
A Model-based Hierarchical Controller for Legged Systems subject to
External Disturbances

Guiyang Xin, Hsiu-Chin Lin, Joshua Smith, Oguzhan Cebe, and Michael Mistry

Abstract— Legged robots have many potential applications
in real-world scenarios where the tasks are too dangerous for
humans, and compliance is needed to protect the system against
external disturbances and impacts. In this paper, we propose a
model-based controller for hierarchical tasks of legged systems
subject to external disturbance. The control framework is
based on projected inverse dynamics controller, such that the
control law is decomposed into two orthogonal subspaces,
i.e., the constrained and the unconstrained subspaces. The
unconstrained component controls multiple desired tasks with
impedance responses. The constrained space controller main-
tains the contact subject to unknown external disturbances,
without the use of any force/torque sensing at the contact
points. By explicitly modelling the external force, our controller
is robust to external disturbances and errors arising from
incorrect dynamic model information. The main contributions
of this paper include (1) incorporating an impedance controller
to control external disturbances and allow impedance shaping
to adjust the behaviour of the motion under external distur-
bances, (2) optimising contact forces within the constrained
subspace that also takes into account the external disturbances
without using force/torque sensors at the contact locations. The
techniques are evaluated on the ANYmal quadruped platform
under a variety of scenarios.

I. INTRODUCTION

Areas, such as disaster sites and deep mines, are very
hazardous for humans to enter due to difficult/unknown
terrain. As such potential applications for legged robots can
be described allowing those robots to replace the human
presence in these areas. The area terrain and characteristics
make compliance a necessary feature to protect the robot
against unexpected disturbances from either human or envi-
ronment factors (see Fig. 1). Although position control can
produce accurate motion, it relies on perfect knowledge of
the environment for planning of the swing leg trajectories,
which is impossible to obtain. When the robot is walking
on an uneven terrain or slope, the swing leg may strike on
an obstacle or land earlier than planned. This impact creates
additional perturbations to the whole kinematic chain and
might cause the robot to lose balance or stability. Therefore,
a flexible torque controlled solution is an ideal solution for
unpredictable environments and safe human interaction.

Model-free control of robots for locomotion, such as the
virtual model controller, have shown practical advantages by
not relying on possibly inaccurate dynamic models, which
has been applied on biped [1], quadruped [2] robots, and
hydraulically actuated quadrupeds [3]. Model-free controllers
typically require tuning of the feedback gains to ensure
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Fig. 1: A quadruped robot, ANYmal, walking over uneven
terrain

stability of the system which in an unstable or uncertain
environment could produce unstable behaviours.

In contrast, the model-based controller enables legged
robots to perform a variety of tasks. Operational space
control [4] decomposes the control law into primary and
secondary tasks, such that multiple tasks are executed si-
multaneously. For systems under physical constraints, [5]
proposed an approach based on orthogonal decomposition of
the control law into constrained and unconstrained subspaces.
It was later extended by [6] to enable constraints within the
operational space formulation. Being model-based also al-
lows prediction and understanding of the dynamic system at
any point in time allowing planners or balancing algorithms
to take advantage of this information.

While the model-based controller was originally de-
signed for fixed-based manipulators, it has been extended to
floating-based legged robots such as humanoid robots whose
control is based on an operational space formulation [7][8]
or quadruped locomotion based on QR decomposition [9] or
projected inverse dynamics [10].

For the robot to be robust to external disturbance it
needs to estimate how much external forces are applied.
Previous work estimates the external force based on sensor
fusion [11][12]. However, the force/torque sensor data is
usually unreliable. In [13], the projected inverse dynamic
controller was extended to explicitly measure an estimate of
the external disturbances for dual-arm manipulation task, and
later was applied to a four arm manipulation task [14].

The optimisation of contact forces is also necessary to
achieve the desired task while maintaining the constraints
required by the environment for stable motion. For exam-
ple, when walking on an uneven terrain or during human
interactions, the robot needs to regulate the ground reaction
force to prevent slipping. This can be done by minimising the
torque while ensuring that a desired motion creates feasible
interaction forces [9][15] and optimal joint trajectories [16].

We propose a method for hierarchical control of legged
robots subject to external disturbance by explicitly modelling
the external force. The control law is decomposed into two



orthogonal subspaces. The unconstrained subspace controls
the motion and achieves the desired Cartesian impedance
behaviour. The constrained subspace optimises the torque
required to maintain the contact subject to unknown, but esti-
mated, external disturbances without the use of force/torque
sensing at the contact points. The main contributions include:
• incorporating a Cartesian impedance controller to con-

trol disturbances and allow impedance shaping for
changing the behaviour under disturbances,

• optimising contact force within the constrained sub-
space that also takes into account disturbances without
using force/torque sensors at the contacts.

By decomposing the control law, we can impose compliance
without affecting the constraints, and also optimise the
contact force without generating extra motion. While model-
based control of legged systems is potentially more accurate
than the position controller and model-free controller, it
requires an accurate and precise dynamic model. In this pa-
per, we also show that explicitly modelling the disturbances
can relieve this issue. The techniques are evaluated on the
ANYmal (Fig. 1) with various scenarios.

II. BACKGROUND

Let q, q̇, q̈ ∈ RQ denote the joint positions, velocities, and
accelerations of a (Q + 6) degree-of-freedom floating-base
system. The dynamics can be expressed in the Lagrangian
form

Mq̈ + h = Bτ (1)

where τ ∈ R(Q+6) is the vector of joint torques, M ∈
R(Q+6)×(Q+6) is the inertia matrix, and h ∈ R(Q+6) is the
vector of centrifugal, and Coriolis effects, and generalised
gravitational torque, and

B ∈ R(Q+6)×(Q+6) =

[
06 0

0 IQ

]
is the selection matrix. When a robot is in contact with
the environment, the end-effector motion may be subject to
constraints imposed by the environment. An additional term
is added to describe the dynamics under constraints

Mq̈ + h = Bτ + J>c λc (2)

where Jc ∈ RK×(Q+6) is the constraint Jacobian that
describes K linearly independent constraints, and λc ∈ RK
is the constraint forces due to contact that satisfy

Jcq̇ = 0 and Jcq̈ + J̇cq̇ = 0 . (3)

A. Projected Inverse Dynamics

The projected inverse dynamics framework proposed in [5],
allows the dynamics equation in (2) to be decomposed into
constrained and unconstrained components;

τ = Pτ + (I−P)τ (4)

where P ∈ R(Q+6)×(Q+6) = I − J+
c Jc is the orthogonal

projection matrix that projects arbitrary vectors onto the null
space of the constraint Jacobian Jc, and J+

c is the Moore-
Penrose pseudo-inverse of Jc. Note that the two terms in (4)
are orthogonal to each other Pτ ⊥ (I − P)τ such that the

first term Pτ generates no motion in the constraint space,
and the second term (I−P)τ enforces the constraint without
generating joint motion.

In [6] a proposed operational space controller for con-
strained dynamical systems such that the term Pτ in (4) is
replaced by PJ>x F, where Jx is the Jacobian matrix that
relates the joint space to the task space, and F is the force
applied at the end-effector for the desired acceleration ẍ:

F = Λcẍ + Λc

[
JxM−1

c (Ph− Ṗq̇)− J̇xq̇
]
= Λcẍ + hc

(5)
Λc = (JxM−1

c PJ>x )
−1 and Mc = PM + I − P are the

constraint consistent operational space and joint space inertia
matrix, respectively.

B. Multiple Task Control for Underactuated Systems
The work in [6] also addresses the problem of hierarchical
control in an underactuated system. Given two motion tasks,
the control law in a hierarchical order is provided as:

τ = J>1 F1 + N1J
>
2 F2 + Nuτ 0

where J1,J2 are the Jacobin matrix relates the joint space
to the primary and the secondary task, F1,F2 are the
desired force, N1 = I − J+

1 J1 is the nullspace projection
of J1, Nu = I − J>a J>

#

a is the null space projector that
is dynamically consistent with all tasks, Ja = [J1,J2]

>

is the augmented Jacobian of all tasks, and J>
#

a =
(JaM

−1
c PJ>a )

−1JaM
−1
c P is the dynamically consistent

Jacobian pseudo-inverse. Then control law, for the underac-
tuated system, that satisfies the constraint τ = Bτ is defined
as:

τ =
(
I−Nu[(I−B)Nu]

+
) (

J>1 F1 + N1J
>
2 F2

)
(6)

C. Projected Inverse Dynamics with External Disturbances
The projected inverse dynamics was later extended to include
external disturbances [13], by explicitly add the external
force into the dynamic equation, resulting

Mq̈ + h = τ + J>c λc + J>x Fx (7)

where Jx is the Jacobian that relates the joint-space to the
point of disturbances, and Fx is the external force. The
motion space component incorporates a Cartesian impedance
controller [17][18] to compensate the external disturbances.

PMq̈ + Ph = PJ>x F

where F = hc + Λcẍd −Dd
˙̃x −Kdx̃ is the force needed

to achieve the task with the desired Cartesian impedance
behaviour. The constrained dynamics is described by

(I−P)(Mq̈ + h− J>x Fx) = J>c Fc + J>c λc (8)

where Fc is the force needed to maintain the desired con-
straint force and the contacts. To ensure that the acceleration
generated from the constrained space (I−P)τ is consistent
with the unconstrained space Pτ , the joint-acceleration in (8)
is replaced by q̈ = M−1

c (Pτ −Ph + Ṗq̇) resulting in:

(I−P)
[
MM−1

c (Pτ −Ph + Ṗq̇) + h− JxFx

]
= J>c Fc + J>c λc

(9)



Fig. 2: An overview of the hierarchical controller with optimisation of constrained force for legged systems subject to
external disturbances.

In [13], robustness to external disturbances has been
shown using fully-actuated, dual-arm manipulation. It was
later extended to multi-arm manipulation for underactu-
ated system [14]. In this paper, we extend the formulation
in [6][13][14] to enable multiple motion tasks for an under-
actuated system subject to external disturbances.

III. METHOD

A control framework for legged robots to perform multiple
motion tasks with respect to constraints in an environment
is proposed. We extended the projected inverse dynamics
to allow hierarchical motion tasks with constrained space
controller for underactuated system in §III-A. The uncon-
strained subspace controller, which realises the underlying
task and impedance behaviour at the swing leg and the torso,
is discussed in §III-B while the constrained subspace con-
troller optimises the ground reaction force against external
disturbance is discussed in §III-C.

A. Projected Inverse Dynamics for Hierarchical Control of
an Underactuated System
We consider two prioritised tasks for legged systems. For
example, during normal walking, the primary task is to move
the swing foot to the desired position and the secondary task
is tracking the torso trajectory, while maintaining desired
ground reaction force. This order of tasks is chosen for accu-
rately placing the foot whilst maintaining some control over
the balance. The equation for hierarchical control (see §II-B)
with constraint force control becomes:

τ = P(J>1 F1 + N1J
>
2 F2) + (I−P)J>c Fc

Legged robots are traditionally modelled as floating base
and intrinsically underactuated. Due to underactuation, we
cannot generate the desired end-effector forces F1,F2 via
a Jacobian transpose method, i.e. J>F may not equal to
BJ>F. Instead the admissible torques are limited by

τ = Bτ (10)

In order to satisfy the above equation, we add a null space
component Nuτu resulting in:

τ = P(J>1 F1 + N1J
>
2 F2) + (I−P)J>c Fc + Nuτu (11)

where Nu is defined in §II-B. Solving for τu (See Ap-
pendix A), the control law is

τ = Mg

[
P(J>1 F1 + N1J

>
2 F2) + (I−P)J>c Fc

]
(12)

where Mg = I−Nu[(I−B)Nu]
+ is a matrix that projects

arbitrary torques onto admissible torques that satisfy J>F =
BJ>F. Substituting (12) into the dynamics equation (7), the
dynamic equation can be written as

Mq̈ + h = Mg

[
P(J>1 F1 + N1J

>
2 F2) + (I−P)J>c Fc

]
+ J>c λc + J>x Fx

(13)
We then define the torque for the unconstrained space as
τu ≡ MgP(J>1 F1 + N1J

>
2 F2) and the constrained space

as τ c ≡Mg(I−P)J>c Fc throughout this paper.
We aim to apply kinematic constraints to the stance feet,

so the constraint Jacobian Jc in (13) is a concatenation of the
Jacobian matrix of the stance legs and that the motion cannot
generate velocity on the stance feet. This projection P =
I−Jc

+Jc decomposes the control law such that τu resolves
the desired primary and secondary motion tasks, while τ c

maintains contact force satisfying environment constraints.
An overview of the control flow is sketched in Fig. 2.

B. Unconstrained Space Controller
By multiplying both sides of (13) by P, the dynamics of
unconstrained space is

PMq̈ + Ph = MgP(J>1 F1 + N1J
>
2 F2) + PJxFx (14)

Since PJc = 0, the contact force λc vanishes from (13). Our
primary task is to move the swing foot to a desired position
while being compliant to external disturbance. To achieve
this, we define J1 ∈ R3×(Q+6) to be the jacobian that relates
the joint velocities to the swing foot Cartesian velocity, and
F1 is the force needed to accomplish the desired task and
impedance response of the swing foot.

F1 ∈ R3 = hc,s + Λc,sẍd,s −Ds
˙̃xs −Ksx̃s

where x̃s is the error between the current swing foot position
and the desired swing foot position, Ks and Ds are the
desired Cartesian stiffness and damping matrices for the
swing foot. Λc,s is the actual operational space inertia matrix



of the swing foot. Note we do not attempt inertia shaping,
which allows us to avoid contact force/torque sensing [18].

For the secondary task, we control the torso position such
that the center of mass is above the support polygon. By
using J2 ∈ R6×(Q+6) which is the Jacobian that relates the
joint velocities to the torso velocities, and F2 is the force
for tracking the desired torso configuration with impedance
response, we can achieve the desired secondary behaviour.

F2 ∈ R6 = hc,t + Λc,tẍd,t −Dt
˙̃xt −Ktx̃t

where x̃t is the error between the current and the desired
torso configuration, Kt, Dt are the desired Cartesian stiff-
ness and damping matrices, and Λc,t is the actual operational
space inertia matrix of the torso.

To determine the desired torso position, we use the method
in [15] to generate torso trajectory based on weighted average
of legs positions. As the external force location and direction
is unknown we cannot guarantee the force is only applied to
the primary motion task. As such the secondary motion task
requires a compliant behaviour as well, which we control
as another impedance controller. The final output from the
motion controller is defined as:

τu = MgP(J>1 F1 + N1J
>
2 F2) (15)

When all legs are in contact, we can see that J1 = {∅} and
N1 = I, and the unconstrained space controller is reduced
to an impedance controller at the torso.

C. Optimal Ground Reaction Force

In this section, we outline our approach for the constrained
controller. The contact force applied by the legs should
be sufficient enough to prevent the separation or sliding
of the contact against disturbances arising from inertia,
gravitational force, or external disturbances. However, this
is not a trivial task since the direction of admissible force is
not easy to define due to underactuated control, and excessive
force may decrease the stability of the robot. To address
this issue we incorporate optimisation strategies to seek the
minimal contact force needed. An important note is that
this is achieved without using force/torque sensing either at
the foot contact points, or at a potential disturbance point
(e.g. body push). Previously, [13] proposed the solution for
a fully-acutated system with surface contacts. We extend it
to an underactuated system with point contacts.

1) Constraints: The foot of each stance leg is treated as
a point contact on the ground. The contact force includes
λc ∈ R3 = [λx, λy, λz]

>, and we choose the z-axis as
the direction normal to the contact surface. A sketch of the
ground reaction forces and the corresponding friction cones
is illustrated in Fig. 3. The contact force should satisfy:
• unilateral constraints to avoid loss of contact

λz ≥ 0 (16)

• friction cone constraints to avoid slipping

µλz ≥
√
λ2x + λ2y (17)

Fig. 3: An illustration of the ground reaction forces λc and
their corresponding friction cones (green).

2) Objective Function: Our goal is to find the minimum
actuator torque

minimise
τ

τ>τ

or equivalently,

minimise
τ

τ>u τu + 2τ>u τ c + τ>c τ c

By setting τ c ≡ MgJ
>
c Fc, we can guarantee that τ c lies

within the constrained space and τ c ⊥ τu. Since τ>u τu

is a constant during optimisation and 2τ>u τ c = 0, we can
simply minimise τ>c τ c. Then the objective function can be
reformulated in terms of the unknown variable Fc:

minimise
Fc

F>c JcM
>
g MgJ

>
c Fc (18)

3) Constrained Optimisation problem: For the con-
strained subspace, we derive the constrained subspace dy-
namics following similar procedure in [13], but for the
underactuated system, i.e. multiply both sides of (13) by
(I−P) and move the external force to the left side,

(I−P)(Mq̈ + h− JxFx) = MgJ
>
c Fc + J>c λc (19)

To ensure that the acceleration generated from the con-
strained space controller τ c is consistent with the uncon-
strained space controller τu, the joint-acceleration in (19) is
replaced by q̈ = M−1

c (τu −Ph + Ṗq̇) in [6] resulting in:

(I−P)
[
MM−1

c (τu −Ph + Ṗq̇) + h− JxFx

]
= MgJ

>
c Fc + J>c λc

(20)

The external force Fx is replaced by estimated external force

F̂x = Λ̂c
¨̃x + Dd

˙̃x + Kdx̃ (21)

A key insight, is that the external force F̂x is estimated based
on position error, and thus we do not require force/torque
sensing at the contacts. The optimisation problem is to find
the optimal contact force λc that minimises the objective
function (18) while satisfying the unilateral constraints (16)
and the friction cone constraints (17) at the contact points,
and balance out the external forces.

minimise
Fc

F>c JcM
>
g MgJ

>
c Fc

subject to λiz ≥ 0

µλiz ≥
√
(λix)

2 + (λiy)
2

(22)



where the superscript i denotes the contact of the ith leg. We
multiply both sides of (20) by (J>c )

+, and move the term for
external disturbance to the left hand side, resulting

(J>c )
+
(I−P)

[
MM−1

c (τu −Ph + Ṗq̇) + h− J>x F̂x

]
= (J>c )

+
MgJ

>
c Fc + λc

(23)
We define

η = (J>c )
+
(I−P)

[
MM−1

c (τu −Ph + Ṗq̇) + h− J>x F̂x

]
ρ = (J>c )

+
MgJ

>
c Fc

(24)
where η can be interpreted as the sum of all external force in
the constrained space, and ρ is the admissible commanded
force. The relationship between the contact force, the ad-
missible commanded force, and the external force can be
described by η = ρ + λc. We can then reformulate the
constraint optimisation problem without the contact force.

minimise
Fc

F>c JcM
>
g MgJ

>
c Fc

subject to ηiz − ρiz ≥ 0

µ(ηiz − ρiz) ≥
√
(ηix − ρix)2 + (ηiy − ρiy)2

(25)

Remark By setting τ c ≡ MgJcFc, the resulting torque
satisfies τ = Bτ and τu ⊥ τ c, so we can relax the equality
constraint proposed in [19].

Standard constrained optimisation such as the active-set
method iteratively solves a sequence of equality and in-
equality constraints. We simplify the constrained problem by
changing the cost function so that some of the constraints are
inherently satisfied by the function formulation that reduces
the number of active constraints. Simplicity and efficiency is
always favourable for real-time control of robots.

Finally, the friction cone constraints in (17) are quadratic
inequality constraints and not realistic to solve for real-time
control. We approximate the constraints with linearised fric-
tion cones of 4 edges. The constraint optimisation problem
was then solved using quadratic programming [20].

Quadratic programming aims to minimise x>Qx + q>x
subject to some equality and inequality constraints where
x is the decision variables and Q is the quadratic cost
function. Standard solver requires that Q to be positive
definite (Q = JcM

>
g MgJ

>
c in our case). Since Mg projects

out torques that are not admissible, our Q is rank deficient,
and cannot be solved by standard QP solver. Although
it is solvable by sequential quadratic programming, it is
more computationally expensive. Our controller is running
at roughly 2.5 ms; as a trade-off between accuracy and
speed, we add a regularisation term to the cost function
Q = JcM

>
g MgJ

>
c + εI. (ε = 10−10 in the experiment)

We then reduce the friction coefficients, to be smaller than
what they should be, in order to ensure that the constraints
are still satisfied even with potential numerical errors due to
the additional regularisation term.

In summary, we proposed a model-based, hierarchical con-
troller for legged system subject to external disturbances. The
motion controller achieves the desired swing leg and torso

trajectories, while the constrained controller maintains the
desired contact force. By explicitly estimating the external
force, our controller is robust to disturbances.

Remark This model-based control is traditionally dependent
on the accuracy of the dynamic model, however, our esti-
mated external force in (21) includes not only the human in-
teractions, but also encapsulates the model-error. Therefore,
the resulting constraint force is robust to model-error.

Proof: Let Λc and Λ̂c be the actual and the estimated
operational space inertia matrix, hc and ĥc be the actual
and the estimated operational space centrifugal, Coriolis and
gravity, the operational space dynamics is

Λcẍ + hc = F + Fx (26)

where F is the force needed for the desired task and Fx is
the actual external force. Without inertia shaping [18], the
force that realises the task and impedance response is

F = ĥc + Λ̂cẍd −Dd
˙̃x−Kdx̃ (27)

Substitute (27) into (26), resulting

Λcẍ + hc = ĥc + Λ̂cẍd −Dd
˙̃x−Kdx̃ + Fx

Adding Λ̂cẍ− Λ̂cẍ, to the left side

Λcẍ+ Λ̂cẍ− Λ̂cẍ+ hc = ĥc + Λ̂cẍd −Dd
˙̃x−Kdx̃+Fx

Simply the above equations

Λ̂c
¨̃x+Dd

˙̃x+Kdx̃ = (ĥc −hc) + (Λ̂c −Λc)ẍ+Fx (28)

Note that, the left hand side of the equation is equal to our
estimated external force in (21). We can see that, this term
arises from the true external force Fx and the modelling error
ĥc − hc and Λ̂c −Λc.

Remark In fact, when there is zero external disturbance,
the left side of (28) encapsulates only information about
modelling error, which can be used to update the model.
We plan to incorporate this in a future work.

IV. EVALUATION

We conduct experiments using ANYmal, a torque-controlled
quadruped robot made by ANYbotics1. The robot weights
approximately 35 kg and has 12 joints actuated by Se-
ries Elastic Actuators (SEAs). Currently, the soft real-
time control cycle is 2.5 ms. The control software
is developed based on Robot Operating System (ROS).
A video of the experimental results can be found in
https://mistrygroup.bitbucket.io/pages/videos.html

A. Optimising contact force with estimated external force
We would like to highlight the benefit of optimising ground
reaction force with estimated external force. Note that, with-
out incorporating the external force term in the optimisation,
it could be dangerous for human to interact with the robot.
Therefore this experiment has been done in simulation.

In Fig. 4, external forces are applied to the torso (green ar-
row). The desired and the actual the centre-of-mass projected

1See http://www.anybotics.com/



(a) (b)
Fig. 4: Examples of constrained optimisation includ-
ing/excluding the estimated of external force. The green
arrows are the external force, the red and blue solid circles
are the center-of-mass projected on the ground, the blue
arrows are the contact force. The figures show (a) without
the external force term and (b) with the external force term.

on the ground are shown as red and blue solid circle on the
ground. The blue arrows are the actual ground reaction force.

In Fig. 4(a), the estimated external force term F̂x is not
included in the optimisation in (25). We can see that the
ground reaction force of the left foot is at the edge of
the friction cone. Continuously applying external force will
cause the robot to slip. In contrast, if the external force
term is included, as described in (25), we can see that the
ground reaction force is maintain within the friction cone
from Fig. 4(b). (see supplementary video)

B. Withstanding model-error
In this experiment, we set up an extreme case in simulation
to verify that our proposed method is robust to model-error.
At the beginning of the experiment, the robot is standing on
a slope. We choose very high PD gains and slowly decrease
the gravity compensation term from 100% to 0%.

The result of the synthetic model-error is shown in Fig. 5,
where the x-axis is time (s) and the y-axis is force norm
(N). The colours denote magnitudes of the estimated external
force (blue), force needed for the motion controller (red), and
the gravity compensation term (yellow). We can observe that
the gravity compensation term decreases while the external
force increases. This is expected since without interaction
and acceleration, the estimated external force should reduce
to F̂x = ĥ− h from (28) and (21).

The controller has no gravity compensation at the end of
the simulation, but the ground reaction force is still inside
of the friction cone. This is reasonable since F̂x is included
in the optimisation. We can also see that the force for the
motion controller (red) is approximately the same throughout
the simulation. This is also expected since the F increases
due to position and velocity errors.

C. Shaping Stiffness Ellipsoid
In this experiment, we demonstrate the advantage of shaping
the stiffness ellipsoid. A well known and widely used condi-
tion for static balancing is that the centre-of-mass projected
on the ground should be inside of the support polygon. In
a real world scenario, external disturbances may be coming
from arbitrary directions and could cause the centre-of-mass
to fall outside of the stability margin. Due to the mechanical
design of the robot, the support polygon might be much
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Fig. 5: Experiment on synthetic model-error. The x-axis
is time and the y-axis is force norm (N). The colours
denote magnitudes of the estimated external force (blue),
force needed for the motion controller (red), and the gravity
compensation term (yellow).
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Fig. 6: Experiment of shaping stiffness ellipsoid. (a) and
(c) show the stiffness ellipsoid (red circle) of the torso.
(a) has equal stiffness in all directions while (c) has higher
stiffness along the coronal plane, (b)(d) are the resulting torso
positions in sagittal (blue) and coronal (red) direction, the
solid and dash lines are the desired and the actual positions.

narrower in some directions; e.g., the coronal plane (red)
is much narrower than the sagittal (blue) plane for ANYmal
in Fig. 6(b), and the disturbances alone in this direction can
cause the robot to lose balance and fall over. This problem
can be alleviated by shaping the stiffness ellipsoid based on
the balance stability margin.

To demonstrate this, we first set equal stiffness in all
linear directions for the torso, the stiffness ellipsoid is shown
in Fig. 6(a). An external force (green arrow) is applied at the
corner of the torso and Fig. 6(b) shows the torso position in
sagittal (blue) and coronal (red) direction. We can see that
the positions of the torso in these two directions are moving
with approximately the same magnitude.

Then, Fig. 6(c) shows the stiffness ellipsoid after in-
creasing the stiffness for coronal direction, so the resulting
stiffness ellipsoid matches the shape of the balance stability
margin. Then we apply external disturbances at the same
corner of the torso. In Fig. 6(d), the motion along the coronal
plane (red) is less affected by the external force and hence
more stable in balance. The experiment is performed in both
simulation and real robot. (Please see supplementary video)

D. Hierarchical Impedance Control

In this experiment, we would like to show our hierarchical
impedance controller under external disturbances. The task
of the robot is to maintain the swing foot at a desired position
in the air, while the torso is tracking the desired center-of-
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Fig. 7: Experiment of disturbing the torso while the swing leg
is moving to its desired position. The figures are (a) position
of the body and (b) position of the swing leg

(a) (b)
Fig. 8: Experiment of disturbing the foot of ANYmal. (a)
force on the swing leg. (b) force on the torso.

mass trajectory. In the real world scenario disturbances are
coming from arbitrary directions, which might hit the leg or
the body, as a result we would like to see how the robot
reacts with these random disturbances.

At the beginning of the simulation, the robot is standing
on a flat terrain, and then the swing leg slowly moves to a
desired height while external force is supplied at the torso.
The torso position is shown in Fig. 7(a) and the swing foot
position is shown in Fig. 7(b). The solid lines are the desired
positions and the dash lines are the actual positions, and the
colours denote x (blue) and y (red) positions. The interaction
happens around t = 2.5, and we can see that, the torso
position is disturbed while the swing foot position is still
tracking the desired height.

We also perform a similar experiment on the real robot,
and a human subject is able to randomly interact with
the swing leg and the torso, as shown in Fig. 8. Readers
can see the complete process of this experiment from the
corresponding video of this paper.

E. Walking on Rough Terrain

Compliance is essential for the robot to walk over uneven
terrain, since the swing leg may strike an obstacle and land
much earlier than planned. Without compliance, this creates
additional disturbances to the robot and might cause the robot
to lose its balance. In this experiment, we demonstrate the
usefulness of the impedance controller at the swing foot by
walking through an area with random blocks (Fig. 9).

For motion planning, we first calculate the desired swing
foot position using the method in [21]. A trajectory of desired
foot position is a linear interpolation between the initial foot
position, desired foot height, and the desired foot position.

Our controller realises the swing foot has struck on the

Fig. 9: Walking through rough terrain.

(a) (b)
Fig. 10: Standing on a 15 degree slope (a) without con-
strained optimisation (b) with constrained optimisation

(a) (b)
Fig. 11: On a 15 degree slope. (a) interaction (b) walking

obstacle if the swing foot velocities has a large error between
the expected and actual swing foot velocities. If this occurs
then our controller will consider it is a stance leg in the
next time step. Therefore we don’t need to rely on external
force/torque sensors to detect the collision.

F. Standing and Walking on Slope

Previous work of using projected inverse dynamics for
quadruped locomotion in [10] ignores the constrained space
torque, i.e. τ c. This approach works well on flat terrain
since the weight of the robot is sufficient to keep the ground
reaction force inside of the friction cone. To demonstrate the
importance of optimising the constrained force, we examine
the scenario on a 15 degree slope.

In Fig. 10 (a), without adding the constrained space
controller, the ground reaction forces (blue) fall outside of
the friction cones. In the supplementary video, we can see
that the feet continuously slides on the slope and eventually
fell. In Fig. 10 (b) with our optimisation the ground reaction
force is well maintained. The robot is able to walk up the
slope and is robust to disturbances.

V. CONCLUSION

In this paper, a method for hierarchical control of legged
system subject to external disturbance is proposed. The con-
trol framework is based on extending the projected inverse
dynamics controller to hierarchical motion control with con-
strained space control for underactuation. The unconstrained
component controls the motion of the swing leg and the torso
while achieving the desired Cartesian impedance behaviour.
The constrained space controller optimises the torque re-
quired to maintain the contact subject to unknown external
disturbances, and this is done without use of any force/torque
sensing at the feet or disturbance location. Although our



experimental platform is a quadruped robot, the proposed
theory is generic for legged systems with a hierarchy of tasks.

Our experimental results have demonstrated the robustness
of the proposed method in various scenarios showing that we
can achieve the desired motion while optimising the contact
force against disturbances. We have also proven that the
estimated external force encapsulates the force arisen from
human interaction and model-error.

In this paper, we focus on the control framework and
optimisation of the contact forces. In the future, we will
incorporate a more robust motion planning (e.g., foot step,
swing trajectory) against disturbances.
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APPENDIX

A. Deriving the hierarchical control formulation

From (11), we add an additional term Nuτu resulting

τ = P(J>1 F1 + N1J
>
2 F2) + (I−P)J>c Fc + Nuτu

Our goal is to have τ = Bτ .

P(J>1 F1 + N1J
>
2 F2) + (I−P)J>c Fc + Nuτu

= BP(J>1 F1 + N1J
>
2 F2) + B(I−P)J>c Fc + BNuτu

Move Nuτu to the right side,

(I−B)P(J>1 F1 + N1J
>
2 F2) + (I−B)(I−P)J>c Fc

= −(I−B)Nuτu

Solving for τu

τu = −[(I−B)Nu]
+[

(I−B)P(J>1 F1 + N1J
>
2 F2) + (I−B)(I−P)J>c Fc

]
Substitute τu back into the original equation

τ = P(J>1 F1 + N1J
>
2 F2) + (I−P)J>c Fc

−Nu[(I−B)Nu]
+
(I−B)P(J>1 F1 + N1J

>
2 F2)

−Nu[(I−B)Nu]
+
(I−B)(I−P)J>c Fc

=
(
I−Nu[(I−B)Nu]

+
(I−B)

)
P(J>1 F1 + N1J

>
2 F2)

+
(
I−Nu[(I−B)Nu]

+
(I−B)

)
(I−P)J>c Fc

Since (I−B) is a projection, I−Nu[(I−B)Nu]
+
(I−B) =

I−Nu[(I−B)Nu]
+. Let Mg = I−Nu[(I−B)Nu]

+, the
control law is

τ = Mg

[
P(J>1 F1 + N1J

>
2 F2) + (I−P)J>c Fc

]
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