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Abstract

Background: Hi-C sequencing offers novel, cost-effective means to study the spatial conformation of chromosomes.
We use data obtained from Hi-C experiments to provide new evidence for the existence of spatial gene clusters. These
are sets of genes with associated functionality that exhibit close proximity to each other in the spatial conformation of
chromosomes across several related species.

Results: We present the first gene cluster model capable of handling spatial data. Our model generalizes a popular
computational model for gene cluster prediction, called δ-teams, from sequences to graphs. Following previous lines
of research, we subsequently extend our model to allow for several vertices being associated with the same label. The
model, called δ-teams with families, is particular suitable for our application as it enables handling of gene duplicates.
We develop algorithmic solutions for both models. We implemented the algorithm for discovering δ-teams with families
and integrated it into a fully automated workflow for discovering gene clusters in Hi-C data, called GraphTeams. We
applied it to human and mouse data to find intra- and interchromosomal gene cluster candidates. The results include
intrachromosomal clusters that seem to exhibit a closer proximity in space than on their chromosomal DNA
sequence. We further discovered interchromosomal gene clusters that contain genes from different chromosomes
within the human genome, but are located on a single chromosome in mouse.

Conclusions: By identifying δ-teams with families, we provide a flexible model to discover gene cluster candidates in
Hi-C data. Our analysis of Hi-C data from human and mouse reveals several known gene clusters (thus validating our
approach), but also few sparsely studied or possibly unknown gene cluster candidates that could be the source of
further experimental investigations.
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Background
Distance-based clustering algorithms are paramount to
approach various questions across all data-driven fields
including comparative genomics. Here, we study the prob-
lem of discovering single-linkage clusters of a set of
corresponding vertices (where correspondence between
vertices across graphs is either provided through a bijec-
tive mapping or equivalence classes) between two or
more undirected weighted graphs G1, . . . , Gk such that
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the weakest link in the cluster (measured in terms of the
weighted shortest path) does not exceed a given thresh-
old δ in either graph Gi, 1 ≤ i ≤ k. We call such clusters
(δ-)teams, thereby adopting notation used by an extensive
trail of literature that studies the equivalent problem on
permutations and sequences [1–4].

A prominent use case of δ-teams in comparative
genomics is the detection of gene clusters, which are sets of
genes with associated functionality such as the encoding
of different enzymes used in the same metabolic pathway.
In many organisms, instances exist where such genes are
also locally close to each other in the genome, i.e., their
positions fall within a narrow region on the same chro-
mosome. They may even remain in close proximity over a
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longer evolutionary period, despite the fact that genomes
regularly undergo mutations such as genome rearrange-
ments, gene- or segmental duplications, as well as gene
insertions and deletions. Such mutations may also affect
the order and copy number of genes within a gene cluster
(see example in Fig. 1a). Molecular biologists argue that
a conserved neighborhood is beneficial for co-regulation,
as is true in the prominent case of operons in prokaryotes
[5]. Gene clusters are also prevalent in eukaryotes, even
in animals, where the HOX gene cluster is without doubt
the best studied representative. HOX genes are transcrip-
tion factors that regulate the embryological development
of the metazoan body plan [6].

Yet, the function of many genes is often barely under-
stood or entirely unknown despite the increasing number
of whole genome data that is becoming available. Hence,
a popular approach in comparative genomics is to work
this way backwards, starting with the investigation of
conserved gene proximity in genomes of a reasonably phy-
logenetically diverse set of species. Here, the underlying
assumption is made that accumulated genome rearrange-
ments will have shuffled the genome sequences suffi-
ciently so that natural selection becomes a plausible cause
of conserved gene neighborhoods. By identifying homolo-
gous sets of genes that are consistently close to each other
across several species, candidate gene clusters are iden-
tified that are then subject to more thorough functional
analysis.

Recently, new technologies emerged, allowing the study
of the spatial structure of genomes. High-throughput
chromosome conformation capture (Hi-C), the most
popular among such approaches, allows assessing the

conformation of the chromatin structure in a cell sam-
ple through measuring the number of observed contacts
between DNA regions [7]. The Hi-C method makes use of
formaldehyde to covalently link proteins and DNA strings
which are located next to each other in the cell. After
crosslinking, the cells are lysed and the DNA is digested
by a restriction enzyme. Remaining fragments bonded
by the same protein are ligated. Sequencing the hybrid
sequences reveals three-dimensional contacts between
their genomic origins. The outcome of the experiment is
a table, called Hi-C map, that records observed contacts
either within a single (intrachromosomal) or between dif-
ferent chromosomes (interchromosomal). Each row and
each column of the Hi-C map represents an equally sized
segment of a genome sequence, and a count in each cell
indicates how often hybrid sequences of the correspond-
ing segments have been observed in the experiment. The
size of these segments is known as resolution. It is a crucial
parameter regarding the quality of the data. The higher
the resolution of the chromatin structure is, the smaller is
the segment size, but also the more data is needed to get
significant results. An increasing number of Hi-C maps
is made publicly available (human and mouse [8, 9], fruit
fly [10]) and is used to answer numerous biological ques-
tions, starting from gene regulation and replication timing
[8, 11] to genome scaffolding and haplotyping [12, 13].

Gene cluster discovery has sparked the development of
various computational models for identifying sets of genes
that exhibit close proximity. Such models typically rely on
abstract data structures known as gene order sequences,
which describe the succession of genes in chromosomes.
In doing so, each element of a gene order sequence is the

a

b

Fig. 1 Illustrations of a sequential and b spatial gene clusters. Genes with the same colors belong to the same gene family
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identifier of a gene’s associated gene family. A popular
method to find gene clusters is based on the identifica-
tion of common intervals in these sequences, which are
intervals with an identical set of elements (i.e. gene fam-
ily identifiers), independent of the elements’ order and
multiplicity [14–16]. Since their first mentioning in [16],
common intervals became the source for several gener-
alizations [17, 18], among others, δ-teams [2]. δ-Teams
are sets of elements where the distance between any two
successors across all sequences is bounded by a given
threshold δ ≥ 0. This flexible model facilitates not only
the detection of gene clusters that are interspersed by
unrelated inserted genes, but also the consideration of
general distance measures. The latter, for instance, allows
to take into account the number of nucleotide base pairs
between genes.

Not only the gene proximity on linear DNA sequences,
but especially the spatial conformation of chromosomes
may provide a pivotal indicator for common regula-
tion and/or associated function of sets of genes (see
example in Fig. 1b). Evidence of spatial gene clusters
has been put forward already by Thévenin et al. [19]
who studied spatial proximity within functional groups
of genes in the human genome. In the present work,
we introduce the first spatial gene cluster model. It
extends the δ-teams model from sequences to undi-
rected weighted graphs, facilitating the detection of genes
that are consistently spatially close in multiple species.
In doing so, our method integrates Hi-C and genome
annotation data into weighted undirected graphs, where
vertices represent gene family identifiers of genes and
weighted edges correspond to distances obtained from
Hi-C data.

The remainder of this manuscript is organized as fol-
lows: In the following section, we formally define δ-teams
on graphs and present an algorithm for their discovery.
We then extend our approach to finding δ-teams with
families, i.e., the case where vertices across graphs are
related through a common family membership, allowing
multiple members of the same family to be part of the
same graph. We then show how δ-teams can be used
to find candidate sets of spatial gene clusters using a
combination of genome and Hi-C data of two or more
species. In “Results”, we present GraphTeams, a work-
flow for discovering gene cluster candidates in Hi-C data.
We subsequently apply it to intra- and interchromosomal
Hi-C data from human and mouse. Spatial gene clus-
ters that have been found by our method are presented
and further investigated. In “Discussion” we relate the
computational complexity of our algorithms for finding δ-
teams in graphs with those of permutations and sequences
that have been previously reported in the literature. We
then discuss some of the gene cluster candidates that
our method discovered in intra- and interchromosomal

Hi-C data of human and mouse. “Conclusions” closes this
manuscript and provides an outlook on future work.
GraphTeams is available for download at http://github.

com/danydoerr/GraphTeams.

Methods
Discovering δ-teams in graphs with shared vertex sets
In this section, we discuss the general problem of iden-
tifying common single-linkage clusters in a collection of
graphs, where the largest link does not exceed a given
distance threshold δ. We call such clusters δ-teams to
remain in line with previous literature which studied the
equivalent problem on permutations and sequences.

A naive method would require to compute all-pairs-
shortest-paths in each graph independently. From these
distances, a single matrix would be constructed for ver-
tices that are common to all graphs. Each entry of this
matrix, corresponding to a pair of vertices, equals to
the longest distance over all shortest paths in any of the
graphs. Then, a standard single-linkage clustering algo-
rithm could be used to enumerate δ-teams. Here, we
present an algorithm with a slightly better running time
than this naive approach.

To simplify presentation, we describe only the case of
two input graphs G and H in detail. The general case
can be trivially inferred. In fact, our implementation (see
“Results”) supports two or more graphs.

We study undirected graphs G = (V , E) with distances
measure dG : V × V → [0, ∞). While subsequent defi-
nitions adhere to the general case, for all our purposes we
assume edge-weighted graphs and use as distance mea-
sure the length of the shortest path between any two
vertices, if such exists and ∞ otherwise. In doing so, the
length of the shortest path is measured by the sum of its
edge weights. We use E(G) and V (G) to denote the edge
and vertex set of a graph G, respectively. Since we will refer
frequently to sets of vertices in one of several graphs, we
will indicate the origin of a vertex set S ⊆ V (G) of a graph
G through subscript notation, i.e. SG, whenever this infor-
mation is relevant. We are interested in sets of vertices
that are connected through paths on which the distance
between two successive members is bounded by δ:

Definition 1 (δ-set) Given a graph G with distance mea-
sure dG and a threshold value δ ≥ 0, a vertex set S ⊆ V (G)

is a δ-set if for each pair of vertices u, v ∈ S there exists
a sequence P = (u, . . . , v) ⊆ S such that the distance
dG(w, z) between any two consecutive vertices w and z of P
is less than or equal to δ.

Note that unlike single-linkage clusters of a graph, δ-
sets are not required to be maximal in that graph. Analog
to partition refinement, the aim is to find sets of ver-
tices that are δ-sets in both input graphs. The subsequent
definitions establish relations of δ-sets across two graphs
G and H with shared vertex set V∩ = V (G) ∩ V (H). In
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doing so, we assume that there is a common non-empty
set of vertices between the two graphs that is subject to
subsequent analysis. Vertices that are unique to either of
the two graphs are disregarded, yet may be relevant due to
their involvement in paths between common vertices.

Definition 2 (δ-cluster) Given two graphs G and H with
distance measure dG and dH , respectively, and a threshold
value δ ≥ 0, a vertex set S ⊆ V∩ is a δ-cluster if it is a δ-
set in both G and H under distance measures dG and dH ,
respectively.

Definition 3 (δ-team) Given two graphs G and H, a δ-
cluster S of G and H is a δ-team if it is maximal, i.e., there
is no δ-cluster S′ of G and H such that S � S′.

Example 1 The two graphs G and H depicted in
Fig. 2a have three δ-teams: 1-team {d, f }; 2-team {c, d, f },
and 3-team {a, c, d, f , g}. The set {c, d, f , g} exemplifies a
non-maximal 3-cluster of G and H.

Finding δ-teams by decomposing graphs with
divide-and-conquer
Given the above definitions, the following computational
problem naturally arises and is subject to this work:

Problem 1 Given two graphs G and H with distance
measure dG and dH , respectively, and a threshold value
δ ≥ 0, find all δ-teams of G and H.

The first observation that is key to addressing the prob-
lem at hand, is that two δ-teams cannot overlap. The
following lemma, in which Teamsδ(S) denotes the set
of δ-teams of vertex set S, is basis to all permutation-
based (gene-) team algorithms and holds true for the here
proposed generalization, too:

Lemma 1 [1, 2] Given two graphs G and H with com-
mon vertex set V∩ and a threshold value δ ≥ 0, there

exists a partition {V ′, V ′′} of V∩ such that Teamsδ(V∩) =
Teamsδ(V ′) ∪ Teamsδ(V ′′).

The lemma leads to a simple divide-and-conquer
approach which has already been applied by He and
Goldwasser [2] for the restricted case of sequential data.
Here, we apply this lemma to general graphs. Algorithm
DECOMPOSE divides the common vertex subset S ⊆ V∩
of graphs G and H into smaller subsets as long as S is not
a δ-set in both graphs.

Algorithm 1 DECOMPOSE(S)

Input: graphs G, H ; vertex subset S ⊆ V∩, S �= ∅;
threshold value δ ≥ 0

Output: all δ-teams of G and H within S
1: S′ ← SMALLMAX(S, S) // find a smaller maximal δ-

set S′ ⊆ S of G or H
2: if |S| = |S′| then
3: return {S}
4: else
5: return DECOMPOSE(S′) ∪ DECOMPOSE(S \ S′)
6: end if

Because Algorithm 1 proceeds from larger to smaller
sets, a vertex set S, identified by the algorithm, that is a
δ-set in both G and H is always maximal and therefore a
δ-team. Procedure SMALLMAX (see line 1) finds a max-
imal δ-set S′ smaller than S, or, if the smallest maximal
δ-set (that is still a subset of S) in both G and H is S itself,
returns S. This will be further elaborated in the following
section.

Identifying maximal δ-sets
Maximal δ-sets are identified by function SMALLMAX as
described in pseudo-code by Algorithm 2.

Fig. 2 Examples of δ-teams and δ-clusters in graphs without families a and with families b. δ-Teams and -clusters are highlighted by areas of shared
color. Edge labels indicate weights. Vertices in b are represented by their family identifier
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Algorithm 2 SMALLMAX(SG, SH)

Input: graphs G, H ; vertex subsets SG ⊆ V (G) and SH ⊆
V (H); threshold value δ ≥ 0

Output: a maximal δ-set S′
G ⊆ SG or S′

H ⊆ SH
1: choose random vertices u ∈ SG and v ∈ SH
2: initialize sets S′

G = {u}, S′
H = {v}

3: initialize Boolean variables pG, pH with True
4: while (pG or S′

G =SG) and (pH or S′
H =SH) and (pG or pH)

do
5: for each graph X = G, H do
6: if ∃ s ∈ SX \ S′

X s.t. ∃ s′ ∈ S′
X with dX(s, s′) ≤ δ then

7: add vertex s to set S′
X

8: else
9: pX ← False

10: end if
11: end for
12: end while
13: if (¬pG and S′

G �= SG) then return S′
G else return S′

H

Note that procedure SMALLMAX is drafted for a general
setting that permits the discovery of different vertex sets
in graphs G and H, respectively. In doing so, SMALLMAX
can also be used in the case of finding δ-teams with fami-
lies that is subject of “δ-teams with families”. For now, the
input sets SG and SH are identical.

The function is designed to terminate the search for
a maximal δ-set that is subset of SG or SH as early
as possible. Hence, SMALLMAX searches through both
graphs independently, but simultaneously, to identify a
smaller maximal δ-set in either vertex set. In each iter-
ation (lines 4-12), the algorithm tries to identify in each
graph X = G, H a vertex s of set SX which has not been
previously visited and that has distance at most δ from
any already visited node. To this end, a list S′

X is main-
tained that keeps track of already visited vertices of set
SX . Boolean variables pX indicate whether unvisited, yet
reachable vertices in set SX \ S′

X could be found in graph
X in the previous iteration. The iteration is controlled by
three different cases (line 4): If no unvisited node can be
found, SMALLMAX has identified either a smaller δ-set of
SX or, if the traversal is exhausted, SX itself. In the former
case, the procedure stops and returns the visited subset
S′

X of SX . In the latter case, the algorithm continues the
search for a smaller δ-set in the corresponding other ver-
tex set SY , Y = {G, H} \ X, and will return such if found.
Otherwise, the smallest maximal δ-set in both SG and SH
is the set itself. This also leads to a disruption of the while-
loop (lines 4-12) and, by convention, the return of set
S′

H (= SH ).
Because SMALLMAX does not go further than distance

δ from any already visited node of S′
X , it is clear that the

returned vertex set is a δ-set. It is also maximal, because
the algorithm does not stop prior to having found all

vertices of SX that can be reached from the starting node
(which is also a member of SX and S′

X).
The time complexity of algorithm DECOMPOSE depends

on the number of its own recursive function calls. The
decomposition of set S into sets S′ and S \ S′ that is
performed in line 5 of DECOMPOSE takes O(|S|) time,
but is overshadowed by the time complexity of SMALL-
MAX. For SMALLMAX, the most costly operation is the
search for the next node s of SX \ S′

X . This can be found
through successive traversal of each graph using breadth-
first search (BFS) outgoing from any arbitrary vertex of
sets SG and SH , respectively. The BFS determines the run-
ning time of SMALLMAX and requires O(|V (G)|+|E(G)|+
|V (H)| + |E(H)|) time. In the worst case, DECOMPOSE
needs |V∩| iterations to decompose the initial, shared
vertex set V∩.

This leads to an overall running time of O (|V∩| · (|V (G)|
+|E(G)| + |V (H)| + |E(H)|)) for Algorithm 1.

The special case of shortest-path graphs
In the special case where each pair of vertices u, v of
vertex set V∩ has a directly connecting edge whenever
their distance is smaller than or equal to δ, SMALLMAX
takes O(|V∩|) time in each iteration. This observation
leads to an alternative approach for the general case
that may in practice be faster for certain instances or
applications: From the input graphs G and H two new
graphs G′ and H ′ are derived by computing shortest paths
between all pairs of vertices in V (G) and V (H), respec-
tively. In the new graph G′ two vertices u, v ∈ V (G) =
V (G′) are connected with an edge of weight 1 if their dis-
tance is smaller than δ and, similarly, for graph H ′. Then,
the enumeration of δ-teams of G and H is equivalent to
computing 1-teams in G′ and H ′. Our implementation
includes an option for the computation of δ-teams using
this alternative approach. Shortest paths are obtained with
Floyd-Warshall’s algorithm which has a running time of
O

(|V |3) [20].

δ-teams with families
Family labels allow correspondences between vertices of
the input graphs G and H that go beyond 1-to-1 assign-
ments, which is the scenario best suitable for our appli-
cation as further explained in “Application to spatial gene
cluster discovery”. Given a graph G = (V , E), let F : V →
F be a surjective mapping between vertices and families.

We extend the concepts of δ-cluster and δ-team to
families as follows:

Definition 4 (δ-cluster with families) Given two graphs
G and H with distance measures dG and dH, respectively,
a family mapping F and a threshold value δ ≥ 0, a pair
of vertex sets (SG, SH) with SG ⊆ V (G) and SH ⊆ V (H)

is a δ-cluster if (i) F(SG) = F(SH) and (ii) SG and SH
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are δ-sets in G and H under distance measures dG and dH ,
respectively.

Definition 5 (δ-team with families) Given two graphs G
and H, a δ-cluster (SG, SH) of G and H is a δ-team if it is
maximal, i.e., there is no other δ-cluster (S′

G, S′
H) of G and

H such that SG ⊆ S′
G and SH ⊆ S′

H .
Example 2 The two graphs G′ and H ′ depicted in Fig. 2b

have four δ-teams that are in the following represented by
their family set: 1-team {d, f }; 2-teams {c, d, f } and {c, e},
and 3-team {a, c, d, f , g}. The set {c, d, f , g} exemplifies a
non-maximal 3-cluster of G′ and H ′.

With the generalization to families, Lemma 1 is no
longer applicable. However, Wang et al. [3] provide an
adaptation which shows how the original divide-and-
conquer approach can be extended:

Lemma 2 [3] Given two graphs G and H, a family map-
ping F and a threshold value δ ≥ 0, let SG ⊆ V (G),
SH ⊆ V (H), s.t. F(SG) = F(SH) and B be a maximal δ-
set of SG or SH . W.l.o.g. let B ⊆ SG, then Teamsδ(SG, SH) =
Teamsδ(B, S′

H)∪Teamsδ(SG \B, S′′
H), where S′

H = {v ∈ SH |
F(v) ∈ F(B)} and S′′

H = {v ∈ SH | F(v) ∈ F(SG \ B)}.
The adaptations to algorithm DECOMPOSE are a

straightforward implementation of Lemma 2 and are
shown in Algorithm 3 (DECOMPOSEFAMILIES).

Algorithm 3 DECOMPOSEFAMILIES(SG, SH)

Input: Graphs G and H, mapping F , vertex sets SG ⊆
V (G) and SH ⊆ V (H) such that F(SG) = F(SH) �= ∅,
distance measures dG, dH , and δ ≥ 0

Output: all δ-teams of G and H that are subsets of or
equal to (SG, SH)

// find a maximal δ-set S′
X ⊆ SX, where X is a

placeholder for graph G or H
1: S′

X ← SMALLMAX (SG, SH)

2: if SX = S′
X then

3: return {(SG, SH)}
4: else
5: Y ← {G, H} \ X
6: S′

Y ← {
v ∈ SY | F(v) ∈ F

(
S′

X
)}

7: S′′
Y ← {

v ∈ SY | F(v) ∈ F
(
SX \ S′

X
)}

8: return DECOMPOSEFAMILIES
(
S′

X , S′
Y
) ∪

DECOMPOSEFAMILIES
(
SX \ S′

X , S′′
Y
)

9: end if

To efficiently retrieve vertices associated with families
of F(S′

X) and F(SX \S′
X) (see lines 6 and 7 of Algorithm 3),

we follow Wang et al. [3] and maintain a table of linked
lists that maps family identifiers with its members in
each respective graph. F

(
S′

X
)

can be built in O
(∣∣S′

X
∣
∣)

time while F
(
SX \ S′

X
)

needs O(|SX |) time. Afterwards,
it is possible to build S′

Y and S′′
Y in O(|SY |) time. The

runtime of SMALLMAX remains the same for Algorithm 3.
Yet, because the input sets SG and SH can no longer be
decomposed into disjoint sets, Algorithm 3 requires over-
all O((|V (G)| + |E(G)|) · (|V (H)| + |E(H)|)) time and
O (|V (G)| + |E(G)| + |V (H)| + |E(H)|) space.

Application to spatial gene cluster discovery
We will now demonstrate how the discovery of δ-teams
with families allows to find spatial gene clusters in
genomic data of two or more species. For each genome, we
construct an undirected weighted graph in which vertices
correspond to genes that are labeled with the identifier
of their associated gene family and in which weighted
edges correspond to distances obtained from the contact
counts of the genomes’ respective Hi-C maps. Then, δ-
teams (with families according to the genes’ families) in
the constructed graphs will correspond to spatial gene
cluster candidates.

We first map the Hi-C data onto their chromosomal
sequences. In doing so, we associate genes with segments
of the Hi-C map. Consequently, contact counts between
genes correspond to the contact counts of their associated
segments. The value of a contact count does not represent
a distance but a closeness score, hence a transformation is
needed. We define the dissimilarity between two genes gi,
gj associated with Hi-C map M as

dM(gi, gj) =
{

0 if gi = gj
maxk,l(Mkl) + 1 − Mij otherwise . (1)

Note that intrachromosomal distances are symmetric.
Whenever two adjacent genes fall into the same seg-
ment of an intrachromosomal Hi-C map, the distance is
estimated by incorporating their proximity on the DNA
sequence. To this end, each base pair between the mid-
points of two genes is scored with a relative contact count
of C/r, where C is the average contact count between
two adjacent segments in the Hi-C map, i.e., the mean of
Mi,i+1 of Hi-C map M, and r is the resolution of the Hi-
C map, i.e., the size of its segments. This estimator works
well for our purposes because Hi-C data shows strong
correlations with distances on the chromosomal DNA
sequence.

It is common that Hi-C maps contain large numbers
of empty cells as a result of erroneous measurements
and deliberate blanking of the contact counts around
the centromere. We do not apply any correction to such
cells except to those in intrachomosomal Hi-C maps that
correspond to adjacent segments, i.e., the Mi,i+1 cells.
Here, we use the same estimator as described above for
genes falling into the same cell of the intrachromosomal
Hi-C map.

Because we will compare distances obtained from Hi-C
maps of different experiments, we must ensure that they
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all use the same scale. We do this by normalizing all dis-
tances of each Hi-C map M as follows:

Mnorm = c
maxk,l (Mkl)

· M, (2)

where c is the average maximum contact count across all
Hi-C maps.

Quantifying functional associations of gene clusters using
gene ontology annotations
We quantify functional associations between genes of a
gene cluster candidate by testing against the null hypoth-
esis that genes in a gene cluster are as functionally
associated to their co-members as members within any
other equally-sized set of genes in the genome. To this
end, we make use of Gene Ontology (GO) [21] anno-
tations and relate between gene functions by means of
the gene ontology hierarchy that corresponds to the
domain “Biological Process”. In doing so, we measure GO-
based functional dissimilarity (GFD) [22] between pairs
of GO-annotated genes. Given a directed acyclic graph
G = (V , E) corresponding to a GO-hierarchy, rG(g) ={

v ∈ V (G) | g associated with v
}

denotes the set of GO
terms, i.e., vertices of the GO hierarchy G, with which gene
g is associated. Further, pG(u, v) denotes the length of the
shortest path between two vertices u, v ∈ V measured in
the number of separating nodes. The GFD between two
GO-annotated genes g and g′ is then defined as

gfdG
(
g, g′) = min

(u,v)∈rG(g)×rG(g′)

(
pG(u, v)

depthG(u) + depthG(v)

)
,

(3)

where depthG(w) is the length of the path from the root
vertex of G to vertex w. This measure gives then rise to
the gene cluster penalty defined for a gene set C ⊆ G of a
genome G as follows:

φG(C,G) =
∑

g∈C

(
min

g′∈C\{g}
gfd

(
g, g′) − min

g′′∈G\{g}
gfd

(
g, g′′)

)
.

(4)

This leads to the null hypothesis that the gene clus-
ter penalty of a gene cluster follows the same distribution
as any other equally-sized set of genes that is uniformly
drawn from the genome. In our analysis, we rank gene
clusters according to p-values empirically computed from
sample pools of size 107 which are drawn for each gene
cluster size, individually.

Results
The GraphTeams workflow
We implemented Algorithm 3 in the Python pro-
gramming language and provide an entirely automated
Snakemake [23] workflow for the identification of spatial

gene clusters. Our workflow, called GraphTeams, takes
as input the fully assembled sequences of a collection of
genomes as well as their corresponding Hi-C maps. If
supplied with Hi-C maps of different resolution, it auto-
matically assimilates their scale. Next, GraphTeams nor-
malizes the Hi-C maps, establishes relationships between
Hi-C segments and genes, and constructs weighted graphs
that are then input to Algorithm 3. Further, when provided
with additional GO-annotations, our workflow allows the
computation of a GFD-based ranking scheme for gene
cluster candidates. Our approach is, to the best of our
knowledge, the first of its kind that is capable of identify-
ing spatial gene clusters. GraphTeams can be obtained
from http://github.com/danydoerr/GraphTeams.

Intrachromosomal study of human and mouse
We used GraphTeams to find intrachromosomal spa-
tial gene cluster candidates in human and mouse. To this
end, we supplied GraphTeams with intrachromosomal
Hi-C maps first published by Dixon et al. [8]. These Hi-C
maps have been obtained from Hi-C sequencing experi-
ments with embryonic cell lines and have a resolution of
40 kb. Further, we queried the Ensemble Genome Browser
(release 88) [24] to obtain information about ortholo-
gous genes of the human reference sequence GRCh38.p10
and the mouse reference sequence GRCm38.p5. The data
consists of 19,843 human genes that are orthologous to
20,647 mouse genes. After integration with the Hi-C
data, GraphTeams constructed graphs with average pair-
wise distances of 408.5 and 407.8 for human and mouse,
respectively.

We ran GraphTeams with a range of values for δ from
50 to 600. All computations were performed on a Dell
RX815 machine with 64 2.3 GHz AMD Opteron proces-
sors and 512 GB of shared memory. The running times for
computing all δ-teams for each value of δ are shown in the
bottom right plot of Fig. 3 and range from 62 minutes for
δ = 200 to 111 minutes for δ = 600. The plot indicates a
sharp increase of running time for δ > 400 that correlates
with the increase of the size of identified δ-teams in our
dataset.

Apart from the performance of our algorithm, we also
investigated the claim whether spatial data can improve
the search for functional gene clusters. Next to the graphs
that were generated as previously described and which we
will further call spatial graphs, we constructed a second
type of graphs, called sequential graphs. These graphs rep-
resent one-dimensional distances between genes if each
chromosome is seen as a linear DNA molecule. Because
the distances should be comparable to those from spatial
graphs, we derived them also from the Hi-C data, but only
considered cells Mi,i+1 of each Hi-C map M. The entries
directly above the main diagonal of a Hi-C map corre-
spond to contact counts between adjacent segments of a

http://github.com/danydoerr/GraphTeams
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Fig. 3 Results of Algorithm 3 on intrachromosomal Hi-C datasets of human and mouse for different values of δ. The plots show for each threshold
value δ, the number of discovered 1D and 3D gene clusters (upper left) and their average sizes (upper right) in the spatial and sequential graphs,
respectively, the average number of gained genes in the 3D gene clusters versus the 1D gene clusters (lower left), and the computation time for the
3D gene clusters (lower right)

chromosome. This resulted in graphs harboring identical
one-dimensional distances as spatial graphs, but without
any three-dimensional “shortcuts”. Since our algorithm is
a direct generalization of previous methods acting on lin-
ear DNA sequences, we use it to identify (traditional)
δ-teams on sequential graphs, too. We call δ-teams that
are found in spatial graphs 3D gene clusters, whereas those
in sequential graphs are called 1D gene clusters.

Figure 3 shows the results for both graphs. In the plot
on the top left, we can see that the number of gene clus-
ters grows for both types of graphs with increasing values
of δ while the number of 3D gene clusters is slightly higher
than that of 1D gene clusters. This changes after δ =
350 when more 3D gene clusters are merged than new
instances are found, leading to a rapid decrease in their
number along with an increase in their size (see plot on
the top right). The peak associated with this phenomenon
is delayed in the sequential graphs, owing to the fact that
in the latter, gene clusters are more stretched out. This is
also the reason why we find that some 1D gene clusters
are much denser in the spatial graphs. More surprisingly,
we also find gene clusters that can only be found in spatial
graphs for a given threshold value δ. We call the average
amount of genes in a cluster that can be found in the spa-
tial graphs, but not in the sequential ones, spatial gain (see
plot at the bottom left). We see an increase in spatial gain

around δ = 250 until a saturation seems to be reached at
δ = 450.

We studied in further detail gene clusters that were
discovered with δ = 350. These gene clusters strike a
fair balance between number and size as can be read-
ily observed from our previous analysis. The datasets of
both, 3D and 1D gene clusters, were used to evaluate
functional associations between gene cluster members.
To this end, GO-annotations of the human genome were
obtained from [21] to compute gene cluster penalties and
to rank gene clusters according to their empirical p-value
as described in “Quantifying functional associations of
gene clusters using gene ontology annotations”. In the
obtained gene ontology dataset, 15,737 out of 19,843
human genes were associated with one or more GO-
terms. Because the analysis is restricted to those genes
with annotated GO-terms, only 1559 out of 1961 3D gene
clusters and 1669 out of 2118 1D gene clusters could be
further investigated. 18.54% of the 3D gene clusters and
18.33% of the 1D gene clusters exhibited a significant
empirical p-value (p < 0.05). Overall, significant 3D gene
clusters tend to include more (annotated) genes (total:
930) than their 1D counterparts (total: 886). Table 1 lists
the top twenty 3D gene clusters that are either not found
in the set of significant 1D gene clusters, or only partially
found, or broken into two or more sub-clusters.
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Table 1 Top 20 3D gene clusters with smallest p-value using intrachromosomal Hi-C data

Name Genes Penalty p-Value

HOXC∗ HOTAIR_2, HOTAIR_3, HOXC10, HOXC11, HOXC12, HOXC13, HOXC4,HOXC5, HOXC6,HOXC8, HOXC9 0.006 1 · 10−7

OR OR5AP2, OR5AR1, OR5M1, OR5M10, OR5M11, OR5M3, OR5M8, OR5M9, OR5R1, OR8K1, OR8U1, OR9G1,
OR9G

0 1 · 10−7

IGHV∗ IGHV3-11, IGHV3-13, IGHV3-20, IGHV3-21, IGHV3-23, IGHV3-30, IGHV3-33, IGHV3-35,
IGHV3-64D, IGHV3-7

0 1 · 10−7

KRTAP∗ KRTAP13-1, KRTAP13-2, KRTAP13-3, KRTAP13-4, KRTAP15-1, KRTAP24-1, KRTAP26-1,
KRTAP27-1

0 1 · 10−7

TAS2R TAS2R14, TAS2R19, TAS2R20, TAS2R31, TAS2R46, TAS2R50 0 3.70 · 10−6

OR OR2A12, OR2A14, OR2A25, OR2A5 0 9.09 · 10−5

ZSCAN4 NKAPL, ZKSCAN3, ZKSCAN4, ZSCAN26 0.006 0.00015

TRAV TRAV12-1, TRAV12-2, TRAV12-3, TRAV13-1, TRAV13-2, TRAV17, TRAV18, TRAV19, TRAV22,
TRAV23DV6, TRAV5, TRAV8-1, TRAV8-3, TRAV9-2

0 0.00037

OR OR5AC1, OR5H1, OR5H14 0 0.00037

IGHV+ IGHV1-18, IGHV1-24, IGHV1-3 0 0.00037

BTN3+ BTN3A1, BTN3A2, BTN3A3 0 0.00037

(unnamed) GTF2A1L, STON1, STON1-GTF2A1L 0 0.00037

CYP3A CYP3A4, CYP3A43, CYP3A5, CYP3A7, CYP3A7-CYP3A51P 0.028 0.00037

(unnamed) ADGRE1, C3, CD70, GPR108, TNFSF14, TRIP10, VAV1 0.057 0.00047

ZNF CCDC106, FIZ1, U2AF2, ZNF524, ZNF580, ZNF784, ZNF865 0.097 0.00110

OR OR8B12, OR8B4, OR8B8 0.012 0.00376

KIR KIR2DL1, KIR2DL3, KIR2DL4, KIR2DS4, KIR3DL1, KIR3DL2, KIR3DL3 0.179 0.00243

MMP MMP12, MMP13, MMP3 0.035 0.00486

TSPY+ TSPYL1, TSPYL4 0 0.00504

SIGLEC+ SIGLEC12, SIGLEC8 0 0.00504

Clusters that can be found as split sub-clusters in the 1D results are marked by an asterisk. Those completely absent in the 1D results are marked by a plus

Interchromosomal spatial gene cluster candidates in
human and mouse
Unlike traditional methods for gene cluster discovery, our
approach is not limited to the study of intrachromosomal
clusters. On the contrary, our model permits spatial gene
clusters to be composed of genes from different chromo-
somes. The GraphTeams workflow supports data from
both inter- and intrachromosomal Hi-C maps. Here, we
present results of an analysis in which we replaced the
human Hi-C data from the previous analysis with that
by Lieberman-Aiden et al. [9]. The latter consists of both
intra- and interchromosomal Hi-C maps and further dif-
fers from Dixon et al.’s dataset in the facts that it was
obtained from lymphoblastoid cell lines with a lower res-
olution (1 Mb). Due to the normalization using Eq. 2,
distances in the constructed graphs exhibit a wider range
than in our previous analysis. This also affects intrachro-
mosomal distances that are now larger than before. On
average, two genes have a pairwise distance of 799.8 and
836.6 in human and mouse, respectively. Yet, the num-
ber of δ-teams in both graphs follows the same trends
that we observed in our previous analysis (see left plot
of Fig. 4). Thus, following the same line of reasoning, we

decided to study gene clusters for δ = 700 and δ = 750 in
close detail. Note that the larger size of the graphs is tak-
ing a toll on the computation time of δ-teams (see right
plot of Fig. 4). For δ = 700, GraphTeams reported 58
gene cluster candidates whose members are located on
more than one chromosome of the human genome. For
δ = 750, it reported 88, many of which are contained
exactly or partially in the former list. Five of these can-
didates were ranked as significant in our gene ontology
analysis as shown in Table 2.

Discussion
The enumeration of common intervals in sequences
has been subject to various extensions including δ-
teams. Here, we described a generalization of δ-teams
from sequences to graphs. We presented a novel algo-
rithm for the enumeration of δ-teams that, when triv-
ially extended to k graphs Gi = (Vi, Ei), for i =
1, . . . , k, will run in O

(∑
i |Vi| + |V∩| · ∑

i (|Vi| + |Ei|)
)

time and O
(∑

i(|Vi| + |Ei|)
)

space, where V∩ = V1 ∩
· · · ∩ Vk . Our algorithm beats the naive approach that
requires O

(∑
i |Vi|3

)
time and O

(∑
i |Vi|2

)
space. The

naive approach computes all-pairs shortest paths on each
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Fig. 4 Results of Algorithm 3 on interchromosomal Hi-C datasets of human and mouse for different values of δ. The plots show for each threshold
value δ, the number of discovered 1D and 3D gene clusters in the spatial and sequential graphs, respectively (left) and the computation time for the
3D gene clusters (right)

of the input graphs independently and then employs a
standard single-linkage algorithm for the enumeration of
δ-teams in a matrix over all largest shortest paths of all
graphs.

Further, we provide an algorithm for the compu-
tation of δ-teams that, when trivially extended to k
graphs with families, will run in O

(
k · ∏

i (|Vi| + |Ei|)
)

time and O
(
k · ∑

i (|Vi| + |Ei|)
)

space. In comparison,
the best algorithm for the enumeration of δ-teams in k
permutations of size n runs in O

(
k · n · log N

)
time, where

N denotes the number of reported δ-teams [25]. The
best algorithm that solves the corresponding family-based
problem for k sequences of lengths n1, . . . , nk runs in

O
(
k · C · log (n1 · · · nk)

)
time, where C is a factor account-

ing for the number of possible 1:1 assignments between
family members across the k graphs [3]. The differences
in running time between the permutation-, sequence- and
our graph-based algorithms reflect the fact that the latter
solve much more general problems.

With GraphTeams, we developed an open source, fully
automated workflow for gene cluster discovery in Hi-C
data. We used this workflow to study intrachromosomal
gene clusters in a Hi-C dataset of embryonic cell lines
from human and mouse [8]. In doing so, we assessed
the benefit of predicting gene clusters in spatial data
as opposed to traditional, sequential genomic data. We

Table 2 Interchromosomal gene cluster candidates identified by Algorithm 3 with δ = 700 and δ = 750

Name Genes p-Value

USP17L chr. 4: USP17L10, USP17L11, USP17L12, USP17L13, USP17L15, USP17L17, USP17L18, USP17L19,
USP17L20, USP17L21, USP17L22, USP17L23, USP17L24, USP17L25, USP17L26, USP17L27,
USP17L28, USP17L29, USP17L30, USP17L5; chr. 8: USP17L1, USP17L2, USP17L8

1 · 10−7

OR4F chr. 1: OR4F16, OR4F29; chr. 8: OR4F21; chr. 15: OR4F15, OR4F6 1.40 · 10−5

GGT chr. 20: GGTLC1; chr. 22: GGT2, GGTLC2, GGTLC3 9.09 · 10−5

OR4M/OR4N chr. 14: OR4M1, OR4Q3; chr. 15: OR4M2, OR4N4, RP11-294C11.1, RP11-294C11.3 9.09 · 10−5

OR4F chr. 1: OR4F5; chr. 19: OR4F17 0.0050417

(unnamed) chr. 20: RN7SKP271; chr. 22: RN7SKP221, RN7SKP63 –

(unnamed) chr. 1: RNU1-13P, RNVU1-1, RNVU1-7; chr. 21: U1 –

(unnamed) chr. 3: RNU6ATAC29P; chr. 8: RNU6ATAC41P; chr. 14: RNU6ATAC30P; chr. 17: RNU6ATAC7P; chr. 18:
RNU6ATAC20P; chr. 20: RNU6ATAC17P, RNU6ATAC34P

–

(unnamed) chr. 12: RNU6-101P, RNU6-768P; chr. 13: RNU6-68P, RNU6-81P; chr. 17: RNU6-450P –

(unnamed) chr. 9: 1193P, RNU6-1269P, RNU6-368P, RNU6-538P, RNU6-599P, RNU6-798P; chr. 13: RNU6-55P –

(unnamed) chr. 12: RNU6-1183P; chr. 14: RNU6-976P; chr. 16: RNU6-758P –

(unnamed) chr. 6: RNU7-48P; chr. 11: RNU7-50P; chr. 13: RNU7-88P –

(unnamed) chr. 5: RN7SL689P; chr. 6: RN7SL502P; chr. 9: RN7SL338P; chr. 10: RN7SL518P; chr. 12: RN7SL519P; chr. 13:
RN7SL597P; chr. 15: RN7SL497P; chr. 17: RN7SL138P; chr. 20: RN7SL116P; chr. 22: RN7SL704P

–

The upper part shows all clusters that received a significant p-value in the GO analysis. The lower part lists clusters containing no GO-annotated genes, but were identified by
manual inspection as corresponding to associated gene families
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identified several gene cluster candidates corresponding
to sets of functionally associated genes whose members
are closer to each other in the 3D space than on the
chromosomal sequence (see Table 1). Many of these gene
clusters are already known from the literature. E.g., we
find four clusters of olfactory receptor (OR) genes on dif-
ferent chromosomes, the taste receptor type 2 (TAS2R)
gene cluster and the HOXC gene cluster. The latter is
one of three clusters among the top 20 but can be found
in the 1D results only as a composition of sub-clusters.
Therefore, these genes seem to be even closer together
in 3D space than on the DNA strand. The same is true
for other clusters, such as that of the testis-specific pro-
tein Y-encoded (TSPY) and superfamily Ig belonging lectins
(SIGLEC) which were not even partially detected in the
1D graphs.

We then extended our approach to the discovery of
interchromosomal gene clusters and applied it to a mixed
dataset containing Hi-C data from a human lymphoblas-
toid cell line [9] and the previously studied intrachro-
mosomal data of an embryonic cell line of the mouse.
Table 2 lists several identified gene cluster candidates
that contain genes located on different chromosomes in
the human genome. The highest ranking cluster consti-
tutes 23 out of 115 members of the human USP17L gene
family. Since the divergence from the common ances-
tor of human and mouse, this family of deubiquitinating
enzymes has largely expanded in the human lineage and
is homologous to only four genes located on chromo-
some 7 in the mouse. We further identified three gene
cluster candidates related to olfactory receptors and one
related to members of the gamma-glutamyltransferase
(GGT) gene family. The vast majority of the studied gene
cluster candidates does not contain GO-annotated genes.
Further examination revealed that many of these clusters
are entirely composed of genes encoding small nuclear
RNAs. The lower part of Table 2 lists the eight most
promising gene cluster candidates identified through
manual inspection.

Conclusions
By identifying δ-teams with families, we provide a flexi-
ble model that is well suitable to capture the complexity
of biological datasets such as those at hand. Our analy-
sis of Hi-C data from human and mouse reveals several
known gene clusters (thus validating our approach), but
also few sparsely studied or possibly unknown gene cluster
candidates that could be the source of further experimen-
tal investigation.

The presented algorithms and their implementation are
fast enough to process large graphs as demonstrated in
a study of Hi-C data of human and mouse. Neverthe-
less, further research may lead to improved algorithms.
It seems possible that the problem of finding δ-teams in

graphs without families could be solved faster with the
help of a guide tree that allows to find a maximal δ-set
by traversing each graph in fewer steps than required by
an exhaustive graph traversal. Alternatively, a randomized
variant of our algorithm could assert a better expected
running time. The presented algorithmic work could also
be extended into another direction, by allowing the direct
computation of the single-linkage hierarchy. This makes
the gene cluster analysis no longer dependent on a fixed
δ, but will provide all possible δ-clusters through a single
computation. This idea has also been applied for δ-teams
in sequences, where the hierarchy is called gene team tree
[4, 26].

The δ-team model has the drawback that only maxi-
mal δ-clusters are reported. These can potentially hide
smaller, nested δ-clusters that are in size closer to those of
typical gene clusters. However, the solution space of non-
maximal δ-clusters in graphs is exponential, which leaves
little hope for their efficient enumeration and subsequent
processing.
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