
Dissertation
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Technischen Fakultät der Universität Bielefeld

BRIX2
A Versatile Toolkit for Rapid Prototyping and Education in

Ubiquitous Computing

Sebastian Zehe
August 2016

Supervisors:
Dr. rer. nat. Thomas Hermann

Ambient Intelligence Group

Prof. Dr.-Ing. Ulrich Rückert
Cognitronics and Sensor Systems Group

“It doesn’t stop being magic just because you know how it works.”
– Terry Pratchett, The Wee Free Men

Contents

1 Introduction 1

2 Related Work: A Survey of Existing Platforms 7
2.1 Microcontroller Platforms . 9

2.1.1 A Brief Introduction to Microcontrollers 9
2.1.2 Common Microcontroller Parameters 10
2.1.3 Microcontroller Communities 10
2.1.4 Microcontroller Platforms: Development Boards 11
2.1.5 A Pioneering Microcontroller Platform: The Basic Stamp . . . 12
2.1.6 An Inexpensive Microcontroller Board: The MSP430 Launchpad 12
2.1.7 De-Facto Standard: The Arduino 13
2.1.8 Characteristics of Different Microcontroller Platforms 17

2.2 Physical Computing Toolkits . 21
2.2.1 Physical Computing in Education 22
2.2.2 Open Source Physical Computing: Grove Electronic Brick Kit 22
2.2.3 Legos for Electrical Engineers: Tinkerforge Building Blocks . . 23
2.2.4 Physical Widgets: Phidgets 24
2.2.5 Teaching Physical Computing: littleBits 25
2.2.6 Characteristics of Different Physical Computing Toolkits . . . 26

2.3 Wireless Sensor Nodes . 29
2.3.1 Scientific Sensor Networking: TelosB 30
2.3.2 WSN Prototyping: Libelium Waspmote 30
2.3.3 Characteristics of Different Wireless Sensor Nodes 31

2.4 Inertial Measurement Platforms . 34
2.4.1 Inertial Sensing . 34
2.4.2 Sensor Fusion . 35
2.4.3 MEMS Motion Sensors . 35
2.4.4 Motion Capturing . 35
2.4.5 Motion Capturing with Inertial Sensors 36
2.4.6 Typical Components of Inertial Measurement Platforms 36
2.4.7 Industry Grade Motion Sensing: Xsens MTi-10 37
2.4.8 Semi-professional Motion Capturing: YEI 3-Space 37
2.4.9 Open Source Inertial Sensing: IMUduino 38
2.4.10 Characteristics of Different IMU Platforms 38

i

2.5 Wearable Electronics Platforms . 42
2.5.1 A platform for Body-Worn Devices: Xadow Kit 42
2.5.2 A Sewable Arduino: LilyPad USB 42
2.5.3 The LilyPad Alternative: SquareWear 43
2.5.4 Characteristics of Different Wearable Electronics Platforms . . 44

2.6 Former Work: The BRIX Toolkit . 47
2.6.1 Vision . 47
2.6.2 Concept . 48
2.6.3 Hardware . 48
2.6.4 Results . 49

2.7 Survey Conclusion . 49

3 BRIX2 Design and Development 51
3.1 Defining the Requirements of BRIX2 by Analysis of Other Platforms 51

3.1.1 Technical Feature Selection by Priority 53
3.1.2 Conceptional Properties of Analyzed Platforms 56

3.2 Towards an Initial BRIX2 Design . 58
3.2.1 General Concepts and Usage Scenarios 58
3.2.2 Mechanical Design Aspects . 59
3.2.3 Software Aspects . 61
3.2.4 Electronics Design Aspects . 62
3.2.5 Initial BRIX2 Design: Conclusion 69

3.3 The BRIX2 Development Kit . 70
3.3.1 A Modular Platform . 70
3.3.2 Carrier Board . 71
3.3.3 Microcontroller Extension Board 75
3.3.4 Wireless Transceiver Extension Boards 76

3.4 Evaluation Using the BRIX2 Development Kit 86
3.4.1 Evaluation of Different Wireless Transceiver Modules for BRIX2 86
3.4.2 Charge Electronics . 98
3.4.3 Microcontroller . 99
3.4.4 Inertial Motion Sensor . 99

3.5 Conclusion . 103

4 Implementation 105
4.1 The BRIX2 System Design . 105

4.1.1 Physical Appearance . 105
4.1.2 BRIX2 Technical Concepts . 108
4.1.3 Software Concept . 116

4.2 Implementation of the BRIX2 Electronics 118
4.2.1 A Side Note on the Selection of Components and Technologies 118
4.2.2 Core Circuit: Microcontrollers, Sensor and Wireless Interface . 118

ii

4.2.3 Power Supply: Voltage Regulation, Charging and Battery . . . 121
4.2.4 Extension Port . 123
4.2.5 Physical Structure: The Printed Circuit Board 126

4.3 Implementation of the BRIX2 Enclosures 129
4.3.1 Appearance and Manufacturability 129
4.3.2 Case Design 1: Lego Only . 129
4.3.3 Case Design II: Lego plus 3D printing 131
4.3.4 Case Design III: 3D printing onto a Lego Plate 134
4.3.5 Outlook on Future Case Designs 137

4.4 Implementation of the Software Components 138
4.4.1 An Arduino Library for BRIX2 138
4.4.2 LiBRIX2 . 140

4.5 Documentation . 144
4.5.1 Website . 145
4.5.2 Wiki and Repository . 146
4.5.3 Arduino Community . 146
4.5.4 Source Code . 147

4.6 Conclusion . 148

5 BRIX2 Extension Modules: Towards an Adaptable and Open-Ended
Platform. 149
5.1 Selecting Features for a Library of Physical BRIX2 Extensions 149

5.1.1 Input: Interfaces and Sensors 150
5.1.2 Output: Actuators and Feedback 150
5.1.3 Wireless Communication, Storage and Interfaces 151

5.2 Extension Module Concept . 152
5.2.1 Mechanical Properties and Handling 152
5.2.2 Appearance and Metaphor . 152
5.2.3 Constrains and Limitations 153
5.2.4 Pin Collisions . 153
5.2.5 A Template for Extension Module PCBs 154

5.3 Extension Modules Implementation 155
5.3.1 Implementation of the BRIX2 Extension Module Enclosures . 155
5.3.2 Input and Sensor Extension Modules 158
5.3.3 Feedback and Actuator Extension Modules 165
5.3.4 Communication and Interface Extension Modules 171
5.3.5 BRIX2 Arduino Library for Extension Modules 175

5.4 Conclusion . 176

6 Analysis 177
6.1 The BRIX2 Toolkit: Technical Specifications 177

iii

6.2 BRIX2 in Practice . 183
6.2.1 The Base Module in Practical Use 183
6.2.2 BRIX2 Extension Modules in Practice 193
6.2.3 Conclusion . 201

6.3 BRIX2 in Different Applications and Scenarios 202
6.3.1 BRIX2 as a Teaching Platform 202
6.3.2 BRIX2 as a Prototyping Platform in Research and Students

Projects . 205
6.4 BRIX2 User Survey . 213

6.4.1 The BRIX2 User Survey Questionnaire 213
6.4.2 About the Survey Participants 213
6.4.3 Getting Started With Programming BRIX2 215
6.4.4 BRIX2 Hardware . 216
6.4.5 Documentation . 218
6.4.6 Motivation and General Opinions 218
6.4.7 Suggestions for Future Revisions 220

6.5 Conclusion . 221

7 Conclusion and Future Work 223
7.1 Results and Contributions . 224

7.1.1 BRIX2 as a Teaching Platform 224
7.1.2 BRIX2 as a Prototyping Toolkit 225

7.2 Visions and Future Work . 228
7.2.1 Suggestions for BRIX2 Future Revisions 228
7.2.2 Long-Term Perspective . 230

.1 List of Abbreviations . 234
Bibliography . 245

iv

1 Introduction

The constant progress of technological development has always challenged us humans
to rethink and reshape the way we face and utilize new ideas, concepts and devices.
A device which has rapidly developed and radically changed our everyday lives in
the past decades is the computer. Already in the early 1950’s, where Howard H.
Aiken, designer of the Harvard Mark I, arguably one of the earliest general purpose
computers, expressed the fallacy of the original growth predictions:

“Originally one thought that if there were a half dozen large computers in this
country, hidden away in research laboratories, this would take care of all requirements
we had throughout the country.” [1]

In the late 1970’s, the personal computer became affordable for household use and
soon, millions of units had been sold. Today, Mark Weisers’ prediction from the mid
1990’s, introducing the ‘third wave in computing’, has become part of our reality:

“Ubiquitous computing names the third wave in computing, [. . .] the age of calm
technology, when technology recedes into the background of our lives.” [2]

Computers are no longer just grey boxes sitting on our desktops, but have been bro-
ken up into smaller devices and blend in with our environment. Additional to the
traditional computers, tablets and smartphones in the focus of our attention, more
and more invisible computers are becoming a part of our lives. They constitute crit-
ical parts of everyday technology such as buildings, cars, and even devices we wear
on our bodies.

Yet ubiquitous computing as a discipline holds many challenges to researchers, who
build smart, interactive devices, test concepts in human/machine interaction and
explore ethical, social and legal implications of computers that are woven into our
surroundings. Here, they often choose practical, hands-on approaches, functional
prototypes that allow them to experiment with new concepts in an early design
stage. Demonstrators help to present the work to fellow researchers, industry part-
ners and the public. As illustrative examples, prototypes and demonstrators help
students understand ubiquitous computing research and raise their interest to par-
ticipate in this field.

1

While researchers implement their ideas, they integrate programmable microcon-
trollers, sensors and actuators in everyday objects, rooms and clothes, thereby turn-
ing them into interconnected, interactive devices. To avoid to reinvent the wheel,
especially in an early design phase where prototypes are rapidly iterated, the use
of toolkits instead of custom devices is necessary for working quickly and efficiently.
Today, a wide variety of toolkits and platforms for different prototyping purposes
are available. Many of them have originally emerged from research projects and
are now in the hands of engineers, scientists, students, artists and tinkerers. But
among all these platforms, is there one that stands out as the prototyping toolkit
for ubiquitous computing?

When we try to answer this question, we first face a diverse ecosystem of combined
hardware and software prototyping platforms for applications e.g. ubiquitous com-
puting including wearable electronics, ambient intelligence and smart devices. These
platforms can be arranged on a continuum from general purpose to specialized de-
vices. We consider general purpose toolkits to be microcontroller development boards
that usually have a minimum set of features such as a microcontroller, programming
interface and electrical connectors. They can be adapted to virtually any application
by adding the demanded functionality. This, however, requires experienced devel-
opers who have detailed knowledge about the added components. Other platforms
provide additional components as building blocks that can simply be connected to
form an application. Regarding both approaches, we find that there is always a
compromise between versatility and ease of use.

Toolkits can be specialized in two different ways: on the one hand they can be vari-
ants of general purpose devices that are optimized towards a certain purpose. The
Arduino Flora for example is a smaller, sewable version of the Arduino Leonardo,
optimized for electronic textiles. On the other hand, they can be designed specifically
to support a certain range of applications, such as inertial measurement units for
measuring linear accelerations and angular velocity of rigid bodies. In this case, a set
of components required for this application such as a microcontroller, motion sensors
and data storage are integrated. Wearable devices add the challenge of interacting
with the human body in a natural way, so in addition they have to be optimized for
low weight and compactness.

The advantage of general purpose devices is their adaptability to a wide variety of
applications. However, these modifications require experience with electronics if the
platform is initially equipped with only minimal features. In the case of a building
block type platform, adding extra features is easier, but usually results in a bulky
device, impractical for applications like wearable electronics. Specialized platforms
perform well within the intended range of applications, but it is not always possible,
let alone easy to add additional features like wireless communication.

2

Building and testing prototypes is an essential part of our work as researchers and
developers and we rely on a set of different platforms to face the variety of challenges
that ubiquitous computing applications hold for us. Because prototyping scenarios
in our field are so diverse, we lack an appropriate toolkit that suits our full spectrum
of needs.

Goals

In this project we aim to overcome the above stated problem by building a versatile
and unified platform that can be adapted to the requirements of a wide range of
applications in ubiquitous computing and used in place of a number of different
specialized platforms. At the same time we are going to design the platform in a
way that it can be used for prototyping and building applications by developers with
no or little experience in electronics and programming. This way we also create a
valuable tool to teach topics like for example physical computing, electronics and
sensor systems. On the one hand, our scalable and adaptable platform is expected
to allow a low-threshold introduction to the topics and on the other hand to also
suit experienced students by providing a wide range of possibilities and challenges.

Methods

In order to achieve these goals, we will first identify fields of research that represent
the different aspects of ubiquitous computing applications in general and for which
specialized platforms and toolkits already exist. By carefully analyzing those existing
platforms we are going to be able to extract a set of primary properties and features.
In order to integrate the aspects of usability and scalability, we mainly focus our
attention on platforms that already implement these concepts. As a result we can
then refine this set of features and integrate them into a single, unified toolkit.

Expected Outcome

In the first place, we postulate that a platform, which unifies the principal proper-
ties and functionalities of a set of specialized platforms is able to substitute those
platforms in prototyping and teaching scenarios and as a result meets our demands
in ubiquitous computing applications. Furthermore, we suppose that a prototyping
toolkit with minimum threshold can be used by people with little or no experience
and will empower them to create their own ubiquitous computing applications with-
out the help of an expert. Finally we expect that a modular platform with optional
abstraction layers in software and hardware represents an efficient tool for beginners
as well as expert users.

3

Thesis Structure

After identifying five different fields of application that resemble the range of scenar-
ios in ubiquitous computing, we analyze almost 30 devices and toolkits from these
fields in Chapter 2. The result is a ‘best of’ list of desirable properties, balanced
towards our requirements as described in Chapter 3. In the subsequent design and
evaluation process, we shape a concept for our toolkit:
A module with integrated microcontroller, motion sensor, wireless interface and bat-
tery forms the base of our platform. Electrical connectors allow users to attach
extension modules, which contain for example sensors or actuators, to the base.
This way we provide a core set of crucial features in a compact device, which can
easily be extended with additional components and functions to adapt to a given
application.

We utilized a custom development platform to efficiently test and compare differ-
ent concepts and components to in order to refine our platform design. Specifically,
we looked into different options for computing, sensing and wireless communica-
tion. Based upon the concept and the results from this technology evaluation, we
developed a suitable physical form for the realization of our system, which we de-
scribe in Chapter 4. Here, we first focus on mechanical, electrical and usability
considerations for such an extensible system, before we proceed to technical de-
tails. The result is the BRIX2 prototyping toolkit. A base module with a compact
size of 50×30×15mm contains two microcontrollers, a 9-axis Inertial Measurement
Unit (IMU), a wireless transceiver and a battery. Three electrical connectors on top
of the module allow users to easily connect extension modules with an average size of
around 15×30×15mm. For a solid mechanical attachment of extension modules to
the base module, we implemented a friction-based connection based on the LEGO®

system.

Our platform is designed to be compatible to the widely used, open source Ar-
duino platform, which consists of a microcontroller board and an Integrated Devel-
opment Environment (IDE). This way, we can use the well-proven IDE, program-
ming toolchain, libraries and software examples for BRIX2. A custom library for all
components of our system allows users to tap the full potential of our hardware. To
add to the capabilities of the BRIX2 base module, we developed and implemented an
exemplary set of extension modules which we present in Chapter 5. These additional
sensors, actuators and communication interfaces allow BRIX2 to adapt to applica-
tions especially in ubiquitous computing. However, our system is not limited to this
particular scope of functions defined by the currently existing extensions. More and
different extension modules can and have been designed and built on demand.

4

After we implemented the BRIX2 platform and extension modules, we performed
tests of all key components to verify that they function as we expected. In Chapter 6
we summarize the technical specifications of those components before we present the
results of experiments based on real-life scenarios. Besides the technical evaluation,
we were also interested to know how BRIX2 facilitated actual applications as well
as in the users’ experience of the work with our platform. In the final part of Chap-
ter 6 we take a closer look at selected BRIX2 applications that were implemented by
students and fellow researchers and point out which particular features of our plat-
form. In the third part of Chapter 6 we present the results of a qualitative survey
conducted among users of the BRIX2 platform. Through a questionnaire, we gath-
ered their opinions on features of our system, asked them to share their experiences
while working with our platform and their wishes and suggestions for future revisions.

In Chapter 7 we summarize which contributions the BRIX2 platform and its devel-
opment process made not only to research in the field of ubiquitous computing but
also to teaching electronics and sensor systems. Finally we provide an outlook on
potential future developments of our platform regarding technical and conceptual
aspects.

5

2 Related Work: A Survey of
Existing Platforms

As a foundation of the design process that finally leads us to the BRIX2 toolkit, we
survey existing platforms, built as tools for different fields which lie within or overlap
with the field of ubiquitous computing that our research focuses on.
When we look at typical ubiquitous computing scenarios, we find a lot of applica-
tions that are based on standard Personal Computers (PCs) or smartphones. This
type of hardware is easily available, equipped with powerful processors, a display,
keyboard, mouse and touchscreen input and network access. If the requirements of
an application exceed the scope of these devices, the demand for custom hardware
arises. Those applications can for example be: Smart objects, equipped with sensors
and actuators that allow to interact with them. Intelligent textiles that are aware
of their surroundings and can assist the wearer in everyday life. Grids of sensors
distributed in a building or a room that are interconnected by a wireless link and
allow the space to sense different modalities. Sensors attached to a human body
that record motion patterns and trigger external applications. The combination of
PC-based application and custom sensors like i.e. paper-based Force-Sensing Resis-
tors (FSRs). [3]
There are numerous platforms that help researchers and students to implement these
applications: Microcontroller platforms are used by electronics developers to build
standalone applications involving sensors as well as actuators and can serve as a link
between such hardware and a PC. Physical computing toolkits allow to experiment
with different sensors and actuators without requiring skills in soldering, electronics
or programming. Wireless sensor nodes can be deployed to sense different modalities
in multiple spots at the same time. Compact inertial measurement platforms can
record and stream motion data. Wearable electronics platforms can be integrated
into textiles or worn as accessories.
However, none of the devices we found in these categories is capable to meet our
demands as a prototyping and teaching tool in all of the above applications. As
a result, researchers in ubiquitous computing were forced to use a variety of tools
for different applications which requires an extensive scope of skills in programming
and electronic hardware development, leads to longer development times as well as
additional costs and reduces the maintainability of existing projects.

7

The first step in our approach to unify the properties and features of many different
prototyping platforms is to analyze existing devices from the fields we mentioned
earlier. In this chapter, we introduce each of these fields before we present a selec-
tion of platforms that were designed to support typical applications in each field. We
closely examine and compare technical aspects of those devices to work out charac-
teristic features that contribute to their use a ubiquitous computing platform.
The first type of platform we introduce is the microcontroller platform. Devices
we present afterwards, like wireless sensor nodes or inertial measurement units are
specializations of a microcontroller board, equipped with further functionalities and
features. Moving towards more specialized platforms, we subsequently regard toolk-
its for physical computing, Wireless Sensor Network (WSN), inertial motion mea-
surement and wearable electronics. After that, we present the original BRIX system
that we designed in 2010 and that serves as a major inspiration for the proposed
BRIX2 system.
It is important to note that this survey is already outdated at the moment of publi-
cation, because technology advances rapidly. Companies and open source developers
constantly present novel platforms, which clearly indicates a demand for these de-
vices. However, some aspects of the following chapter are going to be still valid
for some more years and can be regarded as a base for future surveys and market
analysis.

8

2.1 Microcontroller Platforms

Microcontroller platforms are Printed Circuit Boards (PCBs) including a microcon-
troller as well as all necessary components like power management, communication
interfaces and Input/Output (I/O) connectors. They allow users to learn about mi-
crocontrollers or start their electronics projects without the requirement of soldering
skills or even detailed knowledge about electronics. Some platforms have become so
cheap and small that they are not only used in the design and prototyping process,
but often left in the finished project instead of developing custom electronics in a fur-
ther iteration. Certain microcontroller platforms have become so popular that they
are a de-facto standard with a solid, constantly growing user base. This community
supports beginners as well as professionals by sharing knowledge, ideas and projects.
Before we present selected microcontroller platforms in detail, we start with a short
introduction of the core component, the microcontroller.

2.1.1 A Brief Introduction to Microcontrollers

A basic component for applications that connect the virtual world (Software) with
the physical world (Hardware) is the microcontroller, a fully functional computer on
a single Integrated Circuit (IC). They contain a Central Processing Unit (CPU),
Random Access Memory (RAM), a non-volatile program memory and I/O pins.
These pins allow the software, which runs on the microcontroller to interact with
other electronic components and devices outside the microcontroller. I/O pins can
usually be configured as inputs, for reading external signals or as outputs to generate
an electric signal. Some I/O pins can not only read digital signals, but also read
analog voltages using an internal Analog to Digital Converter (ADC). I/O pins can
also have special, higher level capabilities like data transfer protocols implemented
in hardware, for example dedicated pins for RS232 [4] or Inter-Integrated Circuit
(I2C) [5] bus communication.
Another crucial aspect of a microcontroller is the programming interface. In or-

der to make the microcontroller do anything, it needs a program, called firmware,
which is usually written and compiled on a PC and then transfered into the pro-
gram memory of the microcontroller through the programming interface. There
are different techniques and standards for such an interface. Common implementa-
tions are serial interfaces like In System Programming (ISP) [6] or the Joint Test
Action Group (JTAG) [7] standard to directly access the memory of the device.
This requires a special hardware that connects to the PC, which is referred to as a
programming adapter. In order to eliminate the need for such an adapter, microcon-
trollers can be equipped with a bootloader, a small program which is either installed
as a factory default or later by the user. It is executed on reset of the controller
and allows firmware updates via an alternative communication interface like RS232
or Universal Serial Bus (USB) [8]. This means that firmware can be transfered to

9

the microcontroller using standard interfaces that every PC already implements and
does not require any special additional hardware except a standard cable. After
the bootloader has received the firmware and has written it to the internal program
memory, it terminates itself and runs the firmware that was uploaded.

2.1.2 Common Microcontroller Parameters

Today, a wide variety of microcontrollers is available so that during design time,
specific devices can be selected to precisely match the requirements of a given ap-
plication. Common parameters to consider are the number of I/O pins, which also
influence the physical dimensions if the chip, the clock speed, architecture (typi-
cally 8, 16 or 32 bit), power consumption and peripheral features like support for
certain communication protocols, timers, ADCs, Pulse Width Modulation (PWM)
generators or Floating Point Units (FPUs).

2.1.3 Microcontroller Communities

Even though a lot of specialized microcontrollers are available on the market, there
are a few general purpose product families that are commonly used among profession-
als and hobbyists. Tremendous user communities have developed around products
like the Atmel AVR series [9] or the Microchip PIC series [10]. In some cases, these
communities only focus on a limited number of chips, for example the Atmel AT-
mega168/328 and the Atmel ATmega32U4. The reason for this is, besides the low
costs and low complexity of the devices, is the availability of those popular chips
integrated into development boards. Communities share their knowledge in forums,
chats, blogs, magazines and dedicated project sharing sites like MAKE: projects1 or
Hackaday Projects2. Forums usually have different sub-boards dedicated to various
aspects of a platform, microcontroller or topic (interfacing sensors, communication,
controlling actuators, general electronics, etc.). It is not unusual that popular mi-
crocontroller community forums achieve thousands of posts containing questions and
answers every day.

1http://makezine.com/projects
2https://hackaday.io/projects

10

2.1.4 Microcontroller Platforms: Development Boards

Microcontroller

Programming
Interface

System
Clock

Voltage
Regulator

Communication
Interface

(USART, USB)

I/O Headers Signals

DataData

Power

Figure 2.1: Diagram of a typical microcontroller development board.

In order to actually use a microcontroller, a number of additional electronic com-
ponents are necessary, see Figure 2.1. First of all a power supply, often an external
clock signal generated by an oscillator and an interface to transfer programs to the
controller. Second, in order to connect the microcontroller to any other device,
connection headers or solder pads for all or certain I/O pins are required. A micro-
controller platform, or development board, integrates all those components. Most
development boards are bare PCBs populated with a microcontroller, peripheral
components, connection headers for I/O pins, a power supply connector and a PC
compatible communication interface. Some development boards also include com-
ponents like buttons, switches, Light Emitting Diodes (LEDs) or Liquid Crystal
Displays (LCDs) that allow interaction with the microcontroller without connecting
external components. This is convenient for users who are unfamiliar with micro-
controllers, because they can focus on writing the firmware for existing, working
hardware first, before altering and extending the hardware itself. It also reduces the
potential for errors and thereby the level of frustration. In our survey, we summarized
and compared the technical specifications of a total of six different microcontroller
platforms. In the following, we introduce three of them in greater detail before we
present a comparison of all six development boards.

11

(a) (b)

Figure 2.2: The Parallax Basic Stamp 2 on a carrier board ((a), photo by Marcin1988,
GFDL) and the Texas Instruments MSP430 Launchpad (b).

2.1.5 A Pioneering Microcontroller Platform: The Basic
Stamp

The Basic Stamp [11], see Figure 2.2 (a), is one of the first microcontroller platforms
that gained a wider popularity in the late 1990s and the early 2000s. It is based
an 8 bit microcontroller which runs an interpreter that executes firmware stored on
an external Electrically Erasable Programmable Read Only Memory (EEPROM).
The Basic Stamp is designed to be easy-to-use, sacrificing performance and complex
compiler toolchains for a simple, interpreted programming language called PBASIC,
a BASIC dialect. This made the Basic Stamp interesting for educational purposes
as well as hobbyists and artists, because it allows users to implement microcon-
troller applications without expert knowledge. A flourishing community of users
created documentation, examples and tutorials, increasing the platform’s popular-
ity. Although the Basic Stamp is still being developed and new boards are released,
its popularity among professionals and hobbyists has decreased due to the rise of
alternative platforms.

2.1.6 An Inexpensive Microcontroller Board: The MSP430
Launchpad

The Texas Instruments MSP Launchpad, see Figure 2.2 (b), is a development board
based on the MSP430G2553 microcontroller. It was first released in 2010 for a
price as low as 5USD including shipping. [12] The MSP430G2553 is a 16 bit micro-
controller optimized for low cost and low energy consumption. It runs at a clock
speed of 16MHz, has 16 kB of flash, 512 bytes of RAM and features hardware I2C,
Serial Peripheral Interface (SPI) and Universal Asynchronous Receiver/Transmit-

12

ter (UART). [13] An on-board emulator allows programming the microcontroller via
USB and debugging it via JTAG. The Launchpad can be equipped with different
MSP430 microcontrollers on the same board. All pins are broken out to pin head-
ers on opposing sides of the PCB. Texas Instruments offers a number of add-on
boards, called BoosterPacks, which can be stacked onto the Launchpad and extend
its scope of functions. [14] The company also encourages users to design their own
BoosterPacks. [15] TI originally offered two programming environments, Code Com-
poser Studio 4 and the IAR Workbench Kickstart. [12] Later, the community driven
Energia IDE was officially supported by Texas Instruments. Energia is based on the
Arduino IDE, see Section 2.1.7, and tries to make the Launchpad as easy-to-use as
an Arduino.3 The documentation of the Launchpad is comprehensive and detailed.
A user guide provides background information as well as schematics and an official
wiki and several user forums provide technical support during troubleshooting and
offer tutorials for a lot of different topics.

2.1.7 De-Facto Standard: The Arduino

The Arduino platform is currently the most influential and popular microcontroller
platform. Arduino not only names a microcontroller platform but also an IDE for
firmware development and a community of users. Because of its significance, we
describe the Arduino toolkit in greater detail than other microcontroller platforms
in this section.

A Short Arduino History

Arduino started as Massimo Banzi’s fork of the Wiring project, which was originally
developed by Hernando Barragán in 2003. [16] The goal of Wiring had been to make
electronic prototyping tools, which by that time were mostly targeted on electrical
engineers, available to students without extensive experience in electronics. The
Wiring IDE, which is still used by Arduino today, was based on Processing by Casey
Reas and Benjamin Fry. [17]. The Wiring microcontroller board was build around
the Atmel ATmega128. Together with the IDE, it represented a powerful learning
and prototyping kit that was used in multiple workshops and classes in 2004 and
2005. [18] In 2005, Banzi developed a board based on the Atmel ATmega8 as a low
cost alternative to the Wiring board. 4 From there on, Banzi et al. successfully
continued the project as Arduino, along with a fork of the Wiring IDE. Today,
Arduino has become a very popular and influential physical computing platform.

3http://energia.nu/
4https://www.flickr.com/photos/mbanzi/172472136/in/album-72157594173657338/

13

Figure 2.3: The Arduino Uno (top) along with an Arduino Nano and Mini Pro.

The Arduino Hardware

The first Arduino board was based on the Atmel ATmega8 microcontroller, but de-
signs later changed to an ATmega168/328. This series of 8 bit controllers usually
runs at 16MHz, has 32 kB of flash memory that stores the firmware, 2 kB Static
RAM (SRAM) and 1 kB Electrically Erasable Programmable Read-Only Memory
(EEPROM). Of the 23 General Purpose I/Os (GPIOs), 8 are connected to an internal
10 bit ADC. The controller also features I2C, UART and SPI [19] in hardware. Most
Arduino boards based on this microcontroller, like for example the Arduino Uno, see
Figure 2.3, also contain a USB/Serial converter IC such as the FTDI FT232RL [20]
to allow connecting the Arduino via USB instead of a serial port. Female pin head-
ers provide easy access to GPIOs and power pins of the microcontroller. Besides
the 8 bit Arduinos, there are also boards based on more advanced microcontrollers
like the Atmel SAM3X8E ARM Cortex-M3 [21]. Yet the Arduino series offers the
most variation in the 8 bit segment. Models like the Arduino Nano (45×18mm) or
the Arduino Micro (48×18mm) represent a more compact alternative to the classic,
68.6×53.4mm board. The LilyPad Arduino series for example is optimized for wear-
ables and electronic textiles, see Section 2.5. Its round PCB features contacts with
bigger holes that can be sewn to fabric using conductive thread, creating a textile
circuit board. The Arduino Mega series is based on an Atmel ATmega2560 micro-
controller that offers more memory (256 kB flash) and a higher number of GPIOs
(54) than the classical variants.

14

The Arduino IDE

The Arduino IDE is a crucial component of the toolkit and is designed to work with
all available Arduino Boards. A firmware program, called sketch can be written in
C or C++ directly inside the editor of the IDE and with a click of a single button,
it is compiled and uploaded to the target platform. The IDE is operating system
independent and available for Windows, Linux and OSX. At installation, the whole
required toolchain is automatically set up and works out of the box. The Arduino
IDE comes with more than 50 example sketches that serve as a starting point for basic
applications like blinking an LED to complex tasks like setting up an embedded web
server. Even fundamentals of the programming language like loops and conditions
are covered by examples. Additionally, a language reference with examples, libraries
and tutorials can be found on the Arduino Website.[21] An open source license allows
all users to actively take part in developing the Arduino IDE as well as additional
libraries that extend the functionality of the existing system. Thereby the product
does not solely depend on the official developers, but is in fact in the hands of users.
Compared with other IDEs like Eclipse [22] or the Atmel Studio [23], Arduino is
rather simplistic and advanced developers might turn to alternatives. However, by
reducing the scope of functions to a minimum, the Arduino IDE does not confuse
beginners and keeps them focused.

Arduino Extensions: Shields

An Arduino alone is relatively limited in terms of possible applications. Only by
connecting external hardware does the Arduino unfold its full potential. External
components can either be connected to the pin headers of the Arduino using cables
or in the form of readily available shields. Arduino shields have the same form-factor
as the original Arduino board and are stacked on top of the Arduino. Many shields
have female pin headers on top, so multiple shields can be stacked. The complexity
of shields ranges from a simple motor driver to voice recognition shields or Local
Area Network (LAN) and Wireless LAN (WLAN) implementations. Apart from the
official Arduino shields, there are many third-party shields on the market.

The Arduino Community

The popularity of the platform gathered a massive community that exchanges knowl-
edge through wikis and forums. Thousands of third-party tutorials and hundreds
of libraries, each including their own examples, solve virtually any problem Arduino
users could face. The official Arduino forum alone has over 2 million posts in over
270000 topics by around 270000 members (as of May 2015) [24]. Questions that have
not been answered before will likely be answered by other users within minutes or
hours. Topics are not only related to programming but also to hardware setups, for
example how to connect certain devices to an Arduino.

15

The Impact of Arduino

In 2014, Banzi estimated that around 1.2million Arduino boards were used around
the world. [25] Apart from the original Arduino brand boards, there are a lot of
clones5 and “Arduino compatibles” on the market. [26] Several China based com-
panies even offer Arduino boards for prices under 3.0USD [27] which makes the
platform affordable for almost anybody. Creating an Arduino compatible product
means directly profiting from the giant community, documentation and knowledge
base. Arduino has drastically reduced the effort that is necessary to start working
with electronics. This makes it a valuable tool for people who want to implement
a physical computing application without prior knowledge, but also students who
intend to learn about embedded systems and electronics. [28] Arduino also became
the electronics platform of the maker movement [29] which itself spawned a lot of
startup companies and actually became a market. [30]

5http://www.Arduino.cc/en/Products/Counterfeit

16

2.1.8 Characteristics of Different Microcontroller Platforms

In this survery, we analyzed the technical specifications of six different popular mi-
crocontroller development boards, see Table 2.1. Of course this is only a small sample
out of hundreds of boards on the market. We focused especially on platforms that
target non-expert users, since that is also the same group of users we aim to design
the proposed BRIX2 system for.

Electrical Properties

Most platforms in our survey are based on 8 bit microcontrollers running on clock
speeds around 20MHz. Flash and RAM are usually small, but still sufficient for
many applications. Multi channel ADCs with a resolution of at least 10 bit as well
as hardware implementations of communication protocols like I2C, SPI and UART
are common. The operational current is not critical in many applications microcon-
troller development boards are used for, but it is mostly under 20mA in active mode.
Sleep modes allow for reduced currents down to the µA range. Most controllers we
analyzed have a wide operational voltage range, for example the Atmel ATmega328
(1.8V - 5.5V).
Apart from the microcontroller itself, development boards contain additional com-
ponents. First, a programming interface to upload firmware or debug running code.
Second, connectors that allow users to attach external electronics. Further compo-
nents are voltage regulators, status LEDs or oscillators. For programming, most
modern platforms use USB, either supported by the microcontroller itself (for ex-
ample on the Atmel ATmega32U4) or through a USB to UART bridge controller.
Older boards require a special programming adapter or cable to connect to a com-
puter either through USB or a serial port. Two of the six platforms in our survey
rely on a special adapter cable for programming.
When prototyping electronic circuits, breadboards [31] are commonly used to ar-
range and connect components like LEDs, sensors or ICs. In order to connect a
breadboard circuit to a microcontroller platform, two basic techniques are common.

• Pin Headers: Boards with standard pin headers (2.54mm pitch) on the bot-
tom like the Basic Stamp or the Arduino Micro can be directly plugged into
the breadboard, given the layout is compatible to the breadboard grid.

• Female Pin Headers: Boards with standard female pin headers (2.54mm
pitch) have two advantages. First, the leads of components like LEDs or resis-
tors can be inserted directly into the headers without utilizing a breadboard.
Second, add-on boards (“shields”) with corresponding pin headers on the bot-
tom can be stacked upon the microcontroller platform. Breadboards can be
interfaced with single stranded wire, which is also used for the breadboard
circuit.

17

Not all pins of the microcontroller are necessarily connected to a corresponding pin
on the headers of the PCB. The platforms we analyzed connect an average of 90%
of all GPIOs to the headers. In addition to that, regulated and unregulated input
voltage as well as GND are usually broken out.
Additional components on the platforms we surveyed are often voltage regulators
that allow to power the board with voltages higher than the maximum supply voltage
of the microcontroller. This gives users more flexibility when selecting a power
source. LEDs are also common on microcontroller platforms as they allow a simple
feedback from the running firmware, for example as a debug output.

Other Properties

Apart from the hardware, the software framework is a crucial element of a micro-
controller platform. Experts are able to program most microcontrollers in different
languages and different environments. For beginners and intermediate users how-
ever, many manufacturers supply a dedicated development environment along with
their platforms. This consists usually of an editor along with a toolchain to compile
and upload the program to the microcontroller. An operating system independent
software maximizes the scope of potential users, so only one of six analyzed platforms
necessarily requires Microsoft Windows. Most platforms we evaluated are relatively
affordable with prices tags around 15USD to 20USD. Only the Basic Stamp is more
expensive at 60USD. Especially for beginners, the price tag is most likely a strong
argument when selecting a platform to start with.

18

Microcontroller Platform Arduino Uno MSP Launchpad
MSP-EXP430G2

PICAXE-18
Project Board

Teensy 2.0 Basic Stamp 2sx ArduinoMicro

Clock Frequency (MHz) 16 16 32 16 50 16
Operational Voltage (V) 1.8 – 5.5 1.8 – 3.6 1.9 – 5.5 2.7 – 5.5 3.0 – 5.5 2.7 – 5.5
Architecture 8 bit 16 bit † 8 bit 8 bit 8 bit
ADC channels @ Resolution 6 @ 10 bit 8 @ 10 bit 10 @ † bit 12 @ 10 bit - 12 @ 10 bit
RAM (kB) 2 0.5 0.5 2.5 0.03 2.5
Flash (kb) 32 16 2 32 3 32
Active Supply Current (mA) 10 4.5 † 13 60 13
Sleep Supply Current (µA) 6.5 0.1 † 160 500 160
Timers 2 x 8 bit, 1x 16 bit 2 x 16 bit 1 x † bit 1 x 8 bit, 2 x 16 bit, 1

x 10 bit
1 x 8 bit 1 x 8 bit, 2 x 16 bit, 1

x 10 bit
Communication I2C, SPI, UART I2C, SPI, UART UART I2C, SPI, UART,

USB
UART I2C, SPI, UART,

USB

GPIOs (Accessible‡ / Existing) 20 / 23 18 / 24 16 / 16 25 / 26 16 / 20 25 / 26
Connector Type Female Pin Headers Female Pin Headers Solder Pads Pin Headers Pin Headers Pin Headers
USB Yes Yes No Yes No Yes
Programs over . . . USB USB Adapter Cable USB Adapter Cable USB
Peripherals on PCB XTAL, USB bridge

controller, LEDs,
VREG

LEDs, Button, De-
bugger Controller

Programming
Header, ULN2803

LED, OSC, USB
Connector,

EEPROM, OSC,
BOD

LEDs, OSC, VREG

Hardware Open Source Yes No No Yes No Yes
Toolchain Open Source Yes Yes No Yes No Yes
Toolchain OS Linux, Windows,

OSX
Linux, Windows,
OSX

Linux, Windows,
OSX

Linux, Windows,
OSX

Windows Linux, Windows,
OSX

Size of Board (mm) 68.6×53.4 65×50×13 60×50×10 30 x 18 30.0×16.0×3.81 48×18
Price (USD) 25 10 12 16 60 20
† Data not available.
‡ Via pin headers or solder pads.

Table 2.1: Properties of different microcontroller platforms. Numbers taken from specifications and datasheets.

Conclusion

Our analysis of different microcontroller development platforms shows that success
does not only depend on the technical specifications. The Arduino for example has
an inferior microcontroller in terms of architecture, clock speed, memory and power
consumption. However, many applications, especially in education do not require
powerful microcontrollers and will most likely not even use the full potential of an
8 bit microcontroller like the Arduino’s Atmega328P. On the other hand, there is also
a clear demand for more powerful and complex or energy efficient microcontroller
development boards, but rarely among beginners. For advanced and professional
users, it makes a lot of sense to upgrade to a more capable microcontroller. This
requires experience and knowledge that is usually acquired on less complex systems.
In the past years, popular product lines like Arduino have started to offer powerful,
ARM based boards with a user-friendly interface, but as of now, simple 8 bit boards
are still far more common due to their compatibility with the existing code base,
their simplicity and their lower price tag. Since the microcontroller is the central
component of the BRIX2 toolkit, the analysis of popular microcontroller platforms
provides us with a set of principal features and functions. We find that functions
like ADCs or timers are integrated in almost any microcontroller in our survey and
that on-board LEDs and USB are common features for microcontroller platforms.

20

2.2 Physical Computing Toolkits

SensorActuator

SensorSensor

PC HUB Actuator

USB
ETH

MIDI
OSC

Figure 2.4: Diagram of a typical physical computing platform.

The term “physical computing” describes connecting the virtual world (software and
networks) and the physical world. Microcontrollers are the link between the com-
puter, representing the virtual world, and sensors as well as actuators that sense and
manipulate the physical world. Physical computing is usually approached in two
different ways: Either users intend to enhance their computer’s capabilities by con-
necting external custom devices or they intend to enhance their custom electronics
by connecting them to a computer, for example to get easy access to the Internet
or use the computer for heavy processing and mass storage tasks. Physical com-
puting toolkits and for example microcontroller platforms can not always clearly be
separated. In our analysis, we define a physical computing system as

1. A kit of different modules that are readily available.

2. The modules can be connected in order to build applications spanning the
virtual and the physical world.

3. This process does not require knowledge in electronics and/or soldering.

4. Firmware programming is not required.

By this definition, physical computing platforms in contrast to pure microcontroller
platforms require no special skills in order to build a working application. They con-
sist of readily available building blocks that are tested and proven to work. This way
they can just be combined into an application, even by non-expert users. Regarding
the hardware, physical computing platforms usually implement hubs or interfaces
between sensors as well as actuators and a PC, see Figure 2.4. They abstract those
external components so they can be accessed by software through for example USB

21

or ethernet. In our survey we analyzed a total of six selected physical computing
platforms. In the following section we present four of them in greater detail.

2.2.1 Physical Computing in Education

We are surrounded by electronics in almost every aspect of our lives. Computers
no longer just sit on our desktops, manifested in grey boxes or laptops but are inte-
grated into basically any electronics device, from phones and watches to microwaves
and power tools. Because of this close connection between the virtual world and our
everyday environment, we consider it important to teach students about the funda-
mentals and inner workings of computers as well as embedded systems. Education
is a primary aspect in the field of physical computing and some platforms are espe-
cially designed for that purpose. They are optimized on usability, transparency and
simplicity. These platforms are often too limited to be used in actual projects and
applications and can be regarded as a sandbox for physical computing. For actual
applications, more generalized and complex platforms come into play, once a student
or user has understood the basics.

2.2.2 Open Source Physical Computing: Grove Electronic
Brick Kit

Figure 2.5: The Seeedstudio Grove shield for Raspberry Pi with attached ultrasonic
distance sensor. Photo by Gareth Halfacree, CC BY-SA 2.0.

With the Grove Electronic Brick Kit, see Figure2.5, Seeedstudio offers a huge set of
small PCBs that can be connected to a Base Shield. The base shield represents an
adapter board that connects to different platforms like Arduino, Raspberry Pi, MSP
Launchpad. This way, Grove creates a unified interface between several platforms

22

and approximately 100 small extension boards. The boards are connected via four-
pin cables to the I/O or bus pins of the host microcontroller platform, depending
on their functionality. A basic kit with a base shield, 10 extensions and cables costs
around 50USD. [32] An extensive and detailed documentation is available in the
Seeed wiki [33]. The whole platform is open hardware and open software.

2.2.3 Legos for Electrical Engineers: Tinkerforge Building
Blocks

Figure 2.6: Tinkerforge Master Brick with FiFi Extension. Photo by Tinkerforge
GmbH, CC BY 1.0.

The German company Tinkerforge6 offers a variety of interconnecting boards that
focus on physical computing, home automation and industrial applications. Differ-
ent types of boards are combined to a stack that suits the desired application, see
Figure 2.6. Fundamentals are Bricks and Bricklets.

Bricks are 40×40mm stackable PCBs. They all serve different purposes such as
motor control or measurement of inertial motion. Each Brick can individually be
connected to a host system like a PC or Smartphone via USB. A Master Brick can
be used to route the signals of a whole Brick stack through a single USB connection.
Master Extension Bricks allow to use alternative communication protocols between
host and stack like Ethernet, RS485 or WLAN. Among the currently (Feb. 2015)
available Bricks are Direct Current (DC), stepper and servo motor drivers, IMU and
Master Bricks. Prices tags range from 35 to 115USD.

6http://www.tinkerforge.com

23

Bricklets are more simple extensions like sensors, buttons, displays that can be
connected to Bricks using cables. Each Brick has connectors for up to 4 Brick-
lets. Currently (Feb. 2015) there are 40 different Bricklets in the Tinkerforge
online shop, including potentiometer, motion detector, Radio Frequency Identifi-
cation (RFID), humidity sensor, analog and digital I/O, LCD, LEDs, Global Posi-
tioning System (GPS). Prices range from 3 to 45USD.

Although each brick contains an Atmel ATSAM3S4B 32 bit microcontroller, they are
not designed to run an application on their own and always rely on a host system,
which executes applications for the stack. These can either be the Brick Viewer or a
custom software. Tinkerforge offers Application Programming Interfaces (APIs) for
programming languages like C/C++, Java, JavaScript, LabVIEW, MATLAB/Oc-
tave, Perl, Python, Visual Basic .NET. Once a stack is assembled, the confguration
can be detected by software. Even passive Bricklets contain a small EEPROM that
identifies them. Instead of connecting the stack to a host computer, a Red Brick
can be used to run the application software. This single board computer features an
Allwinner A10s System on Chip (SoC) with integrated Cortex A8 CPU, Graphics
Processing Unit (GPU) and Video Processing Unit (VPU), USB host, High Defini-
tion Multimedia Interface (HDMI) and 512MB SDRAM. A Debian Linux system
runs off an SD card. The Red Brick costs 80USD not including cables or SD card.
All Tinkerforge products have open source licenses and documentation is available
for hardware and software. A medium sized but active community exists, which is
mostly based in Germany. [34]

2.2.4 Physical Widgets: Phidgets

Phidgets was introduced in 2001 by Saul Greenberg and Chester Fitchett, Univer-
sity of Calgary, as a toolkit for rapid prototyping of physical user interfaces [35].
The project continued as a commercial product, which is still actively developed by
Phidgets Inc.7 Originally, the concept of the platform was to connect sensors and
actuators to software that is running on a host system like a PC, hence providing a
flexible, physical interface. The most recent platform (as of 2014), the PhidgetInter-
faceKit 8/8/8 is designed around a Cypress enCoRe USB controller that connects to
8 digital inputs, 8 digital outputs and 8 analog sensor ports to a PC.The company
offers over 100 sensor modules that can connect to these ports via cables. APIs for
more than 20 programming languages allow easy integration of the Phidgets hard-
ware into custom software projects. For standalone applications, dedicated single
board computers are available for the Phidgets toolkit. Most of the documentation
can be found in the Phidgets wiki. The hardware itself is closed source. An active
user forum with around 4000 members is accessible through the Phidgets website.

7http://www.phidgets.com/

24

2.2.5 Teaching Physical Computing: littleBits

Figure 2.7: A child working on a littleBits circuit. Photo by Lisa George, CC BY-SA
2.0.

littleBits is not a typical physical computing platform that acts as a hub for sen-
sors and actuators, but primarily a learning platform for basics in electronics and
physical computing. Nonetheless it can be utilized to build all sorts of interactive
applications, which is why we included it in this section. littleBits started as a
project by Ayah Bdeir at the MIT Media Lab with idea to regard electronics as a
building material just like paper, cardboard and screws. [36] The result is a library
of mostly passive electronic boards that can be assembled into actual applications,
see Figure 2.7. Three basic, color coded types of modules, inputs, outputs and wires
snap together with magnetic contacts. An analog signal is routed through the whole
circuit from the power source and every input module affects the downstream sig-
nal of the whole circuit. littleBits allow a tangible and hands-on way of designing
electronic circuits which makes it a valuable learning tool. An optional Arduino
module adds programmability to a circuit for more advanced applications and sce-
narios. Using the Arduino module, it is also possible to use littleBits the same way
as any other physical computing platform in our survey. [37] The whole project is
open source and the company explicitly encourages users to create their own mod-
ules for the system for example by providing design rules [38] and hosting design
contests. Documentation on each module and kit is available and an active online
forum allows users to exchange knowledge and experience.

25

2.2.6 Characteristics of Different Physical Computing Toolkits

Physical computing is a wide field and the toolkits we analyzed are designed for differ-
ent needs from interactive art installations to prototyping of industrial applications.
In general, most platforms in our survey basically connect sensors and actuators to
an application running on a host computer. We summarized all properties of the
analyzed platforms in Table 2.2.
The central elements of physical computing platforms are hubs. They connect the
host PC to the sensors and actuators. The hubs in our survey are mostly based
on microcontrollers that can either be programmed by the user or ship with a fixed
firmware that allows the software on the host computer to access connected sen-
sors and actuators. The utilized microcontrollers range from simple 8 bit controllers
(littleBits) to powerful 32 bit ARM processors (Tinkerforge BRICKs), matching the
individual target field of application. Most of the systems are extensible by custom
electronics, but usually the companies offer a wide spectrum of different extensions so
that many use cases are already covered. This allows users to just buy a component
instead of making their own, which would require certain technical knowledge and
skill. A characteristic property of every physical computing platform in our survey is
the way that extensions connect to the base modules. There are three fundamentally
different approaches:

Stacking: Modules stack on top of each other using pin headers or fine pitch con-
nectors. This leads to a rigid and compact structure, but the form factor is fixed.

Cables: Extensions are connected to the hub using cables. On the one hand, this
leads to a flexible structure which can, on the other hand get messy and chaotic.

Side-by-Side Connectors: littleBits uses a magnetic connector system that al-
lows users to build circuits similar to using dominoes. Such structures are mostly
arranged on a 2 dimensional plane and can take up a lot of space if they get complex.

The number and variety of different readily available extensions define the level of
flexibility and ability of a physical computing platform to adapt to various applica-
tions, considering that most users are not capable or willing to extend the platform
with custom hardware. Apart from the RFduino8, all systems in our survey offer at
least 50 different sensors, actuators and other extensions that are compatible with
the corresponding hub and software. The prices of these extensions usually range
from around 5USD for simple passive modules to around 100USD for very com-
plex, active modules. The hubs themselves range from around 20USD for a simple,
Arduino based educational platform to almost 190USD for the ICUBE-X9, which al-

8http://www.rfduino.com
9http://infusionsystems.com/catalog/

26

lows easy integration of sensors and actuators into for example music performances.
The system is compatible to software frameworks in this field. The hardware is also
designed for stage environments.
Systems like X-OSC10 or ICUBE-X allow artists to set up interactive installations
and to focus on the creative aspect rather than on the technical details. They are re-
liable and compatible to common software frameworks by using protocols like Open
Sound Control (OSC) [39] or Musical Instrument Digital Interface (MIDI) [40]. Both
platforms are not reprogrammable, so they are by design limited to a certain range of
applications. Programmability on the one hand drastically increases the adaptivity
and therefore the range of potential applications, but on the other hand increases
the complexity of an application and requires more time and skills. In an embed-
ded electronics lecture, platforms like X-OSC and ICUBE-X would unnecessarily
abstract and hide their inner workings. It becomes harder to learn something about
the functionality and principles behind the platform. In this case, a toolkit with
basic electronics and software is more applicable. Students can start building from
the ground up and can later develop more complex applications on top of this basic
knowledge. Toolkits like Grove and LittleBits are a good example for this. Begin-
ners can start with the very basics, like for example blinking an LED or reading a
potentiometer. As the application grows, so do the skills of the users. When they
end up with a complex system, they have learned how every aspect of it works.
Both platforms provide enough extensibility so that even advanced users stay mo-
tivated and are not limited by the system’s capabilities. From the technical side,
we found that most physical computing platforms we examined are not designed for
performance or compactness. More important are usability aspects, for example the
color coding and reverse protection of the littleBits system or simplicity of the Grove
extension system. Educational platforms either have to be self-explanatory or well
documented. Ideally they are both. A comprehensible documentation like the Grove
wiki enables users to learn on their own and without institutionalized teaching. Our
survey of physical computing platforms shows different design approaches for mod-
ular toolkits with readily available extensions for a variety of targeted applications.
Since the concepts of the individual platforms are so diverse, it does not make sense
to identify common parameters. However, we identified some outstanding features
and concepts that can potentially be integrated into the BRIX2 system. We specify
those in the following chapter.

10http://www.x-io.co.uk/products/x-osc/

27

System tinkerforge BRICKs ICUBE-X littleBits Rfduino Phidgets Grove

Application Area Industry, DIY, Edu-
cation

Art, Music, DIY Education, DIY Internet of Things,
DIY

Education, Re-
search

Education, DIY

Programmable Yes No Yes Yes No Yes
Hub Microcontroller Cortex M8 † ATmega32U4 Cortex-M0 Various Various
Extension Connectors Cables, High Density

Headers
Cables Magnetic Connec-

tors
Pin Headers Screw Terminals Cables

Hub Size (mm) 40×40 121×94×34 20×† 22.9×29 48×19 70×50

Available Extensions 50 54 60 10 >100 100
Extension Price Range (USD) 4 – 110 6 – 206 6 – 50 10 – 30 7 – 150 2 – 100
Hub Price (USD) 35 187 35‡ 40 80 9∗

Operating Systems Windows, Linux,
OSX

Windows, OSX Windows, Linux,
OSX

Windows, Linux,
OSX

Windows, Linux,
OSX

Windows, Linux,
OSX

Programming Interface Misc. Languages,
Host-Side

Not programmable Arduino IDE Arduino IDE Not Pro-
grammable

Various

Host Software Interface USB, APIs USB, Serial, MIDI,
OSC

USB, Serial, HID USB/Serial USB, APIs USB, Serial

Documentation Wiki, Website, Fo-
rum

Manuals, Website,
Forum

Videos, Forums Manuals, Exam-
ples, Forum

Wiki, Videos,
User Guides,
Forum

Wiki, Forums

Estimated Community Size
and Distribution

Medium, mostly
Germany

Small, Interna-
tional

Big, International Medium, Interna-
tional

Big, International Medium, mostly
American

† Data not available
‡ Price refers to the Arduino Module: http://littlebits.cc/bits/Arduino
∗ Plus an additional Arduino or a similar platform, since the Grove base board is just a shield.

Table 2.2: Properties of different physical computing platforms. Numbers taken from specifications and datasheets.

2.3 Wireless Sensor Nodes

A wireless sensor node is a battery powered device that captures sensor data, which
is then sent wirelessly to a remote host system. A network of several wireless sensor
nodes is referred to as WSN. Typical WSN applications are for example tracking of
environmental data in a building or monitoring of industrial processes inside a fac-
tory. More general, WSNs can be used to sense one or many modalities in multiple
locations inside a certain area. This area can be a human body, a room, a building
or even a whole country. Wireless sensor nodes, also called motes, usually consist of
a microcontroller, a wireless transceiver as well as number of sensors and is powered
by a battery, see Figure 2.8.

Microcontroller

PC

Sensors Battery

USART,
USB Radio

Figure 2.8: Diagram of a typical WSN mote.

In many scenarios, motes are supposed to operate for months or years, which requires
a high degree of optimization towards energy efficiency. This is mainly achieved by
choosing low power components and short duty cycles for microcontroller and wire-
less transceiver activities. The research field of wireless sensor networks became pop-
ular around 2005 and publications focused on networking aspects like efficient routing
strategies and scalability of networks with a large number of nodes. Today, the prin-
ciple of WSNs often also manifests in the field of the Internet of Things (IoT) [41],
which is closely related to ubiquitous computing. But not only the wireless network-
ing aspect of WSN motes is interesting for the design of BRIX2. Battery powered,
standalone operation is also a feature which would facilitate applications in ubiq-
uitous computing such as smart objects which can be moved around freely. In our
survey we analyzed the technical specifications and properties of five different popu-
lar WSN motes. In the following we present two of them in detail before comparing
all five.

29

2.3.1 Scientific Sensor Networking: TelosB

The Telos wireless sensor mote was developed as a research platform by UC Berkeley
in 2005 [42]. It was marketed by Crossbow Technology, Inc in the same year. [43]
The low price of initially 99USD made the platform popular for researchers and even
today, numerous publications on WSN are based on this mote. TelosB is based on
an Texas Instruments MSP430 microcontroller running at 8MHz and powered by
two AA batteries. The IEEE 802.15.4 [44] compliant wireless transceiver operates
in the 2.4GHz band and uses an on-board Planar Inverted Folded Antenna (PIFA).
It achieves communication ranges from 75 - 100m outdoors respectively 20 - 30m
inside buildings. Sensors for temperature, humidity and light are integrated into the
TelosB platform. A 16 way pin header allows connecting external electronics such as
additional sensors. TelosB can be programmed via USB and runs TinyOS, a small,
open-source embedded operating system.11 The documentation on tinyOS is detailed
and accessible, however documentation on the mote itself is sparse, although it is an
open source project. Several motes based on the TelosB are still being released, yet
the hardware is similar.12

2.3.2 WSN Prototyping: Libelium Waspmote

Waspmote is a modular WSN platform by Libelium, designed for prototyping pur-
poses. The base board only contains the microcontroller, an accelerometer, a Real
Time Clock (RTC) as well as an SD card slot. Other components like the wire-
less transceiver, sensors or power sources are available as external modules. This
allows developers to test different configurations while adapting the platform to a
specific application. Libelium offers 15 different transceiver boards and 10 sensor
boards with multiple sensors each. [45] Waspmote is designed around an Atmel AT-
mega1281 8 bit microcontroller clocked at 14MHz and can be programmed via USB.
The Waspmote IDE is based on the Arduino IDE and provides a simple programming
interface for the motes. Apart from that, Libelium offers an API, sensor data aggre-
gation software and mobile applications. The company provides detailed technical
documentation, along with tutorials and a forum for the user community.

11http://www.tinyos.net/
12http://www.zolertia.com/ti

30

2.3.3 Characteristics of Different Wireless Sensor Nodes

In this section we presented two of the five WSN platforms we analyzed in total. We
selected platforms that focus on research and prototyping applications in contrast to
commercial industrial platforms. The reason for this is that a generalized platform
like our proposed BRIX2 system does not aim for professional industrial applications.
All properties are summarized in Table 2.3

Microcontrollers on Motes

One of the key elements on every mote is the microcontroller. It runs the applica-
tion which polls the connected sensors, buffers the data and relays it to the wireless
transceiver. The microcontroller and the wireless transceiver are typically the most
power consuming components on a wireless sensor mote. In order to save energy,
the application operates on low duty cycles. This means the controller stays in sleep
modes most of the time and is woken up in regular intervals to poll the sensors and
transmit data. The shorter these active phases are in comparison to the sleep phases,
the lower the over all power usage.
Most of the platforms in our survey are designed around low power, 8 bit microcon-
trollers running at clock speeds below 20MHz. Their current draw does not exceed
11mA in active mode and 12 uA in deep sleep. Flash memory to store the firmware
as well as RAM are limited, which is not regarded critical because applications are
usually rather minimalistic.
The Atmega128L is especially popular because of its support for tinyOS, an embed-
ded operating system widely used on WSN motes. [46] Apart from short wakeup
times from sleep modes that facilitate low power consumption, prominent features
of a microcontroller on a wireless sensor node are hardware implementations of bus
protocols like SPI and I2C. They allow to interface sensors and wireless transceivers.
A low minimum operational voltage allows to drain batteries far below their rated
voltage.

Wireless Networking

Platforms in our analysis mostly contain a fixed wireless transceiver chip. Only
the Libelium Waspmote, as a modular prototyping platform, has an expansion slot
that allows to use it with a number of wireless and wired communication interfaces.
Built in transceivers usually operate in the Industrial, Scientific and Medical (ISM)
band [47] on either 2.4GHz or 868MHz. The transceiver chip only provides the
physical layer for wireless communication. The other layers [48] are implemented on
the microcontroller.
For energy efficient applications like WSN low power transceiver are selected. Usu-
ally, idle, Receive (RX) and Transmit (TX) power are considered separately. Es-
pecially the idle power is critical because the transceiver, just like the microcon-

31

troller, remains in idle mode most of the time.[46] The motes we analyzed have idle
transceiver supply currents well below 100 uA. While actively receiving or sending
data, the transceiver wakes up from idle state and draws around 15mA before return-
ing to idle. At data rates of at least 76.8 kb per second, transmitting a data packet
only takes fractions of a second. The range of the wireless transmission is, apart from
external influences, defined by the antenna and the gain of the output amplifier for
TX as well as the input sensitivity for RX. Many motes use chip antennas or trace
antennas because they are inexpensive and easy to integrate. Encryption can also be
an important feature for WSNs, especially when critical data is exchanged. Modern
transceiver chips implement different encryption methods in hardware. [49]

Other Properties

The runtime of a mote is determined by its energy consumption and the power
source used. The classical Berkeley mote design (TelosB, MicaZ, BTnodes) uses
two AA batteries as a power supply. These batteries are widely available in a va-
riety of different technologies, see Section 3.2.4. More modern motes are powered
by Lithium Polymer (LiPoly) batteries, which have a higher energy density but can
not be discharged to low voltages without permanent damage. For protection they
require special charge and discharge controllers. In order to update the firmware on
a mote, communicate with its application or download data from an internal flash
memory, a serial connection is required. This is usually implemented via USB on
modern platforms. Older WSN nodes require USB/Serial adapters for communica-
tion and ISP adapters for programming. All motes we analyzed feature extension
headers that allow to connect external electronics. Since not even half of the devices
in our survey contain on-board sensors, add-on boards are available for these plat-
forms. The physical size of WSN motes is usually non critical, but does not exceed
73.5×51×13mm in our survey. WSN nodes for research applications are sparsely
documented. Technical descriptions and user guides may be present, but tutorials
or application examples are hard to find. There is also no real user community that
could provide reliable support. A different example is the Libelium Waspmote. It
is intended for prototyping and a professional product at the same time and there-
fore well documented. The company also actively drives the development of a user
community by providing a web forum.13 The results of our survey of WSN motes
show us which hardware and concepts are required to exchange data wireless as well
as to increase the runtime of a battery powered device, two requirements for many
applications in ubiquitous computing.

13https://www.libelium.com/forum/

32

System Libelium
Waspmote

Zigduino MICAz TelosB TPR
2420CA

BTnodes

Microcontroller ATmega1281 ATmega128RFA1 ATmega128L MSP430 ATmega128L
Clock Frequency (MHz) 14 16 8 18 8
Operational Voltage (V) 1.8 – 5.5 1.8 – 3.6 2.7 – 5.5 1.8 – 3.6 2.7 – 5.5
Architecture 8 bit 8 bit 8 bit 16 bit 8 bit
RAM (kB) 8 16 64 10 64
Flash (kB) 128 128 128 48 128
Active Supply Current (mA) 10 4.1 11 1.8 11
Sleep Supply Current (µA) 0.5 0.25 12 5.1 12
Wakeup Time (µs) † 25 180 6 180

Wireless Transceiver misc ATmega128RFA1 CC2420 CC2420 CC1000
RF Band misc 2.4 GHz 2.4 GHz 2.4 GHz 868MHz
IEEE 802.15.4 Yes Yes Yes Yes No
RX Current (mA) – 12.5 18.8 18.8 9.6
TX Current, 0 dBm (mA) – 14.5 17.4 17.4 16.5
RF Idle Current (µA) – 0.25 21 21 96
Data Rate – 2 Mb/s 250 kbps 250 kbps 76.8 kbps
Typ. Range Outdoor (m) – † 75 – 100 75 – 100 †
Typ. Range Indoor (m) – † 20 – 30 20 – 30 †

Power Source LiPoly, Solar
Panel

LiPoly 2x AAA 2x AA 2x AA

Extension Connectors Pin Headers Pin Headers Fine Pitch Pin Headers Fine Pitch
USB Yes Yes No Yes No
Programming Interface OTA, USB,

ISP
USB, ISP OTA, ISP USB, ISP ISP

Onboard Sensors Temperature,
Accelerometer

None None Light, Humidity,
Temperature

None

Size (mm) 73.5×51×13 68.6×53.4 58×32×7 65×31×6 65×31×6
† Data not available

Table 2.3: Properties of different WSN motes. Numbers taken from specifications and datasheets.

2.4 Inertial Measurement Platforms

In ubiquitous computing, natural and intuitive interfaces between humans and com-
puters can make technology disappear and blend into our environment. For most
people, moving their body is an essential part of their everyday lives. Through
motion based interfaces, users can interact with a computer without an abstract
interface like a keyboard or a mouse. Inertial measurement platforms are used to
sense orientation and movements of a rigid body, for example to track the motion
of human limbs or other objects. They are usually designed around inertial sensors
namely accelerometers, gyroscopes and magnetometers. To obtain and process data
recorded by those sensors, a microcontroller is required. Depending on the applica-
tion, the data is either streamed to an external computer over a wired or wireless
connection or stored on a memory inside the device.
In the following we introduce the principles of inertial sensing along with the key
components of an inertial measurement platform before we present three of the 8
platforms we surveyed in detail. Finally we compare all 8 devices to determine
common properties and relevant features of inertial measurement platforms.

2.4.1 Inertial Sensing

An IMU is the key component of any inertial measurement platform. It allows to
determine the three-dimensional orientation of an object such as an aircraft, which
can be expressed as three angles of orientation, quaternions or rotation matrix. A
typical IMU contains three different sensors:

Accelerometers measure the acceleration of the IMU in three orthogonal axes. The
principle of operation is usually to measure the displacement of a damped proof mass
on a spring caused by gravity or external acceleration.

Gyroscopes measure angular velocity of the IMU in three orthogonal axes. There
are different principles of operation for gyroscopes. The most basic is the mechanical
gyroscope that consists of a spinning disc mounted inside two gimbals. A rotation
of the outer gimbal results in an according rotation of the inner gimbal which can
be measured. These two sensors allow to measure the linear movements as well as
the rotations of the IMU. A third sensor is often added in order to correct the mea-
surements of the other two:

Magnetometers measure the surrounding magnetic field. Given the knowledge
about the magnetic properties of the environment, such as the Earth’s magnetic
field, the magnetometer can be used as a compass. There are is a variety of ways to
measure a magnetic field, for example utilizing the Hall effect.

34

2.4.2 Sensor Fusion

The readings of all three sensors can be fused by special algorithms in order to
acquire a more precise orientation. All three sensors have different disadvantages
when determining their orientation in 3D space which can be compensated by the
advantages of the other two sensors. For example if used on the Earth’s surface,
a three-axis accelerometer can determine a gravitation vector and thus providing
the pitch and roll angles. However it can not determine the yaw angle and it is
affected by other accelerations beside gravity. A gyroscope can determine all angles
by integrating the angular velocities, but tends to drift over time. The magnetometer
provides an absolute orientation by measuring the Earth’s magnetic field, but its
readings are easily disturbed by other magnetic fields. A well-known algorithm for
sensor fusion is the Kalman Filter.

2.4.3 MEMS Motion Sensors

Micro-ElectroMechanical System (MEMS) are devices in the micrometer scale. They
are typically fabricated from materials like silicon or metals by using a combination of
material deposit and etching processes closely related to manufacturing processes of
integrated circuits. In the last two decades, advances in MEMS technology allowed
an increasing level of integration for inertial sensors. Within five years, products
have developed from analog single-axis gyroscopes [50] to the combined IMU devices
available today, containing three axes gyroscopes, accelerometers and magnetometers
along with a sensor fusion processor [51]. Both devices have equal package sizes
whereas the price has halved. This is a significant step towards motion sensing
devices that are smaller, more powerful and affordable than ever before.

2.4.4 Motion Capturing

In application fields like health and sports science, virtual reality as well as character
animation, recording of body motion data is essential. Classical techniques are often
based on optical observation of motions for example with a single or multi camera
system. More advanced methods of optical Motion Capturing (MoCap) include
active or passive markers that are attached to the body and tracked by the camera
system. The result is data with a high temporal and spatial resolution that can be
directly transformed into a virtual 3D space. However, aside from the high costs for
stationary MoCap systems, they reach their limits when the subject moves greater
distances and/or markers leave the camera’s field of view.

35

2.4.5 Motion Capturing with Inertial Sensors

IMUs can be used in motion capturing as an alternative for classical tracking methods
like optical or magnetic tracking. Almost any human body part can be equipped
with a number of IMUs in order to capture either a full body posture or parts of the
body such as single limbs or just the head. A disadvantage of inertial motion tracking
is that it does not provide absolute 3D coordinates. The technique relies on a pre-
defined skeleton on which the rotations of the single tracking devices are mapped.
If the tracked person walks through a room, the virtual skeleton will still be at the
same position. Position data can only be estimated or added by an optical tracker.
Inertial motion tracking is less expensive than optical motion tracking, easier to use,
the amount of data is smaller, but it is not as accurate as optical tracking. Apart from
MoCap, IMUs can also be used in different applications like aviation, stabilization
(of cameras or antennas), shipment tracking or Human Computer Interfaces (HCI).

2.4.6 Typical Components of Inertial Measurement Platforms

The central element of an inertial measurement platform are the sensors, see Fig-
ure 2.9. Today mostly highly integrated MEMS devices with digital interfaces are
used. They contain sensor elements for all three measurement axes (x,y,z) and signal
processing hardware. Some sensors are even capable of internal sensor fusion and
directly provide orientation data, for example Euler angles or quaternions. [52]

Sensors

Accelerometer
Gyroscope
Magnetometer

(Thermometer)
(Barometer)

Data Sink

(Flash Memory)
(USB)
(RF Transmitter)

Battery
(optional)

Microcontroller

Figure 2.9: Diagram of a typical IMU platform.

Another key element of an IMU is a sink for the motion data itself. It can either
be stored on the device, for example in a flash memory or streamed to an external
device such as a PC via USB or a wireless transceiver. The third fundamental
component is the microcontroller that connects the data sink and the sensors. It can
also perform signal processing, sensor fusion, timestamping of data, etc. Many IMUs
contain batteries or offer at least battery connectors so they can be used as standalone

36

devices for recording motion data for hours or even days. In the following, we present
three IMUs in detail. Some of them are highly optimized and target specific markets
and applications whereas others are general purpose open source products.

2.4.7 Industry Grade Motion Sensing: Xsens MTi-10

The Xsens MTi-10 series IMU module is a professional motion capturing system.
It is especially popular in the games and film industry, but is also used for mea-
surement and active stabilization purposes in heavy machinery and aviation. The
MTI-10 comes in a 41.0 x 56.5×21.3mm aluminum enclosure and is accessed via a
proprietary, 9 pin connector for data, sync and power. It can output acceleration
data in a range of ±5 g and angular velocity data in a range of ±450 °/s with a rate
of up to 2 kHz and a latency below 2ms. Sensor data is fused internally using a
Kalman filter [53]. The MTi-10 module costs around 1100USD (2015).14 Xsens also
offers motion capturing sets based on the same technology that consist of 17 modules
that are either attached to a body with straps or integrated into a full body suit.
Xsens modules are highly professional, commercial products. They are closed source
and not extensible. Due to their price, they are mostly used in industrial, military
and scientific applications, so there is no real open user community.

2.4.8 Semi-professional Motion Capturing: YEI 3-Space

The 3-Space Embedded IMU by YEI Technology [54] is a MEMS-based IMU opti-
mized for motion capturing in a medium price range. The basic IMU board measures
23×23mm and contains a 3-axis accelerometer, magnetometer and gyroscope as well
as a temperature sensor. The sensor data is fused by a microcontroller which then
provides raw data, Euler angles, rotation matrix or quaternions via SPI, USB or
UART. YEI offers a number of fully encased variations based on the 3-Space Em-
bedded that allow standalone operation by adding a battery and a wireless interface
or logging memory. The battery runtime for the wireless version is rated for around
5 hours. Several software components like the YEI 3-Space MoCap Studio15 and
several plugins for third-party 3D software are available under open source licenses.
The hardware itself is closed source.

14http://shop.xsens.com
15http://www.yeitechnology.com/yei-3-space-MoCap-studio

37

2.4.9 Open Source Inertial Sensing: IMUduino

Figure 2.10: The IMUduino programmable IMU platform.

The IMUduino, see Figure 2.10, is a 39.8×15.72mm Arduino compatible (Atmel AT-
mega32U4) board that includes an Invensense MPU6050 IMU, a Honeywell HMC5883L
3-Axis Digital Compass, a MS561101BA03-50 Barometer and a Nordic nRF8001
Bluetooth Low Energy (BTLE) transceiver. The product is designed and sold by
Femtoduino and was founded via Kickstarter in November 2014. [55] It is now (2016)
available in the femtoduino web shop for 129USD.16 The design allows to connect
external hardware to the microcontroller using 1.27mm pitch pin headers. Hard-
ware documentation is sparse, only a pinout is available. The software is based on
external, open source libraries and is accessible on Github. 17. A special community
for this device does not exist.

2.4.10 Characteristics of Different IMU Platforms

In our comparison of eight inertial sensing platforms, we identified a number of char-
acteristic and common features as well as major differences between the platforms
depending on their intended field of use.

Sensors

All platforms in our survey, see Table 2.4, use a complete IMU sensor set consisting of
an accelerometer, a gyroscope and a magnetometer with 3 axes each. Usually, MEMS
components are used as sensors, although more expensive and professional platforms
16http://femto.io/products/imuduino
17https://github.com/zrecommerce/imuduino-btle

38

use high quality components whereas more affordable platforms use consumer grade
sensors.
Manufacturers of professional, closed source IMUs usually do not provide detailed
information on what sensors are used in their products. However, the specifications
are always provided. Accelerometers in almost any platform in our survey have a
maximum range of ±8 g to ±16 g and a resolution below 1mg. Gyroscope ranges are
around ±2000 °/s max. with resolutions below 0.1 °/s. The magnetometer ranges are
usually around 600 uT to 800 uT with resolutions well below 1 uT. The Invensense
MPU6000/6050 series is used in at least 3 of 8 analyzed platforms as an integrated
accelerometer and gyroscope sensor along with an additional magnetometer. Some
platforms feature additional sensors such as barometers for altitude measurements.
Temperature sensors are not always included in the systems descriptions but are in
fact present on each platform for gyroscope temperature compensation.

Data Management

Most platforms stream sensor data to a host device during recording. This is either
done through a wireless or a wired connection. Wireless transfers are problematic
in terms of reliability, bandwidth and latency, so professional systems tend to use
wired connections. If no proprietary protocol is used, data is usually streamed via
USB to a host system. In scenarios that do not require real time recording, data can
also be stored in a flash memory and read from the device afterwards. All analyzed
IMU platforms are able to provide raw data as well as orientation data, which is
calculated on the device, either on an internal microcontroller by a closed source
firmware, a custom SoC [56] or directly on the motion sensor itself.
The maximum data rate varies strongly even among the professional systems between
the APDM Opal18 at 128Hz and the X-Sens MTI-10 at 2 kHz. The FSM-919 and
MTI-10 have maximum latencies of 2ms which allows real time tracking applications.
The data rates and latencies of ArduIMU20 and IMUduino can not be listed because
they depend on the firmware and communication method used in the application.
Only two of the systems in our survey can store sensor data on an internal flash
memory.

Application Specific Features

Most of the analyzed systems are designed for motion capturing, for example the
Xsens, FSM-9, APDM, ProMove or Yei 3-Space. However, three of the systems in
our survey, the ArduIMU, X-BIMU21 and IMUduino are more general, flexible and

18http://www.apdm.com/wearable-sensors
19http://hillcrestlabs.com/product/fsm-9
20https://www.sparkfun.com/products/retired/11055
21http://www.x-io.co.uk/products/x-bimu

39

designed for prototyping motion based applications.
General purpose IMUs like the IMUduino, ArduImu or X-BIMU can be modified or
extended in terms of firmware and hardware in order to suit a particular scenario.
Those platforms are usually bare PCBs, batteries are optional and the documenta-
tion provides more technical details than for specialized solutions. Some products
are open hardware and/or software. Two of the analyzed platforms are even Ar-
duino compatible (IMUduino, ArduIMU) and based on 8 bit microcontrollers. More
advanced and closed systems tend to use controllers with a much higher processing
power. It is not always clear from the specifications provided by the manufacturer
what exact hardware is used, but the professional systems obviously implement com-
plex custom sensor fusion algorithms in order to supply optimal orientation data
output. Other characteristics of professional IMUs are at least optional enclosures
that allow mounting on a human body, an extensive documentation and compati-
bility with existing professional data processing software like MATLAB22 or custom
software packets supplied with the product. The prices for professional units are up
to an order of magnitude higher than for the less professional, general purpose IMUs.
Devices like the ArduIMU, IMUduino or X-BIMU are much closer to the platform we
aim to develop regarding technical specifications, but also areas of application. They
demonstrate that it is possible to build a powerful IMU using low-cost, consumer
grade components.

22http://www.mathworks.com/products/matlab

40

System FSM-9 YEI 3-Space ArduIMU+ V3 ProMove mini APDM Opal X-BIMU IMUduino Xsens Mti-10

Accelerometer BNO070 † MPU6000 † † MPU6050 MPU6050 †
Accelerometer Range (g) ± 8 ± 8 ± 16 ±16 ±6 ± 16 ± 16 ∼ 5
Accelerometer Resolution (mg) < 6 1 (14 bit)‡ 0.5 (16 bit)‡ 0.062 0.7 (14 bit)‡ 0.5 (16 bit‡ 0.5 (16 bit)‡ 0.076 (16 bit)‡
Gyroscope BNO070 † MPU6000 † † MPU6050 MPU6050 †
Gyroscope Range (°/s) ± 1833 ± 2000 ± 2000 ±2000 ±2000 ± 2000 ± 2000 450
Gyroscope Resolution (°/s) 0.04 0.06 (16 bit)‡ 0.03 (16 bit)‡ 0.007 0.24 (14 bit)‡ 0.03 (16 bit)‡ 0.03 (16 bit)‡ 0.007 (16 bit)‡
Magnetometer BNO070 † HMC-5883L † † † HMC-5883L †
Magnetometer Range (µT) ± 600 ± 810 ± 800 ±4912 ± 600 † ± 800 80
Magnetometer Resolution (µT) <1 0.2 (12 bit)‡ 0.4 (12 bit)‡ 0.15 0.07 (14 bit)‡ † 0.4 (12 bit)‡ 0.002 (12 bit)‡
Additional Sensors None Temperature None Barometer,

High-g Acc.
None None Barometer None

Sensor Data Formats Raw,
Human
Interface De-
vice (HID),
Orientation

Raw, HID,
Orientation

Raw, Orienta-
tion

Raw, Orienta-
tion, Altitude

Raw, Orienta-
tion

Raw, Orienta-
tion

Raw, Orienta-
tion, Altitude

Orientation,
Raw

Data Sinks USB, SPI USB, SPI USB, I2C, SPI USB, Flash,
RF 2.4GHz

USB, Flash,
RF 2.4GHz

USB, UART,
Xbee

USB, BTLE UART, USB

Max. Data Rate (Hz) 250 1350 ∗ 1000 128 256 ∗ 2000
Latency 1.8ms † ∗ † 30ms ∗ ∗ 2ms

Microcontroller Cortex M0+ † Atmega328P † † PIC24FJ64GA ATmega32U4 †
Supply Current (mA) 24 45 † † 13 † 106
Power Source USB USB, optional

Battery
USB, optional
Battery

USB, internal
Battery

internal Bat-
tery

USB, optional
Battery

USB, optional
Battery

USB

Size (mm) 19×18×4 23×23×2 38×25 51×46×15 49×36×13 32×25×10 40×16×5 57×42×24
Weight (g) † 1.3 † 20 22 † 2.7 55
Enclosure optional

Strapmount
optional Misc No Yes Yes Optional No Yes

Extensible No No Pin Headers No No Pin Headers Pin Headers No
Programmable No No Yes No No No Yes No
Price (USD) 299 125 80 400 † 300 129 1,100
† Data not available
‡ Resolution is not specified, so we calculated it by Resolution = Rangemax

2Resolutionbits
. The actual resolution might be higher at lower measurement ranges.

∗ Depends on Firmware and Application.

Table 2.4: Properties of different IMUs. Numbers taken from specifications and datasheets.

2.5 Wearable Electronics Platforms

Electronic circuits embedded into textiles or worn on the body are often referred
to as wearable electronics. Typical applications are for example wrist worn fitness
trackers, sensors embedded into clothing to measure the performance of an athlete
or actuators integrated into shoes or belts to provide a feedback to the wearer. We
regard these applications as part of the field of ubiquitous computing, because they
represent technology that merges with everyday objects. In this section we focus on
systems that can be used to prototype or build wearable electronics. We surveyed
three different platforms with different target areas of application such as integration
into textiles or compact, wearable devices.

2.5.1 A platform for Body-Worn Devices: Xadow Kit

The Seeedstudio Xadow kit 23 consists of a main board as well as several exten-
sion boards, all 25.43×20.35mm in size and connected by Flat Flex Connectors
(FFCs).This allows to fold the resulting system and is more flexible than just a
stack, especially for wearable projects. The main board is based on an Atmel At-
mega32U4 and compatible to Arduino. Two electrically identical, 12 pin connectors
on opposing sides of the board allow connections to other modules. The system is
either powered through USB or an external LiPoly battery which can also be charged
via USB through the main board. The main board costs 20USD, including FFCs
and a LiPoly battery. Currently (Feb 2015) there are 24 different extensions avail-
able at Seeedstudio, from a simple buzzer (7USD) to a 9-Degrees-of-Freedom (DOF)
IMU (40USD), a BTLE module (30USD) or a GPS module (44USD). Xadow is well
documented in the Seeedstudio Wiki24 and hardware as well as software are open
source.

2.5.2 A Sewable Arduino: LilyPad USB

The LilyPad Arduino USB is a product which is based on the Arduino LilyPad,
see Figure 2.11, proposed by Buechley and Eisenberg of University of Colorado in
2008. [57] The LilyPad is basically an Arduino designed for integration into electronic
textile applications. It has a round shape with a diameter of 50mm and selected pins
of the microcontroller are connected to through-hole pads on the edge of the PCB.
The hole diameter is bigger than usual to allow sewing contacts to it using conductive
thread. The LilyPad USB is based on an Atmel Atmega32U4 Microcontroller instead
of the Atmega168/328 on the original LilyPad. This enables communication and
programming of the microcontroller via USB instead of using a USB/Serial adapter
board. The LilyPad USB also features a standard connector for LiPoly batteries
23http://www.seeedstudio.com/depot/Xadow-c-84_120
24http://seeedstudio.com/wiki/

42

Figure 2.11: The Arduino LilyPad electronic textiles platform.

which can also be charged via the USB port. The microcontroller is supplied through
an on-board 3.3V regulator. As for all Arduino products, the LilyPad is open source
and compatible with the Arduino IDE and most of the examples. Sewable extension
boards containing sensors, actuators or switches are commercially available.25 The
LilyPad, along with the similar Adafruit Flora26 is a popular platform for prototyping
electronic textiles and often mentioned on websites and in publications especially
focused on electronic textiles in an educational or fine arts context. [58], [59]

2.5.3 The LilyPad Alternative: SquareWear

SquareWear, see Figure 2.12, is a 44.8mm², Arduino compatible microcontroller
board including an Atmega328P controller, a rechargeable on-board 45mAh coincell
battery, a full color LED, buzzer, light sensor and temperature sensor. Three of
the I/Os are wired to MOSFETs to allow switching high loads. All relevant pins of
the microcontroller are wired to solder connectors on the edge of the board that are
also optimized to be sewable like the Arduino Flora / LilyPad. The documentation
consists of a manual and several tutorials. SquareWear is open hardware and costs
21USD.27

25https://www.sparkfun.com/categories/135
26https://www.adafruit.com/products/659
27http://rayshobby.net/cart/squarewear/sqrwear-20

43

Figure 2.12: The SquareWear platform. Photo by Ray Wang, CC BY

2.5.4 Characteristics of Different Wearable Electronics
Platforms

At the time of writing, not many dedicated wearable electronics platforms existed,
so we could only survey a relatively small sample of 3 different devices. All systems
we regarded are in fact regular microcontroller platforms optimized towards specific
use-cases and use Arduino compatible 8 bit microcontrollers.
We identified two different main areas of application for the platforms we analyzed.
SquareWear as well as the LilyPad Arduino are optimized for electronic textiles
whereas the Xadow Kit is designed for Wearables. In the following, we present a
closer look on those areas of application.

Electronic Textiles

Electronic textiles often use fabric as the base material for circuits. Connections are
made with conductive thread sewn onto or woven into the fabric. In order to keep
the complexity of those circuits low, thus reducing the amount of work and the error-
proneness, groups of components are arranged on standard PCBs. Those building
blocks can be an LED with a resistor, but also a microcontroller platform such as the
LilyPad or SquareWear. There are special sewable extensions the LilyPad28 that can
also be used with SquareWear, which is probably the reason why there are no ded-
icated extensions for SquareWear. In order to be integrated into textiles, electronic
textiles platforms have to be able to make contact by sewing conductive thread to
through-hole pad. To make them more comfortable to wear when integrated into
textiles, the PCBs of both the LilyPad and SquareWear are small and rounded. An
integrated power supply, as found in the SquareWear is a valuable part of the elec-

28https://www.sparkfun.com/categories/135

44

tronic textiles building block because it eliminates the need for an extra battery.
However, it can also limit the application in terms of power consumption, voltage or
maximum current. In this case, attaching an external battery to a platform like the
LilyPad increases the flexibility of the platform regarding the power supply.

Wearables

Apart from textile based solutions, electronics can be worn as accessories. The
Xadow platform represents a prototyping solution for wearable devices like smart
watches or fitness trackers. A flexible and compact design is achieved by separat-
ing blocks of components into smaller PCBs, connected by FFCs. Technically, the
electronics are similar to the electronic textiles platforms, but the high density con-
nectors allow a greater level of compactness.

Common Characteristics

In order to integrate electronics into clothes, they need to be small and compact
and ideally contain a powerful battery. Wearable electronics, especially electronic
textile projects are often only basic and implemented by designers and artists, not
electronics experts. They do not require a powerful microcontroller, so all the ana-
lyzed platforms are based on simple, 8 bit microcontrollers running on clock speeds
not greater than 16MHz, see Table 2.5. Typical application areas are prototyping
and education, so the platforms have to be easy-to-use, ideally Arduino compatible
and well documented. The three wearable electronics platforms in our survey use
the Arduino IDE for programming and a USB connection for uploading, communi-
cation between microcontroller and PC and charging a connected battery. All three
platforms are relatively affordable and cost around 20USD.

45

System SquareWear 2.1 Xadow Kit LilyPad Arduino

Microcontroller Atmel Atmega328 Atmel Atmega32U4 Atmel Atmega32U4
Clock Frequency (MHz) 12 16 8
Flash (kB) 32 32 32
RAM (kB) 2 2.5 2.5

Application Area E-Textiles Wearables E-Textiles
Power Source Internal LiPoly, USB Optional LiPoly, USB Optional LiPoly, USB
Connectors Solder Pads, Sewable FFC Solder Pads, Sewable
Onboard Sensors Temperature, Light None None
Readily available extensions None 14 ∼ 20
Size (mm) 44.8×44.8 25.43×20.25 18Ø

Price 21USD 20USD 20USD
Programming and Communication Interface USB, ISP USB, ISP USB, ISP
Programming Language/Environment Arduino IDE Arduino IDE Arduino IDE

Table 2.5: Properties of different wearable electronics platforms. Numbers taken from specifications and datasheets.

2.6 Former Work: The BRIX Toolkit

The BRIX system was developed by us as a compact, extensible and mobile physical
computing toolkit in 2009. [60] Since the idea for the BRIX2 platform is based
on BRIX, we introduce our former work in the following section. BRIX already
implements many features required for ubiquitous computing applications, but can
still be significantly improved.

(a) (b)

Figure 2.13: A typical BRIX stack (a) and the complete BRIX kit (b).

2.6.1 Vision

The system was originally designed for interactive applications that incorporate sen-
sors to measure modalities like motion or pressure and actuators like vibration motors
or speakers to provide instant feedback. Many of these applications included attach-
ing the components to for example a musical instrument [61] or a human body [62],
[63]. Therefore a compact and lightweight system was required, which operates on
a battery and can be connected to a host device through a wireless interface, for
example to record motion data. At the design time of BRIX, physical computing
toolkits either lacked some of those required key features or were too expensive. For
that reason, we decided to design a custom solution, the BRIX system.

47

2.6.2 Concept

BRIX consists of a base module (see Figure 2.13(b), center) and several extension
modules, see Figure 2.13(b), which can be stacked onto the base module in order
to extend the range of functions, see Figure 2.13 (a). The system is powered by a
battery module (see Figure 2.13 (b), top) that mechanically and electrically connects
to the base module. In order to operate the system, a host system like a laptop or
smartphone is required, because BRIX is configured and controlled via Bluetooth.
A server running on the base module manages data streams from and to BRIX and
handles functions like auto-discovery of connected extension modules. Although the
system is flexible and adaptable, standalone applications without a host system are
not possible.

2.6.3 Hardware

The base module contains an RN41 Bluetooth transceiver module, an ATmega168
microcontroller, an ADXL345 3-axis accelerometer, an ITG3200 3-axis gyroscope and
three 5-pin connectors for extension modules. All features we regarded as crucial in
most applications we designed BRIX for were integrated in the base module, whereas
other sensors and actuators were optional and implemented as extension modules.
A prominent feature of the BRIX system is the case design. In order to protect the
electronics from impacts, we needed to encase them. As an additional requirement,
since BRIX is a modular system, the enclosures had to be stackable. A mechanical
connection can be implemented in many ways, for example by magnets, Velcro, snap-
in or friction based. We decided for a friction based connection and found out that
these need tight tolerances in manufacturing to be durable but also easy enough to
part, which Lego has optimized throughout many years. Lego bricks are cheap and
and can easily be modified, which made them a suitable material for our enclosures.
The extension connector has only 5 pins in order to save space on the PCB. The
connector signals only include power supply and an I2C bus. All extension modules
contain their own microcontroller which provides a uniform interface between the
BRIX I2C bus and the component on the extension module, for example an Red,
Green and Blue (RGB) LED with a driver chip.

48

2.6.4 Results

BRIX was a success for the applications it was originally designed for, namely stream-
ing data from various sensors to a host and generating feedback of different modal-
ities, controlled from the host. The modular structure of the system provided a lot
of flexibility and BRIX was considered for more and more applications. However,
although the hardware was adaptable to those applications, the firmware needed to
be modified frequently. This required to open the enclosure of the modules and flash
a custom firmware using ISP. This is a process that could only be performed by
developers or expert users.
Regarding the electronics, we found that the protocol based extension connector
leads to unnecessarily expensive and complicated extension modules, because they
all require their own microcontroller. The wireless communication based on Blue-
tooth offered the advantage of direct compatibility to laptops and smartphones and
did not require additional hardware on those devices. However, the paring process
and communication handling in the host software caused problems. Also there is a
limitation of a total of 8 devices in a Bluetooth network.
The enclosure design worked flawless, from a mechanical and also from a metaphor-
ical point of view. Lego’s friction based connection held all modules safely together
but also allowed us to easily modify the stack. Although the system was usable in
mobile applications, there was clearly room for optimization towards a more com-
pact system. As soon as two or more extension modules were connected, the whole
stack started to get bulky. The look of the system abstracted the inner workings and
motivated even people without knowledge about electronics and microcontrollers to
utilize BRIX for their projects.

2.7 Survey Conclusion

In our survey we have analyzed the technical specifications and implementation
details of a total of 28 platforms from five different fields of application. Our goal was
to systematically collect properties of platforms that were designed for applications
related to the field of ubiquitous computing. We presented some representative
platforms in greater detail, while we regarded only the technical specifications of
others. For each field we compared the properties of all according platforms and
devices in order to identify common characteristics, functionalities and features. It
is to note that a unified comparison of all 28 platforms might be possible, however the
outcome would not be significant because of the major differences between platforms
from one field and platforms from another. Based on the refined lists of specifications
we gained in this chapter, we are able to merge all relevant properties into a single
concept for a platform that is applicable for teaching and prototyping in all five fields
we covered.

49

3 BRIX2 Design and Development

In this chapter, we derive the design space for the proposed BRIX2 system from the
results of our platform analysis in the previous Chapter. To achieve this, we first
summarize and condense the results from Chapter 2. Subsequently we prioritize the
properties and functionalities of platforms in each field by ranking them based on
the number of occurrences. Accelerometers and gyroscopes for example are features
that are present in every IMU device we surveyed. As a result, those sensors are
mandatory for a platform that aims to serve as a prototyping and learning tool in the
field of inertial sensing. By carefully balancing those features for each field we aim
to address with our platform, we define the constraints and requirements for BRIX2

regarding conceptual and purely technical aspects. Based on these specifications, we
develop concepts for our platform that are integrated into a testing and evaluation
platform, the BRIX2 Development Kit (B2DK). With these prototypes, we are able
to test and verify the technical aspects of our future BRIX2 platform. The B2DK
is designed as a modular platform, so we can easily test combinations of different
microcontrollers, wireless transceivers and sensors to determine the optimal set of
components for BRIX2.

3.1 Defining the Requirements of BRIX2 by
Analysis of Other Platforms

For the different fields of application described in Chapter 2, we identified common
properties and features among the designated platforms we analyzed. In the follow-
ing we summarize those properties by field of application. After that we rate the
importance of each property which allows us to prioritize them. As a result we can
distinguish mandatory and optional features and functions, so in the design process,
we are able to decide whether certain properties or features have to be included in a
core set of functions, as optional extensions or can be left out completely.

51

Microcontroller Development Boards

Most microcontroller platforms in our survey were built around basic, 8 bit micro-
controllers with peripheral features like ADCs, I2C, SPI, UART. A USB interface
is common for programming and data transfer. GPIOs are broken out on either pin
headers or solder pads and therefore accessible to users. On-board voltage regulators
allow the board to be powered with different input voltages. LEDs display the status
of the board and can be controlled via I/O pins on some platforms. Manufacturers
usually provide an IDE and programming toolchain for their products. Detailed doc-
umentation and an active online community which shares knowledge and projects
are also common among the microcontroller platforms we surveyed.

Physical Computing Platforms

In our survey we defined physical computing platforms as a central hub that con-
nects external sensors and actuators to a PC or smartphone. Every platform we
analyzed is a plug and play solution, so no soldering or electronics knowledge is
required. All systems are modular and extensible by a high number of available
add-on modules. Manufacturers support the integration of their platform into exist-
ing software frameworks. Comprehensible, non-technical documentation is available
for beginners. Additionally, detailed technical documentation is often provided and
allows developers to customize the platform for special needs.

Wireless Sensor Nodes

Among the motes in our survey, most devices are designed around a low power
microcontroller with typical peripherals like ADC, I2C, SPI and UART. A low
power wireless transceiver allows data transmission over distances of more than 30
meters. Internal batteries which are swappable or rechargeable are present in almost
every WSN mote. Most of them are designed to be compact and feature extension
headers for additional sensor boards, which are also supplied by the manufacturer.
The technical documentation is often detailed but not suitable for beginners who are
not familiar with certain terms and concepts.

Inertial Measurement Units

All IMU platforms we surveyed contain a microcontroller and accelerometers, gyro-
scopes as well magnetometers with three axes each. Their compact design facilitates
applications like for example mounting the device to a human body. Some devices
have integrated batteries and radio transmitters which allow completely wireless op-
eration. Besides Radio Frequency (RF) transceivers, common data sinks are USB
or mass storage like SD cards. Platforms in our survey were able to sample motion
data with a rate of 150Hz or greater.

52

Wearable Electronics and Electronic Textiles

The wearable electronics platforms in our survey are based on basic, 8 bit microcon-
trollers. The devices are small and and make the design of compact applications in
the fields of electronic textiles or wearables possible. Some platforms have integrated
power sources. Two of the devices we surveyed have sewable connectors that allows
almost flawless integration into textiles.

3.1.1 Technical Feature Selection by Priority

From Chapter 2, we compiled a list of all features we could identify throughout all
platforms we surveyed. For each feature and each field, we summed up the number of
occurrences of a given feature in Table 3.1. We chose a star rating to provide a clear
overview. One star means the feature is present in at least a single platform. Two
stars mean that the feature is present in at least 50% and three stars translate to
80% or more platforms with that feature. From this rating, we conclude the priority
of a feature or functionality and can sort them by relevance. In the following we
split the most prominent properties into mandatory and optional features.

Mandatory Features
(? ? ? in at least one category)

From our survey we conclude that our system needs to be based on an Arduino
compatible microcontroller with an ADC and USB. A wireless transceiver is the
key element of a wireless sensor mote and can also be used to stream motion data
from an IMU. An inbuilt set of sensors consisting of accelerometer, gyroscope and
magnetometer is mandatory for IMU applications and also interesting for wireless
sensor motes and wearables. An internal battery provides power for the system
in standalone operation, important for wireless sensor motes, IMUs and wearable
applications. Extension headers enable access to the microcontroller and allow the
system to adapt to specific applications by connecting it to external hardware. A
compact design makes it possible to attach the system to a human body or embed
it into textiles. An enclosure protects the device from external mechanical forces.
Dedicated extensions for the platform enable users to easily tailor the system to their
desired application. All software necessary for operating and using the platform
should run at least on Linux, OSX and Windows. Open hardware makes it possible
for users and developers to learn from the systems implementation and actively take
part in developing it. Compatibility to the Arduino system makes the platform
directly accessible to the high number of existing Arduino users. In addition, most
of the documentation, programming examples and tutorials that already exists for
the Arduino System also apply to Arduino compatible platforms.

53

Optional Features
(? ? in at least one category)

Optional features are not present in the majority of the systems we surveyed, but
can still be considered for integration into our design. Wireless sensor nodes for
example use a variety of different wireless transceivers. Some of them are IEEE
802.15.4 compliant, which provides the physical layer for protocols like ZigBee or
6LoWPAN. Other platforms also use a Bluetooth based wireless transceiver which is
able to connect to mobile end devices like smartphones or tablets. A more mechanical
feature which is solely present in electronic textile platforms are sewable connectors.
However, since this property is rather exotic it is not a necessity for our design.

54

Feature µC
Devboards

WSN
Motes

IMUs PhysComp
Platforms

Wearables

Programmable Microcontroller ? ? ? ? ? ? ? ? ? ? ?

ADC ? ? ? ? ? ? † † ? ? ?

USB ? ? ? ? ? ? ? ? ? ? ? ?

Arduino Compatible ? ? ? ? ? ? ? ? ?

Wireless Transceiver ? ? ? ? ?

IEEE 802.15.4 ? ?

ZigBee ?

Bluetooth ? ? ?

Accelerometer ? ? ? ?

Gyroscope ? ? ?

Magnetometer ? ? ?

Temperature Sensor ? ? ? ?

Barometer ?

Mass Storage (Flash) ? ?

Internal Battery ? ? ? ? ?

Extension Headers ? ? ? ? ? ? ? ? ?

Sewable Connectors ? ?

Compact‡ ? ? ? ? ? ? ? ? ? ? ? ?

Enclosure ?

Extensions Available ? ? ? ? ? ? ? ?

OS Independent∗ ? ? ? ? ? ? ? ? ? ? ? ?

Open Hardware ? ? ? ? ? ? ? ? ?

† Data not available.

‡ smaller than 45×45 mm.

∗ Works on Linux, Microsoft Windows and Apple OSX.

Table 3.1: Occurence of platform properties in different areas of application.

55

3.1.2 Conceptional Properties of Analyzed Platforms

After we defined the required technical features and functionalities for BRIX2 derived
from our analysis of other platforms, we take a brief look on other properties that
we can potentially adopt into our system. Conceptional properties refer mostly to
aspects that concern the relationship of users and our platform. A concept would
for example be to design a toolkit that allows for a motivating and positive learning
experience by offering a low threshold entry and at the same time challenges and
opportunities for skilled users. In this section we not only point out the properties
of other platforms but also start to work them into our concept for BRIX2.

Modularity

The proposed BRIX2 system is expected to adapt to a great number of different
applications and scenarios. To ensure this versatility, we can follow examples like the
Arduino, littleBits or WaspMote, which are easily reconfigurable and/or extensible,
so the full scope of features has not necessarily to be defined at design time. Since
we also aim for a physically compact platform, parameters like size, weight and form
factor, we are more restricted regarding the design of a modular system than for
example the Arduino Mega. Its relatively big PCB offers a high number of easily
accessible pin headers and a lot of space for potential add-on modules. But in our
survey, we also identified examples for compact and yet modular platforms like the
Xadow kit using FFCs or Tinkerforge Bricks using small PCBs and high density
connectors. We often found that modular platforms consist of a base board along
with smaller extension boards. For BRIX2, the base board or module would contain
mandatory functions like we identified in the previous section, so many application
scenarios can already be covered without extensions. Several ports on the base
module allow users to connect extension modules and thereby adding the function
their application requires. This way, the system is organized into functional building
blocks. The extensible structure also allows to add more features after the initial
design by just building new extension modules.

Programmability

In contrast to platforms with a fixed firmware like we find among IMUs and physical
computing platforms, reprogrammable systems like the Arduino can be modified
and adapted to applications they were not specifically designed for. This is a crucial
requirement for BRIX2 so it can serve as a versatile tool for prototyping. Even
though programability increases the flexibility of a platform, it also requires the user’s
ability to actually program it. Especially for people without previous experiences in
programming computers, this can represent a significant challenge. If we still want to
make our platform accessible to this group of users, we need to create an environment
that motivates and facilitates their learning process, unlike for example the TelosB

56

platform, which is only sparsely documented. Again the Arduino toolkit offers a great
example for a low threshold learning experience for beginners and at the same time a
rich set of features that also allows skilled users to implement advanced applications.
In Chapter 2 we have identified a number of systems like Grove, littleBits, WaspMote,
IMUduino or Xadow that are compatible to the Arduino IDE. They take advantage
of the open source philosophy and adopt the well tested IDE, the existing knowledge
base as well as the enormous user base. We also consider this a great opportunity
and feasible option for the BRIX2 system.

Openness

Our survey shows that open source systems like the Launchpad, Arduino or Tin-
kerforge Bricks allow users to learn and to profit from those implementations. By
making schematics, PCB layouts and software available to the public, manufactur-
ers also encourage users to participate in further developments of those components,
create their own extensions or even fork their own project based on existing design.
Platforms like LilyPad, IMUduino or Grove would most likely not exist if the Ar-
duino project was not open source. The design process of BRIX2 also profits from
openly available information, schematics and software, so we will also gladly share
our complete work with users and other developers by releasing it under an open
source license.

57

3.2 Towards an Initial BRIX2 Design

Moving towards an implementation of BRIX2, our next step is to weave our own
ideas as well as concepts and properties of platforms we surveyed in the previous
chapter into our own design. We have already sorted, prioritized and regarded
many features as relevant for our own application in the previous section. In this
section, we clarify our intended fields of use for BRIX2 and their implications on
the design. Afterwards we discuss how we can fulfill the technical requirements for
BRIX2, beginning with mechanical and appearance aspects, followed by software
and finally electronic aspects.

3.2.1 General Concepts and Usage Scenarios

In the following, we present some general concepts for the BRIX2 platform which
are the fundamental guidelines for the design of our implementation.

Learning and Teaching with BRIX2

One of our major objectives is to develop an efficient tool for teaching and learning
electronics, sensor technology and microcontrollers as well as topics that base upon
this fundamentals. We define three key requirements for an efficient learning and
teaching tool:

Getting started quickly and easily: Lecturers should not need to spend a lot
of time introducing the tool and its usage. On the contrary the students should be
able to explore the system on their own after a quick guided introduction or even all
by themselves.

Constant Motivation: In order to keep students motivated, the tool needs to
be adaptable to different skill levels. Whereas the entry level is supposed to be as
easy as possible, lecturers should be able to use the tool to challenge even advanced
students. If students use the tool on their own, their creativity and strive for more
knowledge, they should not be limited by the tool. An approach to this might be the
use of different abstraction layers which can be removed as the lecture progresses,
revealing more and more complex details about the inner workings of a system.

Adaptability to Different Scenarios: To apply the toolkit in a variety of different
lectures, it needs to be flexible and rich of features. We already broadly discussed
this adaptivity in Section 3.1 when we derived requirements for our platform from
multiple related fields.

58

Prototyping

Besides teaching, another area of usage for our system is prototyping. Here, some
requirements are very similar to the ones stated in the previous paragraph. Besides
the flexibility to adapt to numerous applications we already listed for learning and
teaching scenarios, it is important for developers to on the one hand achieve what
they want quickly and easily. However, on the other hand, in many cases a direct
control over the hardware beyond all abstraction layers has to be possible in order to
modify or customize the platform to match a certain application it was not originally
designed for. We also aim to create a platform that can serve developers through
most of the development process and not for example only in an early evaluation
state. Ideally we can support the prototyping process up to a final product.

Existing Knowledge Bases and Transferable Knowledge

Vast amounts of knowledge about electronics, sensors, physical computing and the
like have become available through the Internet and add to the knowledge that exist
in the form of more classical media such as books or magazines. The less we specialize
our system technically, the more of the common knowledge can be applied to our
platform. This is applicable to an extent where our users could actually find most
of their questions and problems regarding our system answered by external sources
without relying on support by developers. The other way around, if our platform is
general and not specialized, students can apply the knowledge they obtained using
our platform on other problems and systems. This is an important aspect, since we
aim to demystify technology by allowing easy access and understanding of a subset
of that technology. If users then can transfer this knowledge and use it as a base
to understand more and different subsets of technology, our system has had a key
impact on the way the look at the technology that surrounds us every day.

3.2.2 Mechanical Design Aspects

In the following we present approaches to implement mechanical and appearance
properties we selected in Section 3.1. We begin with the physical appearance of
BRIX2 and the aspect of modularity, which both define constraints for the later
mechanical design of our platform.

Physical Appearance

With BRIX2 we aim to supply users with building blocks that allow them to im-
plement their desired application, similar to the idea of littleBits. The same way
software libraries abstract complex functions in a programming language, we plan
to abstract complex electronic functions to simple modules that can be used as a
building material. This abstraction could be achieved by enclosing all electronics

59

components so the electronics are not visible anymore. In order to simplify and
unify the design, all extension modules should have a similar or even the same en-
closure design. To distinguish between extension modules of different types, a color
coding could be used.

Extensibility and Modularity

In Section 3.1.2, we pointed out that a key feature of the proposed BRIX2 system is
extensibility in order to adapt to as many applications as possible. From a mechan-
ical point of view, the concept of modularity involves a number of challenges:

Mechanical Connections: In our survey we found mechanical connections be-
tween different modules on many platforms rely solely on pin headers. In order to
ensure a stable mechanical connection, more than one row of headers is needed to
reduce the leverage of the connected module. If only one header is present, a sup-
porting mechanical connection is required. This would have to be considered when
designing the enclosure.

Electrical Connections: In Chapter 2 we identified different kinds of electrical
connections between base units and extension units. Cable solutions aside, the most
prominent connectors are female/male pin headers with a 2.54mm (0.1 in) pitch,
which takes up a lot of space. An alternative are high density connectors like the
Hirose DF17 series [64]. Their downsides are a weaker mechanical connection and
poor accessibility of the single pins. A further parameter to consider for electrical
connectors is the number of insertion/removal cycles. If it is too low, the connectors
will break or become unreliable after only a short time of usage.

Enclosures for a Modular Platform: A unified mechanical and electrical inter-
face allows to connect any extension module to the same port on the base module.
This connection has to be mechanically stable, so the enclosures themselves have to
mate. The connection should also be easy to part, so several different types of me-
chanical connections will have to be evaluated in order to find a suitable method. We
already implemented a promising approach with the BRIX project, see Section 2.6,
which is well worth reviewing.

Size, Weight and Form Factor

The physical size of BRIX2 matters especially in mobile applications like wearable
electronics or motion capturing, where the device must neither be too heavy, nor
too big. In our survey we found several examples for this compact and light type of
platform. IMUs for example are designed to be small, compact and light to facili-
tate especially motion capturing scenarios when the sensors are body-worn. Wireless

60

sensor nodes also profit from a compact design so they can easily integrate into all
types of environments. For IoT applications, a small and lightweight system can be
embedded into a variety of everyday objects in order to monitor and enhance their
functionality. [65] Compactness can be achieved through a high level of integration,
which means to place a lot of functionality on a small space by efficient design. Un-
fortunately a modular system structure counteracts the principle of high integration,
because it comes with the additional space requirements of electrical connectors and
also additional enclosures. This is the main reason why we take great care to in-
tegrate as much functionality onto the base module as we can to keep the overall
device required for a specific application rather small. Should further functionalities
be required, adding them by attaching extension modules always comes at the price
of increased size and weight of the BRIX2 stack.

3.2.3 Software Aspects

Before we select electronic components for our proposed system, we take a closer
look on solutions for a software framework, which will influence the design of our
hardware. In the following, we consider the two major required software components
for our platform. First, the framework and language that is used to write firmware
for the microcontroller. Second a number of tools required to compile that code to
a binary and transfer it onto the microcontroller. Since existing solutions for both
aspects exist, we are likely to adapt one of them, given it fits the requirements of
our platform.

Firmware Programming Language

On the lowest level, a microcontroller can be programmed in assembly language,
which provides precise control over every hardware component of the controller. On
the one hand, this enables programmers to write very efficient code. On the other
hand, it is a complex, unintuitive task and requires expert knowledge and under-
standing of the inner workings of a microcontroller. Since the design of BRIX2 is
also focused on beginners, we need a language that is more abstract and easier to
understand. In our survey, the C programming language is used for a major num-
ber of platforms, most prominent on the Arduinos and compatible platforms. Also
outside of the microcontroller context, C is a widely used programming language. In
order to run the code written in a high level language on a microcontroller, it needs
to be compiled into a binary code that can then be transfered to and executed by
the microcontroller. Each type of microcontroller needs its own compiler or compiler
settings because the device architectures differ. This is one reason why the selection
of a programming language and compiler toolchain affects the selection of hardware
components like the microcontroller.

61

Microcontroller Programming Toolchain

After the code is compiled, it needs to be transfered onto the controller. This is
done by special tools or even combination of such running on the development PC
called a programming tool. It either connects to the microcontroller directly via USB
or a USB/Serial adapter or through a dedicated piece of hardware, a programmer.
The binary is copied into the flash memory of the microcontroller. After that, the
controller is reset and starts to run the program.

Arduino IDE

The Arduino IDE is the software package supplied along with the Arduino microcon-
troller development boards. Not only does it contain an editor for writing firmware
for Atmel ATmega microcontrollers, it also integrates an open source toolchain con-
sisting of a C compiler and a flashing tool. The whole software is operating system
independent and configured in a way that it allows even beginners to just use it our
of the box without any microcontroller or programming experience. As we already
mentioned in Section 2.1.7, the Arduino is a de-facto standard among the devel-
opment boards and physical computing platforms [66]. This means that a lot of
documentation, tutorials and code examples as well as a solid user community does
already exist. By designing our proposed platform to be Arduino compatible, parts
of the documentation, examples and project that are based on the Arduino platform
will also apply to BRIX2. This way our platform profits from many achievements
the Arduino developers as well as the community made in the last 10 years.

3.2.4 Electronics Design Aspects

As a final step, we approach the electronic design of the BRIX2 platform. This does
not only include a selection process for key components like the microcontroller, IMU
sensor, wireless interface and power supply, but also to solve the challenge of reliably
connecting multiple boards of a modular system.

Connectivity

Common in the system design of almost any development board, physical computing
toolkit or wireless sensor node are at least two types of connectors. A PC connection
for programming and data transfer and one or more connectors to attach external
hardware.

Host System Connector Almost any re-programmable device relies on a data
connection to a PC in order to upload new firmware and debug or control firmware
during runtime. This connection can either be a dedicated programming or debug-
ging interface like ISP or JTAG as well as a serial data connection like RS232 or

62

USB that communicates with a bootloader on the target device. A serial data con-
nection has two important advantages over a dedicated programing interface. First,
no special hardware is required for connection, because the serial data connection is
compatible with common PC interfaces. Second, the serial data connection is general
purpose and can also be used for other communication with the target device and
are not restricted to programming and debugging. In modern platforms, the host
system connector is usually USB. A major reason for this is the compactness and
versatility of a USB header, which is smaller than for example a standard, D-SUB-9
or DIN RS232 header. Also, USB also offers power supply, which RS232 does not, so
the 5.0V supply voltage of the USB host device can be used to power the connected
system or even charge its internal batteries.

Extension Connectors Not only the mechanical type of connector has to be
considered but also the organization of electrical signals. In Section 2.2, we found
two different strategies for the pinout of extension connectors.

• Full Breakout: All or most of the GPIOs of the microcontroller as well as
supply voltage and ground are broken out to a connection header. This was
commonly found on most development boards. The full breakout is flexible
because it can connect to any hardware in a lot of different ways. The downside
is that the number of pins that have to be broken out is usually not less than 10
or 20. This requires a big standard connector like a 2.54mm pitch pin header
or a compact but fine pitch connector which is hard to solder and interface.

• Protocol Based: A different strategy that allows a low pin count on the con-
nector are bus based extension connections. These can be found for example on
systems like BRIX, littleBits or Grove. The connector usually contains supply
voltage, ground and a small number of bus lines like I2C (data line and clock
line) or a small selection of GPIOs (for example one analog input, one digital
I/O). This kind of interface relies on a protocol which defines how external
hardware must connect. All external hardware necessarily needs to be compat-
ible to the connector standard. For example on the former BRIX system, all
extension modules had to implement an I2C slave. Protocol based connectors
are electrically and mechanically compact and simple but also cause a more
complex design process for external hardware along with higher component
counts and costs.

Microcontroller

To create a reprogrammable platform, we need to design it around a microcon-
troller. This requires a careful component selection, because the type of microcon-
troller will not only fix parameters like memory space and computing power, but

63

also the quantity and quality of the documentation which differs between manufac-
turers and product lines. To ensure the latter, we already decided to be compatible
to the Arduino platform which makes it possible for us to apply the already ex-
isting massive knowledge base to our product. In the following we briefly describe
the technical requirements for a BRIX2 microcontroller before we discuss different,
Arduino-compatible microcontrollers.

Requirements for a BRIX2 Microcontroller In Chapter 2 we observed that
among the programmable platforms, 8 bit microcontrollers are still common. Espe-
cially for applications in education and prototyping, a rather simple type of micro-
controller is more feasible than for example a complex, high speed 32 bit processor.
In many cases, an 8 bit microcontroller with 1 kB SRAM and 32 kB program mem-
ory is totally sufficient and in fact it is surprising what those systems are capable to
accomplish. [67], [68] Besides the performance of the microcontroller, a number of
other features are crucial:

• Communication protocols implemented in hardware are necessary in
order efficiently communicate with sensors, other microcontrollers or a host
system. Required protocols are for example UART, I2C and SPI.

• Internal analog-to-digital conversion is needed to measure analog voltages
on an input pin of the microcontroller. This functionality is frequently used in
order to read certain sensors, for example analog accelerometers, light sensors
or potentiometers via a voltage divider.

• Native USB support allows the microcontroller to communicate with host
devices like a PC via USB. This eliminates the need for a serial-to-USB con-
version and level shifting electronics. The USB communication can be used for
data transfer as well as programming via a bootloader and is common on most
modern microcontroller platforms we analyzed.

• Low energy modes are special states the microcontroller can enter to drasti-
cally reduce the power consumption. This is applicable for example when the
microcontroller is waiting for an external input.

Mechanically, the chip itself needs to be reasonably small to facilitate a compact
PCB design. The package should also be solderable without professional equipment
in order to achieve a reproducible system. This excludes for example Ball Grid
Array (BGA) packages. Another requirement is sufficient documentation of the
microcontroller. This does not only involve a detailed and well-structured datasheet
but also an online community centered around that particular controller or controller
family. The more people use a certain microcontroller, the easier the troubleshooting
online. For the most popular microcontrollers, virtually any problem a beginner will

64

face has been solved many times and is well documented on the Internet. All those
requirements are met by the Arduino platform, which makes it feasible to also design
BRIX2 as an extended, Arduino compatible platform. We can thereby conclude that
Arduino compatibility is a major requirement for a BRIX2 microcontroller.

Arduino Compatible 8Bit Microcontrollers In general it is possible to use
microcontrollers other than the ones used in the original Arduinos with the Arduino
IDE. [69] However, this usually requires changes in the IDE that have to be made
by the user. In order to be compatible to Arduino out-of-the-box, we need to use a
microcontroller that is actually used in one of the original Arduino implementations.
This leaves us with a small collection of three different microcontroller series:

• ATmega168/328, used in the Arduino Uno, (Pro) Mini, Nano, and Lily-
pad [70]. This 8 bit microcontroller series is produced by Atmel. The con-
troller can run at clock speeds up to 20MHz, has 32 kB flash memory, 1 kB
EEPROM and 2 kB SRAM. The ATmega168/328 can communicate via native
UART, SPI and I2C. It has 23 GPIOs, eight are connected to an internal,
10 bit ADC. The controller has three programmable timers/counters and five
different power saving modes. It is available in Dual InLine Package (DIP)28,
Thin Quad Flat Package (TQFP)32 (7×7mm), 4x4 BGA32 (5×5mm), Very
Thin Quad Flat No leads (VQFN)28 (4×4mm) and MicroLeadFrame (MLF)32
(5×5mm) packages. [71]

• ATmega16/32U4, used in the Arduino Leonardo, Esplora and Micro is an
8 bit microcontroller produced by Atmel. It runs at clock speeds up to 20MHz,
has 32 kB flash, 1 kB EEPROM and 2.5 kB SRAM. It is a USB 2.0 full speed
device and can also communicate via native UART, SPI and I2C. The con-
troller has 26 GPIOs, twelve are connected to an internal 10 bit ADC. It has
four programmable timers and six sleep modes. The ATmega 16/32U4 is avail-
able in a TQFP44 (12×12mm) and Quad Flat No leads (QFN)44 (7×7mm)
packages. [9]

• ATmega 1280/2560, used in the Arduino Mega and Mega 2560 is an 8 bit
microcontroller series by Atmel. It runs at clock speeds up to 16MHz, has
128 kB flash, 4KB EEPROM and 8 kB SRAM. It can communicate through
four UARTs, SPI and I2C. The controller has 86 GPIOs as well as a 16 channel
internal 10 bit ADC and features six programmable timers and six sleep modes.
It is available in TQFP100 (14×14mm) and BGA100 (9×9mm) packages.

Wireless Networking

From Table 3.1, it becomes clear that among the fields of application we surveyed
wireless transceivers are mainly required in WSN and IMU applications. However,

65

there is a major difference in the requirements that both of these fields have regard-
ing the wireless transceiver. WSN applications generally transmit low volumes of
data with a low update rate of ≤ 1Hz. In IMU applications on the contrary, data is
streamed with a high update rate, up to 1 kHz, see Section 2.4.10. Also, WSN appli-
cations require more flexibility regarding the network topology whereas IMUs usually
just use a star topology to send data from n nodes to a central device. For WSN
prototyping and IMU applications as well as IoT applications inside buildings, the
range of the wireless transmitters should be at least 30 meters. In our survey we can
not clearly identify any protocol layer that is commonly used, so we will subject this
matter to a further evaluation. Besides choosing a suitable protocol for wireless data
transmission, our application needs a small, inexpensive wireless transceiver module
with a standard interface to the microcontroller (I2C, SPI, UART). Furthermore
the technology should be transparent, well documented and have an existing user
base.

Sensors

Some platforms in our survey include different kinds of sensors, ranging from simple
ambient sensors like temperature and light sensors to complex, smart devices like
MEMS motion sensors. Although most of those sensors do not appear in enough
platforms to make that particular feature mandatory for our platform, motion sen-
sors are crucial. By targeting applications in the field of IMUs, motion sensors
become a central element of our system, since the field is based on a combination of
those particular sensors. But inertial motion sensors can not only be found in the
field of IMUs: there are extension boards containing those sensors available for plat-
forms in the other fields as well, for example in development boards [72], WSN [73],
electronic textiles [74] and wearables [75]. This clearly illustrates the demand for
motion sensors in all targeted fields. In Section 2.4.10 we analyzed the properties
of all IMU sensors in our survey. We found that more than 50% of all systems use
MEMS sensors that combine at least an accelerometer and a gyroscope into a sin-
gle package. Prominently, Invensense1 sensors are used. Magnetometers are either
part of the integrated solution or a separate chip like for example the Honeywell
HMC-5883L [76]. The manufacturers of the other IMUs do not provide information
about the type of sensors in their product, which are most likely not consumer grade
devices.
Since we aim for a compact, cost efficient and reproducible system, an off-the-shelf,
single-chip consumer grade solution that includes all three sensors would be ideal.
The data interface should be either SPI or I2C for easy data acquisition via the
microcontroller. The average ranges and update rates of the sensors we analyzed
are summarized in Section 2.4.10 and should be used as a guideline when selecting

1http://store.invensense.com/

66

a specific sensor for our implementation.

Power Supply

In many cases, an electronic application can be powered externally. However, 80%
of the platforms that we analyzed are either designed to operate independent of
an external power source or at least allow this as an option. In areas like motion
capturing, wearable electronics and wireless sensor networks, platforms usually rely
on an internal rechargeable battery to power the application.

Power Requirements In order to use BRIX2 in motion capturing and wearable
electronics scenarios, we aim for a battery runtime of 3-5 hours at full load, which
we regard realistic for prototyping purposes. This means for example high frequency
wireless streaming of data and powering external components like LEDs or speakers.
Because BRIX2 is supposed to be small and lightweight, we need a power source
that can also fulfill this requirement. The user should be able to charge BRIX2 as
simple as charging a smartphone. This means the battery should not have to be
removed for charging. A high number of charge cycles before losing capacity and a
low self-discharge rate is crucial.

Battery Runtime The runtime of a battery powered system is basically deter-
mined by two factors:

• Battery Capacity: The capacity defines how much energy can be stored in a
rechargeable battery. The amount of energy stored in a battery with a certain
mass is given by the energy density and varies for different battery technologies.
Hence the higher the energy density, the smaller or more lightweight a battery
can be with constant capacity.

• Energy Consumption of the Application: Active components like micro-
controllers, displays and wireless transceivers consume most of the energy in a
mobile system. In order to keep the runtime of the battery long, the energy
consumption has to be as low as possible. This can be achieved by selecting
energy efficient components and through intelligent use of those components.
Microcontrollers often implement a number of different energy saving options
like sleep modes that can be entered if the application is not using the microcon-
troller in that period of time. The same applies to wireless transmitters. Their
energy consumption peaks when transmitting data. By keeping transmissions
short and the transmission frequency low, a lot of energy can be saved.

Battery Technologies There is a number of rechargeable battery technologies
that can be considered for an application like BRIX2. The main parameters we

67

consider are size, weight, capacity, number of charge cycles before significant loss of
capacity, maximum charge and discharge currents and typical output voltage. The
following information and data is taken from [77], [78], [79], [80] and [81].

• Nickel Cadmium Batteries usually come in an AA or AAA form factor.
This limited number of shapes and their size require small applications to be
designed around the battery for an optimal packed product, see for example
Section 2.3.1. The AAA form factor with 44.5×10.5mm Ø is the smallest
common NiCd standard. A device containing such a battery will be at least
50×15mm in size. Another problem with those batteries is the low output
voltage of around 1.2V. This requires the electronics to either operate on this
voltage or to be powered through a boost converter circuit. Alternatively, more
than one battery can be used in series. NiCd batteries have a relatively low
energy density and are also relatively heavy, see Table 3.2

• Lithium Ion Coin Cells are relatively small and have a flat, round form
factor. They are designed for low power applications and thus have only a
low capacity. Because of their flat shape, they can easily be integrated into
PCB layouts and treated like a regular electronics component. Their output
voltage of around 3.6V is sufficient to power most modern active components
like microcontrollers and sensors.

• Lithium Polymer Batteries are often used in so called pouch form factors.
This refers to a relatively flat and rectangular shape. They can be purchased in
almost arbitrary sizes from the size of a stamp to the size of a VHS tape. It is
easy to find a matching battery for a given application, so the design process of
a product has not be centered around a certain battery size. Lithium polymer
batteries are light and have a high energy density which makes them perfect for
mobile applications with a high energy demand like mobile computers. Their
high charge currents lead to relatively short charge times.

Power Management In the BRIX2 system, we will most likely have two differ-
ent power sources: USB and the battery. This requires some dedicated electronics
for tasks like power selection, voltage regulation and charge management. BRIX2

is extensible which means that external hardware can be connected that also has
to be powered. This is why we have to potentially supply much more power than
required by the BRIX2 module itself. We should aim for a voltage regulator and a
charge controller that can handle up to 500mA, which we regard sufficient even for
externally connected high power LEDs and motors.

68

Parameter Ni-Cd AA Ni-Cd AAA Li-ion Coin Cell LiPoly

Energy Density (MJ/L) 0.18 – 0.54 0.18 – 0.54 0.9 – 2.63 0.9 – 2.63
Typ. Density (g/cm³) 0.7 0.99 0.6 – 0.7 0.5
Typ. Size (mm) 50×14 Ø 44.5×10.5 Ø 10 – 40 ×2 – 8 Ø any
Typ. Voltage (V) 1.2 – 1.25 1.2 – 1.25 3.6 3.7
Typ. Capacity (mAh) 600 – 1000 300 – 500 10 – 250 50 – 600
Typ. Charge Rate (C) 1.0 1.0 0.5 0.5 – 2
Typ. Discharge Rate (C) 11.5 – 2.0 1.5 – 2.0 0.5 0.5 – 2
Typ. Number of charge cycles 500 500 500 500

Table 3.2: Comparison of different battery techologies.

Visual Feedback: LEDs

Apart from a serial data connection, LEDs are a valuable tool to provide simple
feedback from a microcontroller to the user. This can for example be debug infor-
mation about the running firmware or a status display. Using a single LED, there
is a limited variation of different signals that can be distinguished and interpreted
by the user. To provide a broader feedback, we can equip BRIX2 with a full color
LED which can display almost arbitrary colors by mixing red, green and blue com-
ponents. Users should be able to turn off every LED in order to save energy in low
power applications.

3.2.5 Initial BRIX2 Design: Conclusion

In this section we have narrowed down our design space by defining detailed re-
quirements and presenting approaches towards an implementation. We covered me-
chanical aspects like connectors and enclosures and discussed the Arduino IDE as a
software framework for our system. Finally we discussed electronic components that
fulfill the requirements we proposed earlier. This includes an Arduino compatible
microcontroller, a versatile wireless transceiver, different sensors and rechargeable,
internal power supply. In the next section, we take the next major step towards
BRIX2 with the B2DK, a system that will enable us to test our concepts and evalu-
ate different electronic components.

69

3.3 The BRIX2 Development Kit

To evaluate and test different technical aspects and concepts of a future BRIX2

platform, we required a first hardware prototype. For this purpose we developed a
modular system that allowed us to test various hardware and software components
and configurations. The B2DK, see Figure 3.1, simulates a future BRIX2 base mod-
ule on a functional level. In this section, we present the design of the B2DK and
list all components we put to the test. Subsequently we discuss the results of our
evaluation, which leads to a final selection of electronic components and paves the
way for the design of the final BRIX2 implementation we present in Chapter 4.

Figure 3.1: B2DK carrier board with Atmel ATmega32U4 microcontroller board and
Atmel ZigBit board.

3.3.1 A Modular Platform

The B2DK has a modular design, so components like the microcontroller or the
wireless transceiver can easily be swapped, which makes it a versatile development
tool. By moving components that are to be evaluated to dedicated PCBs, we can
test a variety of different configurations of the whole system without a complete
redesign. At the same time, we still tried to keep a compact form factor. Of course
we could have utilized evaluation boards that manufacturers offer for components
like microcontrollers, sensors and wireless transceivers. However, all those boards
would be different and not have a standard interface to integrate them all to one

70

system. By designing custom boards, we not only gained flexibility, saved time
during evaluation and were able to do tests with equal conditions but also could
reuse the boards we developed in later projects after our evaluation, for example
in [82].

3.3.2 Carrier Board

The carrier board contains all components of BRIX2 that are either already fixed or
non-critical, like for example the LED display or the power management circuitry.
Three different ports on the carrier board can be used to connect microcontroller
boards, wireless transceiver boards and external electronics or measurement equip-
ment. Every active component can be detached from the power supply using jumpers
which also allow to measure the current of each active component. LEDs indicate the
status of different power lines and charge status of the battery. The carrier board
was not optimized for a small size, but measuring 37×58mm, it is still compact
enough to test mobile applications. Power for mobile applications is supplied by a
LiPoly battery which is mounted on the bottom. In the following, we will describe
all elements of the B2DK carrier board in detail before introducing the extension
boards.

Power Supply and Power Management

In the following, we introduce the power supply and management electronics of the
B2DK, see Figure 3.2. Just like the planned BRIX2 base module, the B2DK includes
a battery which can be charged via USB. The system can also be powered by the
USB connection while being charged. We chose a single-cell LiPoly battery with a
capacity of 1000mAh and a nominal output voltage of 3.7V [83]. LiPoly batteries
provide a high energy density and are thus small, lightweight and inexpensive (see
Section 3.2.4), which makes them perfect for a compact, mobile platform like BRIX2.
The capacity of the battery, which is determined by the size, will most likely be
different in the final application, but the electronics necessary to charge and discharge
the battery are identical for any single cell LiPoly battery. Multiple cell LiPoly have
a higher output voltage but require to balance the voltage of all cells in order to
prevent irregular current flows. [84]

LiPoly Charging For LiPoly batteries, a constant current - constant voltage
charging method is used. The battery is charged with a constant current at around
1C, which is the total capacity. As soon as a cell voltage of 4.2 V is reached,
the battery is charged with a constant voltage of 4.2V until the charge current
drops to almost zero. [85] This charging procedure can be automatically controlled
by dedicated LiPoly charging controllers. In our application we chose a Microchip

71

Battery

Charge
Controller

Voltage
Regulator

Charge
Status

VUSB VIN VSYS

Figure 3.2: B2DK power management electronics block diagram.

MCP73831 single-cell Li-Polymer charge management controller [86] because its pa-
rameters match our application requirements and we already had a well-tested refer-
ence design. [87] The charge current is programmed to 500mA using a fixed resistor.
For the B2DK battery this is only 0.5C, but in the final application, we will use
a battery with a lower capacity. The only side effect of a lower charge current is
a longer charge time. A red LED is connected to the STAT signal to indicate the
charge status of the battery. It can be separated by a solder jumper. The charge
voltage is supplied by the USB port of the B2DK carrier board. A yellow LED
indicates the condition of the USB input voltage and can also be separated via a
solder jumper to cut the overall power usage or during power measurements.

Voltage Regulation The active components of the B2DK are selected for a
3.3V system voltage. This means we have to regulate the battery (4.2V max.)
or USB (5.0V) input voltage to match that requirement. We chose a Microchip
MCP1603L switching regulator, because it is more efficient than a linear regulator
and handle input voltages down to 2.7V, which is far below the battery cutoff voltage
of 3.0V [88]. The MCP1603L supplies output currents up to 500mA, which is
sufficient for the BRIX2 system and requires only small passive components, so it
matches the size restrictions of our final application. In our circuit, two jumpers allow
to measure the current before and after the regulator. LEDs indicate the condition
of input voltage and output voltage of the regulator. The LEDs can be separated
by solder jumpers to lower the overall power usage or during power measurements.

IMU Sensor

Since compactness is a major design aspect for BRIX2, we favor a single chip solu-
tion for our IMU in contrast to separate ICs for each component. The Invensense

72

MPU60xx, used in almost 50% of all IMU devices of our survey, see Table 2.4, in-
tegrates a 3-axis accelerometer and a 3-axis gyroscope as well as a digital motion
processor into a 4×4×9mm QFN package [89]. The specifications of the MPU60xx
regarding sensor ranges, resolution, update rate and power consumption are well
within our requirements. The platforms in our survey add an external magnetome-
ter to the MPU60xx to compensate the gyroscope drift in the sensor fusion step.

Invensense MPU9150 At the design time of the B2DK, Invensense just released
the MPU9150, which is basically in MPU6050 with an integrated AKM AK8975 [90]
magnetometer. This way, Invensense created the first 9-DOF IMU with integrated
sensor fusion unit in a single, 4×4×1mm QFN package. With a resolution of 0.3 µT
/ Least Significant Bit (LSB) and a range of ±1200 µT, the magnetometer of the
MPU9150 lies within the average of the magnetometers in our survey. We regarded
the internal sensor data fusion as a great opportunity to improve the performance of
BRIX2 in motion capturing scenarios. Since there were no other products at design
time that offered this feature, we decided to integrate the sensor as a fixed part into
our carrier board design.
The circuitry required to run the MPU9150 does only consist of a few capacitors to
stabilize the supply voltage and to run the internal charge pump for the gyroscope.
We connected the “Frame Synchronization” input (FSY NC) to a solder jumper just
in case we have to interface that signal. The interrupt pin as well as the I2C interface
are connected to the microcontroller expansion port. The I2C address selection pin
(AD0) is connected to GND, setting the LSB of the device’s I2C address to 0.

Expansion Ports

The B2DK carrier board contains three different extension ports: one for microcon-
trollers, one for wireless interfaces and an auxiliary extension port, see Figure 3.3.
The ports are reverse polarity protected by design and offer a mechanically stable
base for the add-on boards. The microcontroller and the wireless port have different
sizes so the extension boards can only be plugged into their designated ports. Each
of them consists of two rows of female pin headers with standard pitch of 2.54mm
and a spacing which is a multiple of the pitch. This allows us to plug the extension
boards into a standard solderless breadboard for testing.

Microcontroller Port The microcontroller port consists of two 10-way female
pin headers, so a microcontroller board can be mounted mechanically stable on top of
the B2DK carrier board. The pinout of the headers is designed to prevent permanent
damage to either board when the microcontroller board is connected in reverse. One
header contains all communication bus signals like I2C, SPI and UART as well as
the reset signal for the microcontroller. The other header contains the power supply,
USB data and power lines, the interrupt signal of the MPU9150, a battery voltage

73

Wireless
Port

Microcontroller
Port

Auxiliary
Extension Port

Figure 3.3: B2DK ports overview.

measurement pin connected to a voltage divider between VBAT and GND, the charge
status signal from the charging circuit as well as two general purpose I/O signals
that connect to the extension port. The I/O signals also connect to two testpads
which grant quick access for debugging and analysis, even when all extension boards
are plugged in.

Wireless Port The wireless port connects a wireless receiver board to the carrier
board. It consists of two 6-way female pin headers which are reverse polarity pro-
tected. One row of headers connects the I2C and the SPI bus of the microcontroller
port to the wireless modules. The other row contains the UART signals and the
power supply. The layout of these signals is designed to match a popular, off-the-
shelf USB-to-serial converter board based on the FTDI FT232RL2. This way we can
connect each of the wireless extensions boards directly to USB using the FTDI board,
given that the wireless module can communicate via UART. This saves costs and
also allows to use wireless modules in different projects without the carrier board,
see Figure 3.4 (a).
In case of a conflicting layout of the RX and TX pins between the wireless port and
the microcontroller port, we added a two-way solder jumper into each signal so TX
and RX can be swapped.

2https://www.sparkfun.com/products/9873

74

(a) (b)

Figure 3.4: Zigbit Module connected to USB via an FTDI board (a). Emulation of
a wireless module on AUX port via USB (b).

Auxiliary Extension Port The third port on the B2DK carrier board can be
used to connect external measurement equipment or a PC during regular operation.
The signals are similar to the wireless port, except the Clear To Send (CTS) pin
which is substituted by a GPIO of the microcontroller and an additional GPIO.
The layout of the second pin header is again matching the FTDI adapter layout.
This also allows to emulate either a wireless module or a microcontroller in software
running on a connected host PC via USB, see Figure 3.4 (b).

Host Connections

The B2DK carrier board has a MicroUSB connector to connect the microcontroller
module to a host PC. We decided not to integrate a USB-to-serial converter into the
carrier board because we focus on microcontrollers with a native USB support. The
battery of the carrier board is charged through the USB connection via the charger
circuitry.

3.3.3 Microcontroller Extension Board

Microcontroller boards contain a microcontroller, oscillator, reset circuit and all nec-
essary passive components to operate the controller. All relevant bus signals as well
as USB can be broken out in order to connect to the base module. The only board
we actually manufactured and tested is based on the ATmega32U4, because this is
the most promising controller for BRIX2. In Section 3.2.4, we listed all Arduino
compatible microcontrollers. From the three controller families in the list, the AT-
mega16/32U4 series is the only one that natively supports USB, which we identified
as a key requirement for BRIX2. Our microcontroller extension board contains the

75

Atmel ATmega32U4 and a 16MHz crystal oscillator. The passive components are
capacitors to stabilize the input voltage as well as a pull-up resistor for the micro-
controller reset and two termination resistors on the USB data lines. We added an
ISP header in order to update the bootloader on the ATmega32U4, which ships with
an Arduino incompatible default bootloader [91].

3.3.4 Wireless Transceiver Extension Boards

Wireless transceiver ICs and modules, protocols and stacks for a wide variety of ap-
plications and purposes are available on the market today. To find a suitable wireless
transceiver for the BRIX2 base module, we conducted tests with different wireless
technologies. As a toolkit we developed four different wireless extension boards that
can be connected to the B2DK base board via the wireless port. In this section we
introduce the concept of a wireless transceiver module and point out which parame-
ters have to be taken into account when selecting such a component. Subsequently
we describe all modules we tested, present detailed background information on the
wireless standard they use and finally present the results of our evaluation.

Background Information on RF Transceivers

A wireless transceiver translates a wired data transmission into a wireless data trans-
mission and vice versa. In the most basic application, a wired connection is simply
replaced by two RF transceivers as a so-called "Cable Replacement". However, var-
ious protocols for wireless transmissions offer more complex and flexible connections
and allow for example network topologies such as broadcasts, meshes and tree struc-
tures. [92] A digital wireless transceiver is usually just a single chip solution which
contains all components necessary to send and receive data wirelessly:

• Digital Interfaces for communication with an external microcontroller or
other host system on the wired end of the transmission. Often a serial interface
such as UART, SPI or I2C.

• Frequency Synthesis generates the analog wireless transmission signal from
digital data.

• Power Amplification for the analog transmission signal.

• Analog Signal Conditioning of the incoming RF signal picked up by the
antenna. This includes amplification and filtering.

• Analog-to-Digital Conversion of the analog signal for further digital pro-
cessing.

76

Designing RF Circuits An RF transceiver needs an antenna and other passive
components to be operational. The design of such an HF circuit is a complex engi-
neering task that requires expert knowledge. When producing a PCB for a circuit
like that, a number of constraints have to be considered, for example the antenna
design, isolation of digital and analog domain, trace layout and impedances as well
as grounding. [93]

RF Modules A way around the complex design of a custom RF circuit is to use
an off-the-shelf wireless transceiver module. These small, shielded PCBs contain all
necessary components and provide a communication interface to a microcontroller.
Often, a chip or trace antenna is included on such a module. This dramatically
reduces the complexity of the overall design because the critical parts are already
tested and optimized by the manufacturer of the RF module. Since BRIX2 is meant
to be open, reproducible and understandable hardware, we wanted to keep our design
as simple as possible, which is why we decided to use an off-the-shelf RF module in
our platform.

System on a Chip RF Modules RF modules that also contain a microcontroller
are referred to as SoC RF modules. [94] They allow to connect external components
like sensors or actuators directly to theSoC RF module. The internal microcontroller
either comes with a fixed default firmware and an API for its functions, like for
example the XBee module [95] or is freely programmable. The manufacturer usually
provides example firmware, for example for the Atmel ZigBit series [96]. SoC RF
modules allow highly integrated applications, because almost no further components
are required.

Wireless Technology Standards To ensure the compatibility of wireless de-
vices across different manufacturers, technical standards for wireless networking ex-
ist. These standards define for example frequency bands, protocols or transmission
power. There are many different wireless technology standards such as Global Sys-
tem for Mobile Communications (GSM), WLAN, Bluetooth, ZigBee or ANT. All of
those standards have been designed for different purposes. WLAN for instance is
optimized for high bandwidth, but has a high power consumption whereas ANT is
optimized for low power consumption, but has a low bandwidth.
The first step in choosing a suitable wireless transceiver for a given application re-
quires consideration of two basic parameters:

• Protocol: This defines how data is transfered from one module to the other
in terms of data structure and networking functions. Today we can choose
between a variety of different protocols such as Bluetooth(LE), WLAN, Zigbee,
ANT. The protocol defines the organization and structure of wireless messages

77

and networks and should match the desired application in terms of bandwidth,
packet sizes and network topologies.

• Carrier Frequency Band: Most RF transceivers operate in ISM radio bands
which include carrier frequencies like 433MHz, 868MHz, 915MHz and 2.4GHz,
depending on national and international regulations. If the selected protocol
does not have extensive error correction mechanisms, it is crucial to choose a
carrier frequency that is not excessively used by other devices such as laptops
or smartphones, because this will lead to interference with the RF transceiver.
In the worst case, no data can be transfered at all, because the band is com-
pletely occupied by other devices. For example it is almost impossible to use
an RF transceiver with a proprietary protocol (no error detection or correction
mechanisms) operating in the 2.4GHz band inside a regular office building be-
cause of the excessive traffic on the 2.4GHz band caused mainly by WLAN
and Bluetooth devices. The package loss in this case is most likely close to
100%. The frequency band also affects the propagation range and possible
bandwidth of a transmission. The higher the frequency, the lower the propa-
gation range but the higher the bandwidth [97], [98]. However, not all wireless
standards operate in every available frequency band. For example BTLE only
operates in the 2.4GHz band whereas the ZigBee standard defines operation
in the 2.4GHz, 915MHz or 868MHz bands.

ANT Module

The ANT wireless extension board allows us to test different aspects of the ANT
wireless network protocol. In the following, we briefly introduce our ANT wireless
extension module, the protocol and the transceiver hardware we use.

The ANT Protocol ANT is a low power wireless communication protocol. It
was developed by Dynastream Innovations Inc. and is primarily used in wearable
devices like fitness trackers or heart rate monitors. ANT devices operate in the
2.4GHz ISM band and transmit short messages with a high bitrate, which leads to
small duty cycles and thereby saves energy. [99] The ANT protocol is designed for
short-range applications up to 30 meters. [100]

Network Topologies: ANT supports Peer to Peer (P2P), star, tree and mesh
networks. Each node can transmit and receive, which allows a bi-directional com-
munication. Up to 65533 nodes can join an ANT network using shared channels.

Channels: ANT nodes connect to each other using “channels“. A channel can con-
nect two or multiple nodes (shared channel). Usually, bi-directional channels are

78

used, but transmit/receive only channels are also possible. A channel has one mas-
ter and one or more slave devices. Each node can open several channels in order to
address different remote nodes or to broadcast in shared channels. Users can define
the message rate for each channel individually. [101]

Data Types: ANT supports three basic message types: ”Broadcast Data“, ”Ac-
knowledge Data“ and ”Burst Data“. Each of these data types can be used in both
directions with some restrictions. Regardless of the data type, data packets are
always 8 bytes.

• Broadcast Data: This is the default data type and sent from the master to the
slave on every channel period. If a slave device broadcasts, the message is only
sent once and can be lost if any interferences occur.

• Acknowledge Data: If a packet is sent as acknowledge data, the receiver will
automatically send an acknowledge message back to the sender. This uses
more bandwidth but gives an indication whether the packet was received and
can thereby prevent a loss of data.

• Burst Data: This is a mechanism for the transmission of large amounts of
data and consists of a series of acknowledged messages. The maximum data
throughput is 20 kB/s. Burst transmissions do not have a maximum length, so
they can be used to stream data.

ANT AP2 Transceiver Module The ANT AP2 RF transceiver module [102]
sold by the ANT+Alliance is an drop-in module that contains the Nordic nRF24AP2-
8CH RF network processor [103] and on-board F-trace antenna. The CC2571 sup-
ports up to 8 simultaneous ANT channels and all three transmission types. It can
be interfaced via UART with data rates up to 57600 baud. The physical dimensions
are 20 x 20mm and the peak TX current at 0 dBm is 28.8mA at 3.0V.

ANT Wireless Extension Board In order to connect the AP2 module to the
B2DK, we integrated it into a wireless extension board, see Figure 3.5 (b), that
matches the wireless port pinout. The ANT AP2 module requires only two external
components, a capacitor to stabilize the power line and a pull-up resistor on the reset
signal. A status LED indicating power was added for easier debugging. For power
measurements, the LED can be disconnected with a solder jumper. Four 2-way
solder jumpers allow to configure the UART interface of the AP2 module. The ANT
wireless extension module connects only power and RX/TX to the carrier board, see
Figure 3.5 (a).

79

AP2

VIN

Reset

USART
USART
Config

(a) (b)

Figure 3.5: B2DK ANT wireless extension board block diagram (a) and wireless
module (b).

ZigBit Module

In order to test the ZigBee protocol and hardware, we developed a wireless extension
board based on the Atmel ZigBit ATZB-24-A2 [104] module. Before we present our
ZigBee board, we briefly describe the ZigBee protocol in detail.

A Closer Look on ZigBee The ZigBee specification was standardized in 2004
by the ZigBee Alliance and is compliant with the IEEE 802.15.4 standard. ZigBee
devices operate in 868MHz (European ISM), 915MHz (US/CA ISM) and 2.4GHz
(Worldwide ISM) frequency bands. Raw data rates up to 250 kBits/s can be achieved
at 2.4GHz, but the protocol is typically used in low data rate scenarios like home
automation. Star and tree networks are natively supported and are established and
managed by a coordinator device. [105]
In order to communicate between two ZigBee devices, several device parameters
must be considered:

Device Role: Every device in a ZigBee network has one of 3 device roles:

• Coordinator: The first device in the network that actually forms and sets up
the network. There can only be a single coordinator in a ZigBee network at
any given time.

• Router: Joins a network and can send, receive and relay messages through the
network. Because the network relies on routers, it is not possible for this device
type to enter a sleep or idle mode.

80

• End Device: Communicates with a parent device. It is able to send and receive,
but not route. It can enter sleep or idle modes.

PAN ID: The 16 bit Personal Area Network (PAN) ID is shared by all devices in
the same PAN. While several devices can communicate on the same RF channel,
they are virtually separated into PANs. The PAN ID is set by the coordinator when
forming the network.

Extended PAN ID: If two PANs conflict, meaning that two intentionally indepen-
dent acpPAN share the same PAN by accident, the 64 bit ”Extended PAN ID” can
be used as a fallback to communicate to the designated devices to change their PAN
ID in order to separate the two conflicting networks again.

Extended (MAC) Address: Each device can be identified by a 64 bit Media Ac-
cess Control (MAC) address which is supposed to make it unique from all other
ZigBee devices. Generally, this address is assigned at manufacturing and should/can
not be changed to ensure uniqueness.

Short (Network) Address: The “Short Address”, “Network Address” or “Node ID”
is a 16 bit value that is unique only in a PAN. It is randomly assigned at join-time.
If conflicts occur, the MAC address is used as a fallback.

Forming a Network: The coordinator chooses a channel (RF-Frequency) to com-
municate on. The number basically offsets the communication frequency from 2.4GHz.
After that, the coordinator chooses also a PAN ID and an extended PAN ID.

Now other devices can join the network. A device can only enter a network via a
coordinator or router, not via an end device. The join process works as follows: The
new node scans for available networks. It sends a request to all channels and all
coordinators or routers answer the request by submitting their network parameters.
The node selects one of these devices and sends a join request. If the request is
permitted, the new node obtains a network address and becomes part of the PAN.

Atmel ZigBit ATZB-24-A2 For our ZigBee experiments we used the Atmel
ATZB-24-A2 module. It contains an Atmel ATmega1281 microcontroller and an
Atmel AT86RF230 RF transceiver along with a dual chip antenna. The physical
dimensions of the module are 13.5×24mm and it can be interfaced via UART, JTAG,
I2C and SPI. The maximum TX current at 0 dBM is 18mA at 3.0V. For firmware
development, Atmel supplies the BitCloud SDK3, which offers a full ZigBee Pro
compliant stack and an API to control a ZigBee network. Applications written in

3http://www.atmel.com/tools/BITCLOUD-ZIGBEEPRO.aspx

81

BitCloud can be transfered to the ZigBit module via a serial bootloader and run on
the internal ATmega1281.

ZigBit Wireless Extension Board

Atmel
ZigBit

VIN

USART

SPI

I2C

Reset

LEDs

JTAG

(a) (b)

Figure 3.6: B2DK Atmel ZigBit wireless extension board block diagram (a) and wire-
less module (b).

The ZigBit extension board, see Figure 3.6 (b), contains a capacitor for input voltage
stabilization, a power indicator LED and 3 LEDs which are connected to GPIOs 0-2
of the ZigBit module. All LEDs can be separated via solder jumpers during power
measurements. We also added a pull-up resistor for the reset line and a JTAG header
to program and debug the microcontroller on the ZigBit module. All three interfaces,
SPI, UART and I2C as well as GPIO1 are broken out connect to the microcontroller
extension port via the carrier board, see Figure 3.6 (a).

82

XBee PRO Module

XBee is a brand of wireless transceivers sold by Digi International Inc.4. The com-
pany offers a variety of SoC RF modules that are mostly based on an IEEE 802.15.4
compliant hardware layer and the ZigBee protocol. XBee modules contain a micro-
controller which runs the XBee layer and allows P2P as well as point to multi-point
wireless networks.

The XBee Protocol XBee module can communicate with an external micro-
controller or host computer via UART. Its wireless transmitter, GPIOs and bus lines
can be controlled either by AT commands or in an API mode. AT commands are
human readable and easy to use whereas the API mode uses packets that consists
of raw bytes. This is more efficient, but harder to debug and maintain.

Network Types: There are two network types for wireless XBee networks, “Non-
Beacon mode“ (P2P) and ”NonBeacon with coordinator“, where one module acts as
a ZigBee coordinator [106].

Transmission Modes: The XBee protocol implements two transmission types,
unicast and broadcast. Unicast messages are acknowledged and an automatic trans-
mission retry can be configured. Broadcast messages are not acknowledged and all
receiving modules will accept the transmission.

Adressing: Every XBee module has an individual, 64 bit address as a factory de-
fault and can also be configured to accept messages with a short, 16 bit address.
This address can be selected by the user. Each message packet contains sender and
receiver address.

XBee-PRO S2C For our experiments, we use the Digi International XBee-PRO
S2C SMT [107], a surface mount drop-in module. It measures 22×33.8mm and an
estimated TX current of 14mA at 0 dBm and 3.0V [108]. The XBee-PRO S2C also
offers 15 controllable GPIOs, ADCs and SPI. XBee PRO supports transmission
data rates up to 250 kb/s. XBee modules are especially popular for DIY projects
involving wireless data transfer from one microcontroller to another due to its simple
and easy-to-use protocol design and robust wireless link.

XBee PRO Wireless Extension Board The XBee-PRO S2C provides a conve-
nient serial interface. On our XBee wireless module, see Figure 3.7 (b), we connected
RX/TX as well as the Data Terminal Ready (DTR) and CTS signals, but in practice

4http://www.digi.com

83

XBee
SMT

VIN

USART
Connect
Status
LED

(a) (b)

Figure 3.7: B2DK XBee PRO wireless extension board block diagram (a) and wire-
less module (b).

it turned out that only RX/TX (UART) were required, see Figure 3.7 (a). The mod-
ule also features an association indicator LED which lights up when a connection is
established. Like the power indicator LED, it can be separated with a solder jumper
during power measurements.

Proprietary RF Module

In contrast to drop-in RF modules with a complex stack like ZigBee or ANT, we
decided to also test a transceiver module that is reduced to just the hardware layer.
We find this kind of wireless solution frequently in WSN motes (see Section 2.3.3) ,
which use for example the Chipcon CC1000 RF transceiver chip and run the protocol
stack on the application microcontroller. This allows a lot more flexibility in the stack
design because developers have full control over the hardware layer.

Anaren AIR Modules As we already mentioned earlier, it is more convenient to
use off-the-shelf RF modules than to design the RF circuitry from scratch because
such modules are already tested and optimized. We decided to use an Anaren AIR
module [109] for our proprietary RF wireless extension module because it is small
(9 x 12×2.5mm), inexpensive and based on the widely used Texas Instruments
CC1101 [110] wireless transceiver IC. Anaren offers the AIR modules in a variety
of pin-compatible devices with different carrier frequencies and antenna solutions.
This provides us with a lot of flexibility because we can still choose the frequency
band or antenna technology without a PCB redesign.

Texas Instruments CC1101 The CC1101 low power sub-1GHz RF transceiver
was released by Texas Instruments in 2008 and is still in active production state
(as of 2015). The transceiver is designed for the 315/433/868/915MHz ISM bands

84

and supports data rates up to 600 kb/s. The TX active supply current varies with
the carrier frequency and is 16.8mA for the 868MHz version at 0 dBm and 3.0V.
The CC1101 is interfaced via SPI and features sync word detection, address check,
flexible packet lengths and automatic Cyclic Redundancy Check (CRC) handling.

Anaren
AIR

VIN

SPI

(a) (b)

Figure 3.8: B2DK Anaren AIR wireless extension board block diagram (a) and pro-
totype wireless module (b).

Anaren AIR Wireless Extension Board The extension module for the Anaren
AIR proprietary RF series modules is simple, because all necessary components are
integrated on the drop-in module, see Figure 3.8 (b). We added a capacitor for
input voltage stabilization and a power indicator LED which can be separated via a
solder jumper for current measurements. The SPI pins connect to the microcontroller
extension port, see Figure 3.8 (a). The GPIOs on the CC1101 can be configured as
notification interfaces, for example as a Clear Channel Indicator or for FIFO Status
Signaling.

85

3.4 Evaluation Using the BRIX2 Development Kit

The BRIX2 Development Kit was used for multiple purposes. First, we needed to
practically test different wireless modules in order to select the most appropriate
solution for the BRIX2 platform. Second, we needed to try out initial designs for
the fixed circuits like voltage regulation, charge electronics and the motion sensor.
Third, we tested the microcontroller for Arduino compatibility to verify that our
platform would work with the IDE. In the following we will present our experiments
and the results.

3.4.1 Evaluation of Different Wireless Transceiver Modules
for BRIX2

All wireless modules we selected for our test fulfill the basic technical requirements
for BRIX2, see Section 3.2.4. Apart from just comparing the technical specifications
and documentation of different wireless transceiver modules and protocols, it was
important for us to test how easy the devices can be integrated into our platform,
from a hardware as well as from a firmware perspective. In an exploratory process, we
interfaced the transceiver module first with a PC and then with the B2DK. After
setting up a wired communication between the host and the transceiver module,
we established a wireless connection between two transceivers. However, we did
not conduct broad RF communication tests with complex topologies or varying data
packet sizes, since this would exceed the scope of this project. We start our evaluation
process with a technical comparison of all transceiver modules we built for B2DK.

Comparison of the Technical RF Transceiver Properties

To give a short technical overview about the modules we used in our tests we sum-
marized all facts that are relevant for our application in Table 3.3.
Three of the four modules we considered for testing are SoC modules, which means
they contain a microcontroller and an RF transceiver IC, see also Section 3.3.4. Apart
from the Atmel ZigBit module, the firmware of the internal microcontrollers can not
be altered by the user. The maximum data rates range from 250 kb/s to 1Ṁb/s which
is sufficient for our applications. The TX current at 0 dBm is similar on all devices,
whereas the maximum TX gain varies dramatically. The TX gain is the main factor
that limits the range of the wireless transmission, given a well-matched antenna
design. The XBee-PRO module is designed for high gain applications and ranges up
to more than 3 kilometers. On the contrary, the Anaren ANT module is optimized
for Body Area Networks (BANs), a common use for ANT technology. It has only
a low maximum TX gain and therefore a limited range for wireless transmissions.
The Anaren AIR module looks promising regarding the RF parameters because of
its average to low TX/RX currents, its large link budget and high RX sensitivity.

86

Parameter ANT AP2 ATZB-24-A2 XBee-PRO S2C AIR A1101R08*

Protocol ANT ZigBee Xbee/ZigBee None
Frequency Band 2.4GHz 2.4GHz 2.4GHz 868MHz
Type SoC SoC SoC RF only
Transceiver IC nRF24AP2-8CH AT86RF230 EM357 CC1101
Microcontroller MSP430F1232 ATmega1281 MC9S08QE32CFT none
Max. Data Rate 1 Mbps 250 kBps 250 kBps 600 kBps
TX Current‡ (mA) 18 18 14 16.8
RX Current‡ (mA) 23.7 21.8 31 15.7
Idle Current† (µA) 1 6 1 0.5
Max. TX Gain (dBm) 0 +3 +18 +12
Max. RX Sensitivity (dBm) -86 -101 -101 -112
Communication Interface UART UART, I2C,

JTAG, SPI
UART SPI, UART

Antenna F Trace Dual Chip Trace Ext. Monopole,
Trace

Size (mm) 20×20×3.1 24×13.5×2 22×33.8×3 9×12 x 2.5
Price (USD) 20 28 18 13
† Lowest power mode where wakeup on RX is still possible.
‡ Input voltage 3.0V, 0 dBm (only applies to TX).

Table 3.3: Parameters of different RF transceivers.

The physical size of the modules, which is a relevant design parameter for a compact
device, varies between 108mm2 and 744mm2 surface area. The most expensive
module is with 28USD more than double the price of the least expensive module.

Exploratory Evaluation

Since BRIX2 targets education and prototyping scenarios, it has to be adaptable
and flexible, which means that it is not optimized towards a specific field of appli-
cation, unlike most of the platforms we analyzed in Chapter 2. For that reason we
can not optimize the parameters of our wireless transceiver technology towards a
specific application but rather towards transparency and versatility to allow an easy
understanding and usage of the technology as well as to adapt it to a wide number of
application scenarios. With this in mind, the focus of our experiments and analysis
of the different wireless modules rather lies on usability and flexibility and not on a
detailed technical evaluation. In the following, we first present a number of exem-
plary wireless data transmission scenarios from the different fields of applications we
intend to cover with BRIX2 and derive experiments to test the transceivers in that
kind of scenario. After that we describe the experiment setups before we present the
results of the experiments and draw a conclusion.

87

Wireless Networking Testing Scenarios

In order to cover the main applications for the wireless transmitter of the BRIX2

system, we designed the following scenarios:

1. Smart Environments: Different sensors and actuators inside a single room or
a number of rooms inside a building communicate wireless and form a distributed,
interactive application. In this scenario, data rates are low, but a solid connectivity
is required even across rooms and in locations with heavy wireless activity such as
office buildings and laboratories. Since the modules are static in this scenario, we
assume that they can be permanently supplied with an external power source.

2. Sensor Networks: Similar to the smart environments scenario, sensor networks
operate with a low data rate, but in order to cover a large area with a low number of
motes, high range transceivers are necessary. This scenario is especially interesting
outdoors. Although a permanent external power source may not be available, in
outdoor applications, the BRIX2 module could be powered with a larger, external
battery. Short bursts of data with a low rate reduce the power consumption to a
minimum.

3. IMU Data Streaming: Data from a BRIX2 module attached to a human body
is streamed wirelessly to a host application. In order to capture rapid motions, this
scenario relies on a high data rate. The distance to the receiver is small. The sender
is used without an external power supply and should be able to run at least 3 hours.

Experiment Setups

All of our experiments involved sending data packets wireless from the TX side to
the RX side. Using the B2DK, we were were able to implement the experiment setup
quickly and efficiently. On the TX side, the microcontroller generates data packets
with a payload of 8 bytes, including a packet number, the TX gain and the data
rate. Those packets are sent over the air via each of the four transceiver modules we
put to the test. On the RX side, the packets are picked up by the corresponding RF
transceiver and sent to the microcontroller on the B2DK, see Figure 3.9.

In general we vary three parameters: The data rate, the distance between RX side
and TX side and the TX gain. The latter is either 0 dBm or the maximum the
transceiver can accomplish, see Table 3.3.
The controller calculates the time between the current and the previous packet as
well as the number of lost packets between two received packets. This data is then
sent to a laptop that is connected via USB, where it is logged and stored in separate

88

Host PC

B2DK RX Side B2DK TX Side

MC RF RF MC
USB

Figure 3.9: General setup for our wireless transmission experiments.

files for each experiment. We recorded a three minute data sample in each trial and
used the following parameters:

1. Smart Environments: The experiments took place in a lab environment with
various computer and audio setups in place. Several WLAN networks on the 2.4GHz
band were active during the experiments. The RX and TX side were located in sep-
arate rooms, without line of sight and a distance of around 15 meters. Both RX
side and TX side rested on a table. The TX gain was set to maximum for each
transceiver. We tested data rates of 10Hz and 1Hz.

2. Sensor Networks: The experiments were conducted outdoors in a remote loca-
tion presumably with low interference on the RF bands we used. RX side and TX
side were positioned 1.5m above ground statically with a distance of 50 meters and
100 meters, a clear line of sight and the antennas facing each other. We adjusted
the TX gain to maximum and set the data rate to 10Hz.

3. IMU Data Streaming: The experiments were conducted in the same environ-
ment as scenario 1. We configured all transceivers to a TX gain of 0 dBm because
we were testing a mobile application without external power supply. The distance
between RX side and TX side was 5 meters with a line of sight. The receiver rested
on a table next to the laptop while the transmitter was handheld by a person that
moved constantly. This way the person’s body interrupted the line of sight regularly,
simulating a real-life motion tracking scenario. Each transceiver was tested with a
data rate of 100Hz and 150Hz.

RF Module Setups

In this paragraph, we briefly describe how the four wireless modules that we tested
using the B2DK were set up and configured. This makes it possible to reproduce
our tests and verify our results.

ANT AP2 The AP2 transceiver module can be accessed through UART and is
set up sending raw byte messages. We configured the receiving node (RX side) to

89

create a “Bidirectional Master Channel”. All other settings are left at default. On
the transmitting node (TX side), we opened a “Bidirectional Slave Channel” and set
the data transmission rate using the “Channel Period” parameter to 200Hz (0xAA)
in order to cover all our tests.

Atmel ZigBit The ZigBit module contains a microcontroller that implements
the ZigBee PRO stack and can also hold a custom application. Firmware can be
compiled using the Bitcloud Software Development Kit (SDK), which also comes
with several examples. We uploaded the SerialNet example to the controller using
Atmel’s FLIP bootloader utility via UART. SerialNet allows to control the ZigBit
module using a number of AT commands[111]. To set up a communication between
the RX side and the TX side, we first configured several parameters of the RX side.
The “Extended Address” was set, followed by the node role, in this case “Coordinator”.
To create the network, we set the WPAN ID and the node’s “Short Network Address”.
Subsequently the network was joined and thereby created. On the TX side, we
defined the device role to “Router”, assigned a “Short Network Address” to the node
and joined the network created by the coordinator. The TX side can also modify
the gain of its transmission amplifier by using the “WTXPWR” command followed
by a warm reset.

Digi XBee-PRO The XBee-Pro transceivers implement a stack that is based
on Zigbee. The network parameters are therefore similar to the ZigBit parameters
and the transceiver can also be configured by AT commands. The RX side is set up
as a “Coordinator”, defines the “PAN ID” and creates the network. The TX side is
configured as a “Router” and joins the network created by the coordinator.

Anaren AIR A1101R08 The transceiver module implements no dedicated net-
work protocol stack, only two modes of transmission: broadcast or addressed. Re-
ceivers can perform an address check and data packets are tested for integrity using
a checksum. Texas Instruments offers a tool that can generate initial register setups
for several of their wireless devices5. These register setups can be exported for ex-
ample in a C header file format and easily integrated into a microcontroller firmware
which configures the module via SPI on startup. After this initial configuration, we
set a four-byte “Sync Word” which is identical on the RX and the TX side. Optional
the TX side configures the TX gain. To communicate, a packet has to be assembled
with a payload and a receiver address. The checksum is calculated automatically.

5http://www.ti.com/tool/smartrftm-studio

90

Analysis and Results

In our experiments, the log files contained an incremental number of each packet that
was sent from a transmitter, the time between two received packages in milliseconds
as well as the number of lost packets between two received packages. Using these
numbers, we were able to calculate two measures:

Packet Loss: This measure expresses the percentage of total lost packets during
the whole transmission time. Packets are usually lost, or “dropped” because of in-
complete transmissions or queuing issues. We consider this measure a basic indicator
for the quality of a wireless link.

Jitter: Especially for real-time applications it is crucial that data arrives at the
receiver with an even timing to ensure that the application runs smoothly. Mecha-
nisms in wireless stacks such as retrying to send packets when no acknowledgment
occurs lead to varying transmission times or ’intervals’. With the jitter, we express
the variance of intervals around the average. In order to obtain a measure which is
comparable between different wireless networking standards, we chose a normalized
version of the variance. We calculate the jitter J as the coefficient of variation, which
equals the standard deviation of the measured intervals divided by the average in-
terval A:

J =

√
V ar(intervals)

A(intervals)

For our first scenario, smart environments, we selected a location with a significant
level of activity especially in the 2.4GHz wireless band. In the trial with 1Hz data
rate, only the ANT transceiver pair drops packets, see Table 3.4. The jitter of
the CC1101 transceiver pair is much lower than the one of the other pairs. The
reason might be that those transceivers operate in the 2.4GHz band, which in the
experiment environment is likely to be more occupied than the 868MHz band the
CC1101 operates on. This can lead to more corrupted packages which are then
retransmitted, leading to varying transmission times. The same behavior is expected
in the second trial with a data rate of 10Hz, but this time, the jitter of the CC1101 is
comparable to the other transceivers. Looking at the dataset, we find that there are
only two of around 180 packets with a transmission time different from the average.
In the data sets of the other transceivers, those abnormal transmission times occur
more often, but with a smaller difference to the average. In the second trial we also
noticed a packet loss which is comparable throughout the ANT, CC1101 and XBee
transceiver pairs but significantly higher for the ZigBit pair.
In the wireless sensor network scenarios, see Table 3.5, we first notice that the ANT
transceiver has a high packet loss even at only 50 meters distance, most likely due
to its low TX gain of only 0 dBm in comparison to the other transceivers. Only

91

Transceivers Scenario Rate Distance TX Gain Packet Loss Jitter

ANT SE Trial 1 1Hz 10m 0dBm† 4.62% 0.215
ZigBit SE Trial 1 1Hz 10m +3dBm† 0.00% 0.378
XBee SE Trial 1 1Hz 10m + 18 dBm† 0.00% 0.499
CC1101 SE Trial 1 1Hz 10m + 12 dBm† 0.00% 0.001

ANT SE Trial 2 10Hz 10m 0dBm† 5.17% 0.262
ZigBit SE Trial 2 10Hz 10m +3dBm† 24.64% 3.209
XBee SE Trial 2 10Hz 10m + 18 dBm† 1.45% 1.675
CC1101 SE Trial 2 10Hz 10m + 12 dBm† 3.10% 0.351
† Maximum setting for this transceiver.

Table 3.4: Experiment results for the smart environments scenario.

four of expected 180 packets were received, which is not sufficient to calculate a
representative jitter, so we excluded the ANT transceiver pair from the second trial.
All other transceiver pairs however show no packet loss in the first trial and also
low and comparable jitter, since the experiment environment is expected to be free
of any wireless traffic on the 2.4GHz band. In the second trial, only the ZigBit
transceivers are robust enough to successfully transmit every packet. The XBee and
CC1101 transceivers show a packet loss of 11% respectively 18% as well as a much
higher jitter than in the first trial. The ZigBit transceivers can maintain their low
jitter throughout both trials.

Transceivers Scenario Rate Distance TX Gain Packet Loss Jitter

ANT WSN Trial 1 1Hz 50m 0dBm† >90% –
ZigBit WSN Trial 1 1Hz 50m +3dBm† 0.00% 0.002
XBee WSN Trial 1 1Hz 50m + 18 dBm† 0.00% 0.008
CC1101 WSN Trial 1 1Hz 50m + 12 dBm† 0.00% 0.001

ANT WSN Trial 2 1Hz 100m 0dBm† – –
ZigBit WSN Trial 2 1Hz 100m +3dBm† 0.00% 0.002
XBee WSN Trial 2 1Hz 100m + 18 dBm† 11.24% 1.484
CC1101 WSN Trial 2 1Hz 100m + 12 dBm† 17.58% 0.965
† Maximum setting for this transceiver.

Table 3.5: Experiment results for the WSN scenario.

In our third scenario, the simulated streaming of inertial sensor data, we focused
on high data rates at a rather low distance. From the data, see Table 3.6, it is
remarkable that the ZitBit module shows high packet loss rates as well as jitter in
both trials. ANT and XBee both show a comparable packet loss around 10% in the
first trial but differ significantly in the second trial, where the packet loss of ANT is

92

higher, whereas the XBee packet loss is almost the same as in the first trial. In both
trials, the CC1101 has by far the lowest packet loss and the lowest jitter.

Transceivers Scenario Rate Distance TX Gain Packet Loss Jitter

ANT IMU Trial 1 100Hz 5m 0dBm 10.03% 0.304
ZigBit IMU Trial 1 100Hz 5m 0dBm 85.48% 40.238
XBee IMU Trial 1 100Hz 5m 0dBm 8.1% 4.182
CC1101 IMU Trial 1 100Hz 5m 0dBm 0.43% 0.095

ANT IMU Trial 2 150Hz 5m 0dBm 43.93% 0.368
ZigBit IMU Trial 2 150Hz 5m 0dBm 90.26% 74.483
XBee IMU Trial 2 150Hz 5m 0dBm 7.65% 7.143
CC1101 IMU Trial 2 150Hz 5m 0dBm 0.60% 0.09

Table 3.6: Experiment results for the IMU data streaming scenario.

Please note that for all scenarios there is a potential for optimization for each tech-
nology which would probably lead to different results. In our tests we used basic
setups, because the optimizing process can be lengthy, complex and complicated.
This means effort that is not feasible for the basic tests we conducted in order to
find out if all technologies are usable in our targeted applications and scenarios.

93

Discussion

In our analysis of four different wireless transceivers, we have taken a look on the
technical specifications, set them up for practical tests and conducted experiments
in three different scenarios with two different parameter variations each. In the
following we briefly conclude the results for each transceiver before we discuss which
transceiver we select for our actual BRIX2 implementation.

ANT AP2

Technical Specifications: The ANT AP2 transceiver module with integrated
Texas Instruments MSP430 microcontroller operates in the 2.4GHz band, which
is already heavily occupied by WLAN and Bluetooth devices in many environments.
The maximum output power of 0 dBm is by far the lowest of all modules in the test
while the data rate of 1Mb/s is the highest. The peak current consumption is rela-
tively high in TX as well as RX with respect to the other three transceivers. From
a mechanical point of view, with a size of 20×20mm it could mechanically well be
integrated into a compact application like BRIX2.

Handling and Programing: Technically, the module can easily be interfaced
through a configurable UART. There is no intended update option for the micro-
controller firmware on the device, so users rely on the scope of functions that are
implemented by the manufacturer. The ANT protocol offers several different modes
and topologies which are all optimized towards special purposes. This makes it
difficult to find a setting that covers a wider area of applications. This additional
complexity would have to be carefully wrapped in a final BRIX2 implementation to
not confuse non-expert users.

Practical Tests: In our experiments, we observe significant packet losses in medium
and long range scenarios which are most likely caused by the low maximum TX gain.
At a distance of 50 meters, only 3 of expected 180 packets were picked up by the
receiver. In a low range and high packet rate scenario, the packet losses ranged from
10% to almost 45%. Since the ANT protocol and devices are intended to be used
in BANs with low data rates, these results are not surprising and show clearly that
the technology is not capable and flexible enough to perform well in our required
scenarios. The jitter, caused by protocol inherent mechanisms such as packet resends
is relatively low for the ANT transceiver in most scenarios and still acceptable for
potential BRIX2 applications.

Atmel ATZB-24-A2

Technical Specifications: The Atmel Zigbit module also features an integrated,
programmable microcontroller and operates on the 2.4GHz band like most of the

94

transceivers we tested. It has a maximum data rate of 250 kB/s and average power
consumptions for TX and RX. The maximum TX gain if 3 dBm is relatively low,
compared to the other modules. The footprint of the transceiver is the second small-
est in our comparison and could be easily integrated into the final product. With a
price of 28USD, the transceiver is by far the most expensive in our test.

Handling and Programing: Since the integrated Atmel microcontroller is fully
programmable, the ATZB-24-A2 is a versatile platform. However, the Bitcloud SDK
is quite complex which makes developing custom firmware for the module difficult.
For basic networking scenarios, the pre-compiled SerialNet firmware allows a quick
configuration of the ZigBit module by issuing AT commands through a UART con-
nection. Several possible network topologies, modes and parameters offer a lot of
potential to optimize a certain application.

Practical Tests: The ZigBit transceiver pair performed well in the WSN scenario
and did not lose a single package even at 100m distance even though it only operated
on a TX gain of 3 dBm. In the more noisy lab environment, we observed a significant
packet loss of almost 25% even at a low data rate of 10Hz and a distance of 10 meters.
In the high data rate scenario, the ZigBit pair lost 85% to 90% of the packets which
also went along with high level of jitter. This is not acceptable for us because the
wireless streaming of IMU data is clearly stated as one of our target applications.

Digi XBee-PRO S2C

Technical Specifications: The XBee module features an internal microcontroller
which is not designed to be reprogrammed by developers or users. The device op-
erates on the 2.4GHz band and its 18 dBm maximum TX gain is the highest in
our test. Surprisingly it has the lowest TX peak current and also the highest RX
current of all four modules. With a physical size of 22×34mm, it would be difficult
to integrate into the compact device we plan to implement.

Handling and Programing: The XBee module, despite of its internal microcon-
troller can not be programmed with a custom firmware but only be reconfigured.
Through the UART interface, communication with the module is possible either
through AT commands or in an API mode, a more compact command format. Once
the modules are set up, XBee behaves like a cable replacement with the option of
addressing different modules, however more complex network topologies are also pos-
sible.

Practical Tests: In our long range experiments, the XBee transceiver pair performs
well on the 50m range without any packet loss and low jitter. Surprisingly, regarding
the 18 dBm TX gain, the packet loss on 100 meters is more than 11% along with

95

much higher jitter than at 50 meters. In the smart environments scenarios, the XBee
modules have the lowest packet loss, but also almost the highest jitter. The high
data rate scenarios show a packet loss around 8% in both trials, also with relatively
high jitter. This would be a problem especially in real-time applications, for example
when motion data is processed and fed back to the user in a closed interaction loop.

Anaren AIR A1101R08* / CC1101

Technical Specifications: The Anaren AIR module is the only one in the test
that does not contain an internal microcontroller and basically consists of the Texas
Instruments CC1101 wireless transceiver along with an antenna. The transceiver
operates in the 868MHz band without any specific protocol. It has a rather high
maximum TX gain of 12 dBm and a low power consumption in RX and TX. The
maximum data rate is with with 600 kB/s the second highest in our test. Due to its
simplicity, the Anaren AIR module is small and is therefore ideal for the compact
BRIX2. Besides that, the price of 13USD is the lowest of all four modules.

Handling and Programing: Once the CC1101 is set up by writing all configu-
ration registers, it can be issued with packets for broadcast or address based wire-
less transmissions. There is no stack that already implements for example network
topologies, which reduces the complexity on the one hand and increases the flexibil-
ity on the other hand.

Practical Tests: First of all, due to the lack of any protocol, the Anaren AIR
transceiver pair shows low jitter in almost all scenarios because the data is just
passed on without any processing. Obviously, this can also lead to lost packets
because no mechanisms that could increase the stability of the transmission are in
place but could still be implemented later on in software. In the smart environment
scenario, the packet loss is good to acceptable. In the WSN scenario, the module
works flawlessly at 50 meters without packet loss and with a low level of jitter. On
100 meters it still works but with a packet loss around 18%. In the high data rate
scenarios, the transceiver pair beats all others. We observed a packet loss around
0.5% in both trials and a low jitter compared to the other modules.

Conclusion on the Wireless Networking Evaluation

Now that we have evaluated all wireless transceivers that we considered for our
BRIX2 system,we are able to decide which of the technologies is most suitable for
our purpose. Our requirement is a general purpose transceiver that works reason-
ably well in all scenarios we identified in Section 3.2.4. Since we are building a
platform also for usage in education, we need an understandable, well documented
technology. Also, we have to consider technical parameters like wireless properties,

96

size, energy consumption, availability and price. Among the modules we tested were
more specialized like for example the ANT AP2 and ZigBit but also general pur-
pose devices like XBee or the Anaren AIR based on the Texas Instruments CC1101.
The flexibility of those technologies becomes especially clear in the experiments we
conducted. We find that only three of the four devices are actually usable in all
scenarios we tested. The TX gain of the ANT transceiver is simply too low to work
well in wireless sensor networks that require transmission distances greater than 20
meters. Other modules lose packets when required to transport data with a high
rate, such as the ZitBit modules in the motion data streaming experiment. Added
to these disadvantages are the high costs for both types of modules, especially the
ZigBit module with almost 30USD. The XBee and the Anaren AIR devices show
an equally well and consistent performance throughout all the tests with the XBee
performing slightly better when signal strength matters and the CC1101 for packet
loss at high data rates.
Regarding their wireless networking capabilities and properties, both are suitable for
our BRIX2 platform. However, there are three facts to consider. First, the XBee
module is too big to be easily integrated into a compact application like BRIX2.
In contrast, the AIR module is by far the smallest in our test and perfectly suited
for integration. Second the internal microcontroller is not programmable with a
custom firmware, which limits its functions to the scope that the manufacturer has
implemented. Third, the XBee radio is 65% more expensive than the Anaren AIR
modules.
In conclusion we identified various strong arguments for the Anaren AIR module and
its CC1101 wireless transceiver chip. The device does not have any significant disad-
vantages that would render it problematic for our use in BRIX2, is well documented
and widely used in other applications. It shows good wireless networking perfor-
mance, is small and relatively inexpensive. The CC1101 is a wireless transceiver
with a low level of abstraction, which makes it a perfect example for education pur-
poses and is flexible and adaptable in prototyping scenarios. To compensate for the
microcontroller that is missing on the Anaren AIR module in contrast to all other
modules, we can equip BRIX2 with an additional controller that not only handles the
RF interface but can also control other parts of the system like for example battery
voltage monitoring, since it is freely programmable for us and also potentially for
users, which results in increased flexibility.

97

3.4.2 Charge Electronics

To test the charge circuit, we recorded the charge and discharge times of a 450mAh
LiPoly battery via the B2DK equipped with a microcontroller and an RF module
that continuously sent data to a PC. This way we could tell by timestamp of the last
received packet when the battery of the B2DK was empty and the device stopped
operating. Additional to the microcontroller and RF module, we also connected a
number of LEDs to the output of the voltage regulator on the B2DK to increase the
discharge current to an average around 300mA.
As we can see in Figure 3.10, both charge and discharge times are consistent over 57
trials. This shows that the capacity of the battery does not significantly decrease af-
ter around 60 charge / discharge periods, just as we expected from the specifications
of LiPoly batteries in Section 3.2.4. In our experiments, we lost the measurement
data of some trials by accident, so we left them out in the plot.

110

100

90

80

70

60

50
0  10 20 30 40 50 60

Ti
m

e
(M

in
ut

es
)

Number of Cycles

Charge Time Discharge Time

Figure 3.10: B2DK Charge/Discharge experiments over 57 Cycles

During testing we became aware that in our current setup, the battery always sup-
plies the device while it was turned on, even when it was connected to USB. This
leads to a constant cycle of discharging and charging and thereby shortens the lifetime
of the battery. To overcome this issue, we are going to include a power multiplexer
into the final implementation of BRIX2. This component sources the input power
from USB if connected and otherwise from the battery.

98

3.4.3 Microcontroller

Regarding the microcontroller, we were mostly interested whether it could be pro-
grammed using the Arduino IDE. The ATmega32U4 ships with the Atmel FLIP
bootloader installed which had to be removed. Via ISP, we erased the flash memory
of the microcontroller and installed the “Caterina” bootloader, which is also used on
the Arduino products based on the ATmega32U4 like the Arduino Leonardo. After
the bootloader was in place and the fuse bits were set accordingly, we could upload
firmware to the microcontroller through USB via the Arduino IDE with “Arduino
Leonardo” selected as a board. The bootloader takes up 4 kB of flash memory on
the controller, leaving the users with 28 kB of memory for their firmware. We can
conclude that the microcontroller works together with the Arduino IDE as expected
and is suitable to be integrated into the BRIX2 platform.

3.4.4 Inertial Motion Sensor

The MPU-9150 inertial motion sensor we integrated into B2DK has features that
outperform any other device available at the design time of our platform. Its Digital
Motion Processor (DMP) provides Euler angles and quaternions by fusing the sensor
data on chip. This is a unique feature, so there is basically no alternative to com-
pare it against. However, we conducted some basic tests to verify that the sensor
performance itself matches our expectations and the device is feasible for our target
applications. We recorded the raw data of accelerometer and gyroscope to determine
the noise of the accelerometer as well as the drift of the gyroscope while the sensor is
motionless. Subsequently we did tests to find out how fast data can be read from the
sensor. Finally we examined the DMP data in a static positions and in a scenario
that involves motions.

Accelerometer and Gyroscope Noise

Raw sensor data can be acquired directly from the sensor’s internal registers via the
I2C bus. For easier handling and programming, we used the MPU6050 library of
the I2Cdevlib6. By the time we conducted our tests, there was no library for the
MPU9150 yet, but since both devices are compatible regarding the features we use
in our experiments, we could also use the existing one. To quantify the noise of
the accelerometer and the gyroscope, we recorded 20000 data packets with a rate of
300Hz. The sensor was not in motion at the time of recording and rested on a table.
All recordings took place at room temperature.
It is noticeable that the noise on the z-axis on the accelerometer is higher than
on the x- and y-axis, see Table 3.7. There is no information about accelerometer

6http://www.i2cdevlib.com/devices/mpu6050

99

Sensor Axis Standard Deviation Percentage of full Range

Accelerometer X 62.62 LSB 0.096%
Accelerometer Y 53.67 LSB 0.081%
Accelerometer Z 80.69 LSB 0.123%

Gyroscope X 13.32 LSB 0.020%
Gyroscope Y 13.80 LSB 0.021%
Gyroscope Z 9.94 LSB 0.015%

Table 3.7: Accelerometer and gyroscope noise levels.

noise in the datasheet of the MPU9150, but slightly higher noise levels on the z-
axis appear to be common among 3-axis devices. The Analog Devices ADXL330
datasheet[112] for example states a 25% higher noise density for the z-axis than for
x and y. The gyroscope shows a much lower noise levels than the accelerometer and
interestingly enough, the z-axis has the lowest noise. This might be, as well as for
the accelerometer caused by properties of the implementation of multi-axis MEMS
devices, however we could not find sources to verify this theory. Please note that we
only tested a single device in this experiment.

Speed Test

To find out if we could stream data at high rates to a PC through the USB interface,
we performed a speed test. In practice, there certainly is room for optimization, for
example by using different streaming formats or a HID device instead of a virtual
serial port. In our test, we streamed data from the serial port of the B2DK to a
virtual comport via USB with a baud rate of 115200, the maximum default speed that
is supported by Arduino. We compared two different types of data packets. First, a
human readable acceleration and angular velocity data vector read from the sensor.
The vector contains six comma separated numbers with up to 5 digits plus sign.
Additionally we included a byte which indicates the time from one packet to another
in milliseconds, typically only 1 digit plus the separation comma. We constantly
moved the sensor and recorded 10000 data packets with an average length of 39.24
bytes, including carriage return and line feed. The average time from one receiving
event to the next is 3.74 milliseconds and equals a data rate of 267.38Hz. Next, we
sent the same data as a raw byte stream which consists of 2 bytes per value and one
byte for the packet time. This sums up to fixed length of 15 bytes including carriage
return and line feed. With this method, we calculated an average packet time of 2.1
milliseconds which equals a data rate of 476.2Hz.

100

DMP Data

To verify the performance of the DMP algorithm on the MPU9150 sensor, we con-
ducted a test in which we moved the device in free motion containing linear move-
ments as well as rotations around all axes for 3 – 4 seconds. After that, the device
was returned to a fixed position on a table and the roll, pitch and yaw angles were
read from the sensor. This process was repeated for three minutes. As a reference,
we recorded another data set in which the sensor remained in the fixed position to
determine the drift around each axis, also for three minutes. In Figure 3.11 we can

20

10

0

-10

-20

R
ot

at
io

n
(°

)
Time (Seconds)

20

10

0

-10

-20

R
ot

at
io

n
(°

)

Time (Seconds)

Yaw Roll Pitch

0 60 120 180 0 60 120 180

Figure 3.11: Drift of the DMP Euler angles after repeated motion (left) and in fixed
position (right).

clearly see that in both cases, the yaw angle, which is the rotation around the z-axis
of the sensor, tends to drift while the two other angles stay stable. This is especially
significant in the first experiment that involves movement of the module, where it
drifts by 11% in three minutes versus 0.3% in the static test. Because of the drift we
observed and although the MPU9150 is advertised as a 9-axis sensor with an inbuilt
sensor fusion algorithm, we assume that the DMP firmware does not incorporate the
magnetometer data into the sensor data fusion.

Conclusion on the IMU Sensor Evaluation

As we already stated, the MPU9150 was a unique device at the time we designed
the B2DK. However, regarding the technical specifications we find that it is equal
to or better than consumer grade sensors in platforms examined in Section 2.4. Our
measurements for the accelerometer and gyroscope raw data showed tolerable levels

101

of noise. In a second experiment we have confirmed that we can extract data from
the device and stream them to a computer at much higher rates than required for
our applications. The most interesting feature of the MPU9150 is the integrated
DMP. Unfortunately we discovered that the orientation data drifts around the z-
axis, which is most likely caused by a lack of magnetometer date integration into
the sensor fusion. Since the fusion algorithm only exists as a binary file, successful
modifications without support of the manufacturer are highly unlikely. In general
we can conclude that despite some flaws, the MPU9150 is a suitable device for the
BRIX2 platform. It fulfills all requirements of our potential applications and even
adds features like the DMP, which will likely be of great use for many scenarios.

102

3.5 Conclusion

In this chapter we started with summarizing and ranking properties, functionalities
and features of the platforms we surveyed in Chapter 2. In the next step we identified
functionalities that are mandatory for the BRIX2 system if we want to use it for a
broad range of applications in ubiquitous computing. They are going to be included
into the central element of our modular platform, the base module. Functionalities
with lower priority were considered optional and are to be implemented as extension
modules. We then started to develop a design concept for BRIX2 inspired by several
other platforms we had analyzed earlier. In a second iteration. we narrowed down
our concept and worked towards an actual implementation.
Since some aspects of our toolkit like the selection of the wireless transceiver or
the motion sensor had to be tested in practice, we developed the B2DK. This
modular test platform allowed us to rapidly change the hardware configuration and
and test the system with different wireless transceiver modules or microcontrollers.
We performed extensive experiments in order to select a suitable wireless transceiver
for BRIX2. All four potential technologies were tested in three different scenarios
with different parameters each in order to cover most use cases that are found in
ubiquitous computing applications. Although we had already selected an IMU sensor
because of its superior features and properties, we also tested it in practice to verify
that it would suit our requirements. Furthermore we evaluated the charge electronics
for the internal battery as well as the microcontroller, which we also selected earlier.
As a result of our experiments and testing, we selected the Texas Instruments CC1101
as the wireless transceiver module for BRIX2 and verified our selection of other core
components. At this point we were ready to implement the first iteration of BRIX2

modules, which we present in the next chapter.

103

4 Implementation

With the results we obtained from our experiments described in Section 3.4.1 and
based on the early design concept we presented in Section 3.2, we are now able to
implement the BRIX2 platform. In this chapter, we first revisit the initial design
concept we worked out in Chapter 3 and refine its key aspects up to an extent
where they can be included in a first implementation. After that we describe how
we implemented the three major aspects of BRIX2 namely the hardware, separated
into electronics and mechanics (enclosure), the software components as well as the
documentation. Regarding the hardware, we only present the base module in this
chapter and discuss the implementation of the different extension modules separately
in Chapter 5.

4.1 The BRIX2 System Design

We begin this section with discussing the physical appearance of BRIX2 regarding
technical as well as aesthetic aspects and briefly describe how the product is supposed
to look. Subsequently we present more detailed technical concepts for the electronics
as well as the software components of the BRIX2 platform. Each of these design
aspects is discussed with an increasing level of detail, so they directly lead over to
the implementation sections.

4.1.1 Physical Appearance

The physical appearance of BRIX2 is not only determined by purely technical re-
quirements, but has also an aesthetic component. In the following, we will discuss
different aspects of the physical concept and look of BRIX2.

Appearance Aspects: What We Intend to Convey

We build BRIX2 for several different groups of users. For some, the system will be the
first physical computing or even electronics platform they encounter. Intermediate
users might have seen similar systems and can compare them to BRIX2. Professional
developers are interested in a tool that allows them to efficiently and quickly fulfill
their tasks. For the first group, we consider it relevant that a certain level of abstrac-
tion is part of the product’s appearance. Beginners might be repelled by the look of

105

a PCB, because it conveys something complex, technical and unknown. Handling a
device like that appears far beyond their scope of abilities. Intermediate users might
want to be able to take a glimpse of the underlying technology of the device they are
working with, while expert users are interested in an efficient and functional design.
The looks of existing products range from bare PCBs like we found in Section 2.1 to
abstract, sealed blackboxes like the for example MTI-10, see Section 2.4.7. On the
one hand we intend to design a product whose outward appearance is abstract and
playful enough to invite beginners to use our system and facilitate their curiosity.
On the other hand, we aim to provide a clean and functional look for advanced and
expert users that transports the concept of an efficient and capable system whose
capabilities allow them to implement their applications quickly and easily.

Electronic Building Blocks

Modular systems can have different granularities by design. littleBits for example
only features a single function per module or building block. On the one hand, this
allows to design applications without overhead, because only functions that are re-
quired in the application will be included. On the other hand though applications
get physically bulky because electrical and mechanical connections between all ele-
ments can use up more space than the actual components. As a major goal we try
to design BRIX2 as compact as possible, which is why we are going to include a
basic functionality in a base module which represents the central component for any
application. This way we risk potential overhead of functions, but reduce the phys-
ical dimensions of the system. In order to keep this overhead as small as possible,
we already determined this fundamental set of functions in Chapter 3. As a result,
users will be able to add functions to the base module in order to adapt BRIX2 to
their desired application. This concept is close to the former BRIX system, which is
why we next take a look at our experience with that system to determine which of
its features is going to be carried in the current implementation.

Former Experiences with BRIX

The BRIX system consists of three different types of modules: base module and
battery module, each the same size (48×32×13.5mm) as well as extension modules
which are a third of the size (16×32×13.5mm). Base and battery module are stacked
onto each other to form the minimal functional unit. Extension modules can be
stacked onto one of the three identical extension ports on the base module. When
several extension modules are used, three extension connectors allow a greater level of
integration than a single one, which would mean stacking all modules on top of each
other, resulting in a bulky device. This proved to be practical in actual applications
and could be kept as a concept for BRIX2. The concept of a separate battery module
was initially developed to allow quick swapping of the battery instead of charging the

106

whole device. This way, for example a data recording session could continue without
any waiting time. It turned out that this feature was actually never used because
our mobile applications did not required operation times longer than a single battery
lasted. On the downside, the separate battery used a lot of space because it had its
own enclosure and its own PCB with charge electronics. With BRIX2 we should be
able to integrate the battery into the base module while keeping it at the same size.

Experiences with Lego Bricks as Enclosures

As we already stated in Section 2.6, a prominent feature of the BRIX system that
also coined its name are the enclosures made of Lego bricks. People also sometimes
even referred to the BRIX system as “Legos”, because the electronics were perfectly
integrated into the bricks. While using the BRIX system, the friction based connec-
tion between the modules proved to be sufficiently reliable. Also the bricks allow
a high level of integration, because enclosures can be scaled precisely, regarding for
example the height of extension modules. When regarded as a raw material, Lego
bricks can easily be machined in subtractive processes like Computer Numerical Con-
trolled (CNC) machining and glued together to form bigger, rigid structures. Also
they are inexpensive and widely available in a great variety of sizes and colors. Apart
from their properties as a material, Lego bricks are also a metaphor for playful and
exploratory construction, flexibility and modularity. Building with Lego bricks is a
practical, hands-on experience that many people are already familiar with. We can
use that metaphor and positively associations to motivate especially beginners to
use BRIX2 and to take the edge off the impression of a technically complex system.
In general, reactions to BRIX’ visual appearance were positive among all kinds of
users. Because of our encouraging experiences with Legos as enclosures for BRIX,
we are also going to incorporate this distinct design element in BRIX2.

Case Study: An Enclosure Concept for BRIX2

In the following we briefly introduce the enclosure concept for BRIX2 based on our
former experiences. Since the general concept of the system changed, so does the
enclosure. Higher production volumes planned for BRIX2 in contrast to BRIX do also
affect the enclosure concept which has to be optimized towards manufacturability.

Base Module The physical size of the BRIX base module in terms of Lego units
is 4 x 6 studs. This design allows to put three extensions on top next to each other,
each encased in 2×4 stud bricks. The height is a standard brick height plus the
bottom plate, which sums up to 13.5mm. The battery module is the same size. We
intend to integrate the battery into the base module while keeping it the same size
as before. This is possible through the use of low profile extension headers and a
different battery form factor. The result is a size reduction to 50% while we increase

107

the number of features at the same time. In the BRIX system, the power switch and
USB socket were located on the battery module and have to be included into the
new BRIX2 base module. To achieve that we have to use smaller components and
a more dense PCB layout. Also all interactive elements, the indicator LED, power
switch and USB connector should be located on the same side of the module. This
is relevant for scenarios where the module is only partially accessible, for example
integrated into a sewn pocket in an electronic textiles project.

Extension Modules As already implemented in BRIX, the extension modules
are going to be encased in single, 2×4 stud Lego bricks, closed on the bottom with
a 2×4 Lego plate. Other sizes like 4×4 or even 4×6 for extension modules with
increased complexity should be compatible as well. The height of an extension
module can easily be adapted to its contents. For example an extension module
which only contains a hall sensor can be much flatter than a module that contains
a vibration motor. This flexible height means we can use space more efficiently.
However, in the final design, we should stick to multiples of base plate heights. This
allows us to level out extension modules of different sizes using standard Lego 2×4
plates, should the application require this.

Making Enclosures out of Lego Bricks In the former BRIX project, we used
only Lego bricks to build the enclosures, which requires a lot of precision machining
and gluing. In the recent years, the capabilities of 3D printers rapidly advanced,
so we might be able to incorporate this manufacturing technique in the cases for
BRIX2. This reduces the amount of work for each enclosure, making it more feasible
for larger scale productions, which we plan for around 100 devices. However, the
cases for the extensions are still simple to build as they do not require a great amount
of machining. This is why we plan to keep this concept in the current project.

4.1.2 BRIX2 Technical Concepts

In the following we present the technical concept of the BRIX2 system, regarding
mechanical as well as electronic aspects. First we describe the concepts for the base
module with a focus on the electronic system design. After that, we introduce the
design challenge for a modular system and present some technical details on the
interconnection between modules and an outlook on the design of our extension
modules, which are covered in the next Chapter.

BRIX2 Base Module

The base module contains several blocks of electronic components that have to be
interconnected and placed on the PCB. The central components are the two micro-
controllers, user controller and system controller. In the next paragraphs, we present

108

our microcontroller concept along with some details on the LED and the power man-
agement. Other components like the sensor or the RF interface have either already
been covered or are straight forward in terms of design, which is why they are not
included in this conceptual section. First, we take a look on the constraints for the
PCB design process that emerge from mechanical considerations, for example the
enclosure.

Mechanical Constraints for the Base Module PCB The first and most im-
portant mechanical constraint for the base module PCB is the physical dimension.
In Section 4.1.1 we defined the physical size of the enclosure and thereby the max-
imum size of the PCB with 44.6×28.7mm. The height is limited to 9mm for the
PCB populated with components on both sides plus the battery. This constraint is
given by the space inside a standard Lego brick when closed with a Lego plate from
below. We decided for three extension connectors that allow to attach up to three
extension modules next to each other, since their size is a third of a base module.
If we construct the enclosure in the classical way as we did with BRIX, it would
be ideal if the switch and the USB connector are located in the center of one of
the 2×4 bricks that form the enclosure. This way, the cutouts for the components
can be machined before assembly. The LED has to be placed at a translucent area
of the enclosure. This can either be achieved by using a transparent/translucent
Lego brick or simply be leaving a hole for the LED. The wireless module has to
be placed at the edge or corner of the PCB according to the design rules published
by the manufacturer [113]. Instead of a wireless module with a PCB antenna, we
can also consider the version with an antenna connector. This allows us to place
a wire antenna inside or outside the module. The motion sensor should be placed
in the middle of the PCB to keep the axes symmetrical and the center of rotations
close to the center of the module itself. The battery should fill the remaining space
as efficient as possible in order to maximize the capacity. Since the top side of the
PCB has to be as close to the top plate of the enclosure as possible and most of the
space is occupied by the extension connectors, the most feasible spot for the battery
is below the PCB. This means we have to organize the components on the bottom
of the PCB in a way that results in a maximized space for the battery. For the
extension headers, we should use the female variant of the fine-pitch headers for two
reasons. First, the female connectors have a lower profile as the counterparts and
second, the pins are less accessible mechanically on the female header, so they are
protected from mishandling resulting in short circuits.

Microcontroller Concept A fundamental part of the BRIX2 platform is the mi-
crocontroller. It allows users to program the system and adapt it to their individual
applications. We already discussed which microcontroller we were going to use as our
main application controller (in the following called “user controller”), however we also

109

mentioned in Section 3.4.1 that we are going to incorporate a second microcontroller
which is going to be part of our wireless transmitter unit and fulfill peripheral tasks
(in the following called “system controller”). One might argue that the whole BRIX2

system, including the RF stack can well run on the main microcontroller along with
the application users implement. However, we already identified that there is not
much flash memory and SRAM available on the user controller, the Atmega32U4 we
already selected in Section 3.3.3. Using a second controller, we do not only double
the total available memory but also have a second CPU that can handle additional
task parallel to the application running on the user controller, such as reading and
configuring the motion sensor, reading the battery cell voltage, establishing wireless
connections and displaying the status of the module using an LED. All this can
be accomplished without the user even noticing that those processes are running in
the background. If those functions are not required in a particular application, the
second controller can spent most time in sleep mode where it consumes only little
energy. Both microcontrollers can also share the same external clock signal, so we
do not need additional active components for the second controller. The footprints
of both microcontrollers are rather small, so they do not take a lot of space on the
PCB.

User Controller The user controller makes the BRIX2 platform programmable
and provides the flexibility required to use it to a wide variety of applications. It is
the only component that is supposed to be modified by the user. We decided for the
Arduino compatible ATmega32U4 mainly because of its built in implementation of
a USB stack. It allows direct access to the device from a host computer via USB,
which means increased convenience for users. The controller has two internal serial
ports, one is connected to USB, the other one can independently communicate with
other devices through a UART, see Figure 4.1. The ATmega32U4 has 26 GPIOs
of which we try to connect the maximum possible amount to the extension header.
The ability to do so is limited by the routing space on the PCB and the number of
pins on the extension connector.

System Controller Although the system controller is not supposed to be main-
tained by users, the option to do so, for example in order to update the firmware
would be practical. The easiest way to achieve this is to keep it Arduino-compatible
as well. This would also allow us to use Arduino libraries for the system controller
firmware during development and would not require additions to our already existing
toolchain. Since BRIX2 is already USB compatible through the user controller, the
system controller does not require an individual USB interface. We can simply use
the most popular microcontroller used for Arduinos, the Atmel ATmega328. It is
available in a smaller package than the ATmega32U4 and the features are basically
identical, see Section 3.2.4. One crucial task of the system controller is to configure

110

and control the RF module and offer an abstract interface for the user controller to
access the device. Besides that, it is able to measure the battery voltage through a
voltage divider and inform users about the status of their BRIX2 module using an
individual LED. If required, the system controller can also access the sensor and
some of the extension modules via the I2C bus.

USART

RGB LED IMU Radio

USB User
Controller

System
Controller

Status
LED

Battery
Voltage
Divider

Extension Ports

Analog
In

SPIGPIO

GPIO

GPIO

GPIO SPI ISPSPI ISP

I2C

Figure 4.1: BRIX2 base module block diagram.

Interfaces on the Base Module In order for all components on the base module
to work together flawlessly, they need to be interconnected by a number of different
signals. In this paragraph we list and describe these signals and point out their role
in the communication concept on the base module.
USB: The USB connection is established by the user controller. It can be forwarded
to the system controller by bridging the internal serial ports “serial” and “serial1” of
the user controller, see 4.2.2.
ISP: Both microcontrollers need to be initially flashed with a bootloader or their
default firmware. This is done through the ISP interface which mostly uses the SPI
pins of each microcontroller. To allow access to both ISPs, we have to connect them
to the extension header.
I2C: This bus allows both microcontrollers to communicate with the motion sen-
sor and compatible devices that are connected over the extension header. Since the
microcontrollers can both be masters on the I2C bus, this scenario has to be taken
care of in software.
UART: A serial connection between both microcontrollers allow users to send re-
quests and receive data from the system controller. This way it is possible to ex-
change data wirelessly between two separate BRIX2 modules the same way as using

111

a serial connection between both microcontrollers. Through abstraction, the wireless
interface behaves the same way.
Both the user controller and the system controller are connected via UART in order
to exchange data. This allows users for example to read the battery status from
the system controller or to submit packets for wireless transmission. The UART
signals are also connected to the extension port in case an application requires to
communicate with an extension over serial. For doing so, the UART of the system
controller needs to be deactivated temporarily to prevent short circuits.
SPI: The SPI interfaces of both controllers are connected to the extension header
separately. The system controller and the RF transceiver are connected via SPI.
GPIOs: Analog as well as digital GPIOs from the user controller are connected
to the extension header. Three I/Os with PWM capability are connected to the
RGB LED. If there are free pins left on the extension header, GPIOs of the system
controller might also be connected to the extension header.

Power Management The BRIX2 electronics are supplied by two power sources,
the USB port and the battery. A power multiplexer is required in order to supply
the system via USB if plugged in or via the battery otherwise. In order to provide
a stable and constant input voltage for the system, a voltage regulator is necessary.
Although more external components such as inductors are required, a switching
regulator is to be preferred to a linear regulator because of its higher efficiency. The
BRIX2 base module has to be powered with a voltage level of 3.3V, because there
are components like the motion sensor and the RF transceiver which are not 5.0V
tolerant. For charging the battery, a LiPoly charge controller is required to not
damage the battery during the charge cycle, see Section 3.3.2.

LEDs The purpose of the LEDs is to display the status of the device itself and
the application that is running. In Section 3.2.4 we already proposed the use of
an RGB LED which is completely programmable by the user. Independent of the
RGB LED which is controlled from the user controller, we also propose another LED
connected to the system controller. This can reliably indicate whether the BRIX2

module is running and in which state it is, independent of the user application.
For applications where low power consumption is crucial, users can actively override
the system controller and turn off the status LED, see Section 4.4.2. A third LED
indicates the charge status of the battery. It is connected directly to the charge
controller, thus is independent of any programming. This way the user is directly
informed if the charge process of the battery is still running or if the battery is
fully charged and the device can be disconnected. Both the system status LED and
the charge status LED can be low current, single color LEDs. The status LED is
preferably green for optimal visibility at low current whereas the charge status LED
should be red to indicate that a critical operation is in progress.

112

Physically Extending BRIX2

Systems like littleBits, Arduino and Tinkerforge Bricks are good examples for ex-
tensible platforms. They consist of a central element which can be combined with
additional elements to increase the functionality. That way, the system becomes a
kit of different modular units, or “electronic building materials”, as Ayah Bdeir calls
it in [36].
In our survey in Chapter 2 we have presented different approaches towards physi-
cally extensible electronics, summarized in Section 3.1.2. In order to keep a system
compact, even when extended with multiple additional modules, a stacking method
is superior to implementations like littleBits. FFCs or cable based connections also
allow high levels of compactness, like for example the Seeedstudio Xadow system.
However cables also represent a weak element in terms of electrical connectivity and
are also potentially prone to wrong handling, which may result in possible damage
to the system.
Stacks with fixed, board-to-board connectors are common whenever bare PCBs are
used, like for example the products we presented in Section 2.1.4. Many platforms
use extensions that are the same size as the base board and simply stack as many
as required onto each other. Often, this arrangement wastes a lot of space, since the
extensions contain less components than the base board, for example [114] or [115].
In our prior work on BRIX, we implemented an extension port system with three
parallel connectors that allow to put three extension boards on top of the base board
next to each other. Should an extension board be too complex, it is still possible
to make one that requires two or even three slots. This way, the available space is
separated into smaller units and can be filled more efficiently.
The general concept of BRIX worked well, but had a strict limitation of the pin
count. Also the connectors were not rated for a significant number of insertions,
which resulted in unreliable electrical connections. As a conclusion, we are going to
roughly adapt the mechanical extension module concept of the BRIX system with
major changes on the connector and the signal organization itself, which we present
in the following.

Signal Organization In Section 3.2.4 we already discussed two common types of
extension connectors we identified while analyzing different platforms: full breakout
and protocol based connectors. The former try to connect as many microcontroller
signals as possible to the extension connector, which results in a high number of
signals and pins on the connector. The latter use an abstraction layer in form of
a protocol like I2C that adds complexity but drastically reduces the pin count of
the connector. From our experience with BRIX we found that the protocol based
connector unnecessarily complicated the communication with the extension boards,
because the extensions need to be able to comply with that protocol. This can cre-
ate a lot of overhead when the components on the extension are rather simple, for

113

example just an RGB LED. In the case of BRIX2, we decided to use Arduino as a
base. A lot of examples and libraries for connecting external components like sensors
and actuators to an Arduino, which features a full breakout extension connectors do
already exist. We would not be able to pass this knowledge on to our users directly
if we abstracted our extension connector. Instead we would have to adapt all these
examples to our platform.
By using a more advanced PCB production process than for the BRIX modules,
we are able to route most signal of the user controller and even some of the system
controller to the extension connector. This leads to less complex and thereby less
expensive extension modules with a lower energy consumption, a transparent inter-
face between base module and the extensions, greater Arduino compatibility and
increased flexibility.

Figure 4.2: Comparison of connection headers on BRIX and BRIX2 extensions.

Extension Connectors In Chapter 2, we identified two prominent types of
board-to-board interconnects: female/male pin headers with a 2.54mm (0.1 in) pitch
and dual-row fine pitch connectors. Standard female pin headers are more accessible
than fine pitch headers, which can only be interfaced with the designated receptacle
and not pin by pin with for example a simple wire. Also they are widely available
and inexpensive. The downside of standard pin headers is their rather big footprint
on the PCB as well as the low number of insertion times before they wear out. The
footprint can be reduced by using finer-pitch pin headers such as 2mm or 1.5mm.
However, this is a deviation from the standard and again reduces the accessibility
and compatibility of the connector and combines the disadvantages of both solu-
tions. In the previous section we argued for implementing a full breakout extension
connector. In a compact platform like BRIX2, this can only be accomplished using
fine pitch connectors simply because of their smaller footprint. The disadvantage of

114

a poor accessibility of the single pins by external hardware is actually not as rele-
vant for BRIX2, because users are given a library of extension modules to work with,
which reduces the demand for custom external hardware. Should it be necessary to
connect such hardware, they can use an adapter board that breaks out all signals
of the extension connector to more easily accessible solder pads. See Figure 4.2 for
a comparison of a 5-way 2mm pitch pin header on a BRIX extension module (top)
and a 30-way fine pitch connector on a BRIX2 extension module (bottom).

Extension Modules At this point, we only predefine a rough concept for our
extension modules, since we designed a number of devices that are quite diverse and
different from each other. In general, the mechanical size of the PCB is determined
by the inner size of a single 2 x 4 Lego brick, 29×23mm and the placement of the
extension connector on the lower side. Also, the lower side should not contain high
profile components which would collide with the studs of the 2×4 Lego plate that
seals the module at the bottom, see Figure 4.3. Extension module electronics need

Figure 4.3: Exploded view of an extension module: PCB (middle) between the en-
closure top part and bottom plate.

to be 3.3V compliant and must not draw more current than the regulator on the
base module can provide. The maximum height for components on the top side is
determined by the inner height of a single Lego Brick minus the thickness of the
PCB itself.

115

4.1.3 Software Concept

Similar to the Arduino platform, the BRIX2 toolkit is not only a hardware but
also incorporates software components for tasks like writing firmware, compiling and
uploading of binaries to the flash memory of the microcontroller. In this section we
introduce the software components we aim to integrate into our kit in order to allow
easy and accessible learning and prototyping with the system, even for users without
any experience in microcontrollers and programming

Programming Toolchain

In Section 3.2.3 we already introduced the concept of toolchains for microcontroller
firmware development and the Arduino IDE. By using the Arduino software package
for our project, we are offered an all in one solution: editor, file manager, library
manager, compiler toolchain, uploading tool and language reference. All these com-
ponents are open source and free for download as well as tested by hundreds of
thousands of users. Since Arduino explicitly aims at the same groups of users as we
do (beginners, students, advanced and expert users who want a quick prototyping
cycle), it is perfectly suited for BRIX2 as well. In order to make our platform and
the Arduino IDE fit together seamlessly, we can do two things:

• Match the IDE to our hardware: Since the Arduino IDE is open source,
we are allowed and able to fork our own version of it and redistribute it to
our users. We would be able to carefully modify it exactly to fit our needs,
but the level of maintenance required is high. Alternatively, we could have
our users download the standard IDE and patch it themselves. This would at
least require a detailed description in our documentation and basic knowledge
about computers and software on the user side, which might represent a basic
hurdle for users and could potentially lead to a rejection of our toolkit.

• Adapt our hardware to the IDE: This means we have to be 100% com-
patible to one of the boards that is supported by the IDE natively. The major
advantage is that we do not need to modify the IDE and maintain our own
version of it.

As we can see, modifying the IDE for our purpose is not applicable. This is why
we design our hardware in a way that it is 100% compatible to common Arduino
boards that are currently supported by the IDE. Users can simply download the
latest version of the IDE from the Arduino website and use it with BRIX2 out of the
box.

116

The BRIX2 Arduino Library

The Arduino IDE ships with a number of libraries that simplify a lot of tasks such as
controlling an LCD or using buttons as input. Beside the libraries that ship with Ar-
duino, there are numerous third-party libraries for all kinds of devices and purposes
that can be added to the Arduino IDE. Usually, libraries are supplied along with
example sketches (firmware projects for the Arduino), which users can just upload
to their device, connect the hardware they want to use with the library and it just
works. This is a major feature of Arduino, because implementing the functionalities
of the library usually requires profound knowledge about the microcontroller and the
principles of the connected device. Using the library and the examples, users have
a base to work from and a fallback in case their customized version of the example
sketch breaks. If users want to know more about the underlying principles of how
the hardware or library works, they can just look at the code, since every library is
supplied as open source. This means that knowledge is not initially needed to suc-
ceed, but is always accessible. For our BRIX2 system, we aim to supply an Arduino
library as well, which abstracts things like reading the motion sensor, communicat-
ing wireless and controlling the extension modules we offer. All these functions of
course need example sketches so users can try them out, experiment and modify the
examples towards their own customized sketches and projects. Some functionalities
like for example support for the motion sensors are already covered by third-party
libraries, which are constantly being improved. Instead of implementing and main-
taining those functionalities ourselves, we can also integrate those components into
our own library given that the license of the external library allows it.

117

4.2 Implementation of the BRIX2 Electronics

In this section we describe the electronics of the BRIX2 base module in greater de-
tail. The fundamental components such as microcontrollers and the sensor were
already selected in the earlier chapters. In the beginning of this chapter, we pre-
sented the general concept for the electronics in terms of communication between the
components. Now we take a closer look on how we practically implemented the base
module electronics. First, we describe the structure and communication channels of
the base module, the power supply and the extension port in detail, followed by the
physical organization of the components on the actual circuit board. Finally, the
description of the PCB leads over to a section about the enclosure implementations
for the BRIX2 base module.

4.2.1 A Side Note on the Selection of Components and
Technologies

It is to be kept in mind that the BRIX2 base module was designed and developed
in 2011/2012. Especially in the fields of microcontrollers and wireless interfaces,
standards have developed further. This is why some components used in this project
might seem outdated at the time of writing. As technology evolves more and more
rapidly, systems will most likely be obsolete to some point as soon as a design is
finished. This however does not make a device less capable than at the beginning of
the design process, but it offers designers greater opportunities for the next revision
of BRIX2.

4.2.2 Core Circuit: Microcontrollers, Sensor and Wireless
Interface

For better overview, we split up the detailed description of the base module electron-
ics implementation into three parts: core circuit, power supply and extension ports.
Since the core circuit contains almost all functionality of the BRIX2 base module,
we present it first.

Structure and Communication Channels

Apart from the extension connector, the BRIX2 base module has two main commu-
nication channels to the outside world: USB and the wireless interface. The first is
certainly most significant, because it allows users to upload custom software to the
user controller and exchange data between a host device and the BRIX2 applica-
tion. Thanks to its native USB implementation, the user controller can be directly
connected to the USB header, using termination resistors on the data lines. The
system controller handles the wireless interface, which it connects to using the SPI

118

bus, as well as other system functions. To allow the applications running on the user
controller to communicate with the system controller, the secondary UART of the
first is connected to the primary UART of the latter, see Figure 4.4.

USART

Host

IMU

Radio

User
Controller

System
Controller

I2C

SPI RF

USB

Figure 4.4: Core components and their communication structure on the BRIX2 base
module.

USB Access for the System Controller Although users are only supposed to
communicate with the system controller indirectly through their application on the
user controller, there are two scenarios in which direct USB access to the system
controller is necessary. First, in order to access the wireless interface directly from
the host system, turning the BRIX2 base module into a USB/RF bridge and second
to update the firmware running on the system controller without additional ISP
hardware. The first scenario can be implemented in software. A simple sketch on
the user controller could relay data from the secondary UART (connected to the
system controller) to the primary UART (USB) and vice versa. This way the system
controller is accessed via USB as if it was directly connected. The second scenario
also uses this sketch, however there are two more requirements. First, a bootloader
on the system controller that makes it compatible to the Arduino IDE. Second,
the reset line of the system controller needs to be controllable by the user controller.
Usually, the ATmega328 that we use for our system controller is programmed through
an FTDI USB/Serial converter and the reset line is handled by the DTR signal of
the serial port. The sketch on the user controller could capture this signal from the
USB side and control the reset pin of the system controller via a GPIO accordingly.
This way users and developers can easily upload sketches to the system controller as
well.

119

Sensor Access via I2C The MPU9150 IMU sensor can be accessed via a stan-
dard I2C interface with a bit-rate of up to 400 KHz (“Fast Mode”). We connected the
bus lines Serial Data Line (SDA) and Serial Clock Line (SCL) to the I2C interface
of the user controller. This way, the user’s application can access the sensor directly.
We did not connect the system controller to the same bus, because it would also
act as an I2C master when trying to access the sensor at the same time the user
controller does. This would lead to illegal bus states if not taken care of in software.
Special applications however might require to read the IMU sensor from the system
controller. In this case, two 0Ω resistors can be populated on the PCB to connect
the system controller to the I2C bus.

RF Interface Access via SPI The Anaren AIR A1101R08 RF module is con-
nected to the system controller via SPI. The chip select pin is connected to a GPIO
of the controller. This way the SPI bus is not fixed to the RF module but can also
access external SPI devices that can be connected via the extension header. The RF
module also has two pins that can be configured for various functions and are con-
nected to two GPIOs on the system controller. The user controller can not directly
access the RF module without external hardware. In theory, an extension module
could be created that connects the SPI buses of both controllers, allowing the user
controller to access the RF module, should that ever be necessary.

Clock Signal Generation

Both microcontrollers require a 16MHz clock signal to operate. This can either be
generated by a passive crystal resonator connected to both clock pins of the mi-
crocontroller along with two capacitors to GND or by an active external oscillator
connected to only a single clock input pin of the microcontroller. Crystal resonators
are usually less expensive than crystal oscillators and also have a smaller footprint,
however a single crystal resonator can not supply clock signals for two microcon-
trollers, thus both would need their own crystal, as for example on the Arduino Uno
board [116]. A single crystal oscillator can supply its clock signal to several devices,
so we can use it for both microcontrollers. We selected a TXC TD 16.000 MEMS
oscillator [117], which is 3.3V compatible and available in a rather small, 2.5×2 mm
LGA package.

USB Connector

In order to connect a BRIX2 module to a host via USB, different connectors can be
used. On BRIX, we decided for a MiniUSB-B connector, since it was one of the most
popular connectors for mobile devices at design time. This means cables to connect
Mini-B to a regular USB port on a host system were common and easily available.
In 2009, microUSB became an EU standard for cellphone charging connectors [118].

120

As a result, this connector was quickly widespread not only for cellphones, but for
mobile devices in general. MicroUSB has two more advantages. First, the connector
has a lower profile than the MiniUSB-B (3mm versus 4mm). Second, the MicroUSB
connectors are more durable and rated for at least 10000 insertion cycles, which is
100%more than MiniUSB (5000 cycles) [119]. For those reasons, we chose microUSB-
A/B receptacles that are compatible to any MicroUSB cable. This way BRIX2 is
chargeable with the same equipment as almost any smartphone or other mobile
device.

4.2.3 Power Supply: Voltage Regulation, Charging and
Battery

The power supply circuitry consists of three major parts: The voltage regulation, the
battery along with its charge controller and the power multiplexer, see Figure 4.5.

Status LED

VUSB VSYS

Power
Multiplexer

On/Off
Switch

Charge
Controller

Voltage
Regulator

USB

Battery

Fuse

Figure 4.5: BRIX2 power management block diagram.

Voltage Regulation

We use the voltage regulation that we already tested with the B2DK, because it
performed according to our requirements in our tests. The regulator is rated for
500mA maximum current and has an over-current and over-temperature protection.

121

For additional protection, we added a 500mA fuse on the input line of the regulator.
This way we provide redundant safety mechanism against over-current.

Power Multiplexer

As we already concluded in Section 3.4.2, the existing circuit encounters problems
while the application is running and the battery is charging, because power is con-
stantly supplied by the battery. This leads to longer charge times and on the long
run to a reduced lifetime of the battery. To solve this issue, we need to add a com-
ponent that selects the most feasible one of the two input power sources to supply
our application while the battery is charged via USB. Such a component is called
power multiplexer and is common in mobile applications. We selected the Texas
Instruments TPS2111 [120] autoswitching power MUX because it is widely avail-
able, inexpensive and has a small footprint. Besides a single resistor to configure
the current limiter feature, it requires no additional passive components. The device
basically connects the input source with the highest voltage to the output. This way
our application is directly supplied by the USB when connected to a USB port, while
the battery charges independently.

Charge Controller and Battery

Like the voltage regulation circuit, the charge controller was already tested on the
B2DK and performed as required. An element we had not selected before was the
battery. LiPoly batteries are sold in a great variety of shapes, sizes and capacities,
so we could almost certainly leave an arbitrary space for our battery and select one
that fits. However, the Product Life Cycle (PLC) of many LiPoly batteries is rather
short, so the products might no longer be available after months or even weeks.
This is is serious issue when developing a device like BRIX2, which is supposed to be
reproduced by other people and not just designed for a single production run. If vital
parts are no longer available, BRIX2 modules can no longer be made without design
changes. This problem can be avoided by selecting a battery that will be available
for a long time, because there is an ongoing demand for it. This also tends to lower
the prices as larger volumes of the device are produced. We chose to base our design
on a battery which is available as a replacement part for a recent consumer product
with a large production volume. Regarding the shape, size and capacity, we found
that the battery of the Apple iPOD classic (EC-008) fits perfectly into the BRIX2

enclosure and already contains a circuit that protects it from over-currents and deep
discharge. EC-008 compatible batteries are widely available from different suppliers
and relatively inexpensive. For optimal use of space inside the BRIX2 enclosure, we
have to adapt our PCB layout in a way that components on the bottom side leave
room for the battery, which takes up around two thirds of the surface area. The
capacity of the battery is 450mAh, which is even more than the battery in BRIX

122

had and totally suitable for our application. We estimate a runtime of at least 5
hours for an average, mobile application.

Battery Voltage Monitoring

In many applications, it is interesting to know the current charge of the battery in
order to estimate how long it will last. The cell voltage can be used as a base for
an estimation of the remaining charge, since it drops when the battery discharges.
LiPoly batteries have a characteristic discharge curve that is almost linear for around
70% of the discharge process. In practice it is probably easiest to use a lookup table
to determine the battery charge based on the cell voltage. The cell voltage can be
measured by an analog input pin of one of the microcontrollers. Since this task
is more related to the whole system itself, it should be performed by the system
controller. This way we can easily wrap all measurement functions and provide
the user with either the correct voltage or the remaining charge. However, we can
not directly connect the positive lead of the battery to the analog input of the
microcontroller because the maximum cell voltage of 4.2V exceeds the maximum
input voltage on an analog input pin, which is in our case Vcc + 0.5V = 3.8V . To
overcome this problem, we measure the output voltage of the power multiplexer,
which in mobile operation equals the cell voltage and when connected to USB equals
the USB voltage of 5.0V through a voltage divider to decrease the voltage to a
tolerable level for the analog input pin. We chose high resistor values of 220 kΩ and
100 kΩ for the voltage divider to ensure that the power consumption of the divider
is reasonably low.

4.2.4 Extension Port

The extension port is a prominent feature of the BRIX2 platform and allows users to
expand the capabilities of the system by adding extension modules. In this section
we first present some hardware decisions about the extension port, followed by a
description of the microcontroller signals that we chose to connect to the extension
port and thus make them accessible for users.

Extension Connector

Earlier in this chapter we argued for a full breakout connector in favor of a bus-
based connection to be more compatible to Arduino, allow for easier and simpler
extension module designs and to increase the overall flexibility. Since we decided for
three parallel connectors, we can not fit standard pin headers on the PCB. Instead
we have to go for fine pitch connectors, which have the clear disadvantage to be
unable to interface without the matching receptacle. We observed in our survey in
Chapter 2 that the Hirose DF17 series board-to-board connectors are often used as

123

an alternative to standard pin headers in case a higher pin density is required. The
DF17 connector series has two rows of pins with a pitch of 0.5mm and is designed
for mechanical stability and good electrical contact. The connectors can be obtained
for various stacking heights from 4mm to 8mm and numbers of contacts from 20 to
80. Given this wide variety of configurations, we can carefully scale our connector to
exactly fit our needs. We decided to use a 30 pin connector with a stacking height
of 6mm (board-to-board distance), since it is the maximum size we can fit on the
PCB.

Extension Port Signals

Since we are limited to 30 signals on the connection header, our pinout can not be
fully Arduino compatible, because for example the Arduino UNO has 29 signals,
but we have to keep some signals on the header reserved for different purposes. We
present the pinout strategy of the extension header in greater detail in the following
paragraph, see also Figure 4.6.

DF17-30-HEADER

VU
SB

VCC

GND

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15 16

17
18
19
20
21
22
23
24
25
26
27
28
29
30

SDA
SCL

RESET

A1
A0MISO

SCK
MOSI

MOSI_S
MISO_S
SCK_S

RXD_S
TXD_S

RESET_S

EXTENSION_INTERCONNECT

A2
A3
A4
A5

D10 D6

D4D4_S
D5D11

D8
D9

Figure 4.6: BRIX2 extension port signal mapping.

Bus Signals As we already mentioned in Section 4.1.2, there are different buses
on a microcontroller and we need access to at least some of them. Crucial, but in
general not frequently used is the ISP which allows to program a new firmware on the
controller initially and for updates on the bootloader. After that, three of the four
data pins of the ISP, Master In, Slave Out (MISO), Master Out, Slave In (MOSI),
and Clock Signal (CLK) and can still be partially used as SPI or GPIOs whereas the

124

RESET signal is only required during programming and is not intended to be utilized
by users. The four data pins occupied by the ISP of the system controller are basically
lost for user applications and can, apart from the programming scenario, only be
used in special purposes. However, they allow extension modules to communicate
with the system controller in case that should be necessary. Another signal that
covers both microcontrollers is the UART interface with two data lines, RX and
TX. The controllers are connected using those two lines and the UART represents
the main communication channel that is available for users to address the system
controller, for example in order to send wireless packets or read the status of the
battery. Both signals are also connected to the extension header, but can only
be used in special purposes, because UART is technically not a bus, since it does
not support addressing. In case an extension module intends to communicate to
one microcontroller via the shared UART, the other microcontroller has to turn its
UART off actively to not cause illegal electrical states such as shorts. A bus that
is commonly used for extensions is the I2C bus. It consists of two signals, SCL
and SDA, and is de-facto standard when communicating between microcontrollers
and other active components like digital sensors. The bus supports multiple devices
simultaneously. This is why we can also connect the sensor on the base module to
the bus at all times and are electrically safe as long as components on extension
modules use a different I2C address than the sensor.

GPIOs We have connected 13 GPIOs of the user controller to the extension
header as well as a single one of the system controller. From the 13 user controller
GPIOs, 6 can be used as analog inputs and 4 can be configured as PWM pins. On
these pins, users can generate a PWM signal by simply using the analogWrite()
function in the Arduino IDE. Other special functions such as interrupt inputs are
also implemented on some GPIOs we selected.

Extension Interconnect A single signal on the extension header is reserved as an
extension interconnect. The pin can be used to communicate between two extension
modules without interfering with any component on the base module. So far no
extension module has ever used this feature, but there are certainly applications
that might require it, for example for an extension to check if another extension
module of the same type is also connected. In this case, the extension module would
first check the extension interconnect and if it does not read a specific signal, it
would occupy the interconnect with its own signal.

Power Lines We connected two different power lines to the extension connector.
First, the system voltage of 3.3V from the regulator. This is limited to around
400mA, since the regulator and the fuse have a maximum current of 500mA and
there needs to be some room for loads on the base module. This 400mA limit is

125

not actively regulated and just a convention between developers and users. Should
users draw more than 500mA, the regulator will turn off or the fuse will blow. The
other power line on the extension connector is the USB voltage that is only available
when the base module is plugged into USB. The connection also works the other
way around, so if USB is not connected, the module could in theory charge via the
extension port. The USB voltage of 5.0V is required for some extensions for example
the servo extension. The servos need 5V as a power source to run stable. This way
the extension can only be used if a USB connection is present. For mobile scenarios
involving such extension modules, we recommend using a USB power bank to power
the application.

4.2.5 Physical Structure: The Printed Circuit Board

The PCB holds all components and forms the electrical connection between them.
We decided to use only double layer PCBs for two reasons. First, one of our primary
goals is to make technology graspable and understandable. This includes not only
the use of our finished product but also its design, meaning that people can learn
from our design and use it as a base or reference for their project. In this terms,
double layer PCB designs are less complex and easier to understand than 4+ layer
designs. We also use the Computer Aided Design (CAD) software Eagle by CadSoft1
to lay out our PCB. CadSoft offers a free version that is restricted to only 2 layers.
A four layer design could not be viewed or modified in the free version, rendering
the design files useless for people without access to an expensive, full version of the
software. Secondly, BRIX2 is supposed to be reproducible by non-professionals for a
reasonable price. Manufacturing double layer PCBs in contrast to for example four
layer boards is generally cheaper and offered by virtually any PCB manufacturer.
The size of the BRIX2 PCB is defined by the design target of a 4×6 Lego form factor
which restricts it to 44.6×28.7mm. Due to the limited space inside the BRIX2 base
module, we were forced to reduce the thickness of the PCB from the standard of
1.6mm to the slightly more expensive 1mm.

Board Layout and Integration into an Enclosure

In this section, we present our arrangement of components which is partially coupled
with the enclosure design. We first regard the components that are fixed by design,
then discuss different placements of constrained components before introducing rout-
ing and arrangement issues. Because of the coupling of PCB and enclosure design
process, we already touch on some aspects of the enclosure before we focus on the
enclosure in detail in the next section.

1http://www.cadsoftusa.com/

126

Fixed Components In Section 4.1.2, we already mentioned some components
whose position on the circuit board is fixed by design, namely the motion sensor and
the extension headers. We decided to have three extension ports, like in the former
BRIX design. The spacing between those headers is determined by the form factor
of both the base module and the extension modules and is exactly the width of a
standard, 4×2 stud Lego brick. The headers obviously need be on the top side of the
board so the extension modules can be stacked upon the base module. We decided
to put the Hirose fine pitch extension headers as close to the edge of the PCB as
possible to maximize the available space for other components on the base module as
well as on the future extension module PCBs. The motion sensor is supposed to be
in the center of the PCB in order to keep the rotational axes close to the center axes
of the base module itself. Because the extension connectors already cover almost
half the PCB, we have to shift the motion sensor slightly away from the center, see
Figure 4.7. The Hirose headers have a base which is 2mm high and is wider than
the rest of the header. If we want the header to stick out of the top plate with only
the smaller top part, the top plate of the case are going to be flush with that base.
This means all other components on the top side must not be higher than 2mm or
otherwise they collide with the top plate.

Extension Headers

LEDs

Sensor

Battery

USB/Switch
RFBottom Top

Figure 4.7: Component placement on the BRIX2 PCB.

Constrained Components Since routing all traces of the extension headers
takes up all space on both layers, the bottom side of the PCB contains no com-
ponents in the header area. This is ideal to place the battery, which is a high profile
component and therefore needs to be placed on the bottom side, where it takes up
almost 70% of the PCB surface. Obviously we need to place all components higher
than 2mm on the bottom side as well, namely the RF module, the MicroUSB header,
the power switch and possibly large passive components like capacitors. Since the

127

antenna end of the RF module needs to be at the PCB edge by design rules, we can
place it in one corner, see Figure 4.7. We decided to place the switch and the USB
port within the Lego grid again, so it matches up with the Lego bricks the case is
made of.

128

4.3 Implementation of the BRIX2 Enclosures

Since we base the enclosure design on the previous BRIX system, early BRIX2 en-
closures look similar to it. During several design stages, we developed them towards
a more reproducible concept involving 3D printing technology. In this section we
briefly touch on two concepts before we present different iterations of enclosure de-
signs as well as the most recent design.

4.3.1 Appearance and Manufacturability

Our enclosure concepts are based on the one hand on Lego bricks and on the other
hand on decentralized manufacturing techniques like 3D printing.

Lego as a Material and a Message:
As we already mentioned in Section 4.1.1, the Lego aspect of the BRIX and BRIX2

modules is not only chosen for practical reasons like durability, price and mechani-
cal connection but also to convey a certain message to the user. Lego bricks are a
symbol for creativity and modularity, a message that we would also transport with
the appearance of BRIX2.

Rapid Prototyping and Manufacturing:
By making our platform open source regarding software and hardware, we encour-
age others to produce their own BRIX2. As manufacturing techniques such as CNC
machining, laser cutting and 3D printing become increasingly available through fa-
blabs2 and online services like Shapeways3, we can combine them into a decentralized
assembly line. Our long term goal is to design a product that anybody can have man-
ufactured through publicly available services. A good example for this concept is
the Thingiverse website we introduce in Paragraph 4.3.3.

4.3.2 Case Design 1: Lego Only

Our first approach was basically an adaption of the BRIX case design with cutouts in
different places and a translucent Lego brick to keep the LED visible. We constructed
the enclosure from two standard, 2×4 stud bricks, a 2×3 and a translucent 1×2 brick.
We first glued all bricks together using plastic glue. In the next step, we used a CNC
machine to cut out holes in the front for the switch and USB connector as well as in
the top for the extension connectors. Finally we hollowed out the entire structure
leaving only the outer walls of the Lego bricks. This step is done last because it
significantly destabilizes the structure, making it difficult to clamp the workpiece

2https://www.fablabs.io/
3http://www.shapeways.com/

129

Figure 4.8: Case design I for the BRIX2 base module.

inside the machine without breaking it. After inserting the electronics, we sealed the
bottom with a regular, 6×4 Lego plate which we glued down.

CNC Machining Lego Bricks

CNC machines are computer controlled milling machines that allow to precisely cut
workpieces in an subtractive process. A spindle, equipped with a rotary cutter, can
be moved linear by motors along several perpendicular axes, typically X, Y and Z
and sometimes rotated around additional axes. This allows the computer to place
the tool anywhere in the workspace and remove material from the workpiece. The
process is controlled by a special programming code, the G-code, which is interpreted
by a software running on the computer that drives the machine. G-code is basically a
sequence of configuration and motion commands which can be either simply in a text
editor for less complex operations or generated by special Computer Aided Manufac-
turing (CAM) software. For all our CNC operations, we used a 3-axis CNC, different
end mills and a standard vise for clamping. The software we run is LinuxCNC on
a real-time Ubuntu Linux computer which interprets our hand-written G-code and
controls the machine.
Although the hardware setup is common for well equipped hackerspaces and fablabs,
the process requires experience and skill in order to get the clamping procedure and
the tool setup right. However, once the machine is set up, it can process multiple

130

BRIX2 enclosures in a single run without additional effort. Still we would not con-
sider this manufacturing technique feasible for large scale production or especially
reproduction by other people. It involves a lot of work steps and numerous things
can and will go wrong in the first try. Also for us, it was a process of trial and error
to an extent like for example finding out that different colored Lego bricks have dif-
ferent material properties which require distinct machining parameters for spindle
speed and feed rate.

Conclusion of Case Design I

The enclosure made only from Lego bricks perfectly blends into the Lego world and
easily carries its metaphors, see Figure 4.8. The mechanical connection to exten-
sion modules is stable and reliable. Using Lego bricks we can build an inexpensive
and light case to protect the BRIX2 electronics, however the manufacturing process
involves a lot of steps that have to be carried out with great precision and require
expensive machinery and experience to use it. This does not comply with our re-
quirement for manufacturability and reproducibility.

4.3.3 Case Design II: Lego plus 3D printing

In earlier enclosure designs, one reason to use Lego bricks was the excellent friction
based mechanical connections between those bricks which we utilized to hold exten-
sion modules in place on top of the base module. This means only the top part of
the case actually has to match this demand for low tolerance and precise fit. The
rest of the case can be made from a different material. Since 3D printers are widely
available today and much easier to use than a classical CNC machine, we designed
an enclosure which could be mostly 3D printed and only consists of a single Lego
piece that requires some traditional CNC machining, but much less than the previ-
ous version. Before we describe the actual implementation, we briefly introduce the
concept of 3D printing.

The Current State of 3D Printing

There are different techniques to generate a workpiece in an additive process which
is referred to as 3D printing. The approach we focus on involves the extrusion of
a thin stream of polymer material, usually nylon or ABS, through a heated nozzle
onto a build surface to create the workpiece layer by layer. The extruder head can
be moved in perpendicular 3 axes, similar to a CNC machine. The layer based
technique allows to print parts that are not possible to produce with subtractive
processes like CNC machining, for example a hollow sphere. When we made the first
BRIX version in 2009, 3D printing was already available to us, but the process was
not sufficiently precise to replicate a reliable and durable friction-based connection

131

Figure 4.9: Case design II for the BRIX2 base module.

like Lego implements. Since we also had a CNC machine available and only built a
small quantity of devices as a prototype, we had decided to use the more complicated
process we described earlier. Now 6 years later, 3D printing has become more precise,
inexpensive and far more common, even in the consumer market. The popularity of
this technique among hobbyists and makers has massively increased and meanwhile,
online services and stores provide 3D printed parts made from a variety material,
ranging from different plastics to metals and ceramics. Users either supply their
own 3D models or choose one from a database of objects like Thingiverse4. This
way people do not even need to have personal access to a 3D printer, but can just
order the parts they want. For our prints, we used a Makerbot Replicator 2X5 with
different filament materials. The dual print head of the machine allows to print
two different filaments in one process. Not only two colors, but also two different
materials can be combined in a single print. The Replicator 2X is a machine from
the higher consumer price segment and costs around 3000 USD.

Combining Lego and 3D Printing

For our next enclosure design iteration, we decided to keep the original Lego only for
the most crucial part and produce the rest of the case with a 3D printer. To connect

4https://www.thingiverse.com/
5https://store.makerbot.com/replicator2.html

132

to the extension modules, only the top Lego studs are required. We used a 6×4 stud
Lego plate and cut out the holes for the extension connectors as well as cleared the
bottom with a conventional CNC machine. The part can be fully processed using
only a single clamping operation and two cutting operation, with a fine tool for the
holes and a bigger tool for the surface clearing. The rest of the enclosure is done in
a single printing operation. We chose a flexible TPE material called NinjaFlex6 in
order to better protect the electronics inside from mechanical shocks, caused by for
example dropping the module on the floor. On the top, the material wraps around
the Lego plate, which is glued on after the electronics are inserted, see Figure 4.9.
The flexible material also allows for lower precision during the gluing process and
makes inserting the electronics much easier. After the first version of this combined
enclosure, we also started to use translucent NinjaFlex material and added cutout
for the LED into the top plate. This way the LED is visible through the 3D printed
material on the sides and the top, see Figure 4.10. In the same design change, we
added a well around the switch cutout, so the switch can be accessed even with a
fingertip instead of a fingernail as in the early version.

Figure 4.10: Case design II for the BRIX2 base module with improvements.

6http://www.ninjaflex3d.com/products/ninjaflex-filaments/

133

Conclusion of Case Design II

Compared to the Lego-only version of the enclosure, the new approach has distinct
advantages. First, it is much easier and faster to build. It involves no high precision
gluing process, no multiple clamping operations in the CNC machine and consists of
only two parts instead of five. The printing works extremely well and takes around
10 minutes per piece. Second, we can add support structures on the inside of the
enclosure which fit the electronics precisely and fill hollow spaces to increase the
overall stability of the module. The flexible material allows for higher tolerances in
the manufacturing process, is shock-proof and does not feel as edged as the Lego
only enclosure. This might be interesting especially for applications in wearable
electronics or electronic textile scenarios, where the modules come into close contact
with the wearer’s skin. The Lego plate on top still provides an excellent fit for the
extension module.
A severe problem we encountered after using the new case in several applications is
the loss of the Lego bottom plate. We realized that the plate did not only seal the
lower side of the module, but also offers superb mounting options for wearable as
well as static scenarios. With the old design, users could simply glue a Lego brick
to an object and fix a BRIX2 module on top. The connection is solid enough even
for wearable electronics scenarios and more importantly non-permanent. Another
problem is that a CNC machine is still involved into the process. If we could produce
BRIX2 enclosures without this complicated and expensive tool, we would be much
closer to our proposed, easy to reproduce enclosure. To solve these issues we created
a third prototype which we describe in the following.

4.3.4 Case Design III: 3D printing onto a Lego Plate

In order to optimize the enclosure for manufacturing with a 3D printer, we con-
ducted further experiments with 3D printed Lego studs in order to create a suitable
friction based connection between the extension modules, which are still encased
in a standard Lego brick and the base module. We found that given the precision
of the printer and the low mass of the extension modules, a connection between a
Lego part and printed Lego studs is robust enough when the printing parameters are
selected carefully, so we can 3D print the top plate instead of cutting it from a Lego
plate. That way the process is sped up and more importantly the CNC machine
is no longer required. As mentioned earlier, a drawback of the former case made
of a 3D printed part and a Lego part was the lack of a bottom Lego plate. If we
also printed this, the mechanical connection would not be stable enough to hold the
mass of the base module in scenarios where a BRIX2 module is for example attached
to a wearers wrist during a recording of body motions, see also Section 6.3.2. High
accelerations would simply tear the module off the fixture. This is why we decided
to again include an original Lego plate into the design, this time at the bottom. A

134

Figure 4.11: Case design III for the BRIX2 base module.

major improvement this time is that we only need remove the studs on top of the
plate, which can be done with several tools, for example a sharp knife, a file or, as
we did it using an end mill and a drill press. Instead of 3D printing parts of the
enclosure and glue it to the Lego part, we decided for a more elaborate strategy. We
printed the NinjaFlex material directly onto the Lego plate whose studs we removed
earlier. This way we can still have support structures for the electronics and the
bonding between both components is even stronger than in the glued versions.
A challenge in this process is that the position and rotation of the Lego plate needs
to be known before the printing process in order to place the part on the right spot in
the building volume. To solve this problem, we define the position of the Lego plate
by simply printing a plate with Lego studs inside the printer first. This structure
also has a big bonding structure, called “raft” that keeps it from separating from
the build platform of the printer. The printed plate structure remains inside the
machine and serves as a mounting point for the real Lego plate we intend to print
on, see Figure 4.12. With this method, we can on the one hand fix the Lego plate
on the build platform and on the other hand know its exact position. Now that the
Lego plate is mounted inside the printer, we can print the rest of the case on top
of it. Again we use NinjaFlex material and a similar geometric shape for the walls
as in the previous version. After the printing process, we can simply remove the
finished enclosure and put another clean Lego base plate onto our mounting plate

135

Figure 4.12: 3D printing raft with Lego studs next to a Lego base plate (before
removing the studs).

to print more enclosures. The top plate is printed with translucent ABS material
which allows the RGB LED to shine through the material, see Figure 4.11.

Conclusion of Case Design III

Since no CNC is needed, all processes are easy to handle with just basic tools and
a 3D printer. This way we drastically reduced the tool and experience requirements
for creating a BRIX2 enclosure. We have replaced the top Lego plate with a 3D
printed copy, which leads to a slightly less stable mechanical connection, however
regarding the low mass of the extension modules, they still connect tight enough.
Only in the long run, we will be able to find out if the 3D printed material will
wear out, decreasing the quality of the connection, but so far we did not encounter
any problems. What we noticed is that on some modules, the connection works
better than on others, which is explained by inaccuracies of the printing process.
If the parts are printed by a professional service on a more precise machine, the
results will probably be significantly better. By using the original Lego plate as a
base for 3D printing, we still maintain the excellent mounting options as well as the
metaphor that Lego bricks provide. Through translucent, flexible material for the
sides, the electronics are well protected from shocks and impacts and the LED can
shine through the enclosure. In addition to that, users can take a glimpse at the
electronics on the inside. This weakens the “black box” effect which causes users to
completely forget about the inner workings of a device and allows them to see the
actual components included in BRIX2.

136

4.3.5 Outlook on Future Case Designs

Although the current state of the enclosure works well and can be produced relatively
easy in smaller scales, we would not consider it to be the optimal solution. As a
first step towards a new iteration, we can further optimize the process for using
3D printers and other nowadays widely available tools like laser cutters to allow a
greater group of people to make their own BRIX2. Optimizations might also include
reducing the printing process to a single print. Once the Lego base plate is in place
and the sides of the enclosure are printed as in case design III, we could insert the
electronics while the print process is paused and then print the top plate including
the studs, all in one print. This would also eliminate the procedure of gluing all
parts together. A support structure on the inside to prevent the top plate from
sinking in during printing could be implemented by inserting a thin laser-cut film of
translucent plastic material before continuing the print process. In the long run, we
can expect 3D printers to become even cheaper and more available and at the same
time also faster and more precise. This offers great possibilities for decentralized
manufacturing.
Secondly, we can optimize the enclosure for mass production in large volumes. In
this case, one would typically use techniques like injection molding to fabricate the
whole workpiece in two parts. We would also get rid of the Lego plate on the bottom
because the precision of the injection molding process is sufficient for creating a well
working friction based connection. After all, Lego bricks are fabricated with the same
process. A disadvantage are the significant initial costs for injection molding, because
a mold has to be designed and built, which involves experience, skill and complex
machinery. This approach would be the opposite to the 3D printing approach because
it is centralized and can only be performed with very expensive tools and facilities.

137

4.4 Implementation of the Software Components

Similar to the Arduino, BRIX2 is not only a hardware but also a number of software
components, some developed and maintained by us, some already implemented for
other projects. In this section we present the LiBRIX2, a firmware library for BRIX2,
discuss how it helps users to get started with our platform and how it facilitates a
more efficient prototyping flow.

4.4.1 An Arduino Library for BRIX2

In the following, we briefly introduce the concept of Arduino libraries, point out
why they are important and explain how they are integrated into the Arduino IDE,
before we present details on the implementation of the different components of the
LiBRIX2.

Arduino Libraries

When users purchase an Arduino board, they are supposed to download and install
the Arduino IDE in order to write firmware for the device and upload it to the flash
memory of the controller. The IDE not only contains an editor for programming
and the necessary chain of tools to compile and upload firmware, it also comes with
a variety of libraries that are basically software wrappers for different functions of
the microcontroller and external components. These include libraries to handle the
controller’s SPI and I2C interfaces or to control components like servo- and stepper
motors, displays, WLAN and GSM shields.

Using Libraries By including the according libraries into their code and using
the functions they implement, users can add external hardware components to their
projects without much effort. The drawback of this is that the concept hides a lot of
the internal workings of the controller and external components. One might argue
that this abstraction can not lead to a deep understanding of the principles and
details of said components and functions. However, this is on the one hand not
important when getting started, in fact if it was required to deeply understand every
aspect of the system before successfully writing their first program, users would
be quickly demotivated and lose interest. On the other hand, intermediate and
advanced users can look at the documentation and source code of those libraries
and even modify them or write their own. All libraries for the Arduino are open
source and mostly written in C++. When users or companies create new products
for the Arduino like shields or breakout boards for sensors, they usually also supply
a library (see for example 7 or 8) that can be added to the Arduino IDE in order to

7https://github.com/sparkfun
8https://github.com/adafruit

138

immediately start using those products without previous knowledge.

Example Sketches An Arduino library does not only contain the implemen-
tation of functions and wrappers that can be used to interface a functionality or
external component, but also comes with example code. These sketches are accessi-
ble through the “Files > Examples” menu. Every standard library and most of the
external libraries offer at least one, usually multiple example sketches that demon-
strate different aspects of the library and the component it refers to. This way, users
never have to start from scratch and always have a reliable base to develop from.
Frequently, a project can be successfully implemented by combining the examples of
all components that are used and only writing a minimum of custom code. This way
of approaching a task is especially useful in prototyping scenarios with an iterative
design process where it enables quick results and thereby a high number of iterations
in a given time. But also in learning and teaching scenarios, examples are valuable,
because students can learn single-handedly from the example code by using and
modifying it. A sequence of exercises might start with simply combining different
examples into a single application and then moving the tasks further away from the
scope that the provided example code covers, thereby increasing the amount of code
that the students have to implement on their own. This is again rewarding in the
beginning and later on, students always have a functioning base of code that they
can fall back to in case they get stuck with their own application.

Making Arduino Libraries Arduino libraries are archive files (.zip) that con-
tain the implementation (.cpp, .h), an optional “keywords.txt” that defines keywords
of the implementation such as function names that are supposed to be highlighted
in the Arduino IDE and the “examples” folder, containing one or multiple example
sketches (.ino). The Arduino IDE offers a function that installs a library .zip file
by moving all files to the correct locations. After this process, the library can be
included into custom code and all of its examples are available in the IDE. The
implementation can contain multiple files which have to be written in C++. Usually
a library is just a class or object for the device, for example for a light sensor. The
class then implements functions for reading from the sensor, configuring it, etc. In
the user’s code, this the class is then instantiated, like for example:

#include <LightSensor.h>
LightSensor mySensor;
mySensor.initialize ();
int brightness = mySensor.getData ();

139

4.4.2 LiBRIX2

To provide beginners with a low threshold entry into the word of microcontrollers
and to offer developers a flawless prototyping tool, we implemented LiBRIX2, an Ar-
duino compatible library for all components of the BRIX2 system such as the wireless
interface, motion sensor, RGB LED and extension modules. When we implemented
LiBRIX2, we considered two key aspects:

Modular Code: There are many functions of BRIX2 that require wrappers, but
not all of them are necessarily used in a particular application. This applies espe-
cially to the extension modules. If we included all this into a single implementation
file, there would be a lot of overhead in the code and in the resulting binary. Since
space on the flash memory of our microcontroller is a sparse resource, this is not an
option. Instead we decided to split up the library into the single aspects and only
keep the core functions in a common file, so the structure of the library matches the
structure of the BRIX2 hardware. Installing the library is still simple, because ev-
erything is contained in a single .zip file. However, users have to include the correct
files for their application. For example if an application requires the motion sensor,
the RGB LED and a proximity sensor extension module, the sketch would include
the following:

#include <BRIX2.h>
#include <ProximityExtension.h>
#include <InertialSensor.h>
// Generate Sensor Objects and BRIX2 Object
ProximityExtension myProx;
InertialSensor myIMU;
BRIX2 myBrick;

Another advantage of multiple sub-libraries instead of a single, general library is that
by looking at the include files, it is directly obvious which hardware configuration of
extension modules is required for this sketch.

Existing Libraries: For some of these components, for example the motion sensor
and some sensors on extension modules, libraries were already implemented and
maintained by either the Arduino project or external developers under open source
licenses. There are two ways in which we can include those external libraries into
our project. On the one hand, users could download and install the external files
themselves. This will eventually lead to problems in case the libraries are updated
and therefore different from the configuration that we tested and verified. Second,
we download those libraries, test them with our own libraries, integrate them into

140

the LiBRIX2 and thereby redistribute the external libraries. Most licenses allow
redistribution of the software, which enables us to simply integrate them into our
own set of libraries instead of implementing our own. This reduces the maintenance
effort and we can rely on tested and user-proven code.

Organization

As we already mentioned, we have separated several functions from the main library
in order to save flash memory space when some features are not required in the
application. Obviously, all extension modules have their own library object because
they differ significantly in their scope of functions and are in general treated as
optional components. This leaves us with only the functions on the base module.
Here we separated the inertial sensor, because this part of the library is based on
the extensive and large I2Cdevlib. If the sensor is not required in an application,
this separation saves a significant amount of space.

BRIX2 Core Library

The core library offers functions that control the wireless interface, the LEDs and
various other components. Besides the two functions to set the color of the RGB
LED, which is directly connected to the user controller, all other functions are just
requests to the system controller which are sent via UART. The firmware on the
system controller then interprets these commands and reacts accordingly by either
adjusting the requested setting or providing the requested response. In the following,
we briefly list all functions of the BRIX2 core library.

• void Initialize() Is to be called in the setup of the sketch and configures the
output pins for the RGB LED.

• void setRGB(unsigned int R, unsigned int G, unsigned int B) Sets
the red, green and blue component of the RGB LED

• void setHSV(unsigned int hue, unsigned int sat, unsigned int val)
Sets the hue, saturation and value components of the RGB LED

• void statusLEDOn/Off() Two functions to request the system controller to
turn the status LED off.

• void wirelessOn/Off() Two functions to activate or deactivate the wireless
transceiver in order to save power.

• void RXTXOff() Disables the UART of the system controller in case it is
required for a different purpose.

141

• void resetSystemController() Is required to re-establish the communication
with the system controller in case the UART was disabled.

• float getVoltage() Returns the battery cell voltage in Volts.

• int getAddress() Returns the module’s individual wireless address

• int checkNode(byte address, int timeOut) Checks if a remote node is
available in the wireless network. If so, it returns the Received Signal Strength
Indicator (RSSI), else -1.

• void sendAscii(byte address, char* text, byte length) Sends arrays of
characters to a remote node via the wireless transmitter.

• void sendInt(byte address, int* numbers, byte length) Same as sendAscii
for integers.

• void sendFloat(byte address, float* numbers, byte length) Same as
sendAscii for floats.

Inertial Motion Sensor Library

The inertial sensor library implements functions to read sensor data from the device.
Functions that read raw data also offer a scaling option that maps the raw values to a
certain range. Configuration functions allow users to calibrate the sensor and select
measurement ranges. In order to read DMP data from the device, we recommend
the MPU6050 component of the I2Cdevlib 9 or the implementation by Kris Winer 10

which also incorporates the magnetometer.

Example Sketches

The example sketches for the base module are separated into four different subcate-
gories.

• Basics: These examples are meant to be the starting point for novel users.
They demonstrate how to control the RGB LED, how to communicate with
a host computer using the serial port and how the functions of the system
controller can be queried.

• HID: The HID examples demonstrate how to use BRIX2 directly as a USB
mouse or keyboard. This is especially interesting for applications in human/-
computer interfaces.

9https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050
10https://github.com/kriswiner/MPU-9150

142

• Sensor: Sensor examples show users how to read sensor data from the internal
motion sensor and how to stream that data to a host computer.

• Wireless: The wireless examples implement basic communication between
multiple nodes. Sending and receiving of text and numeric values are demon-
strated. Usually, these sketches require at least two BRIX2 base modules to
try them out. The wireless example sketches can be configured to compile for
either sender or receiver.

Automated Packaging and Testing of LiBRIX2

In order to ensure a stable and working LiBRIX2 at every release, we developed a
set of tools for packaging and testing the library. As we already mentioned, this
is especially relevant in order to verify that the external libraries work flawlessly
together with our own. In the following paragraph, we briefly describe the process
of compiling and releasing a new version of the LiBRIX2 in case some of the files are
updated.

Packaging: We use a shell script that downloads the latest stable versions of
LiBRIX2 and all external libraries we utilize from their repositories. The files are
then copied into a single folder and selected files are automatically patched in order
to avoid conflicts between certain libraries. The result is an archived file (.zip) that
is uploaded to our webserver after the testing procedure. Users then only need to
download and install a single, merged library to start working with BRIX2 and all
extension modules.

Testing: With a second shell script, we can verify that every example sketch we
provide with the LiBRIX2 actually compiles for our platform. As a prerequisite, the
LiBRIX2 that requires testing is installed inside a clean Arduino IDE setup. The
script then compiles every single example file of the library and reports back a logfile
with the compilation results. Only if all examples compile without problems, the
LiBRIX2 can be deployed on our website. We automated testing with continuous
integration in mind. By using a Continuous Integrated Testing (CIT) server such as
provided by Center of Excellence in Cognitive Interaction Technology (CITEC) 11,
we could constantly test our development code base and deploy working parts of it
to our website automatically.

11https://toolkit.cit-ec.uni-bielefeld.de/

143

4.5 Documentation

In this section, we explain how the informations and documentation on the BRIX2

system is structured and to which level of detail every source of information covers
our platform. The BRIX2 documentation is arranged hierarchically, see Figure 4.13.

Website

Example Sketches

Source
Code /

Schematics

Internet

Wiki

• Intro
• Getting Started

• Teasers
• FAQ

• Learn • Experiment

• Hardware Documentation
• API Documentation
• Background Information
• Developer Information

Arduino
related
Information

Figure 4.13: BRIX2 documentation hierarchy.

The first source of information is the website12. Here, users are presented basic
technical aspects but also the philosophy and motivation of the BRIX2 project.
After that, the website guides through the installation process of the IDE, LiBRIX2,
basic settings of the IDE and trying out the first example. Should users encounter
problems that are not already covered by the Frequently Asked Questions (FAQ) on
the website, they can find more detailed information in the BRIX2 wiki13. The wiki
can be regarded as a manual and a technical description for our platform in which we
try to cover every aspect of the system, including all extension modules. Since our

12http://tiny.cc/brix2
13https://opensource.cit-ec.de/projects/brix2/wiki

144

platform is based on the Arduino, a lot of questions regarding programming are not
BRIX2 specific, but also apply to other Arduino boards. In these cases, the official
Arduino programming reference, the user forum, numerous tutorials on the Internet
and several books also support our users. The lowest level of our documentation
structure is the source code of the LiBRIX2, the schematics and board layout of our
electronics as well as the technical drawings of our enclosures. Expert users and
developers can look into these files to solve problems and to gain further knowledge
about our system.

4.5.1 Website

As we already mentioned, the BRIX2 website is the first support level and made
to catch the attention of potential users. It contains basic informations about the
system and guides users up the point where they are able to upload an example
sketch to their base module.

Introduction and Features: In the introduction, we motivate why to use BRIX2

by stating that it helps understanding some of the technology that surrounds us and
that we use every day. The focus of the introduction on the website is the learn-
ing/teaching aspect of our system. Subsequently we summarize the key features of
BRIX2 in a list of photos with captions to provide a quick overview of the capabilities
of our platform.

Getting Started and FAQ: The user is guided through the first steps of getting
started with BRIX2, from the download of the Arduino IDE, installation of the
LiBRIX2, configuration to uploading sketches. After this short introduction, we
present some FAQ that are supposed to help users with the most common problems
they can encounter in the beginning while trying out the examples and implementing
their first applications.

145

4.5.2 Wiki and Repository

The BRIX2 wiki is part of the Redmine environment that also contains the repository
and issue tracking for our projects. The landing page leads to two main subcate-
gories: The BRIX2 user guide and the developers corner. Similar the website, the
wiki is constantly extended and updated by developers.

BRIX2 User Guide

The user guide contains in depth information about our platform and is roughly
separated into three categories:

BRIX2 Base Module: This page provides a technical overview about the base
module, followed by some remarks about handling. The list of electrical specifica-
tions and limitations of the system helps users to efficiently use the base module
during their experiments. The page also lists all signals of the extension port.

BRIX2 Extension Modules: On the landing page of this category, users find a
table that shows which extension modules use which pins on the extension port.
This information is crucial to discover possible interferences when combining certain
extension modules into a single application. Each extension module has its own wiki
page that is linked on the landing page. These pages contain technical details, exam-
ple codes and backgrounds on the working principles of the given extension module
such as for example what physical property a certain sensor measures.

LiBRIX2: This page provides an overview over the functions of the LiBRIX2,
including the libraries for the extension modules. Examples and usage tips for many
functions are given if applicable.

Developers Corner

This category contains several tutorials and in depth information for developers.
Here they learn for example how to set up a BRIX2 module that has just been
assembled, how to build enclosures or how to use the developer tools. The source
files of our project are also accessible from this site.

4.5.3 Arduino Community

In Section 2.1.7, we already briefly covered the Arduino Community. There are
several big user forums, FAQs and tutorials about virtually any topic that is related
to the Arduino platform. Should BRIX2 users come across a problem that is not
inherent of our system but also applies to Arduinos, they will most likely find several
sources of information through an online search engine. Especially forums usually

146

have extensive categories that are dedicated for problem solving and have short
reaction times due to the huge number of active participants.

4.5.4 Source Code

As an open source project, all parts of our design are public, including software,
firmware, schematics, layouts and CAD design files. These documents help devel-
opers and advanced users to fully understand BRIX2 and to actively take part in
a further development process, but also to use parts of our system as the base for
novel projects. Our sources are available in a git repository on the CTEC open
source server14.

14http://openresearch.cit-ec.de/git/brix2.git

147

4.6 Conclusion

In this chapter we have presented a final design concept for the BRIX2 system be-
fore we discussed the implementation of hardware, software and the documentation
in detail. We have successfully integrated all functionalities we identified as re-
quirements Section 3.1 into the BRIX2 base module. As a result we created a mobile
microcontroller platform that is powered by a rechargeable battery, reprogrammable,
extensible and equipped with an IMU as well as a wireless transceiver. Multiple it-
erations of different enclosure designs led to a robust enclosure for the base module
that is easy to produce. Since we designed our platform to be Arduino compatible,
our users only require the Arduino IDE, which is available for free and under an
open source license. To allow an easy handling of all the features BRIX2 offers,
we developed the LiBRIX2, a custom Arduino library for our platform. Not only
does LiBRIX2 implement software components for accessing different functionalities
of the base module and the extension modules, it also includes example sketches
that demonstrate how to use different aspects of our library. Our documentation is
hierarchically structured and a website as well as a wiki provide information on our
platform ranging from a brief overview to a detailed description of the inner workings
of BRIX2.
Regarding the hardware of our system, this chapter has only covered the base mod-
ule. We present the concept of extension modules as well as their implementation in
the next chapter.

148

5 BRIX2 Extension Modules:
Towards an Adaptable and
Open-Ended Platform.

As an addition to the BRIX2 base module and the corresponding software com-
ponents, extension modules are a key aspect of our platform. They allow to add
functionalities and features to a BRIX2 application rapidly and easily. This is es-
pecially valuable in prototyping scenarios where the hardware requirements are not
yet fixed and can change from iteration to iteration. Our modular approach allows
us to design compact and inexpensive individual components that can be assembled
to a complex, tailored application.
In this chapter, we first discuss which types of extension modules we considered to
develop in order to compile a total set of functionalities that prepare BRIX2 for as
many different applications and scenarios as possible. Our initial kit of extension
modules includes 12 different types, but we would like emphasize that we explicitly
encourage users and developers to add their own designs to our existing kit in order
to make BRIX2 even more versatile. Moving on to the implementation of our exten-
sion modules, we first describe how we build enclosures for the modules since this
process applies to all of them. After that we present each module we build in detail,
regarding electronics aspects as well as the corresponding software component in the
LiBRIX2.

5.1 Selecting Features for a Library of Physical
BRIX2 Extensions

In Chapter 3 we summarized all features that we found during our survey of over
30 different platforms and carefully selected the ones we later integrated into the
BRIX2 base module. All features we did not include were either to be implemented
as extension modules for the BRIX2 system or not relevant enough to include them
for now. If we follow the list of optional features, see Section 3.1.1, there are three
features to be implemented as extension modules: Bluetooth, temperature sensing
and a flash memory. In addition, we have selected further functions to be part of
the BRIX2 kit, which we structure and describe in the following paragraph. Again

149

please note that the library of extension modules we present in this chapter is only
a temporary snapshot and has most likely been extended at the time of publication,
see also Section 7.2 or the BRIX2 wiki [121].
In order to determine what features might be demanded by future applications, we
split them into two main categories: Input and output, with a particular respect to
ubiquitous computing and interactive scenarios. As a third category, we list features
that do not fall in the two main categories. In the following, we characterize the
categories with features. We derive the feature requirements from personal experi-
ence and observation of extension boards for existing products like littleBits, Grove
or Arduino. As a result, we extract a feature list for our initial selection of BRIX2

extension modules.

5.1.1 Input: Interfaces and Sensors

In a broad definition, every device that picks up and quantifies an external event or
state is a sensor. If we arrange electrical and electronic devices that fall into this cat-
egory from simple to complex, the list begins with the pushbutton, which is basically
a pressure sensor with a resolution of a single bit. Buttons allow to input a binary
state, however the time between two pushes can vary. Usually they are connected to
a GPIO which is configured as an input. Pushbuttons can be useful for example to
control the flow of an application or trigger certain events. More complex and flexi-
ble devices for that purpose are rotary dials and potentiometers, which can be used
to adjust certain features of an application. Especially in early development phases,
hardware and firmware are carefully adapted to the given application or scenario. A
prototype whose parameters can be altered at runtime saves time and effort.
Touch-free interaction with an application is possible through distance sensors. They
quantize the distance to an object in front of the sensor. Compact devices based on
triangulation or quantization of infrared light are integrated in almost any smart-
phone and are thereby affordable and widely available.
Applications that react to their surrounding require sensors that measure environ-
mental and ambient modalities like air temperature and humidity or light intensity.
There is a variety of compact, affordable devices for this purpose to choose from.
By offering users those sensors and input devices as extension modules, we cover a
major portion of the sensing capabilities of the devices we surveyed in Chapter 2.

5.1.2 Output: Actuators and Feedback

Besides sensors, an application might require actuators to close the interaction loop.
For this purpose we need to design modules that generate signals which can be
sensed by humans through different sensory modalities. The most basic ones are
visual, auditory and haptic perception. Simple visual feedback is already possible
using the RGB LED of the base module. To convey more information visually, a

150

small display or array of LEDs could be used.
Auditory feedback can range from simple beeps to complex sounds such as speech or
music. Fundamental sounds such as square wave signals can easily be generated on
a microcontroller and output by a small piezo speaker. For other waveforms, music
or speech samples, more complex and additional hardware might be required.
Haptic feedback is picked up by humans through their skin. It allows us to provide
a sensation which is locally defined in contrast to for example audio, but does not
require direct attention like for example visual feedback. This way we can directly
guide the user’s attention to a certain part of their body. Basic haptic feedback
can be generated by vibration motors, which represent an inexpensive and compact
alternative to dedicated, expensive haptic actuators.
A ubiquitous computing application such as a smart object or wearable device can
also provide information to users or attract their attention by physically moving or
changing shape. In order to move or actuate objects, electric motors can be used.
In model making, especially servo motors are popular. A servo motor includes a
geared motor and a position feedback. This way it can adjust itself to and maintain
a certain position that is defined by an input signal, which can easily be generated by
a microcontroller. To connect servos to the BRIX2 system, we only need an adapter
board that fits the electrical connectors that are common on almost any servo motor.

5.1.3 Wireless Communication, Storage and Interfaces

Although the BRIX2 base module provides means for wireless communication, the
RF standard we chose is not directly compatible with laptops or smartphones. Al-
though the former can interface the 868MHz RF network through USB and a BRIX2

base module that acts as a bridge, the latter are not always capable to act as a USB
host. A common standard for short-range wireless communication among mobile
devices is BTLE. An extension module that makes BRIX2 compatible to BTLE
allows users to build prototypes that can be connected to smart phones and interact
with existing and custom mobile apps. Another wireless standard, common in enter-
tainment electronics for decades is infrared communication. An infrared transmitter
extension can enable BRIX2 users to easily interface TVs, radios or ACs for example
in home automation scenarios. By also integrating an infrared receiver, we also allow
to control a BRIX2 application using any infrared remote control.
Data storage resources on the BRIX2 base module are sparse. Both controllers only
have several kilobytes of memory, which is not sufficient in scenarios where for ex-
ample motion data is recorded with a high data rate. Some platforms we surveyed in
Chapter 2, especially in the fields of wireless sensor nodes and IMUs feature a flash
mass storage for such purposes. Micro SD cards are a prominent storage solution
that provides gigabytes of memory in a compact device that is compatible to modern
smartphones and laptops. Equipped with an extension that can hold an SD card,
BRIX2 is capable to store large amounts of data which can later be processed on a

151

different device.
Advanced developers will most likely reach the limits of functionality that the BRIX2

base module and provided extension modules offer. Since we use fine pitch headers
as connectors for our extension modules, they are not as accessible as for example
standard pin headers. A small adapter board with accessible solder pads and op-
tional pin headers makes it possible to connect custom electronics to a BRIX2 base
module.

5.2 Extension Module Concept

In the former BRIX system, see Section 2.6, we encased the extension modules in
a single 2 x 4 stud Lego brick that we hollowed out. We closed the bottom with a
matching Lego plate that had a cutout for the connector. We are going to keep
concept for now, because it is easy to implement and has different advantages which
we present in the following.

5.2.1 Mechanical Properties and Handling

We found that Lego based enclosures were robust, inexpensive and easy to produce.
The mechanical connection is reliable, especially in combination with the electric
connector. The Lego grid can also be used as a way to provide reverse polarity
protection for the connector by putting it in a slightly asymmetric location. This
way the electrical connection and the mechanical connection can only line up in
the correct way. Using a single Lego brick as enclosure for an extension module
restricts the size of the PCB and the components to roughly 13 x 28 x 8mm. Should
the implementation of an extension module require more PCB space, designers could
build an oversize extension module that is twice or thrice the size, encased in two or
three combined Lego bricks and more than one extension slot of the base module.

5.2.2 Appearance and Metaphor

Apart from the purely mechanical aspects, the enclosure made from Lego bricks
carries the Lego metaphor perfectly. Extending the hardware capabilities of the
BRIX2 base module is as simple as adding another brick. The integration of the
electrical connection into the mechanical connection supports this, because there are
no additional actions required such as plugging in cables and the system appears to
be less technical. Lego bricks are available in a wide variety of colors 1, including
also translucent materials, which allows us to color code our extension modules,
sometimes even matching to their function, for example to chose blue bricks to
encase a Bluetooth extension module.

1http://Lego.wikia.com/wiki/Colour_Palette

152

5.2.3 Constrains and Limitations

As a consequence of the compact design of the BRIX2 platform, the size of extension
modules is restricted. Although we chose a compact and fine pitch electrical connec-
tor, it takes up almost 25% of the PCB, which is half of the space on the bottom
layer, see Figure 5.1. Developers can work around this by designing extension mod-
ules that occupy two or even three of the extension slots of the BRIX2 base module.
This of course blocks those slots and thereby restricts the use of additional extension
modules in that particular application. The extension modules of the former BRIX

Figure 5.1: Basic extension module PCB layout: The extension connector takes up
almost half of the bottom layer space.

platform provided a header on top, which allows to stack multiple extensions onto
each other. This was possible because the extension headers had a much smaller
footprints than the ones we used for the BRIX2, see also Figure 4.2. This time, we
decided against this concept for two reasons. First, the headers would cover almost
50% of the total PCB area, which leaves only around 180mm2 of double layer PCB
space for the actual electronics. Secondly the resulting stack would just be to bulky
for most wearable applications.

5.2.4 Pin Collisions

Another restriction for the extension module electronics is the number of available
pins on the extension connector. Although many of the components on our extension
modules are connected to the I2C bus and can share this resource, some extension
modules connect to multiple GPIOs or special purpose I/Os. When two different

153

extension modules are used in a single application and try to use the same pin for
different purposes, we call this a pin collision, which leads to corrupted signals or
in the worst case to short circuits. Since three extensions can be attached to a
BRIX2 base module at a time, the chance of pin collisions between different exten-
sion modules grows with the number of extension module variants we develop. Pin
collisions can hardly be avoided in designs with a full breakout extension connector,
see Section 3.2.4 and also appear for example for Arduino shields [122]. In order to
approach this problem, we considered two design guidelines:

Thoughtful Distribution of Pins: Some collisions can be avoided by thinking
ahead and trying to imagine which types of extension modules might frequently be
combined into a single application. If no pattern of combination is obvious, pins are
to be distributed evenly so that no GPIO is used much more frequently than others
throughout all extension modules. We composed a list of the pins used by all our
extension modules in the documentation wiki [121].
Flexible Pinouts: If possible, extensions should be configurable to alternative
pinouts. This is especially feasible if no special purpose I/Os such as PWM outputs
are required. Reconfiguration can take place at the time of population, for example
by placing a 0Ω resistor to a different location. In some cases, this also allows to
manufacture two versions of an extension module that can be used simultaneously
on a single BRIX2 base module using the same PCB layout.

5.2.5 A Template for Extension Module PCBs

BRIX2 is extensible, so it can adapt to new requirements even after design time.
The scope of functions can be expanded by simply implementing additional exten-
sion modules. As a starting point for developers who aim to create a new extension
module, we provide a template file. We used CadSoft Eagle as a design tool through-
out the whole project, so we only provide the template for this particular software.
However, it can be imported in other design tools like Altium Designer as well. The
template predefines the shape and size of the PCB, which fits into a Lego brick as
well as the position of the extension connector on the bottom layer. We provide the
template along with some design guidelines in the documentation wiki to encourage
developers to create new BRIX2 extension modules.

154

5.3 Extension Modules Implementation

After we have defined the scope of extension modules we were to design as well as
the concept for enclosures in the previous sections, this section is dedicated to the
implementation of the BRIX2 extension modules. In the following we first describe
the implementation of the extension module enclosures. Subsequently we present
details on all extension modules we implemented from three different categories, see
Section 5.1. Finally we briefly touch on some conceptual aspects of the LiBRIX2

extension module support.

5.3.1 Implementation of the BRIX2 Extension Module
Enclosures

To protect the extension module electronics from mechanical stress and in order
to mount features like rotary knobs, we enclosed the extension modules in custom
cases made from Lego bricks. In the conceptual part of this chapter, we already de-
scribed implementation and manufacturing process for the BRIX2 extension module
enclosures.

Two-Piece Lego Cases

In general, our extension module enclosures consist of two parts. The bottom plate,
a standard 2 x 4 stud Lego plate provides a secure mechanical connection of the
extension module to the BRIX2 base module. It is identical for any type of extension
module, see Figure 5.2. A cutout for the extension header and slightly trimmed studs
allow a perfect fit of the PCB. The PCB is then glued to the bottom plate. The top
part is individually designed for each type of extension module to fit its particular
requirements. In the most simple case, it consists of a standard 2 x 4 stud Lego brick
which is hollowed out and trimmed to fit the height of the components on the PCB.
Should the PCB contain components that stick out of the case like buttons or rotary
knobs or require an opening in the case like infrared sensors, further cutouts in the
Lego brick are required. The finished top part is then glued to the bottom plate,
which closes the extension module and protects the inside.

Making Extension Module Enclosures

We utilize a 3-axis CNC machine to process the Lego bricks and turn them into
an enclosure in a process identical to the one described in Section 4.3.2. In theory
one could also accomplish this with more simple tools like a drillpress, however that
would mean much more effort in time and labor. In the following, we describe our
process of manufacturing BRIX2 extension module enclosures.

155

Figure 5.2: Various BRIX2 extension module enclosures.

Bottom Plates Since all bottom plates are identical, they all share a common
manufacturing process. We divided it into two stages. In the first stage, the CNC
mill trims the studs of the bottom plate in order to match the heights of the electrical
connectors. If the studs are not trimmed, both connectors do not match completely,
resulting in an unreliable electrical connection. For this step we use an 8mm end
mill. In the second stage, we cut out a hole for the extension connector using a 1mm
end mill in order to achieve corners with a small radius. To save time, the first stage
should be performed on all bottom plates before changing the tool and proceeding to
the second stage. This way an average of around five bottom plates can be processed
in a minute by a skilled CNC operator.

Top Parts These parts are individual for each type of extension module, so we only
describe the general process first and cover some details. The manufacturing process
depends on the complexity of the part. In general the stability of the workpiece
should be maintained as long as possible throughout the process. This means the
operations that weaken the structure of the brick the least are to be performed first.
Smaller cutouts on the top side for example tend to have only little effect on the
stability of the workpiece. The hollowing operation, performed with a 8mm end
mill should be the last operation, because it drastically reduces the stability of the
brick and leads to problems with clamping the workpiece for following operations.
Cutouts with square shapes should be performed with a 1 mm end mill, again in
order to achieve corners with a small radius. If the components on the top side of

156

the extension module are low profile, the bottom side of the brick can be trimmed in
order to reduce the overall height of the module. However, we recommend to trim
it only in increments of 3mm, which is the thickness of a Lego base plate. This way
the resulting extension module remain compatible to the Lego system.

Suggestions for a Future Manufacturing Process

We envision two different approaches to manufacture extension module enclosures in
the future, similar to the ideas stated earlier in Section 4.3.5. Here we presented on
the one hand a mass-manufacturing approach based on injection molding for high-
volume production. On the other hand, a modified 3D printing approach allows
decentralized manufacturing and does not require expensive machinery and tools.
In the following, we focus on the latter, because it is more feasible for the near
future of the BRIX2 system.

3D Printing and Lego For the base module, we already presented an approach
that combines existing Lego parts and 3D printing. Since all extension module bot-
tom plates are identical, printing the top parts on the bottom plates while inserting
the electronics during the process is promising. Some of the top parts require much
more tooling than the simple bottom plates, which means that there is a significant
potential for optimization. For this reason we are going to experiment with process
of combining Lego and 3D printing in the near future.

3D Printing Only As the capabilities of 3D printing grow, we will no longer rely
on injection molding in order to produce highly precise plastic parts. Within a few
years we will be able to print a reliable friction based connection like Lego parts
provide today. Using off-the-shelf 3D printers, people will be able to print their own
enclosures for BRIX2 base modules as well as extension modules.

157

5.3.2 Input and Sensor Extension Modules

In order to sense the physical world or react to the actions of a user, any computing
system requires inputs or sensors. To add to the sensors that are already integrated
into the BRIX2 base module, we designed five different extension modules for input
and sensing that we present in the following.

Button Extension Module

(a)

S1

1 3
42

S2

1 3
42

S3

13
4 2

S4

13
4 2A1

A0

D9

D8

(b)

Figure 5.3: Opened BRIX2 button extension module (a) and schematic (b).

To generate a basic, binary input for a BRIX2 application, we built the button
extension module, see Figure 5.3 (a). It features four pushbuttons that are con-
nected to GPIOs on the user controller. This way they can easily be accessed in the
firmware by just reading the state of the corresponding pin. We use APEM MJTP
SERIES [123] pushbuttons which have a short actuation travel and a distinct tactile
feedback. The buttons are rated for a minimum of 100000 cycles and have a contact
bounce time of less than 10 milliseconds.

Direct Connection vs. Multiplexing Our current implementation of the button
extension module requires 4 GPIO pins of the user controller, each connected to one
of the buttons. If a button is not pressed, a resistor pulls the signal to V CC. As
soon as the button is pressed, the pin is connected to GND, see Figure 5.3 (b). To
reduce the number of pins required, several ways of multiplexing are possible. Using

158

a resistor network, time-multiplexing or a dedicated multiplexer IC connected for
example via I2C, we could reduce the required number of pins to a single input. All
these solutions would require a special firmware that reads the buttons. Of course
this could be wrapped in a library, but this abstraction layer would remove certain
aspects such as contact bouncing, which are interesting in teaching scenarios. Also
reading a signal from an input pin is one of the most basic programming exercises
on a microcontroller. By not using a hardware and software abstraction layer, we
allow users a direct access to the button and stay compatible to many tutorials on
that topic which mostly address beginners.

Enclosure Features When designing the module we placed each button exactly
in the center between two studs of the Lego enclosure. The knobs of the buttons
stick out slightly more then the studs. A 2 x 1 stud Lego plate can be placed right
above a button to keep it pressed. This way a BRIX2 application can be held in a
certain configuration, which can also be changed at any given time. The knobs are
guarded by the studs protecting them from accidental actuations, for example when
the application is carried in a pocket.

Examples in LiBRIX2 At the time of writing, we supply a single example for
the button module that demonstrates how to read all four buttons and map them
to LEDs. The code does not support debouncing at the moment because it was
intentionally kept simple. For more details on reading buttons, we refer to the
already existing Arduino examples and tutorials 2.

Potentiometer Extension Module

The potentiometer extension module, see Figure 5.4 (a), offers users two rotary con-
trols that can for example adjust parameters of the application while it is running.
There is also an almost linear mapping between the rotation angle of the knob and
the output data of the module, so angles can be measured directly. On this extension
module, two ACP CA6 series potentiometers [124] with a linear taper and 100 kΩ
resistance form two voltage dividers. The center taps can each be connected to three
different analog inputs of the user controller. The configuration is done with 0Ω
resistors during population of the board, see Figure 5.4 (b). This way, we can build
three completely independent potentiometer modules with the same PCB. They can
be used together on a single BRIX2 base module, giving users a total of six controls.

2https://www.arduino.cc/en/Tutorial/Debounce

159

(a)

VC
C

GND

0R

0R

0R

A5

A4

A3

(b)

Figure 5.4: BRIX2 potentiometer extension module (a) and schematic (b).

Enclosure Features In order to operate the potentiometers, they need to be
equipped with a shaft and a knob. We decided to utilize round, 2 x 2 stud Lego
bricks for that purpose. They are located on top of the potentiometer extension
module. The potentiometers can only rotate around 230 ° mechanical and the shaft
is sensitive to sheer stress due to its small diameter. For this reason we have to
protect the devices from wrong handling, which can easily occur. We do this by
using one of the studs on top of the extension module as an end stop for the knob.
This requires only a small modification on both Lego parts which can easily be done
with a file, drill press or even a sharp knife. This modification makes the extension
module mechanically robust and safer for use.

Examples in LiBRIX2 Since the potentiometer is simple and straightforward to
use, we only provide a single example for it. In the example sketch, we map the
rotation angle of both knobs to the hue and brightness of the RGB LED. This
demonstrates how the output data range of the potentiometers can be applied to
different data ranges that are to be controlled.

AmbiSense Extension Module

In applications related to smart environments and wireless sensor networks it is
frequently required to measure ambient properties like temperature or light inten-
sity. We designed the AmbiSense extension module to integrate sensors for ambient
modalities such as temperature, brightness and humidity into a single module, see
Figure 5.5. This has been done for multiple reasons. First, we found out that the
actual sensors are highly integrated and do not require a lot of external components
to run. This allowed us to fit multiple sensors onto a single extension board PCB.

160

Figure 5.5: Opened BRIX2 AmbiSense extension module.

Second, the power consumption of both sensors is so low that even if one of them is
not used, the total consumption is still negligible. Third, in applications that mea-
sure ambient properties, often more than one of these properties will be relevant.
Splitting all sensors to separate extension modules would increase the costs (PCB,
board-to-board connector, case) and reduce the amount of available extension ports
on the BRIX2 base module. The AmbiSense extension module is equipped with two
different sensors. The Taos TSL2561 ambient light sensor [125] and the Honeywell
HIH6130 combined temperature and humidity sensor [126]. Both sensors can be
accessed via the I2C bus.

Light Sensor The TSL2561 is a digital light sensor that incorporates two indepen-
dent photodiodes, one for broadband and one for infrared light. An integrated ADC
samples the outputs of the photodiodes with a resolution of 16 bits. The internal
microcontroller implements an I2C interface so the sensor values can be read over
a bus. Additionally it features different, user-programmable interrupts that trigger
for example as a reaction to certain light changes. In the board design we connected
the address select pin for the I2C bus to a solder jumper, which allows us to con-
figure one of three different addresses during population of the board. We selected
this particular sensor because of its capabilities to sense light in everyday scenarios,
including infrared light. Also, the device is commonly used in physical computing
projects and breakout boards for that sensor are available for different platforms.
This also means that documentation on this sensor and how to use it is also widely
available. [127], [128], [129]

Temperature and Humidity Sensor For measuring ambient temperature and rel-
ative humidity, we use the HIH6130 digital humidity/temperature sensor. The device
is inexpensive, has a measurement range of 5°C to 50°C (temperature) and 0% - 100%

161

(relative humidity) and a convenient I2C interface. The internal MEMS sensors are
sampled with a resolution of 14 bits, which leads to resolution of 0.025°C respectively
0.04%. The device also features two alarm outputs which are controlled by config-
urable temperature and humidity thresholds. They can be optionally connected to
the pins D9 and D10 of the user controller during board population. The reason
why we selected the device for our extension module is on the one hand because it
integrates two sensors into a single chip. On the other hand, the device is, similar
to the light sensor we utilize, used in multiple existing projects. Different libraries
for the sensor were readily available, for example [130].

Integration into LiBRIX2 In order to use the AmbiSense extension, users can in-
clude the ambisense class of the LiBRIX2 into their sketch. This component offers
functions to read out different light spectra, the temperature and the relative humid-
ity. We provide four different example sketches that demonstrate different aspects
of the extension module.

Proximity Extension Module

Figure 5.6: Opened BRIX2 proximity extension module.

The proximity extension module, see Figure 5.6, uses an infrared distance sensor to
detect the proximity of objects. Use cases are for example non-touch interfaces or
proximity detection. Our extension module provides the proximity value, which gives
an indication of how close an object is to the sensor, via the I2C bus. The range of
the sensor is 0 to 200mm, however the mapping between output value and distance
to an object is highly non-linear and also depends on ambient light conditions. For
this reason we do not call the device a distance sensor.

Proximity Sensor In our extension module we use the Vishay VCNL4010 fully
integrated proximity sensor [131], which uses infrared light to measure the proximity

162

of objects. Its typical applications are for example smartphones, where the sensor
is used to detect when users hold the phone to their heads and also to measure
the ambient light level. The infrared LED current of the VCNL4010 is configurable
between 10 and 200mA. The LED is only active for a short period of time when a
measurement is performed. An internal processor supplies proximity and ambient
light measurements via the I2C bus. Several interrupts can be configured by the user,
such as thresholds or a certain value measured for a configurable period of time. We
designed the PCB in a way that the interrupt pin can be optionally connected to
one of six different pins of the user controller. The internal pull-up resistors of the
user controller have to be activated in that case, because the interrupt line of the
sensor is an open drain output.

Integration into LiBRIX2 The LiBRIX2 includes a class for the proximity exten-
sion, which users can integrate into their code. It offers two functions to obtain the
raw proximity reading from the device or a reading scaled to a certain range. Two
example sketches demonstrate how to use the extension module.

MakeyMakey Extension Module

Figure 5.7: BRIX2 equipped with a MaKey MaKey extension module.

In 2012, Jay Silver and Eric Rosenbaum of MIT developed a device that could turn
any conductive object into a switch. Their platform called “MaKey MaKey” [132]
uses high resistance switching and signal filtering on a microcontroller to detect if

163

a circuit is closed, even if its resistance is in the range of MΩ. The microcontroller
then sends keypress events to a computer via USB and basically acts as a keyboard.
In an application, users would connect the object that is supposed to be a switch,
for example an apple to the board using alligator clips. The ground connection of
the board is connected to the user. If the apple is now touched by the user, the cir-
cuit closes and is detected by the MaKey MaKey, which then triggers a predefined
key, for example the left arrow. Thus the MaKey MaKey makes it possible to turn
basically every surface into a switch, which offers great prototyping possibilities for
interactive applications such as human computer interfaces. Since MaKey MaKey
is open source, it is possible for us to utilize many parts of the project for our own
implementation and turn it into a BRIX2 extension module.
The MaKey MaKey is based on the Arduino platform and the only additional com-
ponents are pull-up resistors for each sensing channel. By integrating those resistors
into an extension module, we can turn BRIX2 into a compact MaKey MaKey. We
decided to connect all 16 GPIOs of the user controller (13 dedicated GPIOs plus
three ISP GPIOs)to alligator clips on the MaKey MaKey extension module, see
Figure 5.7, skipping only the I2C and UART lines. Due to the high resistance pull-
ups, pins not used as a switch can still be used as an GPIO, for example to read
a button extension or control motors via the servo extension. Given some changes
in the sketch used for the MaKey MaKey, the touch events might not only trigger
keypresses via USB, but also other functions within a standalone BRIX2 application.
This allows for example to build interactive textiles with touch-sensitive surfaces.
Our extension is compatible to the MaKey MaKey product3, so our users can get
inspired by projects based on the original product or use the official documentation
to find support, for example to determine which materials work with the system.

3http://www.makeymakey.com/

164

5.3.3 Feedback and Actuator Extension Modules

Interactive applications require inputs and outputs. We already covered the possible
inputs the BRIX2 extension module kit provides in the previous section. In the
following, we present the output and feedback extensions we developed to allow
BRIX2 to affect the physical world.

Servo Extension Module

Figure 5.8: Opened BRIX2 servo extension module with connected servo motor.

When attempting to make small and light things move in a prototyping situation,
servo motors are the actuator of choice for many projects. They are commonly used
in model making and physical computing because they are inexpensive, powerful
and easy to control. With the servo extension module, we enable users to directly
connect servo motors to a BRIX2 module and use it to reach into and manipulate
the physical world, see Figure 5.8.

On Servo Motors Servo motors consist of a geared DC motor and a position
feedback sensor, usually a potentiometer. The setup allows the servo to approach
and maintain a certain angle of rotation, defined by the input signal. The total range
of rotation is usually around 200 degrees. Servos are available for a wide variety of
applications from highly integrated to big powerful devices with significant torque.
They are usually supplied with a 5.0V input voltage and a pulse width modulated
control signal. The advantage of servos in contrast to regular DC motors are the
integrated controls and driver electronics as well as a standardized 3-way connector.

165

The BRIX2 Servo Extension Module The servo extension module features three
independent servo connectors. Each signal line can be connected to two different
GPIOs of the user controller each during populating using 0Ω resistors. The pin
layout matches most common servo models. Power for the servos can not be sup-
plied by the battery but only from USB. This means that the extension module
can only be used if a USB power source is available. For mobile applications, we
recommend using a USB power bank.

Servo Arduino Library To control servos with the servo extension module, we
refer to the standard Arduino servo library 4, which we also include in our own servo
extension module example. It demonstrates how to map acceleration data to the
movement of the servo motor and provides a starting point for many similar servo
control applications. Since servo motors are widely used in physical computing, there
are already many tutorials, examples and project logs that BRIX2 users can turn to
in order to obtain more informations on the topic.

VibroSound Extension Module

Figure 5.9: Opened BRIX2 VibroSound extension.

Auditory and haptic sensations and stimuli have proven useful as an alert and notifi-
cation signal in products of our everyday lives, from cellphones to microwave ovens.
However, vibration has gained increasing popularity with the rise of mobile devices,
because it is unobtrusive and spatially confined. The vibrating device has to be close
to the body in order to be perceived. Sound on the contrary addresses all listeners
in close range and can be regarded as a “broadcast” signal.
The VibroSound extension module, see Figure 5.9, covers both modalities in a sin-
gle device and is capable to provide haptic and auditory feedback. The former is

4https://www.arduino.cc/en/Reference/Servo

166

generated by a small vibration motor similar to those used in cellphones and other
mobile devices. The latter is generated by a piezo speaker and can generate simple
sounds with controllable pitch.

Vibration Feedback To generate haptic feedback, the VibroSound extension mod-
ule contains a Parallax C1026B series coin vibrating motor [133]. The device is
designed for mobile applications and operates on a voltage of 3.3V. It is rated for
vibration frequencies of 10 to 55Hz an can achieve an acceleration of 22m/s2. The
starting current of the vibration motor can be as high as 120mA, which can not
be handled by the GPIOs of the user controller. This is why we integrated an ON
Semiconductor LV8413gp dual channel motor driver [134], which can handle peak
currents of up to 600mA. Using two GPIOs, users are able to control the direction
of rotation. The rotation speed can be set using PWM and directly relates to the
intensity of the vibration.

Auditory Feedback To generate sound with our extension module, we integrated
an EKULIT PA12A03 piezo buzzer [135]. The pitch of the output sound can be con-
trolled by different frequencies of the input square wave signal, ranging from around
1 to 10 kHz. However, the resonant frequency is only rated from 3.5 to 4.5 kHz.
Due to the nature of such devices, the frequency response is highly non-linear and
has no plateau, which means the amplitude of the output sound strongly depends
on the pitch. This is why piezo speakers are not suitable for sounds that are more
complex than just a beep or a simple melody. Nevertheless they are sufficient for
many applications that just need to inform the user about a certain event or convey
a one-dimensional parameter using the pitch of the sound.

VibroSound Component in LiBRIX2 For sound as well as vibration, we each offer
functions that a generate a continuous or single event signal. The intensity of the
vibration can be defined by an 8 bit value. If it is set to zero, the vibration stops.
Another function called "Shake" allows to also set a duration, so the vibration stops
after a defined period of time. Similar to the vibration signal generation, for the
sound component the library offers to set the pitch of the tone permanently or to
beep at a certain pitch for a defined period of time. Using the beep function, users
can for example generate short alert sounds or even play melodies, as we show in the
"Tetris" example for the VibroSound module.

167

AudioAmp Extension Module

As we already pointed out, the VibroSound extension is only capable of generating
basic sounds. Some applications however require more complex and richer sounds,
for example when multidimensional data has to be sonified. Usually, such tasks
are performed on a host PC or other external device with sophisticated computing
power. The AudioAmp extension module allows to synthesize complex sounds or
even play back audio samples on a microcontroller, see Figure 5.10. It also includes
an amplifier circuit so speakers can be directly connected. This allows users to create
portable, interactive sound applications using only the BRIX2 system.

Figure 5.10: Opened BRIX2 AudioAmp Extension Module connected to earphones.

System Overview Compared to other extension modules, the AudioAmp module
is the most complex one we developed. It features an Atmega328P microcontroller to
which the sound synthesis can be outsourced, a Texas Instruments TPA2005D1DGN
class-D audio amplifier [136], a headphone jack and several configurable modes of
operation.
The microcontroller is equipped with an Arduino compatible bootloader and can
be accessed the same way as the system controller on the base module, see Sec-
tion 4.2.2. This way users can upload dedicated sound synthesis sketches to the
AudioAmp controller and offload that task from the user controller. The sketch on
the user controller then controls the synthesis via UART. This requires the system
controller to deactivate its UART.
The audio amplifier is supplied by VUSB, which means that it can only be used
when connected to a USB power source. This is done for similar reasons as for the
servo extension module, see Section 5.3.3: the amplifier is designed to work with a

168

5V power source at an output power of typically 1.2W. Using the power from the
USB connection, our integrated power supply electronics do not risk damages due
to wrong handling. The amplifier is capable of driving speakers with 8Ω and 4Ω
internal resistance with an efficiency of up to 84%. A trimmer allows to adjust the
output volume of the amplifier.
The headphone jack is used for two purposes. First, users can connect headphones
or an external amplifier to make the output of the module audible. Alternatively,
speakers can be connected to the audio jack using a custom cable.

Modes of Operation The AudioAmp extension supports a number of different
modes of operation which allows it to adapt to a high number of different applica-
tions. All configurations can be selected via solder jumper. The sound synthesis can
either be performed on the AudioAmp microcontroller or on the user controller of
the BRIX2 base module, which is the default. It is more accessible for beginners
and sufficient for many basic applications. Only as a step towards application op-
timization should users consider to swap the synthesis to the AudioAmp controller.
The amplifier is optional and as a default, the module is configured for headphones
without amplification. If the amplifier is switched on, the headphone jack will output
the amplified signal. Combinations of all modes are possible.

Sound File Playback Despite of their limited computing power and memory, 8 bit
microcontrollers are able to play back sounds and music from an external memory,
for example an SD card. When combined with the SD card extension module, see
Section 5.3.4, the AudioAmp module can be used for that purpose. Although we do
not include these functionality into the LiBRIX2, there are several external libraries
that can be used, for example [137] or [138]. If the sounds that are played back are
supposed to be influenced by for example sensor data, they need to be parameteriz-
able. Usually the only thing that can be adjusted during playback are volume and
playback speed. For more flexibility, sounds need to be generated at runtime in a
process called sound synthesis.

Mozzi Synthesis Framework The Mozzi sound synthesis library 5 for Arduino
is an extensive collection of different software synthesizer components that run on
almost any Arduino compatible microcontroller. A large number of examples demon-
strates how to generate, filter and parameterize even complex sounds. The library is
explicitly designed to work with different sources of data that influence the sounds
such as light sensors or motion sensors. For synthesis, common techniques such as
oscillators, filters, delays and envelopes can be used. The library is open source and

5https://sensorium.github.io/Mozzi/

169

widely used. We redistribute it as a part of LiBRIX2. By including libraries like
the Mozzi framework, BRIX2 becomes a compact platform for embedded sound and
music generation as well as sonification, in other words: a musical instrument whose
function and shape is totally controllable by the user.

170

5.3.4 Communication and Interface Extension Modules

After we have presented our input and output extension modules, we take a closer
look on extensions that fall in neither category. Their purpose is communication with
external devices, increasing accessibility to the base module or providing a mass data
storage.

Breakout Extension Module

Figure 5.11: Opened BRIX2 Breakout extension module

In the previous chapters we already discussed the accessibility of the BRIX2 exten-
sion headers. Especially in prototyping scenarios, it is frequently required to attach
custom hardware to a given system. For this purpose, we developed the breakout
extension module, see Figure 5.11, which connects all signals from the fine pitch
header of the BRIX2 base module to solder pads with a standard pitch of 2.54mm
(0.1 in). A two-row pin header can be soldered to the edge of the board and con-
nect for example to an Insulation-Displacement Connector (IDC). The breakout
extension significantly increases the flexibility and adaptability of the BRIX2 system
because users are no longer limited to the existing scope of extension modules and
system features. Now they are able to combine custom hardware with the existing
capabilities of the base module and other extension modules.

171

Infrared Extension Module

In some smart environments applications, it is required to communicate with en-
tertainment electronics like TVs or radios, for example to turn off the radio when
sensors distributed in a room detect that nobody is present. The other way around,
TV remotes are omnipresent and can be used to control other devices, given they are
able to receive infrared signals and interpret the protocol. For purposes like these,
we developed the infrared extension module, see Figure 5.12. Working with infrared

Figure 5.12: Opened BRIX2 infrared extension module.

signals is common in physical computing. Numerous tutorials, libraries and exam-
ples online explain how to receive and send infrared commands. In order to send
infrared signals, an LED with a wavelength between 800 and 1000 nm wavelength
is used. On the infrared extension, we use two VISHAY VSMS3700-GS08 [139] in-
frared emitters that operate at a peak forward current of 120mA. Both are driven
by transistors and controlled by one of two selectable GPIOs of the user controller.
Infrared control signals are pulses of infrared light that encode a series of bits. The
signal is modulated with a carrier frequency, mostly to reduce the effects of ambient
lighting [140]. Using an infrared decoder, a component that filters the signal and
provides the raw bitstream, it is possible to read the infrared transmission with a
microcontroller. We use a VISHAY TSOP6438TR [141] infrared receiver which is
optimized for a carrier frequency of 38 kHz. The PCB layout of the infrared exten-
sion allows to populate the receiver facing to four different orthogonal directions.
The output of the receiver can be connected to one of three optional GPIOs of the
user controller via 0Ω resistors.
The LiBRIX2 offers examples and wrappers for sending and receiving infrared signals.
It is possible to interact with devices of several different brands. Signals received
from an infrared remote control can be read as raw bytes for example trigger events
in a custom BRIX2 application.

172

SD Card Extension Module

Applications like sensor data logging or playback of audio samples require much more
memory space than available on the microcontrollers of the BRIX2 base module. To
provide mass storage capabilities for our system, we designed the SD card extension
module, see Figure 5.13. It serves as an adapter between the user controller and
a micro SD card. For example after data recording, the card can be removed and
accessed in a different device such as a smartphone or laptop.
SD cards are accessed via SPI. Since the user controller supports SPI in hardware,

Figure 5.13: Opened BRIX2 SD card extension module.

no additional components are required to interface the SD card. While the SD card
is connected, other SPI devices on the bus can operate at the same time, but each of
them is selected using an individual chip select pin. To allow maximum flexibility,
the chip select pin on the SD card extension can be selected from six different options
using 0Ω resistors. The file system of the SD card should be FAT32, which supports
cards with a capacity of up to 32GB. The Arduino IDE provides a library that
allows to read and write from SD cards. Our examples demonstrate some of these
functions. Should users require assistance for more advanced applications, they can
consult the Arduino documentation and other resources online.

173

BTLE Extension Module

Many modern mobile and wearable devices like smartphones and fitness trackers
communicate via BTLE. The BTLE extension module, see Figure 5.14, allows users
to design their own custom Bluetooth Low Energy devices using the BRIX2 system.
The core of the BTLE extension module is a BlueGiga BLE113 module [142] that
contains all RF parts including a chip antenna as well as a programmable micro-
controller. The module is controlled via UART and can be initially programmed
through a two-wire serial debug interface. BTLE peripheral devices share data wire-
lessly through services. A device can advertise several services at the same time.
Each service contains one or more characteristics, which contain the data. Central
devices like smartphones can access those data fields by connecting to the correspon-
dent service.
Services and characteristics are defined in the firmware of the BLE113, which users

Figure 5.14: Opened BRIX2 BTLE extension module.

are not required to alter for their application. We prepared a Generic Attribute Pro-
file (GATT) for the BTLE extension that covers most applications. Our predefined
services include for example the data from the IMU, but also several general purpose
services that can be utilized for custom data types.

174

5.3.5 BRIX2 Arduino Library for Extension Modules

To allow users to easily access to the functionalities of the extension modules, we
integrated top level functions for selected extensions into the LiBRIX2. In this section
we describe how the code is organized and which features are available for extension
modules in the LiBRIX2.

Structure of Extension Module Libraries

We included all code for the extension modules into the LiBRIX2 package so ev-
erything is available with just a single installation process. However, we separated
the code for different extension modules into individual classes which have to be in-
cluded into the sketch that utilizes that particular extension module. This modular
structure provides more clearly arranged and the hardware configuration required
for a particular sketch becomes directly obvious in many cases.

Wrappers and Feature Depth

We developed code with varying complexity for different extension modules. Some
have a number of wrapper functions to initialize the device and use its features. Some
do not require any wrapper code at all, for example the button or potentiometer
extensions. We only provide special code for extensions if it is beneficial for easier
understanding and quicker usage of an extension module. This is done to avoid
unnecessary abstraction layers that hide trivial functions of the language or the
microcontroller. For example if we wrapped the reading of the analog inputs to
determine the angle of rotation of the knob, sketch would not be simpler. But at the
same time, the underlying principle of reading analog ports would be obfuscated.
Finally, the abstraction layer would make our extension non-compatible to other
Arduino examples on reading analog ports or button presses if users are not familiar
with the hardware side of the implementation. In this case, an example code on
using the extension along with some helpful comments is more feasible.

Examples

For every extension module we developed, we also created example sketches that
show how to use that particular module. Some extensions have multiple examples
demonstrating different aspects or functions of the module or combinations with
other functions of our system. Example sketches are an intuitive way to learn the
programming language, although not a particularly structured one. They only show
some random aspects of the language at a time and should not be the single source
to learn a programming language. In our case they have two important functions:
Fallback: Example codes are designed to work out of the box when the hardware
setup is given. Users can try out an extension module without having to write a

175

single line of code. This allows them to get a feeling for the capabilities of a certain
extension without having to know how to program it. Once they get familiar with
the example code, they will start to modify it towards their application needs, by
adding or changing aspects of the code. Should an error occur during development,
which breaks the application, they can always have a look at the original example
code and analyze what is wrong with their own code.
Quick Reference: Example code shows how an extension module is used in a
practical and condensed way. Of course there is an API and function documentation
on the whole LiBRIX2, but examples directly show how a certain functionality is to
be integrated into a custom sketch. Especially in prototyping, it is faster and easier
to just copy parts of a programming example into a custom sketch to make things
work.

5.4 Conclusion

In the previous Chapter 4 we presented the implementation of the BRIX2 base mod-
ule, software components and documentation. We were able to integrate all func-
tionalities and features we defined as requirements in Chapter 3 into a compact and
robust devices that is compatible to the existing Arduino IDE. A custom software
library allows users to easily integrate all functionalities of BRIX2 into their appli-
cations. Our example sketches demonstrate how to use LiBRIX2 and allow quick
initial results even for users with little experience in programming. In this chapter,
we presented another substantial component of BRIX2: the extension modules. The
allow users to adapt our platform to their application by adding all functionalities
they require. Extension modules can just be stacked onto the base module, so no
special skills like soldering are required to expand the range of features. Although
we only designed 12 different extension modules that include sensors, actuators and
communication interfaces, our kit is not limited to that scope. Even after the initial
design time, novel extension modules can be build that further increase the flexibility
of the BRIX2 toolkit, which makes it an almost open ended platform.
In the following chapter, we analyze our platform regarding technical specifications
and properties. We also take a look on the way BRIX2 was used in actual applications
by students as well as researchers and present the results of a user survey.

176

6 Analysis

This chapter is dedicated to a detailed analysis of the BRIX2 platform in order
to evaluate to which extend we succeeded in developing the system we aimed for.
First, we focus on purely technical aspects and provide a detailed specification of
all components that are integrated in our platform. Subsequently we focus on the
performance of selected key components in real life scenarios. For this we conducted
experiments and measurements to verify the data acquired by our sensors or the
power consumption of active electronic components in BRIX2. The results are pre-
sented in Section 6.2.
In the second part of this chapter, we report our experiences with BRIX2 as a teach-
ing platform in several lectures before we discuss selected projects of researches and
students that illustrate the performance of our toolkit in fields like motion capturing,
WSN or smart environments.
Finally, we present the results of a user survey conducted among 20 students who
were asked about their experiences with BRIX2 and opinions on the system. This
helps us to answer questions of usability and user motivation and provides us with
further ideas for further versions of BRIX2.

6.1 The BRIX2 Toolkit: Technical Specifications

In the following we sum up all technical properties of the BRIX2 base module and
extension modules to give the reader an overview about the capabilities as well as the
limits of our system. In Table 6.1 we cover the mechanical and electrical properties
of the base module and both microcontrollers, followed by information on the IMU
sensor and the RF transceiver in Table 6.2. In Table 6.3 to Table 6.5 we cover the
specifications of all BRIX2 extension modules. A more detailed analysis of selected
components is provided in the next section.

177

Parameter Value Unit Condition/Note

General

Base Module Enclosure 32×47.8×14.1 mm
Base Module PCB 28.6×44.6×8 mm w. battery
Base Module PCB Weight 14.4 g w. battery
Base Module Total Weight 21.5 g

Battery Capacity 450 mAh
Charge Time 80 Minutes on USB port
System Voltage 3.3 V

Extension Ports

Number of Pins 30
GPIOs 25
Analog Inputs 6
Max. Current per GPIO 40 mA
Available Buses SPI, I2C, UART
3.3V Rail Current (max.) 500 mA limited, fused
5.0V Rail Current (max.) 1000 mA via USB

User Controller

Operating Voltage 3.3 V
Active Supply Current 10 mA
Idle Supply Current 3 mA
Clock Frequency 16 MHz
SRAM 2.5 kB
Available Flash Memory 28.672 kB w. bootloader
EEPROM 1 kB
Available Digital GPIOs† 20
Available Analog Inputs† 6

System Controller

Clock Frequency 16 MHz
Supply Voltage 3.3 V
Active Supply Current 7 mA
Idle Supply Current 1.5 mA
SRAM 2 kB
Available Flash Memory 30.720 kB w. bootloader
EEPROM 1 kB
Available Digital GPIOs† 6
† Connected to Expansion Port.

Table 6.1: BRIX2 base module specifications (I)

178

Parameter Value Unit Condition/Note

Wireless Transceiver (Texas Instruments CC1101)

Operating Voltage 3.3 V
Idle Supply Current 1.7 mA
Power Down Supply Current 0.001 mA
TX Power Range -69.2 – 10.7 dBm
TX-Mode Supply Current 16.8 mA 0dBM
TX-Mode Supply Current 30 mA +10dBM
RX-Mode Supply Current 15.6 mA
RX Sensitivity -112 dBm
Transmission Range 10 – 100 m indoor, 0dBM
Transmission Range 50 – 250 m outdoor, 0dBM
Bitrate (max.) 500 kB/s

IMU (Invensense MPU9150)

Operating Voltage 3.3 V
Idle Supply Current 0.01 mA default mode
Active Supply Current 3.7 mA IMU only
Active Supply Current 3.8 mA IMU & DMP
Sampling Rate 1 kHz
Accelerometer Ranges ±2, ±4, ±8, ±16 g
Gyroscope Ranges ±250, ±500,

±1000, ±2000
°/sec

Magnetometer Range ±1200 µT

Table 6.2: BRIX2 base module specifications (II)

179

Parameter Value Unit Condition/Note

AmbiSense Extension Module

Size of Enclosure 32×16×10 mm
Size of PCB 28.6×12.6 mm
Total Weight 3.4 g
Light Sensor Active Supply Current 0.24 mA
Light Sensor Idle Supply Current 3.2 µA
Light Sensor Dynamic Range 1000000:1
Light Sensor Resolution 16 Bit
Humidity Sensor Active Supply Current 0.65 mA
Humidity Sensor Idle Supply Current 0.6 µA
Humidity Sensor ACD Resolution 14 Bit
Temperature Measurement Range -25 - 85 °C

AudioAmp Extension Module

Size of Enclosure 32×16×16.1 mm
Size of PCB 28.6×12.6 mm
Total Weight 4.9 g
Internal Microcontroller ATmega328p

BTLE Extension Module

Size of Enclosure 32×16×11.7 mm
Size of PCB 28.6×12.6 mm
Total Weight 4.4 g
Sleep Mode Supply Current 500 nA
TX Active Mode Supply Current (max) 18.2 mA
TX Power Range -23 - 0 dBm
RX Active Mode Supply Current (max) 17.9 mA
RX Sensitivity -93 dBm

Breakout Extension Module

Size of Enclosure 38.3×23.3×10 mm
Size of PCB 38.3×21.5 mm
Total Weight 4 g
Solder Pad Pitch 2.54 mm

Button Extension Module

Size of Enclosure 32×16×17 mm
Size of PCB 28.6×12.6 mm
Total Weight 5.7 g
Number of Buttons 4
Contact Bounce Time <10 ms
Switch Travel 0.25 mm
Actuation Force 160 grams

Table 6.3: Extension module specifications (I)

180

Parameter Value Unit Condition/Note

Infrared Extension Module

Size of Enclosure 32×16×10 mm
Size of PCB 28.6×12.6 mm
Total Weight 4.5 g
Range Transmitter (approx.) 5 m using TV as re-

ceiver
Range Receiver (approx.) 13 m using a standard

TV remote
Current(burst) 230 mA Transmit Mode
Current 0.15 mA Receive Mode

MakeyMakey Extension Module

Size of Enclosure 32×16×16.1 mm
Size of PCB 28.6×12.6 mm
Total Weight 54.2 g
Number of Sensing Channels 8
Cable Length 200 – 250 mm

Potentiometer Extension Module

Size of Enclosure 32×16×25.8 mm
Size of PCB 28.6×12.6 mm
Total Weight 7.4 g
Number of Potentiometers 2
Rotation Range 270 °

Proximity Extension Module

Size of Enclosure 32×16×10 mm
Size of PCB 28.6×12.6 mm
Total Weight 3.4 g
Active Supply Current (average) 4 mA Max. Sampling

Rate and LED Cur-
rent

Measurement Range 15 – 100 mm

SD Card Extension Module

Size of Enclosure 32×16×11.7 mm
Size of PCB 28.6×12.6 mm
Total Weight 4.2 g
Active Supply Current 30 – 60† mA Write Operation
† Depends on SD card used.

Table 6.4: Extension module specifications (II)

181

Parameter Value Unit Condition/Note

Servo Extension Module

Size of Enclosure 32×16×18.1 mm
Size of PCB 28.6×12.6 mm
Total Weight 4.8 g
Number of Channels 3

VibroSound Extension Module

Size of Enclosure 32×16×16.1 mm
Size of PCB 28.6×12.6 mm
Total Weight 5.6 g
Motor Active Supply Current (max) 63 mA
Motor Vibration Intensity (max) ±2.5 g Tight Coupling on

Human Skin
Buzzer Active Supply Current (max) 2.5 mA
Buzzer Resonant Frequency 4000 Hz (±500Hz)
Buzzer Sound Output (min) 75 dB 10 cm Distance

Table 6.5: Extension module specifications (III)

182

6.2 BRIX2 in Practice

Technical specifications provided by the component manufacturers do often not fully
reflect the behavior or performance of that particular component in an actual appli-
cation. In order to provide a more illustrative impression of the performance of the
BRIX2 platform, we recorded measurements in exemplary applications and observed
how different features and aspects of BRIX2 perform and behave in practice. From
the data we recorded, we can make qualitative statements about the system’s capa-
bilities and also the limitations of sensors, actuators and other components. In the
following section we begin with the base module and its features and subsequently
move on to the BRIX2 extension modules.

6.2.1 The Base Module in Practical Use

The key features of the BRIX2 base module are the microcontrollers, the IMU sen-
sor, the RF transceiver and the battery that enables mobile applications. In this
section we take a closer look at these components in real life applications. We re-
gard quantitative parameters like current consumption or battery charge time, but
also qualitative aspects, for example the overall performance of the IMU as well
as potential opportunities for improvement we encountered while using the BRIX2

platform.

Microcontrollers

Arduino compatibility was a key requirement for the microcontrollers used on the
BRIX2 base module. Both controllers are equipped with the same bootloaders as
the original Arduino products they are used in (Arduino Leonardo and Arduino Due
respectively) and work accordingly well with the Arduino IDE. However, they also
share some issues with those original products:

User Controller Serial Port Issue: The ATmega32U4 implements a USB stack
and can be connected directly to USB, in contrast to the ATmega328p, which requires
a USB/Serial converter like the FTDI FT232RL. If the ATmega32U4 is reset, for
example during the upload of a sketch, the USB device is removed and re-attached to
the computer virtually. As a result, the number of the virtual serial port is changed
sometimes, so the device is no longer available in the software. Usually, unplugging
and reconnecting the BRIX2 helps to overcome this problem.

User Controller Bootloader Issue: At startup of the BRIX2 base module, it
enters the bootloader for 8 seconds, indicated by the “breathing” blue LED. After
that period is timed out, the sketch is started. Within the 8 seconds after the
reset, the IDE can access the controller and upload a sketch. In some rare cases,

183

the bootloader is ignored after reset and the sketch starts immediately. This can
render the device unprogrammable through the IDE. The problem is persistent, after
uploading different sketches, the bootloader stays inactive. We could not reproduce
the behavior sufficiently and the only solution appears to be erasing the controller
and to apply a new bootloader via ISP. In other similar Arduino products, this issue
can be resolved by pressing the reset button of the board1. However, in the design of
BRIX2 we did not include a reset button. The reset line is available on the extension
header, which makes it possible to integrate the reset button on an extension board.

Invensense MPU9150 IMU Sensor

The MPU9150, including a three-axis accelerometer, gyroscope and magnetometer
as well as integrated sensor data fusion (DMP) is a key element of the BRIX2 base
module. In Section 3.4.4 we already presented measurements of the accelerometer
and gyroscope noise as well as drift of the DMP data under different conditions.
Now we focus on data recorded in a real life scenario in order to give an impression
of the performance and limitations of the sensor. In the exemplary application we
recorded acceleration data of a person while walking. We wanted to find out whether
the recorded data was usable for gait detection in order to count the steps the person
made. The BRIX2 base module was placed in different locations of the body and
in random orientation. We recorded the data of all 3 axes of the accelerometer and
summed up the absolute sensor values.
As we can see in Figure 6.1, the quality of the resulting signal depends on the location
of the sensor. When placed directly at the ankle using a flexible strap, we get a clean
signal with a distinct pattern for each step. If the sensor is placed in the pocket of
a persons pants, the signal gets a little more noisy, but the pattern is still visible.
However, if the sensor is placed far from the body inside a shoulder bag, the pattern
almost disappears in the noise. This example illustrates the signal quality of the
accelerometer in the BRIX2 base module in a dynamic scenario when the module is
in constant motion.

1https://learn.sparkfun.com/tutorials/pro-micro–fio-v3-hookup-guide/troubleshooting-and-
faq#ts-reset

184

S
um

 o
f

X
,

Y,
 Z

 A
cc

el
er

at
io

ns
 (

LS
B

)

80k

60k

40k

20k

0

Pants Pocket Bag Ankle

0 3 6 9 12

80k

60k

40k

20k

0

80k

60k

40k

20k

0

Time (Seconds)

Figure 6.1: Summed up absolute x,y and z-axis accelerations for a walking scenario
with 3 different sensor locations.

RF Transceiver

The RF transceiver allows a BRIX2 application to communicate with other remote
devices wireless. For most scenarios, two key parameters are critical: power con-
sumption and transmission range. In the following, we provide measurements and
calculations on both of these parameters.

Power Consumption There are basically two settings that affect the power
usage of the Texas Instruments CC1101 RF transceiver used on the BRIX2 base
module: The device state (Receive, Transmit, Idle) and the TX power setting. In
idle state, the typical supply current is 1.7 mA. The device can additionally be
sleeping (500 nA) and woken up by radio or the crystal oscillator can be turned off
(165 µA). In receive mode, the supply current is almost constant at around 15.2mA,
depending on the strength of the input signal. In transmit mode, the supply current
depends on the transmit power settings.

185

TX Power (dBm)

-60 -50 -40 -30 -20 -10 0 10

C
ur

re
nt

 (m
A

)

35

30

25

20

15

10

Figure 6.2: CC1101 transmit power vs. active supply current. Data taken from [143].

In Figure 6.2, we can see that the with increasing TX power, the current changes
highly nonlinear. This is caused by the design of the power amplifier of the CC1101,
which uses multiple stages and voltage ramping on some stages in order to optimize
its efficiency. As a result, there are more and less efficient TX power settings, for
example the current is the identical at -47 dBm and -3 dBm. This has to be considered
when optimizing an application towards energy efficiency.
The library we use for the CC1101 RF transceiver keeps the device in RX mode unless
it is in TX mode, thus makes no use of any idle or sleep mode. In order to determine
the effect of the payload length on the average transceiver supply current under the
assumption that no sleep modes are used, we can calculate the total transmission
time (pt) based on our default data rate of 38400 baud (see [110], p.78) plus the fix
transition time from RX to TX state and back rounded to 0.8ms (see [110], p.54)
as a worst-case estimation. Besides the payload, packets include a 4 bit preamble, a
16 bit sync word, 8 bit each for packet length and address as well as a 16 bit CRC:

pt = switchRX/TX + (1
baudrate

· header + payload + CRC) + switchTX/RX

Based on the total transmission time (pt) for a given payload size, we can calculate
an average supply current (apc) for a given data rate in Hz and given TX supply
currents for different output power levels:

apc = datarate · pt · iTX + (1− datarate · pt) · iRX

186

Payload (Bytes)

0 15 30 45 60

A
ve

ra
ge

 C
ur

re
nt

 C
on

su
m

pt
io

n
(m

A
)

18

17

16

0 dBm, 1 Hz 10 dBm, 1 Hz 0 dBm, 10 Hz 10 dBm, 10 Hz 0 dBm, 100 Hz 10 dBm, 100 Hz

Figure 6.3: RF module active supply current as a function of payload size under
different conditions.

The results for some parameter configurations are presented in Figure 6.3, which
shows that the supply current varies between 15.5mA and 18.3mA. If we restrict
the output power to 0 dBM, the supply current is even below 16mA. As a result we
can conclude that the data rate and output power of the wireless transceiver have
only little effect on the power consumption. The packet length only affects the power
consumption in a significant way if the output power and data rate are at a high
setting.

In order to reduce the average operating current, users can actively put the RF
transceiver into a sleep mode using a command in the LiBRIX2 while it is not in use.
Especially in scenarios with a low data rates, the device will spend most of the time
in a power down mode and consume only 0.001mA. If the RF feature of BRIX2 is
not used, the transceiver should be deactivated at all times.

187

Transmission Range In Section 3.4.1 we presented an experimental approach to
evaluate different wireless transceivers. Among the four technologies we tested using
the B2DK was also the CC1101, which is now integrated into BRIX2. We tested
three different scenarios in order to cover as many potential applications as possible,
so the measurements should give the reader a solid impression of the capabilities of
the BRIX2 wireless transceiver. However, we would like to point out that there are
certain factors besides the distance between RX and TX that can have significant
effects on the transmission range and should be considered when planing a wireless
application with BRIX2:

• Surrounding: The quality of a wireless link depends on the surroundings
and is influenced by signal reflection, refraction, and scattering [144]. In an
open field, the link can behave completely different than in a corridor inside a
building, regardless of the fact that both applications having a line of sight.

• Band Occupation: If in a surrounding the RF band around the carrier fre-
quency of the wireless link is already heavily used by other devices, packet
losses are more likely to occur than in areas with little wireless traffic. This
especially applies to transmissions that do not rely on a sophisticated protocol
which offers error correction mechanisms.

• Obstruction: Certain materials tend to block RF signals, whereas others
have no great effect on the transmission range when placed between RX and
TX. A link from one room to another might work great through a drywall but
not at all through a reinforced concrete wall. The human body also absorbs
RF signals [145], so in a wearable wireless application, it can be important at
which location on the body the transceiver is placed.

We generally recommend to test a wireless link in practice under different conditions
during the design of an application.

188

RGB LED

The ROHM SMLP34 Series PICOLED™ [146] with a size of 1×1×0.2mm was one of
the most integrated RGB LEDs we could find on the market in 2012. The forward
current of all channels is approximately 10mA each, which is low enough for a battery
powered application. The LED has a common anode and we provide the power for
each channel through a GPIO of the user controller. The common anode requires an
inverse logic for controlling the LED, high means the channel is off, low means the
channel is on. All this is is already wrapped in our LiBRIX2, so users do not have to
take this into account. The library also covers dimming of the color channels using
PWM.
At design time, we specified the current limiting resistors for each color channel in a
way that when all channels are fully lit, the resulting color appears as white. Since
the relative response of the human eye to colors is non-linear [147], the forward
currents of the LEDs are not equal but are especially low on the green channel. At
this wavelength (555 nm), the human eye is more sensitive, so we had to adapt the
brightness of the green LED in particular. In PWM dimming, the voltage - and thus

To
ta

l C
ur

re
nt

 (m
A

)

0 50 100 150 200 250 300 350

18

15

12

9

6

Hue Index (°)

Figure 6.4: Total forward current vs. color. of the BRIX2 RGB LED.

the forward current of the LED - is proportional to the PWM duty cycle [148]. In
Figure 6.4 we can see the total forward current of the RGB LED for each color in the
Hue, Saturation, Value (HSV) color model, which is also covered in the LiBRIX2,
see Section 4.4.2. At full saturation and full brightness, the total RGB LED supply
current peaks at mixed colors yellow, cyan and pink in the hue value (0-359) and is
lowest at the pure colors red, green and blue.

189

System Status LED

The green LED that displays the system’s status is a Kingbright KPT-1608SGC [149]
controlled by a GPIO of the system controller. The LED is designed to operate
on a forward current of 20mA. However, to save energy we operate it at around
10mA. The brightness is still sufficient to give a basic status information, for example
whether the device is turned on or off. Users can deactivate the system LED via the
LiBRIX2 in order to reduce the total power consumption.

Current Consumption by Feature and Potential for Optimization

RGB LED

White

RF TX, 1
0 Hz

0 dBm, 2
4 Byte

s

Sys LED

RGB LED
Red

Syste
m

Contro
lle

r

Oscilla
to

r

RF TX, 1
00 Hz

0 dBm, 2
4 Byte

s

RF TX, 1
 Hz

0 dBm, 2
4 Byte

sUser

Contro
lle

r

RGB LED

Blue

RGB LED

Gre
enIM

U

DMP

IM
U

RawRF
Idle

IM
U

Idle

24

20

16

12

8

4

0

Current
(mA)

Figure 6.5: Overview of the active supply currents of different BRIX2 base module
features.

To provide an overview of the power consumption of each individual feature of the
BRIX2 base module, we arranged them next to each other. As we can see in Fig-
ure 6.5, the LEDs and the wireless transceiver have the highest active supply cur-
rents, followed by both micro controllers. Especially the LEDs offer a significant
potential for saving energy. The system status LED for example is not required
to be constantly lit only to inform the user that the BRIX2 base module is turned
on. Alternatively it could flash for 100ms and stay off for a period of 900ms, thus
reducing its average supply current by 90%. The same applies to the RGB LED.

190

Depending on the application scenario, the RF transceiver can also be turned off
most of the time, for example while it is neither sending nor required to receive
data. To illustrate the impact of such measures, we consider an example application
where a BRIX2 module, mounted to a door reports the opening angle of the door,
measured by the IMU wireless to a remote PC in the same room. The status of the
door is displayed by the RGB LED.

Before Optimization: By default, both LEDs are constantly lit, the RGB LED
occasionally changes color. The RF transceiver is always active by default. The
average total supply current is around 60mA, which results in a total runtime of 7.5
hours.

After Optimization: Both LEDs are set to flash with a 10% duty cycle. The
RF transceiver is turned off while not sending. The average total supply current
drops to around 30mA. These simple optimizations do not restrict the performance
of the module in any way but doubles the battery runtime to 15 hours.

191

Battery Charging

During the design phase, we already briefly tested the battery charging circuit by
recording charge times of the battery. These proved to be consistent, which means on
the one hand, the charging process is stable and on the other hand that the capacity
does also not decrease significantly. For a more detailed analysis, we recorded cell
voltage and charge current during a full charge cycle. As we can see from the
plot in Figure 6.6 the charge current drops constantly while the charge voltage is
constant. The Microchip MCP73831 charge controller we use on our boards has
basically two charge modes, the “Fast Charge Mode” and the “Constant Voltage
Mode”. It transitions from the first into the latter as soon as the cell voltage of
the battery exceeds the regulation voltage of the charge controller. In our case
(MCP73831T-2ACI/OT) this voltage is 4.2V, which is almost immediately reached
at the beginning of the charge process. For this reason, most of the charging is done
in fast charge Mode with constant voltage, which leads to decreasing current as the
battery charges. A reason for this atypical behavior of the battery, which should
normally charge at a constant current for at least half the charge process might be
the battery protection circuit, which is integrated into the batteries we use. Since
we have no influence on that circuit, we can not fix this issue and can only consider
to use different batteries without internal protection along with a custom battery
protection circuit on future revisions of BRIX2.

0 20 40 60 80 100

500

400

300

200

100

0

Time (Minutes)

Cell Voltage (V) Charge Current (mA)

C
ha

rg
e

C
ur

re
nt

 (m
A

) /
 C

el
l V

ol
ta

ge
 (V

)

Figure 6.6: Charging the internal battery of a BRIX2 base module: Cell voltage and
charge current vs. time.

192

6.2.2 BRIX2 Extension Modules in Practice

In Chapter 5 we have described the development process and implementation de-
tails of the BRIX2 extension modules. In the following, we present typical scenarios
and measurement data for selected extension module as an addition to the techni-
cal specifications summed up in Section 6.1. Depending on the type of extension
module, we focus on typical sensor output data, current consumption or individual
characteristics. This way we aim to provide an overview about the capabilities and
limitations of individual extension modules. However, we exclude some extension
modules from this section because they are either rather simple and passive, like
the button or the servo extension module or they are already covered by external
documentation, like the MakeyMakey extension module.

AmbiSense Extension Module

The AmbiSense extension module allows users to measure ambient light levels, tem-
perature and humidity. To give an impression of the capabilities and limitations of
the AmbiSense extension, we set up two experiments. First, we tested the reaction
time of the temperature and humidity sensor under rapidly changing ambient con-
ditions. Second, we recorded the ambient brightness level using the light sensor on a
BRIX2 module attached to a persons wrist while walking around inside and outside
a building.

Temperature and Humidity Measurements
If temperature and humidity data is logged in a mobile application, e.g. when the
sensor is worn on the wrists, the conditions can rapidly change. For example if the
person leaves a house in the winter, the temperature changes from around 22 ◦C to
5 ◦C instantly. To determine how quick the temperature and humidity sensor can
adapt to such rapidly changing conditions, we recorded data at room temperature,
placed the sensor outside the window for around 2 hours and then placed it back in-
side. The room temperature was around 22 ◦C and the outside temperature around
8 ◦C. From the plot in Figure 6.7 it becomes clear that it takes around 15 minutes
until the sensor shows the correct reading after being placed outside at minute 6. At
minute 119, the sensor is placed inside the room again and takes around 20 minutes
until it shows a correct reading. The reason for this high reaction time is the ther-
mal mass of the sensor and the surrounding electronics. Since the sensor does not
measure the temperature of the air but merely the temperature of the die inside the
device, its thermal mass causes a certain inertia in the temperature fluctuation. As a
consequence we do not recommend the sensor for measurements of rapidly changing
temperatures. However, it appears to pick up small variation of the outside temper-
ature from minute 20 to 119. This shows that the device can be used to measure
ambient temperature in a static scenario, for example to acquire weather data.

193

S
en

so
r R

ea
di

ng

0 30 60 90 120 150 180

60

40

20

0

Time (Minutes)

Temperature (C°) Relative Humidity (%)

Figure 6.7: Reading of the temperature and humidity sensor under rapidly changing
conditions.

Light Intensity Measurements

To test the light sensor of the AmbiSense extension we logged brightness data using a
wrist-worn BRIX2 module while walking around inside and outside a building. The
walk starts in a bright corridor, proceeds through a relatively dark corridor until
second 25. Then the person walks down 7 sets of stairs in alternating directions,
which is visible in the brightness data, see plot in Figure 6.8, because of the windows
on one side of the stairwell. At second 70 the person exits the building and walks
outside in direct sunlight. The sensor is set to high-gain mode, which is why clipping
occurs at this point. The person enters the building again at second 100 and proceeds
through a dark corridor into another stairwell which is brightly lit by the sun through
windows on one side. Again, we observe the alternating patterns of light intensity as
the person walks up the 7 sets of stairs and enters a brightly lit corridor at second
210. The person walks on through a darker part of the corridor to the starting point.
The experiment shows that the light sensor can be used not only to measure ambient
light in a static scenario, but is also an instrument for activity measurement in mobile
applications. Combined with other sensors, localization inside a building with known
lighting conditions might also be possible.

194

B
ri

gh
tn

es
s

R
ea

di
ng

 (L
SB

)

0 50 100 150 200

5000

4000

3000

2000

1000

0

Time (Seconds)

Figure 6.8: Brightness level measurements while walking around.

BTLE Extension Module

Equipped with a BTLE extension, BRIX2 becomes compatible to a wireless stan-
dards available smartphones and tablets. The BRIX2 GATT provides services that
allow to read sensor data from the BRIX2 module as well as to push data onto the
device from a mobile App, for example to control the color of the RGB LED.

Power Consumption
BTLE communication is more complex than simple RF communication using the
BRIX2 wireless transceiver, so we only give an estimation of the average energy
consumption of the BTLE extension module at this point. We distinguish three
different states: advertising, connecting and communicating. While advertising, the
BTLE extension sends out a short data packet which indicates its presence and
available services. The transmission time for such a packet is 2.7ms in which the
transceiver consumes 13.5mA [82]. At one advertising per second this calculates to
an average current of 0.04mA. When the BTLE extension maintains a connection
to a mobile device, it sends out a connection event 100 times each second. With a
current of 10.36mA and a transmission time of 0.8 ms, this results in an average
of 0.8mA. As an example for the communication state, we suppose a scenario in
which 16 bytes of payload are sent from BRIX2 to a mobile app with a frequency
of 100Hz. The transmission time for each packet is 1ms. At a supply current of
11.64mA during transmission, we calculate an average of 1.2mA.

195

Infrared Extension Module

To quantify the performance of the infrared extension module, we present measure-
ments and calculations for transmission ranges and power consumption. Since both
depend on different parameters, we only consider a single, exemplary scenario each.

Communication Ranges
Infrared transmissions as used by TVs and other entertainment electronics are unidi-
rectional. There is no acknowledgment mechanism, so we can regard reception and
transmission ranges separately. Our tests were performed with a Samsung televi-
sion and the according remote control. To determine the transmission range of the
BRIX2 infrared extension, we sent commands to the TV and increased the distance
until the signal was not received anymore. The result was a maximum distance for
transmissions of 5.2m. Other receiving devices might react differently. To deter-
mine the reception range, we used the Samsung remote control to send commands
to BRIX2. The signal could be received at distances up to 13m. Again the result
might be different with other remote controls.

Power Consumption
The TSOP6438TR infrared receiver on the infrared extension module is always active
and draws an average current of 0.15mA. The two transmitter LEDs are operated at
a current of 130 mA each. If we transmit data encoded in the RC-5 standard, a single
command is 14 bits long.[150] The transmission of each bit takes 1.778ms. Half of
that time, the signal is high. During this period, the LEDs are on but modulated
so they are only active a third of that time. This calculates to duration of 5ms
per command in which the LEDs are actually powered. At 10 commands a second,
the average current consumption is 1.3mA. Actual applications however will most
likely send commands event-based, so no continuous stream of commands will be
transmitted.

196

Proximity Extension Module

In Section 5.3.2 we already pointed out that the proximity extension module is not
a suitable sensor for measuring exact distances. To support this statement, we con-
ducted an experiment in which we place the sensor in front of a white paper at
varying distances with different lighting conditions.

P
ro

xi
m

it
y

R
ea

di
ng

 (L
SB

)

0 5 10 15 20

30k

25k

15k

10k

5k

0

-5k

-10k

-15k

Distance (cm)

Daylight + Lamp Daylight Lamp Low Light Bright Light

Figure 6.9: Proximity sensor data at varying distances and different lighting condi-
tions.

In the plot in Figure 6.9 we can see that the characteristic of the sensor is hardly
affected by the lighting conditions. The usable range of the sensor is from around
100mm to 15mm. Below the minimum distance, the sensor provides no useful data.
Above the maximum distance, the output data does not change anymore. To demon-
strate the temporal resolution of the sensor, we had a person wave all fingers of one
hand across the sensor back and forth at a distance of around 30mm. The sampling
rate was 500Hz.

The four fingers can be clearly identified in the plot two times, once each waving
motion, see Figure 6.10. The high temporal resolution of the sensor could for example
be used to identify different waving gestures with a varying number of fingers. By
incorporating the distance of the single fingers, it is also possible to distinguish
gestures in which the hand is tilted towards one side while waving, see Figure 6.10,
500ms to 1500ms.

197

P
ro

xi
m

it
y

R
ea

di
ng

 (L
SB

)

0       500     100 1500 2000 2500 3000

30k

25k

15k

10k

5k

Time (ms)

Figure 6.10: Waving a hand in front of the proximity sensor.

SD Card Extension Module

The SD card extension is mainly designed for data logging. In many scenarios,
such an application is required to run several hours and sometimes even with high
data recording rates. The power consumption of the SD card extension is mainly
affected by two parameters: the type of SD card and the data rate. Peak currents
are reached during writing operations. Depending on the type and brand of card,
the supply current varies between 30ṁA and 80mA for write operations and 15mA
to 30mA for read operations. In our experiments we used a Verbatim 4GB Micro
SD card and the standard SD card library that is included in the Arduino IDE. We
measured around 200ms duration for a write operation at different payloads between
8 and 512 bytes. During that time, the card consumes 50mA. Since flushing the data
is not necessary for every data point, data can be buffered and written to the card
for example once a second, which would lead to an average current consumption of
around 10mA.

198

VibroSound Extension Module

In this paragraph we present performance measurements of both aspects of the Vi-
broSound module, vibration and sound generation.

Vibration Intensity In order to quantify the vibration strength of the VibroSound
extension, we used the inbuilt accelerometer of the BRIX2 base module the extension
was connected to. The intensity can be adjusted in the sketch to a value between
0 and 255. We ramped up from minimum to maximum in around eight seconds
and then ramped down again. The whole application was attached to a persons
wrist using a custom strap. The VibroSound module was connected to the center
extension header of the base module, directly above the sensor.

In
te

ns
it

y
([

0,
1]

) /
 A

cc
el

er
at

io
n

(g
)

0    2k   4k   6k   8k 10k 12k 14k

3

2

1

0

-1

-2

-3

Time (ms)

Intensity X Y Z

Figure 6.11: Vibration intensity measured by internal accelerometer.

In Figure 6.11 we can clearly see that the relation between intensity (normalized to
the interval [0, 1]) and the acceleration is almost linear. On the x- and y-axis, the
acceleration reaches a maximum of around ± 2.5 g. The z-axis is also affected, but
only up to ± 1 g. This is caused by the orientation of the vibration motor in the x/y
plane. However, the flexible surface the module was attached to most likely leads to
crosstalking between the axes. It is also notable that the vibration motor only starts
to move at around 15% of the vibration intensity given in the firmware.

199

Sound Intensity The VibroSound extension uses a piezoelectric speaker which has
a highly non-linear frequency response, meaning that the output volume depends on
the pitch of the sound. The speaker on the VibroSound extension is only designed
to generate simple alarm and notification sounds and not for actual audio playback.
The LiBRIX2 component for the VibroSound module allows users to set the pitch
for a square wave sound output by the piezo speaker. We recorded a sweep of input
values from 0 to 7000 in order to determine which frequency produces the most
intense output. For recording we used a RØDE NT3 condenser microphone with an
almost linear frequency response [151].

N
or

m
al

iz
ed

 S
ig

na
l [

-1
,1

]

0 1000 2000 3000 4000 5000 6000

0,4

0,2

0

-0,2

-0,4

Input Value

Figure 6.12: Frequency response of the piezo speaker.

Our plot of the frequency response, see Figure 6.12, indicates two main peaks at
input values of 3000 and 4200 as well as a smaller peak at 1400. In order to generate
the most audible signals, those input values should be considered. It is to note that
the human hearing does not have a linear frequency response either, so the volume
of a sound might be perceived differently by the human ear in contrast to a technical
instrument. [152]

200

6.2.3 Conclusion

In this section we have presented some examples that demonstrate the capabilities
and limits of the BRIX2 base module and extension modules. Although we did not
cover every single aspect of our platform, we provided a qualitative overview about
its major functions that should help the reader to estimate the potential of the
BRIX2 platform. Though most components of our platform perform as we expected,
others have room for improvement, like for example the temperature sensor. In the
next section, we present our experiences with using BRIX2 as a teaching platform
in lectures as well as selected projects that were implemented using our toolkit.

201

6.3 BRIX2 in Different Applications and Scenarios

BRIX2 is designed as a teaching and prototyping platform for applications in different
fields. In this section we report how our system performed in both of these use cases.
First, we introduce three different lectures in which we used BRIX2 as a teaching
platform. We share our experiences regarding practical and didactic aspects and
report opinions of the students. In the second part, we present different projects
implemented by students and researchers. The selection of projects represents the
fields we analyzed in Chapter 2, so we can evaluate whether our system is applicable
in all of these fields.

6.3.1 BRIX2 as a Teaching Platform

During and after the development of the BRIX2 platform, we introduced the system
in various lectures and workshop to students of different fields of study. They gained
hands-on experience with the system while they learned about sensors, microcon-
trollers and physical computing. For us as developers, their feedback and experiences
helped us to locate and fix flaws in our system and finally to determine if we met
the goal of creating a valuable learning, teaching and prototyping platform. In this
section, we share our experiences with using BRIX2 for teaching in three different
lectures. In the subsequent section, we discuss different projects of which some were
implemented as exercises by the participants of those lectures.

Lecture and Workshop: Ambient Interfaces

“Ambient Interfaces” provides an overview of the field of ambient intelligence or ubiq-
uitous computing. The students learn about a different aspect of the field each week,
including physical computing and the BRIX2 platform. In a 2-day workshop after
the term, the students are supposed to design and implement a small application in
the field of Ambient Intelligence. Most of them use the BRIX2 system as a tool to
realize their ideas. In the following we report our experiences with using BRIX2 in
the lecture before we introduce two of the projects as examples.
The group of students that attended the workshop had different fields of study.
Some were computer science students whereas others studied sports science or de-
sign. Therefore the majority of the participants had only little or no previous knowl-
edge about physical computing, microcontrollers or programming in general. At
the beginning of the workshop, we gave a short, hands-on introduction to BRIX2

and demonstrated the capabilities of the system. After the design process of their
project, the students installed Arduino and LiBRIX2 on their personal laptop and
got familiar with the workflow. They tried some of the example sketches with a focus
on their own application. Gradually they started to modify the example code and
merging different examples until the sketch worked as they planned. In this phase,

202

questions regarding details of the programming language or the hardware platform
arose and were either answered by the lecturers or the students found a solution on
the Internet. Most of the projects that were built by students consist of multiple
BRIX2 base modules and extension modules. Frequently used features were the RF
transceiver, the IMU, the proximity, VibroSound and AmbiSense extension. In al-
most all cases the students were able to achieve their goal in the given time. Many of
them stated that they were surprised how easily they were able to implement their
application without having previous knowledge about how to approach the problem.
Some of the participants stated that the experience motivated and inspired them to
use their newly gained skills in other projects beyond the scope of our workshop and
lecture.

Lecture: Sensor Systems

This lecture is designed mainly for Master’s students and provides theoretic knowl-
edge as well as hands-on experiments with different sensors and sensor platforms.
Among other platforms, students worked and learned with the BRIX2 system in
several of the lectures.
In one of the first lectures, the principle of a sensor platform, including sensors,
microcontroller and a data interface was introduced using BRIX2 as an example. In
hands-on sessions, students were given some basic exercises to get familiar with the
system and the principles. With Processing 2 and the Arduino IDE already installed
on their PCs, they only had to install the LiBRIX2 and tried some example codes.
After that they were supposed to implement data streaming from BRIX2 to a Pro-
cessing sketch, the base for the following exercises. In later lectures on inertial sensors
and sensor fusion, the students were given tasks like rotating a square on the screen
using the gyroscope data. This worked as expected using a single integration of the
angular velocity data. The next task was moving a square on the screen according
to the movements of a BRIX2 module on the table in two dimensions. In theory,
this can be achieved by a double integration of the acceleration data. When they
implemented this algorithm, the students quickly found out that in reality, noise and
sensor drift lead to poor results. In our experience, learning by practically exploring
the limits of a sensor is a much more memorable than just learning about it in a
theoretical lecture, because it becomes a personal experience. BRIX2 was also used
to demonstrate the principle of reading resistive sensors like a thermistor using an
RC circuit.
Despite some problems with the Arduino IDE under Microsoft Windows, mostly
related to the virtual serial port, the students did not encounter technical problems.
Again, the majority of class was surprised by how easy applications could be im-
plemented and how accessible sensors can be using BRIX2. The question how and

2https://processing.org

203

whether the modules can be obtained for personal use came up several times.
As part of the lecture, the students were supposed to do a project involving the
hardware platforms introduced in the lecture. Some topics were already prepared by
the lecturers, but ideas from students were also welcomed. Four groups of students
decided to base their project on BRIX2.

Lecture: Informationstechnik im Sport

The lecture “Informationstechnik im Sport” (Information Technology in Sports) was
mainly aimed at students in the field of sports science. The topics ranged from
technology used for motion and body activity tracking to signal processing. One of
the lessons was a hands-on workshop with the BRIX2 system. Most of the students
had no programming experience at all, so the basics of programming were taught
by the lecturer initially. Within two hours, all students were able to modify and
combine the examples that are provided with the LiBRIX2. The students were
surprised that they could accomplish complex-looking physical computing tasks as
for example moving the mouse pointer with their breath, using the humidity sensor
on the AmbiSense extension, with no previous knowledge.

204

6.3.2 BRIX2 as a Prototyping Platform in Research and
Students Projects

After we have reported our experiences with BRIX2 as a teaching and learning tool,
this section is dedicated to prototyping, our second main application scenario. In
Chapter 2 and 3 we have analyzed platforms from five different fields: microcon-
troller boards, physical computing platforms, wireless sensor motes, inertial mea-
surement units and toolkits for wearable computing. We have designed our platform
to be applicable as a teaching and prototyping toolkit in all those fields. In the
meantime, BRIX2 has been used in research, Bachelor’s and Master’s theses, and
semester projects that were part of the lectures we presented in the previous section.
In this section we take a look at some selected projects that are related to these five
fields and illustrate how our platform performs as a prototyping tool.

BRIX2 as an IMU: Measuring Body Postures with Low-Cost Inertial Sensors

In his thesis “Ein inertiales Messsystem zur ganzkörperlichen Bewegungserfassung” [153],
a student explores the capabilities of inexpensive, IMU-based body motion trackers.
As a contrast to costly systems like XSens (see Section 2.4.7), he developed an offline
body tracking based on the BRIX2 system. In his experiments, he attached up to
10 modules simultaneously to a wearer’s body using custom flexible straps, see Fig-
ure 6.13. The modules were equipped with SD card extensions in order to store the

Figure 6.13: In motion tracking scenarios, BRIX2 modules can be attached to the
wearer’s limbs using custom straps.

205

orientation data of each device. For this purpose, the student developed a firmware
that allowed him to record data with a rate of 100Hz to the SD card. The rate is
mainly limited by the speed of the write-operations when storing data. While record-
ing different motion patterns with the BRIX2 system, he recorded motion data with
a Vicon camera system at the same time as a ground truth for his later analysis. In
postprocessing using different MatLab scripts, the student calculated the joint angles
between the wearer’s limbs from the orientation data recordings. With its compact
design, a battery lifetime of around 5 hours and several GB of data storage on the
SD card, BRIX2 modules proved to be well suited for that kind of task. Using the
RF interface and a modified version of the Matlab software, the system could also
work wireless in real time. Mechanically, the modules were mounted on Lego plates
that are sewn to the straps. The friction based connection was sufficient for regular
body movements so no module fell off during the experiments. This project shows
that the BRIX2 system can well be used for IMU-based motion capturing.

Physical Computing: “Skate Analyzer“

Basic skateboarding skills include accelerating the board using one foot, referred to
as “pushing” and stopping the board, again using one foot with a maneuver called
“footbrake”. Especially the latter is crucial for a safe skateboard ride but often
beginners tend not to practice the footbrake enough, which results in a lack of board
control. As a project for the lecture “Informationstechnik im Sport”, the student
implemented an application that uses a BRIX2 module to measure the movement
and speed of a skateboard and processes the data on a smartphone. Both components
are connected via BTLE. The app on the phone rates and displays the efficiency
of the user’s push and footbrake maneuvers. The hardware consists of a BRIX2

module attached to the top of a skateboard deck. A hall-effect sensor is placed next
to one of the front wheels which contains a tiny magnet. The sensor is connected
to the BRIX2 module via a Breakout extension. A sketch on the user controller
measures the rotation frequency of the wheel and the acceleration of the board. The
BTLE extension allows to stream the data to a smartphone in the user’s pocket,
see Figure 6.14 (top). The app displays plots of the acceleration and speed of the
board over time as well as current, average and top speed, traveled distance, average
distance per push (a measure of the efficiency of a push) and details on the footbrake
maneuvers, see Figure 6.14 (bottom).
The project was developed over several weeks and the student did not have any
prior knowledge in microcontroller programming. An interesting side note is that
the student needed precise timing for the hall sensor measurements which are beyond
the standard Arduino programming language. In order to configure interrupts that
trigger a counter and timers that measure the precise time of a wheel rotation, he
consulted the datasheet of the Atmega32U4 and managed to implement those low
level functions far below the Arduino abstraction layer. This example shows that

206

Figure 6.14: Skate Analyzer: Hall sensor and BRIX2 attached to a skateboard (top)
and the corresponding smartphone app (bottom).

users do not necessarily rely on the abstract Arduino language but can also even go
down to the hardware level in order to implement timing-sensitive applications and
gain absolute control over the controller.

Wireless Sensor Networks: Protocol Evaluations

This ongoing (as of 2016) project is dedicated to the evaluation of different wireless
protocols as well as different wireless technologies for WSNs in order to develop an
adaptive protocol that adjusts itself to changing networking conditions. In the first
iteration of the project, the internal RF transceiver of BRIX2 was used and mul-
tiple algorithms were implemented on the user controller. Different variants of the
Time Division Multiple Access (TDMA) and Carrier Sense Multiple Access (CSMA)
strategies were tested in a star network topology in different environments. The goal
was to optimize the packet timing while maintaining an acceptable level of packet
loss, thus maximizing the total throughput of the network. Further testing of those
algorithms is planned for other wireless technologies such as BTLE and Ultra Wide
Band (UWB). The internal CC1101 wireless transceiver of BRIX2 facilitated the
initial tests because of its simplicity. With almost direct access to the hardware
layer, developers are able to precisely control every aspect of the wireless network
without any limitation, obfuscation or abstraction caused by existing protocol layers
such as Bluetooth or ZigBee.

207

Due to its modular design, BRIX2 could be equipped with different sensor extension
modules in order to test the networking protocols with real sensor data. The inte-
grated battery and compact design of our platform allowed easy transportation and
rapid deployment of the sensor network in different environments indoor and out-
door. Tests were performed for several hours without the necessity to recharge the
batteries. Since BRIX2 is relatively inexpensive compared to other WSN evaluation
platforms such as the Waspmote (see Section 2.3.2), we were able to test networks
with a higher number of nodes on the same budget.

Smart Objects: “Assisted Juggling”

Juggling requires two fundamental skills: hand-eye coordination and precise timing.
One student addressed the latter in her BRIX2 application that was implemented
during a hands-on session of the “Ambient Interfaces” lecture. Her scenario was
practicing the 3-ball-cascade [154], the most basic pattern for juggling three balls.
It involves throwing the next ball into the air before the first one is caught again,
thus keeping two balls in the air all the time. The goal was to let the balls tell the
juggler when they need to be thrown by haptic feedback. The student used three
BRIX2 modules equipped with VibroSound extensions as juggling balls.

Figure 6.15: Juggling sequence: The second module lights up red and vibrates when
it is supposed to be thrown.

She used the accelerometer on each module to estimate the apex of its trajectory
when thrown. As soon as the acceleration drops to zero, one can assume that the
juggling ball has left the hand of the thrower. Given a constant throwing heigth and
a constant reaction time of the juggler, the correct moment to throw the next ball
can be determined with sufficient precision. If that moment is reached, the module
sends an RF message to the module in the ball that is supposed to be thrown next.

208

That particular juggling ball vibrates, telling the juggler to throw it in that exact
moment. In Figure 6.15 we can see the module in her right hand lighting up red
when the module in the air reaches its apex (third image). The red LED indicates
vibration. As the module in the air descends, it stops sending data to the module
that was now thrown, the red LED turns off (last image).
The BRIX2 platform suits this application well, because it is lightweight and robust.
Without any modifications, the base modules with two attached extensions could
withstand the mechanical stress of juggling and occasionally dropping them on the
floor. The compact design of BRIX2 would even allow an integration into real jug-
gling balls without any modification.
In contrast to other platforms that implement wireless communication through Blue-
tooth or WLAN, BRIX2 modules can easily exchange data and information between
multiple nodes. The basic and simple implementation of the wireless feature does
not require a complex protocol stack or abstraction layers and is transparent to the
user. This way the student was able to make three independent BRIX2 base modules
interact, despite having no previous knowledge regarding wireless communication or
microcontroller programming.

Interactive Wearables: “BioSense“

When working in an office, the correct body posture is widely regarded as one of the
keys to avoid back problems while sitting all day. In her project, which was part of
the “Sensor Systems” lecture, one student developed an application that monitors
and corrects the body posture of an office worker [155]. The correct body posture is
in this case defined as maintaining legs at a 90 degree angle and an upright upper
body. The student attached a BRIX2 module including an SD card and VibroSound
extension to the user’s neck and lower leg using straps, see Figure 6.16.

Figure 6.16: BioSense module placement: Sensors and actuators are mounted on the
neck and the lower leg of the user.

209

In a first experiment, the student recorded the motion patterns of two participants
working in an office during a period of 60 minutes. The data from both modules
was written onto an SD card and showed when and for how long the user sat with
an incorrect posture. In the second experiment, she applied a vibration feedback
to either neck or leg if the user’s posture was not correct. At the same time, the
student recorded when and for how long the posture remained incorrect despite the
feedback. Comparing the results of both runs, she concluded that feedback actually
helped the participants to identify and correct a wrong posture.
In this application, the compact size and low weight of BRIX2 allowed to attach them
to a human body without restricting or hindering the wearers movements. Wireless
operation is possible because of the internal battery. Using the SD card extension,
the student was able to easily record motion data and transfer it to a computer for
further evaluation. The VibroSound module allowed her to experiment with different
types of feedback in this interactive application.

Smart Environments: “Weather to Go”

“Weather to Go” [156] is an auditory ambient display that informs users about the
upcoming weather situation when leaving the room. Weather forecast data is pre-
sented as a soundscape which is played back on speakers close to the door as long
as it is opened. In order to measure the opening angle of the door, a BRIX2 module
was attached to the door and connected via USB to the application, see Figure 6.17.

Figure 6.17: Weather to Go: A BRIX2 modules is fixed to a door in order to measure
the opening angle.

210

In the first version of “Weather to Go”, only gyroscope data was used to determine if
the door is open or closed. Due to the gyroscope drift, this only worked for a limited
number of opening and closing cycles. The stability of the system can be increased
by also using the magnetometer or only the magnetometer. BRIX2 was chosen for
this application because it contains all necessary sensors, can easily installed on a
door and only requires a single USB connection for data and power. It could also
run off the battery with a wireless data connection to the host system. The quick
installation process makes it possible to use the system outside the lab environment,
for example in private homes during a long-term user study or during demonstrations
at other research facilities.

Closed Feedback Body Area Network: The Haptic Belt

The goal of this project was to assist people with balance problems, for example
stroke patients, to regain their natural body balance. The haptic belt, see Figure 6.18
(a), is equipped with haptic actuators (haptuators), placed at the four cardinal
directions, close to the center-of-gravity. Sensors determine the posture of the upper
body and the feedback provided by the haptuators supports the natural signals from
the patient’s vestibular system. In a training scenario, patients practice a challenging
balance task and are supported by the haptic belt until their body learns to maintain
balance on itself again.

(a) (b)

Figure 6.18: The haptic belt (a) and the chest strap with a BRIX2 module used as
an orientation sensor (b).

The system consists of two parts: The haptic belt serves as an actuator and pro-
vides the haptic feedback to the wearer. A chest strap with a BRIX2 module, see

211

Figure 6.18 (b), measures the posture of the upper body using the IMU and commu-
nicates with a second BRIX2 module inside the belt wirelessly. The control signals
for the haptuator are generated by the module inside the belt based on the orienta-
tion data and fed into the signal generator and amplifier circuits of the haptuators
via UART. The haptic belt was designed and built by an experienced hardware
developer and is a good example for BRIX2 as a capable prototyping toolkit. Our
platform combines all key aspects that are required in this application. The inte-
grated motion sensor with DMP, a wireless interface to communicate within the
BAN and a battery that allows standalone operation. Inside the belt, BRIX2 can
communicate through different interfaces, including I2C, UART and GPIOs. In ad-
dition to that, our platform is compact and light weight, so it can easily be integrated
into body-worn devices which do not restrict the wearer’s movements.

212

6.4 BRIX2 User Survey

In order to assess the user acceptance of the BRIX2 system and collect ideas for future
improvements, we have conducted a survey among 20 users of the system. For this
we designed a questionnaire (see CD-ROM) that we handed out to users after they
had become familiar with BRIX2, for example in the middle of a student project,
after some lectures or at the end of a workshop. The survey is not intended to be a
usability study or the like but a way to collect detailed feedback from our users. Since
the group of participants is relatively small and homogeneous, their statements might
not reflect a general opinion. In this section, we present a qualitative evaluation of
the survey results and show selected comments of users.

6.4.1 The BRIX2 User Survey Questionnaire

The questionnaire was handed out to the users in either German or English language,
depending on their preference. In the following, we only refer to the English version.
The document contains 59 questions, around half of them are to be answered in a
Likert response format with five items, two positive, two negative, “don’t know”. We
decided not to add a neutral element in order to force a decision if participants chose
to share their opinion. The “don’t know” item was on the far right, separated by a
line from the other items. The rest of the questions were either free text response
format, an interval scale rating or a binary response format.

6.4.2 About the Survey Participants

The study was conducted among 20 people, 13 of them Master students, the rest
Bachelor students, all of them in computer science. The average age of the partici-
pants was 24.6 years. 16 participants reported German as their first language, one
English and three Hindi or Tamil. The majority of the participants identified as
male (16), two as female and two did not specify.

Prior Knowledge

In order to evaluate the prior knowledge of the participants, we asked them to as-
sess their level of experience with computers, electronics and microcontrollers. In
addition, we asked for the programming languages they were experienced in as well
as the operating systems they use. Most participants listed at least two program-
ming languages. Only two did not list C or C++ as programming languages they
are experienced in, but did list Java, which is closely related to C++ regarding the
syntax. This means that all participants were familiar with the Arduino program-
ming language, based on C and C++. Most participants named multiple operating
systems they use: 18 listed Linux, 9 Windows and three OSX.

213

14

12

10

8

6

4

2

0

ProfessionalNo ExperienceAnswers

How would you
assess your
experience with
computers?

How much prior
experience had
you with
the Arduino
platform be­
fore?

How would you
assess your
experience
with basic elec­
tronic compo­
nents such as
resistors and
capacitors?

How would you
assess your
experience
with digital
components
such as micro­
controllers?

How would
you assess
your experi­
ence in terms
of the design
of electronic
cirucits?

Figure 6.19: Self assessment of computer and electronic skills on a five-stage scale
from professional to little or no experience.

Skill Levels

While all participants rated themselves as very experienced with computers in gen-
eral, only 35% of them reported to had hands-on experiences with the Arduino
platform, see Figure 6.19. In the free text questions, 13 out of 20 participants stated
that they had never used Arduino before. Knowledge on basic electronics like re-
sistors and capacitors was a little more common than knowledge on for example
microcontrollers. Most participants had no or only little experience with designing
electronic circuits. In general we can conclude that while the software knowledge
is quite profound among the participants, the knowledge about computer hardware
and electronics is only basic.

214

6.4.3 Getting Started With Programming BRIX2

After being asked for data on their person and their background, participants were
asked to share their experiences with the setup of the Arduino IDE and the LiBRIX2

as well as their thoughts on starting programming by trying and modifying the
examples provided with LiBRIX2. The first questions had to be answered in a
Likert response format.

The installation of the Arduino environment was easy.

Installing LiBRIX 2 was convenient.

I did not have any problems getting used to the Arduino environment.

The programming examples of LiBRIX 2 are easy to understand.

There are enough programming examples.

The examples helped me to understand BRIX2.

Strongly Agree Agree Disagree Strongly Disagree Don‘t know

0 10 155 20

Figure 6.20: Survey results for questions regarding getting started with BRIX2.

Setup

The results show that most participants rated the installation of the Arduino IDE as
easy and without any problems, see Figure 6.20. Adding the LiBRIX2 to the IDE was
also simple for most users. The four negative ratings may be the result of confusion
since the question was inverted in the survey (“Installing LiBRIX2 was inconvenient”).
In the free text questions on the LiBRIX2, none of the users that rated negatively on
this question provided comments on installation issues. According to our subjective
experience, the majority of the survey participants got used to the Arduino IDE
quite easily.

Programming Examples

Most participants reported that they were able to understand the programming
examples without problems. At this point it should be noted again that all users
in the survey had programming experiences and most of them listed C/C++ as
programming languages they have worked with. The opinion on the number of

215

programming examples is a bit more diverse. The original question was “I would
have liked more programming examples.”. Along with this question, there was a
free text question on topics that were missing dedicated programming examples.
Users listed “The serial port”, “The Mozzi framework” and “The servo extension”.
In response, a dedicated example and more details on communication via the serial
port were added to the documentation. In general, the programming examples were
rated as helpful. We can therefore conclude that no participant experienced any
fundamental issues with LiBRIX2.

6.4.4 BRIX2 Hardware

I think it is important to know how the BRIX2 system works in detail.

I found it easy to understand which components are included in the BRIX2 module.

I immediately knew how to connect the Base Module with the Extension Modules.

The Extension Modules were easy to remove from the Base Module.

Strongly Agree Agree Disagree Strongly Disagree Don‘t know

0 10 155 20

Figure 6.21: Survey results for questions regarding understanding and handling
BRIX2.

Only half of the participants considered it important to know how the system works
in detail, see Figure 6.21. This indicates that a certain level of abstraction in the
hardware and software is feasible, but all information should still be accessible and
present. Ninety percent of the participants stated they found it easy to understand
which components are included in the platform, information that is clearly stated
on the BRIX2 website. Regarding the handling of the BRIX2 system, a fundamental
action is connecting extension modules to and disconnecting them from the base
module. Almost all participants stated they immediately knew how to connect ex-
tension modules to the base module, which proves that this aspect of the design is
rather intuitive. In order to evaluate the quality of the mechanical connection, we
asked whether the extension modules were easy to remove from the base module.
85% of the participants agreed and 10% disagreed. The question was formulated in
reverse in the original questionnaire, so errors might have occurred while filling in
the surveys. To find out which extension modules are most popular, we asked the
participants which modules they used for their project. It is important to note that

216

AmbiSense

AudioAmp

Breakout

BTLE

MakeyMakey

Proximity

SD-Card

Servo

Vibro Sound

14

12

10

8

6

4

2

0

Users

Figure 6.22: Which extension modules were used by the participants?

some participants filled out the questionnaire after doing a workshop or a lecture in
which they could just experiment with the system and freely choose the components,
while others used the platform for a certain purpose from the start on. This means
they only used the extensions that were required in their application or instructed
to use. However, in Figure 6.22, we can see that the AmbiSense and proximity mod-
ules were the most frequently used sensors whereas the VibroSound module was the
most frequently used output extension. All three of those extensions are easy and
intuitively to use. In contrast for example the BTLE module is rarely used, possibly
because it involves a level of complexity, requiring a BTLE end device and a custom
application on that device. When asked about technical difficulties with the base
module or the extension modules, two participants reported issues with the virtual
serial port, which sometimes disappears when the hardware is reset or reconnected.
Regarding the extension modules, two users had difficulties maintaining the electri-
cal connection to the VibroSound extension modules. These participants were using
BRIX2 modules with case design II (see Section: 4.3.3), which had a top plate that
was too thick and thus did not allow proper electrical connections in some cases.
This issue was solved with case design III, see Section 4.3.4. Please note that the
button, potentiometer and infrared extension modules were not part of the survey
because they were developed later, in response to demands from users.

217

6.4.5 Documentation

The BRIX2 website made it easier for me to get started with BRIX2.

The range of functions of the Base and Extension Modules becomes clear in the documentation.

The BRIX2 website is well structured.

Text passages on the BRIX2 websites are not too long.

The documentation contains enough code examples.

The documentation does not contain too many technical details.

The documentation is easy to understand.

Strongly Agree Agree Disagree Strongly Disagree Don‘t know

0 10 155 20

Figure 6.23: Survey results for questions regarding the BRIX2 documentation.

To assess the quality of our documentation we asked the participants some general
questions regarding this aspect, see Figure 6.23. The BRIX2 website received mostly
positive feedback from the participants. The majority of them agreed that the
website had helped them to get started with the system and that the range of
functions of BRIX2 was clearly stated. In order to help more users getting started
with BRIX2, the “Getting Started” section of the website might have to be revised.
75% of the participants stated that the website was well structured and the texts
were not too long. The same number of participants agreed that the documentation
did not contain too many details and was in general easy to understand.

6.4.6 Motivation and General Opinions

A crucial aspect of BRIX2 as an educational tool is to motivate students to learn
more about the field on their own. This is why we asked the participants about their
personal experience with BRIX2, see Figure 6.24. 95% of them stated that working
with BRIX2 motivated them to learn more about physical computing. 75% agreed
that the experience with BRIX2 got them interested in the functional principles of
electronic devices in general. All participants stated that they find BRIX2 easy to
get started with and would also agree that the platform would improve lectures on
physical computing, electronics and sensor systems. Please note that self-reports of
survey participants only reflect a subjective opinion which might not be generalized.

218

Working with BRIX2 motivated me to learn more about physical computing.

Working with BRIX2 has piqued my interest in the functional principle of electronic devices in general.

I found it easy to get started with the BRIX2 system.

BRIX2 would improve lectures in physical computing, electronics and sensor systems.

I would not discourage other people to use BRIX2 for physical computing projects.

Strongly Agree Agree Disagree Strongly Disagree Don‘t know

0 10 155 20

Figure 6.24: Personal experiences of the survey participants with BRIX2.

Next we assessed how BRIX2 inspired the participants. For that we asked them what
they would do with the platform if they could use it for a longer period of time, see
Figure 6.25. More than half of the participants stated that BRIX2 could be a solu-
tion for an application they had had in mind before, but never implemented. Since
the hardware knowledge of most participants is not profound (see Section 6.4.2), it
seems plausible to conduct that the BRIX2 system can empower users to attempt
implementing applications that they did not have a solution for earlier. Working
with BRIX2 gave eighty percent of the participants ideas for new applications that
they might implement in the future. Most participants stated they could imagine to
apply BRIX2 for their personal use as well as to base a student project, Bachelor’s
or Master’s thesis on the platform. Please note that some of the participants were
already working on such projects with BRIX2 when they filled out the questionnaire.
The free text answers to the question on projects that the participants would like to
implement with BRIX2 range from home automation to robots and quadcopters.

219

Strongly Agree Agree Disagree Strongly Disagree Don‘t know

0 10 155 20

BRIX2 could be a solution for an application that I had planned before but never implemented.

Working with BRIX2 have me ideas for new applications.

I can image using BRIX2 for my personal use.

I can imagine using BRIX2 in my Bachelor/Master‘s thesis or in a semester project.

Figure 6.25: In how far did working with BRIX2 inspire the participants?

6.4.7 Suggestions for Future Revisions

Since we are eager to include users into the design process for future BRIX2 revi-
sions, we asked the participants to propose additional features or changes. Potential
extension modules that participants asked for were a (video) camera, a display ex-
tension with several LEDs, a loudspeaker module, a WLAN- and a button module.
As a reaction to this, we created the button module and included a piezo speaker
into the former vibration module, which then became the VibroSound module. The
rest of the suggestions are part of our future work. When asked what changes might
improve BRIX2 in the future, the participants named more connectors, an option to
connect extensions via cables, improvements on the IDE, more extension modules in
general and a reset button on the base module. These are also issues we address in
Section 7.2.

220

6.5 Conclusion

This chapter was separated into three main sections. In the first section, we summa-
rized the technical specifications of all BRIX2 hardware components including the
extension modules. The data was partially taken from the datasheets of the com-
ponents we used and partially resulted from our own measurements. In addition,
we discussed how selected components of our system performed in real-life scenarios.
These illustrative applications are supposed to provide the reader with a better sense
of the capabilities of BRIX2. We have presented for example a qualitative analysis
of data recorded with different sensors as well as calculations of the performance of
different components under varying conditions.
In the second section, we have shown examples of how we used BRIX2 in teach-
ing and prototyping scenarios. We reported our experiences with lectures in which
we used our toolkit to teach ubiquitous and physical computing as well as sensor
systems. BRIX2 was in general received well by the students and in our opinion sig-
nificantly increased their efficiency and motivation in the practical exercises of the
lectures. Not only had students quick initial success, but also a long-term motivation
to work with the system. Even students who never programmed before were able
to develop applications beyond the scope of example programs we provided. Having
discussed the capabilities of BRIX2 as an educational tool, we subsequently regarded
examples in which our system is used as a prototyping toolkit. We introduced dif-
ferent projects and applications of researchers and students that are based on our
platform. The selection of these examples aims to represent the five different fields of
applications that we introduced in Chapter 2 and thereby demonstrate that BRIX2

can serve as a prototyping tool in all these fields, according to our hypothesis stated
in Chapter 1.
The third section was dedicated to a qualitative analysis of a survey we conducted
among users of our system by custom questionnaires. We asked 20 persons who
had just used BRIX2 about their experiences with our system and on their opinions
regarding different aspects of our platform as well as about ideas for future revisions
and extension modules. The majority of the participants reported that they found it
easy to get started with BRIX2 and the Arduino IDE and that they were able to use
the hardware intuitively. Almost all participants stated that BRIX2 would improve
lectures in physical computing, electronics and sensor system and that working with
our platform motivated them to learn more about physical computing. As a response
to request from users that we extracted from the survey, we developed additional
extension modules such as the button module, integrated further example sketches
into the LiBRIX2 and added details on different topics to the documentation.

221

7 Conclusion and Future Work

In this thesis we have described the design and implementation of the BRIX2 sys-
tem, a toolkit which on the one hand allows rapid and easy prototyping of ubiquitous
computing applications and on the other hand is applicable for learning and teach-
ing in the fields of physical computing, sensor systems and electrical engineering.
We derived the design of our platform from a detailed survey of 28 different devices
from the fields of microcontroller development boards, physical computing platforms,
wireless sensor nodes, inertial measurement platforms and wearable electronics plat-
forms. We expected that if a platform combined the principal capabilities of the
devices we analyzed, it could be used as a prototyping and teaching tool in all five
fields, which as a whole resemble the demands of ubiquitous computing as a field.

In order to integrate all required features into a single system, we decided for a mod-
ular approach. The functionalities that were most likely to be used in the majority
of future applications were integrated into the base module. It represents the funda-
mental component of any BRIX2 application and contains two microcontrollers, an
inertial motion sensor, a wireless transceiver, a battery and three extension ports.
The compact and lightweight design especially facilitates mobile and wearable ap-
plications. Further functionalities and features can be added by stacking extension
modules onto the base module. This allows users to precisely match the hardware to
the requirements of their application and thus reduces a potential overhead. As an
initial kit, we developed 12 different extension modules containing sensors, actuators
or communication interfaces. To keep our system easy to use, especially for beginners
in programming or electronics, we designed BRIX2 to be compatible to the Arduino
IDE, a programming environment for Atmel AVR microcontrollers that is widely
used among developers, students and hobbyists and therefore well documented.

In a first production run, we built around 40 base modules and more than 100 ex-
tension modules, which were used as a teaching platform in lectures on ambient
interfaces and sensor systems. Our BRIX2 modules also served as a prototyping
tool in research and collaboration projects, student projects and Master’s as well as
Bachelor’s theses. By presenting successful BRIX2 projects from the five different
fields of application we introduced in Chapter 2, we have demonstrated that our
system can serve as a prototyping tool in all of them. Some of these projects were
implemented by beginners with little experience in electronics and programming,
others by experienced developers, which indicates that our platform can adapt to

223

the demands of different kinds of users and thereby fulfills our expectation stated in
Chapter 1. A survey we conducted among students and researchers who had used
BRIX2 in lectures and projects showed that our platform was well received. The
participants considered it a useful tool for teaching and reported that working with
our system piqued their interest in physical computing. Learning about microcon-
trollers and sensors with BRIX2 empowered many of them to approach new projects
they were not able to implement before.

In the following we conclude the contributions of our project to research and teaching
before we present a brief outlook on potential future developments and applications.

7.1 Results and Contributions

In this section, we would like to summarize how our system supported and facilitated
teaching and applied research especially at CITEC. We have separated the projects
into two categories, teaching and prototyping, according to the two main fields of
application we targeted with our platform.

7.1.1 BRIX2 as a Teaching Platform

Up until now (2016) the BRIX2 system was used in five lectures, two Master’s theses
and one Bachelor’s thesis. On the one hand, we used the system in the lectures to
introduce students to microcontrollers and physical computing. This initial knowl-
edge and experience represents a significant empowerment, because even though the
students only briefly worked with microcontrollers, sensors and actuators, they soon
discovered the potential of this technology and the possibilities it offers them.
On the other hand, especially in the “Sensor Systems” lecture, our platform enabled
the students to explore the characteristics and behavior of sensors in practice. Here,
they quickly discovered discrepancies between idealized theoretical models of sensors
and real world scenarios, for instance when they tried to calculate the position of an
object based on the double integration of acceleration data. As a result they are now
able to more precisely judge the capabilities of different sensors they plan to use in
future projects.
The lectures were typically followed by projects in which students could pick an
individual topic and use one of the platforms we introduced them to in order to im-
plement an application or perform a study. BRIX2 was preferably picked for mobile
and wearable projects such as those we introduced in Section 6.3.2. We as lecturers
were often surprised by the complexity of applications students implemented after
working with our platform for only a few hours as their first experience with micro-
controllers and sensors.

224

In the Master’s thesis “Measuring Body Postures with low-cost Inertial Sensors”, see
Section 6.3.2, a student explored the potential of low cost inertial sensors for full
body motion tracking. His experiments and implementation were based the BRIX2

system as a wearable, programmable IMU that allowed him to pre-process and record
motion data. In another Master’s thesis, our platform was used to evaluate the
BLE113 Bluetooth transceiver that is built into the BRIX2 BTLE extension module
as well as the BLE112 which was implemented as a wireless module for the B2DK. In
the Bachelor’s thesis “Weather to Go”, see Section 6.3.2, a student used our platform
as a sensor to measure the opening angle of a door.
As we could see in the results of our user survey, see Section 6.4, which was conducted
mostly among students who had worked with BRIX2 in lectures or projects, the vast
majority described their experience with our platform as positive in general. All
participants agreed to the question whether they found that BRIX2 would improve
lectures on physical computing and electronics. Judging from the personal feedback
that we received from students after lectures, working with our platform was a
valuable and exciting experience for them.

7.1.2 BRIX2 as a Prototyping Toolkit

In CITEC large scale projects like the Cognitive Service Robotics Apartment (CSRA) 1,
smart environments blend with smart objects and even robots, involving sensors, ac-
tuators and wireless communication. Humans can interact with this environment for
instance through sensors and interactive devices worn on their body. BRIX2 is well
suited for prototyping in those scenarios by providing all the functionalities neces-
sary for initial implementations. In the following we present a list of all projects at
CITEC and in other institutes that our platform was used in.

Research and Student Projects

• WSN Protocol Evaluation: Multiple BRIX2 modules were deployed as a
WSN to test different routing strategies and protocols, see Section 6.3.2.

• Haptic Belt: A belt was equipped with haptic actuators (“haptuators”) to
help stroke patients maintain body balance. A BRIX2 base module measured
the pose of the upper body and controls the haptuators, see Section 6.3.2.

• Haptic Shoe: The follow-up approach of the haptic belt. Here, BRIX2 was
used during the prototyping phase.

1https://cit-ec.de/en/content/cognitive-service-robotics-apartment-ambient-host

225

• Infrared Person Tracking: A custom extension module equipped with an
infrared blob tracking camera was used to track persons in a room. A BRIX2

module streamed the blob positions as an HID to the application PC for in-
creased performance.

• Interaction Experiments: In order to silently send signals between the con-
trol room and an experimenter without disturbing the participants, a pair of
BRIX2 modules turned hand motions on one device into light signals on the
other, thus providing simple, bi-directional communication.

• Sonified Aerobics: A number of BRIX2 modules were attached to a human
body and streamed motion data wirelessly to a PC, which sonified the motions
in real time, thus providing an auditory representation of the body posture
and movements. [63]

• UWB Evaluation: To evaluate a novel UWB module, a custom extension
module was developed and equipped with the device. Multiple BRIX2 nodes
allowed rapid deployment of different network configurations.

• BTLE Evaluation: In order to find out if the BTLE technology is feasible
for wireless streaming of sensor data recorded on the bodys of athletes, our
BTLE module (see Section 5.3.4) was used for experimentation and measure-
ments. [82]

• IMU Evaluation: To compare the DMP performance of the MPU9150 in-
tegrated into BRIX2 and the more modern Bosch BNO055 IMU, a custom
extension module for the BNO055 was developed and allowed to record data
with both sensors at the same time.

• Weather to Go: Our platform was used to measure the opening angle of a
door in order to detect if somebody opens it. In an improved version, a prox-
imity sensor underneath the handle helps to determine of the door is opened
from the inside or the outside.

• Analysis of Throwing Movements: BRIX2 enabled sport students to record
and analyze characteristic acceleration patterns of a human when throwing a
ball.

• InfoPlant: Multiple BRIX2 modules were used in the first prototyping phase
to test different sensing modalities and actuators for an augmented plant that
can be used as an information display. [157]

• BioSense: BRIX2 was used to measure the body posture of an office worker
and provide haptic and auditory feedback in oder to correct the angle of the
upper body towards a more healthy position, see Section 6.3.2.

226

• Assisted Juggling: Three BRIX2 modules were used as smart juggling balls
that provide beginners with a haptic signal that indicates the correct timing
for throwing the next ball, see Section 6.3.2.

• Measuring Body Postures with Low-Cost Inertial Sensors: By dis-
tributing 10 BRIX2 modules on a human body, it was possible to record full
body movements of a person and compare it against a ground truth recorded
with a camera tracking system. [153]

• Skate Analyzer: A skateboard was equipped with a BRIX2 module which
measured accelerations as well as wheel rotation and sent the data to a smart-
phone via BTLE for further processing and visualization, see Section 6.3.2.

• Performance Evaluation of Wireless Sensor Systems: Multiple BRIX2

modules were used to evaluate data throughput rates in different wireless net-
work topologies. [158]

Industry Collaborations

• Innovative Bedienung für Smart-Home Komponenten (IBSKOM):
In this “it’s OWL“ project, BRIX2 modules were used to build the first func-
tional prototype of a novel, cube-shaped motion based control device for smart
environments.

• KogniDoor: BRIX2 was used during the prototyping phase for an intelligent
door, equipped with sensors and actuators.

227

7.2 Visions and Future Work

In this section, we discuss different potential improvements and future developments
of the BRIX2 platform including novel extension modules and an updated base mod-
ule. Furthermore we provide some long-term perspectives for our toolkit.

7.2.1 Suggestions for BRIX2 Future Revisions

In Chapter 6, we already pointed out potential improvements for future revisions of
our platform. In this section we briefly touch on the latest developments in tech-
nology and discuss how the next version of BRIX could profit from recent electronic
components and manufacturing techniques.

Electronic Components

The rapid development in the sectors SoCs, MEMS devices and microcontrollers
leads to the fact that an electronic device, which was up to date during design
time might be outdated by the time it is implemented. Event though we chose the
components for BRIX2 carefully and selected modern devices like for example the
MPU9150 shortly after their release, there are more powerful alternatives available
on the market now, only three years later. For us as developers, this represents an
ongoing challenge to stay up to date, but also means a constantly increasing number
of potential applications that we can accomplish only through improvements of the
technology that becomes available to us.
Since our platform is modular, improvements in technology do not force us to re-
design the whole system but allows us to swap only parts of it. A novel base module
would still be compatible to the existing and growing set of extension modules and
vice versa. In the following we discuss some suggestions for components that could
be integrated into future versions of the BRIX2 base module.

Microcontroller Had we not listed Arduino compatibility as one of our key require-
ments while selecting a microcontroller for BRIX2, we would probably have used a
modern ARM processor, for example from the Atmel SMART series 2. With much
higher clock speeds, bigger memory and features like Direct Memory Access (DMA)
or FPUs and a lower power consumption, these devices are in any regard superior
to the 8 bit microcontrollers we used in our design. The latest Arduino products
incorporate 32 bit microcontrollers like the ATSAMD21G18 3, which would allow us
to base a future BRIX2 revision on a more powerful device while still maintaining
the full Arduino compatibility.

2http://www.atmel.com/products/microcontrollers/arm/default.aspx
3https://www.arduino.cc/en/Main/ArduinoBoardZero

228

IMU Today Invensense is no longer the only manufacturer that offers integrated
data fusion in IMU sensors. We already experimented with the Bosch BNO055, which
is a more open device with regards to the fusion algorithm than the MPU9150 and
easier to handle from the software side. Maxim Integrated released the MAX21100
in 2015, which also supports 9-DOF sensing and integrated motion data fusion. It is
to be expected that MEMS IMUs will become increasingly capable in the next years.

Wireless Transceiver In the last years, wireless transceivers became less expensive
and more compact, especially WLAN and BTLE devices. The ESP8266 WLAN
SoC for example is available for less than 3 USD and not only includes the wireless
transceiver, but also a low-power 32 bit application processor, which is supported by
the Arduino IDE 4. Still, if we re-designed the BRIX2 base module today, we would
have to re-evaluate which wireless protocol or technology is optimal for a general
purpose platform and would have to accept a compromise. However, this problem
can most likely be overcome in the future through Software Defined Radio (SDR)
devices that can operate on an almost arbitrary carrier frequency and are therefore
compatible to almost any wireless standard.

Enclosure Design

In Section 4.3.5 we already mentioned that recent advances in 3D printing and other
rapid prototyping techniques allow for ever more precise, less expensive and quicker
manufacturing of objects made from a growing variety of different materials. This
will allow us to print friction based connections with almost the same precision than
injection molding, so we would no longer need to incorporate Lego bricks into our
designs. We could also move to different enclosure designs or accessories that for
example integrate the BRIX2 base module into a wristband while maintaining the
concept of stackable extension modules at the same time.

Potential Extension Modules

Inspired by the feedback of users and by our own work on the BRIX2 project, we had
several ideas for additional extension modules. Some of these originated from users’
requests, others are technology driven, meaning they incorporate novel components
that were released after design time of BRIX2. In the following we list some of these
ideas for future extension modules.

4https://github.com/esp8266/arduino

229

Barometric Pressure Sensor These sensors are available as MEMS devices in
compact packages and allow to measure the barometric pressure, which can then be
translated to an altitude above sea level. This way the extension module would be
possible to measure the absolute location of a BRIX2 application in the z-axis within
a centimeter range, given stable barometric pressure conditions.

GPS Extension Module This module would allow a satellite based localization in
outdoor scenarios and allow for location based applications. Unfortunately we could
so far not identify a GPS sensor that is small enough to be integrated in a standard
BRIX2 extension module.

Improved Proximity Sensor As an improvement for our popular proximity exten-
sion module, see Section 5.3.2, we could incorporate the Avago APDS-9960 proxim-
ity, ambient light, RGB and gesture sensor [159]. The device can not only measure
proximity but also detect different touch-less gestures performed within range of the
sensing element. The photo diodes inside the device can also be used to measure the
intensity as well as the color of ambient light.

Infrared Camera Sensor Using the Panasonic AMG88 infrared array sensor [160],
BRIX2 can be equipped with a low-resolution infrared camera. The extension mod-
ule would allow applications like spatially confined temperature measurements or
person detection.

Multiplug and Cable Connectors In some cases the three extension module slots
are not sufficient to attach all functionalities required by a specific application. Since
our extension headers on the base module are parallel, we could build an extension
that multiplies the number of available slots. Some users requested cable connectors
in order to use extension modules with a certain distance from the base module.
Both components could be part of a future BRIX2 connector kit.

7.2.2 Long-Term Perspective

Besides technological advances for future BRIX2 components, we do also consider
different future perspectives for BRIX2 as a project. In the following we briefly
touch upon making our platform a product and our ideas for future applications in
teaching with BRIX2.

230

BRIX2 as a Product

Although our platform is open source and other developers are able to build their
own versions of our system, this still involves a certain effort, facilities and costs. In
order to make BRIX2 more available to other researchers and the public, a promising
approach is making the platform an actual product that can be purchased as a fully
functional unit. Other projects like littleBits (see Section 2.2.5) or Phidgets (see
Section 2.2.4) are good examples for projects that started off in universities, became
a product and are now well known in their target areas of application around the
world. Since BRIX2 is Arduino compatible, it could also be part of the Arduino
AtHeart program 5 which would provide a higher visibility of our product and better
integration into the Arduino community.

Further Potential for BRIX2 as a Teaching Platform

While our platform was successfully used as a teaching and learning tool in some
lectures, it might be interesting to center a whole lecture around the system. Students
would not only be able to use BRIX2 as a toolkit but could also actively take part
in its development. They could for instance design, build and test further extension
modules or software components. Not only would the students learn about system
and hardware design but also BRIX2 as a project would profit from novel ideas and
additional hardware as well as software components. Especially in combination with
the release of our toolkit as a product, students are likely to be motivated by the
perspective of potentially designing a piece of technology that becomes available to
the public.

5https://www.arduino.cc/en/ArduinoAtHeart/Products

231

Appendix

233

List of Abbreviations

ACK ACKnowledge
ADC Analog to Digital Converter
API Application Programming Interface
B2DK BRIX2 Development Kit
BAN Body Area Network
BGA Ball Grid Array
BTLE Bluetooth Low Energy
CAD Computer Aided Design
CAM Computer Aided Manufacturing
CIT Continuous Integrated Testing
CITEC Center of Excellence in Cognitive Interaction Technology
CLK Clock Signal
CNC Computer Numerical Controlled
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CSMA Carrier Sense Multiple Access
CSRA Cognitive Service Robotics Apartment
CTS Clear To Send
DC Direct Current
DIP Dual InLine Package
DMA Direct Memory Access
DMP Digital Motion Processor
DOF Degrees-of-Freedom
DSP Digital Signal Processing
DTR Data Terminal Ready
EEPROM Electrically Erasable Programmable Read Only Memory
FAQ Frequently Asked Questions
FFC Flat Flex Connector
FPGA Field-Programmable Gate Array
FPU Floating Point Unit
FSR Force-Sensing Resistor
GATT Generic Attribute Profile
GPIO General Purpose I/O
GPS Global Positioning System
GPU Graphics Processing Unit
GSM Global System for Mobile Communications
HCI Human Computer Interfaces
HDMI High Definition Multimedia Interface
HID Human Interface Device
HSV Hue, Saturation, Value

234

I2C Inter-Integrated Circuit
I/O Input/Output
IC Integrated Circuit
IDC Insulation-Displacement Connector
IDE Integrated Development Environment
IMU Inertial Measurement Unit
IoT Internet of Things
ISM Industrial, Scientific and Medical
ISP In System Programming
JTAG Joint Test Action Group
LAN Local Area Network
LED Light Emitting Diode
LCC Leadless Chip Carrier
LCD Liquid Crystal Display
LGA Land Grid Array
LiPoly Lithium Polymer
LSB Least Significant Bit
MAC Media Access Control
MCU Microcontroller Unit
MEMS Micro-ElectroMechanical System
MIDI Musical Instrument Digital Interface
MISO Master In, Slave Out
MLF MicroLeadFrame
MoCap Motion Capturing
MOSI Master Out, Slave In
NAK Negative ACKnowledge
OSC Open Sound Control
P2P Peer to Peer
PAN Personal Area Network
PC Personal Computer
PCB Printed Circuit Board
PIFA Planar Inverted Folded Antenna
PLC Product Life Cycle
PWM Pulse Width Modulation
QFN Quad Flat No leads
RAM Random Access Memory
RF Radio Frequency
RFID Radio Frequency Identification
RGB Red, Green and Blue
RSSI Received Signal Strength Indicator
RTC Real Time Clock
RX Receive

235

SCL Serial Clock Line
SDA Serial Data Line
SDK Software Development Kit
SDR Software Defined Radio
SMT Surface Mount Technology
SoC System on Chip
SPI Serial Peripheral Interface
SRAM Static RAM
TDMA Time Division Multiple Access
TQFP Thin Quad Flat Package
TWI Two Wire Interface
TX Transmit
UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus
UWB Ultra Wide Band
VPU Video Processing Unit
VQFN Very Thin Quad Flat No leads
WLAN Wireless LAN
WSN Wireless Sensor Network

236

Bibliography

[1] I. Bernard Cohen. Howard Aiken: Portrait of a Computer Pioneer. page 329,
2000.

[2] Berkeley EECS Department, University of California. Mark D. Weiser Biog-
raphy Page. 1999.

[3] Jan Anlauff, Tobias Großhauser, and Thomas Hermann. tacTiles. In Proceed-
ings of the 6th Nordic Conference on Human-Computer Interaction Extending
Boundaries - NordiCHI ’10, page 591, New York, New York, USA, 2010. ACM
Press.

[4] EIA. EIA standard RS-232-C: Interface between Data Terminal Equipment
and Data Communication Equipment Employing Serial Binary Data Inter-
change. 1969.

[5] NXP Semiconductor. I2C Bus Specification and User Manual. page 64, 2014.

[6] Atmel. AVR910: In-System Programming. page 12, 2008.

[7] IEEE. IEEE Std 1149.7-2009. IEEE Std 1149.7-2009, pages 1–985, 2010.

[8] Intel, Compaq, Hewlett-packard, Microsoft, Lucent, Philips, and N E C. Uni-
versal Serial Bus Specification. Group, page 650, 2000.

[9] Atmel. Atmel AVR 8-bit and 32-bit Microcontrollers. 2016.

[10] Microchip. PIC Microcontrollers, Microchip Technology Inc. 2016.

[11] Parallax. BASIC Stamp, Parallax Inc. 2016.

[12] Mike Szczys. TI makes a big bid for the hobby market | Hackaday. 2010.

[13] Texas Instruments. MSP430G2x53, MSP430G2x13 Mixed Signal Microcon-
troller (Rev. J). page 76, 2011.

[14] Texas Instruments. TI LaunchPad - BoosterPacks. 2016.

[15] Texas Instruments. Build Your Own BoosterPack for TI LaunchPad.

237

[16] Hernando Barragan. Wiring: Prototyping Physical Interaction Design of the
Academic Programme. 2004.

[17] Casey Reas and Benjamin Fry. Processing: A Learning Environment for Cre-
ating Interactive Web Graphics. Proceedings of SIGGRAPH ’03, 2003.

[18] Hernando Barragan. The Untold History of Arduino, 2016.

[19] Motorola. SPI Block Guide. 2003.

[20] FTDI. FT232R USB UART IC. 2015.

[21] Arduino. Arduino Website. 2016.

[22] Eclipse. Eclipse - The Eclipse Foundation open source community website.
2016.

[23] Atmel. Atmel Studio. 2016.

[24] Arduino.com. Arduino Forum. 2015.

[25] Lauren Orsini. Arduino’s Massimo Banzi: How We Helped Make The Maker
Movement - ReadWrite. 2014.

[26] Wikipedia. List of Arduino boards and compatible systems. 2016.

[27] Alibaba. Arduino Pro Mini-Arduino Pro Mini Manufacturers, Suppliers and
Exporters on Alibaba.com.

[28] Peter Jamieson. Arduino for Teaching Embedded Systems. Are Computer
Scientists and Engineering Educators Missing the Boat?

[29] Noelle Swan. The ’maker movement’ creates D.I.Y. revolution - CSMoni-
tor.com. 2014.

[30] Deloitte Center for the Edge Media and Maker. Impact of the Maker Move-
ment. 2013.

[31] Wikipedia. Breadboard. 2016.

[32] Seeedstudio. Buy Grove - Starter Kit for Arduino [110060024] | Seeedstudio.

[33] Seeedstudio. Seeedstudio Wiki: Grove.

[34] Google Inc. Google Trends. 2016.

[35] S. Greenberg and C. Fitchett. Phidgets: easy development of physical inter-
faces through physical widgets. Proceedings of the 14th annual ACM sympo-
sium on User interface software and technology, pages 209 – 218, 2001.

238

[36] Ayah Bdeir. Electronics as Material : littleBits. Proceedings of the 3rd Inter-
national Conference on Tangible and Embedded Interaction, pages 3–6, 2011.

[37] Littlebits. What is littleBits? 2016.

[38] LittleBitsbitLab. Github: LittleBits. 2015.

[39] Andy Schmeder Adrian Freed. Features and future of open sound control
version 1.1.

[40] The MIDI Manufacturers Association. MIDI 1.0 Detailed Specification.
page 88, 1995.

[41] Hermann Kopetz. Real-Time Systems. 2011.

[42] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power
wireless research. IPSN 2005. Fourth International Symposium on Information
Processing in Sensor Networks, 2005., pages 364–369, 2005.

[43] Business Wire. Crossbow Technology Releases TelosB Mote Platform; Cross-
bow Furthers Commitment to Provide Leading Edge Technology to the Re-
search and University Community to Advance Wireless Sensor Network Devel-
opment | Business Wire. 2005.

[44] Wikipedia Org. IEEE Std 802.15.4-2006. IEEE Std 8021542006 Revision of
IEEE Std 8021542003, pages 0_1–305, 2006.

[45] Libelium. Waspmote Overview - Sensors, Wireless Protocols, Specifications |
Libelium. 2016.

[46] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: a survey. Computer Networks, 38(4):393–422, mar 2002.

[47] Wikipedia. ISM Band on Wikipedia. 2016.

[48] Wikipedia. OSI model - Wikipedia. 2016.

[49] Texas Instruments. CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF
Transceiver. page 94, 2014.

[50] Invensense. MPU-9150 Product Specification. page 24, 2015.

[51] Invensense. ISZ-2510 Product Specification. page 52, 2012.

[52] Bosch Sensortec. BNO055 Intelligent 9-axis absolute orientation sensor. page
105, 2015.

239

[53] Xsens. MTi 10-series and MTi 100-series User Manual. page 83, 2014.

[54] YEI Technology. 3-Space Sensor Miniature Attitude & Heading Reference
System User’s Manual. 2014.

[55] Femtoduino. Kickstarter: IMUduino Wireless 3D motion, BLE, 10 DoF IMU,
HTML5, Arduino by Femtoduino.com. 2014.

[56] Hillcrest Labs. BNO070: High Accuracy 9-axis System in Package for mobile,
wearable, robotics, and IoT devices. 2015.

[57] Leah Buechley, Mike Eisenberg, Jaime Catchen, and Ali Crockett. The LilyPad
Arduino. Proceeding of the twenty-sixth annual CHI conference on Human
factors in computing systems - CHI ’08, page 423, 2008.

[58] Eva-Sophie Katterfeldt, Nadine Dittert, and Heidi Schelhowe. EduWear. Pro-
ceedings of the 8th International Conference on Interaction Design and Chil-
dren - IDC ’09, page 9, jun 2009.

[59] M O’Mahony and SE Braddock-Clarke. Techno Textiles 2: Revolutionary
Fabrics for Fashion and Design. jan 2005.

[60] Sebastian Zehe, Tobias Grosshauser, and Thomas Hermann. BRIX - An
Easy-to-Use Modular Sensor and Actuator Prototyping Toolkit. Tenth Annual
IEEE International Conference on Pervasive Computing and Communications,
Workshop Proceedings, 2012.

[61] Tobias Grosshauser and Thomas Hermann. Sensor Fusion and Multi-Modal
Feedback for Musical Instrument Learning and Teaching. pages 19–21, oct
2010.

[62] Tobias Grosshauser, Bettina Blaesing, Corinna Spieth, and Thomas Hermann.
Wearable Sensor-Based Real-Time Sonification of Motion and Foot Pressure
in Dance Teaching and Training. Journal of the Audio Engineering Society,
60(7/8), 2012.

[63] Thomas Hermann and Sebastian Zehe. Sonified Aerobics - Interactive Sonifica-
tion of coordinated body movements. The 17th Annual Conference on Auditory
Display, Budapest, Hungary 20-24 June, 2011, Proceedings, 2011.

[64] Hirose. DF-17 0.5mm Pitch Board to Board Connector. 2009.

[65] E.T. Jaynes and F.W. Cummings. Embedded Interaction - Interacting with
the Internet of Things. Proceedings of the IEEE, 51(1):89 – 109, 2009.

240

[66] Phillip Torrone. Why the Arduino Won and Why It’s Here to Stay - Make:
DIY Projects and Ideas for Makers. 2011.

[67] Linus Akesson. Craft - An ATmega88 Video and Sound Demo. 2008.

[68] Sheueling Chang Shantz Nils Gura, Arun Patel, Arvinderpal Wander, Hans
Eberle. Cryptographic Hardware and Embedded Systems - CHES 2004. 3156,
2004.

[69] Wikipedia. List of Arduino Compatible Boards, 2015.

[70] Arduino. Arduino Products Website. 2016.

[71] Atmel. ATmega48A/PA/88A/PA/168A/PA/328/P Datasheet. page 50, 2015.

[72] Arduino. Arduino 9 Axes Motion Shield, 2016.

[73] Memsic. MTS/MDA SENSOR, DATA ACQUISITION BOARDS, 2011.

[74] Adafruit Industries. FLORA 9-DOF Accelerometer/Gyroscope/Magnetome-
ter, 2016.

[75] Seeedstudio. Xadow - IMU 9DOF | Seeedstudio, 2015.

[76] Honeywell. 3-Axis Digital Compass IC - HMC5883L. page 20, 2010.

[77] Wikipedia. Nickel–cadmium battery, 2016.

[78] Wikipedia. Energy Density, 2016.

[79] Wikipedia. AA battery, 2016.

[80] Wikipedia. AAA battery, 2016.

[81] Ltd Guangzhou Markyn Battery Co. Lithium-ion Rechargeable Cell Battery
Datasheet, 2007.

[82] Michael Adams. Entwicklung und Evaluierung eines BLE Multitransmitter-
szenarios für ein Vitalparametermonitoring. Master’s thesis, Universität Biele-
feld, Bielefeld, Germany, 2015.

[83] Wang. LI-POLYMER BATTERY PACKS Specification. page 6, 2006.

[84] Peter Carpenter. Balancing Li-Po Battery Packs, 2002.

[85] IQ Technologies. How to rebuild a Li-Ion battery pack, 2008.

[86] Microchip. Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge
Management Controllers. 2014.

241

[87] Sparkfun. LiPoly Charge Circuit, 2012.

[88] Microchip. 2.0 MHz, 500 mA Synchronous Buck Regulator. 2012.

[89] Invensense. MPU-6000 and MPU-6050 Product Specification, 2011.

[90] AKM. AK8975/AK8975C 3-axis Electronic Compass. 2010.

[91] Atmel. USB DFU Bootloader Datasheet. 2008.

[92] Gil Reiter. Wireless connectivity for the Internet of Things. Technical report,
Texas Instruments, 2014.

[93] Michael Bailey. General Layout Guidelines for RF and Mixed-Signal PCBs.
Technical report, 2011.

[94] Wikipedia. RF Module, 2016.

[95] Digi. RF Modules - Wireless Radio Transceivers, Transmitters & Receivers -
Digi International, 2016.

[96] Atmel. ZigBit 2.4GHz Module with Dual Chip Antenna, 2016.

[97] Bruce A. Fette. RF Basics: Radio Propagation | EE Times, 2007.

[98] Mobileinfo. Frequency Band and Licensing Requirements For Broadband,
2001.

[99] Lou Frenzel. What’s The Difference Between Bluetooth Low Energy And
ANT?, 2012.

[100] Thomas Aasebo. Wireless Technologies, 2012.

[101] Thisisant.com. ANT Message Protocol and Usage. 2014.

[102] Dynastream Innovations Inc. AP2 RF Transceiver Module. 2012.

[103] Nordic Semiconductor. nRF24AP2 Single-chip ANT ultra-low power wireless
network solution. 2010.

[104] Atmel. ZIGBIT 2.4GHZ WIRELESS MODULES ATZB-24-A2/B0. 2013.

[105] Drew Gislason. Zigbee Wireless Networking. 2008.

[106] Digi International. XBee ® /XBee-PRO ® RF Modules. Product Manual
v1.xEx-802.15.4 Protocol, pages 1–69, 2009.

[107] Digi. XBee/XBee-PRO ZigBee RF Module. page 235, 2015.

242

[108] MaxStream. XBee/XBee-PRO OEM RF Modules Product Manual. 2007.

[109] Anaren. A1101R08C Anaren Integrated Radio Datasheet. 2013.

[110] Texas Instruments. CC1101 Low-Power Sub-1 GHz RF Transceiver. 2015.

[111] Atmel. AVR2051: SerialNet User Guide. 2015.

[112] Analog Devices. ADXL330 - Small, Low Power, 3-Axis MEMS Accelerometer.
2007.

[113] Anaren. A1101R08x User’s Manual. 2012.

[114] Sparkfun. SparkFun WiFi Shield, 2015.

[115] Sparkfun. SparkFun PWM Shield, 2015.

[116] Arduino. Arduino Uno Schematic. 2012.

[117] TXC. SMD Oscillators TD Series. 2011.

[118] Zack Whittaker. Micro-USB to be universal EU phone charger, 2009.

[119] USB Implementers Forum. Universal Serial Bus Cables and Connectors Class
Document. 2007.

[120] Texas Instruments. TPS2111 Autoswitching Power Mux Datasheet. 2002.

[121] Sebastian Zehe. BRIX2 Extension Modules - BRIX 2 - Research for Cognitive
Interaction, 2015.

[122] Arduino. Arduino Playground - Shield Pin Usage, 2016.

[123] APEM. MJTP Series 6mm Tactile Switches, 2011.

[124] ACP Technologies. Carbon Potentiometers CA6, 2011.

[125] TAOS. TSL2560, TSL2561 Light-to-Digital Converter, 2009.

[126] Honeywell. Honeywell HumidIcon Digital Humidity/Temperature Sensors
HIH6100 Series, 2015.

[127] Mike Grusin. TSL2561 Luminosity Sensor Hookup Guide - learn.sparkfun.com,
2013.

[128] Limor Fried. Using the TSL2561 Sensor | TSL2561 Luminosity Sensor |
Adafruit Learning System, 2012.

[129] Sagar Sapkota. Fritzing Project – Arduino Light Sensor (TSL2561), 2015.

243

[130] David H. Hagan. Arduino library for the Honeywell HIH6130 Relative Humid-
ity and Temperature Sensor, 2015.

[131] Vishay Semiconductors. Fully Integrated Proximity and Ambient Light Sensor
with Infrared Emitter, I 2 C Interface, and Interrupt Function.

[132] Eric Rosenbaum. MaKey MaKey - An Invention Kit for Everyone, 2012.

[133] Jin Long Machinery. C1026B002F Coin Vibration Motor, 2009.

[134] ON Semiconductor. LV8413GP H-Bridge 2-Channel Motor Driver, 2013.

[135] EKULIT. SMD-P12A03 Transducer, 2013.

[136] Texas Instruments. TPA2005D1 1.4-W MONO Filter-Free Class-D Audio
Power Amplifier, 2015.

[137] Lutz Lisseck. SimpleSDAudio – Hackerspace Ffm, 2015.

[138] THRh20. Arduino library for asynchronous playback of PCM/WAV files direct
from SD card., 2015.

[139] Vishay Semiconductors. Infrared Emitting Diode, 950 nm, GaAs, 2009.

[140] Limor Fried. IR Remote Signals | IR Sensor | Adafruit Learning System, 2012.

[141] Vishay Semiconductors. TSOP62xx, TSOP64xx - IR Receiver Modules for
Remote Control Systems, 2015.

[142] BlueGiga. BLE113 Preliminary Datasheet, 2013.

[143] Charlotte Seem. Design Note DN013 Programming Output Power on CC1101.
2007.

[144] David Kotz, Calvin Newport, Robert S Gray, Jason Liu, Yougu Yuan, and
Chip Elliott. Experimental Evaluation of Wireless Simulation Assumptions.
Proceedings of the MSWiM 2004, 2004.

[145] S.L. Cotton and W.G. Scanlon. Characterization and Modeling of the Indoor
Radio Channel at 868 MHz for a Mobile Bodyworn Wireless Personal Area
Network. Antennas and Wireless Propagation Letters, 6(11):51–55, 2007.

[146] ROHM. SMLP34 Series PICOLED-RGB Datasheet, 2014.

[147] F W Campbell and R W Gubisch. Optical quality of the human eye. The
Journal of physiology, 186(3):558–78, oct 1966.

[148] Wikipedia. Wikipedia: Pulse-Width Modulation, 2016.

244

[149] Kingbright. 1.6X0.8mm SMD Chip LED Lamp Datasheet, 2012.

[150] Stefan Buchgeher. RC5 (Dekodierung mit PIC-Mikrocontroller), 2004.

[151] Rode. NT3 Studio and Location Multi-Powered 3/4" Condenser Microphone,
2009.

[152] D W Robinson and R S Dadson. A re-determination of the equal-loudness
relations for pure tones. British Journal of Applied Physics, 7(5):166–181,
2002.

[153] Mario Heinz. Ein inertiales Messsystem zur ganzkörperlichen Bewegungserfas-
sung. Masters thesis, Bielefeld Unversity, 2015.

[154] Wikipedia. Wikipedia: Cascade (Juggling), 2016.

[155] Viswa Subramanian Sekar. BioSense. Technical report, 2015.

[156] René Tünnermann, Sebastian Zehe, Jacqueline Hemminghaus, and Thomas
Hermann. Weather to Go - A Blended Sonification Application. 2014.

[157] Jan Hammerschmidt, Thomas Hermann, Alex Walender, and Niels Krömker.
InfoPlant: Multimodal augmentation of plants for enhanced human-computer
interaction. Proceedings of the 6th Conference on Cognitive Infocommunica-
tions, 2015.

[158] Nils Kucza and Jan Tlatlik. Performance Evaluation of Wireless Sensor Sys-
tems on the BRIX 2 Platform. Technical report, 2015.

[159] Avago. APDS-9960 Digital Proximity, Ambient Light, RGB and Gesture Sen-
sor, 2013.

[160] Panasonic. Infrared Array Sensor Grid-EYE (AMG88), 2016.

245

Acknowledgments

I foremost thank Prof. Dr.-Ing. Ulrich Rückert and Dr. Thomas Hermann for their
continuous support, without which BRIX2 would not exist today. Being part of both
their groups was truly enjoyable and gave me access to a broad range of expertise
of many skilled colleagues. Their advice often helped me to overcome technical and
scientific difficulties and allowed me to make the BRIX2 system what it is today.
I especially thank Alexander Neumann for his immense help with getting BRIX2 out
into the Internet and Johannes Nathow for his tremendous support with beautiful
figures and photographs.

Staying focused on a project like this for several years and finally writing a dis-
sertation about it was a major challenge for me. Throughout this whole endeavor,
I was lucky enough to be supported and encouraged by my friends and my family.
Thank you so much for pushing me through the rough times and for enjoying the
fun times with me.

Here’s to you (in no particular order),

Keywan
Steffi
Uwe

Matthias
Johannes

Jörg

Jessica
Mum
Lara
Judith
Jodi
Adina

Jan
Tobias

Christale
Kendall
Sabine
Max

Anita
Jan

Janina
Dad

Barbara
Matthias

247

	Introduction
	Related Work: A Survey of Existing Platforms
	Microcontroller Platforms
	A Brief Introduction to Microcontrollers
	Common Microcontroller Parameters
	Microcontroller Communities
	Microcontroller Platforms: Development Boards
	A Pioneering Microcontroller Platform: The Basic Stamp
	An Inexpensive Microcontroller Board: The MSP430 Launchpad
	De-Facto Standard: The Arduino
	Characteristics of Different Microcontroller Platforms

	Physical Computing Toolkits
	Physical Computing in Education
	Open Source Physical Computing: Grove Electronic Brick Kit
	Legos for Electrical Engineers: Tinkerforge Building Blocks
	Physical Widgets: Phidgets
	Teaching Physical Computing: littleBits
	Characteristics of Different Physical Computing Toolkits

	Wireless Sensor Nodes
	Scientific Sensor Networking: TelosB
	WSN Prototyping: Libelium Waspmote
	Characteristics of Different Wireless Sensor Nodes

	Inertial Measurement Platforms
	Inertial Sensing
	Sensor Fusion
	MEMS Motion Sensors
	Motion Capturing
	Motion Capturing with Inertial Sensors
	Typical Components of Inertial Measurement Platforms
	Industry Grade Motion Sensing: Xsens MTi-10
	Semi-professional Motion Capturing: YEI 3-Space
	Open Source Inertial Sensing: IMUduino
	Characteristics of Different IMU Platforms

	Wearable Electronics Platforms
	A platform for Body-Worn Devices: Xadow Kit
	A Sewable Arduino: LilyPad USB
	The LilyPad Alternative: SquareWear
	Characteristics of Different Wearable Electronics Platforms

	Former Work: The BRIX Toolkit
	Vision
	Concept
	Hardware
	Results

	Survey Conclusion

	BRIX2 Design and Development
	Defining the Requirements of BRIX2 by Analysis of Other Platforms
	Technical Feature Selection by Priority
	Conceptional Properties of Analyzed Platforms

	Towards an Initial BRIX2 Design
	General Concepts and Usage Scenarios
	Mechanical Design Aspects
	Software Aspects
	Electronics Design Aspects
	Initial BRIX2 Design: Conclusion

	The BRIX2 Development Kit
	A Modular Platform
	Carrier Board
	Microcontroller Extension Board
	Wireless Transceiver Extension Boards

	Evaluation Using the BRIX2 Development Kit
	Evaluation of Different Wireless Transceiver Modules for BRIX2
	Charge Electronics
	Microcontroller
	Inertial Motion Sensor

	Conclusion

	Implementation
	The BRIX2 System Design
	Physical Appearance
	BRIX2 Technical Concepts
	Software Concept

	Implementation of the BRIX2 Electronics
	A Side Note on the Selection of Components and Technologies
	Core Circuit: Microcontrollers, Sensor and Wireless Interface
	Power Supply: Voltage Regulation, Charging and Battery
	Extension Port
	Physical Structure: The Printed Circuit Board

	Implementation of the BRIX2 Enclosures
	Appearance and Manufacturability
	Case Design 1: Lego Only
	Case Design II: Lego plus 3D printing
	Case Design III: 3D printing onto a Lego Plate
	Outlook on Future Case Designs

	Implementation of the Software Components
	An Arduino Library for BRIX2
	LiBRIX2

	Documentation
	Website
	Wiki and Repository
	Arduino Community
	Source Code

	Conclusion

	BRIX2 Extension Modules: Towards an Adaptable and Open-Ended Platform.
	Selecting Features for a Library of Physical BRIX2 Extensions
	Input: Interfaces and Sensors
	Output: Actuators and Feedback
	Wireless Communication, Storage and Interfaces

	Extension Module Concept
	Mechanical Properties and Handling
	Appearance and Metaphor
	Constrains and Limitations
	Pin Collisions
	A Template for Extension Module PCBs

	Extension Modules Implementation
	Implementation of the BRIX2 Extension Module Enclosures
	Input and Sensor Extension Modules
	Feedback and Actuator Extension Modules
	Communication and Interface Extension Modules
	BRIX2 Arduino Library for Extension Modules

	Conclusion

	Analysis
	The BRIX2 Toolkit: Technical Specifications
	BRIX2 in Practice
	The Base Module in Practical Use
	BRIX2 Extension Modules in Practice
	Conclusion

	BRIX2 in Different Applications and Scenarios
	BRIX2 as a Teaching Platform
	BRIX2 as a Prototyping Platform in Research and Students Projects

	BRIX2 User Survey
	The BRIX2 User Survey Questionnaire
	About the Survey Participants
	Getting Started With Programming BRIX2
	BRIX2 Hardware
	Documentation
	Motivation and General Opinions
	Suggestions for Future Revisions

	Conclusion

	Conclusion and Future Work
	Results and Contributions
	BRIX2 as a Teaching Platform
	BRIX2 as a Prototyping Toolkit

	Visions and Future Work
	Suggestions for BRIX2 Future Revisions
	Long-Term Perspective

	List of Abbreviations
	Bibliography

