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Zusammenfassung

In der vergleichenden Genomik werden zwei oder mehrere Genome hinsichtlich ih-
res Verwandtschaftsgrades verglichen. Das Ziel dieser Arbeit ist die Erforschung von
mathematischen Modellen, die zum einen die evolutionäre Distanz, zum anderen die
evolutionären Vorgänge zwischen zwei Genomen bestimmen können.
Neben Methoden, welche auf einer niedrigen Ebene, z. B. den Basen(paarungen),

ansetzen, sind auch abstraktere Modelle, die auf einzelnen Genen oder noch größe-
ren Abschnitten Genome vergleichen, etabliert. Handelt es sich auf niedrigerer Ebene
um einzelne Basen, die eingefügt, gelöscht oder ersetzt werden, sind es auf höherer
Ebene beispielsweise ganze Gene. Auf höherer Ebene können Ergebnisse sogenannter
Umordnungsprozesse (genome rearrangements) beobachtet werden, welche in einem
Sortierszenario beschrieben werden. Im Vergleich eines Genoms mit einem anderen
können dies unter anderem Inversionen, Translokationen, aber auch Einfügungen oder
Löschungen von großen Bereichen sein. Ein bekanntes Modell ist das Inversionsmo-
dell, welches den Verwandtschaftsgrad zweier Genome ausschließlich durch Inversionen
bestimmt. Ein weiteres ist das double cut-and-join (DCJ) Modell, welches neben Inver-
sionen auch Translokationen, Chromosomenfusionen, bzw. -fissionen, sowie Integration
und Extraktion von kleinen zirkulären Trägern erlaubt. Die Distanz ist hierbei die An-
zahl Zwischenschritte eines Sortierszenarios von geringster Länge.
Diese Dissertation ist in zwei Teile gegliedert. Der erste Teil beschäftigt sich mit

dem zufälligen Ziehen eines Sortierszenarios innerhalb des DCJ-Modells. Neben eini-
gen naiven Ansätzen interessieren wir uns im Wesentlichen dafür, jedes Szenario mit
gleicher Wahrscheinlichkeit, also uniform verteilt, zu ziehen. Hierfür wird nicht nur der
gesamte Sortierraum betrachtet, sondern auch Maßnahmen zur effizienten Berechnung
aufgezeigt. Der vorgestellte Algorithmus ist in einer Software-suite implementiert und
wird hinsichtlich seiner Erzeugung von zufälligen Szenarien evaluiert.
Der zweite Teil der Arbeit beschäftigt sich mit dem Inversions-indel Modell. Dieses

wenig erforschte Modell erlaubt Inversionen, sowie Einfügungen und Löschungen (kurz
indels). Dessen Distanz soll in Abhängigkeit von der DCJ- bzw. der DCJ-indel-Distanz
wiedergegeben werden. Wir erweitern altbekannte Datenstrukturen des Inversionsmo-
dells um Einfügungen und Löschungen repräsentieren zu können. Hierfür benutzen wir
unter anderem Ansätze aus zwei anderen Modellen: Die Erweiterung des DCJ-Modells
um indels, sowie die Ermittlung der Abhängigkeit von DCJ- und Inversionsmodell.
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Um die minimale Anzahl an Inversionen, Einfügungen und Löschungen zu ermitteln
muss beachtet werden, dass durch Inversionen zwei oder mehr getrennte Bereiche, die
zur Löschung vorgesehen sind, verschmolzen werden. Diese können sodann in einem
einzigen Schritt gelöscht werden. Ähnlich verhält es sich mit Einfügungen. Zunächst
betrachten wir Instanzen in denen die DCJ-indel-Distanz und die Inversions-indel-
Distanz identisch sind. Im Weiteren gehen wir dazu über, schwierige Instanzen, d.h.
jene die mehr Schritte benötigen als die DCJ(-indel)-Distanz, zu berechnen. Zu diesen
Zweck müssen die unterschiedlichen Eigenschaften der Instanzen und deren Auswir-
kungen ausgemacht werden. Durch geschickte Reduzierung des Lösungsraums gelan-
gen wir zu einer Menge von Basisfällen, welche wir durch erschöpfende Aufzählung
lösen können. Insgesamt bieten die unternommenen Schritte nicht nur die Lösung der
Inversions-indel Distanz in Abhängigkeit zur DCJ-indel Distanz, sondern auch eine
Möglichkeit des Sortierens.

Die Suche nach einer exakten Lösung für das Distanz- und das Sortierproblem im
Inversions-indel Modell blieb lange unbeantwortet. Der Hauptbeitrag dieser Arbeit
liegt darin diese zwei Fragen zu klären.

Abstract

In comparative genomics two or more genomes are compared with regard to their
evolutionary relationship. The aim of this thesis is to study mathematical models that
determine, for one, the evolutionary distance and, for another, the evolutionary events
occurring between the divergence of two genomes.
Besides methods applied to a low level of abstraction, that, for instance, count in-

sertions, deletions or substitutions of one or a few DNA bases, there are more abstract,
well-established models that compare on gene level or consider even larger regions. In
this context, genome rearrangement processes can be witnessed between two genomes.
These large-scale modifications can involve, amongst others, inversions, translocations,
as well as insertions and deletions (indels) of large regions. A sorting scenario starts
with a source genome and shows which changes this genome undergoes until the target
genome is obtained. The distance of two genomes is given by the length of a sorting
scenario that has a minimum number of steps.
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A well-known model is the inversion (or reversal) model that computes the mini-
mum number of inversions between two genomes. Another well-established model is
the double cut-and-join (DCJ) model, that, besides inversions also allows for transloca-
tions, chromosomal fission/fusion and extraction/integration of circular intermediates.
This thesis consists of two main parts. In the first part, the sampling of an optimal

DCJ sorting scenario is studied. Apart from some naïve approaches we are mostly
interested in sampling each scenario with equal probability, thus to sample uniformly.
For this, we not only examine the sorting space but also devise measures for efficient
computation. The proposed algorithm is integrated into an existing software suite and
is evaluated concerning its drawing of random scenarios.
The second part of this thesis studies the inversion-indel model. This under-explored

model allows for inversions, insertions and deletions. Its distance is given with respect
to the DCJ(-indel) distance. We extend well-known data structures of the inversion
model in order to represent insertions and deletions. We use approaches from two
other models: the extension of the DCJ model by indels, as well as the determination
of the difference between DCJ and inversion distance.
In order to determine the minimum number of inversions, insertions and deletions, it

has to be considered that an inversion may fuse two or more parts that were destined
to be deleted. Then this large region can be deleted in one step. The situation is
similar for insertions. First, we study instances in which the DCJ-indel distance and
the inversion-indel distance are identical. We proceed with difficult instances, i.e. those
that need more steps than used under the DCJ(-indel) model. For this, the different
properties of the instances and their impact have to be detected. By reduction of the
solution space we derive a set of base cases that can be solved by exhaustive analysis.
In total, the steps that are undertaken provide not only a solution to the inversion-
indel distance with respect to the DCJ-indel distance, but also provide a way to sort
two genomes.

The main contribution of this thesis is resolving two questions in the field of genome
rearrangements that had remained unanswered for more than a decade: the inversion-
indel distance and sorting.
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Chapter1
Introduction

DNA is like a computer program
but far, far more advanced than
any software ever created.

Bill Gates

It has long been known that the macromolecule deoxyribonucleic acid (DNA) is the
carrier of hereditary information. By analysing DNA, we wish to gain information
about individuals, diseases or pedigrees. This information could then be used, for
example, in producing vermin resistant agricultural crops, identifying the relation of
species or individuals, determining origins or cures for certain diseases, or learning
about the mechanisms changing genetic information.

In the following we give a brief summary of the history of DNA discovery, genome
structure and comparative genomics.

1.1 Introduction to Genomes

The macromolecule that is known today as DNA (deoxyribonucleic acid) and is a
carrier of genetic information was first noticed in 1869 by Friedrich Miescher who
then published the findings in 1871 [73]. The composition of the macromolecule was
further analysed, and it was found that there were nucleotides whose components are
phosphate-sugar-bases. Furthermore, the sugars were determined to be 2-deoxyriboses,
and the bases were identified as the purines adenine (A) and guanine (G) and the
pyrimidines cytosine (C), and thymine (T). A detailed timeline on the subsequent
discovery and isolation of parts of DNA is given in a review of the tetranucleotide
theory in [56]. Amongst others, Phoebus Levene contributed fundamentally to this
theory (e.g. [65,66]). Yet, the layout of the macromolecule and the purpose were not
known.

Frederick Griffith first observed the exchange of genetic information between bacte-
ria in 1928 without narrowing down which part of the cell debris served as carrier [51].
In 1944, Avery et al. [2] conducted subsequent experiments on different (classes of)
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Chapter 1: Introduction

molecules and found only the DNA molecule could effectuate the transformation ob-
served by Griffith. From this result, scientists deduced that DNA is the carrier of
genetic information [2] despite the alleged simplicity of the molecule.
Meanwhile, Chargaff analysed nucleic acids [30] and found that the molar amount

of A was that of T and also the molar amount of G equalled the amount of C. The
individual amounts were approximately the same across different tissue types but the
ratio of A+T to G+C was shown to differ between species.
All doubt on the purpose of DNA was eradicated with the experiments of Hershey

and Chase in 1952 [58] that proved that indeed the deoxyribonucleic acid is the genetic
material.
Despite knowing individual parts of the macromolecule, the layout of DNA in space

was not yet determined. Propositions existed for the organisation of the molecules
of DNA in space, yet Watson and Crick [85] were the first to construct a model that
has two chains forming a double helical structure by coiling around the same axis.
Their model was based on prior research of Rosalind Franklin. They postulated the
backbone of the helix to be sugar-phosphates joined by its 3’,5’-linkages, and that the
two chains run in opposite directions [85]. The bases A, C, G and T that are attached
to the sugars of the backbone form hydrogen bonds with the opposing base of the
other chain (in the pairing postulated by Chargaff) thus holding together the double
helix as is schematically depicted in Figure 1.1 that shows a small fraction of the
macromolecule.

Figure 1.1: The double helix structure with sugar-phosphate backbone and base pairs
A-T and G-C bonded by hydrogen bonds as postulated by Watson and Crick. More
detailed view to the left and uncoiled layout towards the right-hand side. Arrows
indicate the directions of the chains, white pentagons represent sugars and cyan
circles represent phosphates.

1.1.1 Organisation of Genetic Information

A genome of a species is the entirety of the nucleic genetic/hereditary information. It
is organised in one or multiple chromosome(s). For example, for the human genome
we consider a chromosome set of 23 chromosomes, while most bacteria have one or a
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1.1 Introduction to Genomes

few chromosomes. Each chromosome is present in a cell as a separate DNA double
helix which can be either closed in a ring (circular chromosome) or not (linear chro-
mosome). Usually, all chromosomes of one species are either linear, as in humans for
example, or circular, as in most bacteria for example, but species in which both types
of chromosomes co-exist are also known [29,84].

The bases of one strand are complemented by the bases in the other strand in the
correct base pairing. Due to the nature of the double helix, when reading the double-
stranded DNA, the leading strand refers to the strand from the 5′-end towards the
3′-end (in reading direction) and the lagging strand lies on the opposite side. Note
that either of the strands can be the leading strand and the other the respective lagging
strand, as both have a 3′- as well as a 5′-end. The leading strand constitutes the reverse
complement of the lagging strand.

1.1.2 Genome Nomenclature

In this thesis, instead of at nucleotide level, we consider genomes at a more abstract
level. This may be, for example, large stretches of bases that form functional units
called genes. Genes comprise the information of one strand only and are thus consid-
ered to lay on either the leading or lagging strand. Known genes on chromosomes are
annotated with position and strand, for example details of a fragment of the human
X-chromosome (Annotation Release 106) taken from the NCBI Map Viewer1 can be
seen in Table 1.1.

Table 1.1: An excerpt from the human X chromosome1. The first and second column
give the start and stop location of the gene, respectively. The symbol column gives
the gene’s name. The orientation (+ for leading, - for lagging strand) is given in
column “O”. The last column gives a brief description of the gene.

Start Stop Symbol O .. Description

:
129980302 130058083 BCORL1 + BCL6 corepressor-like 1
130064920 130110713 ELF4 - E74-like factor 4 (ets domain trans. factor)
130129362 130165887 AIFM1 - apoptosis-inducing factor, mitochondrion-assoc.,1
130171799 130184870 RAB33A + RAB33A, member RAS oncogene family
130202699 130268948 ZNF280C - zinc finger protein 280C

:

A graphical representation of this section of the chromosome with its two strands is
shown in Figure 1.2. It hints at the relative position and length of the genes.

1 http://www.ncbi.nlm.nih.gov/projects/mapview/maps.cgi?TAXID=9606&CHR=X&MAPS=
genes[129980302.00%3A130268948.00]&CMD=TXT#1, 26.03.2015
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Figure 1.2: Schematic view of the excerpt from the human X chromosome given in
Table 1.1. Genes BCORL1 and RAB33A lie on one strand and genes ELF4, AIFM1 and
ZNF280C lie on the other strand.

Gene representation. Comparing two or more genomes may reveal that genes or
even larger regions of a chromosome are common to more than one genome. These
syntenic blocks will be called markers from now on, and each occurrence of a marker
is indicated by the same identifier. The copy number of a marker then refers to
the number of occurrences of that marker in a specific genome. The identifiers need
to be unique names, for example 1, 2, 3, 4 and 5. Furthermore, markers opposite of
the reading direction of the leading strand (indicated by a minus “-” in column O of
Table 1.1) are assigned a negative sign (markers 2, 3 and 5). Plus-signs (in reading
direction) are usually omitted (see Figure 1.3).

Figure 1.3: Illustration of the representation of marker order on a chromosome cor-
responding to the previous example (Figure 1.2). Markers have integers as unique
identifiers, positive on the leading strand and negative on the lagging strand.

Along a stretch of DNA, functional units may be identified on either of the strands.
Hence, a marker may be identified on one strand, and on the opposing strand over-
lapping it, another marker may be identified (there are many examples found in the
human X-chromosome alone). How this is dealt with in a representation such as shown
in Figure 1.3 depends on the processing of data conducted in each individual study.

Chromosome representation. A chromosome is represented as the tuple of mark-
ers in order as read from the chromosome and with respective signs enclosed by
parentheses. For indicating the two ends of a linear chromosome (usually referred
to as telomeres), we use the cap-symbol ◦ as auxiliary first and last symbol of the
chromosome. The chromosome from Figure 1.3, for example, is represented by the
tuple (◦, . . . , 1,−2,−3, 4,−5, . . . , ◦), where the dots represent the sections on the
chromosome that are not shown. Since the direction of reading a chromosome is
optional, as long as we take care of the respective signs, for the above example
(◦, . . . , 5,−4, 3, 2,−1, . . . , ◦) is another equivalent representation (imagine the origi-
nal Figure 1.2 turned by 180°).
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Circular chromosomes are simply represented by a tuple of their markers, an ex-
ample chromosome being (1,−2, 3). This is because, in circular chromosomes, there
is no restriction as to the starting point of reading and neither to the choice of read-
ing direction as long as the reading continues in the same direction for the whole
chromosome. Hence, (−2, 3, 1), (3, 1,−2), (−3, 2,−1), (2,−1,−3) and (−1,−3, 2) are
equivalent representations of the example chromosome.

Genome representation. Amultichromosomal genomeA, over a set of markers GA,
is a collection of linear and/or circular chromosomes which are of arbitrary but finite
length. In this thesis, we will usually assume that there are not multiple copies of the
same marker, such that each marker g ∈ GA occurs exactly once in A.

1.2 Comparative Genomics

In comparative genomics, two or more genomes, customarily from different species, are
studied and compared with respect to their genome structure and/or function.
Traditionally-studied sequence-based mutations, e.g. insertions, deletions and sub-

stitutions affect single bases or small segments. However, it was shown that many
organisms in the course of their evolution underwent large-scale mutations affecting
large chromosomal regions [41,67]. More precisely, markers among closely related
species are often similar (not subject to many small-scale mutations), but from one
species to another, modifications occurred which affected the arrangement or the copy
number of markers.
These large-scale mutations become apparent when taking a broader look at a whole

chromosome of one genome with respect to another. Then, not only the differences
in relative direction/orientation of the markers but also in their arrangement can be
observed. As an example, we used the software r2cat [60] to compare the genome
sequences of two Rickettsia bacteria (studied in [16]). Figure 1.4 shows the markers
of the r2cat synteny plot (black) where we added the indication of large blocks of
markers (coloured). It depicts the location and orientation of markers in one genome
(Rickettsia africae2) with respect to the location and orientation of these markers in
the other genome (Rickettsia typhi3).
For instance, markers 1, 2 and 3 in R. typhi and R. africae have the same order but

marker 2 does not have the same orientation. Also we detect that markers 4, 5 and 6
are arranged in a different order and also different orientation in the two genomes.
2 R. africae GenBank accession number: AAUY00000000, 01.12.2015
3 R. typhi GenBank accession number: NC_006142, [70], 01.12.2015
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Chapter 1: Introduction

Figure 1.4: A synteny plot of R. typhi and R. africae produced via the software
r2cat [60]. The plot was extended by arrows and marker identifiers that indicate a
simplified arrangement of the corresponding markers in each genome.

Assuming a common ancestor for the Rickettsia genomes, at some point in the course
of evolution the orientation of markers (for example marker 2) and arrangement (for
example markers 4 and 6) were altered.
More types of changes a marker or sequence of markers can undergo are described

below.

1.2.1 Genome Modifications

In the following, we will describe the different modifications that we consider. We
distinguish between arrangement modifications and content modifications. (Griffith et
al. [52] referred to balanced and unbalanced rearrangements, as the latter “can disrupt
normal gene balance” [52] and the former can not). Both modifications can affect
either single elements on one chromosome (intrachromosomal) or one or several whole
chromosomes (interchromosomal), possibly changing the number of chromosomes.

Arrangement Modifications

Here, we describe modifications which affect the arrangement of markers but not the
copy number. Some of the modifications are limited to linear and some are limited
to circular chromosomes. Also, the evidence of some modifications is observed more
frequently than others [39].
Please note that the schematic illustrations for each modification is kept simple, in
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that only few markers are displayed, though the modifications can also act on larger
intervals that comprise arbitrarily many markers.

Intrachromosomal rearrangements. Genome modifications such as inversions,
transpositions and block-interchanges change the arrangement of markers within the
same chromosome and can act on circular or linear chromosomes.

Dobzhansky and Sturtevant [41] were among the first to study inversions, i.e.
(blocks of) markers that are rotated by 180°, for example in the genus of Drosophila.
An example for an inversion can be seen below, where the orientation of the ele-
ments is indicated by arrows and the sign of identifiers:

A (conservative) transposition moves a section of the genome to another position [4,
40], [28, p. 403], [52, p. 433]. Biologically, this could also be to another chromosome,
however, in mathematical modelling, it is often assumed that the source and target
chromosome is the same [6,40]. If the section is moved within the same chromosome,
the result is swapping two adjacent intervals of markers [6]. Below, marker a is
moved to a position after marker b, in essence exchanging the order of a and b.

Note that in contrast to an inversion, the orientations of the markers remain un-
changed. Some studies differentiate between transpositions and inverted transposi-
tion (in the latter, the transposed element is inserted in reversed order) [74] others
do not distinguish [4].

Christie [31] first introduced block-interchanges as a generalisation of a transpo-
sition, in a sense that it exchanges two (non-overlapping) intervals on the same
chromosome, where these intervals are not necessarily adjacent, as depicted below.

Interchromosomal rearrangements. Genome modifications affecting two chro-
mosomes either change the number of chromosomes or exchange content between two
chromosomes. As stated above, some models use transpositions (therefore also block-
interchanges) in the biological sense and allow an interval of markers to be transferred
to another chromosome [40].
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The following graphic shows reciprocal translocations which exchange the ends of
two linear chromosomes [52, p. 496 ff.]. For example, there are the two possible
ways for chromosomes (◦, a1, a2, ◦) and (◦, b1, b2, ◦) to be re-joined such that the
outcomes are two hybrid chromosomes: Either a1 is joined with b2 (and a2 with
b1) or a1 is joined with b1 (and a2 with b2).

The direction of the chromosome parts needs to be taken care of, as the join happens
at the cutting site. Recall that (◦, a1,−b1, ◦) is the same as (◦, b1,−a1, ◦).

A fission splits one chromosome into two. The reverse operation is called fusion,
which concatenates two chromosomes and thus reduces the number of chromosomes
by 1.

Depicted are the two modifications on linear chromosomes (left) and circular chro-
mosomes (right). Fissions and fusions are common for example in bacteria [79].

The excision of an interval into an extra circular chromosome and its inverse, the
integration, can be considered either as independent or as one continuous event. In
the latter case, the excised interval remains temporarily as circular intermediate
(CI) before its integration elsewhere. The two marker ends that are joined, in
order to form the CI, are not necessarily the same that are cut for integrating the
CI. This would result in a different marker order than before the excision. Both
excision and integration of marker a are depicted below.

A linear chromosome can be circularised and vice versa. This can be regarded as some
kind of excision/integration of a whole chromosome.

Content Modifications

Contrary to the previously mentioned modifications, content modifications do not re-
arrange the markers, but rather modify the content, which means markers (e.g. whole
genes or even larger regions) can be inserted or lost.

8



1.2 Comparative Genomics

Intrachromosomal changes. Content modifications acting on a single chromosome
impact the presence, absence or copy-number of one or several markers, resulting in
copy number variations.

We call the gain of markers an insertion into the genome, and when we observe
the opposite, a loss of markers, this is a deletion of the marker (depicted below).

Depending on the source and the target genome these terms are symmetric, so we
refer to them with the unifying term indel.

An insertion of a copy of a previously existing marker is called duplication and is
outlined below. During a replicative transposition of a transposable element, the
old marker is left behind and a copy is inserted at the new position [52, p. 432 f.]
(that is a duplication to another site, on the same or different chromosome). An
example of a duplication is shown below.

It can be further specified as a tandem duplication, when –as in the above example–
the copy lies directly next to the source marker. Note that the loss of one copy of
a marker is also a deletion.

An insertion of marker b which replaces another marker a (thus a is deleted) is
called substitution and is shown below.

We say marker a is substituted by marker b (or vice versa).

Interchromosomal changes. A whole chromosome may be gained, copied or lost
(corresponding to chromosomal insertion, duplication or deletion) thus affecting the
number of chromosomes.

Below we show an example of chromosomal loss (chromosomes C1 and C3 are lost).
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The opposite, chromosomal gain, introduces one or even several whole chromosomes
to a genome. These could be, for instance, bacterial plasmids, small extra circular
chromosomes that are present in some species but not in other closely related
species. Blanc et al. [16] studied several Rickettsia genomes of which only Rickettsia
felis has a plasmid. They speculated that it occurred through a single insertion
event.

A special case is polyploidisation [67], where the whole chromosome set is dupli-
cated, which occurred due to a whole genome duplication (WGD) event as depicted
below.

For example, the human genome is diploid, meaning each chromosome occurs twice.
Higher copy numbers (of chromosomes) may happen in many bred plants, for
example, some strawberries contain a k-fold chromosome set [83]: They may be
diploid, tetraploid, hexaploid or even octoploid (i.e. they contain k = 2, 4, 6 or 8
copies of the chromosome set). Higher copy numbers than 2-fold can also occur in
mammals [49].

1.2.2 Genome Modification Models

A typical task in comparative genomics is to quantify the differences between genomes.
Genome rearrangement is a branch of comparative genomics that investigates the
above mentioned different modifications that genomes can undergo. Despite the
nomenclature, this field includes arrangement-modifying operations as well as content-
modifying operations. In the following, we use genome modification for both arrange-
ment as well as content modifications.
A measure of comparison used in genome rearrangements that is called distance

counts the number of events that occurred between genomes. Generally, we assume
parsimony, i.e., the minimal number of events is most likely the real evolutionary
distance.
A sorting sequence of two genomes describes the sequence of events that, when

applied to the first genome, transform it into the second genome. A sequence of
shortest length is optimal. There may be more than one such sequence, and all of
these are then considered as (co-)optimal. A sorting scenario shows the source genome,
each intermediate genome that arises when the next element of the sorting sequence
is applied, and the target genome.
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We denote by R = {inversion, transposition, block-interchange, translocation, fis-
sion/ fusion, excision/integration} the set of rearrangements. Furthermore, let the set
of content modifications be denoted by I = {indel, duplication, substitution}. We will
now clarify some terms and their interpendence.

Modification: The observed change induced in the genome.
For example when integrating a circular intermediate into another
chromosome we have two separate chromosomes first, but afterwards
they form a single chromosome.

Operation: The way one modification is realised.
An example is cutting the genome in two positions and re-joining
the loose ends in a different way. One operation can induce different
modifications, depending on where/how they are applied.

Model: Definition of one or several operation(s) that induce(s) certain modi-
fications.
One such operation can induce one or different types of modifications
depending on how and where it is applied. Further restrictions, e.g.,
on the type of chromosomes, or succession of operations, may be im-
posed.

Step: A step in a sorting scenario that is equal to performing one operation
under the specified model.
Several steps might be necessary to realise a modification, e.g. if
block-interchanges cannot be directly induced with the operations of a
model, then three inversions can produce the same resulting genome.

Weight: The weight assigned to an operation or modification w.r.t. a model.
For example deletions could be assigned less weight than inversions.
Under unit cost, each operation is assigned the same weight.

In this thesis, we assume unit cost, such that the distance is the number of observed
modifications between two genomes. Further restrictions on the types of modifications
or types of operations lead to sorting scenarios which employ only specific types of
events. More formally: let R ⊆ R and I ⊆ I be a selected set of arrangement and con-
tent modifications, respectively. We denote by M = R ∪I the set of different models
and by M = R∪ I the set of modifications allowed under a specific model M ∈ M .
Note that M = {}∪ {} or M = {}∪ {indel} are legitimate models, but not worthwhile
to study. In general, given a model comprising a certain set of modifications, the
comparison of two genomes is measured as follows.
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Definition 1 (Generalised Genome Modification Distance Problem): Given
two genomes A over GA and B over GB the distance dM(A,B) of A and B under
genome modification model M ∈M is the minimum number of steps required to sort A
into B allowing only operations of M.

The definition of a distance of two genomes immediately implies that two genomes A
and B are sorted when A = B. Otherwise they are unsorted.

The choice of model has a huge influence on the modifications we can render possible.
For example, if no interchromosomal operations are included, no content can be moved
from one chromosome to another. It also plays a role in the number of steps we need,
e.g., an inversion may be counted as a single operation in one model, or as four
operations in another. In the latter case an inversion may be realised by cutting to
the left and to the right of the marker and then sticking the ends together again in a
different way, akin to inverting the marker.
Although there are many interesting problems to study in genome rearrangements,

such as ancestral reconstruction or the median problem, the first and main intent,
when studying genome modification models, is to determine the pairwise distance and
compute an optimal sorting scenario. Many different models have been studied in the
past, and algorithms for distance computation and sorting presented. Li et al. [67]
give a detailed review of genome operations and models studied until 2006. Besides
the history of publications for the different problems, the authors state which of them
are proven to be NP-hard and also mention approximate solutions to some problem
variants.
In this work we focus on the study of the double cut-and-join (DCJ), the DCJ-

indel, the inversion and the inversion-indel models and their interrelation. Some
combinations related to the inversion or DCJ models are given in Table 1.2; it shows
which modifications are realised in each model, sorted by intra-/interchromosomal
rearrangements and content modifications. Closely related to the listed models are
also the following models: Hannenhalli-Pevzner (HP) [14,53,61], single cut or join
(SC/J) [47], single cut or join-indel (SC/J-indel) [46], single cut-and-join (SCJ) [9] and
the 3-break model [1].
For some models there exist weighted solutions not operating under the unit cost

scheme, for instance the DCJ-indel model with distinct operation cost [37]. Other
models prove to be difficult in computing an exact solution for the general case (with-
out restrictions) even under unit costs. For example, the exact computation of the
inversion-indel distance, first introduced in 2000, has remained unsolved for the past
17 years. Two restrictive cases have been published: the inversion-deletion model by
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Table 1.2: Different models and implied genome modifications from R and I. Op-
erations are in order: inversion, transposition, block-interchange, translocation, fis-
sion/fusion, excision/integration, insertion, deletion, duplication, substitution. In-
clusion in model: direct (•), or number of steps.gmeans the excision of a CI must
immediately be followed by its integration.

R I

Model M Inv Trp Bl-Int Trl F/F Ex/In in del dup sub

INV (inversion) [8,12,54,63] • 3 3

-deletion-duplication [62] • 3 3 • •
-indel [42,89] • 3 3 • •

DCJ (double cut-and-join) [13,90] • 2 2 • • •
-indel [25,26,33,35,37,91,92] • 2 2 • • • • •
-indel-duplication [92] • 2 2 • • • • • •
-duplication [3,92] • 2 2 • • • •
-substitution [37] • 2 2 • • • •
rDCJ (restricted DCJ) [64] • 2 2 • • g
rDCJ-indel [24,36] • 2 2 • • g • •

Translocations, excisions/integrations involving two telomeres can be considered as fissions/fusions.

Nadia El-Mabrouk in 2000 [42,43] (whose distance computation is not exact) and the
inversion-indel model for only certain “good” types of instances (Willing et al. [89]).
The main focus of this thesis is on giving an exact solution to the inversion-indel

distance problem without restrictions. We seek to do so by computing the DCJ(-indel)
distance.

1.3 Content and Structure of the Thesis

This thesis focuses on the double cut-and-join (DCJ) and the inversion model both
with and without insertions and/or deletions.
In Chapter 2 the foundation is laid which comprises commonly used definitions, data

structures unified to fit all covered models in this thesis, and the DCJ model. The
contribution of this thesis is then split in two main parts.

The first part (Chapter 3) concentrates on the DCJ sorting problem (without in-
sertions and deletions). In this part we study how to find one DCJ sorting scenario
among all co-optimal DCJ sorting scenarios, assuming each co-optimal scenario is
equally likely. The effect of uniform sampling over other sampling methods is evalu-
ated by integrating the algorithm to derive such a uniformly sampled scenario into an
existing software suite.
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The second part of this thesis is spread over several chapters, ultimately solving
the inversion-indel distance problem. It opens with a review of the DCJ-indel model
in Chapter 4 that gives the distance as an offset to the DCJ distance as well as
sorting procedures. We continue with elaborations on special cases of the inversion-
indel model (Chapter 5). For this, we first elaborate on the data structures and their
properties necessary to solve the well-known inversion distance problem (from 1995)
in certain instances considered good. The previously known relation of the inversion
to the DCJ distance is extended towards the general inversion distance that includes
insertions and deletions. Among the so-called bad instances, we review the solution
to the inversion distance. We solve special cases with insertions and deletions, and we
present a generalised data structure for solving the inversion-indel distance problem.
After that, we study the solution to the general problem, that is, computing the dis-

tance allowing inversions, insertions and deletions when bad instances may be present.
We are finally the first to present an exact solution for the distance problem with
inversions and indels and offer a procedure to sort two genomes under this model.
Furthermore, due to the nature of our distance computation, we are also able to

provide a sorting procedure.

The thesis concludes with an overview of genomic distance relations and prospects
related to the theory presented in this work. More elaborate demonstration and infor-
mation is given in the appendix.
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Chapter2
Important Data Structures and Models

Nature has a great simplicity and
therefore a great beauty.

Richard P. Feynman

Traditionally, different simplifications in genome modification models were studied.
Depending on the model, that allows a distinct set of genome modifications, some
restrictions are conventional while some are convenient. For example the restriction to
a single chromosome or the restriction to circular chromosomes. Usually when a new
model, more specifically a new combination of allowed rearrangements, is introduced,
any type of content modifying operation is disallowed, making the data structures
much simpler compared to the model with indels. However, we prefer to include indels
right from the start along with generalised terminology.

In this chapter we first present the concept of indels and adjacencies before we
characterise different graph structures and details of the basic genome modification
model of this thesis, that is the double cut-and-join model.

2.1 Insertions and Deletions

We first take a look at the handling of genomes having unequal content. More pre-
cisely we have I = {insertions, deletions} ⊆ I but duplicated markers are not allowed.
This section establishes definitions of genomes that have equal or unequal content,
definitions of insertions and deletions and the operation to perform such an insertion
or deletion.

The sorting of two genomes can be considered as a directed process where operations
are applied to the source genome in order to derive the target genome. Given two
genomes A and B, a marker that occurs in A but not in B is witness of a deletion
if the sorting is considered in the direction from A towards B. The same marker is
witness of an insertion if the sorting is considered in the opposite direction. Under
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unit costs the cost of an insertion or deletion (indel for short) is the same as that of
an inversion or DCJ operation.

2.1.1 Core Genomes and Unique Markers

Because we do not want to impose a direction on the sorting, rather than calling a
specific marker a deletion or insertion, we speak of a unique marker if it occurs uniquely
in A or uniquely in B. Otherwise, if the marker is common to both A and B, it is
called common marker.

Definition 2 (Marker Sets): Given a genome A over the set of markers GA and a
genome B over the set of markers GB, let G = GA ∩GB be the set of markers common
to both genomes. We denote by

A = GA\G and B = GB\G

the sets of markers that occur uniquely in A and uniquely in B, respectively.

We consider the insertion of two or more adjacent markers as a single operation.
These unique markers will not be split up in the course of the sorting process, since
they need to occur in the other genome in the same order and direction. Splitting and
rejoining them would not diminish the length of the scenario. In pairwise comparison,
we can therefore replace them by a single unique marker. The same is done for deletions
of consecutive markers.

Example 1: The graphs of unichromosomal circular genomes A = {(a,w, c,−d, y, e,
−z, b, f , x,−h,−j,−i, g)} and B = {(a, s, b, c, d, e, u,−v,f, g, h, i, r, j, t)} are shown in
Figure 2.1. The set of markers that are common to both genomes is: G = {a, b, c, d, e,
f , g, h, i, j}. The unique markers are indicated in colour and we have: A = {w, x, y, z}
and B = {r, s, t, u, v}. The markers from A each represent a deletion from genome A

Figure 2.1: Genome graph of genomes A = {(a,w, c,−d, y, e,−z, b, f, x,−h,−j,−i, g)}
and B = {(a, s, b, c, d, e, u,−v, f, g, h, i, r, j, t)} showing unique markers.

and the markers from B represent insertions (if A is sorted into B). Since u and −v
are adjacent unique markers, they are regarded as one, and assigned the identifier uv.
The genomes and sets of markers are updated accordingly, e.g. B = {r, s, t, uv}. �
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2.1 Insertions and Deletions

Traditional genome rearrangement models such as the inversion [55] or the DCJ
model [13,90] dealt only with genomes that have exactly one copy of a marker in each
genome. They are in fact a special case of the corresponding generalised models with
indels in such that A and B do not have (or ignore) unique markers. The following
definition describes this analogy:

Definition 3 (Core Genome): Given a genome A over GA and a set of core mark-
ers G ⊆ GA then the core genome of A w.r.t. G , denoted by A|G , is the genome
derived by keeping only the markers from A that are present in G and removing all
other markers.

We consider only pairwise comparison such that the set of core markers G are the
markers that genomes A and B have in common, i.e. G = GA ∩GB.

Example 1 (continued): For the same marker sets as before, the core genomes of A
and B are A|G = {(a, c,−d, e, b, f,−h,−j,−i, g)} and respectively B|G = {(a, b, c, d,
e, f , g, h, i, j)}. The corresponding genome graphs can be seen in Figure 2.2. �

Figure 2.2: The two genome graphs of core genomes A|G and B|G where A = {(a,w,
c,−d, y, e,−z, b, f , x,−h,−j,−i, g)} and B = {(a, s, b, c, d, e, uv, f, g, h, i, r, j, t)}.

2.1.2 A First Upper Bound to the Distance with Unique Markers

Sometimes we are interested only in the number of R-operations that are used in a
sorting scenario. For example, the first model that we study in Section 2.3 (the double
cut-and-join model) allows no operations from I. For this, we ignore unique markers
and define:

Definition 4 (Genome Rearrangement Distance): Given two genomes A and B
over GA and GB, respectively, then the distance under genome modification model M ∈
M using only arrangement modifications is given by

dR(A,B) := dI
R(A|G , B|G ) = dM(A|G , B|G ), (2.1)

where G = GA ∩GB and M = R∪ I. In other words dR(A,B) is the distance of sorting
all common markers in A and B under M without using content modifications.
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Analogously, dI(A,B) gives the minimum number of content modifications necessary
to conform GA and GB without using arrangement modifications. Bear in mind that
consecutive unique markers in a genome are replaced by a single unique marker, as
for instance in Example 1. It is thus required to take into account the arrangement of
markers in each genome.

For the distance of indels did(A,B) that ignores arrangement modifications, we delete
from GA the content of A (remove deletions) and introduce insertions (the content of
B), yielding GB. Hence, the number of operations is equal to the number of elements
in A and B . This directly leads us to a first intuitive upper bound for general distances
including indels:

Observation 1. Given genomes A over GA and B over GB without duplications, then

didR (A,B) ≤ dR(A,B) + did(A,B) ≤ dR(A,B) +
∣∣A∣∣+

∣∣B∣∣, (2.2)

where G = GA ∩ GB, A = GA\G and B = GB\G and R is the set of allowed re-
arrangement operations (generalised from [25]) and did(A,B) gives the differences in
copynumbers of markers.

Note that, when R = {} (or generally dR(A,B) = 0, as given in Definition 4),
Inequality (2.2) gives equality. It also does when did(A,B) = 0, since in both cases
only one class of operations (I resp. R) has to be performed. However, when operations
from both sets R and I are allowed (and also necessary), there sometimes are sorting
scenarios that need fewer steps than this upper bound.

In the course of sorting one genome into another, two unique markers in one genome
may become adjacent. Similar to the assumption above (the grouping of u and −v in
Example 1), we follow the parsimony principle and hence consider it biologically more
plausible that those markers were inserted (or lost) at once rather than in separate
steps. The following example outlines how larger blocks of unique markers can be
obtained while sorting the two genomes, making apparent why the relation given by
Observation 1 is in fact an inequality rather than an equality.

Example 2: Given two genomes A = {(◦, a, y,−b, z, ◦)} and B = {(◦, a, b, ◦)} we can
sort A into B in three steps: by deleting y, deleting z and then performing an inversion
of marker b. However, as shown in Figure 2.3, the sorting can also be done via one
inversion and a single deletion: First, block −b z is reversed, which makes marker z a
neighbour of marker y. Then it is possible to delete the block y −z in one step. Thus,
in total we have two, instead of three operations. �
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2.1 Insertions and Deletions

Figure 2.3: One operation that produces two consecutive unique markers while simul-
taneously sorting the common markers.

It is easy to see that the more indel operations can be saved by grouping unique
markers during the (optimal) rearranging, the more the overall distance is decreased.
Our goal is to minimise the number of steps in the sorting scenario. This can be
approached by maximising the number of neighboured unique markers during optimal
sorting.
In Chapter 4 we shall investigate the grouping of unique markers while using optimal

DCJ operations which will also be used in Chapters 5-7. Also the balancing of indels
with neutral or even counter-optimal operations is discussed.

2.1.3 Extremities, Adjacencies and Labels

We identify the orientation of a marker by distinguishing its two ends. For each marker
we define:

Definition 5 (Extremities): The ends of a marker g are called extremities. More
precisely they are called tail and head and denoted by gt and gh, respectively.

Analogous to unique resp. common markers we refer to their respective extremities
as unique and common extremities.
Two markers that lie next to each other in the same chromosome are called adjacent.

Their respective extremities form an adjacency. For example, in chromosome (◦, a, b, ◦)
markers a and b are adjacent and form the adjacency ahbt. An adjacency such as ◦ at is
also called telomere, since the cap symbol ◦ represents the end of a linear chromosome.
In pairwise comparison, of all extremities of one genome only the common extremities
have a counterpart in the other genome whereas unique extremities are unmatched.
We therefore define a kind of adjacency that is formed by extremities of common
markers (or caps) only.

Definition 6 (G-Adjacency): Given genome A over GA and a set G ⊆ GA, two
extremities p and q from markers in G are G -adjacent if in-between them in A there
are no other extremities of markers from G . The string of marker extremities between p
and q (in this reading direction) in A is the label of the adjacency pq, denoted by `(pq).
Together they form a G -adjacency denoted by p`(pq)q that is unlabelled if `(pq) = ε.
Otherwise its label is non-empty and contains only extremities of markers from A .
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Example 2 (continued): In Figure 2.3 A′ has unique markers y and −z between
markers a and b, the latter two are adjacent in A′|G . Then the label of the correspond-
ing G -adjacency is given by `(ahbt) = ytyhzhzt and we use the notation ahytyhzhztbt

or alternative the short form ahy−zbt. �

Note that if unique markers are reversed, so is the label of the corresponding G -
adjacency. When the reading direction changes, also the label needs to be read
in the reverse direction. Indicating the reversed section by an overbar ,̄ we have
p`(pq)q = q `(pq) p = q`(qp)p, for example, ahytyhzhztbt becomes btztzhyhytah (or
ahy −zbt becomes btz −yah).

Moreover, apart from G -adjacencies with no label, there can also be G -adjacencies
with no marker extremities. These are called singletons and represent a whole chro-
mosome which is only composed of unique markers. There are two types of these: a
labelled G -adjacency p `(pq) q, where both p and q are caps, represents a whole linear
chromosome that is only made of unique markers and is called a linear singleton. In
the same way this applies to circular chromosomes that do not contain any common
markers and also form a G -adjacency that only contains a label. These are referred to
as circular singletons. In contrast to all other G -adjacencies the latter is the only one
containing a circular string, the label [26]. A core genome naturally does not contain
singletons, instead only chromosomes that have at least one common marker.

2.1.4 The Indel Operation on G-Adjacencies

An indel operation can act only on unique markers, not on markers from G . In this
thesis we only deal with genomes that have no duplicated markers, thus each element
of G , A , or B occurs at most once in the genomes. Therefore, another restriction is
that an insertion cannot produce duplicate markers (in neither of the three sets G , A
or B [26]). As a consequence of this –if the sorting direction is from A to B– we can
only delete markers from A and insert one copy for each marker in B .

In terms of adjacencies, an indel operation acts only on the label of a single G -
adjacency, such that if it is a deletion, it replaces the label of a G -adjacency in A

by ε and the G -adjacency in question becomes unlabelled. If the indel operation is an
insertion, then the label of a G -adjacency in B needs to be updated and the inserted
unique markers either replace the empty label of the G -adjacency or are placed before,
in-between or after existing unique markers of that label.

Example 1 (continued): A G -adjacency ahwtwhct to which a deletion of w is applied
becomes ahct with label `(ahct) = ε. Similarly, a G -adjacency ehf t into which the
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unique marker uv is inserted (such that the tail of uv follows the head of e) becomes
ehuvtuvhf t. �

While a deletion can technically also act on only parts of the label of a G -adjacency
this would defy the parsimony principle. Therefore, we delete only complete labels. We
will see later (in Chapter 4) what measures can be taken to group not only deletions
but also insertions and how this will affect the point of insertion.

2.2 Graph Structures for Representing Genomic Relations

In order to find a parsimonious sequence of rearrangements (and indels) sorting one
genome into the other, it is convenient to find some data structure that represents the
relation between the two genomes.
During the study of different genome modification models, several data structures

emerged. According to the needs or restrictions of each model, i.e. unichromosomal or
multichromosomal but also the type of chromosomes (circular, linear or both types),
data structures providing a most simple way to compute the corresponding distances or
sorting scenarios were introduced. In the following we will subsume the different data
structures. In order to provide easier access to the relation among them, we generalise
the individual presentation of data structures, thus deviating from the customary
notation.

2.2.1 Breakpoint Graph

The breakpoint graph (BG) proposed by Bafna and Pevzner [5] in 1993 was used for
instance for the computation of the inversion distance [55] of two genomes. Well
suited for unichromosomal genomes, its construction is particularly simple if one of
the genomes is the identity permutation of the common markers, meaning all the
markers of one genome are in strictly ascending order with only positive signs. The
breakpoint graph was generalised to include labels for the computation of the inversion-
indel distance by El-Mabrouk in 2001 [43]. These two distances are computed for
one chromosome at a time only and we restrict the use of the breakpoint graph to
unichromosomal circular genomes.

Construction. The labelled breakpoint graph of two unichromosomal circular ge-
nomes A and B is the graph BG(A,B) that has a vertex for each common extremity
and has adjacency edges that connect these as follows. A-edges connect two vertices
for which the corresponding common extremities form a G -adjacency in A. Likewise,
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B-edges connect two vertices whose common extremities form a G -adjacency in B.
The label of each G -adjacency becomes the label of the corresponding adjacency edge
(where the order of extremities in the vertex label corresponds to that of the corre-
sponding G -adjacency label). An example is given in Figure 2.4.

Figure 2.4: Breakpoint graph BG(A,B) of genomes A = {(a,w, c,−d, y, e,−z, b, f , x,
−h,−j,−i, g)} and B = {(a, s, b, c, d, e, uv, f , g, h, i, r, j, t)}, which are the genomes
from Example 1. Vertices arranged as read from genome A. A-edges are straight
while B-edges are arcs. Labelled A-edges are drawn in red and labelled B-edges are
drawn in yellow.

Connected Components. We assume that the chromosomes are not singletons.
The adjacency edges connect the vertices in such a way that each vertex is the endpoint
of one A-edge and one B-edge. The breakpoint graph therefore consists of a collection
of cycles. The length of a cycle is its number of adjacency edges, thus a multiple of
two for each connected component.

Diagram Layout of the Breakpoint Graph. Some problems in genome rear-
rangement require to analyse the interplay of connected components. For this, a view
of the breakpoint graph is fixated. The vertices of the diagram BG(Ag, B) are then ar-
ranged in the same order in which the corresponding markers are read from genome A,
starting with the head of g and due to circularity, ending with the tail of g, all drawn
in a horizontal arrangement. However, when a different start marker is chosen, for
example −g, which changes the reading direction, the construction yields a different
layout. The same happens when the two genomes are swapped and the reading direc-
tion of the other genome is taken for the distribution of vertices. This can be observed
in Figure 2.5 which fixates a different view by distributing the vertices according to
genome B, thus depicting BG(Ba, A) while Figure 2.4 shows BG(Aa, B). The break-

Figure 2.5: BG(Ba, A) for the same genomes as in Figure 2.4.
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point graph constructed here is therefore rather a diagram than a graph. Most often
when referring to the breakpoint graph we refer to the fixated view.

2.2.2 Adjacency Graph

Along with the study of the DCJ model [13,90] the adjacency graph (AG) was intro-
duced [13] which allows for a symmetric display of the relation of the two genomes
under consideration. For the computation of the DCJ-indel distance [26,92] the adja-
cency graph was generalised to represent G -adjacencies [26]. It can be used for uni-
or multichromosomal genomes with circular and/or linear chromosomes.

Construction. The labelled adjacency graph AG(A,B) of two genomes A and B

is a graph that has one vertex for each G -adjacency of A and one vertex for each
G -adjacency of B. The label of the vertex corresponds to the label of the adjacency
(where the order of extremities in the vertex label corresponds to that of the cor-
responding G -adjacency label). Furthermore, it has two extremity edges for each
common marker g ∈ G : One edge connecting the vertex in A and the vertex in B that
contain gh and one edge connecting the two vertices in A and B that contain gt. The
adjacency graph of the two genomes from Example 1 can be seen in Figure 2.6.

Figure 2.6: Adjacency graph AG(A,B) of genomes A = {(a,w, c,−d, y, e,−z, b, f , x,
−h,−j,−i, g)} and B = {(a, s, b, c, d, e, uv, f, g, h, i, r, j, t)} which are the genomes
from Example 1.

Connected Components. The vertices are connected by extremity edges in such
a way that we have a collection of connected components (or simply components).
A component can either be a circular singleton, a path or a cycle. We consider the
length of a component to be its number of extremity edges. Each vertex can have a
degree of 0, 1 or 2 analogous to the number of common extremities in the concerned
G -adjacency. If a component connects only vertices with degree 2 it is a cycle and
of even length. Vertices with no common extremity consist of unique markers only
and represent linear singletons if they contain two caps, or they represent circular
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singletons if they have no caps. Vertices with only one common extremity represent
telomeres and as such an end of a linear chromosome. If at least one vertex in a specific
component has a degree of less than two, it is a path. Paths are distinguished according
to the genomes its endpoints belong to, thus forming AA-, AB- and BB-paths. Note
that a linear singleton corresponds to a path of length 0, more precisely an AA-path,
if the singleton is in genome A, or a BB-path, if the singleton is in genome B. Further
use of the different types of connected components in the adjacency graph will be made
first in Section 2.3 and then in Chapter 3.

2.2.3 Master Graph

The master graph (MG) [48] visualises a unification of the breakpoint graph and the
adjacency graph. Since for the theory presented in this thesis the master graph is not
used elsewise, we will restrict its use to unichromosomal circular genomes only.

Construction. The labelled master graph of two genomes A and B is the graph
MG(A,B) that inherits from AG(A,B) the fact that we have two sets of vertices and
also the extremity edges. We take all the vertices from BG(A,B) and BG(B,A) as
well as the corresponding adjacency edges.

Connected Components. As each vertex represents exactly one common extrem-
ity, it is connected to exactly one extremity edge and either an A- or a B-edge. Since
we assume the genomes to be unichromosomal and circular, the graph is a collection
of cycles. Each cycle has a multiple of four edges (two extremity edges, one A-edge
and one B-edge).

Relational Diagram

The relational diagram (R) [19] is a specific view of the master graph and we adopt
the term diagram (similar to the reality and desire diagram by [82]).

Given two unichromosomal circular genomes A and B, their relational diagram R =

MG(Ag, Bf ) shows the vertices and A-edges of BG(Ag, B) in an upper horizontal line
and those of BG(Bf , A) in a lower horizontal line. The extremity edges are constructed
in the same way as before. As with the master graph, the relational diagram is a
collection of cycles with the number of edges being a multiple of 4. An example
that shows how different the layout of a component in the mastergraph or relational
diagram can be, is given in Figure 4.3 on page 75.
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2.2.4 Properties of Cycles

Moreover, we consider the labelling of edges and cycles. The label of an A- resp.
B-edge is called A- resp. B-label, otherwise (if there is no unique marker between the
corresponding extremities) the A- or B-edge is said to be unlabelled. Likewise, any
cycle with only unlabelled edges is called unlabelled, otherwise it is labelled. A cycle
that has only A-labels is called an A-cycle (resp. B-cycle if it has only B-labels). All
other labelled cycles are called AB-cycles.
Although the relational diagram fixates a view, still, for any choice of g or f as start

markers, we have the same connected components as the following proposition shows.

Proposition 1: Let A and B be two unichromosomal circular genomes with possi-
bly unequal marker content but without duplications. Then, for any circular rotation
and/or change of reading direction of genome A and/or B, the components of the
resulting relational diagram are identical.

Proof. It is necessary to show that all components have the same edges and labellings
and that they are present in any MG(Ag, Bf ), that for any fixation of the master graph
derived when starting to read genome A in g ∈ G and genome B in f ∈ G .
As both A and B have exactly one circular chromosome each, the change in start

marker or the change of reading direction do not impose any change on the neighbour-
ing of any markers and their extremities, thus neither on the A- or B-edges or their
labels. Obviously, as neither G ,A ,B or the composition of adjacencies was altered,
the vertices and extremity edges are intact. For the same reason, we know that no
components are removed or added. At the same time, the edges and vertices are con-
nected in a way that they construct the same cycles that have the same labelling for
any rotation of the genomes.

We observe that all connected components are equal also in the adjacency graph
and breakpoint graph.
For models that rely only on the information such as length and labelling of single

components and not on the relation of components to one another or other properties
of the component’s edges, the graph data structures are sufficient to use.

2.2.5 A Note on Relations between the Types of Graphs

By construction, BG(A,B) can be obtained from MG(A,B) by collating all extremity
edges and their two end points into a single vertex. Analogously, AG(A,B) can be ob-
tained from MG(A,B) by fusing each adjacency edge and its two end points from MG
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into a single vertex, such that the vertex represents the corresponding G -adjacency
with its label.

Let us assume that the two genomes we intend to study are unichromosomal circular
genomes and have identical core genomes, thus the same common extremities form a
G -adjacency. All graphs have one cycle per G -adjacency, which is a trivial cycle. The
master graph has two extremity edges and one A- and one B-edge per cycle. Then
the breakpoint graph has exactly one A- and one B-edge per cycle and the adjacency
graph has two extremity edges per cycle.
While using, for instance, the adjacency graph, we may allow for further types of

genomes. For two genomes with identical core genomes the graph has one vertex for
each linear or circular singleton and two paths that each have exactly one extremity
edge for every linear chromosome that is not a singleton (a path of length 1 is also a
trivial component).

One disadvantage of BG(A,B) is that while changes are applied to its elements it is
hard to visually follow the changes that are induced in the genome(s). This is easier
for the other graphs as the two genomes can be drawn to appear separated. However,
only the relational diagram and the diagram view of the breakpoint graph fixate a view
with two distinct vertex sets, strictly following the marker order, while the adjacency
graph and the master graph could have the vertices scattered arbitrarily.
On the other side, the breakpoint graph does have one advantage: if it is drawn as

in the examples (with arcs of different height) it is easier to analyse how the cycles
are related to each other, as it shows plainly which cycles have intersecting edges and
which cycles are embedded or completely independent of other cycles (see for example
Figure 2.4). We will come back to this in Chapter 5.

The presented graph structures are used to compute certain genome modification
distances and sorting scenarios accordingly. Usually the operations are applied as
changes to the data structures in order to obtain a graph with only trivial components.
In the following section we present one of these models that serves as the basis for
further theory studied in this thesis.
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2.3 The Double Cut-and-Join Model

The concept behind a double cut-and-join (DCJ) operation is to perform two cuts in
the genome, yielding four blunt ends, and performing two joins gluing the four ends
back together in a different way than before. In the DCJ model a series of DCJ
operations is performed and one genome is transformed into the other. In contrast
to other genome modification models, the DCJ model can handle so-called circular
intermediates (CI), small circular chromosomes that arise through excision and are
integrated later on. Under the DCJ model the set of rearrangements R ∈ R for
multichromosomal genomes comprises:

• inversion
• translocation
• fission / fusion
• excision / integration of a circular chromosome.

Transpositions and block-interchanges can be modelled by the excision of a circular
intermediate and its integration elsewhere (two DCJ operations). The DCJ model can
handle linear as well as circular chromosomes but accepts only genomes with the same
marker content and no duplications. We assume these preconditions unless stated
otherwise. Formally, we have I = { } and therefore DCJ ≡ R as enumerated above.
The DCJ model was first introduced by Yancopoulos, Attie and Friedberg in 2005

[90]. In 2006, Bergeron, Mixtacki and Stoye [13] refined the DCJ model and introduced
the adjacency graph which we reviewed in Subsection 2.2.2 and that is unlabelled for
this model. The authors provided a simple distance formula and also a linear time
algorithm for sorting two genomes.
In this section we will briefly cover the basics necessary for Chapter 3 and the

DCJ-indel model.

2.3.1 The DCJ Operation on Unlabelled G-Adjacencies

The double cut-and-join operation that acts on adjacencies of a genome is formally
defined as follows.

Definition 7 (Double Cut-and-Join Operation [13]): Given two unlabelled ad-
jacencies u1 = p q and u2 = rs where p, q, r and s are common extremities, one cut
separates the two extremities of u1 and the other cut separates the two extremities
of u2. There are two ways to join the four extremities such that two new adjacencies
are created:
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(v) v1 = p r and v2 = q s or
(w) w1 = p s and w2 = r q.

The cases where either one adjacency of u1 and u2 or both adjacencies are telomeres
can be derived from above by replacing one or more extremities among p, q, r or s by
cap symbols.

2.3.2 The Effect of a DCJ Operation on the Adjacency Graph

By definition, a double cut-and-join operation acts on two adjacencies of the same
genome. In the adjacency graph these can be vertices of the same or of different
components. Figures 2.7, 2.8 and 2.9 show some examples for DCJ operations and
their effects on the components of the adjacency graph.

Figure 2.7: Recombination of paths of the adjacency graph: An AA-path and a BB-
path become two AB-paths. The AA-path could also be an empty chromosome,
resulting in simply splitting the BB-path.

Figure 2.8: Extracting a (trivial) cycle, integrating a (trivial) cycle or reversing a
section (of length 2) in the adjacency graph. The component can be any path or
cycle.

Figure 2.9: Extracting a cycle of length 4 from an AA-path, leaving an empty chro-
mosome behind (circularisation). The inverse operation is the linearisation of a
chromosome.

Bergeron et al. [13] showed that one DCJ operation can change the number of cycles
by at most 1 or the number of AB-paths by at most 2.
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2.3.3 Distance and Sorting

As already outlined in Subsection 1.2.2, we are interested in the number of evolutionary
events that separate two genomes, in this case in the number of DCJ operations.

Definition 8 (DCJ Distance Problem): Given two genomes A and B over G
without duplications, the DCJ distance is the minimum number of steps required to
sort A into B using only DCJ operations.

We observed in Subsection 2.2.5 that the adjacency graph of two identical core
genomes has only trivial components. Along with the observations on the change in
components induced by a DCJ this leads to the findings below.

Theorem 1 (DCJ Distance [13]): Given two genomes A and B over the same set
of markers G and without duplications, the DCJ distance dDCJ(A,B) is given by:

dDCJ(A,B) =
∣∣G ∣∣− (c+

pAB
2

)
, (2.3)

where c and pAB are the number of cycles and AB-paths in AG(A,B), respectively.

Definition 9 (DCJ-sorted): Two genomes A and B are DCJ-sorted if dDCJ(A,B) =

0, or, more generally, if dDCJ(A|G , B|G ) = 0. In the adjacency graph this means there
are only trivial components. Otherwise, the pair of genomes, respectively the adjacency
graph, is DCJ-unsorted.

DCJ operations can be classified according to their impact on the DCJ distance.
The impact varies, as there are two ways to rejoin four extremities such that two new
adjacencies are created. Under unit cost, a DCJ operation ρ acting on genome A
resulting in A′ yields:

∆dDCJ(A,B, ρ) = dDCJ(A
′, B)− dDCJ(A,B) + 1. (2.4)

This reflects the change in distance between A and A′ while consuming one step in the
sorting scenario. An optimal operation reduces the distance between the two given
genomes by 1 and thus has ∆dDCJ = 0. A neutral operation does not change the
number of cycles or AB-paths and, as the distance is not changed, yields ∆dDCJ = 1.
A counter-optimal DCJ operation increases the distance between two genomes, by
reducing the number of cycles or AB-paths, and at the same time also consuming a
step during the sorting process, hence has ∆dDCJ = 2.
In Table 2.1 all possible DCJ operations acting on different operands and yielding

different resultants are grouped according to their impact on the overall DCJ distance.
Some of those examples were already shown in more detail in Figures 2.7, 2.8 and 2.9.
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Table 2.1: DCJ operations acting on different component types maintaining (optimal)
or increasing (neutral, counter-optimal) the distance. X is a component of arbitrary
type. (AA) and (X) mean the component can have length 0.

operands → resultants ∆dDCJ

optimal X (X) cycle 0
BB (AA) AB AB

neutral AA AA AA (AA)

+1

AA AB AB (AA)
AB BB AB BB
BB BB BB BB
AB AB AB AB
AA AA AA
AB AB AA
X X

counter-optimal AB AB BB (AA)
+2cycle (X) X

Moreover, it was shown in [22] that all components of the adjacency graph can be
sorted individually using only optimal DCJ operations, hence that,

dDCJ(A,B) =
∑

C∈AG(A,B)

dDCJ(C), (2.5)

where dDCJ(C) is the minimum number of steps required to sort component C. We
will go into more details on sorting with DCJ operations in the ensuing chapter.

Because the DCJ model comprises many modifications, its distance is often smaller
than those of others (for example compared to the SC/J distance [47] or the inversion
distance [12]). In this thesis, the DCJ model will serve as a basis for the DCJ-indel
model, the inversion model and the inversion-indel model in a way that we seek to
compute the number of steps that are necessary for each model in addition to the
length of a DCJ sorting scenario.
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Chapter3
Uniform Sampling of
DCJ Sorting Scenarios

The purpose of computing is in-
sight, not numbers.

Richard Hamming, 1961

In this chapter we concentrate on the sorting process in the double cut-and-join (DCJ)
model whose operations and distance calculation have been introduced in the previous
chapter. As no content modifications are allowed under this model, we disallow unique
and duplicated markers. Sorting two genomes then means changing the arrangement
of markers in the source genome until it is equal to the target genome.

In 2005, Yancopoulos et al. [90] introduced the DCJ operation as well as a sorting
algorithm based on the breakpoint graph. The algorithm first performs all transloca-
tions (including fissions and fusions), then all inversions are performed and finally all
block-interchanges are handled. The latter requires the use of circular intermediates.
In 2006, Bergeron et al. [13] presented the adjacency graph and a linear time algorithm
optimally sorting the two genomes by extracting trivial cycles and in the end splitting
any remaining BB-path into two trivial paths. For pairs of genomes that are sorted
in one step, obviously there is only one optimal sorting scenario. For all other pairs of
genomes (with a larger distance) there are several (co-)optimal sorting scenarios.

Picking one random scenario among all possible optimal scenarios reflects the variety
of sorting scenarios more adequately. For clarification we call a sorting sequence a
sequence of events which when applied to the source genome transform it into the
target genome while the sorting scenario gives the source and target genome as well
as all intermediate genomes. We will discover later that, depending on how to describe
the steps in a sorting sequence, there may be two or more sequences that yield the
same scenario.

In this chapter we present different approaches to find one among the many co-
optimal scenarios randomly. In particular, we want each optimal scenario to be equally
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likely, thus to perform uniform sampling. For this, we study previous results on the
concept of sorting and the number of ways of sorting [13,22,23,77] and present an algo-
rithm to compute a sorting scenario sampled uniformly among all co-optimal sorting
scenarios (without recombinations of AA- and BB-paths). We present details of ob-
taining such a scenario using the software UniMoG and evaluate our different sampling
methods. Subsequently, we discuss further evaluation as well as sampling scenarios
with recombinations of AA- and BB-paths and an alternative approach using Markov
chains which was presented in [75,76]. Our combinatoric approach and implementation
was published as abstract and presented as a poster [88].

Sorting and Sorting Space

We now study ways of computing an optimal DCJ scenario and propose different
randomisation mechanisms.

Constructing Sorted Adjacencies. A simple linear time algorithm for sorting
one genome into another by DCJ operations was provided by Bergeron et al. in [13].
Given the adjacency graph AG(A,B), the algorithm walks along each full adjacency
of genome B (in the order of input), forming the respective adjacency also in the other
genome. In effect, we are extracting trivial cycles from larger components until the
only unsorted components are BB-paths of length 2. Each of these BB-paths has a
pair of telomeric adjacencies in genome B which, in the second phase of the algorithm,
are split into two trivial paths each. In the end, we have a pair of sorted genomes.
Example 3 illustrates this procedure.

Example 3 (Bergeron sorting): Considering an adjacency graph consisting of one
BB-path of distance 4, the sorting procedure with its two phases is depicted in Fig-
ure 3.1. �

The sorting in this manner always provides the same sorting sequence, as the pro-
cessing of B-adjacencies follows the order of input. A first attempt to achieve a dif-
ferent optimal sorting sequence in each run could be to alter the order of visiting the
B-vertices. In Section 3.3 we show the results of this method (referred to as vertex-
approach) in comparison to other sampling methods. Still, any new component this
attempt produces is a trivial cycle or a trivial path, i.e. scenarios that include pro-
ducing two non-trivial components are not considered. Obviously, this naïve way of
sampling, that even omits certain scenarios, is far from uniform.
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Figure 3.1: The sorting procedure of Bergeron et al. [13] consecutively targets adja-
cencies from B to be produced by DCJ operations that act on vertices of the source
genome. Afterwards, the procedure splits all remaining BB-paths, yielding a linear
runtime.

We study another method of randomising, which is to sample uniformly among all
optimal DCJ operations possible in the next step. This way, also extracting larger
cycles or splitting larger paths are included in the sorting and each optimal DCJ
operation is chosen with equal probability. This approach is henceforth referred to as
edge sampling and is evaluated amongst others in Section 3.3 where differences in the
results are pointed out and explained. The following example shows how sampling the
next step in a scenario influences the overall probability of a specific scenario.

Example 4 (Edge sampling): We consider an adjacency graph with two BB-paths
of lengths 2, resp. 4 amounting to an overall distance of 3. We can apply three optimal
DCJ operations to the 4-path in the first step. Components with distance 1 are sorted
in only one possible way. Figure 3.2 shows the sorting space, thus all possible sorting
scenarios. In the edge approach the probability for the next step is 1/#DCJ ops w.r.t.
each (intermediate) adjacency graph. As a result, some scenarios have probability
1/4 · 1/3 = 1/12 = 0.083̄ (for instance the highlighted dark path) while others have
1/4 · 1/2 = 1/8 = 0.125 (for instance the highlighted light path) of Figure 3.2. �

Looking at the outgoing edges of one sorting step only does not guarantee that each
scenario is chosen with equal probability. When unravelling the whole sorting space,
thus taking into account also the follow-up operations that choosing this specific edge
renders possible, the total number of optimal sorting scenarios becomes apparent. In
the example above, nine different scenarios (not sorting sequences) exist for sorting
genome A into genome B. Sampling uniformly should then produce each scenario with
probability 1/9 = 0.1̄.
Instead of choosing each edge in one step with equal probability, we should therefore

choose the next DCJ operation according to the number of different paths that are
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Chapter 3: Uniform Sampling of DCJ Sorting Scenarios

Figure 3.2: All optimal DCJ operations with probabilities for each next step.

possible after this step, i.e. (possibilities of step k + 1) /(possibilities of step k). This
can be achieved for example by moving bottom-up in the sorting space and adding up
the number of edges that lead to one entry. The analysis of the same adjacency graph
as before, but for uniform sampling, is given in the following example.

Example 5 (Uniform Sampling): For each node of Figure 3.2, the corresponding
node in Figure 3.3 shows in red the number of ways to sort the adjacency graph at this
node. Sorting the left component first (dark solid paths), gives three possibilities for
the following operations, whereas after performing one of the optimal DCJ operations
acting on the other component there are only two possibilities left (light solid path).
In the first step, we henceforth choose the dark solid operation with probability 3/9

and the light solid operation with probability 2/9, instead of 1/4 each. Clearly, each of
the scenarios now has overall probability 1/9. �

For further determination of the correct probabilities for choosing a specific opera-
tion, we first need to take a closer look at what the whole graph and its vertices look
like. From [22,23] (given in Equation 2.5 on page 30) we know that sorting each com-
ponent individually still gives an optimal sorting scenario but it must be noted that
optimal sorting scenarios that recombine an AA- and a BB-path cannot be produced
in this way. Hence, the graph would be incomplete and the probabilities incorrect.
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3.1 Sampling by Sorting Components Individually

Figure 3.3: The number of possible scenarios in the follow-up (red), determines the
actual probabilities for each edge. The colouring of the edges is to highlight specific
sorting scenarios.

For a start, we assume that no recombination of even paths is possible. This means,
there is either no AA-path or no BB-path. Otherwise, if both exist, we sort strictly
individually. Examples for genomes that have no recombinations of adjacency paths
are circular genomes or co-tailed genomes. A discussion on this topic will follow in the
last section of this chapter.

3.1 Sampling by Sorting Components Individually

In order to choose the correct probabilities for performing a specific DCJ operation in
the first step, we need to know the total number of scenarios as well as the number
of possible scenarios for each of the child nodes. Since this can only be determined if
we have the information from all recursive child nodes we need to take a look at the
sorting space of each adjacency graph.

3.1.1 Solution Space for DCJ Sorting without Recombinations

Given a single unsorted component C of DCJ distance dC , Braga and Stoye [22] as
well as Ouangraoua and Bergeron [77] showed that

sC = (dC + 1)dC−1

gives the number of different ways to sort C. Furthermore, it was also shown that the
number of different optimal DCJ sorting scenarios, obtained by sorting each component
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indvidually, is given by:

s = dU !
∏
C∈U

sC
dC !

= dU !
∏
C∈U

(dC + 1)dC−1

dC !
, (3.1)

where the set of all unsorted components is denoted by U and its distance is dU [22,77].

Example 6: Given an adjacency graph as shown in Figure 3.4, we observe that it has
twelve components of which nine are in the set U of unsorted components (indicated
by the dashed line). The total distance is dU = 19. The number of different ways to

Figure 3.4: An adjacency graph consisting of nine unsorted components (indicated by
the dashed line) and three sorted components.

sort this adjacency graph amounts to s = 11 677 929 639 247 872 000. �

In order to get the correct edge weights as for example given in Figure 3.3, we need
to take into account all operations possible for all intermediate steps. Counting the
number of scenarios/edges for every node in the sorting space prior to sampling is
very tedious. However, if we know what the intermediate adjacency graphs look like,
we can compute s directly. Figure 3.5 shows schematically one node of the sorting

Figure 3.5: Possible optimal DCJ operations ρ1, . . . , ρn acting on U produce subsets
U(1), . . . ,U(n) that have s(1), . . . , s(n) scenarios left over, respectively. Then ρi has
probability s(i)/s.

space that has the set of unsorted components U and n optimal DCJ operations that
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3.1 Sampling by Sorting Components Individually

can be applied in the next step of sorting. Let for each DCJ operation ρi acting
on a component of U the resulting set of unsorted components be denoted by U(i).
Furthermore, let s(i) denote the number of sorting scenarios left over for U(i). Each
edge ρi has thus probability s(i)/s. But we still need to find out how many and which
optimal DCJ operations are possible on components of U.

3.1.2 Bundling Cases with Identical Distance Values

Before we continue, let it be noted that Equation (3.1) immediately gives rise to the
following observation which allows us to narrow down the number of distinct edges for
each set of unsorted components that is considered.

Observation 2. The type of each individual adjacency graph component is irrelevant,
only the distance contributes to the calculation of the number of optimal scenarios. It
is therefore sufficient to bundle distance values and consider only one representative
for every distinct distance value.

Let D be the set of distinct distances of U, then we bundle all components with the
same distance d ∈ D into the set Ud ⊆ U. Hence, instead of sC = (dC + 1)dC−1 we
can simply write: sd = (d+ 1)d−1. With this bundling of components into component
subsets with representatives, Equation (3.1) can be re-written in the following way:

s = dU !
∏
d∈D

(
(d+ 1)d−1

d!

)|Ud|

. (3.2)

Example 6 (continued): The components from U have three distinct distances:
D = {1, 2, 3}. Thus, we organise the components into subsets Ud according to their

Figure 3.6: The set of unsorted components U partitioned into subsets U1, U2 and U3.

distance d ∈ D. As can be seen in Figure 3.6 the sets U1, U2 and U3 have two,
four and three elements, respectively. Obviously U1 ∪ U2 ∪ U3 = U and we have∑

d∈D |Ud| · d = 2 · 1 + 4 · 2 + 3 · 3 = 19 which is the value of dU . Furthermore we
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compute s according to Equation (3.2):

s = 19!

(
(1 + 1)1−1

)2 · ((2 + 1)2−1
)4 · ((3 + 1)3−1

)3
(1!)2 · (2!)4 · (3!)3

= 19! · 96,

which is the same as the value calculated using Equation (3.1). �

Bundling the components also has an advantage when looking at the changes induced
by a single DCJ operation. For instance, let C ∈ U be an unsorted component with
distance dC . Extracting a trivial cycle from C produces two new components; a trivial
cycle and a smaller component C ′ with distance dC − 1. This is valid for all elements
of UdC . We thus can reduce the number of times that we need to calculate the number
of scenarios for a given node.

Still, computing s for any given set of unsorted components U of the whole sorting
space prior to sampling is very tedious. It also is often redundant, as the change
induced by one edge affects only one initial component. Instead, we compute s for
each next step of the current adjacency graph, thus for the direct children only. For
this, we need to know how many children a node has, and what the resulting set of
unsorted components looks like.

For further calculations we will use one representative for each d ∈ D. Starting
with U we perform all possible optimal DCJ operations separately for the first step on
each representative. Each optimal DCJ operation ρ acting on a representative d ∈ D
results in a set U(ρ). The number of possible optimal sorting scenarios left after this
step is given by s(ρ) and is weighted by the number of elements that Ud represents.
Figure 3.7 shows schematically the different next steps of the sorting scenario bundled

Figure 3.7: Computing the edge weights for different subsets of U.

by distance value, where k is the total number of optimal DCJ operations on repre-
sentatives. Clearly, the sum of all edge weights is equal to s. This means we sample ρ
acting on any element of Ud according to the probability (|Ud| · s(ρ))/s.
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3.1 Sampling by Sorting Components Individually

3.1.3 Bundling Cases with Identical Change(s) in Distance Value

In the following we will describe how we can not only bundle DCJ operations for a
distance representative, but also DCJ operations that result in the same pair of new
distance values. We first analyse which DCJ operations that are possible are optimal.
An optimal DCJ operation decreases the DCJ distance by increasing the number of

cycles or AB-paths. This can be achieved by extracting cycles from components or by
splitting a BB-path into two AB-paths (see also Table 2.1). In any way, a component C
of distance d to which a DCJ operation is applied, gets replaced by components Ca
and Cb of distance da and db, respectively.
Performing a double cut-and-join operation on a single component means to cut two

A-vertices of the adjacency graph and re-join the four ends. We consider all possible
combinations of two cut positions within a single component of distance d. Hence,
we take into account all d + 1 vertices of that component that belong to genome A
(indexed 0, . . . , d following the edges in order of traversal, shown in Figure 3.8).

Figure 3.8: Possible cut positions for DCJ operations acting on a single component.
In a BB-path performing the cut in vertex d corresponds to splitting it into two
AB-paths.

Splitting a BB-path into two AB-paths can be modelled by performing the second
cut on an empty chromosome, as shown in the rightmost case of Figure 3.8. For an
AA-path, it is possible to close the complete path into a cycle leaving behind an empty
chromosome. It could be shown that, for any pair of cuts in A-vertices that belong to
the same component, there is exactly one re-join that is optimal [22].

Observation 3. Let a component C of distance d be split into two components Ca
and Cb by an optimal DCJ operation resulting in distances da and db, respectively. As
already observed, the type of component is irrelevant, hence also the component types
of Ca and Cb are irrelevant, and only the change in distance value matters.

We bundle possible DCJ operations that produce the same outcomes for {da, db} into
one splitgroup. For simplicity and without loss of generality we assume that da ≥ db.

Proposition 2: Let C be a single unsorted component of distance d that is split into
two components Ca and Cb by an optimal DCJ operation, then there are dd2e different
sets of distances {da, db} of the resulting components.
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Proof. An optimal DCJ operation that splits C into two components Ca and Cb satisfies
d− 1 = da + db. If d is even, the possible resulting distances of {da, db} are {d− 1, 0},
{d−2, 1}, . . . {d2 ,

d
2 −1}, yielding d

2 different sets. If d is odd, da+db must be even and
an additional case where da = db can occur, yielding d+1

2 different value pairs.

We use j as the splitgroup identifier in order to distinguish the different splitgroups.
The splitgroup identifier j that determines the resulting distances {da, db} as {d −
j, j − 1} thus can take dd2e different values. Furthermore, we need to determine which
cut positions belong to which splitgroup. We consider two distinct A-vertices for cut
positions.

Observation 4. Given a single unsorted component C of distance d and a vertex v1
of C, we can have d possible second cut positions (where v2 6= v1). Let the resulting
components be Ca and Cb with distances da and db, respectively. Since (v1, v2) produces
the same result for da and db as (v2, v1), we only consider cut positions (v1, v2) where
v1 < v2 (i.e. only

(
d+1
2

)
positions).

For the same value of j multiple choices of cut positions are possible. Although the
shape of Ca and Cb may alter, choosing (0, 1), for example, will give the same distances
for the resulting components as choosing (0, d), (1, 2), (2, 3) and so on. We obtain two
components of distances da = d − j and db = j − 1 by either of the following cases:
(i) extracting a cycle of distance db, leaving behind a component of distance da, (ii)
extracting a cycle of distance da, leaving behind a component of distance db, or (iii)
splitting a BB-path into two AB-paths of lengths da and db. For cases (i) and (ii) the
vertices are v1 and v2 = v1 + j. If we have a BB-path, cutting the last vertex (index d)
and any other vertex splits the path into two AB-paths. For this, the second cut is
made in vertex v2 = j − 1 or v2 = (d− 1)− (j − 1) = d− j.
We now determine how many different pairs of cut positions there are for each of

the dd2e splitgroups.

Proposition 3: Given a single unsorted component C of distance d, there are dd2e
splitgroups with d+ 1 elements each. If d is odd, the last splitgroup j = dd2e represents
the case in which da = db and has only 1/2 · (d+ 1) elements.

Proof. Component C is split into two components Ca and Cb with distances da and db,
respectively. We have da + db = d− 1 and j ∈ {1, . . . , dd2e}.
If d is even, it means da + db is odd and we distinguish between BB-paths and other
components (cycles, AA- and AB-paths).
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C is not a BB-path. Given j, the resulting components have distances da = d − j

and db = j − 1 which are obtained by extracting either (i) a cycle Cb from C

or (ii) a cycle Ca from C. In case (i), we extract into a cycle the path that is
between cut positions (0, 0 + j), (1, 1 + j), . . . , (d − j, d), i.e. we have d − j + 1

cut positions for extracting a cycle of distance j − 1 and leaving behind the rest
of the component with distance d − j. In case (ii) we derive the same values
of da and db for different component layouts by extracting a cycle with distance
(d− j) and leaving the original component at distance j−1. Obviously, this can
be done j − 1 + 1 = j times.
The number of different DCJ operations splitting component C of distance d
into components of distances da and db using j is given by (i) + (ii), which is
always d− j + 1 + j = d+ 1.

C is a BB-path. The component has A-vertices labelled from 0, . . . , d − 1. Cases (i)
and (ii) each have one possibility less (the cut that includes the last vertex), but
instead we now have a third case. In case (iii), the vertex with index d is for
splitting the component into two paths with exactly two possibilities: (j, d) and
(d− j, d). In total, we have the same number of splitgroup elements as the other
components.

If d is odd, it means da + db is even and again we distinguish between different types
of components.

C is not a BB-path. This case is analogous to the case in which d is even, but the last
splitgroup splits s.t. da = db. For this splitgroup, the cut positions (and also the
performed operations) from (i) and (ii) are identical and can be counted only
once. Hence the splitgroup j = dd2e has

1/2 · (d+ 1) elements.

C is a BB-path. This case is analogous to the case in wich d is even, but as the last
splitgroup splits s.t. da = db, cases (i) and (ii) of the last splitgroup are identical.
Also the two cut positions in (iii) are identical and can be counted only once.
Hence, the splitgroup j = dd2e has

1/2 · (d+ 1) elements.

For any type of component each splitgroup has d + 1 elements, unless d is odd, in
which case the last splitgroup (that is j = dd2e) has only

1/2 · (d+ 1) elements.

Example 7 (Splitgroup cuts): For a BB-path with distance d and for splitgroup
j = 2, we see in Figure 3.9 the three types of possibilities to derive resulting components
with distances {d − j, j − 1} = {d − 2, 1}. For cases (i) and (ii) from the proof of
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Figure 3.9: Cut positions for splitgroup j = 2 in a BB-path of distance d. The
resulting pair of components all have distances 1 and d− 2.

Proposition 3, the grey parts are extracted into a cycle, where in (i) the extracted
cycle has distance j − 1 and in (ii) it has distance d− j. The size of this splitgroup is
(i) d− 2 + (ii) 1 + (iii) 2 = d+ 1. �

Adaptation to the Formula

After performing one optimal DCJ operation ρ on a single component C, its distance d
is changed and the set of unsorted components is also altered, let it be called U(ρ).
The overall distance dU is reduced by 1. In order to see in which way s is changed, we
need to replace C by Ca and Cb and adapt Equation (3.1) accordingly:

s(ρ)︷︸︸︷
s = (

dU−1︷︸︸︷
dU )!

(d1 + 1)d1−1 · · ·

(da+1)da−1·(db+1)db−1︷ ︸︸ ︷
(d+ 1)d−1 · (d|U| + 1)d|U|−1

d1! · · · d!︸︷︷︸
da!db!

· d|U|!
.

We can re-use the previously computed value of s, and we know that dU is diminished
by 1. After performing ρ the number of optimal sorting scenarios that remain is:

s(ρ) = s · 1

dU
· d!

da!db!
· (da + 1)da−1 · (db + 1)db−1

(d+ 1)d−1
.
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Moreover, since an optimal DCJ operation ρ acting on a single component of distance d
produces two components with distances da = d − j and db = j − 1, we re-write s(ρ)

as a function of j and d:

sjd = s · 1

dU
· d!

(d− j)!(j − 1)!
· (d− j + 1)d−j−1 · (j)j−2

(d+ 1)d−1

= s · 1

dU
· d · (d− 1) · · · (d− j + 1)

(j − 1)!
· (d− j + 1)d−j−1 · (j)j−2

(d+ 1)d−1
. (3.3)

Obviously, this is done only once per splitgroup and we can further bundle the edges
such that not only all components of one set Ud are bundled but also all DCJ op-
erations of a certain splitgroup of one component. Note that for da = 0 or db = 0

the corresponding component is not added to U(ρ) and thus does not occur in Equa-
tion (3.3).

3.1.4 Sampling Weights for a Distance-Splitgroup-Pair

From Equation (3.1) we know how to compute the total number of scenarios s for a
given collection of components U and in Equation (3.3) we see what happens if we
change component C of distance d using splitgroup j.
In order to sample uniformly among all scenarios, we have to look at the impact of

each possible DCJ operation. For each distance value d and for all possible values of j
we have to check the number of optimal scenarios, denoted by sjd . We bundle the value
of sjd for all c ∈ Ud and all members of splitgroup j. Hence we compute the weight
(representing a bucket with a specific j and d) by wjd = sjd · |Ud| · (d+ 1) (times 1/2 if d
is odd). Figure 3.10 illustrates this for one step for one set Ud.

Figure 3.10: Splitgroups and operations for one representative Ud. The number of
splitgroups and their number of elements determine the weight.

All computed weights add up to s and, finally, we can sample a bucket with prob-
ability wjd/s and derive the values for j and d. Figure 3.11 illustrates this in its first
step. Since s · 1/dU from Equation (3.3) is common to all possible sjd in this step, the
crucial factor is the multiplier.

43



Chapter 3: Uniform Sampling of DCJ Sorting Scenarios

3.1.5 Uniform Sampling of an Optimal DCJ Operation of Size j on a
Component of Distance d

Since we operate under a unit cost model, we consider each DCJ operation equally
likely. However, when performing one DCJ operation we have to keep in mind that
the avalanche it triggers might be of different impact. Assume we are provided with
values for j and d. We thus know the size of the resulting components and how many
vertices lie in-between the two cut positions that we are to sample. If the first cut
position is x ∈ {0, . . . , d} then the second vertex can be either j vertices to the left
(in genome A) or j vertices to the right. For the mathematical modulo1 we choose as
possible second cut positions one of the following:

y1 = (x+ j) mod (d+ 1)

or y2 = (d+ 1 + x− j) mod (d+ 1).

We consider the two cut positions (x, y1) and (x, y2) as equal, since they produce
the same distances for the resulting components, and we choose either of them with
probability 1/2.

Example 8 (Cut positions): Given a BB-path of distance d = 5 and a first cut
position x = 1. If we use splitgroup j = 2 then y1 = ((1 + 2) mod (5 + 1) = 3 and
y2 = ((5 + 1 + 1 − 2) mod (5 + 1) = 5, thus we can have either (1, 3) or (1, 5) as cut
positions, yielding components of distances {d− j, j − 1} = {1, 3}. �

At each step of the sampling, we have the value of s (for the current set of unsorted
components U) and the individual buckets. After we sampled a bucket, we also have
to “backtrace” the bundling. The following example shows how this is done.

Example 6 (continued from p.36): The adjacency graph has unsorted components
with distances {1, 1, 2, 2, 2, 2, 3, 3, 3}, thus one splitgroup for d1 and d2 and two for d3
yielding buckets s11, s

1
2, s

2
3 and s23. Here, s = 11 677 929 639 247 872 000. Figure 3.11

illustrates how from s we iteratively derive two sampled cut positions for the sampled
component. When sampling operation ρ∗, there are still s12 = 409 751 917 166 592 000

different optimal ways of sorting the remaining components, or, in other words: we
choose ρ∗ with probability s12/s = 0.035088. �

We developed an algorithm for adjacency graphs which contain either no AA-paths
1 Programming libraries may use the symmetric modulo instead, which differs where negative num-
bers are concerned: x mod y = −(|x| mod y), for x < 0. Hence, adding d+ 1 in the equation of y2
circumvents confusion.
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Figure 3.11: Sampling steps that lead to Zρ. Step (1): sample bucket that gives values
for d and j. Step (2): sample component of distance d. Step (3): sample an optimal
DCJ operation of size j.

or no BB-paths or neither of them. Algorithm 1 samples a sorting scenario uniformly
from all possible sorting scenarios.

Complexity. Obviously, we need dU steps to complete the scenario (line 6 of Al-
gorithm 1). First we construct the buckets, which is done once for each distance
representative and for each splitgroup. This depends on the number of distinct dis-
tance values |D| (line 8) and the distance value itself (line 9). For one sorting step
we compute at most |D| · dmaxD

2 e buckets, where D is updated after each sorting step
(and ultimately decreases).
The worst case for line 8 occurs when |D| = |U|, i.e. each component of U has a

different distance, or, in other words, each Ud has exactly one element. Given dU , we
would achieve a maximum of |D| if the smallest distinct distance values occur. The
worst case for line 9 would be when d has a high value. It is easy to see that d is
maximal when d = dU , thus |D| = 1 (this annuls the worst case of line 8). Combining
the worst cases of each loop yields dU · |U| · dU steps, which in practice is always an
overestimation.
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Algorithm 1 Sampling uniformly among all optimal DCJ scenarios that sort compo-
nents individually.
Input : The adjacency graph AG(A,B) of two genomes A and B.
Output: The sampled optimal DCJ sorting scenario.
1: U ← set of unsorted components of AG(A,B)
2: D ← set of distinct distance values of U
3: Ud ⊆ U ← set of unsorted components of AG(A,B) categorised by distances
4: dU ←

∑
C∈U

dC

5: s← dU !
∏
C∈U

(dC + 1)dC−1

(dC !)

6: while dU > 0 do
7: print current genome A
8: for all d ∈ D do //bucket construction
9: for j ← 1 to dd2e do //ordinary splitgroups
10: sjd ← Equation (3.3)
11: wjd ← |Ud| · (d+ 1) · sjd //for each member of Ud and each split
12: if d is odd then
13: last wjd ← (last wjd ) / 2
14: (Z,ZC , Zρ)← sampleOP //sample next step, see below
15: perform Zρ on ZC
16: //ZC is replaced by Ca, Cb with distances da, db and yields dU − 1
17: update D, UdZ ,Uda ,Udb , accordingly
18: s← sjd
19: print genome B
20: return

sampleOP:
Z ← sample bucket B with probability wB/s (distance dZ , splitgroup id jZ)
ZC ← sample component C from UdZ with uniform probability
Zρ ← sample operation on ZC satisfying jZ
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3.2 Implementation into UniMoG

The software framework UniMoG2 [59] provides an easy-to-use manner to compute
genomic distances and sorting scenarios for several genome rearrangement models. It
comes along with a graphical user interface (GUI) but can also be used as a command
line tool. The user can choose among the provided genome rearrangement models:

• DCJ
• DCJ-indel
• restricted DCJ
• Inversion (via DCJ)
• Translocation (via DCJ)
• HP (via DCJ)

UniMoG accepts two or more genomes in an appropriate format with marker identifiers
as input (more details can be found in its help pages). When several genomes are
chosen, pairwise genomic distances are computed and output in a table. By default, the
software will adjust the genomic content to the chosen model, e.g. remove duplicated
or unique markers where necessary. In case the user is interested not only in the
distance but also in a sorting scenario of the pairwise comparisons, the check box Show
Steps can be ticked 2�. The implementation in UniMoG uses the most efficient existing
algorithms for both distance and sorting of each model [59].

The theory of this chapter is embedded in UniMoG. If the check box Uniform Sampling
DCJ remains unchecked, the Bergeron sorting algorithm always returns the same sorting
scenario. Otherwise, if the option is checked, a scenario sampled uniformly from the
sorting space (that has no recombination of AA- and BB-paths) is output. This is, of
course, only considered for the standard DCJ model. Figure 3.12 shows a screenshot
where the two check boxes can be seen at the bottom.

For instances where recombinations are not possible, the exact solution of uniform
sampling has been integrated into UniMoG. This is the case for any adjacency graph
that has no pair of AA- and BB-paths. Circular genomes as well as all co-tailed
genomes meet this condition. Otherwise, if the adjacency graph has at least one AA-
and at least one BB-path, the user is notified that the sampling is no longer uniform
among all possible sorting scenarios, rather only uniformly among all non-recombining
scenarios and is given the lower bound on the number of scenarios (see at the bottom
of the text field in Figure 3.12).

2 http://bibiserv.cebitec.uni-bielefeld.de/dcj/welcome.html
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Figure 3.12: Screenshot of the graphical user interface of UniMoG. Here, the user chose
by 2� to display a sorting scenario but by not ticking the respective box, uniform
sampling is not performed.

The drawing of huge random integers in programming has to be considered carefully,
as Example 6 shows. In that example for genomes that have a distance of 19, there are
a total of 11 677 929 639 247 872 000 non-recombining scenarios and we know there is
one sampling bucket that has s12 = 409 751 917 166 592 000 scenarios, which exceeds
the java data types int (2 147 483 647) or unsigned int (4 294 967 295). Looking
at real data, for example human and mouse, an optimal sorting sequence has almost
thirteen times the distance than our “small” example, namely 246 steps [81]. UniMoG

gives a lower bound (the adjacency graph has both AA- and BB-paths) to the number
of optimal sorting scenarios as:

1149558699621369598502808293424335339496547447512690727762325125045023737924
21365104406101297156008757069808685655944388203513652184769096164486777697833
03807166638918618151356626449284707617488539477244399838242362074546906600637
52708561192062245263623515292576610353877119579132172547782425158456791255360
40526569557869511001711095716747311354421096519710115603022118018183910495007
28630756378606453102269500548971468121328632644144846385927901341973609139974
99381841920000000000000000000000000000000000000000000000000000000000000000000

(which is a number with 538 digits). However, not only the possibility to store such
large numbers but also the availability of a uniform sampler is required. We hence
chose the data structure Xint1 to store large numbers.
Naturally, as the numbers get higher and higher, the individual probabilities get

lower and lower, thus almost impossible to sample. The upcoming section shows how
we can deal with sampling of this magnitude.
1 Available from: https://github.com/PeterLuschny/Fast-Factorial-Functions/blob/master/
JavaFactorial/src/de/luschny/math/arithmetic/Xint.java .
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3.2 Implementation into UniMoG

3.2.1 Drawing a Huge Random Integer

We want to sample an operation with weight wjd/s, where s can be arbitrarily high. The
idea is to draw a random integer RV that lies in the interval ]0, s], which is all buckets
of wjd strung after another. When we draw RV such that 0 ≤ RV − 1 < s for some
arbitrarily high natural number s and then compare RV to the interval boundaries of
added weights wjd, we derive the bucket.

Assume we have a (pseudo) random number generator for natural numbers up to
nine decimal digits, i.e. in the interval [0, 109[. Let z be the drawn random variable
with 0 ≤ z < 109. Then, for a small s, we can draw the number directly from [0, s[ and
use RV = z + 1 as the final random integer. However, for larger s this is not easily
possible, since the computational methods are limited in size.
Here, we employ a rejection method: Blocks of digits are sampled individually, then

concatenated to a full number and compared to X. More precisely, let the upper
bound of the interval be X = X[0]X[1]X[2] · · ·X[n], consisting of n + 1 digits. Our
random variable z has the same number of digits as X and is composed of k blocks
of nine digits and, if applicable, one block that has r digits. This can be seen in
Figure 3.13. The random variable z is then obtained by drawing the nine-digit blocks

Figure 3.13: An integer X of length n+ 1, divided into k buckets of length nine and
one bucket of length r.

z1, . . . , zk from [0, 109[ and the r-digit blocks from [0, 10r[ and concatenating it to
z = z1 ++ z1 ++ . . . ++ zk ++ zr. Finally we derive RV = z + 1. Clearly, we have
k =

⌊
n+1
9

⌋
and r = (n+ 1)mod 9. For the huge number, given for the human-mouse-

example above, we have k = 59 and r = 7.
If RV > X we reject the outcome and resample. We do not reject individual values

zi, but all of the values of RV sampled in this attempt. Figure 3.14 shows this (simple)
process of drawing a huge random variable RV in more detail.
However, checking for acceptance/rejection can be done while sampling so that we

do not continue sampling the huge number when we already know we will have to reject
it. That is why we start sampling with the leftmost digits, thus with B := X[0] . . . X[8]

which serves as the first bound for rejecting/accepting. We sample z1 for the leftmost
bucket from [0, 109[.

z1 > B We know that even if we continue with the other buckets, in the end we will
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Figure 3.14: Flow diagram of sampling a (huge) natural number RV from [1, X] .

have RV > X, thus we can already stop here, reject z1 and start anew.

z1 < B In this case we can accept all outcomes of z2, . . . , zk, zr since RV < X will
always hold.

z1 = B If z1 hits the upper bound, we need to check for the next outcome of z2.
For each of the following buckets, we record a Bi as an acceptance bound.
When zi > Bi we reject everything and start anew. If we hit the upper bound
zi = Bi, we continue to check the next sampled bucket, until we can accept
or reject the outcomes, or reach zr ≤ Br.

For example, in the first bucket we draw from [0, 999 999 999] and since B = 114 955 869

the probability of z1 being rejected is roughly 0.885.

Note. In principle, this procedure could run forever, that is when the drawn RV is
forever bigger than X, which in practice will not happen.

3.2.2 Example Output

Besides a textual output shown in Figure 3.12 (the same as given when using the
command-line), UniMoG also provides a visual scenario for the operations. Here, the
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linear or circular chromosomes are depicted with their markers. A cut is indicated by a
vertical red bar. The section of the chromosome that will be affected by this operation
is coloured below the chromosome and in the next step, when the new arrangement is
shown, the same regions are colour-coded above the chromosome.
For the two given genomes A = {(◦, 1, 2,−3, 4, 5, 6, ◦), (◦, 7, 9,−10, 11, 13,−14, 15,

−8, 16, ◦), (17,−12,−18, 19)} and B = {(◦, 1, 2, 3, 4, 5, 6, ◦), (◦, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, ◦), (17, 18, 19)} from Figure 3.12 the UniMoG output gives a scenario with dis-
tance 8 as well as the lower bound of 161 280 optimal sorting scenarios. Six of these
are depicted in Figure 3.15. Clearly it can be seen that the number of chromosomes
can vary, e.g. scenarios (ii) and (iii) have at one time two extra circular intermediates
(five chromosomes in total), while scenarios (i) and (vi) incorporate one chromosome
into another thus having only two chromosomes temporarily. Also one can see from
chromosome 1 that it needs only one DCJ operation to be sorted and the step in which
this single operation can occur also varies.
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Chapter 3: Uniform Sampling of DCJ Sorting Scenarios

(i) Scenario 1, standard sorting when no sam-
pling is used. (ii) Scenario 2

(iii) Scenario 3 (iv) Scenario 4

(v) Scenario 5 (vi) Scenario 6

Figure 3.15: Several different sorting scenarios for the same pair of genomes, namely
A = (◦, 1, 2,−3, 4, 5, 6, ◦), (◦, 7, 9,−10, 11, 13,−14, 15,−8, 16, ◦), (17,−12,−18, 19)
and B = (◦, 1, 2, 3, 4, 5, 6, ◦), (◦, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ◦), (17, 18, 19).

52



3.3 Evaluation

3.3 Evaluation

In the following, we evaluate our uniform sampling method against the more naïve
sampling approaches proposed in the beginning of this chapter. Apart from real data,
we also chose artificial data created to represent extreme cases and to emphasize the
(dis)similarities of the methods.
As the non-uniform methods were implemented re-using existing data structures

and method calls of UniMoG, we forgo a comparison of all methods concerning time or
space complexity and instead concentrate on the sampled scenarios.
For the purpose of this study, we rely on circular chromosomes only, which means

the adjacency graph has only cycles. Note that sorted cycles and their vertices are not
considered for sampling.

3.3.1 Overview of Sampling Methods

For the evaluation and comparison of uniform sampling, three other sampling methods
were implemented in order to show the differences and the importance to not sample
naïvely.

vertex: A random version of Bergeron sorting (by trivial cycle extraction).

edge: Randomly chooses a next step (each step has equal probability).

split: Chooses a random split group of the next step. We first sample a cycle Ci
(weighted by the number of edges). Then we choose one splitgroup ji for Ci
at random (weighted by the number of elements). For the sampled splitgroup
ji we then sample a pair of vertices of Ci satisfying ji.

3.3.2 Real Data

For evaluation with real data we chose the γ-proteobacteria data set used in [15] which
they give in their appendix, derived from [7]. The species and sources are listed in
Table 3.1. All of these genomes have one circular chromosome. We use four gene orders
(see Table 3.2) and refer to them with their abbreviations, as given by Table 3.1.
Prior to sampling multiple scenarios, we analyse the properties of each pairwise

comparison (see Table 3.3). As can be seen in the leftmost table, the comparisons of
gene orders E and stm as well as stt and sty are trivial, as their adjacency graph
has only one unsorted cycle of distance 1 (obviously the only DCJ operation that
is performed is chosen with probability 1). We therefore focus on the non-trivial
comparisons. Although stm and stt have the same DCJ distance as sty and E (second
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Table 3.1: Selected species for a comparison of γ-proteobacteria [7].

Abbr. Species NC number Source

stm Salmonella typhimurium LT2 NC_003197 [69]
stt S. enterica subsp. enterica serovar Typhi Ty2 NC_004631 [38]
sty S. enterica subsp. enterica serovar Typhi str. CT18 NC_003198 [78]
ecc* Escherichia coli CFT073 NC_004431 [86]
eco* Escherichia coli K12 NC_000913 [17]
ecs* Escherichia coli O157-H7 NC_002695 [57]
ece* Escherichia coli O157:H7 EDL993 NC_002655 [80]

* species have the same gene order, combined to E

Table 3.2: Marker orders for the selected γ-proteobacteria species [15].

>sty: 1 2 4 -3 5 6 -8 -9 -7 10 )
>stm: 1 2 -4 -3 5 6 7 8 9 10 )
>stt: 1 -5 3 -4 -2 6 -8 -9 -7 10 )
>E : 1 2 3 4 5 6 7 8 9 10 )

table of Table 3.3), there are more optimal scenarios for the latter (rightmost table of
Table 3.3).

Table 3.3: DCJ distances (left), distances of unsorted cycles in the adjacency graphs
(centre) and number of different scenarios (right) for pairwise genome comparisons
of γ-proteobacteria.

sty stt E
stm 4 5 1
sty - 1 5
stt - - 6

sty stt E
stm 1,3 1,1,3 1
sty - 1 2,3
stt - - 1,2,3

sty stt E
stm 64 320 1
sty - 1 480
stt - - 2880

Sampling Optimal Sorting Scenarios for sty-stm Comparison

Let us illustrate the differences of each of the vertex, edge, split and uniform method
with the help of a detailed example. In order to make it feasible for stepwise elabo-
ration, we choose the comparison of sty and stm as it yields the smallest non-trivial
distance and smallest number of optimal scenarios in our set of comparisons (dDCJ = 4,
resp. s = 64). The full adjacency graph of the two genomes is shown in Figure D.12
in Section D of the appendix. The two non-trivial cycles have distance 1 (thus two
vertices in A and two in B) and distance 3 (thus four vertices in A and four in B).
For simplicity we refer to these as C1, resp. C3. During sampling, when a cycle of
distance 2 is created, we refer to it as C2. Likewise, splitgroups j = 1 and j = 2 are
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referred to as j1 and j2, respectively. The different sets of cycles that emerge from
DCJ operations are shown in Figure 3.16. A list of all possible sorting scenarios using
the sampling methods described below is given in Section D of the appendix.

B,C

A, y

{C1, C3}

{C3}

{C1, C2}

{C1, C1, C1}

{C2}

{C1, C1}

z

C

z

B

A

y

C, y, z

A,B {C1}

Figure 3.16: Compacted sorting space of non-trivial cycles of the sty-stm adjacency
graph. Left: initial cycle set, right: penultimate cycle set. A, B, C, y and z label
the different ways (and the respective edges) for sorting.

Uniform sampling. Each of the 64 different optimal sorting scenarios has a prob-
ability of 1/64 = 0.015625 for uniform sampling. When sampling 150 000 scenarios we
hence compare each of the following methods to 150 000/64 ≈ 2344 hits per scenario.

Vertex sampling. In each step a trivial cycle is extracted. Hence, C3 cannot be
split into two C1-cycles. Sorting scenarios from categories y and z can thus not be
obtained. In the first step of the vertex-approach there are six vertices in non-trivial
cycles, hence a vertex is chosen with probability 1/6 and the corresponding adjacency
is formed in the intermediate genome. We can extract a trivial cycle from C3 in
four different positions yielding four different intermediate genomes. On the other
hand, choosing either of the two adjacencies of C2 produces two trivial cycles, thus
the same intermediate genome is produced while sampling one or the other vertex of
that cycle. The resulting intermediate genome is thus effectively chosen twice as often.
However, this affects the probability only when in the same step there are larger cycles
present. Otherwise, if there are only 4-cycles, they all have the same probability and no
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intermediate genome is given preference to the others. The probabilities of scenarios
of each category using vertex-sampling are then:

A : 2/6 · 1/4 · 1/3 = 0.027, B : 1/6 · 2/5 · 1/3 = 0.02 and C : 1/6 · 1/5 · 1/2 = 0.016.

The number of scenarios that fall in each category as well as the intermediate genomes
of each scenario can be looked-up in the appendix (see Section D). If we sample
150 000 scenarios we expect a scenario that falls into category A, B, or C to occur
around 4166, 3333 and 2500 times, respectively. As can be seen in Figure 3.17, the
implemented vertex sampling achieves these results. As this approach cannot produce
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Figure 3.17: Frequency of the 64 possible sorting scenarios among 150 000 samples of
the vertex sampling. The 2344-mark is indicated by a dashed line. The scenarios
that this approach can obtain are to the left in the picture, those that this approach
cannot obtain have a higher id.

any sorting scenario of category y and z these scenarios have a frequency of 0. The
order of scenarios corresponds to the catogeries in alphabetic order.

Edge sampling. For the edge-approach the way in which a 4-cycle is split into two
trivial cycles is irrelevant, only the resulting set of cycles matters. In the case of sty
and stm, for the first step we have 1/2 · (1 + 1) + 3/2 · (3 + 1) = 7 possible resulting
adjacency graphs. All scenarios choosing the smallest splitgroup (j1) correspond to
a scenario sampled in the same way as the previous method (categories A, B or C).
Initially, C1 and C3 are chosen with probability 1/7 and 6/7, respectively. C1 has
only one splitgroup and one set of sampled vertices. Afterwards, (thus for C3) two
splitgroups exist (chosen with probability 4/6 and 2/6). Choosing either j1 or j2 leaves
a cycle that has only one splitgroup. When choosing to act on C3 first, we can either
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choose j1 or j2. In the former case we can then choose to act on C1 with probability
1/4 or on C2 with probability 3/4 since we can only extract trivial cycles and there
are four possible resulting adjacency graphs. In the latter case we are left with three
4-cycles, all of them equally probable to be split in the next step. The probabilities of
sampling a scenario by category are:

c · j · v · c · j · v · c · j · v
A : 1/7 · 1 · 2/2 · 6/6 · 4/6 · 1/4 · 1 · 1 · 1/3 = 1/126 ≈ 0.00793

y : | · | · | · | · 2/6 · 1/2 · 1/2 · 1 · 2/2 = 1/84 ≈ 0.01190

B : 6/7 · 4/6 · 1/4 · 1/4 · 1 · 2/2 · 1 · 1 · 1/3 = 1/84 ≈ 0.01190

C : | · | · | · 3/4 · 1 · 1/3 · 1/2 · 1 · 2/2 = 1/56 ≈ 0.01786

z : | · 2/6 · 1/2 · 1/3 · 1 · 2/2 · 1/2 · 1 · 2/2 = 1/42 ≈ 0.02381

When sampling 150 000 scenarios for sty and stm with the edge-approach, we thus
expect around 1190, 1786, 1786, 2678 and 3571 hits per scenario, respectively. As
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Figure 3.18: Frequency of the 64 possible sorting scenarios sampled with the edge
approach for 150 000 samples. The order of scenarios matches that of Figure 3.17.
The 2344-mark is indicated by a dashed line.

can be seen in Figure 3.18, the implemented edge sampling achieves these results. All
scenarios occur, but with a deviation from the 2344-mark of the uniform expectation.
The order of scenarios is the same as for Figure 3.17 (hence scenarios from y and z,
that use splitgroup j2, are to the right of the picture).

Split sampling. As C1 has two vertices in A and C3 has four vertices, they are
chosen with probability 2/6 and 4/6, respectively. C1 has only one splitgroup and C3

has j1 with four elements and j2 with two elements. Categories A, B and C are
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analogous to those from above, but yield different probabilities as the components
are chosen in a different way. After sorting C1 we have two possibilities: scenarios of
category A or y. Either are chosen according to the splitgroup probabilities (2/3 and
1/3, respectively). Otherwise, in the first step we choose a DCJ operation acting on C3

with probability 4/6. Here, we sample splitgroup j1 with probability 2/3 (categories B
or C) or j2 with probability 1/3 (category z). After two steps, all cycles have distance 2
or smaller, hence only one splitgroup exists for each cycle. However, the cycles are
still chosen according to their relative number of vertices. In conclusion, we derive the
following probabilities:

c · j · v · c · j · v · c · j · v
A : 2/6 · 1 · 1 · 4/4 · 2/3 · 1/4 · 1/1 · 1 · 1/3 = 1/54 = 0.0185

y : | · | · | · | · 1/3 · 2/4 · 1/2 · 1 · 1 = 1/36 = 0.027

B : 4/6 · 2/3 · 1/4 · 2/5 · 1 · 1 · 1/1 · 1 · 1/3 = 2/135 = 0.0148

C : | · | · | · 3/5 · 1 · 1/3 · 1/2 · 1 · 1 = 1/90 = 0.01

z : | · 1/3 · 1/2 · 1/3 · 1 · 1 · 1/2 · 1 · 1 = 1/54 = 0.0185

We implemented this method, and, as above, sampled 150 000 scenarios of the genome
comparison sty vs. stm. With the above probabilities, we expect each scenarios of the
categories A, y, B, C and z to occur around 2778, 4167, 2222, 1667 and 2778 times,
respectively. As can be seen in Figure 3.19, the implemented split sampling achieves
these results.
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Figure 3.19: Frequency of the 64 possible sorting scenarios sampled with the split
approach for 150 000 samples. The order of scenarios matches that of Figure 3.17.
The 2344-mark is indicated by a dashed line.
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An overview of the results of all four methods for the sty-stm comparison can be
seen in Figure 3.20 (i) whose boxplot is shown in Figure 3.21 (i). In these pictures,
the sorting scenarios are ordered lexicographically within the left (L) part that all
methods can obtain and right (R) part that cannot be obtained by the vertex-approach.
(Figure D.13 on page 202 in the appendix shows (i) with the scenarios sorted according
to their category: A,B,C and x and y).

All Pairwise Comparisons for the γ-Proteobacteria Data Set

Figure 3.20 shows for each pair of species the frequency of each possible scenario
for all four presented methods. It is easy to see that the pattern of the sty-stm
comparison is also found in the distribution of frequencies of the other comparisons.
Oddly, all comparisons have the distinguishable break between the j1 and j2 at the
same proportion of scenarios. This is due to the fact that all comparisons have exactly
one cycle of distance 3.
Note that the scales in each comparison differ. The x-axis corresponds to the number

of scenarios given in Table 3.3. Since all comparisons were run 150 000 times, the
average of each comparison is different which reflects in the scale of the y-axis.
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Figure 3.21: Boxplots of all four methods for all four pairwise genome comparisons.
Scenarios that can be obtained by all methods are within id-range L, while the
scenarios in id-range R cannot be covered by the vertex approach. The horizontal
dashed line is the expected frequency for each scenario.
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3.3.3 Artificial Data

In order to further show the (dis)similarities in the four methods we created special
cases. First, we investigate the behaviour of the four methods when for each cycle there
is only one splitgroup (the tiny genome). Then we increase the number of splitgroups
beyond two (interm genome).

Example: tiny Genome (only one splitgroup per cycle)

The artificial tiny genome compared to the corresponding identity genome (id) has
DCJ distance 7. The marker order of tiny is:

>tiny: a d -b -c -e f i -g -h l k j )

The adjacency graph of tiny and its identity genome has three 4-cycles (each has
distance 1) and two 6-cycles (each has distance 2), yielding a total number of distinct
scenarios of 11 340. The vertex-approach randomly extracts a trivial cycle, which
means the 4-cycles will be broken down to two trivial cycles, and the 6-cycles will be
broken down to one trivial cycle and one 4-cycle. All other methods (edge, split and
uniform sampling) yield the same splitgroups, since extracting a 4-cycle from a 6-cycle
leaves behind a trivial cycle (which is equivalent to extracting a trivial cycle). Only
the probabilities for the results are different. As the resulting cycles of all methods
are the same, we expect to achieve all scenarios with any method.
When first sampling the cycle according to its size (vertex and edge approach), bear

in mind that a 4-cycle has two vertices to choose from for the extraction. Choosing
either of them leads to the same result, which means this scenario is chosen more often
than it should be.

For each of the four methods, we sampled 800 000 scenarios. As expected, all four
methods were able to produce each of the 11 340 scenarios. Figure 3.22 shows for each
of the 11 340 scenarios how often it was sampled with each of the four methods. As
can be seen, even for small distance cycles, edge sampling but also split and vertex
sampling deviate more than the implemented uniform sampling. This becomes more
apparent in Figure 3.23 which shows the boxplot for each method.
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uniform vertex split edge

50
10

0
15

0

Figure 3.23: Boxplots for the 800 000 samples of the tiny genome for the four different
methods. The horizontal dashed line is the expected frequency for each scenario.

Example: interm Genome (large cycle)

While for the tiny example on a large scale, the methods seem to be close to some
extent, we now want to show the deviation in the covered sorting scenarios, when
the initial adjacency graph has cycles with larger distance and thus more and larger
splitgroups. We use the following marker order:

>interm: a -d c -b f -g e -h i )

and compare it to its identity marker order. Their adjacency graph has two unsorted
cycles (distances 1 and 5). The overall DCJ distance is 6 and there are s = 7776 dif-
ferent optimal sorting scenarios. The larger of the cycles has the following splitgroups:
j1 = (4, 0), j2 = (3, 1) and j3 = (2, 2) and a total number of 15 elements in them.
All scenarios that deal with splitting a cycle into two unsorted cycles (thus the nine
elements of splitgroups j2 and j3) are missed by vertex sampling.
We sampled 400 000 scenarios for each of the four methods. In average each scenario

sampled with uniform sampling should thus occur roughly 50 times. Figure 3.24 shows
the results, where in (i) all four methods are given. For a closer look, (ii) shows all
except the vertex sampling on a magnified y-axis and (iii) and (iv) show the split and
edge sampling, respectively. Clearly, a large part of the sorting scenario space is not
produced by the vertex-approach. It can be seen easily that the edge sampling yields
lower probabilities. Also the split sampling as a frayed pattern for the splitgroups j2
and j3 (this means there are fewer scenarios that occur often, but more that occur
less). Figure 3.25 shows the boxplots of all four methods. However, since the vertex
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Figure 3.25: Boxplots of all four methods for the interm example. The scenarios
within id-range L can be obtained by all methods, while the scenarios in the id-
range of R cannot be covered by the vertex approach. The scenario ids are the same
as in Figure 3.24. The horizontal dashed line is the expected frequency for each
scenario.

approach is not able to produce most of the scenarios, the picture shows two sets of
boxplots, one set for the scenarios that can be covered by all methods (L), and one set
of boxplots for the other scenarios (R).

3.4 Discussion

As already mentioned above, the implementation of the different approaches was done
with optimisation towards uniform sampling. The other approaches re-use method
calls even if they are only a roundabout way, which made them easy to implement. It
renders, however, a runtime comparison pointless. Still, the average user is likely to be
only interested in one or a few comparisons for which using the non-uniform methods
are unjustified.

We also were inclined to show that the sampling of large integers produces uniformly
sampled scenarios. However, let us assume that we are given a pair of genomes that
can be sorted in s >> 109 ways, preferably with several 9-digit-buckets. A frequency
plot would then have an x-axis with s entries, and, in order to obtain meaningful
results such as the graphics done in the previous section, each scenario should occur
roughly 50 times (as for the interm example that has 7776 different scenarios, or the
tiny example that has 11 340 different scenarios). As computing and visualising the
scenarios and results are very impractical, we abandon the idea.
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3.4 Discussion

So far, our implemented uniform sampling method only samples uniformly among
all non-recombining sorting scenarios. That means if there are an AA- and a BB-path
at the same time, lots of scenarios are missed. This is elaborated in more detail in the
section below.

Adjacency Graph Instances With Recombinations

From Table 2.1 (see page 30) we know that only operations acting on a single compo-
nent extracting a cycle or operations acting on a BB-path and an AA-path (or splitting
a BB-path) are optimal. All operations acting on a cycle and another component or
on an AB-path and another component are not optimal, and thus cycles and AB-paths
are always sorted individually.

A recombination of paths is a DCJ operation of which one cut is done in an AA-path
and the other cut is done in a BB-path, and after the rejoining we have two AB-paths.
If no AA-path is present, all BB-paths must be sorted individually (and vice versa).

Taking into account not only the individual sorting of AA- and BB-paths but also
their possible recombination, which could happen any time until they are resolved
to trivial components, expands the sorting space enormously. The Equations (3.1)
and (3.2) (page 36 ff.) thus serve only as lower bounds.

The magnitude of the extension of the sorting space is hinted at with the examples
that follow. First, we will study the case where we have exactly one AA- and one BB-
path. Let the AA-path pa and the BB-path pb have distances da and db, respectively.
Then one of the cuts can be done in any A-vertex of pa and the other cut can be done
in any A-vertex of pb, yielding a total of (da+1) ·db possible cut position combinations,
each of them having two distinct rejoins (that are both optimal [23]). As the resulting
components are altered and not simply reduced, we may have the case that one AB-
path has a higher distance than either the AA- or BB-path (at most da + db − 1). At
the same time, instead of recombining the two paths, we can choose one operation
acting on pa or on pb individually. This means in the first step we can choose:

(i) any of the (da + 1) · dda2 e operations of pa or
(ii) any of the (db + 1) · ddb2 e operations of pb or
(iii) any of the 2 · (da + 1) · db recombinations.

Once the recombination is performed, the resulting AB-paths p′ and p′′ can only be
sorted individually and have a combined distance of da+db−1 (where p′ has a distance
ranging from zero to da+db−1). Let us study one simple case in the following example.
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Chapter 3: Uniform Sampling of DCJ Sorting Scenarios

Example 9: Let pa be an AA-path with da = 2 and let pb be a BB-path with db = 1.
In the first step, pa can have three different DCJ operations, pb has only one distinct
DCJ operation, but there are (da + 1) · db = 6 possible recombinations of pa and pb.
In total that means ten different possibilities for the first step. �

If the number of AA- or BB-paths is higher, we have even more possibilities, as
any AA-path could be paired with any BB-path or be sorted individually, as observed
below.

Example 10: Given an AA-path pa and two BB-path pb and p′b all with distance 1.
In the first step we have three possible DCJ operations acting on a single component
each, and we can recombine pa with pb or pa with p′b. Each recombination leads to four
different outcomes, that means in total we have eleven possible first steps. For the next
step nine cases have no AA-path left, meaning there cannot be further recombinations
(each of these have two components with distance 1 each, i.e. two possibilities). The
other two cases have pa and either pb or p′b left, which means recombination is still
possible and the number of outgoing edges is 6. �

The problem of recombining was addressed in [22,23] by taking a specific AA-path
pa and a specific BB-path pb. Then these are linked in their telomeres (in one way
or the other) and two possible cycles emerge: c1(pa, pb) or c2(pa, pb) that each have
distance d = da + db. One such cycle can have (d + 1)d−1 scenarios, although not all
of them are recombining the paths. The number of sorting sequences recombining a
pa with a pb is bounded by 2 · (d+ 1)d−1 [23].
Next they computed a solution for the recombination of one pair of AA- and BB-

paths using defined operations. However, in order to compute all possible recombi-
nations or non-recombinations, an enumeration of which AA-path is recombined with
which BB-path and which paths remain sorted individually is required and the solution
for each of these sets needs to be computed. An algorithm to compute matchings of
AA-paths to BB-paths was provided and the computation was done for relatively low
numbers of paths present. However, a general solution was not provided, as counting
the scenarios using the matching is impractical already for these values.

A different approach to sample DCJ sorting scenarios was presented by Miklós and
Tannier [75,76]. The authors use an important finding from [23], that showed a way
to transform one optimal sequence of DCJ operations into another. The proof in [23]
showed that the optimal sequences are all connected, thus that any one such optimal
sequence can be transformed into any other optimal sequence by replacements.
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3.4 Discussion

Miklós and Tannier defined a distribution θ over the set of all matchings of the com-
plete bipartite graph Kn,m. They proceeded with showing that drawing from this dis-
tribution is equivalent to uniformly sampling DCJ scenarios. Subsequently, a Markov
chain Monte Carlo (MCMC) sampler with stationary distribution θ was constructed.
They then showed that their constructed sampler converges rapidly to its stationary
distribution.
Furthermore, Miklós and Tannier studied the complexity of counting most parsi-

monious DCJ scenarios (denoted by #MPDCJ). They were able to show that this
problem admits a fully polynomial time randomized approximation scheme (FPRAS)
and thus that they can draw an optimal DCJ sorting scenario with the MCMC sampler
in fully polynomial time. However, to the best of our knowledge, no implementation
of this algorithm exists.

Instances without recombinations

There are many adjacency graph instances where recombinations do not play a role.
This is the case for example for genomes that have only circular chromosomes and thus
do not have any paths in their adjacency graph. Also a pair of co-tailed genomes, i.e.
genomes whose telomeres are identical, naturally have only 1-paths and cycles in their
adjacency graph and can not have recombinations of AA- and BB-paths. Furthermore,
the presence of linear chromosomes does not necessarily offer recombinations. If there
is no AA-path we cannot do recombinations, even if there are AB- or BB-paths. (The
same applies to the absence of BB-paths). In these cases the sorting space is not
restricted and our sampling method provides a scenario sampled uniformly among all
possible optimal sorting scenarios.
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Chapter4
DCJ-indel Model on Circular Genomes
Via DCJ Model

Everything is theoretically impos-
sible, until it is done.

Robert A. Heinlein

The double cut-and-join (DCJ) model described previously is too limited when it comes
towards real genomes. Considering two genomes, these rarely consist of orthologous
markers only, but rather differ in inserted or lost regions.

In extension to the DCJ model on unlabelled or core genomes, Yancopoulos and Fried-
berg presented a concept of handling insertions and deletions in the DCJ model [91,92].
In their work (2008), much effort was put into the treatment of insertions and deletions
in vertices of the adjacency graph and also in the handling of consecutive insertions
or deletions. First, the complementary missing vertices are added to the adjacency
graph such that subsequently both genomes have the same markers. Then the dis-
tance is derived by the traditional DCJ distance on the generalised adjacency graph
and a surcharge rule. In the same work, they also presented an approach for DCJ with
duplications and a combination of both.

Shortly after, in 2010, my master thesis contained the generalisation of the DCJ
model towards indels as well as the distance computation [87]. Distance formulae/al-
gorithms based on the labelled adjacency graph (see also Subsection 2.2.2) were pub-
lished by Braga, Willing and Stoye [25] in 2010. In 2011 Braga presented detailed
sorting algorithms [18] and Braga, Willing and Stoye published the entire DCJ-indel
distance and sorting problems and solutions in [26].

Compeau [33,34] picked up on this theory and introduced the concept of optimal
completion in 2012 that offers an easy way to perform insertions and deletions during
sorting. Bader [3] worked on DCJ with duplications and also uses the term insertion
and deletion but refers to whole chromosome loss, insertion or duplication, rather than
on marker level.
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In this chapter, we will review the DCJ-indel model, which includes all operations
(and therefore all modifications) allowed under the DCJ model (see Section 2.3) and
additionally allows indels (see Section 2.1). More formally: the set of allowed opera-
tions is DCJ-id = DCJ∪{indel }, where DCJ includes all modifications introduced in
Section 2.3. We assume unit cost, i.e. an operation µ ∈ DCJ-id uses up exactly one
step in the sorting scenario.
Like the DCJ model also the general DCJ-indel model allows all types of compo-

nents. However, for the purpose of the theory discussed in the ensuing chapters, where
only unichromosomal circular genomes are handled, we restrict the elaboration of the
DCJ-indel model to instances that have only cycles.

Definition 10 (DCJ-indel Distance Problem): Given two genomes A and B with
possibly unequal marker content but without duplications, find the minimum number of
steps required to sort A into B using only DCJ operations and indel operations, called
the DCJ-indel distance denoted by did

DCJ(A,B).

The basic concepts and definitions were stated in Chapter 2 in which we also ob-
served a first intuitive upper bound for the distance with indels stated in Inequal-
ity (2.2). We make extensive use of the data structures introduced in Section 2.2
(particularly Subsection 2.2.3). As mentioned earlier, we assume parsimony and pre-
fer integrating or deleting several markers at once rather than inserting or deleting
them separately. Sections 4.2 and 4.3 concentrate on sorting the components of the
master graph and simultaneously grouping indels, and in Subsection 4.5.2 we review
the theory of Compeau concerning optimal completion. Most of this chapter is based
upon [26] which we subsume in the context and with adapted data structures necessary
for the theory following in the ensuing chapters.

4.1 Generalising the DCJ Model and Distance

The distance of different genome modification models can be given with respect to the
DCJ distance. The distance formula for a model M ∈M with M = R∪ I is then:

dM(A,B) = dI
R(A,B) = dDCJ(A,B) + τ I

R(A,B). (4.1)

Obviously, τ I
R = τDCJ = 0 for the DCJ model.

For some other genome modification models the value of τ has already been deter-
mined. For example, we will revise and determine the computation for the DCJ-indel
model in this chapter and for the inversion and inversion-indel model in the following
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4.2 DCJ and indel Operations on a Labelled Cycle

chapters (that is the computation of τ id
DCJ and τ id

INV). Further models and values of τ
are given in Chapter 8.

4.1.1 The DCJ Operation on Labelled G-Adjacencies

For unlabelled G -adjacencies the DCJ operation has been defined in Section 2.3. A
single cut acting on an unlabelled adjacency splits the two extremities that are com-
mon extremities or caps. Generalising towards genomes with unique markers, we use
(labelled) G -adjacencies. The label of a G -adjacency can be formed by an arbitrary
number of unique markers (the notation in Section 2.1 allows us to use strings of mark-
ers or strings of extremities). For all G -adjacencies that are not circular singletons,
splitting within a label possibly increases the number of labelled adjacencies/indel
operations, hence we consider only the cut positions next to the common extremities.
A special case is a circular singleton that only exists in one of the genomes. This

adjacency has a circular label, i.e. it has no common extremities but at the same time
is not telomeric. Such a circular singleton can be split in any position between two
adjacent extremities. More formally we define:

Definition 11 (DCJ): The double cut-and-join operation in the presence of unique
markers acts on two G -adjacencies p `t1`

h
1 q and r`t2`

h
2 s of the same genome. The core

adjacencies u1 = pq and u2 = rs are replaced by either v1 = pr and v2 = qs or by w1 =

ps and w2 = rq. The possible cut positions never have a unique extremity on both sides
(except for circular singletons). And the joins never produce two labelled adjacencies.
Let the cut positions be a/b for u1 and x/y for u2 (as depicted in Figure 4.1). The
unique extremities after the operation can be distributed in several ways taking into
account their order:

(v) (w)

a-x : `(v1) = ε and `(v2) = `h1`
t
1`
t
2`
h
2

b-y : `(v1) = `t1`
h
1`
h
2`
t
2 and `(v2) = ε

b-x: `(w1) = `t1`
h
1`
t
2`
h
2 and `(w2) = ε

a-y: `(w1) = ε and `(w2) = `t2`
h
2`
t
1`
h
1

The case of circular singletons is derived by removing in the above description/in
Figure 4.1 both common extremities of the same adjacency. An adjacency that is
unlabelled from the beginning can be handled by using the empty label ε.

4.2 DCJ and indel Operations on a Labelled Cycle

In this section we study the effect of DCJ and indel operations on cycles of the master
graph and their impact on the DCJ-indel distance.
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Chapter 4: DCJ-indel Model on Circular Genomes Via DCJ Distance

Figure 4.1: Possible double cut-and-join combinations for labelled adjacencies in the
master graph. The extremities in labels are condensed to markers. In case of a
circular singleton p and q or r and s are removed.

Given a cycle with unique markers in only one of the two genomes, by extracting
unlabelled cycles (an optimal DCJ operation) we can accumulate all labels in one G -
adjacency. For an example see Figure 4.2. How this can be achieved if the labels occur
in genome B is shown later in Figure 4.7, for now it is only relevant that it is possible.

Figure 4.2: Accumulating all labels of an A-cycle into one label by optimal DCJ
operations.

When labels are present in both A-edges and B-edges, sometimes more than one
labelled adjacency edge remains after using optimal DCJ operations for accumulation.
For this we use the concept of runs from [26]. Let s be the string obtained by walking
along the edges of a cycle and concatenating all unique extremities (the labels) in the
direction of walking. A maximal substring consisting of labels from A , resp. B , is
called an A-run, resp. B-run. An illustration of this can be seen in Figure 4.3.
Let Λ(C) denote the number of runs of a cycle C. By construction, a cycle can have

zero, one or an even number of runs. Each labelled cycle in Figure 4.2 has one run,
the cycle in Figure 4.3 has two runs. Each run can be accumulated into a single label
using only optimal DCJ operations, such that in the end the cycle has one label for
each run. This way, we need at most one indel operation per run.

When more than two runs are present, runs can be merged. In the DCJ-indel model
there are two ways to do this using only optimal DCJ operations and indel-operations
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4.2 DCJ and indel Operations on a Labelled Cycle

Figure 4.3: A cycle C has one A-run (`3) and one B-run (¯̀4 ¯̀
1
¯̀
2). Left: C in a

relational diagram. Right: C in the master graph without aligning the vertices
w.r.t. their genomes.

as the following two examples show.

Example 11 (Merging runs by DCJs): Figure 4.4 shows a cycle with six runs in
total. By extracting 6̀ into a trivial cycle (one DCJ operation), the two A-runs 5̀

Figure 4.4: A cycle with initially six runs can be transformed into three cycles with a
total of four runs by optimal DCJ operations that merge runs.

and 1̀ are merged into a single label. Thus, the total number of runs is reduced from
six to five plus the DCJ distance is reduced by 1, all while using exactly one optimal
DCJ operation. Another such operation splits the larger cycle into two trivial cycles,
one with the B-run `2 and one cycle with the A-run ¯̀

5`1`3 and the B-run `4. Again
the change in Λ is −1 and merging of runs can no longer occur. In the full sorting
scenario, we use two optimal DCJ operations and four indel operations (one deletion
and three insertions). �

The same result can be achieved when, instead of fusing two A-runs through ex-
tracting a single B-run, we extract also the A-runs to the left and right of the B-run,
thus effectively fusing not only the two A-runs in the new cycle, but also the neigh-
bouring B-runs in the original cycle. We can also choose a different order of insertions,
deletions and DCJ operations.
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Chapter 4: DCJ-indel Model on Circular Genomes Via DCJ Distance

Example 12 (Merging runs by indels): Figure 4.5 shows the same cycle as in the
previous example. Now we will use indels instead of DCJ operations to decrease the
number of runs. By deleting 3̀ (one indel operation) the two B-runs 2̀ and 4̀ are

Figure 4.5: A cycle with initially six runs can be transformed into a cycle with only
two runs by merging runs.

merged into a single run. Thus, the total number of runs is reduced from six to four
while using a single indel operation. Another indel operation (deleting `5) yields a
cycle with only one A- and one B-run. Again the change in Λ is −2 and merging of
runs can no longer occur. In a complete sorting scenario, we use four indels (three
deletions and only one insertion for the B-run) and, in order to split the cycle into
trivial cycles, we use two DCJ operations. �

We see that treating one run separating two others takes one operation that simul-
taneously merges the separated runs. We can repeatedly do this until no more runs
can be merged.
The indel-potential λ(C) of a labelled cycle C gives the potential reduction, i.e. to

how many indel operations the runs can be reduced by merging runs [26]:

λ(C) =

⌈
Λ(C) + 1

2

⌉
. (4.2)

Obviously, unlabelled cycles have no runs and thus the indel-potential of an unlabelled
cycle C is λ(C) = 0. The indel-potential is achieved when merging runs by optimal
DCJs or merging runs by indels and optimally sorting the resulting cycle.

4.3 DCJ Operations on a Pair of Labelled Cycles

A DCJ operation applied to two cycles creates a single cycle (see Table 2.1 on page 30).
While cutting and joining the adjacencies of the two cycles, we watch out for A- or B-
run(s) and we measure the effect on the indel-potential using the following definition.
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Definition 12 (∆λ): Let ρ be a DCJ operation acting on cycles of the master graph
MG(A,B), resulting in MG(A′, B). Then

∆λ(A,B, ρ) =
∑

C′∈MG(A′,B)

λ(C ′)−
∑

C∈MG(A,B)

λ(C) (4.3)

denotes the difference in the indel-potential evoked by ρ (we use ∆λ for short).

Now let us have a closer look at different cycle-merging operations. Bear in mind
the allowed cut positions determined in Subsection 4.1.1. After merging, the new cycle
contains all labels from the original cycles, and thus also indel-types. Table 4.1 shows
the change induced by DCJ operations acting on different combinations of cycles.

If both cycles have a single or no run, the cuts in each of the cycles can be done in
any G -adjacency from A. If there is more than one run in one of the initial cycles,
the cut has to be in an A-vertex between an A- and a B-run in order to achieve the
best outcome, that is fusing as many runs as possible with a single DCJ operation. If
the labellings of the cycles is such that no runs can be fused, the new cycle inherits
the indel-potential of the two initial cycles (first two rows of Table 4.1). If one pair of
runs can be fused, the indel-potential changes by ∆λ = −1 (rows 3-6). Finally, in the

Table 4.1: Merging of cycles with different labellings and the impact on their DCJ-indel
distance. X is a cycle with arbitrary labelling.

indel indel fused ∆dDCJ

∆dDCJ operands → resultant runs ∆λ + ∆λ

+2 ε X X � 0 +2 counter-
+2 A B AB 0 +2 optimal

+2 A A A A −1 +1 neutral
+2 B B B B −1 +1
+2 A AB AB A −1 +1
+2 B AB AB B −1 +1

+2 AB AB AB A ,B −2 0 optimal

last row of Table 4.1, we show the effect of merging two cycles that both have at least
two runs. Here, two A- and two B-runs are fused.
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4.4 Distance

Adapting Equation (4.1) to the DCJ-indel distance gives:

did
DCJ(A,B) = dDCJ(A,B) + τ id

DCJ(A,B), (4.4)

where τ id
DCJ denotes the extra cost with respect to applying the DCJ model, i.e. the

change in the number of steps in the sorting scenario when indels are used.

Any indel operation that meets the indel-potential is optimal. Inserting or deleting
in a wrong position or only parts of runs would not meet the indel-potential of that
cycle. Note that Definition 12 gives the change in the indel-potential, not the change
in the length of the sorting scenario. It has been shown that for circular genomes, the
value of τ id

DCJ is given by the sum of all indel-potentials:

Theorem 2 ([26]): Given two circular genomes A and B, then the minimum number
of DCJ and indel operations necessary to sort A and B is given by:

did
DCJ(A,B) =

∣∣G ∣∣− c +
∑

C∈MG(A,B)

λ(C), (4.5)

where G is the set of common markers, c is the number of cycles in the master graph
MG(A,B) and λ(C) is the indel-potential of cycle C.

Using unit costs, a generalisation of the definition of ∆dDCJ (see Equation (2.4) on
page 29), towards all operations from M, replaces the “+1” by “+1µ∈R”, which means
the cost of µ is only accounted for if it is an operation from R. Similarly we define:

Definition 13 (∆τ id
DCJ

): Given two genomes A and B, let µ be an operation of a type
from M acting on genome A yielding A′, then

∆τ id
DCJ(A,B, µ) = τ id

DCJ(A
′, B)− τ id

DCJ(A,B) + 1µ∈I (4.6)

gives the change in extra cost induced by µ. If µ ∈ R the cost are accounted for in
∆dDCJ.

We can now deduce:

Observation 5. Let A and B be two genomes with possibly unequal marker content
but without duplications. Given an operation µ ∈ M = DCJ∪{indel } the change in
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the DCJ-indel distance induced by µ is as follows:

∆did
DCJ(A,B, µ)

= did
DCJ(A

′, B)− did
DCJ(A,B) + 1

=
(
dDCJ(A

′, B) + τ id
DCJ(A

′, B)
)
−
(
dDCJ(A,B) + τ id

DCJ(A,B)
)

+ 1

= dDCJ(A
′, B)− dDCJ(A,B) + 1µ∈R + τ id

DCJ(A
′, B)− τ id

DCJ(A,B) + 1µ∈I

= ∆dDCJ(A,B, µ) + ∆τ id
DCJ(A,B, µ).

An operation that induces a change in the master graph yielding ∆did
DCJ = 0 is

optimal when assuming unit costs.

4.5 On Sorting With Indels

During the sorting process we usually assume a direction from genome A to genome B.
In order to derive genome B, operations are applied to genome A only, which means
we cannot change the layout of genome B (neither the arrangement of markers nor
the genomic content). While sorting, unique markers from A are deleted which is
simply done by deleting labels. Unique markers from B need to be introduced to
the intermediate genomes and the arrangement of all markers needs to be altered to
finally match that of genome B. Although in an arbitrary scenario the order of these
operations may vary, from [36] we know that insertions can always be moved ahead
of the DCJ operations, s.t. they occur in the first steps, and analogously the deletions
can be moved aback to occur after the DCJ operations in the last steps. Figure 4.6
visualises how the sorting from genome A via intermediate genomes towards genome B
can be devised.

+ insertions (B) ⇒ rearrangements/
=⇒

DCJ operations
− deletions (A)

;

GA = G ∪ A GA′′ = G ∪ A ∪ B GA′′′ = G ∪ B

GB = G ∪ B GB = G ∪ B

A A′ A′′ A′′′

B B B B

Figure 4.6: A schematic sorting of genome A into genome B. In the end we have
A′′′ = B. When insertions or deletions are not present or not allowed by the model,
the respective steps are omitted.
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4.5.1 Introducing Insertions from a B-run

We now show how the indel-potential can be met for inserting a B-run to genome A
when the labels are spread over several labelled G -adjacencies and how the insertion
of a B-run is effectuated.
Due to symmetry, since A-labels can be accumulated, so should B-labels. If the

direction of sorting were reversed, we would apply DCJ operations and accumulate
the labels of each run and finally we would delete the run. If genomes A and B would
be swapped and the operations performed we can reversely-engineer a sorting with in-
sertions. This means the sequence of operations is reversed, thus we do the “swapped
deletions” (which are insertions) and then the “swapped DCJ” operations. Figure 4.7
shows a cycle with three labels that form one B-run. The reversely-engineered ac-
cumulation yields the label ¯̀

1`2 ¯̀
3 that is introduced to the central A-edge. How to

obtain such a label is shown in the ensuing section.

Figure 4.7: Labels of a B-run are introduced as an accumulated label. Then, DCJ
operations split the label, until 1̀, 2̀ and 3̀ are a single label each.

Instead of showing the graph extended by the, now common markers, `1, `2 and `3,
we keep the labels in mind for easier understanding. During the DCJ part of the
sorting process the accumulated run is split such that in the end the inserted markers
are in the correct positions and in the correct direction (w.r.t. genome B).

4.5.2 Optimal Completion

This separation of insertions, DCJs and deletions within the sorting scenario also
appears in [33], where an alternative approach was presented to compute the DCJ-
indel distance, based on the concept of optimal completion. The paragraphs that follow
provide an excerpt of the theory from [89], which uses the approach from Compeau
also for the inversion-indel model (as we will present in the ensuing chapter). The
content is adapted to the formalism and data structures used in this thesis (distance,
master graph, the concept of runs and the indel-potential).
In the approach presented by Compeau, each indel is modelled as self-contained

circular chromosome. More precisely, it is a circular singleton, composed only of the
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markers that are to be inserted or deleted by this indel. A completion of genomes A
and B adds i new such circular singletons to A (these represent insertions into A)
and k new such circular singletons to B (these represent deletions from A), yielding
two multichromosomal circular genomes that have the same content G ∪ A ∪ B . A
completion is optimal when the overall indel-potential of the two genomes is achieved,
thus when

i+ k =
∑

C∈MG(A,B)

λ(C), (4.7)

where λ(C) is the indel-potential of cycle C.

Construction of an indel. Let r be a B-run of a cycle C in MG(A,B), composed
of m labels. Then let sr be the circular singleton obtained from MG(A,B) by walking
through the path that corresponds to the run r and concatenating in this very order
the extremities of its m labels. We close the circular chromosome concatenating also
the last to the first extremity. Such a singleton sr is called run-singleton (it contains
exactly one complete run, in this case run r).

Introduction of an indel to MG(A,B). The complementation of genome A to-
wards A′ by the run-singleton sr introduces sr to the master graph. The run-singleton
remains by itself (not integrated to the chromosome). This way, m more common
markers are produced (|G ′| = |G |+m), introducing m new adjacencies in each genome
(that means m new A-edges as well as m new B-edges, and 2m more extremity edges).
At the same time, m− 1 new unlabelled cycles are created. Furthermore, the cycle C
in MG(A,B) whose run r we introduced is transformed into a cycle C ′ in MG(A′, B)

and contains the same labels as C except for the m labels of r. We have

c′ = c+m− 1, i.e. ∆c = m− 1,

where c, resp. c′, are the number of cycles before and after the introduction. Thus we
have

dDCJ(A
′, B) = (|G |+m)− (c+m− 1) = |G | − c+ 1 = dDCJ(A,B) + 1.

Proposition 4 ([89]): If we add the run-singleton sr of a B-run r to genome A
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resulting in genome A′, the overall indel-potential is achieved, that is,

∑
C′∈MG(A′,B)

λ(C ′) =

 ∑
C∈MG(A,B)

λ(C)

− 1. (4.8)

(Analogous for the addition of the run-singleton sr′ of an A-run r′ to genome B.)

Proof. Let Cr be the cycle in MG(A,B) that contains r. We then add the run-
singleton sr to genome A resulting in genome A′. If Cr originally had one or two
runs, clearly the sum of the indel-potentials in MG(A′, B) decreases by 1 with respect
to MG(A,B). If Cr originally had more runs, r was situated between two A-runs.
These are now no longer separated by r and become one single run in MG(A′, B), and
this also guarantees that the sum of the indel-potentials decreases by 1.

This behaviour of merging runs can also be observed in Example 12 on page 76.

Integration of a run-singleton. In order to complete the operation, we still need
to integrate the singletons that we introduced so that we obtain a unichromosomal
genome. Again, let r be a B-run and let A′ be the genome composed of A and
the run-singleton. We know that dDCJ(A′, B) = dDCJ(A,B) + 1 and in order to
integrate the singleton we need to perform exactly one DCJ operation on two A-edges
of MG(A′, B), such that one is part of the chromosome of A and the other is part of
the run-singleton [64,90]. An optimal integration is an integration that preserves the
runs of the master graph.

Proposition 5 ([89]): Any integration of the run-singleton of a B-run r with m labels
into the chromosome of A which creates a new unlabelled cycle in the master graph is
optimal. (Analogous for the integration of an A-run into the chromosome B.)

Proof. A circular singleton that is added and integrated to the master graph increases
the number of cycles by m. For the integration (a DCJ operation) one A-edge of one
cycle C is chosen and one A-edge of the newly added edges of the singleton. The
integration splits C into two cycles C1 and C2. If one of these two cycles is unlabelled,
then all runs of C must be remaining in the other cycle, therefore, the runs of the
graph are preserved.

Using the results in this sections for the initial genomeA and the resulting genome A′,
let λ be short for the sum of indel-potentials in the initial master graph. Adding the
singleton to the master graph addsm−1 new cycles, and integrating it optimally splits
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an existing cycle into two cycles. We thus have the initial distance did
DCJ = |G | − c+ λ

and after the integration we have:

did
DCJ

′
= (|G |+m)− (c+m) + (λ− 1) = |G | − c+ λ− 1 = did

DCJ − 1.

We observe that performing one integration complies with Observation 5:

∆did
DCJ = did

DCJ

′ − did
DCJ + cost(µ)

=
(
dDCJ + τ id

DCJ − 1
)
− (dDCJ + τ id

DCJ) + cost(µ)

=
(
dDCJ − dDCJ + cost(µ ∈ R)

)
+
(
τ id
DCJ − 1− τ id

DCJ + cost(µ ∈ I)
)

= ∆dDCJ + ∆τ id
DCJ .

We have two possibilities to account for µ. First, we can choose that the addition of
the r-singleton to the master graph has no cost and µ corresponds to the necessary
DCJ operation to integrate the r-singleton into the corresponding cycle. Second, we
could choose to penalise the insertion of sr to the corresponding adjacency and allow
the expansion of the master graph free of charge. In either way in the sorting scenario
we have thus the initial genome and in the next step the intermediate genome that
has sr situated in the correct position. Hence, we treat the complete process from the
initial genome to the genome with the run integrated as one operation and therefore
µ has cost 1 using up exactly one step in the sorting process and we have ∆did

DCJ = 0

if we achieved an optimally integrated completion.

With the previous results we have a straight recipe for the construction of an op-
timally integrated completion of genomes A and B. At each step we can decide arbi-
trarily whether we optimally integrate the run-singleton sr of a B-run to A, or the
run-singleton sr′ of an A-run to B, until no more runs exist in the master graph.
In the end we have two unichromosomal circular genomes A∗ and B∗ with the same
content.

In Example 13 we build one optimally integrated completion in three steps (see the
next page).
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Example 13 (Optimal integration): Given two unichromosomal circular genomes
A = {(a, x,−c, y, b,−z,−d)} and B = {(a, u, b, c, v, d)} and their master graph has
one cycle C with two A-runs (xtxh and ztzhytyh) and two B-runs (vtvh and utuh), as
depicted in Figure 4.8.

Figure 4.8: For genomes A = {(a, x,−c, y, b,−z,−d)} and B = {(a, u, b, c, v, d)} we
show three singletons and the positions for an integration of these to MG(A,B) that
lead to an optimally integrated completion.

Since λ(C) = 3 we need to perform three optimal integrations. We choose the three
singletons (zy), (−vu) and (x) in this order described in the following.

(zy) : We integrate the singleton (ztzhytyh), composed of the labels of an A-run,
into the chromosome of genome B, creating B′ = {(a, u, b, c, v, d, z, y)}.

MG(A,B′) now has three cycles of which two are unlabelled and the third
contains two runs (u and v, formerly two runs, now form a single run, −vu).

(−vu): The singleton (vhvtutuh), composed of the labels of the B-run, is integrated
into the chromosome of A, creating A∗ = {(a, x,−c, y, b,−z,−d,−v, u)}.
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MG(A∗, B′) has five cycles, of which four are unlabelled and one has an A-
run.

(x) : Finally, we integrate (xtxh), composed of the labels of the last A-run, into the
chromosome of genome B′, creating B∗ = {(a, x, u, b, c, v, d, z, y)}, resulting
in MG(A∗, B∗) composed of six unlabelled cycles, see Figure 4.9.

Figure 4.9: After the optimal integration of the runs from the genomes of Figure 4.8,
the two resulting genomes A∗ = {(a, x,−c, y, b,−z,−d,−v, u)} and B∗= {(a, x, u, b,
c, v, d, z, y)} have five more common markers than A and B do, but also five more
cycles in MG(A∗, B∗).

We now have G = {a, b, c, d, x, y, z, v, u}, A = {}, B = {}, and indeed, dDCJ(A,B) =

dDCJ(A∗, B∗). �

Note that in Example 13 we could also choose to integrate runs in a different order,
for example starting with a B-run. Then the two A-runs would be fused such that
one further integration of a B-run as well as the integration of an A-run needs to be
done.
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Chapter5
Inversion-indel Distance Problems
Via DCJ(-indel) Distance

However impenetrable it seems,
if you don’t try it, then you can
never do it.

Andrew Wiles

The inversion model allows only inversions (reversals) on genomes with the same
genomic content but without duplications. The inversion distance problem in genome
comparison searches for the minimum number of inversions necessary to transform
one unichromosomal genome into another and the inversion sorting problem requests
a sequence of inversions that achieves this minimum number. Hannenhalli and Pevzner
(1995) gave the first algorithm for calculating the inversion distance and solving the
inversion sorting problem in polynomial time for two linear genomes [55]. Later (in
2000), it was shown that a similar result holds for circular genomes [71,72].
The DCJ model is less restrictive than the inversion model, allowing more types of

rearrangements and chromosomes. Therefore, it can often achieve a shorter scenario
than the inversion model. This difference is caused by so-called bad instances of the
inversion model.
El-Mabrouk (2000) proposed an extension to the inversion model, the inversion-indel

model, which comprises inversions with insertions and deletions (indels) [42,43]. For
the case where there are no insertions, the author presented an algorithm for resolving
bad instances of the inversion-indel model. Although claimed, this way does not always
lead to the minimum number of inversions and deletions possible, as we will see later.
Apart from that, the case where additionally insertions are treated was worked out
only heuristically.
In 2013, Willing et al. showed that when the two genomes have insertions and

deletions but none of the bad instances, it is always possible to optimally sort the two
genomes without creating bad instances [89]. Therefore, we could show that in these
cases the inversion-indel distance equals the DCJ-indel distance, for which efficient
distance formulae and sorting algorithms exist [26] (see also Chapter 4).
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In this chapter, we intend to cover all basics concerning the inversion as well as the
inversion-indel model. For this, we identify all necessary analyses on the relational
diagram as well as cost and distance considerations. In the style of previous work,
we present results for subproblems and special cases (the different subproblems are
visualised in Figure 5.1).

Figure 5.1: Overview of inversion-indel distance subproblems. For each subproblem
the chapter/section in which it is covered in this thesis is given.

First, we study the case where none of the bad instances exist, briefly reviewing
known results for two genomes with the same marker sets (A and B are empty) [54,72]
and then showing the solution to genomes with unequal content [89].
We continue with the case in which we have no restriction towards the presence of

bad instances. After treating all AB-cycles, we introduce a further abstraction of the
employed data structures, the labelled component group tree. Moreover, we specify how
the data structures and their interrelation are used in computing the solution of the
inversion-indel distance. We first reproduce the computation of the inversion distance
with bad instances using the tree. For the computation of distances including labels,
we introduce a novel data structure, the labelled bad component group tree, at the
end of this chapter. The solution to the general case, without the previously formed
restrictions, is presented in the ensuing chapter(s).

5.1 Distance Relations

The two subjects of this chapter, the inversion and inversion-indel distances, are
formally defined as follows.

Definition 14 (Inversion Distance Problem): Given two unichromosomal circular
genomes A and B over the same set of markers G , but without duplications, find the
minimum number of steps required to sort A into B using only inversions called the
inversion distance denoted by dINV(A,B).

Definition 15 (Inversion-indel Distance Problem): Given two unichromosomal
circular genomes A over GA and B over GB (without duplications) find the minimum
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number of steps required to sort A into B, using only inversions, insertions and dele-
tions (indels), called the inversion-indel distance denoted by did

INV(A,B).

In context of genome modification models (see Subsection 1.2.2), we have R =

{inversion} and allow I = {insertion, deletion} for the inversion-indel model and re-
strict content modifications to I = {} for the inversion model.
We seek to find distance values for dINV and did

INV, that may, or may not, include
treating of bad instances, w.r.t. the DCJ distance. The generalised genome modifica-
tion distance from Equation (4.1), for the inversion, resp. the inversion-indel distance,
is thus broken down to:

dINV(A,B) = dDCJ(A,B) + τINV(A,B), and (5.1)

did
INV(A,B) = dDCJ(A,B) + τ id

INV(A,B), (5.2)

such that τINV and τ id
INV give the respective offsets to the DCJ distance. In conjunction

with the offset of the DCJ-indel distance towards the DCJ distance (see Section 4.4)
we could also regard the offset of did

INV (given by τ id
INV) as follows:

did
INV(A,B) = did

DCJ(A,B) + τ ∗INV(A,B), s.t. τ id
INV = τ id

DCJ + τ ∗INV. (5.3)

In the current and following chapter(s) we will study and give results to the different
subproblems depicted in Figure 5.1. But first, let us lay the ground work for the
inversion and inversion-indel model.

5.2 Preliminaries

The technicalities presented in this section are fundamental to all variants of inversion
models covered in this thesis. An important alteration to previous chapters is the
switch from graphs to diagrams, on the grounds that for this chapter the order of
vertices is important. Here, a diagram is a fixated view of the corresponding graph,
for example the diagram view of the breakpoint graph or the master graph. Unless it
is crucial, we use “diagram” for either type and do the analysis on edges or vertices
of A (but a similar analysis could be done for elements of B). Likewise, unless of
importance, we use a random fixation of the graphs and will show later, in Section 5.6,
why this is possible. As we generally consider the inversion model and its variants for
unichromosomal circular genomes only, all the components in the diagram are cycles.
What follows is mostly a recount of the unified concepts of other data structures and
models (e.g. from [12,26,54]) which we presented in [89].
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First and foremost we analyse the cycles of the diagram. For this, we assign orien-
tations to all adjacency edges of the diagram as follows: by walking through a cycle,
arbitrarily in one of the two possible directions, we assign an orientation to each A-
and to each B-edge (see the arrows on the genome edges in the breakpoint graph and
the relational diagram in Figure 5.2). Further analysis of the cycles determines their

Figure 5.2: Relational diagram and breakpoint graph of genomes A and B from Exam-
ple 1 with orientations assigned to adjacency edges. uv represents a single marker.

character. A non-trivial cycle C that has a pair of A-edges with opposing orientations
is called a good cycle, otherwise it is said to be bad. A trivial cycle is sorted and as
such considered good.

Example 14: In Figure 5.2, C1 and C3 are bad cycles, C2 and C4 are good cycles
and C5 is a trivial cycle. Concerning the labelling, C1 is an AB-cycle, C2 and C3 are
A-cycles and C4 and C5 are B-cycles. �

Historical note: A pair of edges is called oriented if they are opposing, otherwise they
are unoriented. Analogously, bad cycles are unoriented otherwise cycles are oriented.

5.2.1 Effect of an Inversion on Cycles

An inversion of a segment of genome A acts on two A-edges of the diagram and
reverses the elements in-between. A split inversion increases the number of cycles and
corresponds to an optimal DCJ operation while neutral and joint inversions correspond
to neutral and counter-optimal DCJ operations, respectively. The A-edges on which
an inversion acts can be part of the same cycle or of different cycles. If an inversion is
applied to two A-edges of the same cycle it is a split inversion if and only if the edges’
orientations are opposing, otherwise this inversion is neutral but turns this cycle into a
good cycle [55]. Only good cycles can have opposing A-edges, thus an inversion acting
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on a single bad cycle can only be neutral. An inversion acting on two distinct cycles
always merges them into a single good cycle.
Further, we consider the labelling of edges and cycles. We adopt the concepts of

runs and indel-potential from the DCJ-indel model presented in the preceding chapter.
As in the DCJ-indel model, an inversion acting on two labelled edges can always fuse
both labels, thus reducing the number of labelled edges by 1. This also affects the
number of runs or even the indel-potential. Table 5.1 shows the different combinations
of labellings involved in an inversion and the effect of the inversion on both the DCJ
distance and the indel-potential.

Example 14 (continued): An inversion acting on A-edges ahwtwhct and ehzhztbt

of C1 in Figure 5.2 produces new edges ahwtwhztzheh and ctbt. This is a neutral
inversion as no new cycle is created. Although C1 still has the same length as before,
the number of runs decreases from 4 to 2, hence ∆λ(C1) = −1. An equivalent result
is achieved when, instead, we create aheh and ctwhwtzhztbt. �

Table 5.1: Overview of inversions acting on cycles with different indel-types and their
impact on the DCJ-indel distance. X stands for a labelling of either A , B , AB or ε.
Cases in which the overall indel-potential λ is increased are omitted.

inversion indel indel fused ∆dDCJ

type ∆dDCJ operands → resultant runs ∆Λ ∆λ + ∆λ

split 0 AB (Λ > 4) AB ,AB A ,B −2 0 0

optimal

AB ,B A −1 0 0
AB ,A B −1 0 0

AB (Λ = 4) AB ,B A −1 0 0
AB ,A B −1 0 0

AB (Λ < 4) AB , ε
�

0 0 0
A ,B 0 0 0

X (other) X , ε 0 0 0

neutral +1 AB (Λ ≥ 4) AB A ,B −2 −1 0

X (other) X − 0 0 +1 neutral

joint +2 AB AB AB A ,B −2 −2 0 optimal

A A A A −1 −1 +1

neutralA AB AB A −1 −1 +1
B B B B −1 −1 +1
B AB AB B −1 −1 +1

ε X X � 0 0 +2 counter
A B AB 0 0 +2 optimal
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5.2.2 Component Groups

We now analyse cycles on a more abstract level by studying the properties of their
relation referring to A-edges. Two distinct cycles C and C ′ in the relational diagram
are said to be interleaving when there is at least one A-edge of C between two A-
edges of C ′ and at least one A-edge of C ′ between two A-edges of C. Looking at the
breakpoint diagram this is simple: two cycles are interleaving if there are B-edges (the
arcs) of one cycle that intersect B-edges of the other cycle.
A component group K is a maximal set of cycles where there is a sequence of pairwise

interleaving cycles from each Ci ∈ K to any other Cj ∈ K . Component groups can
be of three types. A trivial cycle can never interleave with another cycle and forms a
trivial component group. Other component groups are either good, if they contain at
least one good cycle, or bad, otherwise.

Example 14 (continued): The cycles C1, C2 and C5 are not interleaving with any
other cycle and form one component group each. Cycles C3 and C4 are interleaving
but no further cycle interleaves with C3 or C4, thus it is a maximal set and they form
one interleaving component group. Moreover, {C5} is trivial, {C1} is bad and {C2}
and {C3, C4} are good component groups. �

The labelling of a component group represents the labelling of its cycles. A compo-
nent group consisting of only unlabelled cycles is called an unlabelled or ε-component
group. A component group containing at least one A-label, but no B-label is called an
A-component group; vice versa for B-component groups. Finally, a component group
that contains at least one A- and at least one B-label (these can occur in the same
cycle, or in different cycles within the component group) is called an AB-component
group.

Example 14 (continued): {C1}, but also {C3, C4}, are AB-component groups, as
they have labels in A as well as in B. {C2} is an A-component group and {C5} is a
B-component group. �

5.2.3 Component Group Relations

The maximal set of interleaving cycles that forms a component group can have relations
of different kinds to the other component groups. For now, in order to have a canonical
representation of the cycles and their relation, we assume that in the relational diagram
the leftmost vertex in A and in B represent the same extremity and likewise the last
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vertex in A and in B represent the other extremity of that common marker. Hence,
we choose some starting point g ∈ {+,−} × G and build R = MG(Ag, Bg), or, if
desired, R = BG(Ag, B). We will show later, in Section 5.6, that the choice of start
marker or reading direction for the fixation is irrelevant to computing the inversion-
indel distance.
Let K1 and K2 be two component groups inR(A,B). If each A-edge of K1 is between

the same two A-edges of K2, the component group K1 is said to be nested within K2.
Otherwise, if neither of K1 and K2 is nested in the other, the two component groups
are said to be independent. Two independent component groups K1 and K2 are said to
be linked if for some marker m ∈ G , K1 contains one extremity edge and K2 contains
the other extremity edge of m. The marker m is said to be a link of K1 and K2.
A sequence of k ≥ 1 linked component groups is called a chain of size k. A chain
that can not be extended to the left or right by further linked component groups is
maximal. Let K1 be a component group of R(A,B) that has A-edges between two
distinct component groups, let these be called K2 and K3. When the A-edges of K1

occur between K2 and K3 but also between K3 and K2 then K1 is said to separate the
two component groups K2 and K3.

Example 14 (continued): The component groups {C1} and {C3, C4} form a chain
of size 2 and are linked by marker f . The trivial component group {C5} is nested
within {C3, C4}, and {C2} is nested within {C1}. Thus {C1} separates {C2} from
both {C3, C4} and {C5}. In the same way {C3, C4} separates {C5} from both {C1}
and {C2}. �

Historical note: An unoriented (i.e. bad) component group that does not separate
any pair of bad component groups is called a hurdle. In the example above, the
component group {C1} is the only hurdle. A hurdle is called a superhurdle if its
resolution causes another bad component group to become a hurdle.

5.2.4 Effect of an Inversion on Component Groups

The effect that inversions can have on component groups depends on the inversion
type (split, neutral or joint inversion) and on both the character and the indel-type of
the cycle(s) on which the inversion is performed. In a good component group K that
also contains bad cycles it is always possible to apply one or more split inversions on
good cycles of K , s.t. some bad cycle C ∈ K becomes good and only then can it be
sorted with split inversions [55]. A neutral inversion acting on A-edges of a cycle C in a
good or bad component group K , turning it into cycle C ′, does not change the number
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of cycles or the set of cycles that are interleaving. However, C ′ is always good [55]
thus, after this inversion, K is definitely a good component group. A joint inversion
acting on A-edges of a cycle C1 in K1 and a cycle C2 in K2 merges these two cycles
into one cycle C3. All cycles interleaving with C1 and all cycles interleaving with C2

are now interleaving with C3 and thus form a single interleaving component group, let
it be called K3. Furthermore, all component groups that were separating K1 from K2

have cycles that are now interleaving with C3 and thus these component groups also
become part of K3. Moreover, the new cycle C3 is a good cycle, thus K3 is a good
component group [55], even if all cycles in the concerned component groups were bad
cycles before the inversion.

Historical note: Sometimes a neutral inversion is referred to as the cutting of a
(bad) component group (or hurdle) and a joint inversion acting on two cycles of dif-
ferent component groups is referred to as the merging of (bad) component groups (or
hurdles) [55].

Effect on labelled component groups. The effect of inversions on different la-
belled cycles has been studied above. A component group that is composed of cycles
of different labellings requires that we choose carefully in which cycle we perform an
inversion. Later, we will expand on inversions acting on one or two labelled component
groups.

5.3 Resolving Unlabelled Good Components

The instances, in which we can find an optimal DCJ scenario employing only inver-
sions can be evaluated by directly looking at the cycles and component groups of the
relational diagram of the pair of genomes. A split inversion is an optimal DCJ opera-
tion. This means, as long as we can find a cycle with a pair of opposing A-edges, an
optimal inversion scenario uses exactly the same number of steps as would an optimal
DCJ sorting scenario. We can find such a pair as long as we find good component
groups [55]. It has long been known [54,72] that in this case the inversion distance is
given by:

dINV(A,B) = dDCJ(A,B) =
∣∣G ∣∣− c, (5.4)

where c is the number of cycles in R(A,B), which is a random fixation of the master
graph. In terms of Equation (5.1), we have τINV = 0.
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5.4 Resolving Labelled Good Components

Rearranging the genomic content and inserting or deleting content in the same scenario
has to be carried out carefully in order to achieve the shortest scenario, (see Example 2
on page 18). For the inversion-indel distance the value of τ id

INV poses not only the offset
of inversions to the DCJ scenario, but also of insertions and deletions.

Analogous to the determination of τINV, we start with the analysis in absence of bad
component groups in the diagram view of the master graph. As before, we stick to
one arbitrary fixation of the master graph, denoted by R(A,B). First, we determine
how indels, or rather their introduction to the respective opposite genome, affect the
presence of bad component groups. The contents of this section have already been
published in [89].

We know from before that good component groups can always be sorted without
creating bad component groups. The challenge is then to identify instances in which
we can perform indels such that the formerly good component groups stay good, and
in which we are able to sort a good component group with the minimum number of
split inversions and indels possible. The construction, introduction and integration of
singletons that represent insertions or deletions was discussed in Subsection 4.5.2 on
page 80 and leads to an optimally integrated completion. In the following we elaborate
which of these integrations are suitable for our purpose.

5.4.1 Finding Safe Integrations

Assume we have two unichromosomal circular genomes A and B with unequal content,
whose diagram R(A,B) has no bad component group. A safe integration is an optimal
integration into A resulting in A′ such that alsoR(A′, B) has no bad component group.
(The same applies to integrations into B resulting in B′ andR(A,B′).) Not all optimal
integrations are safe as we show in the following example.

Example 15 (Optimal but unsafe integration): For genomes A = {(a,−b, d, c)}
and B = {(a, x, b, y, c, z, d)} the relational diagram has one B-component group K =

{C} that is good and that has exactly one B-run composed of all unique extremities
of genome B (Figure 5.3). Among several possibilities, one optimal integration of
the singleton (−xyz) produces genome A′ = {(a,−b,−x, y, z, d, c)}. R(A′, B) has one
good component group K1 = {C1}, one bad component group K2 = {C3} and two
trivial cycles, C2 and C3. As this integration produced a bad component group it is
not a safe integration. The marker y is a link of K1 and K2. �

95



Chapter 5: Inversion-indel Distance Problems

Figure 5.3: An optimal integration of singleton (−xyz) to genome A leaves a bad
component group {C3}. Thus this is not a safe integration.

Even several bad component groups can be created by an optimal integration. With-
out loss of generality, let all markers in B have the same orientation and let R(A,B)

have only one component group K , that is good. Assume that an optimal integration
of a run-singleton sr to the chromosome of A yielding A′ creates, besides one or two
trivial component groups, exactly one good component group K1 and one bad com-
ponent group K2 in R(A′, B). A specific example is given in Figure 5.3 and a general
illustration of this problem is given in Figure 5.4 (i). If necessary, we can flip genome A′

so that the markers within K2 in A′ have the same orientation as the markers in B.
Furthermore, due to the circularity of the genomes, we can rotate the diagram so that
R(A′, B) is a chain of exactly two linked component groups K1 and K2. A link of K1

and K2 is within the optimal integration, which, in both illustrations, is marker y.

Fortunately, it is always possible to perform a safe integration, as shown in the
following. If we perform an alternative optimal integration of s in the middle of the
bad component group K2 (see Figure 5.4 (ii)), we obtain A′′. In R(A′′, B) we have
either a single bad component group smaller than K2, or no bad component group,
where the size of a component group is the total number of A-edges of its cycles. In
general, there can be other component groups in R(A′, B) nested within K1 and K2,
but each one of these is either trivial or has at least one edge within and at least
one edge outside the integrated singleton. In any case, since the component group
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(i) An integration yielding K1 (good) and K2 (independent and bad). The marker y is
a link of K1 and K2 and is adjacent to d in genome B.

(ii) An optimal integration into K2, so that y is now adjacent to d in genome A′′. An
unlabelled trivial cycle C′3 is created.

Figure 5.4: Illustration of how to find an alternative to an unsafe integration. Only
the A-edges shaped like ∼ from R(A′, B) were transformed into the A-edges drawn
as zigzag lines in R(A′′, B). All other edges of the diagram were preserved. Whilst
the distinct cycles C2 and C4 of R(A′, B) are merged into a single cycle C2+C4

in R(A′′, B), the cycle C3 is split into two cycles (C ′3 and C3−C ′3) in R(A′′, B).
The hat ^ on markers b and x indicates that we make no assumptions about the
orientation of these markers (but we know they have the same orientation in A′ and
A′′).

in R(A,B) was good, at least one component group in R(A′, B) has to be good. By
extending the approach illustrated in Figure 5.4 we can show that all component groups
but K2 are merged into a single good component group and only one bad component
group, strictly smaller than K2, can exist in R(A′′, B).

Proposition 6 ([89]): Let the run-singleton sr represent one B-run r of R(A,B). At
least one optimal integration of sr into the chromosome of A is safe.

Proof. Assume that each optimal integration of sr to A, resulting in A′, creates at least
one bad component group in R(A′, B). Then, among all possible optimal integrations
of sr, assume that we take one that produces a bad component group K ′ of the smallest
size. It is always possible to perform another optimal integration of sr, as described in
Figure 5.4, into the middle of the bad component group K ′, transforming A′ into A′′,
so that we create an unlabelled trivial cycle in R(A′′, B). Either R(A′′, B) does not
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have any bad component group (then we have a contradiction to the assumption that
all optimal integrations create bad component groups), or it has a bad component
group K ′′ (then K ′′ must be strictly smaller than K ′, and we have a contradiction to
the assumption that K ′ was a bad component group of smallest size).

Corollary 1. Let the run-singleton sr represent one A-run r of R(A,B). At least
one optimal integration of sr into the chromosome of B is safe.

This proposition is a major step not only in computing the inversion-indel distance
on good component groups, but also in offering a procedure for sorting a pair of
genomes.

5.4.2 The Inversion-indel Distance on Good Components

The results presented above give rise to the following theorem:

Theorem 3 ([89]): For two unichromosomal circular genomes A and B without du-
plications, whose relational diagram R(A,B) has no bad component group, we have

did
INV(A,B) = did

DCJ(A,B). (5.5)

Proof. We know that there is at least one safe integration for each run and that by
integrating one run per step (and updating each run to meet the maximality that
defines a run) we perform exactly

∑
C∈R(A,B) λ(C) integrations. Afterwards, we have

two genomes A∗ and B∗ that have the same markers and whose diagram R(A∗, B∗)

has no bad component group. We have dDCJ(A
∗, B∗) = dDCJ(A,B). We already

know that dDCJ(A,B) = dINV(A,B) in absence of bad component groups, thus also
dDCJ(A

∗, B∗) = dINV(A∗, B∗). In total, with adding the integrations that maintain the
indel-potential, we achieve exactly the result given in Equation (5.5).

This means in absence of bad component groups, the inversion distance that addi-
tionally allows indels builds upon only the indel-potential, or, in other terms:

Equation (5.2): τ id
INV = τ id

DCJ, and Equation (5.3): τ ∗INV = 0.

The inversion-indel distance formula for two unichromosomal circular genomes A
over GA and B over GB without duplications and whose relational diagram R(A,B)

has no bad component group is then:

did
INV(A,B) =

∣∣G ∣∣− c+
∑

C∈R(A,B)

λ(C), (5.6)
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where c is the number of cycles in R(A,B) and λ(C) is the indel-potential of cy-
cle C [26,89].
Since the DCJ-indel distance can be computed in linear time, the same is true for

the inversion-indel distance in the absence of bad component groups [89].

5.5 Handling AB-Cycles and AB-Component Groups

We know that in case we have only good component groups in the relational diagram
we can find an optimal DCJ-indel scenario that employs no other operations than
inversions, insertions or deletions. Besides split inversions, Table 5.1 (on page 91)
shows two other possibilities that yield ∆dDCJ + ∆λ = 0 (which is optimal). This is
achieved by employing one or two AB-cycles each fusing an A-run and simultaneously
a B-run. In the rest of this thesis, we will assume that, in the relational diagram, we
have at most one AB-cycle. This can be seen as follows.

Proposition 7: Given two genomes A and B with relational diagram R(A,B), it
is always possible to apply inversions to AB-cycles such that we achieve a relational
diagram R(A′, B) that has at most one AB-cycle, while at the same time conserving
the inversion-indel distance.

Proof. Let C1 and C2 be two AB-cycles of the relational diagram R(A,B), then we
can always apply a joint inversion that merges a pair of A- and a pair of B-runs, thus
reducing the number of runs by 2. The operation has ∆dDCJ = +2 and turns C1 and C2

into a single good cycle C and simultaneously achieves ∆λ = −2. Ultimately, this
operation has zero extra steps compared to an optimal DCJ-indel scenario. Therefore,
we can simply apply this kind of joint inversion until, in the end, all AB-cycles are
merged into a single large good AB-cycle. In this way, all component groups that
contained an AB-cycle as well as all component groups separating them get merged
into one big good AB-component group [89].
If in the beginning there is only one AB-cycle C, then C stays bad if and only if

we have exactly one A- and one B-run (that is Λ(C) = 2 and its indel-potential is 2).
Otherwise, if Λ(C) > 2, we can apply a neutral inversion on C such that it merges a
pair of A-runs and a pair of B-runs, hence, ∆Λ = −2. This turns C into a good cycle,
simultaneously achieves ∆λ = −1, and ultimately uses the same number of steps as
an optimal DCJ-indel scenario.
In either way, we can guarantee that after this type of preprocessing, we have at

most one AB-cycle and all other AB-component groups have their A- and B-labels in
distinct cycles.
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If we have the case that an AB-cycle exists, the AB-component group that contains
this cycle is treated in the same way as the other AB-component groups, that have
the A- and B-labels in separate cycles. The reason being that in this case a single
joint inversion cannot fuse two pairs of runs at the same time. It can either fuse a pair
of A-runs or fuse a pair of B-runs. Thus the two types of labels of AB-component
groups will not be used concurrently.

We can create new AB-cycles by merging an A- and a B-cycle, but we observe that
this procedure is irrelevant and we assume there is at most one AB-cycle.

Observation 6. Merging an A- with a B-cycle (cost 2) and then merging it with
a potentially existing AB-cycle (cost 0) has overall cost 2. The same cost can be
achieved while merging the A- and the AB-cycle (cost 1) and merging the resulting
cycle with the B-cycle (cost 1). Ultimately, both approaches merge the same cycles
and separating cycles into a component group. Unlike the first case, the latter can be
done even if the AB-component group in question has no AB-cycle.

After the preprocessing of AB-cycles (and potentially reducing the number of bad
component groups or even bringing them to zero), we transfer the information of the
relational diagram into a more abstract data structure which will later allow us to
determine the inversion-indel distance of two genomes in the general case.

5.6 The Labelled Component Group Tree

The extra cost for handling bad component groups in the inversion model can be com-
puted using an approach from [12,14], in which a tree structure is defined representing
the linking and nesting relationship of the component groups of the master graph.
This has been done only for unlabelled instances, but when, at the same time, unique
markers are present, the number of indels has to be taken into account and the tree
data structure additionally has to represent the labelling of each component group.
We extend the original definition of a component group tree from [12] followed by

proofs to show that we can compute the value of τ ∗INV(A,B) from this tree, and that the
computation is independent of the rotation of the unichromosomal genomes used for
the display of the diagram such as the breakpoint graph or relational diagram. After
briefly reviewing the case for unlabelled instances, we introduce a novel procedure to
extract the essence of the tree.

Definition 16 (Labelled Component Group Tree [12,89]): Given two unichro-
mosomal circular genomes A and B without duplications, we construct a temporary
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tree t(A,B) which represents the component groups of R(A,B) and their relationship
among each other, s.t.

• t(A,B) has a round node for each component group K ∈ R(A,B) representing
K in character (trivial, good or bad) and in labelling (ε-, A-, B- or both A- and
B-label).

• The children of a round node representing a component group K are the maximal
chains of component groups nested within K .

• A maximal chain of component groups is represented by a square node and its
children are the round nodes representing the component groups of this chain.

A square node is either the child of the smallest component group in which this chain is
nested, or the root of the tree. The labelled component group tree T (A,B) is then the
unrooted version of t(A,B) that has only round nodes as leaves for which, if necessary,
a square node is removed if it is a leaf. (T could also be a single vertex.)

The exact value for τ ∗INV(A,B) can be computed from the component groups as rep-
resented in T (A,B). An inversion acting on a single component group of R(A,B)

turning it into a good component group can be indicated as marking the correspond-
ing node in the labelled component group tree as covered by a short path. In the
same way, an inversion acting on two component groups of R(A,B), merging the two
component groups, and all the component groups separating these two, into a single
good component group, can be seen as covering the involved corresponding nodes in
T (A,B) by a long covering path. Since τ ∗INV(A,B) is the minimum extra cost to handle
all bad component groups, in the possible presence of indels, the goal for T (A,B) is
to find a set of covering paths which cover all bad vertices (tree cover) but which in
total yield minimum cost, thus to find an optimal tree cover.

Lemma 1: Given two unichromosomal circular genomes A and B and the labelled
component group tree T (A,B) the cost of an optimal tree cover of T under the
inversion-indel model is:

cost
(
T (A,B)

)
= τ ∗INV(A,B)

where τ ∗INV(A,B) is the minimum additional cost for inversions to destroy all bad com-
ponent groups of R(A,B) in the possible presence of indels.

The remainder of this section is devoted to prove the above lemma. We first show
that we always construct the same component groups and subsequently the same tree.
Then we show that the cost of an optimal tree cover of that tree gives τ ∗INV(A,B).

101



Chapter 5: Inversion-indel Distance Problems

Proposition 8: Let A and B be two unichromosomal circular genomes without dupli-
cations. Then for any circular rotation and/or change of reading direction of genome A
and/or B, the component groups in the derived relational diagram are identical.

Proof. A component group is a maximal set of interleaving cycles. The direction or
starting point of reading the chromosomes are irrelevant to the composition of cycles
(see Proposition 1, page 25). It remains to prove the same for the composition of all
component groups.
A trivial cycle can never interleave with another cycle or separate any two cycles. It

thus always forms a trivial component group. Furthermore, two cycles that interleave
in one fixation also interleave in any other fixation, as neither direction nor starting
point of reading change the alternating order of edges in the two concerned cycles.
Hence, the same cycles compose the same component groups in any relational diagram
of A and B. Moreover, the labelling of each component group is unaltered (both in
orientation of the labels and in position).
Simultaneously, no new vertices, edges, labellings, and thus no new cycles or com-

ponent groups arise by rotation of the chromosomes or change in reading direction.
We have thus shown that the same component groups are present in any fixated view
of MG(A,B).

In the next step we show that for any fixated view of the master graph, the relations
among component groups –represented by edges in T (A,B)– are preserved. Recall
from Chapter 2 that given a unichromosomal circular genome A over the set of markers
G we derive Ai with i ∈ {+,−} × G by starting to read from A in marker i in the
proposed direction (+ or −). Figure 5.5 shows a breakpoint graph plotted in circular
arrangement and the corresponding unrooted component group tree and visualises the
relation among component groups thus offering an intuitive insight to the proofs of
the lemmata and propositions that follow.

Lemma 2: Given two unichromosomal circular genomes A and B without dupli-
cations, the fixation of the master graph MG(A,B) to a relational diagram R′ =

MG(Ag, Bf ) results in the same relation among component groups for any circular
rotation and/or change of reading direction of A and/or B and the following holds:

T (R′) ≡ T
(
MG(Ai, Bj)

)
, where g, f, i, j ∈ {+,−} ×G ,

in other words: for any choice of fixation of the master graph MG(A,B) the labelled
component group trees are isomorphic.
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(i) Breakpoint graph arranged for a circular display.
Filled (resp. unfilled) vertices signify good (resp. bad)
components. Except for {C1, C2}, each cycle forms its
own component group.

(ii) Corresponding unrooted component
group tree. Good (resp. bad) component
groups are visualised by black (resp. white)
round nodes.

Figure 5.5: Breakpoint graph and unrooted component group tree of genome
A = {( 1, 3,−8, 7,−6, 4, 5, 9, 11,−13, 10,−12, 14,−2, 15, 17, 22, 18, 20, 19, 21, 23, 28,
24, 26, 25, 27, 29, 16)} and the identity.

Proof. From Proposition 8 we know that the component groups are identical, now
we prove that their relation is unaltered. From Subsection 5.2.3 we deduce that a
component group can have one of the following four types of relations to one or more
other component groups: (1) it separates two component groups from each other, (2)
it is nested within another component group, (3) it is part of a chain of component
groups, or (4) it is independent. As trivial cycles cannot interleave with other cycles
or separate a pair of cycles, they each form a trivial component group which is always
a leaf. In the following we concentrate on non-trivial component groups.
For the purpose of this proof, w.l.o.g. let us consider two arbitrary fixations R′ =

MG(Ag, Bf ) and R′′ = MG(Ai, Bj) for any g, f, i, j ∈ {+,−} × G . We show that a
component group that has one or more edges connecting it with other nodes in the
unrooted tree of R′ will do so in the unrooted tree of R′′ as well.

(1) A component group K 2 separates component groups K 1 and K 3 from each other
if exactly one among K 1 and K 3 is nested within K 2. In the diagram this is if
walking along genome A after meeting edges of K 1 we always meet edges of K 2

before meeting edges of K 3 and then meet again edges of K 2 before meeting
edges of K 1. In T this is equivalent to two nodes representing K 1 and K 3 whose
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path connecting them includes the node representing K 2. By no rotation of the
two genomes or change in reading direction or start marker, will K 2 be moved
outside of this path. (This can only happen if adjacencies and therefore the order
of markers were altered.)

(2) If a component group K 1 is nested within another component group K 2 where
K 1 is a leaf, then clearly K 2 separates K 1 from the rest of the tree, and case (1)
applies. If K 1 is not a leaf, then it separates its children from K 2 and other
parents/the rest of the tree and case (1) applies.

(3) In a chain of component groups, two neighbouring component groups K 1 and K 2

have no other component groups in-between them but instead have a marker that
is a link. Clearly, a change in reading direction does not change the neighbouring
elements of a component group in the link. Altering the fixation of the master
graph affects at most one point in the chain, a marker that either (i) is a link or
(ii) is within one component group of the chain. In case (i) we know that there
is no component group separating the elements of a chain from one another. No
circular rotation of the genomes can produce a component group that separates
two of the elements of the chain. Thus, in T , the elements of the chain are still
all directly connected to the same square node. In case (ii) w.l.o.g. let the chain
be K 1,K 2,K 3 and let a part of K 1 be circularly moved such that in R′′ it
appears to the right of K 3 and let the other part of K 1 remain to the left of K 2.
Then K 1 becomes a component group in which all other component groups are
nested, that includes K 2,K 3 and the rest of R′′ (likewise in T (R′′)). The link
markers still link the elements. When constructing T (R′′), K 1 would be the only
child of the square that is the root and a parent node of a square node whose
direct children are the nested component groups (including K 2 and K 3). The
root that is a leaf is removed and K 1 is simply another external node attached
to the same square node as K 2 and K 3.

(4) Two component groups K 1 and K 2 are independent if in the diagram one is not
nested in the other and vice versa. By changing the fixation, one independent
component group can become the parent of the other(s) and vice versa two nested
component groups can become independent. However, in the trees of T (R′) and
T (R′′) there still is the same path between these K 1 and K 2 as the separating
component groups as well as links are not altered in order.

Therefore, the relation between component groups is the same for any fixation of
MG(A,B) and the labelled component group trees are identical.

Hence, for any fixated view of the master graph, the constructed labelled component

104



5.6 The Labelled Component Group Tree

group tree is the same and the notation T (A,B) is indeed sufficient. When referring to
the diagram we can simply choose an arbitrary R(A,B) as all fixations are equivalent
for the purpose of the theory discussed in this thesis.

Corollary 2. Given two unichromosomal circular genomes A and B, for the reason
that T is the same, independent of the diagram fixation of MG(A,B), clearly we also
have: cost

(
T (R′)

)
= cost

(
T (R′′)

)
and using cost

(
T (A,B)

)
is sufficient .

In the inversion-indel model each neutral or joint operation is assigned a cost ac-
cording to its effect on both the inversion distance and the overall indel-potential. We
transfer the costs of different inversions to cost of covering paths as follows. A neutral
inversion on a cycle of a component group u corresponds to covering the vertex in T
that represents u by a path of length 1, also called a short path. Any neutral inversion
has ∆λ = 0 (that is after processing all AB-cycles), thus we assign costs of 1 to each
short path. Otherwise, if a path consists of more than one vertex, it is called long. A
long path with end vertices v and w is assigned the minimum cost among all possible
joint inversions of cycles from the component group represented by v with cycles from
the component group represented by w. From Table 5.1 on page 91 (see also Table 4.1)
we learn that the cost is 1 if both v and w have an A-label or both have a B-label
(then ∆λ = −1), otherwise (when ∆λ = 0) the cost is 2 [12,14,89]. A long path then
represents the joint inversion acting on two cycles yielding this cost. Since v, w, and
all component groups separating v and w, will be part of the new (good) component
group after the inversion, they are all covered by the path and do not need to be dealt
with separately. In the same way, using vertices whose path covers that of v and w
(that are closer to the leaves than v or w are) merges the same bad component groups
of the path of v and w and even more.
A set of covering paths that covers all bad nodes of T (A,B) and that has minimum

cost gives the minimum cost of ridding the relational diagram of bad component groups
(whilst simultaneously considering indels).

Lemma 1 (rephrased): Given two unichromosomal circular genomes A and B and
the labelled component group tree T (A,B), we have:

cost
(
T (A,B)

)
= τ ∗INV(A,B), (5.7)

where τ ∗INV(A,B) is the minimum cost for destroying all bad component groups of
R(A,B) under the inversion-indel model.

Proof of Lemma 1. By construction of T , no information from the diagram (that is
the component groups and their relation) is lost. T is identical for any altering in
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start point or direction of reading the genomes necessary to construct the relational
diagram. Furthermore, the costs of a neutral and a joint inversion on cycles in R(A,B)

is represented by the same cost for covering the same vertices in T (A,B). An optimal
collection of inversions acting on the relational diagram is therefore also an optimal
collection of the covering paths of T (A,B) representing the same inversions and vice
versa.

Therefore, in the rest of this thesis we will concentrate on one exemplar construction
of the tree and finding an optimal tree cover and computing its cost.

5.6.1 Resolving Bad Unlabelled Component Groups

First of all, we reprocess the relation of the inversion and the DCJ distance as given
by Equation (5.1). In this case, the value of τINV(A,B) corresponds to the extra cost
for applying inversions that are not split inversions. It can be efficiently computed
based on the direct analysis of the relational diagram that has unlabelled component
groups [55] but as we transferred the cost scheme and relation of component groups to
the labelled component group tree we will review the solution based on the tree. For
the inversion distance without indels we will consider the tree that has no labels and for
the computation of τINV we need to consider only the bad nodes. Thus we extract the
essence of T (A,B) such that any leaf that is not a bad round node is removed [12,55]
and we derive the bad labelled component group tree T◦(A,B). Furthermore, a leaf `
in T◦ is on a short branch if covering ` by a short path (done by performing a neutral
inversion on a cycle of ` hence turning it into a good leaf, and transforming the tree
into a bad labelled component group tree again) creates no new bad leaf. Other leaves
are on long branches and must be covered by long paths that correspond to joint
inversions. Beyond that, the example in Subsection A.4 of the appendix reveals that
the removal of a leaf on a short branch may eliminate a branching and therefore leaves
that were previously on a short branch may now be on a long branch.
It has been shown [12,14] that the cost of an optimal cover of T◦ corresponds exactly

to the value τINV(A,B) and can be computed as follows:

Theorem 4 (from [12,14,55]): Let n be the number of leaves of T◦(A,B). Then

τINV(A,B) =

{
n+ 1 if n is odd and all leaves are on long branches,
n otherwise,

(5.8)

gives the additional cost to the DCJ distance if the only allowed DCJ operations cor-
respond to inversions and the genomes have no unique markers.
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Upper bound to inversion distance with labels. The above theorem also gives
rise to upper bounds to the inversion distance with unique makers. For example, the
upper bound to the distance with unique markers from Equation 2.2 (see page 18) can
be re-written as:

did
INV(A,B) ≤ dINV(A,B) + |A |+ |B |.

Furthermore, we can provide an upper bound for value of τ id
INV in two ways that we

describe below. Figure 5.6 shows the relation of the offsets between DCJ, inversion

Figure 5.6: The relation of inversion, DCJ and indel operations.

and indel operations and is used to illustrate the two approaches.

One possibility to provide an upper bound to τ idINV is to perform first all insertions
and deletions while maintaining the indel-potential, thus λ(A,B). The result is two
genomes A∗ and B∗ that have only common markers. Then we sort A∗ and B∗ with
dINV(A∗, B∗) inversions. Re-written, this gives the following upper bound:

did
INV(A,B) ≤ τ id

DCJ(A,B) +
(
dDCJ(A

∗, B∗) + τINV(A∗, B∗)
)
.

Or the other way around, first we perform all extra inversions in the tree ignoring
labels. This takes τINV(A|G , B|G ) steps and results in genomes A′ and B′ that have
unique markers but whose diagram R(A′, B′) has no bad component group. Then,
as shown in Section 5.4, we perform all remaining indels and split inversions which
additionally costs did

DCJ(A
′, B′) = did

INV(A′, B′), overall resulting in the following upper
bound:

did
INV(A,B) ≤ τINV(A|G , B|G ) + dDCJ(A

′, B′) + τ id
DCJ(A

′, B′).

The approach from El-Mabrouk [43] which seeks for the lowest cost to remove bad
component groups and considers deletions (no insertions) goes about the problem
via the inversion problem, i.e. computing the inversion distance as if the tree were
unlabelled, adding the indel-potential of the initial genomes but subtracting 1 for each
path from the tree cover that connects two labelled vertices in its sum denoted by σ:

ddel
INV(A,B) = dINV(A|G , B) + τ id

DCJ(A,B)− σ(tree).
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(the correction term σ can be seen as representing the fusion of runs from Table 5.1 on
page 91.) However, the computation of an (optimal) cover (thus also of σ) is incorrect
which we will discuss in the following subsection.

5.6.2 The Bad Component Group Tree T◦

In a similar manner as for the unlabelled case El-Mabrouk [43] approached solving
the inversion-deletion distance which also concentrated on the tree that has only bad
leaves, ignoring the good leaves (although in a different notation, prior to the intro-
duction of this tree).
Extracting the essence of the labelled component group tree T , by removing un-

necessary (good) nodes (which are resolvable without extra costs regardless of their
labelling as we showed in Section 5.4) is not as simple in a labelled tree as it was for
the unlabelled tree. As the following example shows, not only bad leaves are neces-
sary. Instead, also good leaves –more precisely their labels– can play a vital role in
computing an optimal tree cover.

Example 16: The breakpoint graph of the two unichromosomal circular genomes
A ={(1, 6, 2, 4, x, 3, 5, 7, 10, 8,−z, 9)} and the identity (B ={(1, . . . , 10)}) is shown in
Figure 5.7 (i). The three bad cycles (C1, C2 and C3) and the trivial cycle (C4) of
BG(A,B) are not interleaving cycles, thus they each form their own component group
Ki = {Ci}. Two of the component groups are separated by both the others, one is
bad and labelled and one is trivial and labelled. The overall indel-potential is 2. The
component group tree is constructed as in Figure 5.7 (ii). If we remove all external
good nodes (thus K4) we have a tree with only bad leaves (K1 is labelled and K3 is
unlabelled). We refer to the tree with this rigorous deletion of good leaves as T�.

(i) BG(A,B) (ii) T (A,B) (and T�(A,B))

Figure 5.7: Labelled breakpoint graph and labelled component group tree of genome
A = {(1, 6, 2, 4, x, 3, 5, 7, 10, 8,−z, 9)} and the identity over G = {1, . . . , 10}.

Performing an inversion on genome A that reverses the interval [3, 5, 7, 10] yields
A′ = {(1, 6, 2, 4, x,−10,−7,−5,−3, 8,−z, 9)} which corresponds to a covering path as
shown in Figure 5.8 (i) by the dashed line. As can be seen in the breakpoint graph
BG(A′, B) (Figure 5.8 (ii)) the inversion merges cycles C1 and C3 that now interleave
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(i) T�(A,B) (ii) BG(A′, B) (iii) T (A′, B)

Figure 5.8: An inversion acting on edges 4hx3t and 10h8t (i.e. K1 and K3) of genome A
yields genome A′ = {(1, 6, 2, 4, x,−10,−7,−5,−3, 8,−z, 9)}. We destroyed all bad
component groups and are left with two good A-component groups.

with C2 forming the component group K5 = {C2, C1+C3}. K5 is a good A-component
group, thus there are no more bad component groups left. The joint inversion reduces
the number of cycles by 1, uses up one step of the sorting scenario and the overall
indel-potential remains 2. T (A′, B) has two good AB-nodes (both are leaves).
However, restricting inversions that destroy bad component groups to adjacency

edges of bad component groups may prevent us from finding a scenario that uses fewer
steps. If instead of K3, we apply the other cut of the inversion in K4, as indicated
in Figure 5.9 (i), reversing the section [3, 5, 7, 10, 8,−z], we get A′′ = {(1, 6, 2, 4, x,
z,−8,−10,−7,−5,−3, 9)}. BG(A′′, B) in Figure 5.9 (ii) shows the resulting cycles.

(i) T (A,B) (ii) BG(A′′, B) (iii) T (A′′, B)

Figure 5.9: An inversion acting on edges 4hx3t and 8h−z9t (i.e. K1 and K4 which is
trivial) of genome A yields genome A′′ = {(1, 6, 2, 4, x, z,−8,−10,−7,−5,−3, 9)}.
We destroyed all bad component groups and are left with a single good A-component
group.

Here, C4 (a labelled trivial cycle) was merged with C1 (a labelled bad cycle) and since
both have labels only in A, the resulting cycle is a good A-cycle. It is apparent that
all cycles that formerly separated C1 and C4 are now interleaving and form a single
A-component group K ′5 = {C2, C3, C1 +C4} that is good. The component group tree
has now only one node which is good and A-labelled.
We hence eliminated all bad component groups by a single joint inversion (using

up one step of the sorting scenario) merging two A-cycles thus reducing the overall
indel-potential by 1 at the same time. �

El-Mabrouk presented a procedure for solving the inversion-deletion distance prob-
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lem only using inversions acting on leaves of T� (as constructed in the example
above) [43]. Thus this procedure might produce the minimum number of bad com-
ponent group merges necessary to eliminate all bad component groups when allowing
indels, but not always the overall minimum number of steps (inversions, insertions and
deletions).
As even the “exact” algorithm for cases in which unique markers occur only in

one of the genomes (the inversion-deletion distance) presented in [43] is incorrect,
we will not study the heuristic approach of that same publication for the case when
we have unique markers in both genomes. Instead, we will give our results on the
inversion-indel distance problem in the ensuing chapter. But first, we present our
solution to circumvent the shortcomings of T�(A,B) and to simplify the determination
of τ ∗INV(A,B).

Transforming T into T◦

Instead of simply removing good leaves as done in [12], we designed a procedure
keeping all necessary information in a condensed version of the tree. This is done by
transforming it into the unrooted bad component group tree T◦(A,B) as follows.
Initially, let T◦ = T . Now, from external nodes inwards, leaves are removed from

the tree if they are not bad round nodes. Thereby, the node u to which the removed
leaf v was formerly connected is assigned the union of the labels of u and v. When not
only the distance value but also an optimal sorting sequence is desired, a reference to
the component groups that contain these labels needs to be upheld. In the end of the
transformation, all leaves of T◦ are bad round nodes.

Example 17: The labelled component group tree T (A,B) given in Figure 5.10 (left)
is transformed into the corresponding bad component group tree T◦(A,B) (right). For
this, the leaves that are not bad are successively removed and their labels pushed
inwards. The subtree rooted at v1 contains no bad vertices, such that during removal
of the good nodes v1 gets assigned the union of labels of all its children and the children
are removed. However, because v1 is then a leaf itself (that is also good), the labels get
pushed inwards even further (to v2) and v1 is ultimately removed. In the end T◦(A,B)

has only bad leaves. �

We do not lose information of T (A,B) when transforming it into T◦(A,B), as shown
by the following lemma.

Lemma 3: Given two unichromosomal circular genomes A and B, let T (A,B) be the
labelled component group tree of A and B and let T◦(A,B) be the bad component group
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Figure 5.10: An example of a labelled component group tree T (A,B) (left) and the
corresponding bad component group tree T◦(A,B) (right). The bad nodes are drawn
in white. An A-label (resp. B-label) is represented by a red top-aligned (resp. yellow
bottom-aligned) dot. The hierarchical structure matches that of the example for a
breakpoint graph in Figure 5.5.

tree derived from T (A,B). Then we have

cost
(
T◦(A,B)

)
= cost

(
T (A,B)

)
. (5.9)

Proof. Any set of paths yielding an optimal cover of T also yields an optimal cover
of T◦. The only difference is that the labels of good nodes may now be attributed to
a different node (thus shortening the covering path, but still covering the same bad
nodes at the same cost). A node that gets a label during transformation of T to T◦
ultimately references any covering path ending there to an adequate component group
(depending on the label). As all AB-cycles have been merged already, AB-nodes in T
and T◦ are treated equally.

On the other hand, any optimal cover of T◦ can be found in T by using the same
vertices or their respective good labelled nodes (at the same cost elongating the paths
covering more good nodes). Therefore, the cost of the covers are identical.

Corollary 3. τ ∗INV(A,B) is given by cost
(
T (A,B)

)
, thus clearly:

cost
(
T◦(A,B)

)
= τ ∗INV(A,B).

On a side note: If the good leaves in T (A,B) in Figure 5.10 (left) both had B-labels,
then v1 (and therefore also v2) would have only a B-label. A path in T◦(A,B) that
uses the label in v2 then can be found in T (A,B) by choosing any of the B-labelled
vertices that lead to the labelling in T◦(A,B), as the costs are identical and they both
cover the same bad vertices.

Lemma 3 allows us, from now on, to consider simply T◦(A,B) instead of T (A,B) and
to concentrate on computing cost

(
T◦(A,B)

)
which we study in the ensuing chapter.

111



Chapter 5: Inversion-indel Distance Problems

5.7 Chapter Summary

The two models discussed in this chapter are the inversion model and the generalisa-
tion, the inversion-indel model. The relation of these two and the DCJ and DCJ-indel
distance is reflected as given earlier:

Equation (5.1): dINV(A,B) = dDCJ(A,B) + τINV(A,B),

Equation (5.3): did
INV(A,B) = did

DCJ(A,B) + τ ∗INV(A,B), s.t. τ id
INV = τ id

DCJ + τ ∗INV.

Here, τ id
INV gives the number of extra operations when allowing indels and using only

DCJ operations that are inversions, while τ ∗INV gives the number of extra operations
with respect to the DCJ-indel distance.
The solution to the inversion distance has long been known. In the absence of bad

component groups an optimal inversion sorting scenario has the same number of steps
as an optimal DCJ sorting scenario (Equation (5.4)). We were able to show that
when no bad component group exists, we can always find an optimal sorting scenario
allowing only inversions and indels that has the same number of steps as an optimal
scenario employing DCJ and indel operations (given in Equations (5.5) and (5.6)).
Furthermore, all AB-cycles can be merged into a single AB-cycle without extra cost.

This way the number of bad component groups may be reduced or even brought to zero.
In the presence of bad component groups the inversion distance can be computed using
a tree structure (Equation (5.8)), which we generalised to include labels. Furthermore,
we introduced a procedure to derive a novel data structure, the bad labelled component
group tree T◦, and showed that an optimal tree cover of T◦ gives the extra cost to handle
bad component groups in labelled instances.
Concluding this chapter, we have the following solutions to subproblems, where the

ensuing chapter deals with finding the value of cost(T◦).
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When you have eliminated the
impossible, whatever remains,
however improbable, must be the
truth.

Sherlock Holmes

In this chapter, we continue to study the inversion-indel model, that is the model
that allows inversions, insertions and deletions on unichromosomal circular genomes
without duplications.

In the previous chapter we determined solutions to the distance problem where one
or more restrictions on the genomes were made (see facing page for an illustration).
We studied the cases where no bad component group is present and were able to show
that in these cases we can always find optimal DCJ or DCJ-indel scenarios whose
DCJ operations consist only of inversions (thus, that the inversion distance is equal to
the DCJ distance and likewise the inversion-indel distance has the same value as the
DCJ-indel distance). The case where bad component groups exist has been solved for
the inversion distance problem. However, since the first attempt to solve the inversion-
indel distance problem in 2000 [42] only heuristics have been presented. It remains
to be presented an exact solution to the general inversion-indel distance problem, i.e.
where bad component groups are present and there are unique markers in one or
both genomes which we address in this chapter. For this, we generalised the (bad)
component group tree to include labels and extended the cost function for covering
paths in the tree.

It is the goal of this chapter to find an optimal tree cover of the labelled component
group tree that gives the extra cost to handle bad component groups in the presence of
labels, i.e. to determine τ idINV. First, we give bounds to the cost of an optimal cover based
on a specific tree property. However, finding an optimal cover proves to be intricate,
as we identify different vital properties of the bad labelled component group tree that
influence the overall cost of the cover. In the third section we determine how many
paths of the same kind can be used in an optimal cover before, in the fourth section, we
introduce yet another derived tree, the residual tree that allows us to concentrate on
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a finite set of canonical cases which we subsequently study. We conclude this chapter
with a summary of the findings that lead to computing an optimal cover and its cost.

6.1 Covering Paths and Tree Covers

We previously determined the costs of different covering paths in the inversion-indel
model. We aim to find a set of paths that covers all bad vertices of the tree and that
in total yields minimum cost, thus an optimal tree cover. Several co-optimal covers
may exist, i.e. different collections of covering paths that cover all bad nodes of the
tree and that all yield the minimum cost.

Assume we have given two genomes A and B without duplications from which we
construct the bad labelled component group tree T◦(A,B). We have to consider four
different kinds of labellings for the vertices. Let a node in T◦(A,B), representing a
component group K , be addressed as A-, B-, ε- or AB-node if K is an A-, B-, ε-
or AB-component group, respectively. Then let nA , nB , nε and nAB denote the number
of A-, B-, ε- and AB-leaves in T◦(A,B), respectively, forming the leaf composition
L(A,B) := (nA , nB , nε, nAB). The total number of leaves is n = nA +nB +nε+nAB . Along
with the types of vertices possible, also the types of short and long paths increased
(compared to the inversion model from Subsection 5.6.1).

Cost of covering paths. Destroying bad component groups requires neutral or
joint inversions of which, since the tree is constructed after all AB-cycles were treated,
we are left with the inversions that amount to ∆dDCJ + ∆λ > 0. (For a review see
Section 5.5 and Table 5.1 on page 91.) Short covering paths represent neutral inversions
that cost 1. Long paths cost 1 if they represent joint inversions that act on two cycles
that both have A-labels or both have B-labels. Otherwise, if the long path represents
an inversion on two cycles that do not have labels in the same genome, the cost is 2.
Since the cost for A- and B-labels is symmetric, we can assume w.l.o.g. that nA ≥ nB .

Previously, in the inversion model without labels, the cost relied on the number of
leaves in the tree (denoted by n) and whether or not a leaf on a short branch exists.
The same criteria are not sufficient when computing the cover cost with labels, as the
following example shows.

Example 18: We study the bad labelled component group trees shown in Figure 6.1
that all have leaf composition L(A,B) = (2, 2, 0, 0) but give different optimal cover
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cost, depending on other properties of the trees. Let us analyse the optimal covers for
the different trees.

(i) cost : 2 (ii) cost : 3 or 4

Figure 6.1: Different bad labelled component group trees that have two A-leaves and
two B-leaves, but that have different optimal cover cost, further determined by other
properties of the tree(s).

(i) The tree has a good vertex v1 that does not need to be covered. A complete
cover uses two long labelled paths: one connecting `1 with `2 and one connecting
`3 with `4. The overall cost is 2 and no cover of lower cost exists.

Depending of the properties of vertex v2, an optimal cover of the tree shown in Fig-
ure 6.1 (ii) can have cost 3 or 4.
(ii-a) If v2 is a good vertex, it does not need to be covered but we still need to cover v3.

Using the same cover as for tree (i) and additionally covering vertex v3 by a short
path, which always has cost 1, forms a complete optimal cover of cost 3.

(ii-b) If v2 is an unlabelled bad vertex, it also needs to be covered. Any optimal
cover we can obtain has cost 4. For example, we could use the cover of (i) and
additionally cover v2 and v3 by a long unlabelled path that has cost 2. An
alternative optimal cover connects `1 with `3 and `2 with `4.

(ii-c) If v2 is bad but has a B-label, we can achieve cost 3. This can be done by using
the same cover as for tree (i) and additionally we can cover v2 and `3 with a long
labelled path that has cost 1. (A similar cover can be achieved if the B-label is
closer to `1 or `2.) �

This shows that a cost formula depending only the tree properties that were identi-
fied for unlabelled trees or the leaf composition L(A,B) cannot exist. Thus a straight-
forward approach is not as simple and we first determine what paths compose an
optimal cover.

The effect of choosing a single path p is best described using the following covering
step. In concordance with the underlying inversion operation (see Subsection 5.6.2),
all nodes covered by p are merged into a single good vertex representing the labelling
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of this path. For simplicity let us call this vertex a meta-vertex. All edges attached to
any vertex of the path are then attached to the meta-vertex. If the meta-vertex is a
leaf, the tree needs to be transformed into a bad labelled component group tree again.

Definition 17 (Safe/unsafe covering path): A covering path p is called safe if
removing the covered vertices from T◦, and transforming the tree into a labelled compo-
nent group tree again, does not cause a bad node that was previously internal to become
a leaf. If it does, p is unsafe.

An example of an unsafe covering path can be found in Figure A.1 (see page 181)
and an example of a safe covering path is given in Figure A.2 (see page 182) in the
appendix. In the inversion model, an optimal cover sometimes contains a path that is
unsafe (an example of a tree for which this is the case can be found in Figure A.8 (i)
on page 185 and is laid out in the explanation of Equation (6.3) on the facing page).

Definition 18 (Optimal covering path): A covering path p is called optimal if it
is part of an optimal cover {, i.e. if it satisfies

cost
(
{
)

= cost
(
{\{p}

)
+ cost(p). (6.1)

Finding an optimal cover of T◦(A,B) can be approached by finding one optimal
covering path after the other, until all bad vertices are covered, thus until the cover
is complete. For this we proceed with grouping the different paths satisfying Equa-
tion (6.1) and their costs.

Definition 19 (Homogeneous/heterogeneous path): Let a long path in T◦(A,B)

start in vertex u and end in vertex v. If u does not have the same labelling (A , B, ε
or AB) as v then the path is called heterogeneous. Any other (short or long) path is
called homogeneous.

For convenience, we denote the different long paths with the labelling of their end
nodes, for instance A-AB-path or ε-AB-path. Initially, we study only homogeneous
paths. Let PA , PB , Pε and PAB be the sets of safe optimal homogeneous paths for A , B ,
ε and AB respectively. We denote by {r the set of paths of an optimal cover { that
are not included in PA , PB , Pε or PAB , i.e., we have:

cost
(
{
)
− cost(PA)− cost(PB)− cost(Pε)− cost(PAB) = cost

(
{r
)
. (6.2)

In some cases we can achieve a complete optimal cover consisting solely of safe
optimal homogeneous paths, as the following section shows.
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6.1.1 Cost of a Cover Bounded by Individual Subtrees

Let us first consider a tree whose leaves are all of the same type. This might also be
a subtree of T◦(A,B). Then we define:

Definition 20 (Subtree): Given a bad component group tree T◦(A,B), we denote
by TA

◦ , TB
◦ , T ε◦ and TAB

◦ the subtrees induced by a single leaf type, i.e. by all A-, B-, ε-
and AB-leaves, respectively. A subtree may be empty or consist only of a single round
node.

A combined subtree of more than one type is denoted by the set of the partaking
types. For instance T {A ,ε}◦ is the subtree induced by all A- and all ε-leaves.

Unlabelled subtree. In the unlabelled case (for T ε◦ ), when we could use more than
one short path, we simply replace a pair of short paths by a long path such that at
most one leaf is covered by a short path, which is always optimal. Hence, if there
exists an ε-leaf on a short branch or for an even number of ε-leaves, all optimal paths
are safe. Otherwise, if we have an odd number of leaves and no ε-leaf is on a short
branch, one optimal path is unsafe. The cost of an optimal cover for an unlabelled tree
is equal to the handling of bad component groups in the inversion distance problem
(see Sections 5.3 and 5.6.1). The overall cost of T◦(A,B) with L(A,B) = (0, 0, nε, 0)

yields the well known formula [14,55] and is the same as treating T ε◦ with nε leaves
independently of the remaining tree:

cost
(
T ε◦ (A,B)

)
=

nε + 1 if nε is odd and all leaves are on long branches,

nε otherwise.
(6.3)

Labelled subtree. Now, let us consider the case in which we have labelled leaves.
Let the subtree TA

◦ have nA leaves, then, in an optimal cover, there will be at most
one short path, as we must replace two short paths (cost 2) by a single long covering
path (cost 1). The number of leaves used for safe homogeneous paths is the same as
above. Additionally, if nA is odd, we use a single path to cover the last leaf, where the
length of the path depends on the length of the branch but yields cost 1 in either case.
For a (sub-)tree that has only A-leaves the cover cost is given by:

cost(TA
◦ (A,B)) =

⌈nA

2

⌉
. (6.4)

Since the cost for B-labelled long and short paths are the same as for A-labelled
long and short paths, a similar result holds for the B-subtree. Furthermore, we have
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already established in Section 5.5 that nodes with two labels use only one label at a
time, either the A- or the B-label. The optimal cover cost for a (sub-)tree that has
only AB-leaves amounts to the same as using the cover of the A- or B-subtree.

Moreover, these results immediately lead to lower and upper bounds to the cost of
an optimal cover of a tree T◦ that has one or more leaf types. Although proposed
in [89] note that the proof was incorrect.

Proposition 9: Let T◦(A,B) be a bad component group tree with n leaves. Then the
cost of an optimal cover is bounded as follows:⌈n

2

⌉
≤ cost(T◦(A,B)) ≤ n+ 1. (6.5)

Proof. A tree with n leaves needs at least n/2 covering paths, if n is even, or at least
n+1/2 covering path, if n is odd. The minimum cost for a long path is 1, thus the
minimum cost of a tree cover is dn/2e. On the other hand, the maximum cost of a long
path is 2, thus a cover for a tree with an odd n costs at most 2 · n+1/2 = n+ 1.

The lower bound is met, for example, when all leaves share at least one label (in
this case, all paths of the cover have cost 1). The upper bound is met, for example,
when n is odd, all leaves are unlabelled and are on long branches (the greatest value
of Equation (6.3)). Apart from only unlabelled leaves, the worst case can also occur
if there are one or two labelled leaves that share no label with any other node. In a
similar manner, there are cases in which we have more than one leaf type and still the
lower bound can be achieved. Nevertheless, we will discuss tighter bounds later and
concentrate on examining different properties of the tree and their influence on the
tree cover cost.

6.2 Properties of T◦ Influencing the Cost of Optimal
Covers

In this section we analyse general tree properties, of which some were already discussed
for a specific instance in Example 18. We now broaden the look from single subtrees
treated individually to a collection of subtrees and how they relate to each other.
While in some trees, two or more subtrees may share nodes (and edges), there are also
trees in which this is not the case. There can even be a sequence of good and/or bad
nodes, with or without labels, that lies between subtrees. We are especially interested
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in those nodes that are bad, as a tree cover is complete if and only if it covers all
internal and external bad nodes of the tree. We thus define:

Definition 21 (Separating vertex): A bad vertex that is not contained in any of
the four subtrees TA

◦ , TB
◦ , T ε◦ or TAB

◦ is called a separating vertex.

If no separating vertex exists in T◦(A,B), the tree is non-separated. If we have no
separating vertex, we can lower the upper bound, as we show in Section B of the
appendix. Otherwise, the placement of separating vertices in the tree can influence
the cover cost, as is specified below.

6.2.1 Separation Types

If separating vertices exist, obviously an optimal tree cover needs to contain paths that
cover them. As we have already seen in Example 18, treating separating vertices may
increase the cost in comparison to cases in which we can treat each subtree individually.
Before finding paths that cover these vertices, we identify the placement of one or more
separating vertices between single subtrees or pairs of subtrees.

Definition 22 (Individual (non-)separation): Let T◦(A,B) be a bad component
group tree with more than one leaf type. Then an individual subtree TX

◦ of type X ∈
{A ,B , ε,AB} is separated from the rest of T◦ if there is at least one separating vertex
between TX

◦ and the subtree induced by all other leaves. Otherwise, if there is at least
one other individual or combined subtree and there is no separating vertex between this
subtree and TX

◦ , we call TX
◦ non-separated.

Examples are given in Figures 6.2 and 6.3 where subtrees are separated by a sequence
of bad vertices, or, otherwise, the individual subtree is directly attached to another
subtree or to a sequence of good nodes.

Definition 23 (Combined (non-)separation): Let T◦(A,B) be a bad component
group tree with three or four leaf types. Then the combined subtree T {X ,Y }◦ induced by
all leaves of types X ,Y ⊂ {A ,B , ε,AB}, X ∩ Y = { }, is separated, if there is a
separating vertex between T {X ,Y }◦ and the subtree induced by the leaf types that are not
in X ∪ Y . Additionally, X and/or Y may or may not be individually separated.

For example in Figure 6.2 (iv) the combined {A , ε}-subtree is separated from the
rest, but at the same time TA

◦ is separated from T ε◦ . On the other hand in tree (ii) the
combined {A ,AB}-subtree is separated from T ε◦ , but TA

◦ and TAB
◦ are non-separated.

Depending on the number of subtrees present, an individual separation mutually
defines the combined subtree of the other subtrees as equally separated or equally
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(i) Two subtrees are
separated (full separa-
tion).

(ii) TA
◦ and TAB

◦ are
non-separated, but T ε◦ is
separated from T

{A,AB}
◦ .

(iii) All three sub-
trees are separated
(full separation).

(iv) Four individual
separations and T

{A,ε}
◦ is

separated from T
{B,AB}
◦ .

Figure 6.2: Schematic display of some examples for subtrees and their interrelation.
The triangles are the subtrees and the circle denotes a separating vertex, the dotted
paths can contain further separating vertices, whereas the black solid line represents
a possible path that has no bad vertex.

non-separated. This becomes more apparent in Figure 6.3 where the two counter
parts are coloured accordingly.

(i) Three individual
non-separations.

(ii) A combined sub-
tree is non-separated.

(iii) A combined sub-
tree is separated.

(iv) Two combined
subtrees are separated.

Figure 6.3: One schematic tree with different single and combined non-separated sub-
trees highlighted in green and separated subtrees highlighted in blue. The triangles
correspond to distinct subtrees, the circle denotes a separating vertex, the dotted
paths can contain further separating vertices.

Definition 24 (Full separation): Let T◦(A,B) be a bad component group tree with
two or more leaf types. Then we have a full separation if each subtree is separated.

Full separations are depicted in Figure 6.2 for two subtrees by tree (i), for three leaf
types by tree (iii) and for four leaf types by tree (iv).

In some cases using an extra path, covering solely the separating vertex or vertices,
may be (co-)optimal. In other cases, however, it may be necessary to consider one,
or even several, heterogeneous paths in order to achieve an optimal cover (see Sub-
section A.6 of the appendix for examples). For Figure 6.2 (iv) an A-AB-path and a
B-ε-path cover the separation while an A-ε-path and a B-AB-path do not. Although
an A-B-path and an ε-AB-path would cover the same paths as the first suggestion,
the cost would be higher.
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We will see later that, more often than not, we are interested in knowing if a subtree
is not separated from the rest of the tree, as otherwise the cost might be higher and
we need to use a different set of covering paths.

6.2.2 Links of Subtrees

The presence of separating vertices can increase the cost w.r.t. the tree without them.
However, we also observe that a separation might be compensated for, by making use
of a specific internal labelling. As seen in Example 18, an internal label used with a
labelled leaf can cover the sequence of separating vertices with lower cost compared
to unlabelled paths (covers ii-b and ii-c). This motivates the following definitions,
w.r.t. different types of separations.

Definition 25 (A-ε-link): Given a bad component group tree T◦(A,B) with a non-
empty ε-subtree T ε◦ and a non-empty A- or AB-subtree, we say that there is an A-ε-link
in T◦ if there exists an A-label in the separating vertex closest to T ε◦ or in any vertex
closer to or within T ε◦ .

Definition 26 (A-B-link): Given a bad component group tree T◦(A,B) with non-
empty A- and B-subtrees, we say that there is an A-B-link in T◦ if there exists an
A-label in the separating vertex closest to TB

◦ or in any vertex closer to or within TB
◦ .

A-links in the AB-subtree are neglected as we can simply use (or re-use) the label
of an AB-leaf directly, while still covering the same separating vertices. Analogously
B-links in the AB-subtree are neglected.

Definition 27 (B-ε-link): Given a bad component group tree T◦(A,B) with a non-
empty ε-subtree T ε◦ and a non-empty B- or AB-subtree, we say there is a B-ε-link
in T◦ if there exists a B-label in the separating vertex closest to T ε◦ or in any vertex
closer to or within T ε◦ .

Definition 28 (B-A-link): Given a bad component group tree T◦(A,B) with non-
empty B- and A-subtrees, we say that there is a B-A-link in T◦ if there exists a
B-label in the separating vertex closest to TA

◦ or in any vertex closer to or within TA
◦ .

As A- and B-labels of an AB-node are used individually (see Section 5.5) there
cannot be an AB-link. Therefore, an AB-labelled internal vertex in the ε-subtree, for
example, can be accepted as either A-ε- or B-ε-link but never more (the definitions of
links use internal labels and not the labelling). We are, however, free to use the same
vertex once as an A-link and once as a B-link, if necessary. Obviously, ε-links do not
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exist as they never help diminishing the cost and instead we could use a leaf in the
subtree considered.

Definition 29 (A-{B, ε}-link): Given a bad component group tree T◦(A,B) with
non-empty A-, B- and ε-subtrees, we say there is an A-{B , ε}-link in T◦ if there exists
an A-label in the separating vertex closest to the combined {B , ε}-subtree induced by
all B- and ε-leaves or in any vertex closer to or within the combined {B , ε}-subtree.

Definition 30 (B-{A, ε}-link): Given a bad component group tree T◦(A,B) with
non-empty A-, B- and ε-subtrees, we say there is a B-{A , ε}-link in T◦ if there exists
a B-label in the separating vertex closest to the combined {A , ε}-subtree induced by all
A- and ε-leaves or in any vertex closer to or within the combined {A , ε}-subtree.

For the same reasons as above, we would not use an AB-leaf with such a link.
Also we do not consider links in the combined subtrees of two labelled leaf types (e.g.
A-{ε,AB}-links or A-{AB ,B}-links). There can be A- or B-labels outside of the
specified vertices and subtree, but they do not necessarily produce a link. Figure 6.4
shows some examples of where a B-labelled vertex produces a link given bad component
group trees with three leaf types but different separations.

Figure 6.4: Three examples of trees with separating vertices (indicated by the coloured
dotted line and the circles). In order for a B-label to function as a link, it needs to
be in a node within the shaded part of the respective exemplary tree. If this is the
case we have a B-{A , ε}-link in the left and right tree and a B-A-link in the central
tree.

Links are also the reason why we have to consider all types of labels/labellings, even
when they are not represented in the leaf composition. If no B-leaves are present one
might think that we simply treat the AB-leaves as A-leaves. However, that this should
not be done is shown in the following (counter-)example.

Example 19: Figure 6.5 shows two trees of the same structure that have leaf compo-
sitions L = (3, 0, 2, 0) and L′ = (1, 0, 2, 2). Both trees have an internal label marked by
B∗ serving as a B-ε link but neither tree has a B-leaf. First, we consider the left tree
for which the best we can achieve is cost 5. One optimal cover uses a homogeneous
A-path, a homogeneous ε-path and connects the third A-leaf with B∗ in order to cover
the separation. For the tree on the right we can find an optimal cover that has cost 4
and is composed as follows: a homogeneous ε-path, an A-AB-path and a path that
uses the B-label of the AB-leaf with B∗. �
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Figure 6.5: Two trees without B-leaves. Left: The tree has L = (3, 0, 2, 0) and a B-ε-
link that cannot be used. The optimal cost is 5. Right: The tree has L = (1, 0, 2, 2)
and the B-ε-link is used with an AB-leaf in order to obtain an optimal cover (cost 4).

Thus, even if the other tree properties were the same, the cost of an optimal cover of
a tree with leaf composition L = (nA , 0, nε, nAB) is not always the same as the cost of an
optimal cover of a tree with leaf composition L′ = (nA + nAB , 0, nε, 0). In consequence,
we cannot simply affiliate all AB-leaves to A-leaves if B-leaves are absent.

6.2.3 Short Paths

In the inversion model a leaf can be covered by a short path if its elimination from
the tree and updating the tree to a bad component group tree again does not produce
a new leaf. Historically, the corresponding branch of this leaf is referred to as short
branch. In some instances not all short branches can be covered optimally by short
paths, for example, when the covering (removal) of one short branch causes another
short branch to become a long branch. In this case, the latter can no longer be
safely covered by a short path (an elaboration for unlabelled trees can be found in
Subsection A.4). Fortunately, the inversion distance offset, as given in Equation (6.3),
asks only to find at most one of such short branches.
When allowing several types of subtrees, the definition of short branch for ε-leaves

requires extensive study of the structure and the properties of the tree.

Example 20 (Short ε-branch): The bad component group tree T◦(A,B) as shown
in Figure 6.6 (i) has leaf composition L = (2, 0, 3, 0). The branch of `1 has no further
bad vertex, hence fulfilling the definition of “short branch”. However, the insufficiency
of this definition becomes apparent when the homogeneous A-path is visually covered:
Leaf `1 has i1 and i2 as bad vertices, before it reaches another branching node in the
ε-subtree (the tree is a fortress). Covering `1 by a short path thus either causes TA

◦

and T ε◦ to become separated or, if TA
◦ is already removed, produces a new bad leaf

(i1). An optimal cover of this tree has cost 5. �

It is thus necessary to refine the definition of “short” in presence of labelled subtrees.
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(i) Initial tree with non-separated A-
and ε-subtrees has leaf `1 on a short
branch.

(ii) Covering the A-subtree reveals
that an optimal cover has cost 5.

Figure 6.6: Short ε-branches are not always safe. Covering `1 by a short ε-path lets
i1 and i2 become separating vertices.

Definition 31 (Solo ε-leaf): An unlabelled leaf ` in T◦(A,B) is a solo ε-leaf if the
elimination of ` from T◦, by turning the component group that ` represents into a
good one, and transforming the tree into a bad component group tree again, neither
transforms a bad node that was previously internal into a leaf nor produces a new sep-
aration of subtrees (nodes of the ε-subtree to become separating vertices). Otherwise
this vertex is referred to as being on a long branch.

We have already seen that the tree depicted in Figure 6.6 has no solo ε-leaf. Now
we give an example of a tree that does.

Example 21 (Solo ε-leaf): Figure 6.7 depicts a similar tree as given in Example 20,
except its nodes i1 and i2 are good. The two subtrees are still overlapping. Here,

(i) Initial tree. (ii) Optimal cover yields cost 4.

Figure 6.7: The same tree as in Figure 6.6, except i1 and i2 are good nodes. Cover-
ing the A-subtree reveals that covering `1 by a short ε-path neither creates a new
separation nor a new leaf.

covering `1 with a short path does not separate the two subtrees and also does not
create a new bad leaf. Hence, we can achieve an optimal cover with cost 4. �

A solo ε-leaf could, if necessary, be covered by a short path (it would be safe although
not always optimal). Note that if nε = 1, the ε-subtree consists of a single vertex, and
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any bad vertices of the “long branch” correspond to a sequence of separating vertices.
By the cost scheme, it is always optimal to replace two short ε-paths of a cover by one
long ε-path. It is therefore merely interesting if one such solo ε-leaf does or does not
exist instead of searching for them all. As stated earlier, it is irrelevant to check for
“short” or “solo” labelled leaves, they are simply used with another leaf that shares a
label.

6.2.4 Property Set of T◦

Now that we elaborated the influencing properties, we briefly discuss further tree
properties that do not influence the cost in a positive way. For instance, we would like
to remind the reader of Observation 6 (see page 100) which states that forming new
AB-labelled vertices that are then (re)-used with an AB-cycle is not to be the method
of choice. Furthermore, the branch length of labelled leaves is neglected. Besides
ruling this out, we can also dismiss some other properties.

Observation 7. An internal label positioned in such a way that, if used, it will render
an ε-leaf into a solo ε-leaf, can be neglected. This becomes exceedingly obvious in a
situation where rε = 1 and we have a separation. The cost of a short ε-path plus the
cost of using a link (e.g. from an A-leaf to an A-ε-link) amounts to 2, while using the
labelled leaf for a heterogeneous path with the ε-leaf directly, also produces cost 2 and
covers the same vertices. Also, the latter does not need an internal label and is thus
always possible.

For obvious reasons, internal labels in a subtree whose leaves have the same label are
neglected, e.g. an A-label in the A- or AB-subtree. However, what happens if there
are two links that span a separation and they are not being used for homogeneous
paths with a leaf?

Observation 8. Labelled internal vertices that fulfil the properties of links for either
side of the separation, such that they could be used to cover solely the separation at
hand, can be neglected for such a use, as using directly the leaves to span a separation
is either co-optimal or optimal.

Observation 9. The set of tree properties of the bad labelled component group tree
T◦(A,B) that is necessary (and also sufficient) to consider, in order to find an optimal
complete tree cover, consists of:

Leaf composition L(A,B) = (nA , nB , nε, nAB) of the bad labelled component group
tree T◦(A,B). (Bear in mind the pushing of labels of good leaves to interior
vertices when transforming T into T◦.)
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Separations of subtrees when more than one leaf type is present, where, besides the
arrangement of subtrees, also the number of separating vertices can affect the
cost of an optimal cover.

Links that are specifically located labels which may compensate for a separation
(A-labels in the B-, ε- or {B , ε}-subtrees, and B-labels in the A-, ε- or {A , ε}-
subtrees).

Solo ε-leaf that can be covered by a short ε-path and may reduce the cover cost
compared to the same leaf being on a long branch. If this leaf is the only ε-leaf
existing it corresponds to a non-separated ε-subtree.

An optimal cover may depend on one of these properties, different properties at a time,
combinations or, for example, two links being present at the same time. The careful
analysis conducted in the remainder of this chapter shows that this set of properties
is sufficient.

6.3 Heterogeneous Paths

Between all the different properties that we have to consider in order to find an optimal
complete cover, we seek to maximise the number of homogeneous paths used, such
that we need only to determine which paths compose {r (from Equation (6.2)). In the
following, we determine which and how many homogeneous paths are safe, depending
only on the leaf composition.

Apart from (short or long) homogeneous paths connecting two leaves, there are
heterogeneous paths either from leaves to links or to another leaf. For example, if
there were a cover that contained a short AB-path as well as a short A-path, the cover
could not be optimal, as replacing these two short paths by a single heterogeneous path
results in lower cost. While there are cases in which using heterogeneous paths for
covering separations is not necessary, or even counter-optimal, other cases require the
use of such paths in order to achieve an optimal cover. Figure 6.8 shows covers using
homogeneous paths for the subtrees. In each case the cost is compared to a cover that
would use two heterogeneous paths instead. If for trees (ii) and (iii) both separating
nodes shared a label, the path covering the separation would have cost 1, producing
lower cost for tree (ii) and the same cost for tree (iii) as a heterogeneous cover in
the respective cases. As can be seen, each tree has to be analysed carefully and no
universal handling will work.
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(i) The shown homogeneous
cover has cost 3, whereas a het-
erogeneous cover has higher cost.

(ii) The shown homogeneous
cover has cost 4, the same as
a heterogeneous cover.

(iii) The shown homogeneous
cover has cost 5, but a hetero-
geneous cover has lower cost.

Figure 6.8: Three trees that show that each instance has to be analysed individually
and no general rule to the handling of how to cover separating vertices exist.

We already provided some bounds with specific necessary preconditions (for example
given in Section B of the appendix). Also, as stated earlier, we never have more than
one short path in each subtree, which also holds across certain labelled subtrees.
Let us now observe the implications of separating vertices. Although there are a

variety of separations and thus also a variety of heterogeneous paths possible, we
observe that there is an upper bound to using heterogeneous paths of one kind, as the
following lemma shows.

Lemma 4: Let TX
◦ and TY

◦ be two subtrees of T◦(A,B) that have leaf types X ,Y ∈ {A ,
B ,AB , ε}, where X 6= Y . Then there always exists an optimal cover that uses at most
two paths connecting an X-leaf with a Y-leaf.

Proof. For contradiction let us assume that using three (respectively four) heteroge-
neous paths, each connecting a leaf of the X-subtree with a leaf of the Y-subtree is
always optimal.
All of the heterogeneous paths cover the same separating vertices (if there are any).

We replace two of these heterogeneous paths by one homogeneous path in the X - and
by another in the Y -subtree. The separating vertices are still covered by the remaining
heterogeneous path(s). (In order to cover all internal vertices, we choose the leaves
that will form the homogeneous paths in such a way, that they have at least one vertex
in common with the heterogeneous path.) If the two subtrees share a label (TAB

◦ and
either TA

◦ or TB
◦ ), the cost of two heterogeneous paths is 2, and the replacement cost

is also 2. Otherwise, the cost of the two heterogeneous paths is 4 and the replacement
cost is either 3 or 2, depending on the number of labelled subtrees involved. This is
a contradiction to the assumption that using the same type of heterogeneous paths
three (resp. four) times is always optimal (it is either co-optimal or suboptimal), we
can thus always do the described replacement.
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We conclude that we can always find an optimal cover using at most two of the same
type of heterogeneous paths connecting leaves and that all other leaves are used for
short or long homogeneous paths including links. In total this yields a maximum of(#types

2

)
heterogeneous paths. In the worst case this means, for a tree with all four leaf

types present, we could have a maximum of twelve heterogeneous paths thus cost 20.
On the other side, for trees with a large number of leaves we can use a large number
of homogeneous paths which for each labelled subtree decrease the upper bound given
by Inequality (6.5).

We discover that, apart from the findings of Lemma 4, there are tighter upper
bounds to the total number of heterogeneous paths ending in the same subtree as we
elaborate on the following pages.

A-Leaves used for Heterogeneous Paths

For now, let us concentrate on the use of heterogeneous paths ending in one specific
subtree. In the worst case we could have six heterogeneous paths connecting A-leaves
with the leaves of other types. This means all other A-leaves are used for long or short
homogeneous paths. However, the following proposition shows that we can always
replace a cover using four A-labelled leaves for heterogeneous paths by a cover that
uses only two A-labelled leaves.

Proposition 10: Any cover that uses four A-leaves for heterogeneous paths can be
replaced by a cover with lower or equal cost using only two A-leaves for heterogeneous
paths.

Proof. Lemma 4 shows that in order to have four heterogeneous paths (using A-leaves)
in the beginning, there have to be at least an additional two subtrees other than the
A-subtree. Assume we have three, resp. four types of leaves in T◦, such that we have
the following combination of paths:

(1) two A-B-paths and two A-ε-paths, or
(2) two A-B-paths and two A-AB-paths, or
(3) two A-ε-paths and two A-AB-paths, or
(4) two A-B-paths, one A-ε-path and one A-AB-path, or
(5) one A-B-path, two A-ε-paths and one A-AB-path, or
(6) one A-B-path, one A-ε-path and two A-AB-paths.

When we have three types of subtrees we consequently have two pairs of heterogeneous
paths in the possible combinations of cases (1-3) shown in Figure 6.9 (left). One
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duplicate of each is removed and we add a long homogeneous A-path and one new
heterogeneous path connecting the two other subtrees with each other. The first two
cases reduce the cost by 1 and the third case does not change the cost. In each case,
the internal vertices are still covered. Hence, the reduction of the A-subtree can be
done from four to two heterogeneous A-paths if three subtrees are involved.
Now, let us assume we have four leaf types. Among the possible heterogeneous types

(A-B-, A-ε- and A-AB-paths) there must be one that occurs twice (cases (4), (5) and
(6) from above whose distribution of paths is displayed in Figure 6.9 (right)). For
each, we remove an A-B-path and add a long homogeneous A-path. For (4) and (5)
an A-ε-path is removed and a B-ε-path is added. For (6) we remove a duplicate A-
AB-path and connect the AB-leaf to a B-leaf. In each of the three cases we diminish
the cost by 1 while still covering the internal vertices.
The distribution of paths is schematically displayed in Figure 6.9 for each of the

six cases. In conclusion, instead of using four leaves for heterogeneous paths, we can
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Figure 6.9: Replacements for heterogeneous A-paths such that two instead of four
A-leaves are used while yielding lower or equal costs. Solid paths are unchanged.
Dashed paths are replaced by paths indicated in different colours. Old and new costs
are marked next to the respective path. The shaded box represents the (unknown)
internal layout of the tree, including separating vertices.

always find a better or equal cover that uses only two A-leaves for heterogeneous paths
and that still covers the internal vertices.

Proposition 11: Any cover that uses three A-leaves for heterogeneous paths can be
replaced by a cover with lower or equal cost using only one A-leaf for heterogeneous
paths.

Proof. With only three heterogeneous paths that end in A-leaves, we can either have
two subtrees other than the A-leaves present which means one type of heterogeneous
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Chapter 6: Optimal Tree Covers of T◦

paths occurs twice (cases (1)-(6)), or there are all four subtrees present, thus we have
three distinct types of heterogeneous paths (case (7)). (Lemma 4 shows we do not
need to consider three times the same type.)
For cases (1-6), we remove one heterogeneous path of each type, such that the

duplicate type remains. Then we add a homogeneous A-path and additionally a
heterogeneous path connecting the two other subtrees. For case (7), we can replace
the A-B-path and an A-ε-path by a homogeneous A-path and connect the B-subtree
with both ε- and AB-subtree. The cost is equal, but only two heterogeneous paths
with A-leaves are used. In case there were only two A-leaves before, one of them
was re-used before the replacement and we could thus omit the homogeneous A-path,
reducing the overall cost.
Figure 6.10 shows schematically the cases and path replacements. In all seven cases
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Figure 6.10: Replacements for heterogeneous A-paths that yield lower costs and use
one instead of three A-leaves. Legend can be found in caption of Figure 6.9.

we can achieve lower or equal cost and use only one A-leaf for a heterogeneous path
while still covering the internal vertices.

Any tree cover that uses more than four leaves for heterogeneous paths can be
reduced to a cover with only two heterogeneous A-paths by finding a set of paths in
the cover that satisfy the above proposition and replacing it by those with lower cost.
The above results do not imply that all other A-leaves are used for long homogeneous

A-paths only. Bear in mind that there might be single leaves left (for example to be
covered by a short path), and also that labelled leaves might be used for paths with a
link. Unsafe paths also create new leaves that are unaccounted for, which also has to
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be considered. Furthermore, just because there is a cover with lower cost, it does not
mean it is the overall lowest possible cost, as this does not take into account the same
way of replacing heterogeneous paths in the other subtrees.

B-Leaves used for Heterogeneous Paths

Proposition 12: Any cover that uses three or four B-leaves for heterogeneous paths
can be replaced by a cover with lower or equal cost by using one homogeneous B-path
thus reducing the number of B-leaves used for heterogeneous paths by 2.

Proof. As the cost scheme for A- and B-labels is symmetric, obviously, we can always
find a cover with lower or equal cost by using one instead of three heterogeneous B-
paths and we can always replace a cover using four heterogeneous B-paths with a cover
that has lower or equal cost using only two heterogeneous B-paths while still covering
the internal vertices (analogous to Propositions 10 and 11).

ε-Leaves used for Heterogeneous Paths

We continue showing that the same is true for the ε-subtree.

Proposition 13: Any cover that uses four ε-leaves for heterogeneous paths can be
replaced by a cover with lower or equal cost using only two ε-leaves for heterogeneous
paths.

Proof. Lemma 4 shows that in order to have four heterogeneous paths (ending in ε-
leaves) in the beginning, there have to be at least two other subtrees. Assume we have
three, resp. four leaf types, such that we have the following combination of paths:

(1) two ε-A-paths and two ε-B-paths, or
(2) two ε-A-paths and two ε-AB-paths, or
(3) two ε-A-paths, one ε-B-path and one ε-AB-path, or
(4) one ε-A-path, one ε-B-path and two ε-AB-paths.

The distribution of paths is displayed in Figure 6.11. Further cases can be achieved
by swapping A- and B and are not looked into due to symmetry of costs.
Let us consider trees with only two other subtrees first. We remove one of each

duplicated heterogeneous path. In case (1) we add a homogeneous ε-path and an
A-B-path which yields the same overall cost. In case (2) we add a homogeneous ε-
path and an A-AB-path reducing the cost by 1. In each case, the internal vertices
are still covered. Hence, the reduction of the ε-subtree can be done from four to two
heterogeneous paths if three subtrees are involved.
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Figure 6.11: Replacements for heterogeneous ε-paths from four to two employed ε-
leaves yielding lower or equal costs. Legend can be found in caption of Figure 6.9.

Now, let us assume we have four leaf types, cases (3) and (4) are depicted in Fig-
ure 6.11 on the right. For each, we remove one ε-AB- and one ε-A-path and add a
long homogeneous ε-path and one A-AB-path, diminishing the overall cost by 1 in
each case and still covering the internal vertices.

Thus we can always find a better or equal cover that uses only two ε-leaves for
heterogeneous paths and that still covers the internal vertices.

Proposition 14: Any cover that uses three ε-leaves for heterogeneous paths can be
replaced by a cover with lower or equal cost using only one ε-leaf for heterogeneous
paths.

Proof. With only three heterogeneous paths that end in ε-leaves, we can either have
two subtrees other than the ε-subtree present which means one type of heterogeneous
paths occurs twice (cases (1)-(4)), or there are four subtrees present, thus we have
three distinct types of heterogeneous paths (case (5)). (Lemma 4 shows it cannot be
three times the same type.)

For case (5), we can replace the ε-A-path and ε-B-path by an A-AB-, a B-AB-
and a homogeneous ε-path. The cost is equal, but only two heterogeneous paths with
ε-leaves are used while either we break up a homogeneous AB-paths or re-use the
single AB-leaf twice. In case there were only two ε-leaves, one of them was re-used
before the replacement. Here, we only break the B-ε-path and connect the B-leaf to
the AB-leaf. A homogeneous ε-path is not necessary but we still reduce the overall
cost.

Otherwise, due to symmetry of cost for A- and B-nodes, we have two other subtrees
present (in cases (1) and (3) that is A and B , in cases (2) and (4) that is A and
AB), one of which has two heterogeneous paths with the ε-subtree. We remove one
heterogeneous path of each type, such that the duplicate type remains. Then we add a
homogeneous ε-path and additionally a heterogeneous path connecting the two other
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subtrees. While in cases (1) and (3) we achieve equal cost, for cases (2) and (4) we
diminish the cost by 1.
Figure 6.12 shows schematically the five cases. In all five cases we can achieve lower
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Figure 6.12: Replacements for heterogeneous ε-paths that yield lower costs when one
instead of three ε-leaves are employed. Legend can be found in caption of Figure 6.9.

or equal cost and have only one ε-leaf used for a heterogeneous path while still covering
the internal vertices.

AB-Leaves used for Heterogeneous Paths

Contrary to the other types of subtrees, for the AB-subtree we need to consider more
than one (resp. two) leaves for heterogeneous paths, as the following example shows.

Example 22 (AB-Reduction): Figure 6.13 shows two trees that have the same sep-
aration and A- and B-subtrees, merely the AB-subtree has two leaves in the left tree
and four leaves in the tree depicted on the right. There are several co-optimal covers
for the left tree that have cost 4. Obviously, using a homogeneous AB-path in the tree

Figure 6.13: Left: L(A,B) = (2, 2, 0, 2). An optimal cover has cost 4 and can be
achieved by using an A-AB-path, a AB-B-path and an B-A-path. Right: L(A,B) =
(2, 2, 0, 4). An optimal cover has cost 4 and can be achieved by using two A-AB-
paths and two B-AB-paths.

on the right-hand side has cost 1 and yields the tree on the left that has cover cost 4,

133



Chapter 6: Optimal Tree Covers of T◦

resulting in overall cost of 5. An alternative and optimal cover uses two A-AB-paths
and two B-AB-paths, achieving cost 4 in total. Another example with four types of
subtrees is depicted in Subsection A.5 of the appendix. �

Thus reducing the use of heterogeneous AB-paths to two paths is not optimal.

Proposition 15: Any cover that uses six AB-leaves for heterogeneous paths can be
replaced by a cover with lower or equal cost using only four AB-leaves for heterogeneous
paths.

Proof. Having six heterogeneous paths ending in AB-leaves means two of them are
used for each of the A-, B- and ε-subtree (overall cost 8). Replacing one ε-AB-path
(cost 2) and one B-AB-path (cost 1) by one B-ε-path (cost 2) and a homogeneous AB-
path (cost 1) yields the same cost while using only four AB-leaves for heterogeneous
paths and simultaneously not leaving a separating path uncovered.

Proposition 16: Any cover that uses five AB-leaves for heterogeneous paths can be re-
placed by a cover with lower or equal cost using only three AB-leaves for heterogeneous
paths.

Proof. As Lemma 4 shows, each type of heterogeneous path occurs at most twice.
With five heterogeneous paths from AB-leaves all four subtree types must be present.
While two types of heterogeneous paths occur twice, one of the other subtrees has only
a single heterogeneous path ending in the AB-subtree. Let this be (1) the ε-subtree
or (2) the B-subtree. As Figure 6.14 indicates, it is always possible to replace one
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Figure 6.14: Replacements for heterogeneous AB-paths yielding lower costs while em-
ploying three instead of five AB-leaves. Legend can be found in caption of Figure 6.9.

AB-B-path and one AB-ε-path by one B-ε-path and a homogeneous AB-path at the
same cost while still covering the internal vertices.

We thus have reduced the number of AB-leaves used for heterogeneous paths to
four, resp. three leaves.

Looking back at the use of homogeneous paths and the remaining cover {r (see
Equation 6.2 on page 116) we determine that {r has at most two heterogeneous paths
of each type and does not have more than two heterogeneous paths that use A-leaves
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6.4 The Residual Tree Tr

(resp. B , ε). Also the number of paths of {r that use AB-leaves for heterogeneous
paths is at most 4. However, there may be short paths remaining in {r and also paths
connecting one leaf with a link or a single internal vertex is covered.

6.4 The Residual Tree Tr

In this section we use the above findings to determine the numbers of safe optimal
homogeneous paths of each leaf type. As we determined upper bounds for the use of
heterogeneous paths, consequently, depending on the number of leaves in a specific
subtree, various leaves are used for homogeneous paths. Before determining the exact
layout of {r, we first reduce the bad labelled component group tree to its core, the
residual tree, whose optimal cover corresponds to {r.

Let T◦(A,B) with leaf composition L(A,B) = (nA , nB , nε, nAB) be reduced by using
safe optimal homogeneous paths until we have a tree whose leaf composition satisfies
the bounds for heterogeneous paths, yielding the residual tree Tr(A,B). Let the num-
ber of A-, B-, ε- and AB-leaves in Tr be denoted by rA , rB , rε and rAB , respectively.
Then the residual leaf composition is the quadruple Lr(A,B) = (rA , rB , rε, rAB).

For the ε-subtree, the costs of short and long homogeneous paths differ. The fol-
lowing (counter-)example best describes why, although we can reduce the number of
heterogeneous paths ending in the ε-subtree to two or one, the value of rε might be
higher than that.

Example 23: Figure 6.15 shows two trees that have the same separation and A- and
B-subtrees, merely the ε-subtree has a single leaf in the left tree and three leaves in
the tree depicted on the right (they both do not have links). The left tree shows an
example of an optimal cover that has cost 4. Obviously, using a homogeneous ε-path

Figure 6.15: Two trees with the same separations and no links. Left: A tree with L =
(1, 1, 1, 0) and an optimal cover that has cost 4. Right: A tree with L = (1, 1, 3, 0)
and an optimal cover of cost 5 using two heterogeneous paths and a short ε-path.

in the tree on the right-hand side has cost 2 and yields the tree on the left that has
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cover cost 4, resulting in overall cost of 6. An alternative, and optimal, cover uses a
short ε-path and two heterogeneous paths, resulting in cost 5 in total. �

Hence it is not always optimal to reduce the number of ε-leaves to a single leaf. This
is why, for nε ≤ 3, we do not reduce the ε-subtree and rε = nε. Otherwise, for nε > 3,
the reduction yields rε = 2 for even nε and rε = 3 for odd values of nε.
Similarly, in the A- and B-subtrees, as each long homogeneous path uses exactly

two leaves, nA is reduced by an even number. Due to Propositions 10 and 11 that show
that we can reduce the number of A-leaves used for heterogeneous paths, and bearing
in mind single remaining leaves, the reduction yields rA = 3 for odd nA and rA = 2

for even nA . For nA ≤ 3 there is no reduction by homogeneous paths and rA = nA .
Corollary for the B-subtree. From now on, we assume w.l.o.g. that rA ≥ rB .
For the AB-subtree, we have rAB = nAB if nAB ≤ 4, otherwise the reduction yields

rAB = 4 for even nAB and nAB = 3 for odd values of nAB .

Recall, as described in the beginning of this chapter, how a general covering path
creates ameta-vertex and the difference between safe and unsafe paths (see for instance
Figures A.1 and A.2 on pages 181 and 182 in the appendix). The effect of a reduction
step is essentially the same as for a general covering path. However, we choose only
safe optimal homogeneous paths for the reduction thus assuring that no further costs
are induced.
A subtree that does not share a vertex with the other subtrees can be treated entirely

independent of these. In previous work it was shown that, in this case, the unlabelled
subtree can be covered by safe paths entirely such that rε leaves remain [55]. In order
to ensure that all internal bad nodes are covered, the leaves for the homogeneous paths
are chosen such that not direct siblings are used for one homogeneous path. This is
best illustrated with the concept of meta-vertices: Covering paths that cross or overlap
will be part of the same meta-vertex (if we do it one after the other, one such path
will consume the meta-vertex that represents the other) and thus no new bad internal
vertices or new bad leaves are created. The same can be applied to a labelled subtree
that does not share vertices with other subtrees.
Although having a solo ε-leaf does not always have an effect on the overall cost,

among the rε residual ε-leaves, we generalise the reduction independent of the case
at hand and choose to keep at least one of the solo ε-leaves. This way, we do not
deprive us later of the possibility to use it for an optimal cover. This is achieved by
starting the reduction of the unlabelled subtree with ε-leaves on long branches for the
long homogeneous paths. If there exists a solo ε-leaf it will thus be left behind among
the rε leaves of Tr(A,B).
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For covering a subtree that shares one vertex or more with another subtree, the
approach of Hannenhalli and Pevzner [55] is adapted in [43,44]. We treat each induced
subtree by itself, using only the correct number of homogeneous paths, such that
Lr(A,B) = (rA , rB , rε, rAB) leaves are left behind. Again, at least one of the solo ε-leaves
should remain.

Lemma 5: Given a bad labelled component group tree T◦(A,B) that has leaf composi-
tion L(A,B) = (nA , nB , nε, nAB), we have:

cost
(
T◦(A,B)

)
=
nA − rA

2
+
nB − rB

2
+ (nε − rε) +

nAB − rAB

2
+ cost

(
Tr(A,B)

)
, (6.6)

where Tr is the residual tree derived from T◦ (by the reduction described in this section)
and that has residual leaf composition Lr(A,B) = (rA , rB , rε, rAB).

Proof. The cost of the reduction is easily derived: By Propositions 10-16 we have
|PA | = nA−rA

2 homogeneous safe paths for A-leaves (and respectively for B-, ε and AB-
leaves) and the cost for a homogeneous long path is 1 in a labelled subtree and 2 in
the unlabelled subtree.

By the reduction we do not refrain from the original optimal cost, because the links
that are present in T◦(A,B) are not removed from the tree during the reduction, they
are thus still present in Tr(A,B). Also, if there is a solo ε-leaf, during the reduction this
one will be left such that it remains in Tr(A,B) and labelled leaves on short branches
do not need special treatment. By the reduction we do not introduce new separating
vertices. When the number of leaves of a non-empty subtree is even, no new bad leaf
or separating vertex is created, as in each subtree there remain at least two leaves.
When there is an odd number of leaves in a non-empty subtree, the reduction stops
when there are only three leaves left. No new leaf or separating vertex is introduced.
The reduction and the residual tree maintain the optimal cost of the bad component
group tree, as no feature is introduced to Tr that would induce higher costs. Obviously,
if, for some subtree TX

◦ of type X ∈ {A ,B , ε,AB}, no reduction is performed, we have
nX = rX and no cost is added.

In concordance with the first lower and upper bounds from Proposition 9 on page 118
we can tighten the bounds to concern only the residual tree Tr(A,B) with its r leaves:⌈r

2

⌉
≤ cost(Tr) ≤ r + 1. (6.7)

Furthermore, the dissociation of the number of leaves for each leaf type, namely rA , rB ,
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rε and rAB instead of simply r, allows us to particularise:⌈
rA + rB + rAB

2

⌉
+ rε ≤ cost(Tr). (6.8)

As an A-B-path has cost 2 the lower bound might not be met in all cases. At the end
of this chapter, we will see for which residual trees the lower bound is met.

Rather than bounds or approximations, we seek an exact solution. Now that we
reduced the bad component group tree T◦(A,B) to the residual tree Tr(A,B) we can
focus on finding an optimal cover for Tr and on computing its cost. First, we analyse
residual trees with a single leaf type. Starting from there, we add another leaf type
and yet another until in the end we have analysed all residual leaf compositions that
are necessary. All studied cases then compose the exact solution to the general case
in which we have a residual tree with all leaf types present.

6.4.1 Residual Trees With One Type of Leaf Labelling

As before, we first concentrate on trees where all leaves are of the same type, i.e. only
one value among rA , rB , rε and rAB is greater than zero. Obviously, no heterogeneous
path is used. For a tree that has one or two leaves we use a single homogeneous path.
For trees with three leaves we use a long homogeneous path and either a short path if
it is on a short branch, or a long path, re-using a leaf. Here, an AB-subtree that has
four leaves can be optimally reduced to two leaves.

Unlabelled leaves. For a bad component group tree T◦(A,B) with L(A,B) =

(0, 0, nε, 0), the reduction to the residual tree Tr(A,B) stops at rε ≥ 3. The covers
and costs of the unlabelled residual tree depend on the tree’s properties as given be-
low. Each line represents one case that is assigned an identifier (ID), provides a set of
covering paths ({r) and its cost (a more elaborate description of the notation can be
found in Section C of the appendix).

Tree properties ID Cover {r of Tr(A,B) cost({r)
rε is even, or I ε−ε 2

rε odd and solo ε-leaf exists, or S
{ε} ∪ {′r of T ′r with

rεL′r = (0, 0, rε−1, 0)

none of the above apply W ε−ε, ε−ε 4

Using long homogeneous paths for the leaves is optimal and safe if rε < 3 (cases ’I’
and ’S’) , or if rε ≥ 3, which must then have a solo ε-leaf (case ’S’). For the latter, a
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short ε-path further reduces the tree and we have L′r = (0, 0, 2, 0). Otherwise, if no
solo ε-leaf exists, we use two long homogeneous paths of which one is unsafe, rendering
an internal node a leaf, resulting in L′r = (0, 0, 2, 0). This is case ’W’ from above for
which it is always optimal to simply re-use one leaf (indicated by underlining the leaf
type as ε) instead of considering the internal nodes for the covering path.
The cost of residual tree cover {r added to the reduction cost nε − rε composes the

overall cost of T◦ yielding the well known formula [12,14] for the inversion distance
offset (examined in Subsection 6.1.1).

Labelled leaves. For labelled leaves, a tree with three leaves on long branches also
uses an unsafe long homogeneous path. However, the third leaf can be used with one
of the other leaves at the same cost as a short path. In the other cases, we use long
homogeneous paths until at most one leaf remains. This can be covered by a short
path. Overall, for labelled leaves of type X ∈ {A ,B ,AB} this yields:

cost
(
Tr(A,B)

)
=
⌈rX

2

⌉
,

which added to the reduction cost nX−rX
2 yields the lower bound to the inversion-indel

distance offset.

6.4.2 Residual Trees With Two Types of Leaf Labelling

In this section we study the case where two types of leaves are present in the residual
tree Tr(A,B). We assume rA ≥ rB , hence, we either have both ε- and AB-leaves or we
have A-leaves and one other leaf type. Some leaf compositions can be treated easily,
as the following proposition shows.

Observation 10. In a residual tree Tr(A,B) with exactly two leaves that are of
different types, using a single heterogeneous path is always optimal and results in
cost(Tr) = 1 if both have an A- or both have a B-label and cost(Tr) = 2 otherwise.

The above observation gives optimal covers and their cost of the following trivial
leaf compositions:

(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 0, 1, 1).

The reduction, as given in this section, stops when we reach three leaves because for
the residual tree we might have to use an unsafe path. Contrary to above, the values
of n and r now represent two types of leaf labellings. However, an unsafe path can still
only occur when there are three leaves left in total. We could reduce each subtree to
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at most two leaves by using only safe paths. That this is optimal for all combinations
of two leaf types is shown below.

Proposition 17: Let Tr(A,B) be a residual tree with Lr(A,B) = (rA , rB , rε, rAB) that
has two empty subtrees and two non-empty subtrees TX

◦ and TY
◦ of types X ,Y ∈

{A ,B , ε,AB}, where X 6= Y . If TX
◦ has more than two leaves, it is always optimal

to use a long homogeneous X -path and derive rX = 1.

Proof. Let us assume we reduced the concerned subtree of type X with nX ≥ 3 leaves
by an even number and that rX = 3 leaves are left. Furthermore, let hX be the number
of X -leaves used for heterogeneous paths which we know from Lemma 4 must be two
or fewer. If hX = 2, it means one of the X -leaves is covered elsewise (either by a short
path, or as a link, which would be unnecessary since a possible separation would be
covered by the heterogeneous paths). In all combinations of subtree types present, it is
always possible, with lower or equal cost, to use two homogeneous paths such that at
most one heterogeneous path remains (possibly re-using a leaf in the other subtree or
using a link). The graphic below shows in black the X -leaves used for heterogeneous
paths and in grey the other residual leaves.

If hX = 1, two leaves are unaccounted for. This means they must both be used for
either a long homogeneous path, or links and short paths. For two leaf types, one link
is enough and two short paths would always be replaced by a long homogeneous path.
This means we can always use a long homogeneous X -path and, if necessary, re-use a
leaf for the links which would be optimal.

If hX = 0, it must mean either there is no separation or we use a link to cover it.
In either case we can use two leaves in a long homogeneous path such that only one
leaf remains. The remaining leaf is covered either by a short path or by a long path
(connected to a link or a re-used leaf). The graphics below shows the three grey
X -leaves of which at most one is used as a link.

In any case, using one more homogeneous path (thus reducing the number of leaves
used for heterogeneous paths to a single leaf) is always possible.
Now let us assume that nX ≥ 4 is even such that rX = 4 leaves are left. If hX = 2 it

means rX − hX = 2 leaves are left and can be covered by a long homogeneous path, as
the following graphics shows.
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For hX = 1 three leaves must be left for homogeneous paths, of which two are used in
a long path and the last remains for a short or long path.

For hX = 0 four leaves are left. At most one of them is used as a link such that at
least one pair of X -leaves can be covered by a long homogeneous path as the following
graphics shows.

Thus, when exactly two leaf types are present, it is always possible to achieve a
value of rX ≤ 2 by using only homogeneous paths in the reduction while not increasing
the cover cost.

When there are more than two leaf types, counter-examples showed that the above
proposition does not apply to ε- and AB leaves (see Examples 22 and 23 on pages 133
and 135). However, for A- and B-leaves we can extend the above proposition towards
three or four present leaf types.

Corollary 4 (A- and B-leaves in trees with three or more leaf types). The argu-
mentation of Proposition 17 is also valid for A-leaves when more than two leaf types
are present. We use safe paths in the reduction and, at the same time, at most two
leaves are used for heterogeneous paths. As short and long paths for the A-leaves have
the same cost, any third leaf left in the reduction can simply be covered by a long
homogeneous paths connecting it with another A-leaf. The same is true for B-leaves.

Observation 11. A non-separated ε-subtree in the residual tree Tr(A,B) can only
exist if rε ≥ 2, or if nε is odd and Tr has a solo ε-leaf. Otherwise, by a reduction to
rε = 1, the ε-subtree consists solely of a single vertex, which is the leaf itself, and the
bad vertices on the long branch become separating vertices.

Proposition 18: Given a labelled component group tree T◦ with two or more leaf types.
If the A-subtree is non-separated before the reduction of T◦ to the residual tree Tr, then
afterwards either there is also no separation, or it is compensated for.

Proof. For a bad labelled component group tree with even nA , the reduction yields two
leaves. The way the reduction works, the root of the subtree TA

◦ is still the same, thus
no separating vertices were deleted or introduced. In case nA ≥ 3 is odd, the A-subtree
is reduced to a single leaf. If this leaf is on a short branch, clearly only the single bad
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vertex remains and no separating vertices are deleted or introduced. Otherwise, if the
last leaf is on a long branch, the internal vertices of that branch separate this leaf (the
subtree) from the combined subtree of the other types, even if the subtree was non-
separated in T◦. However, during the reduction, the covering paths of the A-subtree
are merged such that there is an internal meta-vertex with an A-label in a way that
allows to compensate for the new separating vertices by an A-link. Because of this,
and the fact that a long and a short path in the A-subtree have the same cost, short
branches do not need special care during the reduction. A visualisation of this is given
in the appendix in Subsection A.2.

Corollary 5. Clearly, the reduction for the B-subtree and the AB-subtree also com-
pensate for long branches if the subtrees were non-separated before.

In summary, for two leaf types a residual tree has either one or two leaves in each
of the two subtrees. We can thus effectively also omit leaf compositions with higher
values leaving only the following to check for:

(0, 0, 1, 2), (0, 0, 2, 1), (0, 0, 2, 2), (2, 1, 0, 0), (2, 2, 0, 0)

(1, 0, 2, 0), (2, 0, 1, 0), (2, 0, 2, 0), (1, 0, 0, 2), (2, 0, 0, 1), (2, 0, 0, 2).

Instead of elaborating the optimal covers determined for each of the leaf composi-
tions, at this point we confine ourselves to describing only two cases. The complete
list of covers for residual trees with two leaf types can be found in Subsection C.2 of
the appendix. The optimal solutions were derived by an exhaustive analysis.

Example 24: Let Tr(A,B) be a residual tree and let Lr(A,B) = (2, 0, 0, 2) be the cor-
responding leaf composition. Using two heterogeneous A-AB-paths results in cost 2.
This cover is optimal for any type of separation and no further properties can dimin-
ish the cost. This cover is also optimal for leaf compositions (1, 0, 0, 2) and (2, 0, 0, 1)

where one leaf is re-used. �

Now we analyse a leaf composition where the different properties of the tree influence
not only the cost but also the composition of covering paths.

Example 25: Let Tr(A,B) be a residual tree that has leaf composition Lr(A,B) =

(0, 0, 2, 1). A brief notation of the influencing properties is shown below, which we
subsequently elaborate (a more elaborate description of the notation can be found in
Section C of the appendix). Each line represents one case that is assigned an identifier
(ID) and provides a set of covering paths ({r) and its cost.
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Tree properties ID Cover {r of Tr(A,B) cost({r)
No separating vertex exists, or I ε−ε, AB 3
an A-ε-link exists, or La ε−ε, AB−A∗ 3
a B-ε-link exists, or Lb ε−ε, AB−B∗ 3
a solo ε-leaf exists, or S ε, ε−AB 3
none of the above apply W ε−AB , ε−ε/AB 4

If there is no separation, we use a long homogeneous ε-path and a short AB-path
amounting to overall cost 3 (this is cover ’I’). Otherwise, if the two subtrees are sep-
arated, we can still achieve cost 3: If there is an A- or a B-label that serves as link
to the ε-subtree, we use a homogeneous ε-path and the AB-leaf with the link label
(covers ’La’ or ’Lb’ where the ∗ indicates the labelled internal vertex). Thus, although
rA = 0 the A-ε-link is useful (the same applies to the B-ε-link). If there is a solo
ε-leaf, it can be covered by a short path and the other two leaves are covered by a
long heterogeneous path (this is cover ’S’). If nothing of the above can be applied, the
worst case (’W’) uses a heterogeneous path and connects the second ε-leaf with any
leaf covering its branch of bad vertices (re-using either of the other ε- or AB-leaves
would be optimal, where the underlining represents re-used leaves). �

6.4.3 Residual Trees With Three Types of Leaf Labelling

In this section we allow for one additional leaf type in the analysis, thus A-leaves and
two other leaf types are present. Again, we elaborate only exemplary cases and give a
full catalogue of cases for three leaf types in Subsection C.3 of the appendix.

Example 26: For Lr(A,B) = (1, 0, 3, 1) the exhaustive analysis showed that we can
always find an optimal cover that uses a long homogeneous ε-path. Thus we can
effectively reduce this case to leaf composition L′r = (1, 0, 1, 1). In fact, any leaf com-
position Lr(A,B) = (1, 0, odd, odd) has the new base L′r = (1, 0, 1, 1). For this further
reduction, the respective paths (ε- and/or AB-paths) and their costs are additional to
the new base case. �

That finding an optimal cover for the residual tree is not always as easy as this, is
shown in the next example. Here, sometimes several properties must be present in
order to achieve a certain cover cost.

Example 27: Let Tr(A,B) be a residual tree with leaf composition Lr(A,B) =

(2, 2, 2, 0). Depending on the type of separation and the presence of solo ε-leaves
or links, we have three different cost values. The table below lists, in a brief nota-
tion, all necessary optimal covers. The notation is similar as before (a more elaborate
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description can be found in Section C of the appendix). An A∗ signifies an internal
A-node that is a link and a node that is re-used is underlined.

Tree properties ID Cover {r of Tr(A,B) cost({r)
No separation, or I A−A , B−B , ε−ε 4
A-subtree non-separated, or IIa A−A , 2×(B−ε) 5
B-subtree non-separated, or IIb B−B , 2×(A−ε) 5
A- and B-subtree are separated and:

A-B-link and ε-subtree non-sep. La A−A∗, A−A , B−B , ε−ε 5
or " " solo ε-leaf exists SLa ε, ε−A , A−A∗, B−B 5
or " " A-ε-link exists LLa 2×(A−A∗), ε−ε, B−B 5
or B-A-link and ε-subtree non-sep. Lb B−B∗, B−B , ε−ε, A−A 5
or " " solo ε-leaf exists SLb ε, ε−B , B−B∗, A−A 5
or " " B-ε-link exists LLb 2×(B−B∗), ε−ε, A−A 5

none of the above W A−B , B−ε, ε−A 6

The worst case (cover ’W’ with cost 6) only applies if all of the requirements of other
cases are not met. This occurs when both the A- and the B-subtree are separated and
we can find neither an A-B-link and at the same time have an A-ε-link, a solo ε-leaf
or the ε-subtree non-separated, nor can we find a B-A-link and at the same time have
a B-ε-link, a solo ε-leaf or the ε-subtree non-separated. �

Similarly to the tree for Lr(A,B) = (2, 2, 0, 4) that was given in Example 22 (see
page 133) not all ε- and AB-subtrees can be reduced further. We know from Exam-
ple 23 on page 135 that for Lr(A,B) = (1, 1, 3, 0) we can not always do the reduction
by a homogeneous ε-path. Fortunately, except for this situation (full separation of all
subtrees and a solo ε-leaf but neither an A-{B , ε}-link nor a B-{A , ε}-link present)
an exhaustive analysis showed that there is always an optimal cover that uses a long
homogeneous ε-path yielding the new leaf composition L′r = (1, 1, 1, 0). The cost is
then 2 + cost(L′r) for the respective tree properties and {r = {′r ∪ {ε−ε}.

In Subsection C.3 of the appendix we give optimal tree covers and their costs for
each property combination necessary. The costs were derived in an exhaustive analysis.
For each leaf composition we chose covers that are simple or most general, although
co-optimal covers may exist. The analysis showed that, for three leaf types, essentially
only the leaf compositions listed below are necessary base cases. Leaf types that have
three or more leaves and cannot be reduced further are emphasized in cyan if they
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refer to ε-leaves and in orange if they refer to AB-leaves.

nB = 0 : (1, 0, 1, 1), (1, 0, 1, 2), (1, 0, 2, 1), (1, 0, 2, 2),

(2, 0, 1, 1), (2, 0, 1, 2),

(2, 0, 2, 1), (2, 0, 2, 2), (2, 0, 2, 3).

nε = 0 : (1, 1, 0, 1), (1, 1, 0, 2),

(2, 1, 0, 1), (2, 1, 0, 2), (2, 1, 0, 3),

(2, 2, 0, 1), (2, 2, 0, 2), (2, 2, 0, 3), (2, 2, 0, 4).

nAB = 0 : (1, 1, 1, 0), (1, 1, 2, 0), (1, 1, 3, 0),

(2, 1, 1, 0), (2, 1, 2, 0), (2, 2, 1, 0), (2, 2, 2, 0).

All other cases of three leaf types can be optimally reduced using long homogeneous
paths until one of the base cases is reached. For example, (2, 0, 5, 5) is further reduced
to (2, 0, 1, 1), while (2, 0, 2, 5) is reduced only to (2, 0, 2, 3). The optimal cover and
its cost can then be derived by taking into account the homogeneous path(s) for the
further reduction and the cover and cost given by the respective base case (for the
same tree properties).

6.4.4 Residual Trees With Four Types of Leaf Labelling

We now examine the remaining residual trees in which all four subtrees are present.
Again, we find that some leaf compositions can be further reduced and some cannot.
There are easy leaf compositions such as Lr = (2, 1, 1, 2) for which the following cover
yields cost 4 and is always optimal: B−AB , AB−A , A−ε. Furthermore, an exhaustive
analysis showed that also leaf compositions (2, 1, 3, 2), (2, 1, 1, 4) and (2, 1, 3, 4) can
always be optimally reduced to (2, 1, 1, 2) by using the corresponding homogeneous
path(s) and then the base cover accordingly.

For other leaf compositions we find, that although they are in general not reducible,
they are mostly reducible, which means except for one or a few combinations of tree
properties, reduction is possible. An example for this is Lr = (2, 2, 1, 3) whose optimal
cover yields a cost lower than the reduction if, and only if, both the A- and the B-
subtrees are separated while at the same time we neither have an A-B-link nor a
B-A-link. When other properties of the tree are given, we can optimally reduce the
AB-subtree and look up the respective properties in L′r = (2, 2, 1, 1).

Novel are the cases where the ε-subtree is reducible but the AB-subtree is not re-
ducible. This is the case for the residual leaf composition Lr = (2, 1, 3, 3), for example.
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Here, Lr can be optimally further reduced to L′r = (2, 1, 1, 3) for which we can then
look up which properties allow the use of homogeneous AB-paths and which do not.
The covers and their costs for the individual leaf compositions are too extensive and

will be shown only in the appendix in Subsection C.4.

6.4.5 Strategy for Reduction in the General Case

In conclusion, when approaching the residual tree by reduction, we would generally
stop at rA , rB , rε ≤ 3 and rAB ≤ 4 when allowing any types of subtrees and arrangements.
We showed that, if we have more than one leaf type, the A-subtree can be reduced
from three to a single leaf. The same is true for the B-subtree. Furthermore, after our
exhaustive analysis that was done above, we can quickly check if it is optimal to do
another reduction in any of the cases. We summarise the findings below.

Reduction of the A-subtree when rA = 3:
If we have at least one other non-empty subtree, a reduction of rA > 2 to rA ≤ 2 is
optimal. Otherwise, using another homogeneous A-path is unsafe but still optimal.

Reduction of the B-subtree when rB = 3:
If we have at least one other non-empty subtree, a reduction of rB > 2 to rB ≤ 2 is
optimal. Otherwise, using another homogeneous B-path is unsafe but still optimal.

Reduction of the ε-subtree when rε = 3:
Except for Lr = (1, 1, 3, 0) all residual leaf compositions with rε = 3 have at least
one optimal cover that uses a homogeneous ε-path. If we have at least one other
non-empty subtree, then for the ε-subtree only a single leaf remains. Otherwise, for
Lr = (0, 0,3, 0) the homogeneous ε-path is optimal but, if no solo ε-leaf exists, it is
unsafe.

Reduction of the AB-subtree when rAB = 3:
If we have residual leaf compositions (1, 1, 2, 3), (2, 0, 2, 3), (2, 1, rε, 3) or (2, 2, rε, 3)

we cannot always use a long homogeneous AB-path. For other leaf compositions we
do the reduction step, although for Lr = (0, 0, 0, 3) it is optimal but not always safe.

Reduction of the AB-subtree when rAB = 4:
Except for leaf compositions (2, 2, rε, 4) and (2, 1, 2, 4), any residual tree that has
four AB-leaves has at least one optimal cover that uses a long homogeneous AB-
path, which means the tree can be further reduced such that the AB-subtree has
only two leaves.
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A faster check is done when simply adding up the rA and rB values, let this number
be denoted by SAB . Assuming they are present and not the only subtree, the ε- and the
AB-subtree can be further reduced if SAB < 2, while for SAB = 2 only the AB-subtree
and for SAB > 2 only the ε-subtree can be further reduced.
Even in the cases that are not generally reducible by homogeneous AB- or ε-paths

some trees have properties that allow for a reduction. Details must be looked up for
the specific leaf compositions.

Further Observations

We observe the following from Table 6.1 (page 149) and from the catalogue of leaf
compositions given in Section C of the appendix.

The leaf compositions (1, 0, 2, 2), (1, 0, 2, 4), (2, 0, 2, 1), (2, 0, 2, 3), (0, 0, 2, 1) and
(0, 0, 2, 3), that have no B-leaf, sometimes require the use of a B-link with an AB-leaf.
The latter two of these may even require the use of an A-link with an AB-leaf.

So-called re-used leaves occur mostly in cases where n is odd and we produce an
unsafe path because there exists no solo ε-leaf or because a labelled leaf is not yet
covered and for simplicity connected to a previously used leaf (whether it is on a short
or on a long branch). Remarkably, also for even n re-used leaves can occur in rare
cases, namely for residual leaf compositions (2, 2, 0, 0) and (2, 2, 2, 0), and only, if using
a link is necessary. In either case all leaves are used solely in long covering paths, thus
an even number are used which lets no single leaf stand behind. Nonetheless, we still
need a link in order to complete the cover. Consequently, a previously covered labelled
leaf is connected to the link.

The tree properties can evoke three different cover cost values for each leaf compo-
sition (2, 2, rε, 0) with rε ≥ 0. In all four cases, the range of values between worst and
best case is 2.

The upper bound, which means cost(Tr) ≤ r + 1, is met for the worst case of the
residual leaf compositions (0, 0, 2, 1), (0, 0, 3, 0), (1, 0, 2, 0), (1, 1, 1, 0) and (1, 1, 3, 0).
These all have an odd number of leaves in the residual tree and all involve ε-leaves.
All other leaf compositions’ worst cases achieve lower cost.

The lower bound cost(Tr) ≥
⌈ rA+rB+rAB

2

⌉
+rε given in Inequality (6.8) is met by all leaf

compositions, except for (1, 1, rε, 0) with rε ≥ 0. For these leaf compositions there is
no pair of leaves that can be covered by a long path of cost 1, as no pair of leaves share
an A-label or share a B-label. Hence, the minimum cost are raised by 1 compared to
the lower bound.
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6.5 Chapter Summary

In this chapter we concentrated on finding a complete tree cover of the labelled com-
ponent group tree T◦(A,B) that has minimal cost under the cost scheme presented in
the previous chapter.

After giving first upper and lower bounds to the cost of a tree cover of T◦, we
were able to show that there are a certain number of homogeneous paths and an
upper bound to the number of heterogeneous paths used, such that we can reduce the
different subtrees that are composed of one leaf type each resulting in the so-called
residual tree Tr(A,B).
We observed how different properties of the tree(s) influence not only the compo-

sition of the cover, but also the overall cost. Among these properties are first and
foremost the leaf composition, thus the number of leaves in the subtrees composed of
the same leaf type. The arrangement of separating vertices produces different kinds of
separations of the subtrees that are composed of the same leaf type. Furthermore, we
studied the implications of a solo ε-leaf and the presence of links that may compensate
for certain separations. We analysed all leaf compositions for the residual tree in terms
of covering paths and cost for the different tree properties that exert influence thereon
and provided details.

This chapter has thus successfully provided the cost of a tree cover which represents
the offset of the inversion-indel distance to the DCJ-indel distance in presence of bad
component groups. We will discuss this in more detail in the following chapter.
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Chapter7
Inversion-indel Distance and Sorting

A smooth sea never made a skill-
ful sailor.

English proverb

The topic of the inversion-indel model has been addressed in the previous two chapters
and the reference, the DCJ-indel model, was subsumed in Chapter 4.

First, in Chapter 5, we covered several special cases. One of these was computing
the inversion-indel distance of two unichromosomal circular genomes in absence of bad
component groups. The solution to that also offered a valuable clue on how the sorting
itself is performed. Subsequently, we were able to show that it is possible to perform
split inversions that correspond to optimal DCJ operations while at the same time
maintaining the indel-potential of each cycle in the relational diagram. Later in that
chapter, we constructed a more abstract data structure that represents the component
groups of the pair of genomes.

In Chapter 6 we concentrated on ridding the relational diagram of bad component
groups. Resolving bad component groups (to good component groups) requires neutral
or joint inversions, which correspond to suboptimal DCJ operations. The objective
is to perform the minimum number of overall inversions, insertions and deletions,
thus also the minimum number of extra operations when compared to the DCJ-indel
distance. We will now subsume the findings and draw conclusions for further use
concerning the inversion-indel model.

7.1 The General Inversion-indel Distance

In order to recap the determination of the inversion-indel distance, we best describe
how to derive the distance value from a pair of genomes in general. A visualisation of
the actions is depicted in Figures 7.1 and 7.2.

Let A and B be two unichromosomal circular genomes without duplications. We
first construct a relational diagram of A and B. After determining the cycles and
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component groups we can directly perform all mergings of AB-cycles such that, in
the end, we have at most one cycle with A- as well as B-labels. Here, we take care
to perform the cuts of the inversion operations between the runs. We then check the
characteristics of the component groups: if we do not find any bad component group,
we can directly calculate the distance as presented in Sections 5.3 and 5.4:

did
DCJ(A,B) = |G | − c+

∑
C∈R(A,B)

λ(C),

for which the indel-potential λ(C) of each cycle C, the number of cycles c and the
number of common markers |G | are required.

If we detect bad component groups, we proceed by building the labelled component
group tree T (A,B) and transforming it into the bad labelled component group tree
T◦(A,B). The first observed property of the tree is the leaf composition L(A,B) =

(nA , nB , nε, nAB) and ensuing the residual leaf composition Lr(A,B) = (rA , rB , rε, rAB).
Depending on the number of leaf types present, we may further reduce single values
of Lr(A,B). Note that actually performing the reduction(s) is not necessary, as it has
already been performed in the exhaustive analysis that lead to the base cases. We
look up the residual leaf composition (as given in the appendix). Depending on which
properties of the tree influence the cost of this leaf composition, we need to check the
tree for their presence, e.g., different separations or links. Also, the existence of a solo
ε-leaf might influence the total cost. The case we looked up merely provides the cost
of Tr(A,B) and, inserted into the formula from Lemma 5, yields:

cost
(
T◦(A,B)

)
= cost

(
Tr(A,B)

)
+
nA − rA

2
+
nB − rB

2
+ (nε − rε) +

nAB − rAB

2
,

which then gives us the cost of an optimal tree cover of T◦ and thus the additional cost
evoked by the presence of all bad component groups. In total the following formulae
give the minimum number of steps necessary to sort genome A into genome B using
only inversions, insertions and deletions:

did
INV(A,B) = did

DCJ(A,B) + τ ∗INV(A,B),

which expands to:

= |G | − c+
∑

C∈R(A,B)

λ(C) +
nA−rA

2
+
nB−rB

2
+ (nε−rε) +

nAB−rAB

2
+ cost

(
Tr(A,B)

)
.
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Figure 7.1: Visualisation of steps for the computation of the inversion-indel distance.
The subroutine for computing the cost of an optimal cover is shown in Figure 7.2.

If we were to use a notation to specifically address each combination of tree properties
instead of cost(Tr) we could thus address the cost of the residual tree as:

cost(Lr(A,B), {separations}, {links}, solo ε).

Then all possible combinations need to be listed in order to not take the worst case
directly, when others would apply. The catalogue given in the appendix addresses the
residual leaf compositions as a first key. For each leaf composition a procedure-like
manner is given, that corresponds to a sequence of if-thens where the order imposes
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Figure 7.2: This subroutine continues the case from Figure 7.1 in which there are bad
component groups present and shows the steps from constructing the tree until the
inversion-indel distance is obtained.

the use of else-if already. We thus do not directly apply such a tuple as proposed
above. It should be noted that the exhaustive analysis also showed that all properties
listed in Subsection 6.2.4 are indeed sufficient.

Complexity analysis. We know from [26] that the DCJ-indel distance can be com-
puted in linear time with respect to the input genomes. Before we construct the tree
data structure, we merge all AB-cycles into a single AB-cycle. If there is a single
such cycle that is bad and contains four or more labels, we perform a neutral inversion
fusing two pairs of runs. Furthermore, in [12,68] it was shown that the component
groups of a pair of (linear) genomes can be found in O(|G |) time.
After detecting the number of bad component groups (red lozenge of Figure 7.1) we

have three options. In case we have fewer than three component groups, the distance
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computation is straightforward. Otherwise, we have to handle the bad component
groups differently by constructing the bad labelled component group tree.
In [12,68] it was shown how a component group tree can be constructed from the

component groups by walking along one of the input genomes. We showed in Chapter 5
that any linear representation of the relational diagram produces the same tree, hence,
we simply choose one fixation for the detection of component groups. For each position,
it is checked, in a data structure that stores the start and stop positions of component
groups, if the start or end of a component was detected and a tree with corresponding
nodes is built. This is possible in O(|G |) time [12,68]. For our transformation of the
labelled component group tree T (A,B) into the bad labelled component group tree
T◦(A,B), we traverse T in a bottom-up manner and recursively remove good nodes.
For each removed good node that has labels, its parent is assigned the union of both
their labels. While doing this, we report the leaf composition L(A,B). After the
traversal is finished, we compute Lr(A,B) and look up the cover cost.
The necessity of detecting different tree properties (which is possibly expensive)

depends on whether it is requested by the base case that we are looking up. Let us
assume it has to be done for all possible properties. Separations can be detected by
determining subtrees and separating vertices. In a labelled component group tree,
constructed as in [12,68], there exists a root. For a single leaf type, we traverse the
tree in a bottom-up manner for each leaf of that type. The first leaf is followed until
the root and all vertices on that path are marked. For the other leaves, we follow and
mark the vertices on the path to the root until either the next marked vertex or the
root is reached (marking it as the end of the path). Then, if the root is the end of
exactly on such marked path, in a top-down manner, we remove the vertices that have
a single marking until we reach a vertex that has more than one marking. The marked
vertices determine the subtree for this leaf type. Obviously, the same is done for the
other leaf types. A vertex that is not marked is then a separating vertex. Some base
cases check for separations or non-separations of combined subtrees. In this case, a
similar traversal has to be done for the concerned leaf types together. For links, we
can check labels within the subtree during traversal. As the label could also be in the
closest separating vertex of a specific subtree, we also need to check the separating
vertices closest to the branching node of this subtree and the other (labelled) subtree.
A leaf is a solo ε-leaf if its removal does not create new bad leaves or produces a new
separation. We need to find at most one such ε-leaf. Any leaf on a long branch cannot
be a solo ε-leaf. Detecting ’short’ leaves was already described in [12] but we need
to check the second requirement of the definition for solo ε-leaves. The interrelation
of subtrees is intact in the following cases: for one, if the ε-subtree is separated from
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the other subtrees, and, for another, if the parent of the short ε-leaf has only edges
that belong to the ε-subtree. Otherwise, careful analysis is necessary. A possible, but
expensive, approach deletes the short ε-leaf, checks anew which separations exist (the
markings from this leaf to the next branching node that has two ε-markings need to be
removed) and then determines whether the treated leaf was a solo ε-leaf. Otherwise,
we go back one step and check the same for any other short ε-leaf. Except for this
last step, we achieve O(|G |) time. Including the step, the worst case is O(nε · |G |),
unfortunately. This strongly motivates to find a better way to determine solo ε-leaves.

7.2 Sorting with Inversions, Insertions and Deletions

Naturally, we not only want to know the distance of two genomes, that is, the length
of a shortest sorting scenario. Rather, we also want to know the chronology and
implementation of these operations on one genome in order to derive the other.
The sorting process of genomes A and B starts the same way as the computation of

the distance: We first construct the relational diagram of the two genomes, determine
the different cycles and perform all merges of AB-cycles. Then the component groups
are determined and, if bad component groups are present, the labelled component
group tree T (A,B) is constructed which is then transformed into the bad component
group tree T◦(A,B). The homogeneous safe paths are translated into their correspond-
ing merges of cycles (and thus component groups) until the tree corresponds to the
residual tree Tr(A,B). The covers given in Section C of the appendix are then used
to complete the resolving of all bad component groups. We are left with only good
component groups. These still need to be sorted, for which only split inversions are
used. However, prior to the final sorting with split inversions, we need to perform
the insertions and deletions necessary. From Section 5.4 we already know how to find
positions for this. In the end, we are left with a pair of sorted genomes.

7.2.1 The Residual Tree Cover as Precursor

The procedure described above is derived from the steps and proofs we undertook
until we obtained the residual tree. In hindsight, there is an easier way that, at the
same time, easily assures that the reduction of T◦(A,B) to Tr(A,B) is valid. In the
following, we describe how the different steps can be arranged in another order and
provide a small example.
When analysing the leaf composition of T◦(A,B), we know what would be the re-

sulting leaf composition of Tr(A,B). We know an optimal cover for each Tr and thus
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whether we need links and/or a solo ε-leaf. The cover of Tr(A,B) can be applied to
T◦(A,B) thus eliminating any separating vertices and leaving behind an even number
of leaves for any type of subtree and a tree that has no separating vertices. This way,
the reduction is more straightforward. After having turned all bad component groups
into good component groups, like above, we sort the good component groups with split
inversions and indels.

As an example, let us be given a tree with leaf composition L(A,B) = (8, 6, 0, 1)

and that has none of the requested features yielding lower cost. Instead of reducing
the tree, we search for the reduced leaf composition Lr(A,B) = (2, 2, 0, 1) in the list
of base cases directly (see page 193) and find that case ’W’ applies. We then apply a
joint inversion to a cycle of an A-leaf and a cycle of a B-leaf. Another joint inversion is
applied to an A-cycle of an A-leaf and an A-cycle of the only AB-leaf. The third joint
inversion acts on a B-cycle of a B-leaf and a B-cycle of the previously used AB-leaf.
Because we used up some leaves, by turning them into good component groups, the
intermediate leaf composition is L′(A,B) = (6, 4, 0, 0) and we know that after applying
the cover from the residual tree, each subtree has an even number of leaves and no
separation does exist. The remaining leaves in each subtree can thus be covered by
long homogeneous paths until no bad leaf exists.

7.2.2 Sorting with Inversions and Deletions

Sorting with inversions and deletions was presented in [42,43]. In our representation,
we can find all instances of trees with ε-leaves and A-leaves in the leaf compositions
(1, 0, 1, 0), (1, 0, 2, 0), (2, 0, 1, 0), and (2, 0, 2, 0). Let us compare the solutions by means
of a small example. Leaf composition (1, 0, 2, 0) must use an A-ε-link if both the
following conditions are fulfilled: the subtrees are separated and there is no solo ε-leaf.

There are two reasons for which the theory presented in this earlier publication poses
incorrect solutions. First, the definition of “short” leaf (treated as simple hurdle in
that publication) was not altered with respect to the earlier inversion model. As we
showed in a counter-example on page 123 (in Figure 6.6), covering a leaf on a seemingly
short branch by a short path is not necessarily safe. The cases where we have a single
ε-leaf in the residual tree that is not separated from the A-subtree can only occur if
either nε = 1 or if prior to the reduction an ε-leaf was present whose removal would
create neither a new bad leaf nor a separation.

Secondly, the theory presented in [42,43] concentrated on merging hurdles, which
are bad leaves of the bad labelled component group tree T◦(A,B), derived by cutting
all good leaves. Employing only these naturally excludes the use of internal vertices
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and any good leaves that might be labelled. Using only hurdles poses two flaws.
For one thing, taking into account good leaves might allow us to use more labelled
homogeneous paths, potentially reducing the cost of the tree cover with respect to
paths ending in unlabelled vertices (this we showed in Subsection 5.6.2). The other
weakness is that links do not occur in the theory of [42,43]. Neglecting the link in the
example given above leads to higher cost which are obviously suboptimal.

7.3 Model Limitations and Extensions

In contrast to the DCJ and DCJ-indel model, that can be applied to genomes with any
number of linear and/or circular chromosomes, the inversion-indel model as proposed
in this thesis is applied to unichromosomal circular genomes only. The restrictions,
that are posed on the type of genomes allowed, can be set aside in some way or another.

7.3.1 Multichromosomal Genomes

For one, the restriction to a single chromosome is due to the fact that an inversion
cannot transfer markers from one chromosome to another. Another reason is that
the deletion of markers from one genome and their insertion into another position is
not permitted. However, if we have two multichromosomal genomes A and B without
duplications and for each chromosome in the core genome A|G there is a corresponding
chromosome in B|G with the same markers (and vice versa), no inversion needs to
transfer a common marker to another chromosome. We can then regard the inversion-
indel distance and sorting problems as several individual subproblems. Each instance
then solves the inversion-indel distance on the pair of chromosomes that have the same
set of common markers. A sorting scenario for such a pair of genomes can alter the
order of inversions, insertions and deletions also across chromosomes. Genomes that
contain one chromosome with common markers and one or several linear or circular
singletons containing only unique markers are allowed, as the singletons require exactly
one insertion or one deletion each.

7.3.2 Co-tailed Genomes

For the inversion model, results were found for linear genomes as well as for circular
genomes [55,71,72]. We have shown in this thesis how inversion-indel distance and
sorting problems are applied to unichromosomal circular genomes. If we compare
a pair of linear chromosomes, the relational diagram would have two paths. From
the DCJ-indel model [26] we know that recombination of paths is not always easily
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accomplished. However, we are untroubled by this, if all chromosomes of the core
genomes are co-tailed (that means the telomeric G -adjacencies in both genomes are
identical, with exception of, perhaps, the label). In this case, the relational diagram
has exactly two trivial paths and the other components are all cycles. We are then
able to apply the theory to the relational diagram.

Capping (general linear genomes). If the chromosomes are linear but not co-
tailed, we are still able to apply the inversion-indel model as presented in this thesis.
A way to deal with this is by capping. Adding caps to chromosomes produces artifi-
cial telomeres for the linear chromosomes. This is modelled by adding two artificial
markers, that are not present in any of the genomes, to the set of common markers.
Commonly, when handling genomes that have G = {1, . . . , n} we add 0 and n+ 1 as
common markers (regarding a single chromosome). One of each is appended to the
ends of the chromosome in A and also in B. In this way the two existing paths of the
relational diagram are closed into one or two cycles and also two new trivial paths are
created. However, depending on which side the 0 and which side the n + 1 is added
to each genome, the paths might be closed differently. For this, we quickly check the
DCJ-indel distance of the two distinct possibilities and choose to continue with the
one yielding lower cost. As the only unsorted components of the relational diagram
are now cycles of one circular chromosome, we can apply the inversion-indel model as
usual.

In the next and final chapter, we will subsume the contents of both parts of this
thesis and give an outlook on future work.
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Chapter8
Final Remarks

The whole secret of life is to
be interested in one thing pro-
foundly and in a thousand things
well.

Horace Walpole

8.1 Summary

Situated in the field of comparative genomics, this thesis covers several parts of genome
rearrangements. The necessary abstractions of genomes, goals of comparative ge-
nomics and definitions of genome modification models were given in the first chapter,
subsequently followed by a deeper introduction on the modelling with insertions and
deletions (indels), graph data structures to represent the relation of a pair of genomes
and the double cut-and-join (DCJ) model in Chapter 2.

The two main parts of the thesis then build on the DCJ model. In the first part, that
is Chapter 3, the sampling of an optimal DCJ sorting scenario is studied. The method
for sampling uniformly among sorting scenarios that do not recombine a pair of AA-
and BB-paths was integrated into an existing software framework. The evaluation
of real and artificial data shows that choosing other, more naïve sampling methods
deviates notably from the expected value and our uniform sampling.

In the second part, comprised of Chapters 4–7, the DCJ model is used as a basis
and extended in two different directions: first, towards the inclusion of indels (which
is previous work and presented in Chapter 4), and second, towards the use of only
inversions in a scenario (which is also previous work, presented in Section 5.3 and
Subsection 5.6.1). The main contribution of this thesis is the combination of these
two extensions, leading to the solution of the inversion-indel distance building on the
DCJ(-indel) distance.

We showed that for good component groups, the indel-potential, which is achieved by
using any optimal DCJ operation, is also preserved if the only rearranging operations
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allowed are inversions. In the next step, a data structure, the (bad) labelled component
group tree, was used to represent the nesting relationship among component groups.
An optimal cover of this tree with the considered cost scheme provides the minimum
extra cost to handle bad component groups. Unlike simply adding the additional cost
for indels to the additional cost for treating bad component groups, the modus operandi
presented here seeks the minimum overall cost. Thus, we save indel operations while
doing the extra inversions. Computing an optimal tree cover was studied in Chapter 6
and broken down to a finite number of base cases. In this way, we were able to
provide an offset to compute the inversion-indel distance with respect to the DCJ-
indel distance. Finally, we not only provide the cost for each base case, but also a
cover. Along with all previously taken actions, this provides the means to finding an
optimal inversion-indel sorting scenario.

8.2 Prospects

For both parts of this thesis, namely the sorting space of the double cut-and-join model
and the sorting with inversions and indels, extensions and related problems arise.

Sampling Genome Modification Scenarios

For both the inversion [21] and the DCJ [22,23] model the sorting space has been
investigated but only optimal scenarios without indels are considered.

Suboptimal sorting scenarios. Recently, Feijão [45] investigated the solution space
of suboptimal DCJ scenarios, that is, scenarios with extra steps compared to the length
of an optimal sorting scenario. The motivation for searching suboptimal scenarios lies
in finding a maximum likelihood estimator for DCJ scenarios. Feijão found a formula
for the number of scenarios that have up to one extra step. For suboptimal scenarios
with more deviation from the distance no formula exists yet, but the problem could
be interesting to study.

Sampling sorting scenarios with indels. We know from Section 2.3 that all
components of the adjacency graph can be sorted individually using only optimal
DCJ operations. The formula that gives the number of optimal scenarios also only
considers individual sorting. However, as discussed in Chapter 3, only instances of
the adjacency graph that do not have an AA-path while at the same time having a
BB-path can be counted that way. If a recombination of an AA-path and a BB-path
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is possible, the derived number serves only as a lower bound to the number of optimal
scenarios.

For the DCJ-indel model some recombinations have to be performed in order to
achieve a scenario of shortest length. We could however, similarly to Section 3.3,
restrict ourselves to circular genomes. In this case sorting each cycle individually is
always optimal. For each run whose labels are accumulated in a single adjacency, the
order of accumulating them as well as the label into which it is accumulated is subject
to choice. In the same way, the merging of runs can be done at different points in the
scenario or in different locations. Furthermore, we showed in Examples 11 and 12 (on
page 75 f.) that even the mechanism of merging runs can be altered. In [26] DCJ-
indel sorting was proposed where the focus was on maximising the number of DCJ
operations or the number of indel operations within an optimal DCJ-indel scenario.
Sampling a DCJ-indel sorting scenario is further complicated by the findings listed in
Table 4.1. The case given in the last row, where an A-run of each cycle is merged while
at the same time a B-run of each cycle is merged, maintains the DCJ-indel distance.
This means that the merging of two cycles into a single cycle can be part of an optimal
DCJ-indel scenario. The sorting space for the DCJ-indel distance thus not only needs
to handle insertions and deletions but also the recombination of any pair of AB-cycles.

Since already the simple case of the DCJ-indel distance in which only cycles are
present is sufficiently complicated, counting all optimal inversion-indel sorting scenar-
ios is a very distant prospect.

Inversion-indel Distance and Sorting

The inversion-indel model has been addressed before [42,43,89] and finally we pre-
sented in this thesis the first complete treatment of distance and sorting by inversions,
insertions and deletions. Although these two questions are answered, there are further
problems that arise and still demand answers.

Software. The implementation of an algorithm, or rather pipeline, is still outstand-
ing. The UniMoG software suite1 already provides data structures for handling genomes
and computing the DCJ-indel distance as well as the inversion distance [59]. And the
display of a sorting scenario that includes inversions and indels is already in use for
the DCJ-indel model. It is therefore a future endeavour to extend the existing tree

1 http://bibiserv.cebitec.uni-bielefeld.de/dcj/welcome.html
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data structure of the inversion model to include labels and refine the obtainment of
the bad labelled component group tree. Furthermore, the base cases of the residual
tree have to be included and the tree has to be searched for the properties necessary
to give the optimal cost. For the sorting, a complete tree cover that gives optimal cost
has to be translated into actual inversions.
Only then will the computation of the inversion-indel distance be automated and

provided for a larger audience. Moreover, pairwise comparisons of multiple genomes
will become feasible.

Co-optimal sorting scenarios. For the DCJ-indel model several sorting proce-
dures were proposed [26]. One procedure maximises the number of DCJ operations
in an optimal sorting scenarios. Another procedure maximises the number of indel
operations in an optimal sorting scenario. A similar quest could be pursued for the
inversion-indel model. For the case analysis usually only simple and sufficient covers
were given, although for different properties several co-optimal covers are known to
exist. For an analysis in maximising indels or inversions, the order in checking the
properties that yield the same distance may have to be altered. Furthermore, some
properties are not listed as there exist alternate co-optimal covers that do not require
this specific property. It may be necessary to add further properties to the case analysis
in order to minimise/maximise the number of indels in specific cases.
The merging of AB-cycles is a simple attempt at ridding the relational diagram

of bad component groups without extra cost. If the number of inversions is to be
minimised, then performing an extra inversion to save indel operations should be
carefully considered. For example, if there exist only good AB-cycles and the subtree
that contains all nodes with AB-cycles, independent of their character (good/bad) or
placement (internal/external), does not share any bad node with the rest of the tree,
merging all AB-cycles into a single cycle is not necessary. In this case the merging
of AB-cycles would not destroy any bad component groups or diminish the inversion-
indel distance and could thus be neglected.

Content modifications. The computation of the double cut-and-join distance with
indels under unit cost or distinct cost is well established [20,26,37]. The thesis at hand
shows how to compute the inversion distance with indels under unit cost. Future work
could include the computation of the inversion-indel distance with distinct operation
cost or the computation of the inversion-substitution distance. We would assume an
insertion to still have the same cost as a deletion, however, the inversions listed in
Table 5.1 (see page 91) would then yield different overall cost. For instance, a joint
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inversion acting on two AB-cycles changes the DCJ distance by +2 and reduces the
overall indel-potential by −2 as it fuses two pairs of runs. This operation is optimal for
the inversion-indel model under unit cost. With distinct operation cost this might be
a strictly positive value. The idea to merge all AB-cycles in the beginning, potentially
bringing the number of bad component groups to zero (see Section 5.5), then needs to
be evaluated against the extra steps necessary to handle the concerned bad component
groups differently. Furthermore, the difference in indel cost changes the cost of paths
in the tree and thus the composition of an optimal tree cover.

Pancakes. The unsigned prefix reversal problem that is also known as the pancake
flipping problem [50] relates to the prefix inversion problem on unsigned genomes and
was originally described like this:

“The chef in our place is sloppy, and when he prepares a stack of pancakes they come
out all different sizes. Therefore, when I deliver them to a customer, on the way to
the table I rearrange them (so that the smallest winds up on top, and so on, down
to the largest at the bottom) by grabbing several from the top and flipping them over,
repeating this (varying the number I flip) as many times as necessary.” [50]

Similarly, there is the sorting of burnt pancakes [32] that relates to the prefix in-
version problem on signed genomes, in which not only the order of pancakes but the
up-facing side is important.
If indels are included this could be the sorting of burnt pancakes, crêpes and Pfann-
kuchen problem. In adapting the above problem description, we could formulate the
new problem as:

“There are two chefs in our place, one can prepare Pfannkuchen and the other can
prepare pancakes and crêpes. In the process of preparing these, they get burnt on
one of the sides. The chefs in our place are stubborn (they will only prepare their
types of dish) and sloppy (the pancakes and Pfannkuchen come out all different sizes
and the pancakes are stacked randomly with crêpes in-between). Therefore, when I
deliver them to a customer, on the way to the table I have to rearrange them (so that
the smallest winds up on top, and so on, down to the largest at the bottom, and that
their burnt sides face down) by grabbing several from the top and flipping them over,
repeating this (varying the number I flip) as many times as necessary. Unfortunately,
some customers do not want crêpes, and I also have to remove them, preferably in as
few moves as possible. Furthermore, some customers want Pfannkuchen, but, since
they also come along in varying size, they have to be introduced to the stack and then
sorted along with the pancakes from smallest to largest.”

Here, the prefix reversal also needs to take into account the grouping of insertions and
the grouping of deletions. But, as the waiter cannot grab parts within the stack, the
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grouping has to respect that inversions can only reverse parts of the stack from the
top.

Distance Computation via DCJ

A distance computation for general genome modification models can be formulated as
in Equation (4.1) (from page 72):

dM(A,B) = dI
R(A,B) = dDCJ(A,B) + τ I

R(A,B).

Apart from the theory presented in this thesis, also for some other models the offset τ I
R

has been determined. The notation for the formulae that follow is: c is the number of
cycles, p is the number of paths, |F | is the number of trees in forest F , n is the number
of leaves in a tree or forest, λ(C) is the indel-potential of cycle C, and P,Q, T, S,M,N

are computed as given in [26]. Restrictions with regard to the pair of genomes are
given on the right-hand side.

τrDCJ = 0, circular intermediates are
immediately incorporated [90]

τINV = 0 no bad component groups [10,55,72]

τ id
DCJ =

∑
C∈R(A,B)

λ(C), circular chromosomes [26]

τ id
DCJ =

∑
C∈R(A,B)

λ(C)−2P−3Q−2T−S−2M−N, [26]

τ id
rDCJ = τ id

DCJ,
circular intermediates are
immediately incorporated [27]

τ idINV = τ id
DCJ, i.e. τ ∗INV = 0 no bad component groups [89]

τINV = cost(T ) where T has unlabelled bad leaves [10,55,72]

=

{
n+ 1, n is odd and no solo ε-leaf exists
n, otherwise.

τSCJ = 2 · cnon-trivial [9]
τSC/J = dDCJ(A,B) + 2 · cnon-trivial − pAA − pBB, [47]

τTrl = cost(forest F ) [11,68]

=

{
n+ 2, n is even and |F | = 1

n, n is even and |F | 6= 1

n+ 1, n is odd.
τHP = cost(T ) where T has unlabelled bad and semi-bad leaves [14,44]

The five cases require a complicated notation, and can be found in [44].

The list above shows solutions for some related or interesting models. However, there
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are still models for which the offsets have not been determined.

Distance Relations. It is also conceivable that in addition to the DCJ, restricted
DCJ and single cut or join (SC/J) models, insertions and deletions will be allowed
also for genome modification models such as the Hannenhalli-Pevzner (HP) model or
sorting by translocations. For the HP model, a distance computation can be done
via the computation of the DCJ distance and construction of a tree similar to the
component group tree [14,44]. Here, the nodes have three different characters (black
vertices are good, white vertices are bad and grey vertices are semi-bad and represent
bad component groups that contain telomeres). For a prospective HP-indel model,
additionally, labels need to be included, expanding the types of nodes from three, in
the unlabelled case, to 3×4 = 12 combinations of characters and labels. In the tree, all
semi-bad and bad vertices need to be covered by short or long paths. There are eight
different types of short paths and 36 different long paths that use bad or semi-bad
nodes. It needs to be investigated which tree properties influence the overall minimum
cost of a tree cover, for example separations between not only the subtrees defined by
labelling but also between subtrees defined by their character.

I have contributed an important building block to this interesting area and I am
certainly curious about filling gaps for finding τ I

R, such as including different content
modifications like substitutions and duplications.
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Notation

◦ Cap-symbol denoting a telomere 4
·|G Core genome of corresponding genomes A|G , B|G 17

A Set of unique markers of genome A A = GA\G 16
AA-path AG-path that has both ends in genome A 24
AB-path AG-path that has one end in both genomes 24

B Set of unique markers of genome B B = GB\G 16
BB-path AG-path that has both ends in genome B 24

{ Cover, set of covering paths for T◦ 116
{r Cover, set of covering paths for Tr 116

dM, d
I
R Distance for a model M, e.g. DCJ, INV

or other sets of allowed operations M = R∪ I 72, 166

G Set of markers common to genomes A and B G = GA ∩GB 16
GA,GB Set of all markers from genome A (resp. B) 5

I Set of all content modifying operations 11, 15
I Selection of content modifying operations I ⊆ I 11, 15

K Component group, i.e. set of interleaving
cycles of R(A,B) 92, 93

L Leaf composition of T◦(A,B) L(A,B) 114
Λ Number of runs in a cycle C Λ(C) 74
λ, λ(C) Indel-potential of a labelled cycle C λ = dΛ(C)/2e 76
Lr Residual leaf composition of Tr(A,B) Lr(A,B) 135

179



Notation

MG Mastergraph MG(A,B) 24
M Set of all genome rearrangement models M = R × I 11
M Specific genome modification model

with a specific set of allowed operations M = R× I 11

R Relational diagram of genomes A and B R(A,B) 24
ρ Specific rearrangement operation ρ 42
R Set of all rearranging operations 11
R Specific selection of rearranging operations R ⊆ R 11

T◦ Bad labelled component group tree T◦(A,B) 110, 114
Tr Residual tree, derived from T◦ Tr(A,B) 135

X Types of labellings from {A ,B , ε,AB} 77, 119, 127
X Adjacency graph component of arbitrary

type (cycle, AA-, AB- or BB-path). 30

Y Types of labellings from {A ,B , ε,AB} 119

D Set of all distances in the adjacency graph 37
j Split group identifier 40, 43
sjd Number of sorting scenarios for

the representative of Ud of split group j 43
s Number of sorting scenarios for U 36
U Set of all unsorted components 36
Ud Set of all components with distance d Ud ⊆ U 37
wjd Weight of a bucket,

(representing split group j with distance d) 43, 49
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Appendix

The truth is rarely pure and
never simple.

Oscar Wilde

A Additional Examples

In this section we give examples that serve as a supplementary demonstration of con-
cepts or examples given in Chapter 6.

A.1 Unsafe Covering Paths

As Example 18 (see page 114) already shows, different properties of a tree influence
the optimal cost of the cover. Hence, a tree T◦(A,B) should be reduced such that these
properties are present in Tr(A,B), otherwise the reduction step would not be safe.
If a new bad leaf emerges from such a procedure, the overall cost of the cover may be

increased, such a path is therefore not safe. This happens if we choose paths carelessly.
Figure A.1 shows a tree that has two ε-leaves and four A-leaves. The two subtrees
are non-separated. Covering `2 and `3 with a long path transforms all nodes of that
path into a single good node that is labelled. This new node is then, in the process
of turning the tree into a bad labelled component group tree again, removed (and the
labels pushed inwards). It remains `4, a new leaf that is bad. If `4 would be a good

Figure A.1: Choosing leaves for homogeneous paths carelessly may result in a new
bad leaf `4. The covering path is not safe.

vertex, the covering path of `2 and `3 would still become a leaf, but is erased while
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transforming the tree into a bad labelled component group tree again (and therefore
it is safe). Furthermore, if at the branching vertex of `2 and `3 there would be another
sibling, a covering path of these would also be safe, as it does not create a new bad
leaf. An alternative cover is to cover `2 by a long path along with `1 instead. The
covering path would not produce a new bad leaf and is therefore safe.

A.2 Non-Separated Labelled Tree

Figure A.2 (i) shows a bad component group tree with leaf composition L = (3, 0, 2, 0)

and no separating vertex exists between the two subtrees. When further reducing the
A-subtree by covering `2 and `3 with a long homogeneous path (depicted in tree (ii)),
the A-subtree is reduced to a single leaf and the bad nodes on the branch of `1 become

(i) A tree without separation
that has three A-leaves.

(ii) Covering two A-leaves
with a long homogeneous path.

(iii) The covered vertices are
merged into a single meta-vertex.

Figure A.2: A bad component group tree with two non-separated subtrees. The sep-
aration of the labelled subtree is compensated for.

separating vertices.
Fortunately, with the reduction it is guaranteed that the newly formed component

group which is good is also labelled. Figure A.2 (iii) depicts this with a meta vertex v
whose label serves as a link. It is hence always possible for all separating vertices, that
emerged by the reduction of labelled subtrees, to be covered at the same cost with a
long homogeneous path as it would cost to treat the leaf without separation.

A.3 Separations

For space reasons only a few examples were given in Subsection 6.2.1 and we seek to
elaborate the individual and combined separations with some more examples. In all
pictures the triangles correspond to a subtree that, if coloured, represents a certain leaf
type. A sequence of separating vertices (of arbitrary length) is drawn with a dotted
line that has a separating vertex. If these paths are black and solid they contain no
bad vertices.
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Separation of Subtrees

If we generically consider subtrees (whether or not they represent combined subtrees
or single subtrees), separations of different kinds are possible. Figure A.3 shows trees
with the maximum of (individual) separations.

Figure A.3: A maximum of individual separations for different numbers of leaf types.
Each triangle represents a subtree of a single type, and all trees have full separations.
For the rightmost tree additionally two pairs of subtrees are separated.

Adding another subtree to trees (i) or (ii) can be done in several locations leading
to different shapes of the extended tree. Including trees (iii) and (iv) from Figure A.3
the other shapes are depicted in Figure A.4.

(i) Three subtrees.
One is non-separated.

(ii) Four subtrees. One
is non-separated.

(iii) Four subtrees.
Two are non-separated.

(iv) Four subtrees.
One is non-separated.

Figure A.4: Trees that have three or four subtrees of which not all are separated.

Separation of Types of Subtrees

Now we become more specific by labelling the subtrees. Figures A.5 and A.6 focus on
subtrees that are non-separated. First we show three examples of trees where the A-
and B-subtree are not separated by separating vertices but may still not share edges
or even nodes.

(i) The A- and B-
subtrees overlap.

(ii) The A- and B-subtrees are
“separated” only by good vertices.

(iii) The separation ends in the
B-subtree.

Figure A.5: Different trees whose ε- and {A ,B}-subtrees are separated.

In Figure A.6 all three trees show A- and ε-trees that are both individually sep-
arated. For each individual separation, at the same time the combined tree that is
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composed of the other leaf types is separated. Here, this means in each instance the
A-subtree is separated from the combined {B , ε}-subtree and the ε-subtree is separat-
ed from the combined {A ,B}-subtree. However, since the B-subtree is not separated
in any of the three trees, neither is the combined {A , ε}-subtree separated.

Figure A.6: The ε- and the A-subtrees are separated, while the B-subtrees (and thus
the combined {A , ε}-subtrees) are not.

We proceed with examples of four leaf types. In all four trees depicted schematically
in Figure A.7 the combined {A , ε}-subtree is separated from the combined {B ,AB}-
subtree. While in tree (i), TA

◦ and T ε◦ are not separated individually, in trees (ii)

(i) (ii) (iii) (iv)

Figure A.7: Schematic display of some examples for four subtrees and their inter-
relation. Which subtrees or combined subtrees are separated or not is listed in
Table A.2.

and (iii) additionally the ε-subtree is separated individually. In tree (iv) all subtrees
are separated from another. For simplicity, an overview of all possible separations and
non-separations of the trees in Figure A.7 is given in Table A.2.

Table A.2: A list of separations and non-separations of the subtrees in each of the
trees of Figure A.7. Subtrees or combined subtrees that are directly attached to the
counterpart marked by a 4. Otherwise, they are separated and marked by an 7.

non-separated
(i) (ii) (iii) (iv)

A vs. {B , ε,AB} 4 4 4 7

B vs. {A , ε,AB} 7 7 7 7

ε vs. {A ,B ,AB} 4 7 7 7

AB vs. {A ,B , ε} 7 4 7 7

non-separated
(i) (ii) (iii) (iv)

{A , ε} vs. {B ,AB} 7 7 7 7

{B , ε} vs. {A ,AB} 4 4 4 4

{ε,AB} vs. {A ,B} 4 4 4 4
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A.4 Short and Long ε-Branches

Although one might detect more than one ε-leaf on a branch to which the definition of
short branch applies, it is not always optimal to use all instances that were detected
in the beginning. Figure A.8 shows several examples of ε-leaves with different branch
lengths.

(i) All ε-leaves are on
long branches.

(ii) Two ε-leaves are on long
branches.

(iii) No ε-leaf is on a long branch, yet
not all can be covered by short paths.

Figure A.8: Three examples of a tree with three ε-leaves on branches with various
lengths.

Obviously, tree (i) can be covered only with two long homogeneous ε-paths, yielding
cost 4 in total. Tree (ii) has one ε-leaf on a short branch. Covering `3 with a short
path and using a long homogeneous path for `1 and `2 adds up to cost 3 and is optimal
and safe. In tree (iii) all three leaves fit the definition of ε-leaves on short branches,
however, once we cover `2 (or any other leaf for that matter) by a short path, the rest
of the tree loses its trifurcation and `1 and `3 must now be covered by a long path that
includes all three bad nodes. The total cost for this cover is 3 which is optimal and
safe. If we would cover all leaves with short paths separately, a new leaf (the internal
bad vertex) would arise and the total cost would amount to 4, which is neither optimal,
nor safe. Thus only one of the three leaves is safe to be covered by a short path. Only
if in the latter case the branching node is a good round node or a square node, a cover
could consist of only short paths.
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A.5 Counter-Example for Reduction of AB-Leaves

In Figure 6.13 (on page 133) we studied a tree with leaf composition L(A,B) =

(2, 2, 0, 4) and compared it to the same tree with only two leaves in the AB-subtree.
Now we study an example that has all four types of leaves. In both trees of Figure A.9

the A-, B- and ε-subtrees as well as the separation of subtrees is the same and no links
are present, merely the AB-subtree has a single leaf in the left tree and three leaves
in the tree depicted on the right.

Figure A.9: Left: A tree with L(A,B) = (2, 2, 1, 1) whose optimal cover has cost 5
and can be achieved by using an AB-A-path, an A-B-path and a B-ε-path. Right:
A tree with the same structure, but with L(A,B) = (2, 2, 1, 3). Here, an optimal
cover has cost 5 and can be achieved by using two A-AB-paths, an AB-B-path and
a B-ε-path.

There are several co-optimal covers for the left tree that have cost 5. Obviously,
using a homogeneous AB-path in the tree on the right-hand side has cost 1 and yields
the tree on the left that has cover cost 5, resulting in overall cost of 6. An alternative
and optimal cover for the tree on the right uses two A-AB-paths, an AB-B-path and
a B-ε-path, yielding cost 5 in total.

Thus reducing the AB-subtree to a single leaf is not optimal.

A.6 The Number of Separating Vertices Matters

The following pictures (Figures A.10 and A.11) for trees with leaf compositions L =

(2, 2, 0, 0) and L = (2, 0, 2, 0) show that a strategy that yields an optimal tree cover in
one case does not produce an optimal cover in another (and vice versa).
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(i) More than one separating
vertex.

(i-a) A cover of two heteroge-
neous paths costs 4. 4

(i-b) Co-optimal cover using
homogeneous paths. 4

(ii) A single separating ver-
tex.

(ii-a) Heterogeneous paths
yield cost 4. 7

(ii-b) An optimal cover of ho-
mogeneous paths (cost 3). 4

Figure A.10: Bad component group trees with leaf compositions L = (2, 2, 0, 0) and
different homo- and heterogeneous paths.

(i) A single separating ver-
tex.

(i-a) A cover with two het-
erogeneous paths costs 4. 4

(i-b) A co-optimal cover uses
two homogeneous paths. 4

(ii) More than one separating
vertex.

(ii-a) A cover with two het-
erogeneous paths costs 4. 4

(ii-b) A cover with two ho-
mogeneous paths costs 5. 7

Figure A.11: Bad component group trees with leaf compositions L = (2, 0, 2, 0) and
different homo- and heterogeneous paths.
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B Bounds to an Optimal Tree Cover With Restraints

The two propositions presented here represent only a small fraction of special cases
that could be studied for lower and upper bounds. When we have no separating vertex
we can lower the upper bound, as the following propositions show.

Proposition 19: Given a bad component tree T◦(A,B) with leaf composition L(A,B) =

(nA , nB , nε, 0) that has no separating vertex and for which nε is even, then we have:

cost(T◦) =
⌈nA

2

⌉
+
⌈nB

2

⌉
+ nε

Proof. There are no separating vertices which need to be covered. Therefore we use
long homogeneous paths for covering each subtree. When nA is odd, we use a long
homogeneous path connecting the last A-leaf with a previously used A-leaf, as any
alternative would yield the same or higher cost (similarly for the B-subtree). It is
optimal to cover an ε-subtree with even nε with only long homogeneous paths [55].

Proposition 20: Given a bad component group tree T◦(A,B) with leaf composition
L(A,B)= (nA , nB , nε, nAB) that has no separating vertex, then we have:

cost
(
T◦
)
≤
⌈nA

2

⌉
+
⌈nB

2

⌉
+ (nε + 1) +

⌈nAB

2

⌉
. (1)

Proof. There are no separating vertices which need to be covered, therefore, covering
all subtrees individually covers all bad vertices. Using long homogeneous safe paths for
covering each subtree of type X ∈ {A ,B , ε,AB} yields the individual cost bnX

2 c·cost(X )

and at most one leaf in each subtree remains (this can be on a long or on a short
branch). We can have two cases: (1) at most one value among nA , nB , nε and nAB

is odd, or (2) more than one of the subtrees has an odd number of leaves. In case
(1) , the cost amounts to cost(T◦) = dnA

2 e + dnB
2 e + cost(T ε◦ ) + dnAB

2 e and we cannot
obtain lower cost by using heterogeneous paths. In case (2) it may be necessary to
use heterogeneous paths in order to achieve the optimal cost. For each subtree with
an odd number of leaves, a single leaf remains uncovered. If it is on a long branch,
we either use a long homogeneous path (re-using a leaf) or a long heterogeneous path
connecting two subtrees that have an odd number of leaves. Any combination of such
paths is always with cost at most Inequality (1). Rather, if we use heterogeneous paths
that share the same label, we can achieve a lower cost. If the last odd leaf of a tree is
on a short branch, it may be covered by a short path that always has cost 1 and that
does not violate Inequality (1). We can always achieve a cover that amounts to at
most the cost given by Inequality (1) and at the same time cover all bad vertices.
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C Cover Descriptions

In this section we provide optimal covers and covering costs for trees that have two
or more types of leaves. Prior to determining an optimal cover, we use reduction to
obtain a residual tree. The ε-subtree has at most three and the AB-subtree at most
four leaves in a residual tree. The number of leaves in the A- and B-subtrees is limited
to two, for which, without loss of generality, we assume rA ≥ rB .

C.1 Nomenclature

All optimal covers presented are kept as extensive as necessary but as simple as possi-
ble. Apart from the tuple (rA , rB , rε, rAB) that is the residual leaf composition, we describe
the nomenclature of the cases and covers that follow by means of some examples.

(2,1,[3],4): The [ ] enclose the leaf type whose number can be reduced. Here, the ε
subtree that has rε = 3 leaves can be reduced to a subtree that has only
a single ε-leaf. At the same time, the AB-subtree that has four leaves
cannot be reduced. The resulting base composition is then (2, 1, 1, 4).

solo ε: A leaf in the ε-subtree can be covered optimally by a short path (or the
whole ε-subtree, if it consists of a single vertex and is not separated from
the rest of the tree).

ε not sep: There is at least one other subtree from which the ε-subtree is not sepa-
rated. Similar for A-, B- and AB-subtrees.

A(B: There is an A-B-link, see Subsection 6.2.2 on page 121. ∗( ε means any
label that serves as a link to the ε-subtree.

W,S,L,I: Identifiers of the covers, for example W (worst case), L (link), S (solo
ε-leaf is used or, if rε = 1, ε-subtree is not separated), I/II (other optimal
covers), SLb (combination of the above).

REDU: Reduction is possible for this set of properties. The cover in this case
consists of the homogeneous path(s) specified and the set of paths given in
the further reduced leaf composition for the same further tree properties.

AB−AB: A covering path using two AB-leaves that have not been used before.
Here, the covering path can use either both A-labels or both B-labels.

A−AB: Here, the A-label of the AB-leaf must be used.

A−AB: Underlining a label indicates that the respective node(s) has (have) been
used previously. After each covering path (each merge) the tree is con-
verted yet again into a bad labelled component group tree, and the labels
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of the now good leaves get pushed inward. This meta-vertex corresponds
then to the “re-used leaf”.

A−A/AB: A covering path using an A-leaf and either an AB-leaf or an A-leaf (both
would be optimal and were used before).

AB−A∗: A covering path using an AB-leaf (effectively its A-label) with an A-
link. Where the A-vertex is situated is specified in the case analysis, for
example it could be A( B or A( ε or A({B , ε}.

XXXXA(B: This property must be absent.

| 2: The cost of the cover is given to the right of the vertical bar.

| +2: A “+” means that the cost are added to those of the reduced leaf compo-
sition.

One has to be careful with rA , rB or rAB = 1. Some covers derived this through reduction.
If before, the subtree was not separated, but all branches were on a long branch, it
will have a single leaf separated by the branch. However, as stated earlier, the new
tree has the covering path as a single vertex which is internal and must contain the
labels of the leaves. Thus a cover that uses a short path may in fact correspond to an
A−A∗ cover and is looked-up in the corresponding case.

C.2 Trees with Two Leaf Types

For (residual) trees with exactly two leaf types, some cases do not need individual
attention. Observation 10 provides a simple cover for all cases when there are only
two leaves in total, thus for leaf compositions

(1,1,0,0), (1,0,1,0), (1,0,0,1) and (0,0,1,1).

Furthermore, according to Proposition 17 the subtrees can be optimally reduced to
have at most two leaves in each subtree. This renders the individual analysis of the
following leaf compositions superfluous:

(0, 0, [3], [3]), (0, 0, [3], [4]),

(1, 0, [3], 0), (2, 0, [3], 0), (0, 0, [3], 1), (0, 0, [3], 2),

(1, 0, 0, [3]), (2, 0, 0, [3]), (0, 0, 1, [3]), (0, 0, 2, [3]),

(1, 0, 0, [4]), (2, 0, 0, [4]), (0, 0, 1, [4]), (0, 0, 2, [4]).

Optimal covers for remaining leaf composition with two leaf types are given below.
Note the similarities between leaf compositions (rA , rB , rε, rAB) and (rAB , rB , rε, rA) (swap-
ping rA and rAB).
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(1,0,0,2)

any I A−AB , AB−A/AB 2

(2,0,0,1)

any I A−AB , A−A/AB 2

(2,0,0,2)

any I 2×(A−AB) 2


cover 2×(A−AB) is optimal for all three leaf
compositions (re-using a leaf, if necessary).

(2,0,1,0)
no separation I ε, A−A 2
else W ε−A , A−A 3

(0,0,1,2)
no separation I ε, AB−AB 2
else W ε−AB , AB−AB 3

(2,0,2,0)
no separation I ε−ε, A−A 3
else W 2×(ε−A) 4

(0,0,2,2)
no separation I ε−ε, AB−AB 3
else W 2×(ε−AB) 4

(1,0,2,0)
no separation I ε−ε, A 3
else A(ε L ε−ε, A−A∗ 3

solo ε-leaf S ε, ε−A 3
else W ε−A , ε−ε 4

(0,0,2,1)
no separation I ε−ε, AB 3
else A(ε La ε−ε, AB−A∗ 3

B(ε Lb ε−ε, AB−B∗ 3
solo ε-leaf S ε, ε−AB 3
else W ε−AB , ε−ε/AB 4

(2,1,0,0)
no separation I A−A , B 2
else B(A Lb A−A , B−B∗ 2

else W A−A , B−A 3
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(2,2,0,0)
no separation I A−A , B−B 2
1 separating vertex II A−A , B−B , sepVert 3
else A(B La A−A , B−B , B−B∗ 3

B(A Lb A−A , B−B , A−A∗ 3
else W 2×(A−B) 4

C.3 Trees with Three Leaf Types

For residual leaf compositions with three leaf types we start analysing trees that have
at most two leaves in each subtree.

(1,0,1,1)
ε not sep I ε, A−AB 2
else W AB−A , A−ε 3

(1,0,1,2)

any I A−AB , AB−ε 3

(1,0,2,1)
ε not sep I A−AB , ε−ε 3
else W A−ε, ε−AB 4

(1,0,2,2)
ε not sep I ε−ε, A−AB , AB−A/AB 4
else A(ε La ε−ε, A−AB , AB−A∗ 4

B(ε Lb ε−ε, A−AB , AB−B∗ 4
solo ε S ε, ε−AB , AB−A 4
else W A−ε, ε−AB , AB−A/AB 5

(2,0,1,1)

any I ε−A , A−AB 3

(2,0,1,2)
ε not sep S ε, 2×(A−AB) 3
else W ε−A , A−AB , AB−AB/A 4

(2,0,2,1)
ε not sep I ε−ε, A−AB , A−A/AB 4
else solo ε S ε, ε−A , A−AB 4

A(ε La ε−ε, AB−A , A−A∗ 4
B(ε and A not sep Lb ε−ε, A−A , AB−B∗ 4
else W AB−ε, ε−A , A−A/AB 5
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(2,0,2,2)
ε not sep I ε−ε, 2×(A−AB) 4
else W A−AB , AB−ε, ε−A 5

(1,1,0,1)

any I A−AB , AB−B 2

(1,1,0,2)

any I A−AB , AB−B 2

(2,1,0,1)
A not sep I A−A , AB−B 2
else W AB−A , A−B 3

(2,1,0,2)

any I B−AB , AB−A , A−A 3

(2,2,0,1)
A not sep Ia A−A , B−AB , B−AB/B 3
B not sep Ib B−B , A−AB , A−AB/A 3
else A(B La A−A∗, A−AB , B−B 3

B(A Lb B−B∗, B−AB , A−A 3
else W A−AB , AB−B , B−A 4

(2,2,0,2)
A not sep Ia A−A , 2×(B−AB) 3
B not sep Ib B−B , 2×(A−AB) 3
else W† A−AB , AB−B , B−A 4
†An alternative optimal cover for W re-uses two AB-leaves: 2×(A−AB), 2×(B−AB).

(1,1,1,0)
ε not sep S ε, A−B 3
else A not sep Ia A , B−ε 3

B not sep Ib B , A−ε 3
else A({B , ε} La A−A∗, B−ε 3

B({A , ε} Lb B−B∗, A−ε 3
else W A−ε, ε−B 4

(1,1,2,0)

any I A−ε, ε−B 4
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(2,1,1,0)
A not sep I A−A , B−ε 3
else ε not sep, B(A SLb A−A , B−B∗, ε 3

else W B−A , A−ε 4

(2,1,2,0)
no separation I B , ε−ε, A−A 4
A not sep solo ε S ε, ε−B , A−A 4

ε separated B(ε

{A , ε} separated B({A , ε} L B−B∗, A−A , ε−ε 4
A separated ε not sep B(A

else W B−ε, ε−A , A−A 5

(2,2,1,0)
no separation I A−A , B−B , ε 3
A not sep IIa ε−B , B−B , A−A 4
B not sep IIb ε−A , A−A , B−B 4
else A(B La ε−A , A−A∗, B−B 4

B(A Lb ε−B , B−B∗, A−A 4
else W ε−A , A−B , B−B 5

(2,2,2,0)
no separation I A−A , B−B , ε−ε 4
A not sep IIa A−A , 2×(B−ε) 5
B not sep IIb B−B , 2×(A−ε) 5
ε not sep A(B La ε−ε, B−B , A−A , A−A∗ 5

B(A Lb ε−ε, A−A , B−B , B−B∗ 5
full separation A(B solo ε SLa ε, ε−A , A−A∗, B−B 5

A(ε LLa 2×(A−A∗), ε−ε, B−B 5
B(A solo ε SLb ε, ε−B , B−B∗, A−A 5

B(ε LLb 2×(B−B∗), ε−ε, A−A 5
else W A−B , B−ε, ε−A 6

Further Cases

We now consider leaf compositions whose ε- and/or AB-subtrees may have more than
two leaves. The instances in which an optimal cover of these has a different cost or
composition than we would obtain by reducing the subtrees further, are considered
non-reducible, other instances are reducible. We can divide the leaf compositions into
fully reducible, that means for all combination of tree properties we can always find an
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optimal cover that uses at least one homogeneous path and thus reduces the respective
ε- or AB-subtree(s) by two leaves. In other cases we can find a reduction that is
optimal only for specific tree properties but have to use a cover with a higher number
of heterogeneous paths for other tree properties.

Fully Reducible Cases

Except for five leaf compositions (that we discuss later) all other leaf compositions
that have ε- or AB-subtrees with more than two leaves can be optimally reduced to
contain at most two leaves in each subtree. In order to provide obvious repetition of
covers, we simply state the paths used to reduce the trees, the offset of costs such that
the remainder of the tree can then be looked up in the derived further reduced leaf
composition. Obviously, an ε−ε path costs 2 and an AB−AB-path costs 1 (if both are
used the reduction cost amount to 3). For example for (2, 1, 3, 0) the set of covering
paths of (2, 1, 1, 0) is taken for the exact same properties and extended by an ε−ε-path
(which adds 2 to the overall cost of (2, 1, 1, 0) thus deriving 5 or 6 depending on the
tree properties).

Bear in mind that if a single ε-leaf remains, depending on whether it is solo or the
ε-subtree was separated before, the look-up case changes in the further reduced leaf
composition.

Initial Lr New base L′r Reduction cost

(1, 0, 2, 3) (1, 0, 2, 1) AB−AB +1

(1, 0, 2, 4) (1, 0, 2, 2) AB−AB +1

(1, 0, 1, 3) AB−AB +1

(1, 0, 3, 1) (1, 0, 1, 1) ε−ε +2

(1, 0, 3, 3) ε−ε,AB−AB +3

(1, 0, 1, 4) AB−AB +1

(1, 0, 3, 2) (1, 0, 1, 2) ε−ε +2

(1, 0, 3, 4) ε−ε,AB−AB +3

(1, 1, 0, 3) (1, 1, 0, 1) AB−AB +1

(1, 1, 0, 4) (1, 1, 0, 2) AB−AB +1

(2, 0, 1, 3) AB−AB +1

(2, 0, 3, 1) (2, 0, 1, 1) ε−ε +2

(2, 0, 3, 3) ε−ε,AB−AB +3
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Initial Lr New base L′r Reduction cost

(2, 0, 1, 4) AB−AB +1

(2, 0, 3, 2) (2, 0, 1, 2) ε−ε +2

(2, 0, 3, 4) ε−ε,AB−AB +3

(2, 0, 2, 4) (2, 0, 2, 2) AB−AB +1

(2, 1, 0, 4) (2, 1, 0, 2) AB−AB +1

(2, 1, 3, 0) (2, 1, 1, 0) ε−ε +2

(2, 2, 3, 0) (2, 2, 1, 0) ε−ε +2

Not Generally Reducible Cases

The instances in which an optimal cover of these has a different cost or composition
than we would obtain by reducing the subtrees further, are considered non-reducible.
Other instances are reduced as indicated (this prevents repetition of sets of covering
paths). For three leaf types we find only five leaf compositions that are not fully
reducible. These are listed below.

(1,1,3,0)
full separation and solo ε-leaf

S2 A−ε, ε, ε−B 5and XXXXXXA({B , ε} and XXXXXXB({A , ε}

otherwise REDU ε−ε ∪ L′r = (1, 1, 1, 0) +2

(2,0,2,3)
ε and A separated and B(ε

L2 ε−ε, 2×(A−AB), AB−B∗ 5and XXXXA( ε and hhhhhsolo ε-leaf

otherwise REDU AB−AB ∪ L′r = (2, 0, 2, 1) +1

(2,1,0,3)
A separated I B−AB , 2×(A−AB) 3
otherwise REDU AB−AB ∪ L′r = (2, 1, 0, 1) +1

(2,2,0,3)
A separated and B separated

W 2×(A−AB), B−AB , B−B/AB 4and XXXXA(B and XXXXB(A

otherwise REDU AB−AB ∪ L′r = (2, 2, 0, 1) +1

(2,2,0,4)
A separated and B separated W 2×(A−AB), 2×(B−AB) 4
otherwise REDU AB−AB ∪ L′r = (2, 2, 0, 2) +1
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C.4 Trees with Four Leaf Types

Again we start with the base cases that have at most two leaves in each subtree.

(1,1,1,1)
{A ,AB} not sep from {B , ε} Ia A−AB , B−ε 3
{B ,AB} not sep from {A , ε} Ib B−AB , A−ε 3

(1,1,1,2)
ε not sep S A−AB , AB−B , ε 3
else W A−AB , AB−B , ε−AB/A/B 4

(1,1,2,1)
ε not sep I ε−ε, A−AB , AB−B 4
else {A , ε} not sep from {B ,AB} A(ε La ε−ε, A−A∗, B−AB 4

solo ε Sa ε, ε−A , B−AB 4
{B , ε} not sep from {A ,AB} B(ε Lb ε−ε, B−B∗, A−AB 4

solo ε Sb ε, ε−B , A−AB 4
else W A−ε, ε−B , AB−B 5

(1,1,2,2)
ε not sep I ε−ε, A−AB , AB−B 4
else W A−ε, ε−AB , AB−B 5

(2,1,1,1)
ε not sep, A not sep, {A , ε} not sep S ε, A−A , AB−B 3
else W ε−A , A−AB , AB−B 4

(2,1,2,1)
ε not sep, A not sep, {ε,A} not sep I ε−ε, A−A , AB−B 4
else W AB−A , A−ε, ε−B 5

(2,1,1,2)

any I B−AB , AB−A , A−ε 4
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(2,1,2,2)
ε not sep I ε−ε, B−AB , AB−A , A−A/AB 5
else solo ε S ε, ε−A , A−AB , AB−B 5

A(ε La ε−ε, A−AB , AB−B , A−A∗ 5
B(ε, A not sep Lb2 ε−ε, A−A , AB−B , AB−B∗ 5
B(ε, {B , ε} not sep Lb1 ε−ε, 2×(A−AB), B−B∗ 5
else W B−ε, ε−A , A−AB , AB−A/B/AB 6

(2,2,1,1)
A not sep Ia A−A , ε−B , B−AB 4
B not sep Ib B−B , ε−A , A−AB 4
ε not sep A(B SLa ε, AB−A , A−A∗, B−B 4

B(A SLb ε, AB−B , B−B∗, A−A 4
else W AB−A , A−B , B−ε 5

(2,2,2,1)
A not sep solo ε Sa ε, ε−B , B−AB , A−A 5

ε not sep {A , ε} not sep Ia ε−ε, A−A , B−AB , B−B/AB 5
B(ε Lb

ε−ε, AB−B , B−B∗, A−A 5
ε not sep B(A Lb

A(B La
ε−ε, AB−A , A−A∗, B−B 5

B not sep A(ε La
ε not sep {B , ε} not sep Ib ε−ε, B−B , AB−A , A−A/AB 5
solo ε Sb ε, ε−B , B−AB , A−A 5

else W AB−B , B−ε, ε−A , A−A/AB 6

(2,2,1,2)
ε not sep A , {ε,A} not sep Ia ε, A−A , 2×(B−AB) 4

B , {ε,B} not sep Ib ε, B−B , 2×(A−AB) 4
else W ε−A , A−AB , 2×(B−AB) 5

(2,2,2,2)
ε not sep A not sep {A , ε} not sep Ia ε−ε, A−A , 2×(B−AB) 5

B not sep {B , ε} not sep Ib ε−ε, B−B , 2×(A−AB) 5
else W ε−A , A−AB , AB−B , B−ε 6

Further Cases

It follows the analysis for leaf compositions whose ε- and/or AB-subtrees may have
more than two leaves. This time, apart from fully reducible and non-reducible, we also
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find cases in which the ε-subtree is fully reducible, but the AB-subtree is not.

Fully Reducible Cases

Reduction is always possible for the following leaf compositions:

Initial Lr New base L′r Reduction cost

(1, 1, 1, 3) AB−AB +1

(1, 1, 3, 1) (1, 1, 1, 1) ε−ε +2

(1, 1, 3, 3) ε−ε,AB−AB +3

(1, 1, 1, 4) AB−AB +1

(1, 1, 3, 2) (1, 1, 1, 2) ε−ε +2

(1, 1, 3, 4) ε−ε,AB−AB +3

(2, 1, 1, 4) AB−AB +1

(2, 1, 3, 2) (2, 1, 1, 2) ε−ε +2

(2, 1, 3, 4) ε−ε,AB−AB +3

(1, 1, 2, 4) (1, 1, 2, 2) AB−AB +1

(2, 1, 3, 1) (2, 1, 1, 1) ε−ε +2

(2, 2, 3, 1) (2, 2, 1, 1) ε−ε +2

(2, 2, 3, 2) (2, 2, 1, 2) ε−ε +2

ε-reducible Cases

In the following cases the ε-subtree is fully reducible while the AB-subtree is not. For
the look-up case L′r, thus only the number of ε-leaves but not the number of leaves in
the AB-subtree are reduced. This concerns the following three leaf compositions:

Initial Lr New base L′r Part Reduction cost

(2, 1, [3], 3) (2, 1, 1, 3) ε−ε +2

(2, 2, [3], 3) (2, 2, 1, 3) ε−ε +2

(2, 2, [3], 4) (2, 2, 1, 4) ε−ε +2

Not Generally Reducible Cases

The following eight leaf compositions are not generally reducible. This means for some
properties they are reducible, but not for others.
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(1,1,2,3)
ε not sep REDU AB−AB ∪ L′r = (1, 1, 2, 1) +1
else {A , ε} not sep solo ε REDU AB−AB ∪ L′r = (1, 1, 2, 1) +1

A(ε REDU AB−AB ∪ L′r = (1, 1, 2, 1) +1
{B , ε} not sep solo ε REDU AB−AB ∪ L′r = (1, 1, 2, 1) +1

B(ε REDU AB−AB ∪ L′r = (1, 1, 2, 1) +1
A(ε L2a ε−ε,A−AB , AB−B , AB−A∗ 5
B(ε L2b ε−ε,A−AB , AB−B , AB−B∗ 5
else REDU AB−AB ∪ L′r = (1, 1, 2, 1) +1

(2,1,1,3)
ε not sep and

A not sep and {A , ε} not sep REDU AB−AB ∪ L′r = (2, 1, 1, 1) +1
A not sep and {A , ε} sep

S2 ε, 2×(A−AB), AB−B 4
A sep

else REDU AB−AB ∪ L′r = (2, 1, 1, 1) +1

(2,2,1,3)
A sep and B sep

W2 2×(A−AB), AB−B , B−ε 5and XXXXA(B and XXXXB(A

else REDU AB−AB ∪ L′r = (2, 2, 1, 1) +1

(2,1,2,3)
ε not sep and

A not sep and {A , ε} not sep REDU AB−AB ∪ L′r = (2, 1, 2, 1) +1
A not sep and {A , ε} sep

II 2×(A−AB), AB−B , ε−ε 5
A sep

else REDU AB−AB ∪ L′r = (2, 1, 2, 1) +1

(2,1,2,4)
ε sep and A sep
and {B , ε} sep and XXXsolo ε Lb3 ε−ε, 2×(A−AB), AB−B , AB−B∗ 6
and XXXA(ε and B(ε

else REDU AB−AB ∪ L′r = (2, 1, 2, 2) +1
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(2,2,1,4)
ε not sep and

A not sep and {ε,A} not sep REDU AB−AB ∪ L′r = (2, 2, 1, 2) +1
B not sep and {ε,B} not sep REDU AB−AB ∪ L′r = (2, 2, 1, 2) +1
else S2 ε, 2×(A−AB), 2×(B−AB) 5

else REDU AB−AB ∪ L′r = (2, 2, 1, 2) +1

(2,2,2,3)
A not sep solo ε REDU AB−AB ∪ L′r = (2, 2, 2, 1) +1

ε not sep and
REDU AB−AB ∪ L′r = (2, 2, 2, 1) +1{A , ε} not sep

B(ε REDU
AB−AB ∪ L′r = (2, 2, 2, 1) +1

ε not sep B(A REDU
A(B REDU

AB−AB ∪ L′r = (2, 2, 2, 1) +1
B not sep A(ε REDU

ε not sep
REDU AB−AB ∪ L′r = (2, 2, 2, 1) +1{B , ε} not sep

solo ε REDU AB−AB ∪ L′r = (2, 2, 2, 1) +1
solo ε S2 ε, ε−A , A−AB , 2×(AB−B) 6
A(ε L2a ε−ε, 2×(B−AB), AB−A , A−A∗ 6
B(ε L2b ε−ε, 2×(A−AB), AB−B , B−B∗ 6
ε not sep III ε−ε, 2×(A−AB), 2×(AB−B) 6
else REDU AB−AB ∪ L′r = (2, 2, 2, 1) +1

(2,2,2,4)
ε not sep and

A not sep and {A , ε} not sep REDU AB−AB ∪ L′r = (2, 2, 2, 2) +1
B not sep and {B , ε} not sep REDU AB−AB ∪ L′r = (2, 2, 2, 2) +1
else II ε−ε, 2×(A−AB), 2×(B−AB) 6

else REDU AB−AB ∪ L′r = (2, 2, 2, 2) +1
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D Detailed Sampling Results for sty-stm Comparison of
γ-Proteobacteria

1h 2t 2h4t 4h3h 3t5t 5h 6t 6h8h 8t9h 9t7h 10h1t7t10h

1h 2t 2h4h 4t3h 3t5t 5h6t 6h7t 7h8t 8h 9t 10h1t9h10t

C1

C3

Figure D.12: Adjacency graph for sty-stm comparison.
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Figure D.13: Sampling results for all four methods for the sty-stm comparison. Sce-
narios ordered by category as listed below.

In the standard notation of UniMoG input/output: the ")" signifies a circular chromosome (all markers to
the left are on it in that order).

1# 1 2 -4 -3 5 6 -8 -9 -7 10 1 ) 2 -4 -3 5 6 7 9 8 10 1 ) 2 -4 -3 5 6 7 8 10 1 ) 9 ) A
2# 1 2 -4 -3 5 6 -8 -9 -7 10 1 ) 2 -4 -3 5 6 -7 10 1 ) 9 8 ) 2 -4 -3 5 6 -9 -8 -7 10 1 ) A
3# 1 2 -4 -3 5 6 -8 -9 -7 10 1 ) 2 -4 -3 5 6 -8 7 9 10 1 ) 2 -4 -3 5 6 -8 -7 9 10 1 ) A
4# 1 2 -4 -3 5 6 -8 -9 -7 10 1 ) 2 -4 -3 5 6 -7 10 1 ) 9 8 ) 2 -4 -3 5 6 7 10 1 ) 9 8 ) A
5# 1 2 -4 -3 5 6 -8 -9 -7 10 1 ) 2 -4 -3 5 6 7 9 8 10 1 ) 2 -4 -3 5 6 7 10 1 ) 9 8 ) A
6# 1 2 -4 -3 5 6 -8 -9 -7 10 1 ) 2 -4 -3 5 6 -8 7 9 10 1 ) 2 -4 -3 5 6 -7 8 9 10 1 ) A
7# 1 2 -4 -3 5 6 -8 -9 -7 10 1 ) 2 -4 -3 5 6 -8 -7 10 1 ) 9 ) 2 -4 -3 5 6 -9 -8 -7 10 1 ) A
8# 1 2 -4 -3 5 6 -8 -9 -7 10 1 ) 2 -4 -3 5 6 -8 -7 10 1 ) 9 ) 2 -4 -3 5 6 7 8 10 1 ) 9 ) A
9# 1 2 -4 -3 5 6 -8 -9 -7 10 1 ) 2 -4 -3 5 6 7 9 8 10 1 ) 2 -4 -3 5 6 7 9 10 1 ) 8 ) A
10# 1 2 -4 -3 5 6 -8 -9 -7 10 1 ) 2 -4 -3 5 6 -8 7 9 10 1 ) 2 -4 -3 5 6 7 9 10 1 ) 8 ) A
11# 1 2 -4 -3 5 6 -8 -9 -7 10 1 ) 2 -4 -3 5 6 -7 10 1 ) 9 8 ) 2 -4 -3 5 6 -7 8 9 10 1 ) A
12# 1 2 -4 -3 5 6 -8 -9 -7 10 1 ) 2 -4 -3 5 6 -8 -7 10 1 ) 9 ) 2 -4 -3 5 6 -8 -7 9 10 1 ) A
13# 1 2 4 -3 5 6 -8 -7 10 1 ) 9 ) 2 -4 -3 5 6 -8 -7 10 1 ) 9 ) 2 -4 -3 5 6 -9 -8 -7 10 1 ) B
14# 1 2 4 -3 5 6 -7 10 1 ) 9 8 ) 2 -4 -3 5 6 -7 10 1 ) 9 8 ) 2 -4 -3 5 6 7 10 1 ) 9 8 ) B
15# 1 2 4 -3 5 6 7 9 8 10 1 ) 2 -4 -3 5 6 7 9 8 10 1 ) 2 -4 -3 5 6 7 8 10 1 ) 9 ) B
16# 1 2 4 -3 5 6 -8 7 9 10 1 ) 2 -4 -3 5 6 -8 7 9 10 1 ) 2 -4 -3 5 6 -7 8 9 10 1 ) B
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17# 1 2 4 -3 5 6 -7 10 1 ) 9 8 ) 2 -4 -3 5 6 -7 10 1 ) 9 8 ) 2 -4 -3 5 6 -9 -8 -7 10 1 ) B
18# 1 2 4 -3 5 6 -8 -7 10 1 ) 9 ) 2 -4 -3 5 6 -8 -7 10 1 ) 9 ) 2 -4 -3 5 6 -8 -7 9 10 1 ) B
19# 1 2 4 -3 5 6 -8 -7 10 1 ) 9 ) 2 -4 -3 5 6 -8 -7 10 1 ) 9 ) 2 -4 -3 5 6 7 8 10 1 ) 9 ) B
20# 1 2 4 -3 5 6 -8 7 9 10 1 ) 2 -4 -3 5 6 -8 7 9 10 1 ) 2 -4 -3 5 6 7 9 10 1 ) 8 ) B
21# 1 2 4 -3 5 6 -8 7 9 10 1 ) 2 -4 -3 5 6 -8 7 9 10 1 ) 2 -4 -3 5 6 -8 -7 9 10 1 ) B
22# 1 2 4 -3 5 6 7 9 8 10 1 ) 2 -4 -3 5 6 7 9 8 10 1 ) 2 -4 -3 5 6 7 10 1 ) 9 8 ) B
23# 1 2 4 -3 5 6 7 9 8 10 1 ) 2 -4 -3 5 6 7 9 8 10 1 ) 2 -4 -3 5 6 7 9 10 1 ) 8 ) B
24# 1 2 4 -3 5 6 -7 10 1 ) 9 8 ) 2 -4 -3 5 6 -7 10 1 ) 9 8 ) 2 -4 -3 5 6 -7 8 9 10 1 ) B
25# 1 2 4 -3 5 6 -7 10 1 ) 9 8 ) 2 4 -3 5 6 -7 8 9 10 1 ) 2 -4 -3 5 6 -7 8 9 10 1 ) C
26# 1 2 4 -3 5 6 -8 -7 10 1 ) 9 ) 2 4 -3 5 6 -9 -8 -7 10 1 ) 2 4 -3 5 6 7 8 9 10 1 ) C
27# 1 2 4 -3 5 6 7 9 8 10 1 ) 2 4 -3 5 6 7 10 1 ) 9 8 ) 2 4 -3 5 6 7 8 9 10 1 ) C
28# 1 2 4 -3 5 6 7 9 8 10 1 ) 2 4 -3 5 6 7 8 10 1 ) 9 ) 2 4 -3 5 6 7 8 9 10 1 ) C
29# 1 2 4 -3 5 6 -7 10 1 ) 9 8 ) 2 4 -3 5 6 7 10 1 ) 9 8 ) 2 4 -3 5 6 7 8 9 10 1 ) C
30# 1 2 4 -3 5 6 -8 -7 10 1 ) 9 ) 2 4 -3 5 6 -8 -7 9 10 1 ) 2 -4 -3 5 6 -8 -7 9 10 1 ) C
31# 1 2 4 -3 5 6 -8 7 9 10 1 ) 2 4 -3 5 6 -8 -7 9 10 1 ) 2 -4 -3 5 6 -8 -7 9 10 1 ) C
32# 1 2 4 -3 5 6 -7 10 1 ) 9 8 ) 2 4 -3 5 6 7 10 1 ) 9 8 ) 2 -4 -3 5 6 7 10 1 ) 9 8 ) C
33# 1 2 4 -3 5 6 7 9 8 10 1 ) 2 4 -3 5 6 7 9 10 1 ) 8 ) 2 4 -3 5 6 7 8 9 10 1 ) C
34# 1 2 4 -3 5 6 -8 7 9 10 1 ) 2 4 -3 5 6 7 9 10 1 ) 8 ) 2 4 -3 5 6 7 8 9 10 1 ) C
35# 1 2 4 -3 5 6 -7 10 1 ) 9 8 ) 2 4 -3 5 6 -7 8 9 10 1 ) 2 4 -3 5 6 7 8 9 10 1 ) C
36# 1 2 4 -3 5 6 -7 10 1 ) 9 8 ) 2 4 -3 5 6 -9 -8 -7 10 1 ) 2 4 -3 5 6 7 8 9 10 1 ) C
37# 1 2 4 -3 5 6 -8 -7 10 1 ) 9 ) 2 4 -3 5 6 -8 -7 9 10 1 ) 2 4 -3 5 6 7 8 9 10 1 ) C
38# 1 2 4 -3 5 6 -7 10 1 ) 9 8 ) 2 4 -3 5 6 -9 -8 -7 10 1 ) 2 -4 -3 5 6 -9 -8 -7 10 1 ) C
39# 1 2 4 -3 5 6 -8 7 9 10 1 ) 2 4 -3 5 6 -7 8 9 10 1 ) 2 -4 -3 5 6 -7 8 9 10 1 ) C
40# 1 2 4 -3 5 6 -8 -7 10 1 ) 9 ) 2 4 -3 5 6 7 8 10 1 ) 9 ) 2 -4 -3 5 6 7 8 10 1 ) 9 ) C
41# 1 2 4 -3 5 6 7 9 8 10 1 ) 2 4 -3 5 6 7 8 10 1 ) 9 ) 2 -4 -3 5 6 7 8 10 1 ) 9 ) C
42# 1 2 4 -3 5 6 -8 7 9 10 1 ) 2 4 -3 5 6 -8 -7 9 10 1 ) 2 4 -3 5 6 7 8 9 10 1 ) C
43# 1 2 4 -3 5 6 7 9 8 10 1 ) 2 4 -3 5 6 7 10 1 ) 9 8 ) 2 -4 -3 5 6 7 10 1 ) 9 8 ) C
44# 1 2 4 -3 5 6 -8 -7 10 1 ) 9 ) 2 4 -3 5 6 -9 -8 -7 10 1 ) 2 -4 -3 5 6 -9 -8 -7 10 1 ) C
45# 1 2 4 -3 5 6 -8 7 9 10 1 ) 2 4 -3 5 6 -7 8 9 10 1 ) 2 4 -3 5 6 7 8 9 10 1 ) C
46# 1 2 4 -3 5 6 7 9 8 10 1 ) 2 4 -3 5 6 7 9 10 1 ) 8 ) 2 -4 -3 5 6 7 9 10 1 ) 8 ) C
47# 1 2 4 -3 5 6 -8 -7 10 1 ) 9 ) 2 4 -3 5 6 7 8 10 1 ) 9 ) 2 4 -3 5 6 7 8 9 10 1 ) C
48# 1 2 4 -3 5 6 -8 7 9 10 1 ) 2 4 -3 5 6 7 9 10 1 ) 8 ) 2 -4 -3 5 6 7 9 10 1 ) 8 ) C

49# 1 2 -4 -3 5 6 -8 -9 -7 10 1 ) 2 -4 -3 5 6 -9 -7 10 1 ) 8 ) 2 -4 -3 5 6 -9 -8 -7 10 1 ) y
50# 1 2 -4 -3 5 6 -8 -9 -7 10 1 ) 2 -4 -3 5 6 -8 -9 7 10 1 ) 2 -4 -3 5 6 -8 -7 9 10 1 ) y
51# 1 2 -4 -3 5 6 -8 -9 -7 10 1 ) 2 -4 -3 5 6 -9 -7 10 1 ) 8 ) 2 -4 -3 5 6 7 9 10 1 ) 8 ) y
52# 1 2 -4 -3 5 6 -8 -9 -7 10 1 ) 2 -4 -3 5 6 -8 -9 7 10 1 ) 2 -4 -3 5 6 7 10 1 ) 9 8 ) y
53# 1 2 4 -3 5 6 -9 -7 10 1 ) 8 ) 2 4 -3 5 6 -9 -8 -7 10 1 ) 2 -4 -3 5 6 -9 -8 -7 10 1 ) z
54# 1 2 4 -3 5 6 -8 -9 7 10 1 ) 2 4 -3 5 6 7 10 1 ) 9 8 ) 2 4 -3 5 6 7 8 9 10 1 ) z
55# 1 2 4 -3 5 6 -8 -9 7 10 1 ) 2 4 -3 5 6 -8 -7 9 10 1 ) 2 -4 -3 5 6 -8 -7 9 10 1 ) z
56# 1 2 4 -3 5 6 -8 -9 7 10 1 ) 2 -4 -3 5 6 -8 -9 7 10 1 ) 2 -4 -3 5 6 -8 -7 9 10 1 ) z
57# 1 2 4 -3 5 6 -9 -7 10 1 ) 8 ) 2 4 -3 5 6 7 9 10 1 ) 8 ) 2 -4 -3 5 6 7 9 10 1 ) 8 ) z
58# 1 2 4 -3 5 6 -8 -9 7 10 1 ) 2 4 -3 5 6 -8 -7 9 10 1 ) 2 4 -3 5 6 7 8 9 10 1 ) z
59# 1 2 4 -3 5 6 -8 -9 7 10 1 ) 2 4 -3 5 6 7 10 1 ) 9 8 ) 2 -4 -3 5 6 7 10 1 ) 9 8 ) z
60# 1 2 4 -3 5 6 -9 -7 10 1 ) 8 ) 2 4 -3 5 6 -9 -8 -7 10 1 ) 2 4 -3 5 6 7 8 9 10 1 ) z
61# 1 2 4 -3 5 6 -9 -7 10 1 ) 8 ) 2 4 -3 5 6 7 9 10 1 ) 8 ) 2 4 -3 5 6 7 8 9 10 1 ) z
62# 1 2 4 -3 5 6 -8 -9 7 10 1 ) 2 -4 -3 5 6 -8 -9 7 10 1 ) 2 -4 -3 5 6 7 10 1 ) 9 8 ) z
63# 1 2 4 -3 5 6 -9 -7 10 1 ) 8 ) 2 -4 -3 5 6 -9 -7 10 1 ) 8 ) 2 -4 -3 5 6 7 9 10 1 ) 8 ) z
64# 1 2 4 -3 5 6 -9 -7 10 1 ) 8 ) 2 -4 -3 5 6 -9 -7 10 1 ) 8 ) 2 -4 -3 5 6 -9 -8 -7 10 1 ) z

A B C y z
12 12 24 4 12
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