
Faculty of Business Administration and Economics

www.wiwi.uni−bielefeld.de

33501 Bielefeld − Germany
P.O. Box 10 01 31
Bielefeld University

ISSN 2196−2723

Working Papers in Economics and Management

➔

No. 04-2018
February 2018

Delaying Product Introduction:

A Dynamic Analysis with Endogenous Time Horizon

Serhat Gezer



Delaying Product Introduction:

A Dynamic Analysis with Endogenous Time

Horizon

Serhat Gezer∗

February 7, 2018

Abstract

We consider a capital accumulating incumbent firm which produces an

established product and has the option to introduce an improved substitute

product to the market by incurring adoption costs. We find that depending

on the initial capacities on the established market and the value of adop-

tion costs, three scenarios are possible, namely introducing immediately,

later or abstaining from product introduction. In case of delay of product

introduction, the incumbent reduces capacities for the established product

before the new product is introduced. We encounter Skiba points where

the incumbent is indifferent between two of the three scenarios and use a

bifurcation analysis in order to characterize the transition towards different

steady states.
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1 Introduction

For many firms, especially those operating in the high-tech sector, whenever a new

technology is available, they have to decide whether to adjust the product range

by incorporating the new technology and if yes, when to do so.

Wang and Hui (2012) provide examples of firms hesitating to incorporate new

available technologies and choosing to stay with the old technology for a while.

Examples include the technology of DVD that has been developed much earlier

than vendors started promoting DVDs. Another example is the MP3 standard.

In an empirical investigation, Chandy and Tellis (2000) have found that a large

fraction of product innovations has been achieved by incumbents. Indeed, we face

such a situation described above often in real-world markets and in many indus-

tries, submarkets evolve and coexist with the established product. An example is

the TV Industry where CRT televisions and flatscreens were sold simultaneously

for a long time (cf. Dawid et al. (2015)).

We consider an incumbent firm which has the option to introduce a horizontally

and vertically differentiated substitute product which has a higher quality than

the established one. For realizing this option, it incurs one-time adoption costs.

Thus, the firm has to determine if the product introduction is profitable and if yes,

when the optimal time of product introduction is. After introduction, we assume

that the firm sells both products.

The firm faces the following trade-off: At the one hand, by launching the new

product it cannibalizes demand for the established product and at the other hand,

it benefits from the new product with higher quality by exploiting higher willing-

ness to pay of the consumers. We find that the cannibalization effect alone cannot

cause a delay. Delay is optimal if and only if there are adoption costs as well e.g.

coming from adjustment costs of the plant, advertisement activities or fees paid

to developers for using their technologies.

In particular, we find that if the firm is strong at the established market, i.e. its

capacities are at a high level, then the firm decides to wait and hence to introduce

the improved product later. By delaying, the firm benefits from discounting adop-
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tion costs while it decreases the capacity of the established product before the new

product is introduced. This reduction of capacity increases the marginal values of

the capacities of the established and the new product at the time of product intro-

duction. Amongst others, this enables the incumbent to build-up capacities for the

new product faster when it is introduced, compared to immediate introduction.

There is a large literature on capital accumulating firms which has been extended

by Dawid et al. (2015) who analyzed the optimal R&D effort for product innovation

and capital accumulation of established and new products, where the breakthrough

probability of developing a new product depends on both, a knowledge stock and

current R&D efforts via a hazard rate. Hence, in that paper innovation time is

stochastic and it is assumed that the new product is introduced immediately once

it is available. We focus on the optimal timing of product introduction and opti-

mal investment in capacities and differ from Dawid et al. (2015) in not considering

R&D efforts to develop a new product and not linking successful development to

market introduction but considering the time of market introduction as a choice

variable. The classical literature on optimal timing of technology adoption (see.

e.g. Kamien and Schwartz (1972) for a single firm and Reinganum (1981) and

Fudenberg and Tirole (1985) for a duopoly) assumes that quality increases due

to technological progress and the only decision variable is the time of technology

adoption. Farzin et al. (1998) and Doraszelski (2004) extend this stream of litera-

ture by considering the quality improvement as a stochastic process. In contrast,

in our model, the quality of the new product is fixed and the firm cannot gain addi-

tional quality by delaying. Thus, our analysis focuses on the dependence on initial

characteristics whose importance has been addressed a lot, e.g. in Hinloopen et al.

(2013) where initial marginal costs determine if a technology is developed further

or not. Real options models (see e.g. Dixit and Pindyck (1994)) have focussed

on optimal timing in continuous time where demand is stochastic e.g. evolving

according to a Brownian motion. A simultaneous analysis of optimal timing and

optimal investment in capacities in the real options literature has been provided

by Huisman and Kort (2015) where the price of the good is stochastic. We dif-

fer from that stream of literature by considering a deterministic environment and

3



continuous adjustments of capacities.

The problem of an incumbent delaying product introduction has been addressed

in Wang and Hui (2012). They apply a discrete three-period time framework where

they do not take into account capacity adjustments. In contrast to Wang and Hui

(2012), in our model, delaying cannot be optimal if there are no adoption costs.

From a technical perspective, we employ Pontryagin’s Maximum Principle for

free end time (see. e.g. Grass et al. (2008)) to obtain analytical results concerning

the optimal investments and the optimal time of market introduction.

Moreover, in this optimal control problem, due to the non-concave structure

of the value function, the Arrow-Mangasarian sufficiency conditions are not met

which for certain states lead to the presence of multiple optimal investment paths.

In particular, we characterize situations in which the firm is indifferent between

approaching different steady states (see Skiba (1978)). In such models, qualitative

properties of solutions depend very much on parameters (cf. Hinloopen et al.

(2013)). Therefore, we use a bifurcation analysis to assess industry dynamics

for different values of adoption costs where we encounter a deformed pitchfork

bifurcation.

The analysis in this paper is carried out for a monopoly setting. Even though

the real-world examples we have raised stem from competitive environments, we

believe that it is important to consider the monopoly as it is interesting in its own

right. Indeed, timing of product introduction is not only influenced by competing

firms but from competing substitute products as well even if there is only a sin-

gle firm. As the established and new product are substitutes, there is ‘internal’

competition between those two products. In order to disentangle rivalry between

products and between firms, it is reasonable to analyze the monopoly case before

proceeding to the competition case.

The paper is organized as follows. We introduce the model in Sect. 2. Sect. 3

is devoted to the technical analysis. In Sect. 4, we provide an economic interpre-

tation, conduct a bifurcation analysis and present optimal timing curves. Sect. 5

analyzes welfare effects of delaying product introduction. Model assumptions are

discussed in Sect. 6 and Sect. 7 concludes.
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2 Model

We consider an incumbent firm which has initial capacity Kini
1 to produce an estab-

lished product. A new substitute product with higher quality has been developed

and is ready for market introduction. Product introduction comes with lump-sum

adoption costs F . An important assumption is that the incumbent cannot invest

in capacities of the new product before introducing it, i.e. there are no capacities

at the time of introduction for the new product.

We follow the literature on optimal capital accumulation by relying on a standard

linear model (see e.g. Dockner et al. (2000)). Thus, the firm faces a linear inverse

demand function which is given by

p1(t) = 1−K1(t). (1)

After product introduction, the inverse linear demand system1 is given by

p1(t) = 1−K1(t)− ηK2(t), (2)

and

p2(t) = 1 + θ − ηK1(t)−K2(t), (3)

where η with 0 < η < 1 measures the degree of horizontal and θ > 0 the degree of

vertical differentiation of the substitutes.

The firm wants to determine the optimal time of product introduction T and

the optimal investment strategies before and after product introduction. There is

no inventory, i.e. capacities equal sales2. The capacity dynamics are

K̇i(t) = Ii(t)− δKi(t), i = 1, 2, (4)

K1(0) = Kini
1 , K2(t) = Kini

2 = 0 ∀ t ≤ T, (5)

1This demand system is motivated by the fact that the two products are substitutes and

competing with each other. According to the seminal result of Kreps and Scheinkman (1983),

setting prices optimally subject to ex-ante capacity commitments reduces to a Cournot setting

which we adopt here.
2This assumption has been used in large parts of the literature on dynamic capacity invest-

ment, see e.g. Goyal and Netessine (2007). See Section 6 for a discussion of this assumption.
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where δ > 0 measures the depreciation rate. As has been done in Dawid et al.

(2015), we allow the firm to intentionally scrap capacities, i.e. Ii ∈ R while capac-

ities have to remain non-negative:

Ki(t) ≥ 0 ∀ t ≥ 0, i = 1, 2. (6)

Adjusting capacities is costly, in particular it comes with quadratic costs

C
(
Ii(t)

)
=
γ

2
I2i (t), i = 1, 2. (7)

Normalizing production costs to zero, the objective function of the firm is given

by the following expression:

max
T,I1(t),I2(t)

J =

∫ T

0

e−rt
(
p1(t)K1(t)− C(I1)

)
dt

+

∫ ∞
T

e−rt
(
p1(t)K1(t) + p2(t)K2(t)− C(I1)− C(I2)

)
dt− e−rTF.

(8)

We refer to this problem as P(Kini
1 ).

3 Analysis

In case that the firm wants to introduce the improved product at some finite time

T , there will be a structural change of the model. Therefore, we denote by mode 1

(m1) the optimal control problem up to time T and by mode 2 (m2) the problem

after T . Denote by V m1(K1) and V m2(K1, K2) the corresponding value functions

of the infinite horizon control problems where the mode is fixed and hence does not

change3. The optimal control problem at hand where the mode m might change

is denoted by V (K1, K2, t,m) and we refer to this problem as the optimal control

problem with introduction option.

The subproblem in m2 is linear-quadratic with infinite time horizon which can be

solved easily, as has been done in Dawid et al. (2015). The optimal strategy and the

value function are stationary for this problem, i.e. V (K1, K2, t,m2)=V
m2(K1, K2).

There is a unique globally asymptotically stable steady under the optimal strategy

3We suppress the argument t wherever it is possible and does not cause confusion.
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and the value function is given by4

V m2(K1, K2) = a+ bK1 + cK2
1 + dK2 + eK2

2 + fK1K2. (9)

The typical shape of the value function of m2 is depicted in Figure 1.

Figure 1: Value function of m2 at T , i.e. for K2 = 0. Parameters: r = 0.04, δ =

0.1, η = 0.9, θ = 0.1, γ = 0.15.

By regarding the value function of the subproblem as the salvage value of the

optimal control problem with introduction option, we can rewrite (8) by

max
T,I1(t)

J =

∫ T

0

e−rt
(
p1(t)K1(t)− C(I1(t))

)
dt+ e−rTS

(
K1(T )

)
, (10)

where S
(
K1(T )

)
= V m2(K1(T ), 0)− F .5 This problem can be solved analytically

by Pontryagin’s Maximum Principle for variable terminal time. The Hamiltonian

is

H(K1, I1, λ, t) = (1−K1)K1 −
γ

2
I21 + λ(I1 − δK1), (11)

where λ is the co-state variable and the optimal investment is given by

I1 =
λ

γ
. (12)

The co-state equation reads

λ̇ = (r + δ)λ− (1− 2K1), (13)

and the transversality condition is given by6

λ(T ) = SK1 = V m2
K1

(K1, 0). (14)

4Equations for coefficients are given in Dawid et al. (2015).
5K2(T ) = 0 since there are no capacities for the new product at T , yet.
6The canonical system, isoclines, the steady state for staying in m1 and its stability properties

are given in Appendix A.1.

7



For nonzero finite T ∗, let
(
K∗1(·), I∗1 (·)

)
be an optimal solution to (10) on the

optimal time interval [0, T ∗]. Pontryagin’s Maximum Principle for variable end

time implies an additional constraint for the terminal time, which is given by

H(K∗1(T ∗), I∗1 (T ∗), λ(T ∗), T ∗) = rS
(
K∗1(T ∗)

)
− ST

(
K∗1(T ∗)

)
. (15)

Note that the salvage value does not depend explicitly on T ∗ and hence,

ST
(
K∗1(T ∗)

)
= 0. (16)

So, equation (15) requires that at the optimal time T ∗, the instantaneous revenue

from staying in m1 plus the assessment of the change of the state variable on the

one hand (which is given by the current-value Hamiltonian, abbr. by H) and the

interest on the salvage value (abbr. by rS) on the other hand are equal. This is

quite intuitive since otherwise it would be optimal to stay longer in m1 if H is

higher than rS or to have introduced earlier if rS is higher than H.

In Lemma 2 in Appendix A.2, we state that there are two solutions for equation

(15). By that lemma and Proposition 1 below, we show that for F = 0, both

solutions coincide and H ≤ rS for all values of established capacity, i.e. immediate

introduction is optimal and hence T ∗ = 0. For F > 0, there are two distinct

points satisfying the terminal condition. In the corresponding interval, where the

boundaries are given by the two points satisfying (15), there is H ≥ rS (cf. Figure

12 in Appendix A.2), i.e. for initial capacities in the interval, it is optimal to reduce

capacities down to the lower bound and to introduce the new product, we say to

jump to m2. We denote the two solutions of (15) by K lb
1 and Kub

1 , respectively

for lower and upper bound of the interval with K lb
1 ≤ Kub

1 . As mentioned above,

for F = 0, both solutions coincide7, i.e. K lb
1 = Kub

1 (see Appendix A.2), which we

denote by KF=0
1 .

So, for higher capacities than Kub
1 , the unique solution is to introduce the new

product immediately again. In particular at Kub
1 , the firm is indifferent between

7Technically, in case of no adoption costs, H and rS are tangential at KF=0
1 :

∂

∂K1
H(KF=0

1 , I∗1 (T ∗), λ(T ∗), T ∗) =
∂

∂K1
rV m2(KF=0

1 , 0). (17)
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both options. However, higher capacities than Kub
1 will not be analyzed further

as there the firm switches immediately to m2 which has been analyzed in Dawid

et al. (2015).

As the optimal introduction time depends on the size of capacity, we consider

it as a correspondence depending on Kini
1 and denote it by T ∗(Kini

1 )8. It is a

correspondence since there are situations with multiple optimal values as we will

discuss in the following. We start by characterizing finite solutions.

Proposition 1. If T ∗(K1) is finite for all K1, then for all K1 ≤ K lb
1 , it is optimal

to innovate immediately. For all K lb
1 < K1 ≤ Kub

1 , it is optimal to reduce capacities

and to innovate when the capacity reaches K lb
1 , i.e. T ∗(K1) > 0.

Proof. See Appendix A.3

Proposition 1 states that immediate introduction is optimal if capacity for the

established product is lower than a certain threshold (given by K lb
1 ) whereas for

capacities above, it is optimal to wait and to decrease capacities on the established

market before product introduction. Note, that there are infinite solutions where it

is not optimal to innovate immediately even though Kini
1 ≤ K lb

1 as we will discuss

at the end of this section.

In the next lemma we focus on the dependence of K lb
1 on F and find that K lb

1 is

decreasing in F , i.e. as adoption costs increase, it takes longer to arrive at K lb
1 for

a fixed starting point Kini
1 > K lb

1 .

Lemma 1. K lb
1 is decreasing in F .9

Proof. See Appendix A.4.

In Figure 2, we illustrate how the value function evolves as F increases. For

K lb
1 < K1 < Kub

1 , the value function of the problem with introduction option is

higher than the value function of m2. As F increases and discounting adoption

8An alternative would have been to define a function which gives the remaining time in m1

not depending on the initial but current capacity (cf. Long et al. (2017)).
9Moreover, Kub

1 is increasing in F . Thus, for increasing F , the interval [Klb
1 ,K

ub
1 ] expands

around KF=0
1 .
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(a) F = 0.5 (b) F = 1

(c) F = 1.2 (d) F = 1.27

Figure 2: Value functions for different values of F . Parameters: r = 0.04, δ =

0.1, η = 0.9, θ = 0.1, γ = 0.15.

costs become more important, the difference of the value function with introduction

option and the scrap value function gets larger. Furthermore, as the products are

vertically differentiated, the value of the problem of m2 is higher than of m1 for no

adoption costs. Thus, the value of the problem with introduction option is higher

than the value of the infinite problem of m1. Obviously, for large enough F , the

value function of the problem with introduction option will hit the value function

of the infinite horizon problem of m1 and infinite solutions will occur, i.e. product

introduction will not be sufficiently attractive anymore. We show in Appendix

A.5 in Lemma 3 that there exists a unique value of adoption costs F̃ where this

happens for the first time (see Figure 3). Thus, F̃ is the lowest value of adoption

costs for which it exists some initial value of capacity where the firm abstains from

product introduction. This result leads to the following corollary.

Corollary 1. For F < F̃ , T ∗(K1) is finite for all initial capacities and Proposition
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Figure 3: Value function for F = F̃ = 1.27437. Parameters: r = 0.04, δ = 0.1, η =

0.9, θ = 0.1, γ = 0.15.

1 applies.

Proof. Follows directly from Lemma 3 in Appendix A.5.

To sum up the results so far, for F = 0, the firm wants to launch the new product

immediately. For increasing F , there arises an interval given by [K lb
1 , K

ub
1 ] wherein

the higher Kini
1 the longer it takes to arrive at K lb

1 where the firm wants to launch

the new product, i.e. the stronger the firm on the established market, the more

the firm delays. Moreover, due to Lemma 1, the higher the adoption costs, the

lower is the switching capacity, i.e. the firm wants to reduce capacities more in

advance before switching to m2.

Denote by K̃1 the lowest value of initial capacity where an infinite solution exists

for P(K̃1):

K̃1 = min{K1 | T ∗(K1) =∞}. (18)

Note that K̃1 exists for F ≥ F̃ . The following proposition and corollary charac-

terize the situation at F̃ .

Proposition 2. At F = F̃ ,

K̃1 = Kss,m1

1
10 (19)

and the free end-time problem P(K̃1) has a unique solution with T ∗ =∞.
10Kss,m1

1 is the unique steady state for staying infinitely in m1 given in Appendix A.1.
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Proof. See Appendix A.7.

Corollary 2. At F̃ , for K1 < K̃1,

T ∗(K1) <∞, (20)

and for K̃1 ≤ K1 < K̄1,

T ∗(K1) =∞. (21)

Proof. Due to the definition of K̃1, for K1 < K̃1 only finite solutions are optimal.

According to the proof of Proposition 2, for K̃1 ≤ K1 < Kub
1 , only infinite solutions

are optimal.

Proposition 2 and Corollary 2 state that at F̃ , Kss,m1

1 is a threshold separating

finite and infinite solutions. That is, for K1 ≥ Kss,m1

1 the firm prefers not inno-

vating and stays in m1, whereas for K < Kss,m1

1 the firm decreases11 capacities to

K lb
1 and hence introduces the new product eventually.

For characterizing the evolution of K̃1, we denote by F̄ the value of adoption

costs for which

V m1(K lb) = V m2(K lb)− F (= S(K lb)) (22)

holds, i.e. where the firm is indifferent between introducing immediately and

delaying infinitely at K lb
1 .

Proposition 3. K̃1 is decreasing in F and for all F̃ < F < F̄ , the free end-time

problem P(K̃1) has two different solutions with optimal terminal times 0 < T f <∞

and T∞ = ∞, i.e. K̃1 is a Skiba point where the firm is indifferent between

introducing the product after some delay and not at all.

Proof. See Appendix A.8.

A consequence of Proposition 3 is that as F increases, the range of capacities

where the firm stays with only one product enlarges as K̃1 decreases. Moreover,

there is a finite and infinite solution at K̃1
12. As before, the timing for capacities

11In Appendix A.6 in Lemma 4, we show that at F̃ , Klb
1 ≤ Kss,m1 holds.

12There is no other value of capacity where both solutions are optimal.
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lower than K̃1 is finite. So there exist three different ranges of capacities where

optimal time of product introduction is either 0, infinite or in-between. We refer

to [F̃ , F̄ ) as the intermediate range of F and for F ∈ [F̃ , F̄ ) we refer to (K lb
1 , K̃1)

as the waiting region.

Denote by ¯̄F the value of adoption costs where thereafter finite solutions disap-

pear for the first time13, i.e.

T ∗(0) =∞ . (23)

Now, we show that at F̄ the waiting region vanishes and only immediate or infinite

solutions for T remain.

Corollary 3. For F̄ ≤ F < ¯̄F , there exists a K̃1 > 0 such that for all K1 < K̃1 the

firm introduces the new product immediately whereas for all K1 > K̃1 the firm never

introduces the new product. At K̃1, the incumbent is indifferent, in particular the

free end-time problem P(K̃1) has two different solutions with 0 = T f < T∞ =∞.

Moreover, at F̄ , K̃1 = K lb
1 .

Proof. By definition of F̄ , the firm is indifferent between immediate and infinite

product introduction. By Proposition 3, K̃1 is decreasing and hits K lb
1 at F̄ where

solutions with 0 < T <∞ vanish.

Thus, for all F , K̃1 is separating finite and infinite solutions for T . Note that

for F < F̄ , the value function of m2 and the value function of the problem with

introduction option paste smoothly at K lb
1 , i.e.14

∂V (K lb
1 , 0,m1)

∂K1

=
∂V m2(K lb

1 )

∂K1

. (24)

Furthermore, at F̃ , the value function of the problem with introduction option and

the value function of m1 paste smoothly at K̃1 (see Figure 3) whereas for F > F̃

the value function has a kink at K̃1 (cf. Figure 4).

13As K̃1 is decreasing in F , at ¯̄F , K1 = 0 is the only remaining value for capacity such that

the firm is indifferent between immediate and no product introduction.
14Note that the value function is time-invariant and hence the time argument can be omitted,

i.e. V (Klb
1 ,K

lb
1 , t,m) = V (Klb

1 ,K
lb
1 ,m).
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Figure 4: Value function for high F . Parameters: r = 0.04, δ = 0.1, η = 0.9, θ =

0.1, γ = 0.15, F = 1.3.

3.1 Summary of Results

In total, as long as F is intermediate (i.e. F̃ ≤ F < F̄ ), we can split the state

space in three parts:

i) ‘Immediate introduction’: K1 ≤ K lb
1 : Firm innovates immediately, T ∗ = 0.

ii) ‘Delayed product introduction’: K lb
1 < K1 ≤ K̃1: Firm delays introduction

and introduces product later at 0 < T ∗ <∞.

iii) ‘No introduction’: K1 ≥ K̃1: Firm delays introduction infinitely, i.e. there

is no product introduction.

For increasing F the indifference point K̃1 shifts to the left and eventually the

waiting region vanishes where K̃1 and K lb
1 coincide and only two possibilities re-

main: Either the firm innovates immediately (for low capacities) or never (for high

capacities). Hence, for F ≥ F̄ , the value function is given by the upper curve of

the value functions V m1 and V m2 (see Figure 4).

We call F low if 0 < F < F̃ , intermediate if F̃ ≤ F < F̄ , high if F̄ ≤ F ≤ ¯̄F

and very high if F > ¯̄F .

• If there are no adoption costs, only scenario i) is prevalent.

• For low adoption costs, scenarios i) and ii) are possible depending on the

initial capacity level.

• If F is intermediate, all three scenarios are possible.

14



• For high adoption costs, only scenarios i) and iii) are possible.

• For very high adoption costs, only scenario iii) is prevalent.

4 Dynamics

In Section 4.1, we give an economic interpretation of the optimal capacity invest-

ments and the timing decision. A bifurcation analysis is presented in Section 4.2.

Optimal timing curves and its dependence on parameters of horizontal and vertical

differentiation are given in Section 4.3.

In order to derive dynamics, we consider the following default parameter setting

taken from Dawid et al. (2015):

r = 0.04, δ = 0.1, η = 0.9, θ = 0.1, γ = 0.15. (25)

4.1 Economic Interpretation

The intuition for the ‘Immediate Introduction’ and ‘No Introduction’ scenario is

straight forward. The benefit from the new product is either so high that the firm

does not want to wait or the benefit is too low such that the firm stays with the

established product. Thus, we focus on the interpretation of the interesting case

of delay. Note that for finite T ∗, before T ∗, the Hamiltonian H is greater than the

interest on the salvage value rS and at T ∗, they are equal15. In a sense the firm

exploits profits in m1 before moving to m2. By choosing T ∗ > 0, the Hamiltonian

is affected16 via the co-state λ(t). In economic terms, the following mechanisms

can be identified.

First, the delay in time leads to stronger discounting of the scrap value V m2−F .

The firm saves adoption costs as F is paid as a lump-sum, but gets V m2 later as

well. The latter is smoothed by the concave structure of the value function of m2 as

15Note that this is not necessarily true for the infinite case since if T ∗ is infinite, the transver-

sality condition for the co-state variable and hence the Hamiltonian would be altered.
16Note that the investment in established capacity depends on the co-state as well.
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the firm reduces capacities of the established product and hence V m2 increases17.

Second, in the proof of Lemma 2 in Appendix A.2, we find that

∂V m2

∂K2

(KF=0
1 , 0) = 0, (26)

which has an interesting economic intuition. In contrast to m1, in m2, the firm

is able to invest in K2. For F = 0 at KF=0
1 and elsewhere, there is no reason for

waiting. But for higher F > 0, waiting yields discounting of adoption costs while at

KF=0
1 , (26) still holds and thus there is no gain from immediate switching tom2 and

investing in K2. Thus, by postponing the product introduction, the incumbent can

decrease the capacity of K1 before switching such that ∂Vm2

∂K2
(K lb

1 , 0) > 0, i.e. when

switching, the marginal value of the new product’s capacity is higher and hence

there is an immediate gain from investment in K2. Hence, the investment pattern

in m2 is affected, where due to the reduced capacity of the established product,

the firm has stronger incentives to build-up capacities for the new product and

the disinvestment in the established product is weaker18 than it would be without

delay. Hence, in m2, profits drop and are initially lower than in m1 as there is a

strong investment in capacities of the new product but sales increase only gradually

for the new product. By delaying, the firm can postpone this drop in profits and

enjoy ’high’ profits in m1. However, the drop in profits is stronger compared to

immediate introduction.

4.2 Bifurcation analysis

We have a situation in mind where a new improved version of a product is launched

which is a close substitute to the established product. This is reflected by a rela-

tively high η and low θ. We do robustness checks with respect to those parameters

in Section 4.3.1. The other parameter choices are very standard.

From Figure 3, it is clear that the value function is not concave in K1 and hence

does not satisfy the Arrow-Mangasarian sufficiency conditions. Thus, as mentioned

17This holds as long as the switching capacity Klb
1 is greater than the maximal argument of

V m2 which is true for the considered parameter setting.
18This is due to the increased marginal value of the established capacity.
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earlier, in this section we examine the qualitative properties of the steady states

of the control problem with introduction option with respect to the parameter F .

We start by drawing a bifurcation diagram of m1 (Figure 5).

Figure 5: Bifurcation diagram of m1.

The gray area is not present in m1 since if the firm starts in that area or arrives

there, it introduces the new product and hence is no more in m1 but in m2. As

we are interested in characterizing dynamics in m1 and in m2 together, we draw

a superimposed bifurcation diagram of both modes (cf. Hinloopen et al. (2017))

in Figure 6. For F < F̃ , we have a unique stable steady state. No matter if

Figure 6: Superimposed diagram.

the firm delays product introduction or not, it will eventually arrive at the steady

state level of K1 in m2 denoted by Kss,m2

1 . As analyzed before, at F̃ there arises a

second steady state where for initial capacities K̃1 ≤ K1 ≤ Kub
1 (which are in the

red area in Figure 6) the firm stays in m1 and eventually arrives at Kss,m1

1 .
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At ¯̄F the equilibrium point Kss,m2

1 vanishes and it remains only Kss,m1

1 for F > ¯̄F

(see Figure 7).

Figure 7: Dynamics around ¯̄F .

Besides, we have a deformed pitchfork bifurcation which exhibits a hysteresis

phenomenon where initially only one stable steady state exists and for higher F a

second equilibrium arises ’out of the blue sky’, where a repelling curve separates

the two basins of attraction (red and blue area) where for very high F only the

second equilibrium remains. The black dashed curve is the Skiba curve (which is

repelling except at the two steady states where it is semi-stable). Note that for

capacities on the Skiba curve in between the two steady states, optimal paths are

moving in opposite directions but for capacities on the Skiba curve below Kss,m2

1

both optimal paths move in same direction (see Figure 7). Note that this is a

superimposed diagram and not a bifurcation diagram in the classical sense and

the latter is possible since there the firm either jumps immediately to m2 or never,

which means that we actually consider two disjoint optimal control problems where

the mode can be interpreted as a further state variable.

4.3 Characterization of optimal timing curves

As discussed in Section 3, for F ≥ F̃ , K̃1 separates finite and infinite solutions

for the optimal introduction time. Thus, it jumps at K̃1 to infinity. Hence, for

K̃1 ≤ K1 ≤ Kub
1 , the value function of the problem with introduction option is

equal to the value function of the problem without introduction option.
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We now investigate in detail what happens when F approaches F̃ . The graphs

of the optimal introduction time are depicted in Figure 8. For low adoption costs,

F = 1 F = 1.274 F = F̃ ≈ 1.27437

Figure 8: Optimal time of switching for increasing F .

the correspondence is concave for K1 ≥ K lb
1 . As analyzed in Section 3, it is finite

for low adoption costs whereas it becomes infinite at F̃ for K1 ≥ K̃1 = Kss,m1
1 .

For F approaching F̃ , T ∗(K1) becomes convex-concave and very steep at Kss,m1

1 ,

i.e Kss,m1

1 becomes an inflection point (see Figure 8) which means that the firm

decreases higher capacities and ”stays around” Kss,m1

1 for a while until it starts

decreasing again down to K lb
1 . Note that for F < F̃ , T ∗(K1) is finite everywhere,

whereas at F̃ , T ∗(K1) is infinite for K1 ≥ Kss,m1
1 .

Figure 9: Capacity-investment dynamics for F = 1.275.

Figure 9 depicts optimal curves in the (K1, I1) space for the interesting case of
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intermediate adoption costs where K̃1 separates the two basins of attraction. For

K lb
1 < K1 < K̃1, the firm decreases capacities down to K lb and introduces the new

product. In m2, it continues decreasing capacities of K1 down to Kss,m2

1 while it

builds up capacities for the new product up to Kss,m2

2 .

4.3.1 Effect of horizontal and vertical differentiation

For decreasing degree of horizontal differentiation η, the products become more

differentiated and thus the firm is expected to benefit from this. As both markets

get more independent we expect that the firm is willing to introduce the new

product earlier. Numerical experiments are in line with this intuition (see Figure

10). Analogously, for increasing θ we get similar results.

Figure 10: Optimal time of switching for different parameterizations of η and θ.

5 Welfare implications

For analyzing welfare implications, note that the inverse demand functions stem

from the following utility function of the consumers where M is the initial endow-

ment:

CS(t) = u(K1, K2) = K1 +(1+θ)K2−
1

2
(K2

1 +K2
2)−ηK1K2 +(M−p1K1−p2K2).

(27)
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The welfare depends on the interpretation of adoption costs. If it is paid to the

developer of the technology, then it is considered as a transfer and it is always

profitable to introduce the new product immediately. But if it is considered as

‘real’ costs, then it has to be taken into account. In that case, the social planner

maximizes the difference of consumer surplus and costs of investment and adoption:

max
T,I1(t),I2(t)

J =

∫ T

0

e−rt
(
u(K1, 0)− γ

2
I21
)
dt+

∫ ∞
T

e−rt
(
u(K1, K2)−

γ

2
(I21 + I22 )

)
dt−e−rTF.

(28)

We expect that product introduction is favorable from a social point of view as in

m2, there is a new product of higher quality which affects the consumer only posi-

tively. For the given parameter setting, we find that delaying product introduction

occurs only for very large F , in particular for F > 2.4492 19. So, as expected, from

the perspective of a social planner, it is optimal to introduce immediately for a

wide range of F .

For the case of ’real’ costs, the welfare difference of the situation of a profit

maximizing firm and the situation where the firm is controlled by a social planner

is depicted in Figure 11 for Kini
1 = Kss,m1

1 . The welfare loss is initially constant

(a) (b)

Figure 11: Welfare gain for K1 = Kss,m1

1 . Parameters: r = 0.04, δ = 0.1, η =

0.9, θ = 0.1, γ = 0.15.

as in both situations, immediate introduction is optimal (as long as Kss,m1

1 < K lb
1 )

but at some critical F (where K lb
1 < Kss,m1

1 ), the firm starts delaying the product

19Note that for the profit maximizing firm delay occurs even for F = ε, ε > 0, which is

substantially lower than 2.4492.
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introduction which increases the welfare loss. However, for F ≥ F̃ , the welfare

loss decreases (see Figure 11(b)) as the firm stays in m1 where F does not have

an effect whereas the welfare for the social planner decreases as costs of switching

to m2 increases.

6 Discussion of results and assumptions

Somewhat surprising is that the first appearance of solutions where the firm stays

with the established product is accompanied by a threshold point separating finite

and infinite solutions for the terminal time. One might think that the rationale

behind is that m1 and m2 are endogenously linked as in m2 the number of products

increases. But the phase-plane analysis (given in Appendix A.7) shows that this

situation might occur even for a switch to an exogenously given mode, in particular

whenever the terminal pair is on the unstable manifold.

From an economic perspective, delay was expected in order to discount adoption

costs and increase the scrap value at the time of introduction. Our analysis shows

that the decrease of established capacities is accompanied by a larger marginal

value for the new product in m2, i.e. investing in the capacities of the new product

is stronger than it would be with immediate introduction.

In our analysis, we abstract from competition. However, a monopoly could turn

into a competing environment if entry is possible. Thus, if there is a threat of

possible entrants, we expect that this would accelerate product introductions.

Another issue is that we do not consider the phase of development of the new

product. For the interpretation that the new product is developed by the incum-

bent himself, it is clear that the firm is not going to engage in R&D activities if the

product is not introduced eventually. In the case where the product is introduced

with some delay, we expect that R&D efforts would be less in the development

phase which would have a similar impact on the introduction time.

For the interpretation of external developers generating a new technology where

adoption costs mainly consist of buying the patent for the new technology, an

alternative option to adoption costs which has to be paid once when the product

22



is introduced, would be to consider fees per unit which has to be paid to the

owner of the patent. There, as long as the fee per unit is constant and less than θ,

introduction would occur immediately since fees are paid continuously, so adoption

costs are ‘spread over time’.

We made the assumption that capacities are fully used, i.e. production equals

sales. We believe that this assumption is of minor consequence to our results since

in our model, there are no capacities for the new product in T and investment in

capacities has quadratic costs such that capacities are not build up as a ‘lump-

sum’ but slowly while the capacity of the established product is reduced slowly.

Moreover, in the case of delay, the incumbent starts reducing capacities even in

m1. A rigorous analysis of the full usage of capacity assumption yields that it is

optimal to exploit full capacity if the following conditions hold:

2K1 + ηK2 ≤ 1, (29)

ηK1 + 2K2 ≤ 1 + θ. (30)

Numerical experiments suggest that conditions (29) and (30) seem to be satisfied

for reasonable values of K1 (≤ Kss,m1

1 )20.

Furthermore, e.g. for decreasing demand, it is argued that in practice firms

reduce prices in order to maintain production rather than reducing production

due to contracts with employees and suppliers, even though such contracts are

20In the case of no horizontal and vertical differentiation, i.e. η = 1 and θ = 0, conditions (29)

and (30) are satisfied if

K1 ≥
1

3
∧K2 ≤

1

3
, (31)

or

K1 ≤
1

3
∧K2 ≥

1

3
. (32)

For our default parameter setting with F = 1.275, (31) and (32) are satisfied. In the case of

horizontal and vertical differentiation, (29) and (30) are weakened. For higher θ, the incumbent

wants to build up capacities for the new product faster, but also to decrease capacities of the

established product faster. For lower η, as products are more differentiated and competition of the

established and the new product is weakened, investment in the new product’s and disinvestment

of the established product’s capacities are slower. Thus, in both cases, we expect that (29) and

(30) are not affected much.
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not modeled here (cf. Goyal and Netessine (2007)). However, counterexamples

exist as well where firms have excess capacity e.g. for deterring entry (see Chicu

(2012)).

This analysis focuses on the effect of adoption costs. However, for some products,

not adoption costs but differences in production costs may be the main reason

for firms to abstain from product introduction, in particular if the old and new

product’s production costs differ a lot. Apple had developed a mouse in 1979

whose production costs were too much such that Apple abstained from further

development of this mouse and hence from introducing it (cf. Hinloopen et al.

(2013)).

7 Conclusion

Using a fully dynamic framework we identify different scenarios where the firm’s

behavior depends crucially on the capacity of the established product and on the

level of adoption costs. There is an interesting case where it is not optimal for the

firm to introduce the new product immediately but to delay product introduction.

By delay in time, adoption costs are discounted while the firm prepares for prod-

uct introduction by reducing capacities on the established market which increases

the marginal value of the established and new products’ capacities. Moreover, the

incumbent postpones investment in new capacity and hence benefits longer from

high profits before product introduction. Noteworthy is the occurrence of Skiba

points where the firm is indifferent in approaching different steady states which

affects the number of products produced by the firm. We assumed that firms can-

not invest in capacities beforehand. Allowing for investment before introduction

might have an effect on the time of introduction, in particular we expect that this

would accelerate product introduction while we think that qualitative results will

be the same. Furthermore, we abstained from competition which would be the

natural next step.
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A Appendix

A.1

The canonical system is given by

K̇1 =
λ

γ
− δK1,

λ̇ = (r + δ)λ− (1− 2K1),

(33)

and the isoclines are

K̇1 = 0 ⇔ λ = δγK1,

λ̇ = 0 ⇔ λ =
1− 2K1

r + δ
.

(34)

If the firm does not introduce the new product, i.e. for staying in m1 infinitely,

there is a unique steady state

Kss,m1

1 =
1

δγ(r + δ) + 2
, λss,m1 =

δγ

δγ(r + δ) + 2
. (35)

The steady state is a saddle point as the Jacobian is

−δ 1
γ

2 r + δ

 (36)

with

det J = −δ(r + δ)− 2

γ
< 0. (37)

The eigenvalues are given by

µ1,2 =
r

2
±
√(r

2

)2
+ δ(r + δ), (38)

so eigenvalues have different sign and the steady state is indeed a saddle point.
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A.2

Lemma 2. Condition (15) holds for(
K∗1
)
1,2

= −d
f
±

√
2γrF

f 2
. (39)

Proof.

Consider the terminal condition21 (15):

H(K∗1 , I
∗
1 , λ(T ∗), T ∗) = rS

(
K∗1
)

(40)

⇔

(1−K∗1)K∗1 −
γ

2
I∗1

2 + λ(T ∗)(I∗1 − δK∗1) = r(V m2(K∗1)− F ) (41)

⇔

(1−K∗1)K∗1 −
γ

2
I∗1

2 +
∂V m2

∂K1

(I∗1 − δK∗1) = r(V m2(K∗1)− F ). (42)

The HJB-equation in m2 at T ∗ is given by22

(1−K∗1)K∗1 −
γ

2
(I∗1

2 + I∗2
2) +

∂V m2

∂K1

(I∗1 − δK∗1) +
∂V m2

∂K2

I∗2 = rV m2(K∗1). (43)

For I∗2 =
V

m2
K2

γ
, we have:

(1−K∗1)K∗1 −
γ

2
I∗1

2 +
∂V m2

∂K1

(I∗1 − δK∗1) +
1

2γ

(∂V m2

∂K2

)2
= rV m2(K∗1). (44)

Using (44) and (42) yields

rF =
1

2γ

(∂V m2

∂K2

)2
, (45)

which under consideration of K2 = 0 yields the two solutions

K lb
1 := −d

f
−

√
2γrF

f 2
, (46)

and

Kub
1 := −d

f
+

√
2γrF

f 2
. (47)

21For convenience, we henceforth omit the dependence of state and control variables on T ∗.
22Note that F is paid for switching to m2 and does not occur in m2 anymore.
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A.3

Proof of Proposition 1. By Lemma 2 in Appendix A.2, we know that for F = 0

the terminal condition of the Maximum Principle holds for KF=0
1 and H < rS

for other values of capacity23. For F > 0, F occurs negatively on the right hand

side of the terminal condition and only there. Thus, there arises an interval whose

bounds are given by (46) and (47) wherein H > rS (see Figure 12). For Kini
1

outside the interval, the opposite holds. Hence, for Kini
1 ≤ K lb

1 , the interest on

the salvage value is higher than the current value Hamiltonian. Thus, immediate

introduction is optimal.

(a) F = 0 (b) F = 1.2

Figure 12: Left hand side (H) and right hand side (rS) of terminal condition.

For K lb
1 < K1 ≤ Kub

1 the optimal switching capacity K lb
1 has to be reached by

the transversality condition. Thus the firm reduces capacities down to K lb
1 and

innovates.

A.4

Proof of Lemma 1. Taking the derivative of K lb
1 with respect to F yields

∂K lb

∂F
= − 2γr

2f 2
√

2γrF
f2

= −
√

γr

2Ff 2
< 0 . (48)

23Cf. Appendix A.2. For F = 0, the square root in (39) vanishes and both solutions coincide.

Moreover, note that for F = 0, the only extra term in (44) in comparison to (42) is 1
2γ

(
∂Vm2

∂K2

)2
which is non-negative. Hence for all K1, H is less or equal than rS (it is equal for Klb

1 (= Kub
1 )

as 1
2γ

(
∂Vm2

∂K2

)2
= 0).
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A.5

Lemma 3. ∃! F̃ > 0 such that ∀F ≥ F̃ , ∃ K1 with T ∗(K1) = ∞, i.e. V (K1) =

V m1(K1) and ∀F < F̃ , @ K1 with T ∗(K1) =∞.

Proof. The value function of m1 without the option to switch to m2 is independent

of F whereas the value function of the control problem with introduction option is

decreasing in F due to the decreasing salvage value. Thus, there is some F̃ where

the value function of the control problem with introduction option hits the value

function of m1 for the first time which is greater than 0 since for F = 0, switching

is costless and in m2, there is the option of producing the new product which has

a higher quality (θ > 0)24.

A.6

Lemma 4. At F = F̃ ,

K lb
1 ≤ K̃1 (49)

holds.

Proof. Let F = F̃ . Assume K̃1 < K lb
1 . Then, for K̃1, H < rS, which yields that

the unique solution is to switch to m2 which contradicts F = F̃ .

A.7

We first state the following lemma which is necessary for the proof of Proposition

2.

Lemma 5. The dynamics at the terminal pair
(
K lb

1 , λ(T )
)

are not K̇1 > 0 and

λ̇ > 0 simultaneously.

Proof. The terminal pair is determined by H = rS and λ(T ) = SK1 . The line

λ(T ) = SK1 = b + cK1 has a positive ordinate (b > 0) as K1’s marginal value is

24Even for no vertical differentiation, introducing the new product is beneficial as the market

is expanded and the firm is able to split the total quantity among the two products which yields

a higher price (cf. Dawid et al. (2015)).
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Figure 13: Vector plot for F = 1.275 (> F̃ ).

positive if there are no capacities installed. One might think that this line could

pass through the area to the right-upper of the intersection point of K̇1 = 0 and

λ̇ = 0 where K̇1 > 0 and λ̇ > 0 hold. This would yield different dynamics than

studied so far. However, one can easily show that for terminal pairs in that area,

there is no candidate for an optimal solution with 0 < T ∗ < ∞. In particular,

for Kini
1 > K lb

1 , there are either no candidate paths or only non-monotone paths

arriving at the terminal pair which cannot be optimal25. Converging to the steady

state of m1 along the stable manifold is not optimal as well as time consistency

is violated since for K1 < K lb
1 , H < rS holds. Thus, there are no optimal paths

for Kini
1 > K lb

1 which yields a contradiction and proves that this situation cannot

occur. Moreover, the slope of the λ(T ) line is necessarily negative (c < 0), i.e. the

marginal value of K1 is decreasing as ∂2Vm2

∂K2
1

= c.

Proof of Proposition 2. As the steady state of m1 is a saddle-point, there is a

stable and unstable manifold. If T ∗ is finite but not zero, then the switching pair(
K1(T ), λ(T )

)
in the (K1, λ) space is derived from the condition H = rS and the

25Non-monotone paths imply a set of Skiba points which generates fluctuating paths for

T ∗ =∞, which contradicts to the uniqueness property of the steady state of the infinite horizon

problem.
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transversality condition λ(T ) = SK1 . As F increases and K lb
1 decreases, there is

an F , where
(
K lb

1 , λ(T )
)

is on the unstable manifold with K̇1 < 0 and λ̇ < 026.

Denote that F by F uns. For arriving at that pair, the initial pair has to be on

the unstable manifold. Thus, for all K1 ≥ Kss,m1

1 , there is no optimal path which

leads to (K lb
1 , λ(T )), i.e. for all K1 ≥ Kss,m1

1 , T ∗(K1) =∞.

Next, we prove that F̃ = F uns. Obviously, F̃ ≤ F uns 27. Assume F̃ < F uns.

Then, by Lemma 1, at F̃ , the terminal pair is right to the unstable manifold.

Denote for all possible terminal values K1(T ) the value of the path which leads

to the terminal pair by V term(K1(t), K1(T ), F ) which in this case exists for all

K1 ≥ K1(T ) and for all F < F uns and is continuous in F .

In order to avoid confusion, for an F , we denote the correspondingK lb
1 byK lb

1 (F ).

For Kini
1 > K̃1,

V term(Kini
1 , K lb

1 (F̃ ), F̃ ) < V m1(Kini
1 ), (50)

holds28. Hence, ∃ F l < F̃ with

V term(Kini
1 , K lb

1 (F l), F l) = V m1(Kini
1 ), (51)

which contradicts the minimality of F̃ . Hence, the assumption F̃ < F uns was

wrong and F̃ = F uns holds.

Now, we prove that K̃1 is not less than Kss,m1

1 again by contradiction. Assume

that K̃1 < Kss,m1

1 . Then, consider Kint
1 for which K̃1 < Kint

1 < Kss,m1

1 holds. For

26As shown in Lemma 5, the dynamics at the terminal pair are not K̇1 > 0 and λ̇ > 0

simultaneously. Hence, the line passes through the area where K̇1 < 0 and λ̇ < 0 holds as it has

a positive ordinate and negative slope.
27Note that for Funs infinite solutions for T exist. As F̃ is the minimal value of adoption costs

for which infinite solutions exist, F̃ ≤ Funs holds.
28It can not be V term(Kini

1 ,Klb
1 (F ), F ) = V m1(Kini

1 ) since for Kini
1 ≥ K̃1, trajectories of the

finite and infinite solution move in the same direction (as due to Lemma 4, Klb
1 ≤ K̃1) and accord-

ing to Proposition 1 in Caulkins et al. (2015), in that case, the trajectories have to coincide for all

t ∈ [0, T ∗(Kini
1 )] which is apparently not true. Moreover, V term(Kini

1 ,Klb
1 (F ), F ) > V m1(Kini

1 )

cannot hold either since this leads to another solution for the problem without introduction op-

tion via moving to K̃1 along the path corresponding to the finite solution of T and switching at

K̃1 to the solution of the problem without introduction option.
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F = F̃ , we have29

V term(Kint
1 , K lb

1 (F̃ ), F̃ ) < V m1(Kint
1 ). (52)

Again, by continuity of V term in F , there exists an F l < F̃ with

V term(Kint
1 , K lb

1 (F l), F l) = V m1(Kint
1 ), (53)

which contradicts the minimality of F̃ . Thus, K̃1 = Kss,m1

1 and it is a threshold

point30 where the firm is not indifferent.

A.8

Proof of Proposition 3. As K lb
1 decreases with F , for F̃ < F < F̄ , the terminal

pair
(
K1(T ), λ(T )

)
=
(
K lb

1 , λ(T )
)

is left to the unstable manifold (cf. proof of

Proposition 2 in A.7). There, the dynamics are given by K̇1 < 0 and λ̇ < 0.

Starting at the terminal pair
(
K lb

1 , λ(T )
)

and moving backwards along the arc

leading to it, i.e. considering V term introduced in A.7 (cf. Figure 13), we can

identify candidates for the optimal starting point for different Kini
1 ’s. This arc hits

the K̇1 = 0 line at some Kh
1 . This is the highest K1 for which a finite candidate T

exists since following the arc further gives further candidates for K lb
1 ≤ K1 < Kh

1

as there is K̇1 > 0, which implies non-monotone paths for K1 which can not be

optimal (cf. Appendix A.7). Hence, V term is well defined. For any K1 < Kss,m1

1 , it

is also possible to converge to the steady state of m1 by following the stable arc of

the steady state. Comparing values of both candidates by taking the upper curve

of the value functions corresponding to both options we obtain the value function

and the optimal strategies of the control problem with introduction option. Hence,

29Note that in this case, V term exists for K1 < K̃1. Moreover, as this problem is time invariant

and trajectories of the finite and infinite solution move in opposite directions and due to the

monotonicity of the trajectory of the infinite solution
(
see Hartl (1987)

)
, the trajectory of the

finite solution is monotone as well and there can not be an overlap region, i.e. there is no interval

of Skiba points (cf. Caulkins et al. (2015)). Thus, at F̃ for Kint
1 , the infinite solution is the unique

optimal solution.
30Here, a threshold point is characterized by having finite and infinite solutions for T in every

neighborhood (cf. Caulkins et al. (2015)).
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there is an indifference point 0 < K̃1 ≤ Kh
1 where the firm is indifferent moving

to the steady state along the stable manifold and moving to K lb
1 . Thus, K̃1 is

a Skiba point. As F increases, K lb
1 and Kh

1 decreases. Next, we prove that K̃1

decreases as well by contradiction. For F a, F b ∈ (F̃ , F̄ ), with F a < F b, denote the

corresponding indifference points by K̃1
a

and K̃1
b

and assume that K̃1
a ≤ K̃1

b
, i.e.

K̃1 is nondecreasing in F . Then,

V m1(K̃1
b
) = V term(K̃1

b
, K lb

1 (F b), F b) < V term(K̃1
b
, K lb

1 (F a), F a) ≤ V m1(K̃1
b
)

(54)

which yields a contradiction31 . Hence, K̃1 is decreasing in F .
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