, suppose that

My, | Xow @ XL, (3.36)

there is a monomorphism

Since we have @;_, (rk, k) | Un

a5

a

B k) — U@ M,,,. (3.37)
k=1

Assume that (r1,l) < (r9,l2) < -+ < (74, la)-
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Let the AR-sequence that starts in (r,,l,) be
0—— (ra,lo) —= My, ® Zy —(ro — 1,11) —=0.

If a = 1, then by Lemma 3.5.3, w must have the form (3.34) or (3.35).
The only difference to case (a) is that m;, +mj, > 5.

We can use case (a) as the basis of an induction: Instead of the modules
My, My, (r1,1y), we take (r1,11), My, , M, +1 and use the same arguments as
before. Since M,y,,; | Xo @ X, we can use Remark 3.5.4 and either we
get the analogue to case (a) above or the analogue to the case (b). In the
first case, we get m;, + m;; = 5 or mj;, + m;; = 5 and there is some u] so
that w is equivalent to a word with the subword {s;,s;}™ if m; is even and
{s1,5;}™1 is odd. Thus we also get w = u'{s;s;}™9v for some words «’, v.
In the case (b), we continue this inductively.

After finitely many steps we get

w = u'{s;s;} .

If a # 1, then a = 2 by Lemma 3.5.5. If Iy = Iy, then [} = ls, my, = 3
and m;; = 3. We can exchange j and [; to get the case a = 1. Otherwise,
My, = 2, my, = 3, mj, =2 for 1 <k <2 and m;; = 3. Furthermore,

Mmij7 Mm¢j+1> Mm¢j+27 Mmij+3 §é C&'

and
(7"1 — 1, l1>, (’I"g — 2, lQ), (7‘1 — 2,[1), (Tg — 2,l2) é Cw.

Analogously to before, we see inductively that w is equivalent to a word with
the subword
81, 815555iS51, 515 5§5i51, S15,5§Si-

(For the purpose of this induction, we can treat the word above completely
analogously to a word of the form {s;s;}™#% with m;; = 6. As in the proof of
3.5.5, all calculations are the same by Corollary 3.2.11.)

We have the following equivalences, where bold reflections denote those
which differ from the reflections in the word above:

S11515555i51,S155§5i51, 5155554
=51, S1, 57548481, 81, 5:S1, 51, S5 54
=S5y, 51,8184Si51, 8iS1, 8151, S5;S84
=851, 51,5551, 8151, S1, 551, S Si
=S, 51, 8755581, 8iS1, 81, SiS1, 5555

=351, 51,5551, 5i 51,8151, 8iS; S5 -
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So w is equivalent to a word with the subword s;s;s; and the assertion is
true. ]

Finally, we can prove the first direction of our main result:
Lemma 3.5.7. If w is a leftmost word, then C, is submodule closed.

Proof. Suppose that C,, is not submodule closed. Then there is some M, €
ind Z\C,, and some U € C,, with a monomorphism M, »— U. Furthermore, we
can assume that for every X < M, with some U’ € C,, and a monomorphism
X — U’, we have X € C,,.

We use induction on the length m of the sequences of modules in Propo-
sition 3.2.8 applied on My and U. If m = 1, then w is not leftmost by Lemma
3.5.1.

Now suppose that w is not leftmost if the sequences have the length m
or smaller. We prove that this is also the case if they have length m + 1:

We can assume without loss of generality that M; ¢ C,,, since m+1 > 1.
On the other hand, by Lemma 3.3.5, the sequences of modules induce an
exact sequence

OHMOHMIE(D@UHHMQHO

So by Corollary 3.2.6, there is a monomorphism MlE W, My ® U. Since
M, < My, our assumptions yield M, ¢ C,. By the same argument, we get
Ms, My, ..., My, 1 ¢ Cy, and by (S4) this means m;; < oo.

By Lemma 3.5.6, if we choose u and v so that w = us;v and there is some
p so that p(w) = p(u)(s,i)p, then w = u'{s;s,;}™ v for some word u'.

We still need to show that u'{s;s;}™v is equivalent to a word which is
smaller than w.

To do this, we use Lemma 3.1.7. Either there is nothing to show, or there
are pi,...,ps and a pair (r, h) so that

p(w) = pi(r, h)p2(s,)ps (3.38)
and there is some w” = w with
p(w") = p1pa(s,i)(t +1,5)ps. (3.39)

We can assume that the word z with p(z) = p1(r, h)py is reduced, because
otherwise there is nothing to prove. So by Lemma 3.4.2, there are some
sequences of modules as in Lemma 3.2.3 that yield some U’ € Z and an
exact sequence

0—> My ——> My, 5 ®U —>Y —>0
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with either Y € C,, or Y = (r, h)E(mi—=3),
By Corollary 3.2.6, there is a monomorphism

Mmij_2 —UaY € Cy//.

By (3.38), (3.39) and the induction hypothesis, w” is not leftmost.

So there is some w; = w” with wy <; w”. We still need to show that
Wi <; w.

If w” is not reduced, this is obvious. If Y € C,,, we can use the inductive
assumption.

So suppose that w” is reduced and Y = (r, h)®(mi=3) We denote the
sequences of modules that fulfil (S1) - (S5) with respect to My and U by

(X1, Xo, ooy Xon)
(X1, X5,....X,,)
(Y1,Y2,..., Vo).

There are sequences of modules

(X X, X))
XX, X))
(Y, Ye, Y

that fulfil (S1) - (S5) with respect to M,,,,—» and U (r, h)P(mi=3) . Let (', h')
be the smallest indecomposable direct summand of Y. Then (r', ') <
(r,h).

If there is a pair (", h") # (', h') and series of pairs pf, pl, p5 so that we
can write

plws) = pr(r',h)py and  p(w) = py(r", h")ps,
then w, <; w” implies wy <; w.

A simple induction on m’ shows that this is indeed the case: If m' = 1,
then (r,h) = My,,,—1, (7', h') = M,y,,, and the assertion is true by Corollary
3.9.2.

By 3.2.13, the smallest direct summand of 'Y}, is also the smallest direct
summand of Y,, and the inductive step is obvious.

So w is not leftmost and the proof is complete. [

3.6 The other direction

In this section we finally conclude the proof that the map between words
and full additive cofinite subcategories of mod A introduced in Definition
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3.1.13 gives rise to a bijection between the leftmost words and the cofinite
submodule closed subcategories. Since every element of the Weyl group has
a unique leftmost element, this gives a bijection between the Weyl group
elements and the cofinite, submodule closed subcategories.

Again, we start with the basis of an induction:

Lemma 3.6.1. (a) Let w := u{s;s;}™v. If Cy is submodule closed, then

w <, u{s;si}"v.

(b) The category Cys,s,v is not submodule closed.
(¢) Let w' := u{s;s;}™ " v. Then Cy is not submodule closed.

Proof. We prove (a) by contraposition. By Definition 3.1.13, indZ \ C,, con-
sists of the modules which correspond to the reflections in w.
Assume that

uls;si " < ufsis; }"v = w

and
p(w) = p(w) (p,i)(q,j)(p +1,7)

'

P1

J/

m;j pairs

for a sequence of pairs py.

By Lemma 3.1.6, the module (¢ — 1, j) exists and by Definition 3.1.13, C,
contains all indecomposable, preinjective modules M with (¢ — 1,7) < M <
(p,4) or (p,i) < M < (q,7).

First, suppose that m;; = 2. In this case, C,, contains the middle term
of the AR-sequence that starts in (¢q,j) by Lemmas 3.2.7 and 3.3.1. Since
(q,7) ¢ Cy, the subcategory is not submodule closed.

Now let m;; > 3. In 3.3.4, we defined My := (s,4), My := (t,7),... for
some arbitrary, fixed s,t. By Remark 3.3.7, we can assume without loss of
generality that m;; is odd and we can choose s, so that M, 1 = (p,1).

Then M, = (¢ —1,j) # 0 and by Lemma 3.3.3, E(m;; — 2) # 0. By
Lemma 3.3.5, there is an exact sequence

0—> My ——> (Mmij_l)E(mijq) & U,y 1 — Mﬁ(mij*Z) .

ij

so that no My, My, ..., My, 1 is a direct summand of Unm,;;—1- By Lemma
3.3.3 we have E(m;; — 1) = 0, so there is a monomorphism

Mo — Umijfl'
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It remains to show that U, 1 € Cy, by Corollary 3.3.6: If X be a direct
summand of U, 1, then M, < X < My and thus X € C,.

By Lemma 3.2.7, part (b) is obvious.

The proof of (¢) is completely analogous to the proof of (a). ]

Finally, we are prepared to prove that Definition 3.1.13 gives a bijection.
Recall that C,, = C,, if w is the leftmost word for w:

Theorem 3.6.2. The map w +— Cy, is a bijection between the elements of the
Weyl group of A and the cofinite submodule closed subcategories of mod A.

Proof. The map is well defined by Lemma 3.5.7 and obviously injective. It
remains to prove that it is surjective, i.e. that for all cofinite submodule
closed subcategories C of mod A, there is a w € W, so that C = C,,,.

We already know that C = C,, for some word from Lemma 3.4.1, so we
only need to show that w is leftmost.

Assume that the word w for the element w € W is not leftmost. We
show that C,, is not submodule closed by induction on the number of Coxeter
relations that are needed to transform w into a smaller word.

If only one relation is needed, then the theorem is the result of Lemma
3.6.1. Now suppose that the assertion is true if we need m or less relations
and that we need m + 1 relations to transform w into a smaller word.

Then there are some 1 <4,j < n and some words z, 2/, y so that

w=axs;y=2a's;y=u (3.40)

and
w < w
with i # j.
Thus, there are some words w”, " so that

w = w// — £//{SlSJ}TI’L”g

Because of the inductive assumption, we can suppose that w <; w” and that
x is leftmost. Obviously, we can choose " to be leftmost.

Let the reflection s; in (3.40) correspond to My. We can assume that
m;; > 3, since there is nothing to show if the middle term of the Auslander-
Reiten sequence that starts in M, is contained in C,. We can also assume
that there is some word z” so that z = x”s;: If there are sy, ... sy, with
Mpy i = -+ =My, ; and & = 2”s;sk, ... sy, then zs; = 2”s;s;sk, ... sy, and
if there is some U € Cpry,s, With a monomorphism My ~— U, then U € C,.

Without loss of generality, we can assume that m;; is odd; otherwise we
relabel 7 and 7 and get the same arguments by Remark 3.3.7.
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By Lemma 3.1.12, we can suppose that My, My, ..., My, 3, My, —2 € Cy.
We show that there is some U € C,, with a monomorphism M, — U.
Let (q,7) := My,,;—2. We use Lemma 3.1.7: Because m > 1, there is some

wy = w with series of pairs py, ..., ps and a pair (r, h) so that
p(w) = pi(r, h)p2(q, j)ps(s,i)pa (3.41)
and
pws) = p1p2(q, J)ps(s,0)(t +1,7)pa. (3.42)

By Lemma 3.4.2, if m;; > 3, then there is an exact sequence
0—=My—> My, 20U —Y —=0

so that either Y € C,, or both Y = (r, h)F(m45=3) and U’ € C,, hold.
We want to show that there is some U” € C,, and a monomorphism

M= = (¢,7) — U" &Y. (3.43)

We prove this inductively: First, note that the word z”s; is not leftmost
Lemma 3.1.9 and 3.1.10.

If w = w", then (r,h) = M,,,,—1. So by the inductive hypothesis, there is
a monomorphism (g, j) — U" @ (r, h)".

Since E(1) = E(m;; — 3) by table (3.18), we see that Y = (r, h)E(mu=3)
and v = E(m;; — 3).

The inductive step is completely analogous to the one in Lemma 3.4.2.

By our assumptions, z is leftmost and thus Y ¢ C,, by Lemma 3.5.7. So
U' €Cy.

By Lemma 3.2.13, there is a monomorphism M, — U’ @& U"” € C, and C,,
is not submodule closed. O

3.7 Some consequences

We conclude the chapter with a generalization and a corollary:
As in [14], Section 8 we can extend the notion of leftmost words:

Definition 3.7.1. Define infinite words analogously to words, only as infinite
instead of finite sequences. We say that an (infinite) word is leftmost if any
initial subword of finite length is leftmost.

Analogously to [14], Theorem 8.1, we get the following:
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Theorem 3.7.2. There is a bijection between the (finite and infinite) leftmost
words over S = {s1,8a,...8,} and the submodule closed subcategories of Z,
the preinjective component of mod A.

Proof. This is completely analogous to [14], 8.1:
Let C be a submodule closed subcategory of Z. Since Z contains at most
a countable number of indecomposable modules, we can set

de\C = {(T17i1), (Tg,ig), P }
and (rq,71) < (72,i2) < .... Then the subcategory C,, with

indZ \ Cp, = {(71,71), (r2,%2), - - -, (T, Im) }

is submodule closed for all m € N. By Lemma 3.2.1 and Theorem 3.6.2, the
words w,,, with
p(wm) = (Tlu il)(TQJ 22) s (Tma Zm)

are leftmost for all m € N. By Definition 3.7.1, the (infinite) word w with

p(@) = (Tla il)(rz, iQ) .

is leftmost and C = C,.
On the other hand assume that the (infinite) word w with

p(w) = (r1,i1)(re,i2) . ..
is leftmost. Then the words with

p(wm) = (7"1, 7:1)(7”2, 22) . (T’m, Zm)

are leftmost for all m € N. By 3.6.2, the categories C,, ~are submodule
closed. Thus C, is also submodule closed: if there was a module M ¢ C,
and some module U € C,, with a monomorphism M »— U, then U € C,, for
all m € N and there is some m € N so that M ¢ C, , since M is finitely
generated. O]

We can draw a further corollary. Let A’ be a hereditary and let the module
category mod A" be equivalent to the subcategory of mod A with the simple
modules S, j € J for some J C {1,2,...n}. Let T4 be the subcategory of
mod A’ consisting of all preinjective modules.

Corollary 3.7.3. There is a bijection between the submodule closed subcat-
egories of La and the submodule closed subcategories of T which contain all
7"1; with r € Ny andi € N\ J.

Proof. The words in the Weyl group of A’ are exactly the words in the Weyl
group of A which only consist of reflections s; with j € J. O
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4 Distributive lattices of sub-
object closed subcategories

In this chapter we consider abelian length categories, a generalization of
module categories over Artin algebras. For a category A we are interested
in the lattice S(A) of full additive subobject closed subcategories of A. In
particular, we are trying to find cases in which the lattice S(.A) is distributive.

In Section 4.1, we show that the distributivity of S(A) is equivalent to
a condition on the submodule relations in A, which is much easier to work
with. We can show in the next section that the following is an even stronger
property: every subobject of an indecomposable object in A is itself inde-
composable. Such categories are said to be of colocal type.

We characterize these categories in Section 4.3 to 4.6: First, we show
that two conditions on the Ext-quiver hold. Weaker conditions hold if S(.A)
is distributive. In Section 4.4, we collect some auxiliary lemmas that are
mainly concerned with 2-extensions.

These results are needed in Section 4.5, in which we give different formu-
lations and a proof of the third condition that abelian length categories of
colocal type fulfil. Again, we see that a weaker condition is fulfilled if S(.A)
is distributive.

In Section 4.6, we use the results of Section 4.4 to prove that every abelian
length category which fulfils the three conditions is of colocal type.

Returning to the lattice S(A), we prove in the next section that it is the
Cartesian product of certain sublattices.

Finally, in the last section, we assume that A = mod kQ/I for some field
k, quiver () with an admissible ideal I. In this case, A is of colocal type if
and only if A is a string algebra and no vertex in () is starting point of more
than one arrow. For these algebras, we get a complete, explicit description
of the lattice S(mod A).

Note that in this chapter, we are equating objects with isomorphism
classes of objects. In particular, all sums over simple objects are actually
sums over isomorphism classes of simple objects.

75
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4.1 Conditions on indecomposable objects

Let A be an abelian length category. The main result of this section is a
characterisation of abelian length categories with distributive lattices S(.A)
in terms of the subobject relations between the objects of A.

We start with the definition of a distributive lattice, as given for example
in [17], p. 69:

Definition 4.1.1. A lattice L is called distributive if
(avb)ANe=(aNc)V (bAc)
for all a,b,c € L.

Now let S(.A) be the set of full additive subobject closed subcategories as
in [12]. It is partially ordered by inclusion and a complete lattice.

The join a V b for two categories a,b € S(A) is the smallest full additive
subobject closed subcategory, which contains both a and b. The meet a A D
is of course the largest category in S(.A) that is contained in both a and b.

The meet coincides with the intersection a N b: all subobjects of direct
sums of objects in aMb are again objects in a N b, since a and b are subobject
closed. The join consists of all subobjects of direct sums of objects in a and
b.

Every category in S(A) is completely determined by the isomorphism
classes of indecomposable objects it contains.

For a class X of objects let sub X be the category that consists of all
subobjects of direct sums of objects in X'. This is the smallest category in
S(A) that contains X'. Set sub X := sub{X}.

In the following case, S(A) is not distributive:

Lemma 4.1.2. If there exists an indecomposable object X € A, and objects
Y1,Ys € A so that X € subY) VsubYs but X ¢ subY; for all 1 <i <2, then

(subY; VsubY3) Asub X # (subY; Asub X) V (sub¥s A sub X).
Proof. By the assumption
X €subY; VsubY,

and by definition
X €sub X
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SO
X € (subY; VsubYs) Asub X.

But
X ¢ (subY; Asub X) V (sub Yy Asub X),

since otherwise there were some objects
X;€subY; Asub X

for 1 <i < 2 with a monomorphism
f:X— XX,

But since X; @ X3 € sub X, there is some o € N and a monomorphism g
g: X160 X — X%

Since gf is a monomorphism, its image is isomorphic to X and ¢ induces a
morphism ¢’ : X; & X — X so that ¢'f is an isomorphism on X. Thus, f
splits.

Because X is indecomposable, there is an ¢ € I, so that X is a direct
summand of X;. Since X; € subY;, this means that X € subYj, contrary to

the assumption.
So

(subY) VsubYs) Asub X # (subYj Asub X) V (subYs Asub X)
and the proof is complete. [
In fact, we get the following equivalence:
Proposition 4.1.3. The following statements are equivalent:
1. The lattice S(A) is distributive

2. If X € A is indecomposable and there are objects Y1,Ys € A, so that
X esubY; VsubY; then X € subY; for some 1 <1 < 2.

3. For all index sets I and categories a; € S(A), i € I we have

md(\/ CLZ‘) = U ind a;.

iel i€l
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Proof. (1) = (2) is clear from the Lemma 4.1.2.
(2) = (3): The direction

ind(\/ a;) 2 U ind a;
iel iel
is clear. For the other direction, we look at an indecomposable object
X e \/ a;.
iel
There are objects A; € a; with a monomorphism
iel
and thus
X €\/subA;.
iel
The object @, ; A; must be of finite length; thus A; = 0 for all except finitely
many ¢ € /. By (2) and an induction, we get

X €sub Az
for at least one 7 € I and thus
X € Q;.

So

X el Jinda;

el
and
ind(\/ a;) = U ind a;.
iel icl

(3) = (1): Let a,b,c € S(A). Then

ind((aVb)Ac)=(indaUindb) Nindc
= (indaNindc) U (indaNindc)
=ind((aAc)V (aAc)).

Since a, b, ¢ are completely determined by their indecomposable objects,
(aVb)ANe=(aNb)V(aAc)

and S(A) is distributive. O
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We can generalize the notion of a distributive lattice as e.g. in [9], p.
1227:

Definition 4.1.4. A complete lattice A is a frame if for all index sets I and
elements a, b; with ¢+ € I the equation

el el
holds.

Obviously, every frame is also distributive. But in general, not every
distributive lattice is a frame. An exception are lattices of subobject closed
categories:

Corollary 4.1.5. The lattice S(A) is distributive if and only if it is a frame.
Proof. This follows from part (3) of Proposition 4.1.3. O

4.2 Categories of colocal type

For the following categories, S(.A) is always distributive:

Definition 4.2.1. We call a category A of colocal type if any subobject of
an indecomposable object is itself indecomposable. If there is some Artin
algebra A so that A = mod A, then we also say that A is of colocal type.

To show this, we need the following lemma:

Lemma 4.2.2. (a) If there are objects Vi, Vo, X with a monomorphism
f=1h f]:VieV—X,
then there is also a monomorphism

X — Coker f; @ Coker fs.

(b) If there are objects X,Y1,Ys with a monomorphism

fa

then there is also a monomorphism

fz{fl} X — Y, @Y,

Kerf1 D Kerf2 — X,
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Proof. First, we prove that (a) holds: There is an exact sequence

fi 0
OH%@%[@X@X$COkerﬁ@Cokerf2*>0

for some morphism g with Kerg = V; & V5. So ¢ induces a monomorphism
X — Coker f1 @ Coker fs.

The proof of (b) is similar: We get a morphism f” with an exact diagram

(j 0 0
0 0 X=——"X 0
| (AN
0 ——Ker f; @Kerf2*>XeBX*2>lm(f1)@Im(fg)HO
Ker f1 & Ker f, X Coker [’
0 0 0

So
0 ——Ker f; & Ker fo —— X —— Coker f ——0

is an exact sequence and there is a monomorphism Ker f; @ Ker fo — X. [

Proposition 4.2.3. If A is of colocal type, then S(A) is distributive. Fur-
thermore, for all objects X,Y1,Y; € A with a monomorphism X — Y, ® Y,
there is a monomorphism X — Y, or X — Y5.

Proof. Assume that every subobject of an indecomposable object is inde-
composable. Further suppose that there are objects X, Y7, Y5, so that X is a
subobject of Y} @ Y. Then there is a monomorphism

f:Bj X - Y8,

and by Lemma 4.2.2, we get a monomorphism Ker f; & Ker fo — X.
Since A is of colocal type, either Ker fi = 0 or Ker fo = 0. Thus there

is a monomorphism X — Y; or X — Y;. By Proposition 4.1.3, the lattice
S(A) is distributive. O
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Lemma 4.2.4. If A is not of colocal type, then there are objects Vi, Vs, non-
simple objects Y1,Ys, an indecomposable object X and a simple object S with
exact sequences

0—VieVy—>X—>5—>0, (4.1)

0—>X =Y, 0V —=S5—>0. (4.2)

For such objects, the following sequences are exact

0 Vi Y; S 0 (4.3)
fori,j=1,2 andi # j.

Proof. Suppose that X is an indecomposable object and there is a monomor-
phism
f=[h kl:VieV,—X
with V} # 0 # Vs.
Let S be a simple factor module of Coker f. Then there is some V' with
Vi@ Vo CV and an exact sequence

0 Vv X S 0.

If V is indecomposable, then it is of smaller length than X and we can regard
V instead of X. So we can assume that Coker f = S and V; @ Vo = V. By
Lemma 4.2.2, there is a monomorphism

g : X - Coker f; @ Coker fs.

The following diagram is exact for all i, j € {1,2}, i # j, since all columns
and the first and second row are exact:

0 0

V,——V,

0 Vi Coker f; ——

0
|
0
|
0—=ViadV, X S 0
S
|
0
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By this, we know that the following diagram is exact, since all columns and
the first and second row are exact:

1) 0 0
0—=VidV; X S 0

g

0 ——= Vi @V, —— Coker f; @ Coker fo —= S? ——=0

é
%

So Cokerg = S. With Y; = Coker f; and Yy = Coker f5, we get the exact
sequences (4.1) - (4.3). O

Coker g S 0

0 0

4.3 Conditions on the Ext-quiver

Using pullbacks and pushouts, we show in this section that every abelian
length category A of colocal type has to fulfil the conditions (C1) and (C2)
in Theorem 1.2.4. Weaker conditions hold if S(A) is distributive.

Recall that we defined for simple objects S, T € A

d}g(S, T) = dimEnd(s)op EXt1<S, T)

and
d;(S, T) = dimEnd(T) Eth(S, T)

We begin with an auxiliary lemma:

Lemma 4.3.1. Let A be an abelian length category and S, Ty, Ts simple ob-
jects. Then the following holds:

(a) Let there be indecomposable objects X1, Xo with exact sequences

f1

0 T X, 2.5 0

and

f2

0 Ty X, 258 0.
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(b)

If Th =2 Ty, we suppose that these exact sequences are linearly independent
over End(T7).

Then the object Y in the following pullback is indecomposable:

Y —=X; . (4.4)

|k

Xy == 5

Furthermore, there is an exact sequence

Let there be indecomposable objects Xy, Xo with exact sequences

and

If Ty = Ty, we suppose that these exact sequences are linearly independent
over End(77)°P.

Then the object Y in the following pushout is indecomposable:

s x, .

o

X2*>Y

Furthermore, there is an exact sequence

Proof. We only prove (a), since (b) is completely analogous. In this case, the
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following diagram is exact by 2.1.4:

0 0 0
T, ® T Y S

0
0
and we get some morphisms f] : 73 — Y and f;} : 7o — Y so that

[f1 f3]

0 Y S 0

Ty ® Ty

is an an exact sequence.

Suppose that Y was decomposable. Since X; and X5 are indecomposable,
S cannot be a direct summand of Y.

So we can assume that Y = T & X for some object X of length 2. Since
(4.4) is commutative, this yields a commutative diagram

xox,

b

XQLS

with Im(g1 f]) = S = Im(g2f}). Furthermore, Im(f]) 2 S, since otherwise
Im(f]) — Xy1 — S splits. Taking the length of X, into consideration, it
is obvious that Im(f{) = X; is the only remaining possibility and f] is an
isomorphism. Analogously, Im(f}) = X.

Thus, X is isomorphic to both X; and X5, T} = T5 and for 1 < i < 2,
there are commutative diagrams

0— =T, x 2k

-

0 T X, 2.3 0
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Since g1 f] = gaof}, this is a contradiction to the assumption that 7; and 7,
are linearly independent over End(77).
So Y must be indecomposable. O]

Now we can prove that condition (C1) holds if A is of colocal type:

Lemma 4.3.2. Let A be an abelian length category. The following is true
for all simple objects S € A:

(a) If A is of colocal type, then
> di(S,T) < 1.
T simple
(b) If S(A) is distributive, then there is at most one T with d%-(S,T) # 0.
Proof. We begin with the proof of (a). If
> dn(S,T)>2,
T simple

then there are simple objects 77, T5 and indecomposable objects Xy, X5 with
exact sequences

f1

m : O T1 X1 i S O

and
N2 : 0 T2 £ X2 2 S 0
which are linearly independent over End(T}) if 77 = Ts.

By Lemma 4.3.1, the object Y in the following pullback is indecompos-
able:

Y4>X1

|k

Xo—> 5

and has T7 @ T, as a subobject.
SoA is not of colocal type.

To prove (b), we suppose that T3 2 T. Then X; 2 X, and for every
epimorphism h; : Y — X;, we have Kerh, = T; with 1 < ¢ # j < 2.
If b : Y — X, is not an epimorphism, then Im(h}) = T; and thus 7} |
soc(ker hj). But T7 is not a subobject of Y and by Lemma 4.2.2, there is
no monomorphism Y — X for any 1 < i <2 and n € N. So S(A) is not
distributive by Proposition 4.1.3. O]
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To show that (C2) holds if A is of colocal type, we use the following
auxiliary lemma:

Lemma 4.3.3. Let A be an abelian category and S, T, ..., T, simple objects
in A so that there are exact sequences with indecomposable middle terms

i 00— Lo X, =T, ——0
?
for 1 <i < n. Furthermore, suppose that 2 <n. Let f := :2 and sup-
fn‘ 1

pose that there is a isomorphism g : @;_, "X — D ' X; and a monomor-
phism g, : X,, — @i ' X, so that the followmg dzagmm is commutative

— =P X, (4.5)

fnl I

n—1
Xn gn @i:l Xl

or an isomorphism g}, : X, — X,, and an epimorphism ¢ : @, X, > X,
so that the following diagram is commutative

s—Loprlx,. (4.6)
fni i!]l
9n
Then there are 1 <iy,...,0, <n—1so0that T, =T,,....T, =T, andn,
is linearly dependent of n;,,...,n;, overT,.

Proof. We only prove this for (4.5), since the proof for (4.6) is analogous.
Since S? is not a subobject of X,,, the image of the concatenation

n—1

¢: 5" — P X; — Cokerg'g,

=1

is S"72. Set
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Then the following diagram is exact, because all rows and the first and second
column are exact:

0 IS L ox, T, 0

[id ... id] 9 Lgn

0 — 5" FoprlXx, — @', — 0

0 —> gn2 2. Cokerg~tg, —— Coker¢p —— 0

0 0 0

Thus, there are 1 < 4y,...,%,, <n—1sothat T;, =T,,...,T; =T, andn,
is linearly dependent of n;,,...,n; over T),. ]

Now we prove in particular that (C2) holds if A is of colocal type:

Lemma 4.3.4. Let A be an abelian length category. The following holds for
all simple objects S € A:

(a) If A is of colocal type, then

dp(T,S) < 2. (4.7)
2

T simple

(b) If S(A) is distributive, then there are at most two non-isomorphic simple

modules T with d%-(T, S) # 0.

Proof. We start with the proof of (a). If

> di(T,S) >3,
T simple

then we have three exact sequences

X; T; 0
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for some indecomposable objects X; € A and simple T; with ¢ € 1,2,3. If
T; = T; for some ¢ # j, then n; and n; are linearly independent over End(7;)?.
If ) = T, = T3, then over End(T;)°? none of the exact sequences is a linear
combination of the other two.

There is a pushout

5 (4] v
——X; & Xy

f3l \L[gl 92]

X; Y

g3

We show that Y is indecomposable: By 2.1.3, [gl 92} and g3 are monomor-
phisms.
Furthermore, [(X;) = 2, (X, & X3) =4 and by 2.1.4, {(Y) = 5.
Suppose that Y = Y] @& Y, for some indecomposable Y; and write

g1i
9= |:.92i:|
with gj; : X; = Yjforall 1 <:<3and 1 <j <2,

Without loss of generality, we can assume that gi3f3 # 0 and g1 f1 #
0. Then g;; and g;3 are both monomorphisms; otherwise their image was
isomorphic to S and they would split. By Lemma 4.3.3, none of them is an
isomorphism and thus [(Y7) > 3. If go3f3 # 0, we analogously get [(Y3) > 3,
a contradiction to I(Y) = 5.

So we can assume that gggfg =0. If gggfg 7£ 0, then 921f1 +922f2 = 0. By
Lemma 4.3.3, we get again [(Y2) > 3 and thus [(Y; @ Y3) = 6, a contradiction
to I(Y) = 5.

S0 911, 912, 913 are all monomorphisms and go3f3 = ga2f2 = g12f1 = 0.
Since [gl gQ] is a monomorphism by 2.1.3, we get

5% — Im [911 912} — Y. (4.8)

Thus Ker [gn glg] = 0 and this morphism is a monomorphism. We get
4=01(X1dXy)<Y,and V] =Y.
By (4.8), A is not of colocal type.

To prove (b), we can assume that the objects T1, T, and T3 are pairwise
non-isomorphic.

Since [gl gQ} : X1 @ Xy — Y is a monomorphism, there is also a
monomorphism Y ~— Coker g; & Coker go by Lemma 4.2.2.
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For 1 <1i # j # k < 3, the following diagrams are exact, because all rows
and the first and second column are exact:

0 0
0 X X, ——X; X; —=0
|
0—95——X1 0 X068 X3 Y 0
0 S X; T; 0
|
0 0 0
and
0 0 0

|

0—— 85— X, & X; — Cokerg; —=0

0 X; g Y Coker g; ——0
0—Tj———T;,————0
0 0

By Lemma 4.3.1, Coker g; is indecomposable and there is an exact sequence
0 —— 85 ——=Cokerg; —=T; T}, —=0.

In particular, the socle of Cokerg; is S and 7T; is not a subobject of any
indecomposable object Z 2 Coker g; with an epimorphism (Coker g;)" — Z.

If there was any n € N with a monomorphism ¢ : Y ~— (Coker g;)", then
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there was some Z’ so that the following diagram was exact:

(j 0 0
O 52 Y Tl EB T2 @ T3 I O
¢
OHTH(Cokergi)" A 0
0 —— Coker ¢ Coker g ——0
0 0

But for the smallest n with such a monomorphism, the component ¥ —
Coker g; of ¢ is non-zero for every copy of Coker g;, so no direct summand of
7' is isomorphic to Coker g;, a contradiction.

By Proposition 4.1.3, S(.A) is not distributive. O

The following lemma, is especially important if A = mod A for some Artin
algebra A over an algebraically closed field k, since in this case, End(S) =
End(T) for all simple modules S, T € mod A, since mod A is equivalent to the

module category of a quiver algebra, see 2.5.3.

Lemma 4.3.5. Let S(A) be distributive. Then for all simple modules S, T
with End(S) = End(T"), we have

dg(S,T) =1=dp(S,T). (4.9)
Proof. Suppose that 4.9 is not fulfilled. Then
2 < dg(S,T) = dy(S,T) = dimgng(s)er Ext' (S, T) = dimgng(r) Ext' (S, T).

There are 7}, € Ext'(S,T) which are linearly independent over End(S)
and 14, 7, € Ext' (S, T) which are linearly independent over End(7"). We can
choose 7ny,1m, out of these so that they are linearly independent over both
End(S5)° and End(T"): If n}, 1} are linearly dependent over End(7"), then at
least one of 7}, n} is linearly independent of both of them over End(7"). We
can assume this to be 1. Over End(S)°, n} is linearly independent of at
least one of 7] and 7).

There are indecomposable objects X7, X5 so that we can write 1; and 7

as
fi
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with 1 <7 < 2.

First, assume that X; = X,.

If g1fs # 0, then Imgy fo = S = T, since S and T are simple. Because
End(S) is a division ring, the identity factors through g¢; fo. So these mor-
phisms split, contrary to the assumption that X; = X, is indecomposable.
Analogously, we get gof1 = 0.

So Im f; = Im fy = Ker g; = Ker g. Thus there are isomorphisms ¢ : T —
T and ¢ : S — S so that fo = f1¢ and go = Y ¢;.

But End(S) = End(T), so we can also regard 1 as an isomorphism over
T and ¢ as an isomorphism over S. Over End(S)%, we get 1y = n1¢1p~! and
over End(T'), we have 1y = ¢~'4n;, contrary to the assumption that 7; and
19 are linearly independent over these division rings.

So X1 2 Xs. By Lemma 4.3.1, there is a pullback

y o x,

P

X2 — S
so that Y is indecomposable. Furthermore,
TeET=KerfdKergCY.

Suppose that for 1 < i < 2, there is some monomorphism h; : T'— Y so
that X; = Coker h;. Then

[hl h2:| ZT2 — Y

is a monomorphism.

Since there is only one way to embed T'& T into Y, h; and hs form a
basis of Hom(7,Y") over End(7).

If there are objects X|, X which are middle terms of exact sequences
n,,m, in Ext'(S,T) and a monomorphism

Yo— X{ @ X,
then there is a monomorphism
Wy, W] T? Y

so that X| = Coker b} and X} = Coker h, since [(Y) = 3, [(X]) = (X)) =2
and socY = T2,
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There are some «, 3, € End(T') so that k] = hja + hefS. Without loss of
generality, we can assume that 5 # 0.

Since [h’l h’Q] is a monomorphism, A} and A must be orthogonal to
each other: hY = (hoaw — hyf3)7y for some v € End(T"). Thus, there are exact
sequences with A} and hj as monomorphisms that are linearly independent
of each other over both End(S)? and End(7T). So X 2 X} and in particular,
Y ¢ sub X; and Y ¢ sub Xs.

By Proposition 4.1.3, the proof is complete. m

4.4 2-Extensions

In this section, we collect some results about exact sequences in Ext*(S,T),
where S and T are simple objects. We will need these results in the later
sections.

Lemma 4.4.1. Suppose that S’, T are simple objects. If

n: 0 S’ M N T 0

15 an exact sequence in Ext2(T, S"), then there is some exact sequence

n:0 S’ M’ N’ T 0
with a map f — n in Ext*(S",T) and top N' = T. The induced morphisms

of objects M' ~— M and N' — N are monomorphisms. Furthermore, there
is an exact sequence

77// . O S/ M// N// T O

with a map n — 0" in Ext*(S',T) and soc M" = S'. The induced morphisms
of objects M — M" and N — N" are epimorphisms.

Proof. We only prove the first part, since the second one is completely anal-
0gous.

If topN = T & T’ for some non-zero object 7", let h : N — T’ be
an epimorphism. The concatenation Kerh ~— N — T is non-zero, so T |
top(Ker h). If top(Ker h) # T, we repeat the construction. Since the object
T has finite length, we get an object N’ with top N’ = T after finitely many
steps.
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Let g be the epimorphism of the exact sequence. Then there are mor-
phisms f, ¢’ with an exact diagram

0 0 (j (4.10)
0 Ker ¢/ A R
f
0 Kerg N—2 T 0

0 —— Coker f == Coker f ——0

0 0

Furthermore, there is a concatenation of epimorphisms M —» Ker g — Coker f
and thus some object M’ with an exact diagram

(j 0 0 1) (4.11)
0 S’ M’ N’ T 0
f
0 S’ M N T 0
0 —— Coker f == Coker f ——0
0 0
O

Note that the exact sequences 1’ and n” are not unique: in the con-
struction of N’, we have used an arbitrary epimorphism h : N — T’, where
topN =T @ T'. If T? | top N, there can be such epimorphisms with non-
isomorphic kernels.

But let m be the maximal integer so that 7™ | top N. Then there is some
T" so that top N = T™ @ T”. If there are two epimorphisms h; : N — T”
and hy : N — T”, then there is some isomorphism x : 7”7 — T” so that
hy = xhs. So Ker hy = Ker hs.
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Furthermore, the following diagram is exact, since all columns and the
second and third row are exact:

0 0 0 . (4.12)

|

0 ——Kerh——=Kerhy —= S 1 —=0
0——=Kerh N—M . 0
"l
0 I T ——0
0 0

Note that neither 1’ nor 1 in the lemma above are necessarily unique: If T2 |
top N or S? | soc M respectively, then we can choose different epimorphisms
N — T to construct N' or monomorphisms S — N to construct M”.

We still need two auxiliary lemmas:

Lemma 4.4.2. Let A be an abelian length category. Let there be simple
objects Sy,...,S, € A with Ext'(S;, Sit1) # 0 for all 1 < i < n and for all
simple S € A
> dp(ST) <1
T simple

Suppose that there is some indecomposable object Z with soc Z = S, and
Sy | top Z or alternatively S, | soc Z and Sy = top Z.

Then for all 1 < i < j < n, there is some indecomposable X;; with
soc X;; = S; and top X;; = S; so that for all 1 < i < n, there is a chain of
monomorphisms

Xii — Xzel,i o Xl,i

and a chain of epimorphisms
Xin —» Xi,n—l — e = X

If soc Z is simple, we can choose these objects so that there is a monomor-
phism Xy, — Z. If topZ is simple, we can choose these objects so that
there is an epimorphism Z — X .

Proof. We show this inductively. If n = 1, this is clear. So suppose that the
assertion is proved for n — 1.
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We can assume that soc Z is simple, since the proof is completely analo-
gous if top Z is simple. Let

Sn:ZmHmelH"'HZOZZ

be a filtration of Z so that Z;/Z;,; is simple. Then soc Z; is simple and Z;
is indecomposable for all 0 < ¢ < m. Furthermore, for every simple 7" with
a morphism f : Z — T, we can choose Z; to be Ker f. If T'® S | top Z,
then the concatenation of morphisms Z; — Z — S; is non-zero and thus
S1 | top Z;.

So there is some object Z; with soc Z; = S,, and top Z; = 5.

Note that every submodule and every factor module of Z; is indecompos-
able.

Then Z;/Z; 1 = S1. There is some simple object T and an indecompos-
able object X so that the following diagram is exact:

0 0 0

OHZi_A'_Q Zz X 0
O 51751*>0
0 0

So Ext'(S1,T) # 0. Analogously, there is some iy > i with T} | top Z;, and
Ext' (T, Ty) # 0. Inductively, we get some k € N with

T5 | top Ziy, ..., Ty, | top Z;, and Ty = S,

and Ext(7T},Tj.1) # 0. Since the only object T}, with Ext' (T}, S,) # 0, is
Sp—1, inductively the sequence (77, ...,Tk,1) must either be of the form

(S1,...,Sn-1,5n)
or (if Ext'(S,, S,) # 0) of the form

(S1y- oy Sn-1,50,5n, -, 5)
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or (if S; — Sy--- — S, — S is an oriented cycle in the Ext-quiver of A) of
the form

(S1y- ey Sne1,50,51, -+, Sn—1, S0y -+, S1, oo, Sn1, Sn)-

Thus soc Z;11 = S, and Sy | top Z;41. By the inductive assumption, the
objects X}, ;, and the chains of monomorphisms and epimorphisms exist for
all 2 < j1 < jo < n. We can choose them so that there is a chain of
monomorphisms X, — Z; 11 — Z; =1 X1 p.

We construct the remaining objects X, inductively for all ¢ = n —
1,...72 = 1: We choose them to be the objects that make the middle col-
umn in the following diagram exact. Then all columns and the first and
second row of the diagram are exact; thus the last row is also exact:

0 0
0 —— Ker fo ——=Ker fo ———0
00— Xoi11 S X141 — Coker f; —=0
f2
0 XQJ' Xl,i Coker f1 —0
0 0 0

These objects fulfil all assertions made in the lemma and the proof is com-
plete. O

From the proof above, we can see:

Corollary 4.4.3. Let A be an abelian length category with
> dp(S,T) <1

T simple

for all simple objects S € A.
Let Z be an object. If top Z =T is simple and there is an object Z' with
an ezxact sequence

0 A Z T 0,

then for every simple T" | top Z', we have Ext'(T,T") # 0.
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Now we can prove the following:

Lemma 4.4.4. Let A be an abelian length category. Suppose that there are
simple objects Sy, ..., Sy € A with Ext'(S;, Sit1) # 0 for all 1 < i < n and
for all simple S € A we have

> dp(S,T)< 1. (4.13)

T simple

Then for every indecomposable object Z with top Z = Sy andsoc Z = @), S;™
we have @;_, m; = 1.

Proof. Suppose that a Z exists with €}, m; > 1. By Corollary 4.4.3, there
is some n’ > n, so that we can define

Spi1=51,...,5, =5, 5nt1="51,...,5v = Sh
and there is a filtration
SZ’Ln:Zn, >—>Zn,_1>—)...>_)ZO:Z

so that Z;_1/Z; = S;n; for all 0 < i < n' and some m, € N. We prove the
assertion by induction on n’.
Suppose that n’ = 1. Then there is some Y with

0 S Z Y 0.

The object Y is indecomposable, since topY = topZ = T. Furthermore,
socY = S™»~1 Inductively, we can assume that m, = 2. Then soc Z = S?
and the cokernel of S — Z is some X that is an indecomposable middle
term of an exact sequence in Ext'(S;,S). By 2.1.4 and Lemma 4.2.2, there

are such middle terms X7, X5 so that the following is both a pushout and a
pullback:

7z x, (4.14)

lf? igl

X, 2.7
By (4.13), X; and X, are the middle terms of exact sequences which are
linearly dependent over T'. But then X; = X, and there is a commutative
diagram

Xl i) Xl )

lez igl

ng—2>T
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a contradiction to (4.14): If there was any ¢ so that e; = f1¢, then f; would
split.
Now suppose that the assertion is proved for n’ — 1 > 2. By Corollary

4.4.3, top Z; = S;né and thus mf > 1. There is some Z’' which makes the
following diagram exact:

0 0 0
i
0—> 7y ,——0
i
0 Z Z Sp —=0
0—= S 7' — =8 ——=0
i

0 0 0

Since top Z is simple, top Z' = top Z = Sy, the object Z’ is indecomposable
and the proof is complete. O

We can say even more:

Lemma 4.4.5. Let A be an abelian length category. Suppose that there are
simple objects Sy, ..., S, € A with Ext'(S;, Siy1) # 0 for all 1 <i < n and
for all simple S € A

> dp(S,T)< 1. (4.15)

T simple

Then the following holds:

(a) If the objects X;; in Lemma 4.4.2 exist, then we can choose them so that
I(Xij)=j—i+1foralll <i<j<n.

(b) For every object Z of length n’ > n with top Z = Sy and soc Z = S,,, we
can define

Sn+1 = Slu cee 75211 = STL? 52n+1 = 51, s 7Sn’ = Sn (416>

so that Z = Xy ,.
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Proof. We prove (a) first: From the construction of X;; it is obvious that
[(Xi;) >j—i+1 Ifti=j, we can choose X;; = S; with length 1. Suppose
that [(X;;) =j —i¢+ 1 for all j —i < m. Then we can also find such X,; for
j—1=m+ 1

If I(X;;) > j — i+ 1, then the cokernel Y of S; — X;; is indecomposable
and not isomorphic to X, ;_;, but there is an epimorphism ¥ — X;;_;.
By (4.15) and Lemma 4.4.4, the socle of Y is simple; by Corollary 4.4.3,
socY = 95;_1.

We can repeat this construction and since .S; is the only simple object
with Ext'(S;_1,5;) # 0, we get an indecomposable object Y’ with an exact
sequence

O Sj Y/ Xi,j—l e 0 .
Then [(Y) = j —i+ 1. Set Xj, ;, ;=Y for ¢/ =i and j' = j. Furthermore,

X = Xij it i <" < j" < j—1. Then we can construct Xj, ; inductively,

analogous to the construction in 4.4.2. These objects fulfil soc’X{j = .S; and
top ij = S; and for all 1 <7 < n, there is a chain of monomorphisms

/ ! /
Xii — Xi—u = Xl,i
and a chain of epimorphisms
/ / /
Xin = Xi,nfl = X

To prove (b), we note that by Lemma 4.4.2, there is an epimorphism 7 —»
X1, and by (a) we can assume that (X ,) = n. So we can use an analogous
construction as in (a) to get a filtration

Xl,n>_) n+1>_)"'>_>Zn’:Z
where Z;/Z;_1 is simple. Denoting S; := Z;/Z;_, for n < i <n’, we see that
this Definition fulfils (4.16) by Corollary 4.4.3 and (4.15). O
Now we can show the following:
Lemma 4.4.6. For all simple objects S € A let
> dp(S,T)< 1. (4.17)
T simple

Suppose that there are fixed simple objects S, S, T and indecomposable objects
X, Z so that Ext'(T,S) # 0 and the following sequences are evact:

0 S’ X S 0

and
0 X A T 0. (4.18)

Then the following holds:
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(a) If for all 8" = Sy, S, ..., S, =2 T with Ext'(S;, Sip1) # 0 for 1 <i < n,
so that Xy ,—1 and X, , as in Lemma 4.4.5 exist, we have n = 3 and

Sy = S, then Ext*(S,T) = 0.

(b) All exact sequences of the form (4.18) are equivalent over End(X), while
all exact sequences of the form

0 S 7 —X' 0 (4.19)

with indecomposable X' are equivalent over End(S"). In particular, all
objects Z so that (4.18) exists are isomorphic.

Proof. First, we prove (a): Suppose that

n: 0 S’ M N T 0

is an exact sequence in Ext*(S’,T) that does not split. By Lemma 4.4.1,
there is an exact sequence

70 S L N’ T 0

with top N’ = T and ' — 1. Thus n and 7’ are equivalent. Again by
Lemma 4.4.1, we can assume that soc M’ = S’. There is an epimorphism
M’ — Cokerb and a monomorphism Cokerb — N’. If Cokerb = 0, then 7’
splits and there is nothing to show.

Otherwise, there are some objects R and R’, so that the following diagram
is exact, since all columns and the first and second row are exact:

0 0
0——=3S S 1)
0 R M’ top M' ——0

0 —— R —— Cokerb ——=top M’ ——=0

i

0 0 0

Thus, top M’ = top Coker b and analogously, soc Coker b = soc N’. By Corol-
lary 4.4.3, there are some S’ 22 S, Sy, ..., S, = T with Ext'(S;, Si1) # 0 for
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1 <i < n. Furthermore, S, _1 | top M’ and S; | soc N’. By the assumption,
Coker b = top M’ = soc N’ = S™ for some m € N.

By Lemma 4.4.4, we get m = 1 and thus M’ = X, where X is the middle
term of an exact sequence in Ext(S,5”) and N’ = X’ where X’ is the middle
term of an exact sequence in Ext(T, S).

It remains to show that all exact sequences of the form

me0——=8 Jox T x hop g

with g : X = S, ¢ : S — X' are equivalent to the split exact sequence

0 S’ S’ T T 0.

We show that for all monomorphisms ¢ : S’ — Z and ¢ : X — Z, there is
some monomorphism b and some epimorphism d with an exact sequence

id ,
I L P (O A

and a morphism of exact sequences 7, — 1;. Since there is obviously a
morphism from 7, into the split exact sequence, this proves that Ext*(S’, T') =
0.

By Lemma 4.4.2, there is an epimorphism ¢ : Z — X'. Obviously,
Im(¢c’) = S. There is an isomorphism v so that the following diagram is
commutative:

0—Im(¢¢)— X' LT 0.
|
0 S— L o x o g
Since (4.17) holds, there are isomorphisms ¢, ¥” and a monomorphism f
so that the following diagram is commutative

0— =5 o X —im(ge) —0.

o, b

0—s9-Jtox_9 .3 0

We can set d := h¢ and get the commutative diagram

5]

05 tlggxledly 4 p g (4.20)
P )
0—95 L x99 xr b7 g
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So Ext*(S",T) = 0.

Part (b) is simple to show: By (4.17), every isomorphism on 7" induces an
isomorphism on X’ and thus on S. On the other hand, every isomorphism
on S induces an isomorphism on X. So every isomorphism on 7' induces
an isomorphism on X and all exact sequences of the form (4.18) must be
equivalent over End(X).

Analogously, all exact sequences of the form (4.19) are equivalent over S’.

O
It is possible to generalize this to the following:
Lemma 4.4.7. For all simple objects S € A let
> dp(S,T)< 1. (4.21)

T simple

Then the following holds if there are some fized simple objects S, T with an
object Z so that soc(Z) =S and top(Z) =T

(a) If there are unique objects S' = Sy, St, ..., Sy = T with Ext'(S;, Sit1) # 0
for 0 <@ < n, so that Xo,—1 and Xy, as in Lemma 4.4.5 exist, then
Ext*(S,T) = 0.

(b) If T = S51,5s,...,5, = S and the objects X;; are defined as in 4.4.5,
then all exact sequences of the form

0—>85—= X1, —=Xp,—=0

are equivalent over End(S) and all exact sequences of the form

0—> Xa, Xin T—0

are equivalent over End(Xs,,); in particular all objects of the form Xy,
are isomorphic.

Proof. By (4.21), there are up to isomorphism uniquely determined simple
objects T" = S1,55,...,5, =& S with Ext(S;,S;y1) # 0. Furthermore, by
Lemma 4.4.2, there are X;,_; and X, so that the following sequence is
exact:

n: OHSH‘len_l X2,n T 0.

We prove the lemma with induction on n. For n = 2, the lemma is obvious;
for n = 3 it is the result of Lemma 4.4.6. Suppose that the assertion holds
for n — 1.
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By Lemma 4.4.2, there is a monomorphism X;,_; = X;, and an epi-
morphism X, — Xy,
Now we can show both (a) and (b) completely analogously to 4.4.6. [

Now we show the other direction of 4.4.6:

Lemma 4.4.8. Suppose that for all simple objects S € A

> dp(S,T)< 1.

T simple

Let S,S',T € A be fized simple objects with Ext'(S,S") # 0 # Ext'(T, S) so
that for all T = Sy, S, ..., S, =2 S" with Ext'(S;, Sis1) # 0 for 1 <i < n, we
haven =3 and Sy = S.

If Ext*(T, S") = 0, then there is some indecomposable object Z of length
3 with socZ =8 and topZ =T.

Proof. By the assumptions, there are indecomposable objects X, X’ with
exact sequences

X-2-5 0 (4.22)

0 SR g 0. (4.23)

So the following sequence is also exact:

mi0——=9 JTox Yo x hop g,
If ExtQ(S’ ,T) =0, then 7, is equivalent to the split exact sequence

0 S’ S’ T T 0.

So there are maps of exact sequences 1y — 7y <— 73 —> -+ <= Ny, O 1)y 4—
Ny — M3 < -+ — Ny, so that n, or n,.1 with 1, — n,,.1 splits for some
m € N.
Let 1 be an exact sequence with n — ;. If we start with an exact
sequence 71 with 17, — 7, the proof is analogous.
Then there are objects M, N, morphisms ¢, d, e, ¢1, 11, and a commutative
diagram
S/
S,

M4 N_°.T 0.

\L%
f X g'g
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By Lemma 4.4.1, there is some exact sequence

n:0 S’ M’ N’ T 0

with a map 7 — 7 in Ext*(S’,T) and top N’ =2 T. Since f — n — 11, we
can assume that n = 1’ and thus top N = T. Then 7" as defined in Lemma

4.4.1 fulfils soc M" = S" and top N =T.
We can assume that some

W 0— 5 Lo LN Mg

exists, which is not isomorphic to 7.

Let ¢o : M — M" and 15 : N — N” be the morphisms that are induced
by n — 7n”. The morphisms ; and 1, are epimorphisms: since top X’ =
T = top N” and hiy; = W)y = e # 0, the cokernels of these morphisms are
zero. Thus, ¢, and ¢, are also epimorphisms, since

G gp1 = 1d # 0 # 1)ad = g" 5

and
¢102f7é07éf":¢20-

Similarly to the arguments in Lemma 4.4.1, Ker ¢ is a subobject of Imd and
thus there is a monomorphism y : Ker¢ »— N. Obviously, there is also a
monomorphism y; : Ker¢ — Ker¢; = Kert); for 1 < i < 2. The following
diagram is exact, since all rows and the first and second column are exact:

0 0 0

|

0 — Ker ¢) —> Ker 1); — Coker y; — 0

0 — Ker ¢ —~ N Coker y ——0

l

0—Imay

|

0 0 0

Im ) ——0

So there is an exact sequence

0:0 S’ Im ¢ Cokery —=T ——=0
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with maps § — n; and § — 7n”. Thus, we can assume that ¢ = [Qﬂ is a

P2

monomorphism.

If soc M = S, then ¢; is not only an epimorphism, but also monomor-
phism and thus an isomorphism. Since 7 is an exact sequence, ¢ is also an
isomorphism. But the same holds for ¢, and 5, so n” = ny, contradictory
to our assumptions.

We get S | soc M and thus S’ | soc N.

By the assumption, we have n = 3 and Sy = S forall 8" & 51, 5,,...,5,
T with Ext'(S;,Siy1) # 0 for 1 < i < n. Furthermore, dg(S,5") = 1
dr(T,S).

By Corollary 4.4.3 and Lemma 4.4.4, we see that either N” = X' or
N" 22 T, since all exact sequences in Ext'(T’, S) are equivalent over 7. In the
first case, length considerations yield M"” = X. Since the morphisms of 7,

are arbitrarily chosen, we can assume that the second case holds. Then 7"
splits and M" = 5.

So the epimorphism )y splits and we get M = X & S’. We get ¢ = [ﬂ
and its cokernel is isomorphic to X. If we set N =: Z, then there are short

exact sequences

12

0 X A T 0

and

0 S’ Z X' 0
and Z fulfils the assertions. O]

4.5 The third condition

In this section, we prove that (C3) holds if A is of colocal type.
First note that the following equivalence holds:

Proposition 4.5.1. Suppose that for all simple objects S € A

> dp(S,T)< 1.

T simple

For fized simple objects S and S" with Ext'(S,S") # 0, the following classes
of objects are the same:

(a) the class of simple objects T so that dp(T,S) # 0 and there is some
indecomposable object Z of length 3 with soc Z = S" and top Z =T
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(b) the class of simple objects T so that dp(T,S) # 0 and there is some
indecomposable object Z of length greater or equal 3 with soc Z = S" and
topZ =T

If Ext(S’,5") = 0, then these classes are the same as

(c) the class of simple objects T so that dr(T,S) # 0 and there is some
indecomposable object Z with soc Z = S" and top Z =T

If S" is not part of an oriented cycle in the Ext-quiver of A, then this class
is even the same as

(d) the class of simple objects T so that dr(T,S) # 0 and Ext*(T,S") = 0

Proof. The equivalence of (a) and (b) is just Lemma 4.4.2 and Lemma 4.4.5.
Part (c) is obvious, since under these assumptions S 2 S’, Ext(S,S) = 0,
T % S and Ext'(T,S") = 0. Part (d) is proved in Lemma 4.4.6 (a) and
Lemma 4.4.8: If there is a cycle in the Ext-quiver of A, then it is oriented.
So if S’ is not part of an oriented cycle in the Ext-quiver of A, then for all
T=8,,85;,...,5 =8 with Ext'(S;, Sit1) # 0 for 1 < i < n, we have n = 3
and Sy = S. O

We still need one lemma before we can prove that (C3) holds if A is of
colocal type:

Lemma 4.5.2. Let A be an abelian length category. Suppose that there are
simple objects S, S with Ext'(S,S") # 0 and for 1 < i < 2 there are objects
T;, X; and Z; with exact sequences

0 g9 x, M

T, 0, (4.24)

which are linearly independent over End(T})? if T} = Ty and

0 S’ Z; X 0.

If Ty = Ty, we furthermore assume that dg/(S,S") = 1.
Then there is a pushout
SI I Zl

|

ZQHY

so that Y is indecomposable.
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Proof. It Z1 2 Z3, we can choose the monomorphisms f; : S’ — Z; and
fa 1 8" — Zy arbitrarily.

Otherwise, we denote the kernel of Z; — T} with X3. Since [(Z) = 3,
there is an exact sequence

f

0 S’ X;-2- 8 0.

We have Imgg; = S = soc X;. The image of the concatenation ¢; : X3 —
Z; — X; is also soc X; and because of dg (S, S") = 1, there is some isomor-

So we can choose f; and f} so that the following diagrams are exact for
1< <2

0 0 0 . (4.25)
0> —5 ) —

f ffl
0> X3 o 7, T, — 0

g
0 S x, M. 0

0 0 0

We set f; = f|f and fo = f}f and form the pushout:

S/i>Zl .

J e

ZQ?Y

Now, we show that Y is indecomposable:

Since soc Z; = soc Zy = S’ there is some indecomposable direct summand
Y’ of Y with monomorphisms Z; — Y’ and Z, — Y’. The following diagram
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is exact for 1 <7 # j < 2, since its rows and the first two columns are exact:

0 0 . (4.26)

0 j Z; X; 0
0 0 0

Note that [(Y) =5 and I(Y’) > [(Z;) = 3. Thus, the cokernel of ¢; : Z; — Y’
cannot be simple; otherwise the cokernel of Z; — Y would be semisimple.
So either Y 2 Y] or Y; = Z;. But the last case would give us a commutative
diagram

S/LZ:[ .

J Ok

Zz?yl

So Ty = Ty and with (4.25), this contradicts the assumption that the exact
sequences (4.24) are linearly independent over End(7;).
So Y is indecomposable. n

The next Lemma shows in particular that (C3) is fulfilled if A is colocal.

Lemma 4.5.3. Let A be an abelian length category. The following holds for
all simple objects S € A:

(a) Let A be of colocal type. If there is a simple object S" with Ext(S,S") # 0
and a set T of simple objects T so that dr(T,S) # 0 and there is an
indecomposable object Z of length 3 with top Z = T and soc Z = S’, then

> dn(T,8) < 1.

TeT

(b) Let S(A) be distributive. Assume that there is a simple object S" 2 S
with Ext(S,S") # 0 and a set T of simple objects T so that dr(T,S) # 0
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and there is an indecomposable object Z of length 3 with top Z = T" and
socZ = S'. If dg(S,5") > dg(S,S") or there are two non-isomorphic
objects in T, then

> dr(T,8) < 1.

TeT
Proof. We show (a) first: Since A is colocal,
ds(S,8") > dg(S,5) =1

by Lemma 4.3.2. By Lemma 4.5.2, there are some 17,7y € T, an indecom-
posable middle term X3 of an exact sequence in Ext' (S, S’), indecomposable
objects 7, Zy with

0 X3 Z; T; 0

and an indecomposable object Y so that the following is a pushout:

S'—— 7.

|

ZQHY

In the following, we use the same notation as in Lemma 4.5.2: in its proof,
we either have chosen or can choose f, fi, fo so that the upper left square
of the following diagram is commutative. Thus, the diagram is commutative
and exact, since its columns and the first two rows are exact:

0 0 . (4.27)

0 = 0
[f f] [f1 f2] J/

OHXg@X;gHZl@ZQHTl@TQHO

OHS@XQ, Y TI@TQHO
0 0 0

SosocY =S @ S and A is not of colocal type.
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To show (b), we assume that S 2 5. Let k: S — Y and [: S" — Y be
induced by the last row of the diagram (4.27). Then there is a monomorphism
Y »— Coker k & Coker! by Lemma 4.2.2.

For 1 <i# 5 <2, we get the following exact diagram, since all columns
and the first and second row are exact:

0 0 ) (4.28)
0——S S—0
-
0 Z; Cokerk ——=T; —=0
0 0 0

By Lemma 4.2.2, there is an indecomposable direct summand of Coker & of
which Z; is a subobject. The last row of the diagram above cannot split,
since Y is indecomposable. So Coker k is also indecomposable and has the
socle S’. Thus, socY = 5" @ S is not a subobject of any direct sum of copies
of Coker k and neither is Y. Analogously, the next diagram is exact for all

I1<i#j<2

0—=Z; Y X; —0
0 0 0

And finally, the following diagram is exact, because all columns and the
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second and third row are exact:

0 0 1)
0 S’ d Y X, Xy——=0

0

0 0

Thus, we have Coker! = X; @ X, soc Coker! = S? and Y is not a subobject
of any direct sum of copies of Coker .
O

4.6 An Equivalence Theorem

We begin with the following special case, from which the general statement
follows:

Lemma 4.6.1. Let A be a hereditary Artin algebra and A = mod A. Assume
that A fulfils the following conditions:

(C1) For all simple objects S € A

> dp(S,T)< 1.

T simple

(C2) For all simple objects S € A

> (T, S) <2

T simple
(C’3) If there is a simple object S € A with

Z d%“<T7 S) =2,

T simple

then Ext'(S,S") = 0 for all simple S’ € A.
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Then the following holds:
(a) A is of colocal type.

(b) A is representation finite.

Proof. We can assume without loss of generality that A is indecomposable
as an algebra. To show both (a) and (b), we construct the preinjective com-
ponent of the Auslander-Reiten quiver of A. We will see that this component
is finite and thus the complete Auslander-Reiten quiver of A by Proposition
2.3.15.

The Ext-quiver of A does not contain oriented cycles, since A is hereditary.
By (C1), the Ext-quiver does not contain other cycles, either. So there are
two possible cases:

(a) We have d%.(S,T) < 1 and d§(S,T) < 1 for all simple modules S,T €
mod A. Then we can order the simple modules S,5,,...,S, of mod A
so that for some 1 < [ < n we have Ext'(S;, Siy1) # 0 forall 1 < i <1
and Ext'(S;y1,5;) # 0 for all I < i < n. By (C1) - (C2) and (C’3),
Ext'(S,T) = 0 for all other simple modules S, 7.

(b) We can denote the simple modules by Sy, ...,S, so that
dg,(Si, Siy1) = 1= dg,,, (Si, Sit1)
for all 1 < i < n—2, df (Sp-1,5) =1, dy _ (Sp-1,5,) = 2 and
Ext'(S,T) = 0 for all other simple modules S, 7.

We will only prove the assertion in case (a). In case (b), we can construct
the Auslander-Reiten quiver completely analogously to the first case and thus
show the assertion completely analogously. The result of this construction is
the following Auslander-Reiten quiver:

T 1[1 T 2]1 7']1

/\/\/\/\/

nl]2 n2]2

/\/\/\/\/
\/\/\ /\/

T In— —1

2 1) (2,1) (2.1) 2 (2,1)
/(1,2) /1 2\ /1 2)\~x (1 2) /(1 2)
I,
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The arrows of the form ~— denote monomorphisms.

Now suppose that (a) holds. Additionally, we assume without loss of
generality that [ > n — [. Then the following is part of the preinjective
component of the Auslander-Reiten quiver of A by 2.3.7 and 2.3.9:

l 1]1 l 2]1 . . T[l .[1

\/ /\/\/

TZ_IIQ l 2[2 NN . [2

/\/\/\/ /\/
LANSNSNINS

T, I+1

AR AYAVAVAYS

n 1+2

NANSNSNSNS

If the arrows of the form — correspond to monomorphisms, it is obvious
that the above is a complete component of the Auslander-Reiten quiver of
A and thus the complete Auslander-Reiten quiver: We have 7'I; = 0 and
71 = 0, since no Auslander-Reiten sequence can start in these modules.
Inductively,

= =71, =0
and

n7l+1]n7 nflJrlIl — TnflJrZIlil —

T =..=7T =7, e =0,

To show that the arrows of the form — denote indeed monomorphisms, we
use Lemma 3.2.13: There are Auslander-Reiten sequences

0 Till Ti_1]24>7'i_1[1 —0
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for 7'I; # 0 and

0 Ti[j 7‘1’71]]4_1 @Ti]j_l H"7'1'71]]' —0

forall 1 < j <l—1 and i with 7°I; # 0. If there is an exact sequence

04>7'in,1 Ti_llj Ti_1114>0

then there is also an exact sequence

0 Tijj Ti_1]j+1 *>Ti_1]1*>0 . (429)

It possible to show that 7°1;_;,7'I;_5,...,7"]; are non-zero and thus, we get
indeed the exact sequences above. But this is not necessary for our proof,
since we are only interested in the monomorphisms of the exact sequences
and if 7°I;_y = 0, there is obviously a monomorphism 7°I; — 7711, 1, just
with a different cokernel.

Analogously, we can assume in the following that all modules in the exact
sequences below are non-zero.

There are Auslander-Reiten sequences

0—71, — 771, | —= 771, —=0

for 71, # 0 and

0 Ti[j Ti_llj_l @Ti[j+14>7'i_llj —0
for all | < j <n—1 with 7I; # 0. We get an exact sequence
04>7_in4>7_1'—1[];14>7_7,’—1[”4>0 (430)

for m < j <n and ¢ with 7°1; # 0.
The remaining Auslander-Reiten sequences are

0 Ti]l Tifl_l@TiIl_H *>Ti71]l*>0

for 7¢1; # 0.
Together with (4.29) and (4.30), we get exact sequences

0 7, TiIl+1 — 7 —=0

and

0 Ti[l Ti[l,1 4)7.1'—1[”4)()'
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Inductively, we get exact sequences

0 i T —— 7L () (4.31)

for all 7'1; # 0 with 1 < j <[ and [ — j < i. Analogously,

0 Tijj Tijj+1 *>Ti+l_j_1]1 —0 (432)

is exact for all 7°1; #0 with [ < j <nand j— [ <.

We can find the injective envelope (see 2.2.4) of every indecomposable
module M by taking the product of irreducible monomorphisms.

So M has an indecomposable injective envelope I with simple socle (see
2.2.6) and soc M = socI. Thus every submodule of M is indecomposable
and A is of colocal type. O

Now we can prove Theorem 1.2.4:

Theorem 4.6.2. The category A is of colocal type if and only if the following
conditions hold:

(C1) For all simple objects S € A

> dp(S,T)< 1.

T simple
(C2) For all simple objects S € A

> dp(T,S) <2

T simple

(C3) If there is a simple object S’ with Ext'(S,S") # 0, let T be the class of
simple objects T for which di(T,S) # 0 and there is an indecomposable
object Z of length 8 with top Z =T and soc Z = 5’. Then

> dp(T,8) < 1.

TeT

Proof. If A is of colocal type, then condition (C1) holds by Lemma 4.3.2,
condition (C2) holds by Lemma 4.3.4 and condition (C3) by Lemma 4.5.3.

For the other direction, we use Lemma 4.2.4: If A is not of colocal type,
there are objects X, Y7,Y5,5 so that X is indecomposable, Yi,Y, are not
simple and there is an exact sequence

[91 92]

0 X Yi0Y, S 0. (4.33)
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If Y| Y; @Y is indecomposable, we can assume that socY is simple.

On the other hand, S | top Y, since Y t X.

First, we assume that for every T' | soc(Y; @ Ys) there are up to isomor-
phism unique objects S 2 Sy,S,,...,S, = T with Ext*(S;, Siy1) # 0 for
1 <4 < nsothat X;,_; and X5, as in Lemma 4.4.5 exist. By 4.4.2 and
Lemma 4.4.7, these are objects in a full abelian subcategory A’ of A so that
Ext?(S,T) = 0 for all simple S,T € A'.

By 2.3.1, we can be embed A’ into the module category of a hereditary
Artin algebra A. With Lemma 4.6.1, at least one of the conditions (C1),
(C2) or (C’3) is not fulfilled by mod A. For a hereditary Artin algebra, the
condition (C’3) is equivalent to (C3) by 4.5.1 and thus A" and A do not fulfil
(C1) - (C3).

Now suppose that for some T' | soc(Y; @ Y3), there are non-isomorphic
objects S = 51,8,...,5, = T and S = S51,955,...,5), = T so that we
have Ext'(S;, Si11) # 0 for 1 < i < n, Ext'(S,S5L,) # 0 for 1 <i < n/
and there are indecomposable objects X ,_1, X2, as in Lemma 4.4.5 and
X{ g withsoc Xy, | =5] 4, topXj,, ;| = 5] and Xy, with soc X;, = 5],
top X5, = Sj.

If we assume that n’ < n, then Sy = S7,..., S, =S/, by (Cl),son’ < n.
By Lemma 4.4.2 and Lemma 4.4.5, there are objects X; ;12 of length 3 with
soc X; ;42 = Siy2 and top X;; = S;. So by condition (C3), we get

dsi (Sz', Si+1> =1

for all 1 < i < mn. Analogously, every 7" | soc(Y; @ Y3) must be of the form
S; for some 1 < i <n.

So we can choose T' so that for all indecomposable objects YV | Y1 @ Y,
there is some 1 < ¢ < n with socY = S;. By (Cl), there are some m; € N
for 1 < i < n so that topY = @, S;"". Analogously to Lemma 4.4.4,
dsi(Si,SiH) = 1 means tOpY =S5= Sl.

By Lemma 4.4.7, all objects with socle S; and top S; are isomorphic to
X1, and all exact sequences of the form

0 Xgﬂ' Xl,i Sl 0

are equivalent over End(X5;). So for all epimorphisms g : X;; — S; and
g : X1, — Si, there is some isomorphism y on X ; so that ¢’ = xg.
Since S = S; and T | socY; @ Y, we get X;, | Y1 @ Y, and can assume
that Y7 =Y/ ® X ,,. By Lemma 4.4.2, there is an epimorphism X ,, - X ,.
There are morphisms fi, fo so that the following is a commutative dia-
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gram:

id
Xl,n M>AXrl,n S¥) YY .

bk

}/‘2 g2 T

But by (4.33), there is a pullback

X—Y

.

}/QL'T

Thus, X cannot be indecomposable, a contradiction to the assumption and
the proof is complete. [

We can draw the following corollary:

Corollary 4.6.3. If A is a colocal Artin algebra, then A is of finite repre-
sentation type.

Proof. Since A is an Artin algebra, it has finitely many non-isomorphic simple
modules S1, 59, ...,5,. The proof of Theorem 4.6.2 shows that every module
in mod A can be either be regarded as a module in mod A’, where A’ is a
hereditary subalgebra of A with simple modules S;,,5,,,...,S;, for some
m < n. Or there is a path §] — S5 — --- — S/, in the Ext-quiver of A
which is part of an oriented cycle so that the module is of the form X, ,, and
of length n’. Since A is an Artin algebra, there are only finitely many objects
of the latter form.

By Lemma 4.6.1, every hereditary subalgebra of A is representation finite.
Because there are only finitely many possibilities for iy,...,1,,, the algebra
A is also representation finite. [

4.7 The lattice S(A)

We show in this section that the lattice S(.A) is in fact the Cartesian product
of certain sublattices.

For Artin algebras A over algebraically closed fields, we will use this in
the next section.

We begin with the following lemma:
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Lemma 4.7.1. Suppose X is an indecomposable object and there is an index
set I so that X C @, ,;Y:. Set

ier i
I'={i e I| there is a simple object S with S C X and S C X,}.
Then X C @, Xi.
Proof. There is a morphism
1 X —~Dvie @
f2 ~ .
il ISTAVA

with
flzX—>@Yi and fo: X — @Y}.

iel’ i€\l
Furthermore, Ker(f1) @ Ker(fs) € X and Ker(fi1) € @;cppYi So there

is no simple S C Ker(f;) and thus Ker(f;) = 0, which implies that f; is a
monomorphism and X C @, , V. O

To simplify the notation, we define:
Definition 4.7.2. For a class M of indecomposable objects in A let
S(M) := S(add M).
Under certain assumptions, S(M) is a sublattice of S(A).

Lemma 4.7.3. Let M be a class of indecomposable objects in A. If
indsub M = M, (4.34)

then S(M) is a sublattice of S(A).

Proof. We need to show that for C,C" € S(M), the join and the meet are
again in S(M). The first direction is obvious: C'A C' = C' N C" and thus

ind(CAC")=indCNindC" C M,

since ind C,indC" C M. So C AC" € S(M).

On the other hand, the join C V C’ consists of all subobjects of direct
sums of objects in C' and C’. Thus, if M € ind(C'V C") then M € sub M. By
(4.34), M € M. So C'V C" € S(M) and S(M) is a sublattice of S(A). O

We get the following homomorphism between lattices:
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Lemma 4.7.4. Let A be an abelian length category. Suppose that there is
an index set I, and classes of indecomposable objects M;, © € I exist, so that
(M1) U;e; Mi =ind A

(M2) M;NM; =0 foralli,jel withi# j

(M3) indsub M; = M; for alli € I.

Denote M ={M; | i€ 1}. Then

far: S(mod A) — [T S(M

i€l

C—)HCZ-

il

where C; is given by

indC; = indC N M;

s a lattice homomorphism.

Proof. By Lemma 4.7.3 and (M3), S(M;) is a lattice for every i € I and
the Cartesian product exists. We have to show that f,, preserves meets and
joins. Take C,C" € S(M;). Then fy preserves meets, since

ind(CAC") =indCNindC’
and
ind(CAC"); =ind(CANC)YNM; = (indCNindC")NM; =indC; NindC..

Thus (CAC"); = C; A C! and
fm@nc’y =TJenc): =[Cnc) =TT AT Ci = Fm(C)Afa(C).
el el el el

The function also preserves joins: For some object M, we have M €
ind(C' Vv C"); if and only if M € M, and there are objects z1,...,x. € indC
and z7,...,2, € ind C' for some ¢, ¢ € N so that

M C é T D é}x;
k=1 k=1

Suppose that there is some z ¢ M; for some 1 < k < ¢. By (M1), there is
some j # ¢ with z;, € M. For every simple object S C x;, we get S € M;

? C



120 CHAPTER 4. DISTRIBUTIVE LATTICES

with (M3) and thus S ¢ M, by (M2). So S is not a subobject of M and by

Lemma 4.7.1, we get

o
So we can assume that xq,... 2., 2},...2., € M; and thus M € ind(C; V CY).

Since C;VC! € S(M;) and C;VC! < C'V (', the other direction is obvious.
We get ind(C; vV C!) =ind(C vV C"); and C; vV C] = (C' VvV C");. So

fevey =TJevey =T[cve) =T ev] ] ¢ = @)V fu(c)
iel il il i€l
and fa is a lattice homomorphism. O]

Even better, fus is an isomorphism:

Proposition 4.7.5. Let A be an abelian length category and M = {M, | i €
I} be a family of classes of indecomposable objects that fulfil (M1) - (M3).
Then fa as defined in Lemma 4.7.4 is a lattice isomorphism between S(A)

and [[;c; S(M;).

Proof. By Lemma 4.7.4, frq is a homomorphism between lattices. To show
that fuq is an isomorphism, we need to prove that f is injective and surjective.
Suppose that fa(C) = fa(C’) for some C,C" € S(mod A). Then

[T~ Ic
iel il
and by (M2), we have C; = C/ for all i € I . This means
indCNM,; =indC’' N M,
forall i € I. By (M1), indC' = ind C" and fu4 is injective.
Now take
[[¢:ie][sm
iel iel

Since all C; are subobject closed subcategories of A, we have C; € S(A) for
all 7 € I. We will show that

v\ C)=1]c
iel icl
It is obvious that C; C (\/lE ; Ci)j for all j € I which implies

Hoi - f/vt(\/ Ci).

iel i€l
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For the other direction, we need to show that (\/iel C’i)j C(jforall jel,
which is equivalent to

(ind\/CZ) NM, CindC;. (4.35)

iel
Suppose that M € (ind Vies C’i) N M. Then there are objects N; € C;, so

that
M C EBN

Set
I' ={i € I | there is a simple object S with S C M and S C N;}.

By Lemma 4.7.1,
MC PN
il
By (M3), we have S € M; for all simple modules S C M € M;. On the
other hand, if S C N; € M;, then S € M; and by (M2) we get I’ = {j}. So
(4.35) holds, fa, is surjective and thus a lattice isomorphism. [

4.8 The structure of the lattice

Let mod A = mod kQ/I for some quiver ) and some admissible ideal I. This
is always the case if A is an algebra over a closed field k. If A is of colocal
type, then the lattice S(mod A) is relatively simple and can be described
completely.

By Theorem 4.6.2 we get the following:

Proposition 4.8.1. Let A be an Artin algebra and mod A = mod kQ/I for
some quiver (Q and an admissible ideal I.

(a) The algebra A is of colocal type if and only if S(mod A) is distributive
and for every subquiver of ) of the form

B A~
I==2_)«
aB el ora?el.

(b) The algebra A is of colocal type if and only if it is a string algebra and
no vertex in @) is starting point of more than one arrow.
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Proof. First, we prove (a): By Lemma 4.2.3, S(mod A) is distributive if A is
of colocal type.

On the other hand, suppose that S(mod A) is distributive and fulfils
the condition above. We have dg(S,T) = dr(S,T) for all simple modules
S, T € mod A by 2.5.2. Since modkQ/I is equivalent to the category of

Y

representations of () with the relations that generate I, we have End(S) =
End(T). So
ds(S,T) =dr(S,T) <

1
for all S,T by Lemma 4.3.5. Thus Lemma 4.3.2 (b), 4.3.4 (b) and 4.5.3 (b)
show that mod A fulfils (C1) - (C3). By Theorem 4.6.2, A is of colocal type.
To show (b), suppose that A fulfils (C1) - (C3). By 2.5.2, this is equivalent
to the following:

1. No vertex in () is starting point of more than one arrow.
2. No vertex in () is end point of more than two arrows.

3. Given an arrow f3, there is at most one arrow v with s(5) = e(y) and

By ¢l

Since A is an Artin algebra, the quiver () must be finite.

Comparing this to Definition 2.5.4, it only remains to show that I is an
ideal generated by zero relations. If () does not contain oriented cycles, then
for any given vertices 7 and j, there is at most one path p with s(p) =i and

e(p) = J.

In fact, any relation which is not a zero relation is of the following form,
where p is an oriented cycle, p’ is a subpath of p with s(p') = e(p) = s(p),
a1,...0p, Ekand o < g < --- <, € N:

a1p' p™ + azp' p™ + - + anp'p*m = 0. (4.36)

Now, we use that I is admissible: there must be some t € N, so that
p' = 0. So for every representation V of (), there is some m so that

O=Imfm Clmfma C---Clmf,,

where f,i denotes the map of the representation defined by the path p'. We
get p* = ... = p* =0, since otherwise

|m<fp'pa2 + -+ fp’pan> Q Im fp/paz g Im fp’p"‘lp
a contradiction to (4.36). O

Furthermore, we get some useful properties:
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Lemma 4.8.2. If A = kQ/I for some quiver Q = (Qo, Q1) with admissible
ideal I and A is of colocal type, then the following holds:

(a) If Q contains a cycle, this cycle is oriented.

(b) At most two paths are mazximal under all paths without relations that end

(¢) Every module in ind A is a string module.
(d) Every string is of the form

1 -1 -1
w=aq; o ...ap Pife. .. B,

for some l1,ls € Ny, and arrows g, ..., q, B, ..., B, or of the form e,
for some vertex m.

(e) We have M (w') C M(w) if and only if there are 1 < j; <y and 1 <
72 < ly so that
w = Oéjleé;ll_l . Oé;lﬂlﬁz R 6_7'27

or w = e, with m = e(ay) = e(H).

Proof. (a) Every non-oriented cycle contains a vertex which is starting point
of two arrows.

(b)Since A is a string algebra, there are at most two arrows which end in
i by Definition 2.5.4 (2). By 2.5.4 (3), each of those arrows is part of only
one maximal path that ends in 7.

(c) From definition 2.5.5, it is obvious that every band corresponds to a
cycle without relations. Since [ is an admissible ideal, every oriented cycle
of @ contains a relation in /. By (1), A = kQ/I has no band modules and
ind A consists only of string modules.

(d) There are no arrows «, (3 with e(87!) = s(8) = s(a).

(e) This follows from Lemma 2.5.8. O

We use Proposition 4.7.5 to simplify the problem of describing S(mod A)
and start with the definition of a suitable family M:

By Lemma 4.8.2 (2), there are at most two maximal paths without rela-
tion that end in a vertex m € Qy:

Definition 4.8.3. Suppose that there is at most one arrow o with e(a) = m.
Then there is only one path that is maximal under the paths without relation
that ends in m. We denote its length with k,, and set [, := 0.

If there are two arrows that end in m, there are two maximal paths. We
denote their lengths with £, and [,,.
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Definition 4.8.4. Let A = kQ/I for some quiver @ = (Qo, Q1), m € Qy,
and M,, := M (w,,) be the module with

-1 -1 -1
W =0y _y...0q PiPa... By,

so that oy, aq and 3, . .. f1 are the maximal paths that end in m. By Lemma
2.5.7 (2) and Lemma 4.8.2 (2), this module is well defined.
Furthermore, we define

M, ={M emodA | M C M,}.
Lemma 4.8.5. If A is of colocal type, then

S(mod A) = H S(M,,).

meQo

Proof. We need to prove that the sets M,,, m € @)y fulfil the conditions of
Proposition 4.7.5:

(M1) is fulfilled by Lemma 4.8.2 (3), (4) and (5); (M2) and (M3) are
fulfilled by Lemma 4.8.2 (5). O

The lattices S(M,,) for m € @ have a very simple description: they are
all sublattices of Young’s lattice, which is defined in [18], p. 58 and Example
3.4.4(b):

Definition 4.8.6. Take a partition A = (Ay, Ay, A3, ..., A,) of a natural num-
ber, ordered so that Ay > Ay > --- > \,,. The Young diagram of X is an array
of squares with n rows and exactly \; squares in the i-th row.

These partitions form a lattice Y, ordered by the inclusion order on the
Young diagrams. It is called Young’s lattice.

Let X' = (N, A, A5, ..., L), suppose that n < n’ and set \; := 0 for
1 >n. Then

ANAN = (min(Ag, A)), ... min(\,, X))

and
AV N = (max(Ag, A}, ... max(N\,, \))))).

Example 4.8.7. The Young diagram of the partition (5,3,2,1) has the fol-
lowing form:
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We will need the following lattices to describe S(M,,) for m € Q:

Definition 4.8.8. Denote by Y™" that sublattice of Young’s lattice that
contains exactly the partitions A = (Ay, Ao, A3, ..., Apy) where m’ < m and
A < nforall 1 <i<m' Equivalently, we can define YY" as the lattice
given by all Young diagrams with at most m rows and at most n columns.

Example 4.8.9. The Hasse diagram of the lattice Y33 is

w
w

w—

w
\)

WAy
\/

W
_—
—_

—_
~—
—~
w

—_
—
w

\)

NS

(2,2)

—
w
—

/X
N AW

—~
[\
—_

—~
—_
—_

~—

/ N\

—~
[\
~—

N/

Remark 4.8.10. Note that for m,n € N, we have Y™" & Y™ gpd Y1n =~
({0,1...,n},<) = y™

Now, we can completely describe the distributive lattices S(mod A):
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Theorem 4.8.11. Suppose A = kQ/I with quiver Q = (Qo, Q1) and admis-
sible ideal I. If A is of colocal type, then

S(mod A) H y FmtLim+1
meQo

Proof. By Lemma 4.8.5,

S(mod A) = H S(M

meQo

If only one path ajas ... ag, ends in m, it is obvious from Lemma 4.8.2 (5)
that we can order the modules in M,, the following way:

Mlen) € M) € Mlogar?) € -+ € Mlaglagt ..o
Thus
S(Mp) = ({0,. .. kp + 1}, <) = YhmtbhL

If there are two paths without relations ajas ... oy, and 515, ... £, are max-
imal under those that end in m, then by 4.8.2 (5) all modules in M,, are of
the form M(e,,) =: M(wp) or M(w;;) with

Wi5 = & 10‘ o™ BlﬁZ . Bj,
with 0 < ¢ < k,,, 0 < jo < [, and at least one of them non-zero. Fur-
thermore, M(e,,) € M(w;;) and M(w;;) € M(i'j’) if and only if ¢ < " and
J<i
For a submodule closed subcategory C' € M,,, there is some 0 < ¢ <

k., € N with
lm>jozn 227320

so that
ind C' = {M(w;;) € ind A | there is some 0 < h < ¢ with i < h,j < j,}.
We define
Ac = o+ L+ 1,... .+ 1)

Then
[ :1S(My,) = Yrmibbntl ¢ Ao

is obviously injective and surjective. We need to prove that f is a lattice
homomorphism, that is, that it preserves joins and meets: Since S(M,,) is
distributive, for any two categories C1, Cy € S(M,,),

ind(Cl A 02) =ind Cl M ind CQ



4.8. THE STRUCTURE OF THE LATTICE 127

and
ind(C’l V 02) = ind Ol Uind CQ

by Proposition 4.1.3. From the definition of the joins and meets in Y*m+Lim+1,
it is clear that f preserves them. [
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5 Conclusion and outlook

The first result of this thesis is that for all hereditary Artin algebras A, there
exists a natural bijection between the elements of the Weyl group associated
to A and the cofinite submodule closed subcategories in mod A. So we have
shown that a result for algebraically closed fields holds for arbitrary fields.

Next, we get a new characterization of algebras and abelian length cate-
gories of colocal type with three conditions that are simple to check, especially
if we work over an algebraically closed field, where the module category of
an Artin algebra is equivalent to that of a quiver with relations.

In this case, we can completely describe the lattice S(mod A) for all A of
colocal type. It is the Cartesian product of sublattices of Young’s lattice.

While these connections to several topics show the importance of sub-
object closed subcategories, there are still a myriad of questions that can
be asked about them. The most obvious question with regard to the re-
sults above is the following: how does a characterization of arbitrary abelian
length categories with distributive lattice S(.A) looks like?

But we can also ask other questions: Is there a description for the finite
submodule closed categories of a hereditary Artin algebra that is similar to
the description of the cofinite ones? Is it possible to give a simple descrip-
tion for the lattices of submodule closed categories of all string algebras A,
not only those with distributive lattice S(mod A)? Can we use submodule
relations to characterize string algebras?

129
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Glossary

Notation

Description

we write X | Y if X is a direct summand of Y

we write X 1Y if X is not a direct summand

of Y

a shorter notation for the word ss'ss’. ..
—

a letters
an alternative notation for the module 7" I;

a total order defined on the words over the
alphabet {s1,...,$,}

the opposite algebra of A

conditions on a triple of sequences of modules
the category defined by the word w

the category defined by the Weyl group ele-
ment w

a shorter notation for dimgng(s)er Ext' (S, T

a shorter notation for dimgnq(r) Ext! (S,T)

a recursion formula

a recursion formula that is similar to £(m)
set of equivalence classes of n-fold extensions
of X by X’

for a vertex m in a string algebra, this is the
length of a maximal path without relations
that ends in m

for a vertex m in a string algebra, [, = 0 if at
most one arrow has m as end point; otherwise
this is the length of the maximal path without
relations that ends in m and does not define
km

the length of the object X
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Notation
mij

M,
M;,

mod A

Description

the defining relations of the Weyl group are
(sis;)™ =1

a certain preinjective module

a preinjective module that is defined similarly
to M, k

the category of finitely generated right mod-
ules over A

the module defined by the string w

the module defined by the band w and the
linear map ¢

the set of vertices of the quiver @)

the set of arrows of the quiver @)

a series of pairs defined by the word w
conditions on a triple of sequences of modules
conditions on a triple of sequences of modules
condition on a triple of sequences of modules
the lattice of full additive subobject closed
subcategories of A

for a class of indecomposable objects M, this
is a shorter notation for S(add M)

the category that consists of all subobjects of
direct sums of objects in the class X

for an object X, this is a shorter notation for
sub{X}

the Auslander-Reiten translation

the lattice that contains the partitions whose
Young diagrams have < m rows and < n
columns
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27
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