
MoveIt! Task Constructor for Task-Level Motion Planning

Michael Görner∗, Robert Haschke∗, Helge Ritter, Jianwei Zhang

Abstract— A lot of motion planning research in robotics
focuses on efficient means to find trajectories between individual
start and goal regions, but it remains challenging to specify
and plan robotic manipulation actions which consist of multiple
interdependent subtasks. The Task Constructor framework we
present in this work provides a flexible and transparent way to
define and plan such actions, enhancing the capabilities of the
popular robotic manipulation framework MoveIt!.1 Subprob-
lems are solved in isolation in black-box planning stages and a
common interface is used to pass solution hypotheses between
stages. The framework enables the hierarchical organization of
basic stages using containers, allowing for sequential as well
as parallel compositions. The flexibility of the framework is
illustrated in multiple scenarios performed on various robot
platforms, including bimanual ones.

I. INTRODUCTION

Motion planning for robot control traditionally considers
the problem of finding a feasible trajectory between a start
and a goal pose, where both are specified in either joint
or Cartesian space. Standard robotic applications, however,
are usually composed of multiple, interdependent sub-stages
with varying characteristics and sub-goals. In order to find
trajectories that satisfy all constraints, all steps need to
be planned in advance to yield feasible, collision-free, and
possibly cost-optimized paths.

A typical example are pick-and-place tasks, that require
(i) finding a set of feasible grasp and place poses, and
(ii) planning a feasible path connecting the initial robot
pose to a compatible candidate pose. This in turn involves
approaching, lifting, and retracting – performing well-defined
Cartesian motions during these critical phases. As there typi-
cally exist several grasp and place poses, any combination of
them might be valid and should be considered for planning.

Such problems present various challenges: Individual plan-
ning stages are often strongly interrelated and cannot be con-
sidered independently from each other. For example, turning
an object upside-down in a pick-and-place task renders a
top grasp infeasible. Whereas some initial joint configuration
might be adequate for the first part of a task, it could interfere
with a second part due to inconvenient joint limits.

The present work proposes a framework to describe and
plan composite tasks, where the high-level sequence of
actions is fixed and known in advance, but the concrete
realization needs to be adapted to the environmental context.
With this, we aim to fill a gap between high-level symbolic

∗ These authors contributed equally to this work.
This work was supported by the DFG Center of Excellence EXC 277,

the DFG Transregional Research Centre CML, TRR-169, and has received
funding from EU project SaraFun (grant 644938).

1The Task Constructor framework is publicly available at
https://github.com/ros-planning/moveit_task_constructor

Fig. 1. Example task: a UR5 robot executes a task composed of (a)
picking up a bottle from the table, (b) pouring liquid into a nearby glass,
and (c) placing the bottle in a different location. Markers show key aspects
of the task, including approach and lift directions during (a), bottle poses
for (a) and (c), and the tip of the bottle during (b). Fig. 5 illustrates the
associated task structure.

task planning and low-level, manipulation planning, thus
contributing to the field of Task and Motion Planning.

Within the framework, tasks are described as hierarchi-
cal tree structures providing both sequential and parallel
combinations of subtasks. The leaves of a task tree repre-
sent primitive stages, which are solved by arbitrary motion
planners integrated within MoveIt!, thus providing the full
power and flexibility of MoveIt! to model the characteristics
of specific subproblems. To account for interdependencies,
stages propagate the world state of their sub-solutions within
the task tree. Efficient schedulers are proposed to first focus
search on critical parts and cheap-to-compute stages of the
task and thus retrieve cost-economical solutions as early as
possible. Continuing planning can improve the quality of
discovered solutions over time, taking into consideration all
generated sub-solutions.

Additionally, the explicit factorization into well-defined
stages and world states facilitates error analysis: individual
parts of the task can be investigated in isolation and key
aspects of individual stages can be visualized easily. Fig. 1
illustrates an example task with supporting visualizations.

II. RELATED WORK

The scope of this work lies between two fields of research.
On the one side, manipulation planning emphasizes the
problem of trajectory planning with multiple kinematic and
dynamic constraints [1], [2]. These approaches can cope with

https://github.com/ros-planning/moveit_task_constructor

multiple constraints for a single task, but usually do not
factorize easily into comprehensive subproblems.

On the other side, the symbolic task planning community
has long realized that reasoning about robotic actions has
to consider geometric constraints at planning level, form-
ing the field of task and motion planning [3]–[6]. While
these approaches demonstrate impressive show-cases, solv-
ing complex, puzzle-like scenarios, they are often too generic
and very complex to configure for concrete use cases. As a
consequence of their task planning approach involving both,
symbolic- and geometry-level planning simultaneously, these
systems are vulnerable to small changes in parameteriza-
tion, strongly depend on an accurate and consistent domain
representation, and can exhibit behavior that is formally
adequate, but surprising to humans. Interrelations between
various subtasks either need to be modeled explicitly in
the symbolic domain or many potential sub-solutions will
be rejected afterwards. As a consequence, the underlying
backtracking-based search is inefficient and it is difficult to
exploit the local structure of a specific problem.

Instead of solving such generic task problems, we focus
on the common subproblem of finding feasible sequences
of trajectories given that the high-level action sequence
is already known in advance (with the notable exception
of well-defined alternative pathways). The assumed action
sequence can be compared to the plan skeletons defined
in [7]. Whereas the authors propose methods to convert
action sequences into discrete-space constraint satisfaction
problems, we utilize traditional motion planning algorithms
to find solutions in continuous space.

Another closely related work was presented in [8]. They
present the roadmap-based planning algorithm Multi-Modal-
PRM to generate trajectories across multiple different con-
figuration manifolds. Whereas they emphasize the integrated
planning procedure, relying on existing manifold specifica-
tions, our work focuses on these specifications instead. We
explicitly treat the planning process of primitive stages as
black-boxes, to enhance modularity and developer-insight
through the explicit exchange of generated world states.

In MoveIt!, the composition of multiple planning steps
is partially supported by the manipulation stack. However,
this API is limited to sequential pick-and-place requests that
are planned for in a greedy fashion, often resulting in poor-
quality or no solutions at all.

The Descartes planning library [9] follows a similar strat-
egy as this work, searching all possible paths in a graph
formed by sets of consecutive goal states. In contrast to
Descartes, which restricts itself to Cartesian paths through
fixed waypoints, this framework allows for arbitrary motion
planning stages as well as arbitrary complex hierarchies.

For shared robot control, affordance templates [10] pro-
vide the structure and visualization to implement single
object-centered tasks, like turning a valve, through multiple
Cartesian end-effector waypoints. While their implementa-
tion employs greedy forward-planning to solve for Cartesian
trajectories, the constructed task specifications could be used
as Cartesian planning stages within this work.

GEN l

F F

F F

FW ↓

F F

BW ↑

F F

CON

Fig. 2. Stage types distinguished by their interface: a) generators, b), c)
forward and backward propagating stages, d) connecting stages. Black dots
indicate input states, red stars indicate newly spawned states.

III. TASK CONSTRUCTOR FRAMEWORK

A. Task Description

Within this framework, tasks are composed in a hier-
archical fashion from primitive planning stages that describe
atomic motion planning problems that can be solved by
existing motion planning frameworks like OpenRAVE [11],
Klamp’t [12] or MoveIt! [13]. These frameworks typically
allow for motion planning from a single start to a goal con-
figuration, which both are usually fully-specified in configu-
ration space. Often they also permit to specify goal regions,
both in configuration and Cartesian space, and appropriate
state samplers are employed to yield discrete configuration-
space states for planning.

Individual planning stages communicate their results via
a common interface using a MoveIt! planning scene to
describe the whole state of the environment relevant for
motion planning. This comprises the shape and pose of
all objects, the collision environment, all robot joint states,
and information about objects attached to the robot. This
geometric/kinematic state description can be augmented by
additional semantic information in terms of typed, named
properties, forming the final state representation. Each stage
then attempts to connect states from its start and end inter-
faces via one or more planned trajectories.

Container stages allow for hierarchical grouping of stages.
Depending on the type of the container, solutions found by its
children are converted to compound solutions and propagated
up the task hierarchy (for more details, refer to section III-D).

B. Primitive Stage Types

We distinguish primitive stages based on their interface
type (see Fig. 2). The classical planning stage is the connect-
ing stage, which takes a pair of start/end states and tries to
connect them with a feasible solution trajectory. This type of
planning stage often corresponds to transit motions that move
the robot between different regions of interest. In this case,
any combination of states from the start and end interfaces is
considered for planning, realizing an exhaustive search. As
such a planning stage will only affect a small set of active
joints usually, a pair of start and end states need to match
w.r.t. all other aspects of the state representation. Particularly,
all other joints as well as the number, pose, and attachment
status of collision objects need to match.

The second type, generator stages, populate their start
and end interfaces from scratch, without any explicit input

from adjacent stages. Usually they define key aspects of
an action, for example defining the initial robot state or a
fixed goal state, which subsequently can serve as input for
adjacent stages. Another example are grasp generators, which
provide pairs of pre- and final grasp poses, computing their
corresponding robot poses based on inverse kinematics. In
this case, generated start and end states usually differ and
are connected by a non-trivial joint trajectory (provided by
the grasp planner) to accomplish actual grasping.

The most common type of stages are propagators, which
read an input state from either its start or end interface, plan
to fulfill any predefined goal or action, and finally generate
one (or more) new state(s) at the opposite interface together
with a solution connecting both states.

Note that propagation can act in both directions, from
start to end as well as from end to start. For this reason,
it is important to distinguish the temporal from the logical
flow. The temporal flow is always from a start to an end
interface and defines the temporal evolution of a solution
trajectory. However, the logical (program) flow defines the
state information flow during planning and is determined by
the propagation direction of individual stages. Backwards
propagation allows for planning a relative motion to reach a
given end state from a yet unknown start state. A common
example is the Cartesian approach phase before grasping:
Here the final grasp pose is given, and a linear approach
motion to the pre-grasp pose needs to be found, whose
extent is only coarsely specified within a range of several
centimeters. Corresponding solutions are planned in reverse
direction, from the end towards the start state. Finally, the
solution is reversed to yield a trajectory properly evolving in
time from start to end.

C. Basic Primitive Stages

The Task Constructor library provides a connecting stage
and two basic propagating stages, which all are driven
by individual planner instances. We decided to decouple
the planning from the stage implementation to increase
modularity and facilitate code reuse. While stages specify a
subtask, i.e. which robot states to connect, planners perform
the actual work to find a feasible trajectory between these two
states. Hence, planners can be reused in different stages. Two
basic planning instances are provided: (i) MoveIt’s planning
pipeline offering wrappers for OMPL [14], CHOMP [15],
and STOMP [16]; and (ii) a Cartesian path generator based
on straight-line Cartesian interpolation and validation.

The two propagating stages allow for (i) absolute and (ii)
relative goal pose specification, either in joint or Cartesian
space. While in the former case, the goal pose is specified in
an absolute fashion w.r.t. a known reference frame, the latter
case permits specifying relative motions of a specific end-
effector link. In the general case, a twist motion (translation
direction and rotation axis) is specified w.r.t. an arbitrary
known reference frame and finally applied to the given end-
effector link. This makes it possible for example to specify
a linear approach or lifting motion relative to the object or
a global reference frame.

Generator stages provided are: (i) the current state stage
fetching the current planning scene state from MoveIt!’s
move_group node, and (ii) the fixed state stage allowing
to specify an arbitrary, predefined goal state.

In some cases, the sequential information within the task
pipeline is too restrictive to specify a task: Particularly, gen-
erator stages might depend on the outcome of another, non-
neighboring stage, thus necessitating a short-cut connection
within the task pipeline. For example, to place an object
after usage at the original pick location, the corresponding
place-pose generator needs access to the original pick pose.
To allow for such short-cuts, generators can subscribe to
solutions found by another stage.

D. Containers

As mentioned before, container stages are used to hier-
archically compose stages into a tree. Each container en-
capsulates and groups a set of children stages performing
some semantically coherent subtask, e.g. grasping or plac-
ing. Children stages can easily inherit properties from their
parent, thus reducing the configuration overhead. Two main
types are distinguished: serial and parallel containers.

Serial containers organize their children into a linear
sequence of subtasks which need to be performed in the
specified order to accomplish the overall task of the con-
tainer. Accordingly, a solution of a serial container connects
a state from the start interface of the first child stage to the
end interface of the last child via a fully-connected, multi-
stage trajectory path.

In a sequential pipeline, generators play a particularly im-
portant role: They generate seed states, which subsequently
are extended (in both directions) via propagating stages
to form longer partial solution paths. Finally, connecting
stages are responsible to link individual partial solution paths
to yield a fully-connected solution ranging from the very
beginning to the very end of the pipeline.

Obviously, the interface types of stages constrain how
they can be sequenced: A stage writing new states along
one direction (forward / backward) should be followed /
preceded by a stage that reads from the common interface
and vice versa. Otherwise, the logical information flow would
be broken. Containers provide automatic validation of the
connectivity of their children prior to any planning and
thus can reject wrongly configured task trees already at
configuration time.

Note that in general there can be multiple paths connecting
a single pair of start-end states and there can be multiple
solutions corresponding to different pairs of start-end states.
Hence, it becomes important to rank all found solutions
according to a task-specific cost function (see Sec. III-E).

Parallel containers allow for planning of several alter-
native solutions, e.g. grasping with left or right arm. Each
solution found by its children directly contributes to the
common pool of solutions of the container. Different types
of parallel containers are distinguished, depending on the
planning strategy for children:

(i) Alternatives: Consider all children in parallel. All
generated solutions become solutions of the container.

(ii) Fallbacks: Consider children sequentially, only pro-
ceeding to the next child if the previous one has vainly
searched its solution space. Only solutions found by the first
successful child constitute the solutions of the container.

(iii) Independent Components: consider all children in
parallel. In contrast to (i), children generate solutions for
disjoint sets of robot joints (e.g. arm and hand), which
are subsequently merged into a single coherent trajectory
performing all sub-solutions in parallel. Obviously, such a
merge might fail and explicit constraint checks (including
collision checking) are required for final validation. This
divide-and-conquer approach is particularly useful, if the
planning spaces of individual children are truly independent,
as for example in approaching an object for bimanual grasp-
ing. In this case, the motion of both arms can be planned
independently in lower-dimensional configuration spaces. To
enforce independence, one may introduce additional con-
straints, e.g. a plane separating the Cartesian work spaces of
both arms. This task-specific knowledge needs to be provided
with the task specification.

E. Scheduling

The proposed framework exhaustively enumerates all pos-
sible solution paths connecting individual interface states,
which obviously suffers from combinatorial explosion. Thus,
scheduling heuristics are applied to focus the search on
promising solution paths first.

To this end, solutions have an associated cost that is
computed in a task-specific fashion by user-defined cost
functions. Potential functions include, among others, length
of trajectory, amount of Cartesian or joint motion, minimum
or average clearance. Serial container stages accumulate the
costs of all sub-solutions of a full path and only report
the minimal-cost path for any pair of start-end states. In
a similar fashion, parallel containers only report minimal-
cost solutions of their children. Each stage, and particularly
the root stage of the task tree, can then rank their solutions
according to this cost and stop planning when an acceptable
overall solution is found.

Each stage ranks all its incoming interface states according
to (i) the length and (ii) cost of the associated partial solution.
The former criterion biases the search to depth-first (in
contrast to breadth-first), which ensures finding full solutions
as soon as possible. If a partial solution fails to extend
at either end, this failure is propagated to the other end,
and the corresponding interface states are removed from the
interfaces of the associated stages as there is no benefit in
continuing work on that particular solution.

Additionally, containers handle the scheduling of their
children stages. Again the serial container plays the most
important role for this. Generators need to be scheduled
first in order to generate seed states, which subsequently
are extended via propagating stages, and finally connected to
full solution paths. Obviously, execution of connecting stages

should be postponed as long as possible, because their pair-
wise combination of start-end states leads to a combinatorial
explosion of the search space.

On top of these heuristics, there is room for further
optimization. For example, one could try to balance the ex-
pected computation time vs. the expected connection success
(or reduction in overall trajectory cost) by ranking stages
according to the ratio of these values. To yield estimates
for them, one could consider heuristic measures (e.g. joint
or Cartesian-space distance of states), or maintain statistics
over previous stage executions. To yield higher diversity and
randomization, actual ranking can be performed based on the
Boltzmann distribution of the computed performance rank.

F. Execution

The main contribution of this work lies in modeling
and planning manipulation tasks. Nonetheless, eventually a
solution should be executed on the actual robot. Tradition-
ally, planning research simply forwards the final solution
trajectory to a low-level controller. To this end, the proposed
framework provides utilities to access planned task solutions,
such that the user can decide whether to execute, for exam-
ple, (i) the first valid solution, (ii) the first solution below
some cost threshold, or (iii) the best trajectory found within a
given amount of time or after exhaustively searching the full
solution space. Modifications to the world state performed
as part of the task, e.g. attaching or releasing an object, are
performed in the same fashion as trajectories are executed,
thus ensuring a consistent world representation throughout
task execution.

Given the modularity of the task pipeline, several improve-
ments are possible. Assuming feasible trajectories for the
whole task will be found eventually, initial stages (or groups
of stages) could commit early to a particular partial solution
and forward it for execution before a full solution trajectory is
found. As a consequence, this strategy can noticeably reduce
the perceived planning time as the robot will start to move
early. This is particularly useful when initial stages only
yield a single canonical solution, but can also be used to
significantly prune the search space, assuming full solutions
will be available for most early sub-solutions.

To handle failures during task execution (e.g. due to
dynamical changes in the environment, or because an early
executed partial solution eventually turns out to be incom-
patible with later planning stages), a recovery strategy is
essential. Again, the modular structure of the task pipeline
can be exploited for intelligent recovery, dependent on the
failed sub-stage. Potential strategies might replan from the
reached stage, or partially revert sub-solutions to continue
planning from a well-defined state.

In the future, it should be also possible to specify different
execution controllers (or parameterizations) for individual
stages (or groups of stages) to account for different control
needs. For example an approach stage might employ visual
servoing to account for perception inaccuracies and a grasp
stage should use a compliant motion strategy until contact is
established and subsequently switch to force-controlled grasp

stabilization. As long as the motion of these reactive, sensor-
driven controllers remains within specified bounds to the
planned trajectory, subsequent stages can connect seamlessly.

Finally, solution segments found by individual planning
stages can be post-processed to yield a globally smooth
solution trajectory. This requires local modifications at the
transition between consecutive segments as they might have
discontinuous velocity or acceleration profiles. To this end,
acceleration-aware trajectory generation [17] can be applied
to splice sub-trajectories smoothly within position bounds.
The resulting trajectory segments might only replace the
original solutions, if they satisfy collision checks and other
constraints.

G. Introspection

As pointed out in [13], a key element for the success and
acceptance of a software package is its transparency and ease
of use. Although MoveIt! comes with its own implementation
of a manipulation pipeline, its major drawback is its in-
transparency: the provided pick and place stages are black
boxes that do not allow for inspection of their inner workings.

Hence, important elements of the presented software pack-
age are pipeline validation, error reporting, and introspection.
Stages can publish both successful and failed solution at-
tempts and augment them with arbitrary visual markers or
comments, thus providing useful hints for failure analysis.
This information, together with the status of the overall
planning progress of the pipeline (number of successful and
failed solution attempts per stage) is regularly published.

In rviz, the user can monitor the status of the task pipeline
and interactively navigate individual solutions of all stages,
inspecting their associated markers and comments. In the
future, it is also planned to provide an interactive GUI
to configure, validate, execute, and finally save a planning
pipeline directly in rviz.

IV. APPLICATIONS

In the following, we describe two typical manipulation
tasks and showcase involved planning stages. The first task
considers picking up an object. The second task demonstrates
a pouring task, which involves picking up a bottle, approach-
ing a glass, performing the pouring, and placing the bottle
back on the table. The accompanying video shows that the
very same task pipeline can be employed on various robots.

A. Bi-Modal Object Picking

As picking up an object is a common subtask for many
manipulation tasks, a dedicated stage is provided for this. To
apply this stage to a specific robot, only some key properties
need to be configured, namely the end-effector to use, the
name of the object to grasp, and the intended approach
and retract directions. The actual grasping is planned by
another generic stage, the grasp stage, which is provided as
a configurable child stage to the pick template.

In the example shown in Fig. 3, we consider dual-handed
robots, which can use either their left or right hand for grasp-
ing. Consequently, the pipeline comprises two alternative

bimodal pick task
l current state
↓ alternatives
↓ right pick
↓ open gripper

move to object
↑ approach object
l grasp
l compute ik
l generate grasp pose

↓ permit object collision
↓ close gripper
↓ attach object

↓ lift object
↓ left pick
↓ . . .

Fig. 3. Bi-modal Pick Task: Left / Right arm is chosen by parallel
container alternatives. The propagation direction of planning states and
solution monitoring are indicated by arrows. Hierarchy is indicated by
indentation.

pick stages (left and right), configured to use the respective
end-effector. The alternatives parallel container follows the
current state generator, which fetches the current planning
scene state from MoveIt!.

Planning for the pick stages starts with the grasp generator
stage and proceeds in both directions: The approach stage
realizes a Cartesian, straight-line approach motion, starting
from a pre-grasp posture and is planned backwards to find a
safe starting pose for grasping (see Fig. 4). On the opposite
side, the lift stage starts from the grasped object state and
realizes the Cartesian lifting motion in a forward fashion.

The grasp stage, in our simple scenarios, samples
collision-free pre-grasp poses relative to the object at hand,
computes the inverse kinematics to yield a joint-state pose
suitable for use in the interface state, and finally performs
grasping by closing the gripper. To this end, first collision
detection between end-effector and object is turned off to
allow the end-effector to contact or penetrate the object
when actuating the grasp pose. For real-world execution, the
close gripper stage obviously requires a force-controlled or
compliant controller to avoid squashing the object. Finally,
the object is attached to the end-effector link, such that
further planning knows about the grasped-object state. These
helper subtasks, which only modify the planning scene state,
but do not actually perform any planning, are realized by
utility stages, which permit to change allowed collisions as
well as to attach and detach collision objects.

Sampling of pre-grasp poses, in our examples, considers
a pre-defined open-gripper posture for the end-effector and
proposes Cartesian poses of the end-effector relative to
object-specific grasp frames. We sample grasp frames T g

w

by rotating the object frame about its z-axis in steps of
0.2 rad, resulting in 32 grasp frame samples. The end-effector
is placed relative to these grasp frames by applying the

initial gripper opened pre approach pre grasp post grasp lifted
Fig. 4. Temporally ordered sequence of planning scene states of the pick task shown in Fig. 3.

pouring task
l current state
↓ pick bottle
↑ . . .
l grasp
↓ . . .

move to pouring start
l compute ik
l bottle above glass

↓ pouring
↓ place bottle

move to place
↑ set down bottle
l compute ik
l bottle place location

↓ release bottle
↓ open gripper
↓ detach object
↓ forbid object collision

↓ retreat gripper

Fig. 5. Pouring Task: The manipulator picks a bottle, performs constrained
pouring motions and places it back on the table.

inverse of a fixed tool-to-grasp transform T g
t : T t

w = T g
w ·T t

g .
The resulting transform T t

w is used as the target for inverse
kinematics. Before applying inverse kinematics sampling, the
IK stage validates the feasibility of the targeted pose, i.e.
whether placing the end-effector at the target is collision-
free. If not, IK sampling can be skipped and failure is
reported immediately. While the first solution on all studied
robots is found within a fraction of a second, the planning
time for exhaustive search clearly varies between all studied
robots and is dominated by the number of sampling-based
planning attempts (in stage move to object), which in turn is
determined by the number of solutions found by the grasp
stage. While Pepper, having only a 5-DoF arm, finds a single
feasible grasp pose only (< 1 s), the Baxter robot finds more
than 60 solutions (≈ 45 s).

B. Pouring Task

The second described application demonstrates the use of
the task pipeline with custom modules, using the example
of pouring into a glass. Its specification is shown in Fig. 5,
its execution on a UR5 robot is illustrated in Fig 1 and the
accompanying video. While the scenario requires a custom

pouring stage, most other stages are realized with suitably
parameterized standard stages to provide a robust context
for this central component. The task reuses the previously
described pick container to pick up the bottle. A similar
container place provides a generic stage to compute place
motion sequences, given a generator for feasible place poses.

The pouring stage is implemented as tilting the tip of an
attached object (the bottle) in a pouring motion over another
object (the glass) for a specific period of time. The path is
solved by a Cartesian planner along object-centric waypoints.

The four generator stages involved in this task are interre-
lated: the two last ones, bottle above glass and place location,
depend on the grasp pose chosen in the pick stage. To this
end, they monitor the solutions generated by the grasp stage
and produce matching solutions.

Lastly, moving the bottle over the glass and moving it
towards its place location are transit motions that have to
account for an additional path constraint, namely keeping the
bottle upright to avoid spilling of the liquid. This constraint
is specified as part of the stage description and is passed on
to the underlying trajectory planner. To accelerate planning
with the constraint, we make use of configuration space
approximations [18] implemented for OMPL-based solvers.

In our experiments, using sequential planning, the task
produces its first full solution after 15.6s on average.

V. SUMMARY

We presented a modular and flexible planning system to
fill the gap between high-level, symbolic task planning and
low-level motion planning for robotic manipulation. Given
a concrete task plan composed of individually characterized
sub-stages, our system can yield combined trajectories that
achieve the whole task. Failures can be readily analyzed by
visualization and isolation of problematic stages. A number
of generic planning stages are already in place and were
employed to demonstrate the potential of the framework for
use on multiple robotic platforms. The Task Constructor is
meant to enhance the functionality of the MoveIt! framework
and replace its previous, severely limited pick-and-place
pipeline. The open-source software library is under con-
tinuous development and various extensions were outlined
directly within the corresponding sections.

REFERENCES

[1] M. Stilman, “Global manipulation planning in robot joint space with
task constraints,” IEEE Transactions on Robotics, vol. 26, no. 3, pp.
576–584, 2010.

[2] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manip-
ulation planning on constraint manifolds,” in 2009 IEEE International
Conference on Robotics and Automation, May 2009, pp. 625–632.

[3] J. Bidot, L. Karlsson, F. Lagriffoul, and A. Saffiotti, “Geometric
backtracking for combined task and motion planning in robotic
systems,” Artificial Intelligence, vol. 247, pp. 229 – 265, 2017,
special Issue on AI and Robotics. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S000437021500051X

[4] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on. IEEE, 2014, pp. 639–646.

[5] J. Ferrer-Mestres, G. Francès, and H. Geffner, “Combined task
and motion planning as classical ai planning,” arXiv preprint
arXiv:1706.06927, 2017.

[6] F. Gravot, S. Cambon, and R. Alami, “aSyMov: a planner that
deals with intricate symbolic and geometric problems,” in Robotics
Research. The Eleventh International Symposium. Springer, 2005,
pp. 100–110.

[7] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method
for solving sequential manipulation planning problems,” in 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sept 2014, pp. 3684–3691.

[8] K. Hauser and J.-C. Latombe, “Multi-modal motion planning in non-
expansive spaces,” The International Journal of Robotics Research,
vol. 29, no. 7, pp. 897–915, 2010.

[9] S. Edwards, R. Madaan, and J. Meyer, “Descartes planning library
for semi-constrained cartesian trajectories,” ROSCon, 2015. [Online].
Available: http://wiki.ros.org/descartes

[10] S. Hart, P. Dinh, and K. Hambuchen, “The affordance template ROS
package for robot task programming,” in Robotics and Automation
(ICRA), 2015 IEEE International Conference on. IEEE, 2015, pp.
6227–6234.

[11] R. Diankov, “Automated construction of robotic manipulation
programs,” Ph.D. dissertation, Carnegie Mellon University,
Robotics Institute, August 2010. [Online]. Available: http:
//www.programmingvision.com/rosen_diankov_thesis.pdf

[12] K. Hauser, “Robust contact generation for robot simulation with
unstructured meshes,” in Robotics Research. Springer, 2016, pp. 357–
373.

[13] D. Coleman, I. A. Şucan, S. Chitta, and N. Correll, “Reducing the
barrier to entry of complex robotic software: a MoveIt! case study,”
Journal of Software Engineering for Robotics, vol. 5, no. 1, pp. 3–16,
May 2014. [Online]. Available: http://moveit.ros.org

[14] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, http://ompl.kavrakilab.org.

[15] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in
Robotics and Automation, 2009. ICRA’09. IEEE International Con-
ference on. IEEE, 2009, pp. 489–494.

[16] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 4569–4574.

[17] T. Kröger, On-Line Trajectory Generation in Robotic Systems: Basic
Concepts for Instantaneous Reactions to Unforeseen (Sensor) Events.
Springer, 2010, vol. 58.

[18] I. A. Şucan and S. Chitta, “Motion planning with constraints using
configuration space approximations,” in Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012,
pp. 1904–1910.

http://www.sciencedirect.com/science/article/pii/S000437021500051X
http://www.sciencedirect.com/science/article/pii/S000437021500051X
http://wiki.ros.org/descartes
http://www.programmingvision.com/rosen_diankov_thesis.pdf
http://www.programmingvision.com/rosen_diankov_thesis.pdf
http://moveit.ros.org
http://ompl.kavrakilab.org

	Introduction
	Related Work
	Task Constructor Framework
	Task Description
	Primitive Stage Types
	Basic Primitive Stages
	Containers
	Scheduling
	Execution
	Introspection

	Applications
	Bi-Modal Object Picking
	Pouring Task

	Summary
	References

