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Learning to Put On a Knit Cap in a Head-centric
Policy Space

Lukas Twardon and Helge Ritter

Abstract—Robotic manipulation of such highly deformable ob-
jects as clothes is a challenging problem. Robot-assisted dressing
adds even more complexity as the garment motions must be
aligned with a human body under conditions of strong and
variable occlusion. As a step toward solutions for the general
task, we consider the example of a dual-arm robot with attached
anthropomorphic hands that learns to put a knit cap on a
styrofoam head. Our approach avoids modeling the details of
the garment and its deformations. Instead, we demonstrate
that a head-centric policy parameterization, combined with a
suitable objective function for determining the right amount of
contact between the cap and the head, enables a direct policy
search algorithm to find successful trajectories for this task. We
also show how a toy problem that mirrors some of the task
constraints can be used to efficiently structure hyperparameter
search. Additionally, we suggest a point cloud based algorithm for
modeling the head as an ellipsoid which is required for defining
the policy space.

Index Terms—Learning and Adaptive Systems, RGB-D Per-
ception, Human Detection and Tracking

I. INTRODUCTION

IN recent years, robot-assisted dressing has attracted in-
creasing interest. The task is extremely challenging because

of the complex dynamics of the involved objects, together with
the difficulty to control the contact-rich interactions between
a garment and the body part to be dressed. While solutions
for the general task are still out of reach, there is a growing
number of works that demonstrate how important parts of
the problem can be solved. In most cases, this is done by
exploiting simplifications gained through focusing on a narrow
subdomain [1]–[11].

The fact that there is a lot of contact between the garment,
the robot, and the human body complicates the task. Therefore,
we believe that it is important to consider methods which,
although not completely task-agnostic, avoid the need to model
the item of clothing and its complex interplay with the other
physical entities in detail. In this spirit, our previous work
[1], [2] focused on reduced topological representations of
clothes rather than exhaustive geometric models. We were
able to show how this can aid bringing both the robot and
the garment into a suitable starting pose for a dressing task.
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Fig. 1. A robot putting a knit cap on a styrofoam head.

However, occlusion and self-occlusion make it difficult to track
the garment during the subsequent contact-rich interactions.

This motivates the present work which explores an extreme
strategy that neglects any information about the configuration
of the garment during task execution and instead uses re-
inforcement learning to optimize an objective function that
is based solely on information about the task performance
gathered after a policy rollout.

In our study, we focus on the specific scenario of a robot
putting a knit cap on a head. This exemplary task involves
many of the aforementioned challenges that characterize robot-
assisted dressing. As a simplification, we use a styrofoam
head model firmly attached to a wooden base. This bypasses
most of the safety issues and additional difficulties that would
arise from reactive movements of a real human head. It
also simplifies systematic studies of the learning approach
which relies on repeated interaction with the environment.
Nevertheless, the task remains very challenging because the
robot is neither provided with a model of the garment nor with
the full geometry of the head. Moreover, the robot receives
no visual or force feedback during task execution and has
to coordinate two kinematically redundant arms with attached
five-fingered hands.

Our approach shifts the focus from online perception to (i)
constructing a suitable policy space before and (ii) defining
an objective function that is evaluated after task execution.
For the movement policies to be meaningful in the context
of the task, we assume that the robot is initially in a certain
configuration and grasps the garment in a defined way. The
policy space is then a space of robot trajectories expressed
in a reference frame that is based on an ellipsoidal model
of the head. Hence, a robot vision algorithm is required that
provides an estimate not only of the head pose but also of the
scale parameters.

Designing the objective function is challenging as it is not
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obvious how the distance from a successful reference outcome
can be defined. This is because failures to properly finish
the execution of a planned trajectory may be frequent in the
early stages of learning. The robot could try to maximize the
distance covered along the path before failing. This would
however favor strategies that avoid garment-head contact com-
pletely. Therefore, we use an objective function that enables
the robot to learn a trade-off between establishing contact and
minimizing the risk of early failure.

The paper makes three mainly conceptual contributions:
(i) Definition of a head-centric policy space (using spherical
coordinates, safe manipulator poses, and a B-spline trajectory
parameterization). (ii) A novel objective function for finding
the right amount of garment-head contact. (iii) The use of
a suitably designed toy problem to support hyperparameter
search and a structured analysis of the optimization process
without the need for time-consuming real-world samples.

Additionally, the paper provides two algorithmic contri-
butions: (i) A method for head pose and scale estimation
with point cloud data employing texture-independent facial
features, head proportion heuristics, and ellipsoid fitting. (ii)
An algorithm for direct policy search combining Active-CMA-
ES optimization with a simple surrogate model.

II. RELATED WORK

One of the key distinguishing characteristics between differ-
ent works on robot-assisted dressing is the objective function
used because it determines what is to be optimized or learned.
Colomé et al. [3] proposed a reinforcement learning frame-
work for the problem of wrapping a scarf around the neck of
a mannequin. Since no tight garment openings are involved in
this particular task, it was possible to minimize a rather simple
objective function using the spatial distance of the scarf from
a reference position.

The work from [4] shares with ours the goal to find
suitable trajectories for a more complex task. The authors have
suggested a path optimization algorithm for putting on a jacket
without sleeves. In this task domain, an objective function that
aims at avoiding large external forces and, in this way, external
resistance has proven to be effective.

While in many works the reference frame is either the
garment or the body part to be dressed, Tamei et al. [5]
modeled the relationship between a T-shirt’s neck opening
(equipped with markers) and a mannequin’s head through
so-called topology coordinates which were used to define a
reward function. In [6], the authors have reported some success
in markerless estimation of the coordinates.

Contact between a garment and the human body can often
be inferred only indirectly from feedback at the robot’s end
effector. Kapusta et al. [7] distinguish three possible outcomes
of the task of pulling a sleeve over a person’s forearm: The
hand misses the opening to the sleeve, the hand or forearm gets
caught in the fabric, or the full forearm successfully enters
the sleeve. Their algorithm was able to classify these three
outcomes using forces measured at the end effector. Yu et al.
[8] employed a simulator to reduce both the classification error
and the amount of required real-world samples. Erickson et al.

(a) (b) (c)

Fig. 2. Detection of the symmetry plane of the face and the tip of the
nose using point cloud data. (a) Example range image. (b) Nose template.
(c) Optimal axis of symmetry (blue) and nose tip (red).

[9] were even able to infer the areas of contact between the
sleeve and the arm.

Furthermore, we should mention that not all works on
robot-assisted dressing make use of stochastic optimization or
learning. Chance et al. [10] argue that simple HRI strategies
could be used instead of complex machine learning methods.
The robot in [11] inferred a knowledge base of user constraints
and used it for placing a stiff hat on the head.

The reader is referred to [12] for a survey of computer
vision methods for human head pose estimation. Many of the
existing approaches are texture-based. The styrofoam head in
our example does not have much texture, though. The tech-
nique described in [13], by contrast, only uses 3D landmark
structures which can be extracted from depth data.

III. ELLIPSOIDAL MODEL OF THE HEAD

We require a geometric representation of the part of the
head that is to be covered by the knit cap. For this purpose,
we model the styrofoam head as an ellipsoid which we will use
for a policy parameterization based on spherical coordinates
(Section IV). Our algorithm aims to find the ellipsoid whose
upper hemiellipsoid best fits the upper part of the (hairless)
head. We propose a point cloud based single-view approach
which is (i) independent of texture, shadows, and skin color;
and (ii) designed to be used in a realistic robotic setup
including a single depth camera with a downward diagonal
viewing direction.

In general, an ellipsoid is defined through nine parameters:
three for position, three for orientation, and three for scaling.
Throughout the paper, C = (Cx, Cy, Cz)

T denotes the ellip-
soid center. The axes u, v, w of the ellipsoid object (depicted
as red, green, and blue lines in Fig. 3 and 4) are represented by
unit vectors ~u, ~v, ~w and lengths a, b, c. The angles of rotation
w.r.t. an extrinsic coordinate system about the intrinsic axes
are denoted by α (about u), β (about v), and γ (about w) and
applied in reverse order. The difficulty with the single-view
setup is that the point cloud of the head is incomplete due
to self-occlusion, so that there is no unique solution to the
ellipsoid fitting problem. We employ a cascade of heuristics
to initialize an ellipsoid whose parameters are then optimized
to fit the point cloud.

A. Ellipsoid initialization using landmark structures and head
proportions

One way to resolve head pose ambiguities is to detect
landmark structures of the face. However, there are often
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only two stable 3D features: the tip of the nose, and the
symmetry plane through the nose. We make the assumption
that somewhat more than half of the face is visible to the
depth camera. Then, we can use the obtained 3D point cloud
to detect both features. In order to do so, we basically follow
Spreeuwers’ approach [13].

First, we extract those points which belong to the head by
detecting the biggest connected region of points in a predefined
area. As a second step, we create a set of range images (Fig.
2(a)) by projecting the reduced point cloud to a vertical plane
which is rotated in steps of one degree about the vertical axis
through the center of mass of the points. To find the symmetry
plane, we calculate a symmetry measure for each rotation
and each shift along the horizontal axis of the range image
(for details, refer to [13]). Then, for all local minima of the
symmetry measure, Normalized Cross Correlation based nose
template matching (Fig. 2(b)) is performed along the vertical
mirror axis to find an optimal symmetry plane / nose tip pair
(Fig. 2(c)).

We are now able to initialize the model parameter tuple
(Cx, Cy, Cz, α, β, γ, a, b, c) using several heuristics. We set
γ to the optimal rotation of the symmetry plane. It can be
assumed that the styrofoam head is not tilted to the side, i.e.,
there is no rotation β. To estimate the remaining orientation
parameter α, we employ another technique from [13]. We fit
a cylinder with a fixed radius to the points within a defined
region around the nose. To this end, we vary both the shift
of the cylinder along v and the rotation about u, and set α to
the rotation angle that minimizes the mean squared distance
of the points from the cylinder.

To obtain initial values for the position and scale parameters,
we consider the head proportion heuristics illustrated in Fig.
3. We see that the head can be modeled as an oblate spheroid,
i.e., b = c. Let Pnose be the position of the tip of the nose. We
define a plane spanned by ~u and ~v and going through Pnose.
Then, we compute the distances of the head points above the
nose tip from that plane, define dvert to be a high percentile
of the distances, and set b = c = 3

4dvert. The scale parameter
a is set to a high percentile of all horizontal distances of the
head points from the symmetry plane, and the center of the
ellipsoid is initialized as follows:

C = Pnose − b~v +
1

3
c~w (1)

B. Parameter optimization through point cloud fitting

We must be careful which parameters to optimize when
fitting the ellipsoid model to a noisy and incomplete point
cloud. The back part of the head, for instance, is usually
not represented, so we rely on the heuristic estimates of the
scale parameters b and c, and only optimize a. As mentioned
above, we assume that β = 0. The rotation angle α is used to
define the coordinate frame of the ellipsoid object, but rotating
about u does not change the shape of the oblate spheroid
model. Therefore, we can only improve γ. However, the tip
of the nose should be on the symmetry plane, so we optimize
a rotation angle γ′ about an axis w′ with direction ~w and
going through Pnose instead. Moreover, we do not optimize the

Pnose
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w
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c
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Fig. 3. Head proportion heuristics used for initialization of the ellipsoid model
parameters. (a) Front view. (b) Side view.

(a) (b) (c)

Fig. 4. Ellipsoid model fitted to the noisy and incomplete point cloud of a
styrofoam head. The intrinsic coordinate frame is depicted as red (u-axis of
length a), green (v-axis of length b), and blue lines (w-axis of length c). (a)
Front view. (b) Side view. (c) Diagonal back view.

global position C of the ellipsoid center, but two parameters
Cv and Cw representing translation along this new symmetry
plane.

The parameter tuple (a, γ′, Cv, Cw) is optimized using
Active-CMA-ES (see Section V). As objective function, we
use the mean squared distance of the upper head points
(those lying above the old uv-plane) from the ellipsoid. The
distances are computed iteratively using the algorithm from
[14] because no closed-form solution is known to the point-
ellipsoid distance problem. Fig. 4 shows the fitted ellipsoid.

IV. HEAD-CENTRIC POLICY SPACE

When defining the head-centric policy space, we assume
a certain garment pose relative to the robot, but we do not
model it explicitly. Specifically, the fingers of both hands are
assumed to grasp around the boundary of the fabric with the
thumbs pointing inside the knit cap (Fig. 5(a) and 5(b)). The
robot has to infer strategies to bring the garment into the
desired configuration from interaction with the environment.
Therefore, the policy space should (i) be restricted to only
allow robot poses and actions which are safe for the robot
arms and hands, the garment, and the head; and (ii) allow fast
learning, e.g., by keeping the dimensionality low.

We encode the end effector position (the contact point of the
thumb and the forefinger) in spherical coordinates (θ, φ,∆)
w.r.t. the upper hemiellipsoid of the head model. The polar
coordinate θ specifies the angle between −~v and the position
vector of the end effector w.r.t. C. The azimuth coordinate
φ defines the angle between the position vector’s orthogonal
projection on the uw-plane, and −~u or +~u (such that φ ≤ π

2 ).
To put it less formally, the polar angle θ ∈ [0, π] runs from
the back pole to the front pole of the ellipsoid, whereas the
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azimuth angle φ ∈ [0, π2 ] determines the ”meridian” on which
the end effector is located at a given θ. Both coordinates are
stretched according to the values of a, b, and c. The third
coordinate ∆ represents the distance of the finger tips from
the ellipsoid model.

To obtain the cartesian coordinates Q of the end effector,
we employ

Q = C ± (a+ ∆)sin(θ)cos(φ)~u

− (b+ ∆)cos(θ)~v

+ (c+ ∆)sin(θ)sin(φ)~w.

(2)

The ± operator indicates the symmetry of the left and right
hand w.r.t. the vw-axis. Restricting the hand motions to be
symmetric halves the dimensionality of the policy space. We
enforce a minimum distance of 5 cm between the hands to
prevent collisions.

The hand orientations are predefined for given positions
to ensure safe poses and motions. In robotic grasping, end
effector orientations are often specified by two unit vectors: an
approach vector, and an orientation vector. We follow a similar
convention, replacing the approach vector by a pull vector. The
position Q, the orientation vector ~o, the pull vector ~p, and the
normal vector ~n = ~o × ~p form the intrinsic coordinate frame
of the hand (Fig. 5(c)).

A safe end effector orientation can be achieved by choosing
the vectors ~o and ~p in such a way that they span a tangent
plane to the head ellipsoid, with ~p being oriented along the
”meridian” through Q (one of the lines running from the back
pole to the front pole). This ensures that (i) the robot hands do
not collide with the head (as the palms are roughly tangential
to the head), and (ii) when moving the hands from the back
to the front of the head, the fingers do not get caught in the
fabric, but, in case of too much external resistance, the cap
slips out between the thumb and the forefinger in a controlled
(orthogonal) way.

The described hand orientations correspond to the following
normalized gradients:

~o = − ∇φQ
|∇φQ|

=
[
± (a+ ∆)sin(θ)sin(φ)~u

− (c+ ∆)sin(θ)cos(φ)~w
]/
|∇φQ|

(3)

~p =
∇θQ
|∇θQ|

=
[
± (a+ ∆)cos(θ)cos(φ)~u

+ (b+ ∆)sin(θ)~v

+ (c+ ∆)cos(θ)sin(φ)~w
]/
|∇θQ|

(4)

The vectors ~o and ~p can be made perfectly orthogonal by
rotating them in opposite directions about ~n. In practice, the
elbows or other parts of the robot arms would in some cases
exceed the workspace limits to reach the proposed end effector
poses. Therefore, we have to partly give up the conditions on
the hand orientations. In the back part of the head, we limit the
upward angle of the pull vector, but try to keep it on the tangent
plane to avoid robot-head collisions. In the front part (where
robot-head collisions are not a major issue), the downward
angle of the pull vector is limited in such a way that the

(a) (b)

o

p

Q

(c)

Fig. 5. Configurations of the three entities involved in the example task of
putting a knit cap on a styrofoam head: a robot, a garment, and a head. (a)
The fingers of the anthropomorphic robot hands grasping around the boundary
of the fabric with the thumbs pointing inside the cap. (b) Starting pose of the
dressing trajectory. (c) Intrinsic coordinate frame of the hand.

orientation vector remains essentially unchanged. Moreover,
we restrict the horizontal angle between the forearms. The
details of the constraint handling procedure are however out
of the scope of the paper.

Very low values of ∆ involve the risk of collisions with
the head, whereas too high values might lead to excessive
stretching of the fabric. Therefore, we can further reduce the
dimensionality by assuming a fixed distance ∆ = 1 cm of
the finger tips from the head model. Then, a policy is a
parameterized end effector trajectory from the back pole to
the front pole in the (θ, φ) space. We disregard paths from the
front to the back of the head in the present work.

We parameterize the trajectories as B-splines which have
been used successfully in robotics (e.g., [15]). Specifically,
we use non-periodic uniform B-Splines B(t) of degree 3
which are fully specified by N ≥ 4 control points that
determine the shape of the path. Other authors have used
policy parameterizations which do not directly depend on a
parameter t (such as Dynamic Movement Primitives [16]).
However, using B-splines, we can exploit the prior knowledge
that the end effector should move continuously from the back
to the front of the head, by making the spline a function
of the polar angle θ instead of t. Thus, B(θ) expresses the
behavior of the azimuth angle φ w.r.t. the running parameter
θ. The number of one-dimensional control points N is the
only hyperparameter of this parameterization.

V. POLICY SEARCH

There are two main classes of approaches to reinforcement
learning (i.e., learning to accomplish a task by optimizing an
objective function through interaction with the environment):
value-based approaches and methods for direct policy search
[17]. The former approximate a value function which, in
principle, has to cover the whole state space, and use this
function to infer the optimal policy. The latter tend to be more
sample efficient because they only search in the neighbor-
hood of the current policy. Direct policy search methods fall
into two groups: gradient-based and gradient-free approaches.
Gradient-free policy search is simple and has been shown
to be more robust than gradient-based methods regarding
initialization, choice of hyperparameters, and noise [18].

In direct policy search, the objective function quantifies
the performance feedback the robot gets after each rollout
(trajectory execution). For our example task, we suggest the
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objective function below. The robot receives a fixed reward
rsuccess for putting on the knit cap successfully. In the other
cases, the objective function aims to support the robot in
finding a trade-off between minimizing the risk of early failure,
and establishing contact between the fabric and the head. This
is expressed as a linear combination of two variables: the polar
angle θfail at which the robot fails (the knit cap slips out
between the thumb and the forefinger), and the average az-
imuth φmean along the path. From evolutionary computation,
we adopt the convention that the objective function f is to be
minimized.

f(P1, ..., PN ) =

{
−rsuccess, if successful
fshaped(P1, ..., PN ), otherwise

(5)

with

fshaped(P1, ..., PN ) = ccontactφmean − (1− ccontact)θfail
(6)

where P1, ..., PN denote the control points of the B-spline
policy parameterization.

The rationale behind the shaped objective function is as
follows: The further down the robot hands go (i.e., the lower
the azimuth angle φ is) when moving around the head, the
more contact is established between the fabric of the cap and
the head. This is a very rough heuristic contact estimate and
could of course be replaced by a more sophisticated force-
based measure. If φmean is very low, the first term becomes
minimal, but the robot is likely to fail early. If φ is constantly
high, the knit cap will probably drop down only when releasing
it at the end of the trajectory. In this case, the second term
is minimized, but the policy is outperformed by every other
policy with the same outcome and a slightly lower path. The
coefficient ccontact is a hyperparameter which controls the
relative importance of the objectives.

The objective function is minimized using a black-box
optimizer, i.e., a gradient-free optimization algorithm that does
not assume any particular knowledge on the structure of f .
The Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [19] is a general purpose optimizer that has become a
quasi-standard in several areas of robotics. In fact, in the
present work, we use it for such different optimization tasks as
point cloud fitting (Section III-B) and policy search. Like most
evolution strategies, CMA-ES is a generation-based algorithm.
At the beginning of each generation, λ parameter vectors are
sampled from a multivariate normal distribution. After that, the
robot evaluates f for each sample by executing the trajectories.
The weighted mean of the best samples is then considered
the new optimal policy. We use the more sample efficient
Active-CMA-ES variation of the algorithm [20]. The only free
parameter of Active-CMA-ES is an initial step size parameter
σ0. Moreover, it has been shown that the sample efficiency can
be further improved by using previous samples to approximate
the landscape of f by means of a surrogate model [21]. We
employ a simple k-nearest-neighbor regression model which
can be used in different ways: (i) Before each generation,
λpre > λ samples are drawn from the distribution, and only
the λ best samples according to the model are preselected for
re-evaluation by the robot. (ii) A certain proportion of real-
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polar angle θ in [rad]

θfail θfail

Fig. 6. Toy problem used for hyperparameter search. The regions of successful
policies and early failure are depicted in green and red, respectively. The
example paths depicted as colored lines represent success (blue), early failure
(pink), and failure at the end of the trajectory (orange).

world rollouts per generation is replaced by surrogate function
evaluations.

VI. A TOY PROBLEM FOR STRUCTURING
HYPERPARAMETER SEARCH

Experiments with a robot are time-consuming and may lead
to material wearout. Therefore, it is desirable to reduce the
amount of real-world interaction needed for learning a task.
Simulation can be useful, but tends to be overly complex, in
particular in the absence of an accurate model of the involved
materials. In our example, the exact physical properties of the
garment, the head, and the fingertips of the robot are unknown.
This is one of the reasons why we rely on real-world samples
during the actual learning phase. However, hyperparameter
search and analyzing the problem structure (e.g., the influence
of delayed feedback) require a particularly large number of
samples.

Therefore, we have designed a toy problem analogous to the
real task, i.e., a problem with the same policy parameterization,
identical parameter dimensionality and range, as well as a
similarly structured objective function. The exact shape of the
landscape of f in the real world is of course not known, but
it is reasonable to assume a certain topology: There is a tube-
shaped area (the green region in Fig. 6) in the (θ, φ) space
which contains the successful policies (e.g., the path depicted
in blue). Below that area, there is another area (depicted in
red) that causes immediate failure when entered by a path
(e.g., by the pink one). This represents the case when the knit
cap slips out between the fingers because of too much contact
between the cap and the head. All other policies (e.g., the path
depicted in orange) fail when releasing the cap at the end of
the trajectory because the established contact is not sufficient.
We believe that the convergence behavior of the optimizer is
largely determined by the overall structure of f , whereas the
exact geometry plays a minor part. Hence, we are optimistic
that hyperparameters found in the toy problem are also a good
choice for the real-world problem. To be more realistic, we add
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a stochastic delay to θfail. This accounts for delayed sensor
or user feedback, and the fact that failures are often caused
by suboptimal behavior at an earlier stage of the trajectory.

VII. EXPERIMENTS

A. Ellipsoid fitting

The first experimental setup included a styrofoam head
placed on a table and a Kinect depth camera with a downward
diagonal viewing angle of about 45◦ w.r.t. the tabletop. This
was intended to simulate the situation where a human sits on
a chair with the face roughly directed toward the robot. To test
the performance of our ellipsoid fitting algorithm in multiple
configurations, we randomly placed the head on the tabletop
at ten slightly different positions and horizontal orientations
(within a range of about ±10 cm and ±20◦ as measured
from the vertical plane along the viewing direction of the
camera). In doing so, we varied the structure and amount
of self-occlusion of the head w.r.t. the depth camera. We
were interested (i) in how much these variations affected the
repeatability (standard deviation) of the estimation of the other
model parameters (the rotation angle α about u and the scale
parameters), and (ii) in how well the model fitted the visible
and invisible parts of the upper head.

From visual inspection, we found that the model fitting was
reasonable in all trials. The standard deviation of α was 0.95◦.
The repeatability of the estimation of a (SD = 0.64 mm) was
better than that of the other scale parameter b = c which had
a standard deviation of 2.3 mm. Fig. 7 shows the evolution of
the root mean squared distance (RMSD) of the visible upper
head points from the ellipsoid model, averaged over the ten
trials. After 30 Active-CMA-ES generations, it has converged
to a value of 2.61 mm (SD = 0.27 mm).

To investigate the accuracy of the model w.r.t. both the
visible and invisible parts of the head, we created a baseline
mesh model of the styrofoam head in advance employing a
high-precision laser scanner. Then, we used ICP [22] to align
the mesh (including the wooden base) with the point cloud,
and measured the distances of the upper head vertices from
the ellipsoid model. The RMSD averaged over the ten trials
was 3.6 mm (SD = 0.75 mm).

B. Toy problem

The toy problem described in Section VI was repeatedly
solved to find suitable hyperparameters for the real dressing
task, and to analyze the effect of delayed feedback on the
optimization algorithm. The considered parameters were: N
(the number of control points in the B-spline policy parame-
terization), ccontact (the weighting coefficient of the objective
function), σ0 (the initial step size used by the Active-CMA-ES
optimizer), k (the free parameter of the surrogate model), and
the number of surrogate function evaluations per generation (if
any). We did not perform an automated hyperparameter search
because (i) the performance criterion was not clear (speed of
learning, probability of convergence, or something else), and
(ii) there was a risk of overfitting the hyperparameters to the
simplified toy problem.

Fig. 7. Root mean squared distance (RMSD) of the upper head points from
the ellipsoid model, averaged over ten trials. Each generation comprises λ = 8
objective function evaluations.

Instead, we performed a manual search and varied one
parameter after the other to illustrate and discuss the choices
made. We set rsuccess = 10 and conducted 1000 sessions
(i.e., learning cycles from initialization until convergence)
per hyperparameter variation. At each session, the stopping
criterion for the optimizer was whether the current optimal
policy was within the defined success area (green in Fig.
6). In Fig. 8, we show the amount of successfully finished
sessions after a given number of rollouts. We introduced a
limit assuming that sessions which were not solved after 300
rollouts had erroneously converged to a local minimum.

The choice of N heavily influenced the speed of conver-
gence. Learning in low-dimensional policy spaces was fast, but
also prone to premature convergence (Fig. 8(a)). Besides, the
B-spline trajectory parameterization can only represent N − 2
changes of direction, so the number of control points required
to specify successful policies in the real-world is not known in
advance. Choosing N = 6 was considered a reasonable trade-
off. We set ccontact = 0.1, but interestingly, the parameter
had little influence on the convergence behavior, as long as
ccontact ≤ 0.5 (Fig. 8(b)). As can be seen from Fig. 8(c),
the optimizer was very robust regarding σ0. We set σ0 = π

8 .
Fig. 8(d) shows that using the surrogate model for prese-
lection (λpre = 60) greatly speeded up learning. Replacing
real objective function evaluations by surrogate evaluations
drastically increased the risk of premature convergence to a
local minimum, so we decided for a pure preselection strategy.
The choice of k in the k-nearest-neighbor regression model
played a minor part, but local models (e.g., k = 2) performed
slightly better (Fig. 8(e)). Our method was robust to moderate
Gaussion delay (σdelay ≤ π

4 ) added to θfail (Fig. 8(f)).

C. Real robot

The robot setup in the dressing experiments consisted of
two Mitsubishi PA-10 arms with attached Shadow Dexterous
Hands and a Kinect depth camera. Before each rollout, the
human experimenter placed the cap between the thumbs and
the forefingers of the robot in such a way that the fabric
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Fig. 8. Amount of successful learning sessions after a given number of rollouts under several hyperparameter variations in the toy problem.

(a) (b) (c)

Fig. 9. End effector trajectories for the task of putting a knit cap on a
styrofoam head. (a) Example of a path which induces too much object-
head contact. (b) Example of a path which avoids object-head contact. (c)
Optimized path.

covered the first two phalanges of the thumbs (Fig. 5(a)). This
step could be automated in the future using the methods from
[1] and [2]. The robot closed the hands and moved to the
starting pose at the back of the styrofoam head (Fig. 5(b)).
The learning algorithm provided the parameters to be explored
next, and the robot started to execute the corresponding trajec-
tory. The tendons in the fingers followed a predefined force
profile protecting them against wearout [23], but no forces
were applied to counteract slippage of the fabric. If the cap
slipped out of the robot’s hands, the experimenter immediately
pressed a button to stop the execution. After each rollout, the
experimenter decided whether it was a failed, successful (the
cap was placed firmly on the head; rsuccess = 10), or perfect
run (the cap was placed firmly on the head, and the edge of
the cap was not folded inward; rsuccess = 20).

As expected, two types of failure occurred during learning:
(i) There was too much contact between the fabric of the cap
and the head because the hands went too low (e.g., Fig. 9(a)),
and the cap slipped out between the thumb and the forefinger.
(ii) The robot was not able to establish enough object-head
contact because the path was too high (e.g., Fig. 9(b)).
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Fig. 10. Average reward (−f ) gained per generation. Each generation
comprises λ = 9 trajectory rollouts.

Fig. 10 shows the average reward (−f ) the robot gained
per generation. Learning was stopped when more than half of
the rollouts of one generation were successful or perfect. The
objective function does not represent the different forms of
deformation which occur in this region of the policy space.
Therefore, adding more iterations would not help the robot
learn to reliably prevent the fabric from folding inward.

After eight generations (72 rollouts), the robot has learned
the trade-off visualized in Fig. 9(c). To evaluate the result, we
conducted ten trials in which the robot followed the optimized
policy. In half of the trials, the knit cap was perfectly placed
on the head (Fig. 11(a)), whereas in the other trials, parts of
the edge were folded inward (Fig. 11(b)).
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(a) (b) (c)

Fig. 11. Possible configurations of the knit cap after an optimal policy rollout.
(a) A perfect run. The cap was placed firmly on the styrofoam head. (b) A
successful run. The cap was placed firmly on the head, but the edge was
folded inward. (c) Configuration after a finalizing robot motion to uncover
the eyes.

VIII. DISCUSSION

We have shown that reinforcement learning in a carefully
designed policy space allowed our robot to find successful
trajectories for an exemplary but simplified dressing task.
Although we did not model the configuration of the garment
explicitly, the robot learned to put a knit cap on a styrofoam
head. To avoid undesired folds of the fabric, we would however
need to adjust the objective function such that deformations
are represented in some way.

Since the general dressing assistance problem is still far
from being solved, we have considered a very constrained
subproblem. As a consequence, our method has a number
of limitations. Applying the technique to real humans would
pose additional challenges such as handling heads with hair,
motion tracking, and robot compliance. Therefore, our study
should be seen only as a proof of concept. We were able
to reduce the complexity of the problem to a tractable level,
but the proposed learning approach might miss some possibly
successful policies because we assume a certain grasp pose
and limit the search space to paths between two fixed poles.

We used a very problem-specific heuristic for estimating
areas of contact, but we speculate that objective functions with
similar trade-off structures can be found for other dressing
tasks. In the future, we would like to use tactile or force
measurements both during learning and to make the optimized
system more robust to variation in friction.

Another shortcoming is the fact that the robot tends to pull
the cap too far over the face of the styrofoam head. To show
that this is not a major limitation, we have implemented a
heuristic to uncover the eyes subsequently (Fig. 11(c)): The
robot grasps the knit cap at the highest intersection point
between the fabric and the symmetry plane of the face, and
pulls it backward along a line whose angle and length have
been derived empirically.

Thus far, our method does not generalize over caps or
heads. However, we believe that spherical coordinates facilitate
the design of algorithms with such generalization properties
because they scale with the head model. In future work,
the robot could learn how a baseline trajectory must be
transformed depending on the ellipsoid parameters and the
size and deformability of the knit cap opening.
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