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Reactions between 1,8-dichloroanthracenes with substituents
in position 10 and ortho-chloroaryne afford mixtures of 1,8,13-
(syn) and 1,8,16-trichlorotriptycenes (anti). The syn/anti ratio is
dependent on these substituents. Electropositive substituents

like SiMe3 and GeMe3 lead to preferred formation of the syn-
isomer, whereas CMe3 groups exclusively afford the anti-

isomer. Different quantum chemical calculations including loca-

tion of transition states give conflicting results, but indicate
the importance of dispersion forces for an at least qualitative

prediction of results. The syn-trichlorotriptycenes with SiMe3

and GeMe3 substituents were characterized by using NMR

spectroscopy, mass spectrometry, and X-ray diffraction
experiments.

Triptycene represents one of a few rigid organic frameworks of

D3h symmetry without any (Lewis-basic) heteroatoms. It was
first synthesized by Bartlett et al. in 1942 using a multi-step

procedure starting from anthracene and p-benzoquinone.[1] In
1956, Wittig and Ludwig reported a more efficient access to

triptycene in one step from anthracene by reacting it with

in situ-formed benzyne.[2] The symmetry and rigidity of tripty-
cene have inspired a plethora of applications in fundamental

and applied chemical research.[3–5] Substituted triptycenes are
widely used, for example, as building blocks for fluorescent or

non-fluorescent organic macromolecules, polymers, and liquid
crystals,[3, 6] as rigid spacers in several Pd complexes used for
cross coupling reactions,[7] as devices in molecular machines,[8]

in crystal engineering processes,[9, 10] and as a basis for the
design of highly porous organic materials with numerous
applications.[11]

Although the chemistry of triptycenes and their functionali-
zation is generally in an advanced state, the 1,8,13-trisubstitu-
tion motif remains a challenge for synthesis. However, exactly
this pattern is interesting to introduce three functionalities ori-

ented in the same direction. We try to make use of such
1,8,13-trisubstituted triptycenes (also called syn-triptycenes) as

rigid organic frameworks for constructing directed polydentate

Lewis acids,[12, 13] but many other applications might be
envisioned.

syn-Triptycenes can be obtained through Diels–Alder reac-
tions of 1,8-disubstituted anthracenes with ortho-functionalized

arynes, a protocol introduced by Rogers and Averill in 1986.[14]

The drawback of this method is that the corresponding anti-tri-

substituted 1,8,16-isomer is always formed as the main product

when, for example, Cl-functionalized anthracenes and arynes
are used.[12, 14] In 2010, we reported attempts to increase the

syn/anti ratio by making use of the steric interference of the
(bulky) anthracene substituent at C-10 with the chlorine atom

of the chloroaryne (Scheme 1). We expected this strategy to

provide an increased formation of the syn-isomer. However,
the steric influence of the C-10 substituent turned out to be

minimal, whereas the electronic properties are dominant;[12] of
all substituents tested, the biggest R = C(CH3)3 led to the for-

mation of 100 % anti-isomer, despite the formation of an ex-
tremely deformed product by mutual repulsion of the Cl and R
substituents, as indicated in Scheme 1 b.

Accepting that we cannot take steric control over this reac-
tion, it is necessary to understand the electronic parameters

determining it. Cycloadditions of substituted arynes have been
studied experimentally and theoretically. Their reactions have

been predicted by steric, charge-controlled, and aryne-distor-

tion models; the latter two have recently been given prefer-
ence and predict nucleophilic attack to be preferred at C-3 in

3-chlorobenzyne.[15]

First, simple DFT calculations [B3LYP/6-31G(d,p)] indicated

that the charge distribution of the carbon skeletons of the an-
thracene and benzyne can be manipulated by different sub-

Scheme 1. a) Proposed steric interactions of 10-substituted 1,8-dichloro-
anthracenes and chloroaryne; b) structural data for a tert-butyl derivative.
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stituents. However, the predicted partial charges depend very
much on the quantum-chemical method employed. Although

in a recent theoretical study the charge distribution of chloro-
benzyne has been given as + 0.11 (C-2) and @0.04 e (C-3) [NBO

charges, B3LYP/6–311 + G(d,p)] ,[15] we find contradictory results
between natural bond orbital (NBO)[16] (C2@0.02, C3 + 0.10 e)
and atoms in molecules (AIM)[17] (C-2 + 0.01, C-3@0.21 e)
charges (B3LYP/6-31G(d,p) [further details can be found in the
Supporting Information, and electrostatic potentials (ESP) are

also reported therein]. This demonstrates that the charge argu-
ment is less clear-cut than suggested. More unambiguous are

charges predicted for a range of 10-substituted anthracene
molecules: although the charge at C-9 is virtually invariant for
all molecules (R = SiMe3, CMe3, Ph, Cy, iPr, Me, H) (NBO @0.18
to @0.17, AIM + 0.01 e for all), the charge at C-10 is clearly

more negative (NBO @0.44, AIM @0.65 e) for R = SiMe3 than for

all carbon substituents (NBO + 0.03 to + 0.04, AIM 0 to
@0.02 e). This distinction is clear, such that a SiMe3 group was

likely to exert the desired regiochemical effect.
The limited number of available electropositive functions

compatible with the other reactive groups in the systems re-
stricts the choice of possibilities. However, 1,8-dichloroanthra-

cenes with EMe3 (E = Si, Ge) substituents in position 10 were

accessible from earlier projects : 10-bromo-1,8-dichloroanthra-
cene can selectively be metalated with nBuLi and the carban-

ion reacted with Me3ECl reagents.[18] The 10-EMe3-1,8-dichloro-
anthracenes with E = Si (1) and Ge (2) were then reacted with

in situ-generated chloroaryne to obtain the corresponding tri-
chlorotriptycenes (Scheme 2), which were then used to test

the validity of the predictions.

With respect to the earlier experiments with R = H, Me and
CMe3 we observed a drastic increase in the syn/anti ratio of
the triptycene product with R = SiMe3. Instead of 0:100 for R =

CMe3, we now observe a strong preference for the syn-isomer

(for R = SiMe3 syn/anti mixture 84:16). A similar observation
was made with R = GeMe3, but the preference for the syn-

isomer was less pronounced (syn/anti mixture 70:30). As both,
Si and Ge, are more electropositive atoms than carbon, the

original prediction by the calculations seemed to have proven
true, and even the higher electronegativity of germanium com-

pared to silicon seems to be reflected in the experimental re-
sults. Comparable results—a favored formation of syn-Diels–

Alder cycloaddition products—are observed when, for exam-
ple, SiMe3- instead of CMe3-substituted furane derivatives are

converted with haloarynes.[19]

The isomers in the product mixtures of 3 and 4 could be

separated by sublimation and were characterized by 1H,
13C{1H}, and 29Si{1H} NMR spectroscopy as well as high-resolu-
tion mass spectrometry. In the case of anti-3, the rotation

about the CAr–Si axis is found to be hindered, as is indicated
by two resonances at 0.99 (6 H) and 0.55 ppm (3 H), induced by
the protons of the SiMe3 substituent. A similar splitting has
been observed earlier for the tert-butyl analogue of anti-4.[12]

Characteristic for the two different isomers, syn and anti, are
the singlet resonances of the bridgehead proton H9. That of

syn-isomer (syn-4) experiences a larger downfield shift than

that of the anti-isomer (anti-4) (d= 7.12 vs. 6.49 ppm).
The molecular structures of syn-3 and syn-4, as determined

by single-crystal X-ray diffraction,[20] are shown in Figure 1.
Both compounds are isostructural. The molecules are of C3

symmetry (close to C3v) and exhibit paddlewheel configura-
tions. Benzene and methyl substituents are arranged in a stag-

gered conformation. The C@C bonds in the benzene rings vary

by about 0.03 a in length around that of benzene (1.395 a[21]).
Longer are the distances C(2)–C(3) and C(4)–C(5) [1.517(2),

1.548(2) a (syn-3) ; 1.519(2), 1.545(2) a (syn-4)] . The bonds C(4)–
E(1) are significantly elongated compared to the corresponding

standard C(sp3)–E distances [1.922(2) a (syn-3) vs. 1.87 a and

Scheme 2. Conversion of the 10-trimethylelement-substituted 1,8-dichloro-
anthracenes 1 and 2 with in situ-generated chloroaryne to afford the tri-
chlorotriptycenes 3 and 4. Reagents and conditions: 1) 3-chloroanthranilic
acid, isoamyl nitrite, DME, reflux, 4 h; 2) aqueous NaOH, MeOH, 55 % (3),
45 % (4). See the Supporting Information for details.

Figure 1. Molecular structures of syn-3 and syn-4 in the crystal. Side views
(above) and views along the C(3)–C(4)–E(1) axis (below). Displacement ellip-
soids are drawn at 50 % probability level. Hydrogen atoms are omitted for
clarity. Selected bond lengths [a] and angles [8] for syn-3/syn-4 : C(1)–C(2)
1.386(2)/1.382(2), C(1)–C(8) 1.393(2)/1.399(3), C(1)–Cl(1) 1.744(1)/1.742(2),
C(2)–C(3) 1.517(1)/1.519(2), C(2)–C(5) 1.408(1)/1.402(2), C(4)–C(5) 1.548(1)/
1.545(2), C(4)–E(1) 1.922(2)/1.994(3), C(9)–E(1) 1.879(1)/1.954(2), Cl(1)–C(1)–
C(2) 119.8(1)/120.0(1), Cl(1)–C(1)–C(8) 118.9(1)/118.9(1), C(1)–C(2)–C(3)
126.4(1)/126.6(2), C(2)–C(1)–C(8) 121.2(1)/121.0(2), C(2)–C(3)–C(2’) 105.6(1)/
105.5(1), C(3)–C(2)–C(5) 113.8(1)/113.8(2), C(4)–C(5)–C(6) 127.2(1)/126.8(2),
C(5)–C(4)–E(1) 114.2(1)/114.0(1).
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1.994(3) a (syn-4) vs. 1.96 a].[22] This indicates intramolecular re-
pulsion between the hydrogen atoms at C(6) and the methyl

groups.
The fact that electronic parameters dominate the regioselec-

tivity of the reactions combined with the inability of charges
to predict the reaction prompted us to gain a more detailed

view of this aryne [4++2] cycloaddition reaction. The most
direct way of theoretical investigation of reactions and their
product distribution is the calculation of structures and ener-

gies of the corresponding transition states. We performed such
calculations for a series of reactions by using different approxi-
mations. To establish a benchmark and to find the most suita-
ble level of theory, we calculated the barriers of activation for
the simplest system first : the reaction of 1,8-dichloroanthra-
cene with chlorobenzyne (for details, see Table S4). It turned

out that the best and still affordable method is DFT using the
B3LYP functional with the 6-31G(d,p) basis set including correc-
tions for basis-set superposition error. The optimized transi-

tion-state structures are shown in Figure 2.

AIM and interacting quantum atoms (IQA) techniques[23] re-
vealed interesting aspects for these transition-state structures

(Figures S4 and S5). Bond critical points (BCP) appear during
bond formation in the reactions, with their properties being

those of weakly stabilizing closed-shell interactions. Natural
energy decomposition analysis (NEDA) in NBO theory[24] shows

better stabilization for the transition states of anti-trichlorotrip-

tycene than for the syn-isomer (Table S6). The lower activation
barrier makes anti-trichlorotriptycene the preferred product in

the corresponding reaction. Detailed analysis reveals the im-
portance of the electronic component (sum of electrostatic,

polarization, and self-energies) in this better stabilization. Relat-
ing the relative energies for the transition states for syn- and

anti-isomers to the corresponding experimentally observed
syn/anti product ratios in reactions of chlorobenzyne with

1,8-dichloroanthracene (Table 1), the B3LYP/6-31G(d,p) results
so far supported at least qualitatively the observations.

However, we could not achieve even a qualitatively correct
prediction of the product ratio for the reaction with R = SiMe3

(Scheme 2). Consequently, a substantial series of additional cal-

culations was performed (Table S7) to find more reliable transi-
tion-state energies for this reaction. All attempts of expanding

the basis set, using different DFT functionals and modeling in
solution, did not improve the calculated energies: the barriers

to the formation of the syn-isomer (with R = SiMe3) were still
predicted higher than those for the corresponding anti-isomer.

Attempts to account for static correlation with the CASSCF

method did either not give results compatible with the experi-
mental findings. However, single-point MP2[25] and XMCQDPT2

energies[26] for the transition-state structures from the respec-
tive RHF and CASSCF calculations indicated that dynamic cor-

relation plays a significant role in these reactions. To test this
hypothesis further, we carried out very time-consuming MP2/
def2-SV(P) optimizations for the transition states. These re-

vealed that the transition states for the formation of syn- and
anti-trichloro-10-(trimethylsilyl)triptycene (3) can have com-
pletely different structures (Figure 3: TS to the syn-isomer) to
those predicted by DFT calculations. The validity of this transi-Figure 2. Optimized [B3LYP/6-31G(d,p)] transition-state structures for the for-

mation reaction of 1,8,13-trichlorotriptycene (syn, above) and 1,8,16-trichlor-
otriptycene (anti, below).

Table 1. Results of the trichlorotriptycene syntheses by conversion of the
corresponding 1,8-dichloroanthracene derivatives 1 and 2 with in situ-
generated chloroaryne. The data for other 10-substituted 1,8-dichloroan-
thracenes (R-10 = CMe3, Me, H) are given for comparison.[12] The reactions
have been also investigated by quantum-chemical calculations (see the
main text and the Supporting Information). All yields are given for isolat-
ed mixtures of syn- and anti-trichlorotriptycenes.

Compound R-10 Syn [%] Anti [%] Yield [%] Product

H 21 79 16
Me 37 63 42
CMe3 0 100 43

1 SiMe3 84 16 55 3
2 GeMe3 70 30 45 4

Figure 3. Different views of the optimized [MP2/def2-SV(P)] transition-state
structure of the formation of syn-1,8,13-trichloro-10-(trimethylsilyl)triptycene
(syn-3).
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tion-state structure for the syn-isomer on this particular level of
theory has been verified by computing the full reaction path.

Figure 3 shows the structure of the transition state of the re-
action of 1 with chloroaryne to syn-1,8,13-trichloro-10-(tri-

methylsilyl)triptycene (3). Surprisingly, we see that it is likely
stabilized by p-stacking of the benzyne ring with the anthra-

cene molecule. Unfortunately, all our attempts to find compu-
tationally and to fully prove the existence of a transition state

to the anti-isomer of 3 were not successful.

Despite its seeming simplicity, the formation of triptycenes
from the reaction of arynes with anthracenes turns out to be a

highly complex system governed by many parameters that re-
quire a subtle balance. The finding of a distinct contribution of

dispersion in the transition state sheds new light on such reac-
tions. We will now examine further tailor-made reference sys-
tems experimentally and theoretically in order to gain an in-

creasingly valid description of the multiple factors that deter-
mine the regioselectivity of such reactions.

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft
[DFG, Priority Program SPP 1807 “Control of London dispersion

interactions in molecular chemistry” (MI477/28-1)] . We thank
Klaus-Peter Mester for recording NMR spectra, Heinz-Werner Pa-

truck for measuring mass spectra, Regionales Rechenzentrum
Kçln (RRZK) for providing computing time (supercomputer

CHEOPS), and Johanna Grote for designing the graphical ab-
stract layout. We also acknowledge support for the Article Proc-
essing Charge from the DFG and the Open Access Publication

Fund of Bielefeld University.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: anthracenes · cycloaddition · dispersion · solid-

state structures · triptycenes

[1] P. D. Bartlett, M. J. Ryan, S. G. Cohen, J. Am. Chem. Soc. 1942, 64, 2649 –
2653.

[2] G. Wittig, R. Ludwig, Angew. Chem. 1956, 68, 40.
[3] T. M. Swager, Acc. Chem. Res. 2008, 41, 1181 – 1189.
[4] J. H. Chong, M. J. MacLachlan, Chem. Soc. Rev. 2009, 38, 3301 – 3315.
[5] C.-F. Chen, Chem. Commun. 2011, 47, 1674 – 1688.
[6] For example, a) V. E. Williams, T. M. Swager, Macromolecules 2000, 33,

4069 – 4073; b) Z. Zhu, T. M. Swager, J. Am. Chem. Soc. 2002, 124, 9670 –
9671; c) J. Hoogboom, T. M. Swager, J. Am. Chem. Soc. 2006, 128,
15058 – 15059; d) D. Maag, T. Kottke, M. Schulte, A. Godt, J. Org. Chem.
2009, 74, 7733 – 7742.

[7] C. Azerraf, S. Cohen, D. Gelman, Inorg. Chem. 2006, 45, 7010 – 7017.

[8] a) K. Nikitin, H. Meller-Bunz, Y. Ortin, J. Muldoon, M. J. McGlinchey, J.
Am. Chem. Soc. 2010, 132, 17617 – 17622; b) D. K. Frantz, A. Linden,
K. M. Baldridge, J. S. Siegel, J. Am. Chem. Soc. 2012, 134, 1528 – 1535.

[9] J.-S. Yang, C.-P. Liu, B.-C. Lin, C.-W. Tu, H.-G. Lee, J. Org. Chem. 2002, 67,
7343 – 7354.

[10] For more and detailed insights in (tr-)iptycenes and their applications
see: a) Y. Jiang, C.-F. Chen, Eur. J. Org. Chem. 2011, 6377 – 6403; b) C.-F.
Chen, Y.-X. Ma, Iptycenes Chemistry—From Syntheses to Applications, 1st
ed. , Springer-Verlag, Berlin, 2012 ; and the references cited therein.

[11] a) M. Mastalerz, I. M. Oppel, Angew. Chem. Int. Ed. 2012, 51, 5252 – 5255;
Angew. Chem. 2012, 124, 5345 – 5348; b) M. W. Schneider, H.-J. S. Haus-
wald, R. Stoll, M. Mastalerz, Chem. Commun. 2012, 48, 9861 – 9863; c) G.
Zhang, O. Presly, F. White, I. M. Oppel, M. Mastalerz, Angew. Chem. Int.
Ed. 2014, 53, 5126 – 5130; Angew. Chem. 2014, 126, 5226 – 5230; d) S. M.
Elbert, F. Rominger, M. Mastalerz, Chem. Eur. J. 2014, 20, 16707 – 16720;
e) G. Zhang, O. Presly, F. White, I. M. Oppel, M. Mastalerz, Angew. Chem.
Int. Ed. 2014, 53, 1516 – 1520; Angew. Chem. 2014, 126, 1542 – 1546;
f) E. H. Menke, V. Lami, Y. Vaynzof, M. Mastalerz, Chem. Commun. 2016,
52, 1048 – 1051.

[12] a) J. Chmiel, I. Heesemann, A. Mix, B. Neumann, H.-G. Stammler, N. W.
Mitzel, Eur. J. Org. Chem. 2010, 3897 – 3907; b) J. Chmiel, Dissertation,
Westf-lische Wilhelms-Universit-t Menster, 2010.

[13] a) J. Chmiel, B. Neumann, H.-G. Stammler, N. W. Mitzel, Chem. Eur. J.
2010, 16, 11906 – 11914; b) J.-H. Lamm, J. Horstmann, J. H. Nissen, J.-H.
Weddeling, B. Neumann, H.-G. Stammler, N. W. Mitzel, Eur. J. Inorg.
Chem. 2014, 4294 – 4301; c) J.-H. Lamm, P. Niermeier, A. Mix, J. Chmiel,
B. Neumann, H.-G. Stammler, N. W. Mitzel, Angew. Chem. Int. Ed. 2014,
53, 7938 – 7942; Angew. Chem. 2014, 126, 8072 – 8076; d) J.-H. Lamm, J.
Glatthor, J.-H. Weddeling, A. Mix, J. Chmiel, B. Neumann, H.-G. Stammler,
N. W. Mitzel, Org. Biomol. Chem. 2014, 12, 7355 – 7365; e) J. Horstmann,
M. Hyseni, A. Mix, B. Neumann, H.-G. Stammler, N. W. Mitzel, Angew.
Chem. Int. Ed. 2017, 56, 6107 – 6111; Angew. Chem. 2017, 129, 6203 –
6207.

[14] M. E. Rogers, B. A. Averill, J. Org. Chem. 1986, 51, 3308 – 3314.
[15] J. M. Medina, J. L. Mackey, N. K. Garg, K. N. Houk, J. Am. Chem. Soc.

2014, 136, 15798 – 15805.
[16] J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211 – 7218.
[17] R. F. W. Bader, Atoms in Molecules—A Quantum Theory, University Press,

Oxford, 1990.
[18] J.-H. Lamm, Yu. V. Vishnevskiy, E. Ziemann, T. A. Kinder, B. Neumann, H.-

G. Stammler, N. W. Mitzel, Eur. J. Inorg. Chem. 2014, 941 – 947.
[19] a) G. W. Gribble, D. J. Keavy, S. E. Branz, W. J. Kelley, M. A. Pals, Tetrahe-

dron Lett. 1988, 29, 6227 – 6230; b) E. Masson, M. Schlosser, Eur. J. Org.
Chem. 2005, 4401 – 4405.

[20] CCDC 1002356 and 10023567 contain the supplementary crystallo-
graphic data for syn-3 and syn-4, respectively. These data are provided
free of charge by The Cambridge Crystallographic Data Centre.

[21] J. Clayden, N. Greeves, S. Warren, Organische Chemie, 2nd. ed. , Springer-
Verlag, Berlin, 2013.

[22] B. Cordero, V. Gjmez, A. E. Platero-Prats, M. Rev8s, J. Echeverr&a, E. Cre-
mades, F. Barrag#n, S. Alvarez, Dalton Trans. 2008, 2832 – 2838.

[23] M. A. Blanco, A. Mart&n Pend#s, E. Francisco, J. Chem. Theory Comput.
2005, 1, 1096 – 1109.

[24] a) E. D. Glendening, A. Streitwieser, Jr. , J. Chem. Phys. 1994, 100, 2900 –
2909; b) G. K. Schenter, E. D. Glendening, J. Phys. Chem. 1996, 100,
17152 – 17156; c) E. D. Glendening, J. Am. Chem. Soc. 1996, 118, 2473 –
2482.

[25] C. Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618 – 622.
[26] A. A. Granovsky, J. Chem. Phys. 2011, 134, 214113.

Received: December 8, 2017

ChemistryOpen 2018, 7, 111 – 114 www.chemistryopen.org T 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim114

https://doi.org/10.1021/ja01263a035
https://doi.org/10.1021/ja01263a035
https://doi.org/10.1021/ja01263a035
https://doi.org/10.1002/ange.19560680107
https://doi.org/10.1021/ar800107v
https://doi.org/10.1021/ar800107v
https://doi.org/10.1021/ar800107v
https://doi.org/10.1039/b900754g
https://doi.org/10.1039/b900754g
https://doi.org/10.1039/b900754g
https://doi.org/10.1039/c0cc04852f
https://doi.org/10.1039/c0cc04852f
https://doi.org/10.1039/c0cc04852f
https://doi.org/10.1021/ma991938j
https://doi.org/10.1021/ma991938j
https://doi.org/10.1021/ma991938j
https://doi.org/10.1021/ma991938j
https://doi.org/10.1021/ja0266868
https://doi.org/10.1021/ja0266868
https://doi.org/10.1021/ja0266868
https://doi.org/10.1021/ja065662o
https://doi.org/10.1021/ja065662o
https://doi.org/10.1021/ja065662o
https://doi.org/10.1021/ja065662o
https://doi.org/10.1021/jo9009744
https://doi.org/10.1021/jo9009744
https://doi.org/10.1021/jo9009744
https://doi.org/10.1021/jo9009744
https://doi.org/10.1021/ic060700q
https://doi.org/10.1021/ic060700q
https://doi.org/10.1021/ic060700q
https://doi.org/10.1021/ja108226p
https://doi.org/10.1021/ja108226p
https://doi.org/10.1021/ja108226p
https://doi.org/10.1021/ja108226p
https://doi.org/10.1021/ja2063346
https://doi.org/10.1021/ja2063346
https://doi.org/10.1021/ja2063346
https://doi.org/10.1021/jo025758a
https://doi.org/10.1021/jo025758a
https://doi.org/10.1021/jo025758a
https://doi.org/10.1021/jo025758a
https://doi.org/10.1002/ejoc.201100684
https://doi.org/10.1002/ejoc.201100684
https://doi.org/10.1002/ejoc.201100684
https://doi.org/10.1002/anie.201201174
https://doi.org/10.1002/anie.201201174
https://doi.org/10.1002/anie.201201174
https://doi.org/10.1002/ange.201201174
https://doi.org/10.1002/ange.201201174
https://doi.org/10.1002/ange.201201174
https://doi.org/10.1039/c2cc35002e
https://doi.org/10.1039/c2cc35002e
https://doi.org/10.1039/c2cc35002e
https://doi.org/10.1002/ange.201400285
https://doi.org/10.1002/ange.201400285
https://doi.org/10.1002/ange.201400285
https://doi.org/10.1002/chem.201404829
https://doi.org/10.1002/chem.201404829
https://doi.org/10.1002/chem.201404829
https://doi.org/10.1002/anie.201308924
https://doi.org/10.1002/anie.201308924
https://doi.org/10.1002/anie.201308924
https://doi.org/10.1002/anie.201308924
https://doi.org/10.1002/ange.201308924
https://doi.org/10.1002/ange.201308924
https://doi.org/10.1002/ange.201308924
https://doi.org/10.1039/C5CC07238G
https://doi.org/10.1039/C5CC07238G
https://doi.org/10.1039/C5CC07238G
https://doi.org/10.1039/C5CC07238G
https://doi.org/10.1002/ejoc.201000354
https://doi.org/10.1002/ejoc.201000354
https://doi.org/10.1002/ejoc.201000354
https://doi.org/10.1002/chem.201001618
https://doi.org/10.1002/chem.201001618
https://doi.org/10.1002/chem.201001618
https://doi.org/10.1002/chem.201001618
https://doi.org/10.1002/ejic.201402376
https://doi.org/10.1002/ejic.201402376
https://doi.org/10.1002/ejic.201402376
https://doi.org/10.1002/ejic.201402376
https://doi.org/10.1002/anie.201402145
https://doi.org/10.1002/anie.201402145
https://doi.org/10.1002/anie.201402145
https://doi.org/10.1002/anie.201402145
https://doi.org/10.1002/ange.201402145
https://doi.org/10.1002/ange.201402145
https://doi.org/10.1002/ange.201402145
https://doi.org/10.1039/C4OB00735B
https://doi.org/10.1039/C4OB00735B
https://doi.org/10.1039/C4OB00735B
https://doi.org/10.1002/anie.201701303
https://doi.org/10.1002/anie.201701303
https://doi.org/10.1002/anie.201701303
https://doi.org/10.1002/anie.201701303
https://doi.org/10.1002/ange.201701303
https://doi.org/10.1002/ange.201701303
https://doi.org/10.1002/ange.201701303
https://doi.org/10.1021/jo00367a011
https://doi.org/10.1021/jo00367a011
https://doi.org/10.1021/jo00367a011
https://doi.org/10.1021/ja5099935
https://doi.org/10.1021/ja5099935
https://doi.org/10.1021/ja5099935
https://doi.org/10.1021/ja5099935
https://doi.org/10.1021/ja00544a007
https://doi.org/10.1021/ja00544a007
https://doi.org/10.1021/ja00544a007
https://doi.org/10.1002/ejic.201301383
https://doi.org/10.1002/ejic.201301383
https://doi.org/10.1002/ejic.201301383
https://doi.org/10.1016/S0040-4039(00)82311-4
https://doi.org/10.1016/S0040-4039(00)82311-4
https://doi.org/10.1016/S0040-4039(00)82311-4
https://doi.org/10.1016/S0040-4039(00)82311-4
https://doi.org/10.1002/ejoc.200500390
https://doi.org/10.1002/ejoc.200500390
https://doi.org/10.1002/ejoc.200500390
https://doi.org/10.1002/ejoc.200500390
https://summary.ccdc.cam.ac.uk/structure-summary?doi=10.1002/open.201700196
http://www.ccdc.cam.ac.uk/
https://doi.org/10.1039/b801115j
https://doi.org/10.1039/b801115j
https://doi.org/10.1039/b801115j
https://doi.org/10.1021/ct0501093
https://doi.org/10.1021/ct0501093
https://doi.org/10.1021/ct0501093
https://doi.org/10.1021/ct0501093
https://doi.org/10.1063/1.466432
https://doi.org/10.1063/1.466432
https://doi.org/10.1063/1.466432
https://doi.org/10.1021/jp9612994
https://doi.org/10.1021/jp9612994
https://doi.org/10.1021/jp9612994
https://doi.org/10.1021/jp9612994
https://doi.org/10.1021/ja951834y
https://doi.org/10.1021/ja951834y
https://doi.org/10.1021/ja951834y
https://doi.org/10.1103/PhysRev.46.618
https://doi.org/10.1103/PhysRev.46.618
https://doi.org/10.1103/PhysRev.46.618
https://doi.org/10.1063/1.3596699
http://www.chemistryopen.org

