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Abstract

Assistance systems should be able to adapt to individual task-related skills and
knowledge. Structural-dimensional analysis of mental representations (SDA-M) is an
established method for retrieving human memory structures related to specific activities.
For this purpose, SDA-M involves a semi-automatized survey of users (the “split
procedure”), which yields data about users’ associations between action representations
in long-term memory. Up to now this data about associations has commonly been
clustered and visualized by SDA-M software in the form of dendrograms that can be
used by human experts as a tool to (manually) assess users’ individual expertise and
identify potential issues with respect to predefined action sequences. This article
presents new algorithmic approaches for automatizing the process of assessing
task-related memory structures based on SDA-M data to predict probable errors in
action sequences. This automation enables direct integration into technical systems, e.g.
user-adaptive assistance systems. An evaluation study has compared the automatized
computational assessments to predictions made by human scholars based on
visualizations of SDA-M data. The different algorithms’ outputs matched human
experts’ manual assessments in 84% to 86% of the test cases.

1 Introduction

Suitable prediction of human behavior is a highly promising, but also challenging
objective [1]. Predictions about a specific person’s memory lapses and action errors with
respect to given tasks can not only help human teachers or trainers to focus their
instruction on each trainee’s weak points, but could also be fed into a wide spectrum of
technical assistance systems to support user-specific adaptation. This is especially
important when subsystems of human cognition with limited capacity, such as those
related to attention, are required to deal with different sources of input in parallel. Our
research focuses on investigating how anticipatory assistance systems can facilitate
cognitive aspects of human activities and human-machine interaction. Prototypical
application scenarios for this are in-car driver information systems and assistive smart
glasses overlaying the real world with virtual content. For example, the recently
researched ADAMAAS smart glasses are intended to assist disabled or elderly people in
daily activities [2]. In such contexts, giving excessive step-by-step assistance for a task
by constantly placing vast amounts of visual information within the users’ field of view
could be annoying and distracting at best, perhaps even dangerous. It may also lead to
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a high degree of dependence on the technical systems and impede learning processes
when users resort to mindlessly following a system’s instructions. Instead, the amount
of information presented to users should be restricted to the required minimum. This
generally conforms with established principles from disciplines such as human-centred
design (ISO 9241-110; ISO 14915), human-computer interaction [3], ergonomics
(ISO 15005), and usability engineering [4]. Therefore, it must be determined in which
situations assistance is actually required. This is the case when users are either unsure
about what to do, or when they would do something wrong. In perilous or time-critical
task sequences, these situations should obviously be anticipated beforehand to mitigate
possible damage. In non-critical activities, feasible predictions can contribute to
smoother task execution, better user experience and better performance rather than
waiting for human errors to occur and trying to correct them afterwards. Technical
systems that incorporate such an anticipatory module, combined with effective
assistance features, can induce a new level of learning processes.

This article proposes a new computational approach for generating such predictions.
To this end, task-related knowledge in each individual’s long-term memory is retrieved
using structural-dimensional analysis of mental representations (SDA-M) [5]. A
software-based prediction module is then used to assess individual problems in task
execution. Finally, we report results from a study assessing the expected accuracy of
different alternative algorithmic approaches.

2 Task-related mental representation structures

From a cognitive-perceptual perspective mental representations can be considered as the
cognitive basis to organize and execute complex motor actions and movements [6]. In
the middle of the 19th century, classical ideas in psychology led to the “ideomotor”
approach [7, 8], which distinguishes the important role of a cognitive equivalent of
actions in memory [9]. Since that time different lines of research in cognitive psychology,
philosophy, cognitive robotics and other disciplines refer to the central role of mental
representations in action organization with different definitions and perspectives [10–13].
For the purpose of this article it seems useful to refer to mental representations as a
functional structure that integrates both perceptual and cognitive features to achieve
context-specific action goals [12].

2.1 Background

Planning and acting in a goal-oriented way requires a structured cognitive basis that
integrates person, environment, and task information [14–16]. Cognitive aggregations
and chunking reduce the planning cost and facilitate action and movement
control [17,18]. From this point of view, mental representations overcome the
complexity of redundant environments to control complex movements and action
sequences, leading to task-related order formation. A seminal theoretical framework for
movement control by Bernstein [19] described the multiple ways to reach a movement
goal as a degrees-of-freedom problem. Bernstein developed a task-dependent
evolutionarily-originated multi-level model of movement control. However, the idea of a
hierarchical cognitive architecture has been investigated using diverse
approaches [20–23]. A suitable model for the research presented in this article was
proposed in [24]. The model of the cognitive architecture of action uses a goal-oriented
approach of regulatory levels and representational levels that are functionally
autonomous [13]. This so-called “cognitive action architecture approach” (CAA-A)
differentiates between two regulatory levels of mental control (level IV) and
sensorimotor control (level I) which initiate volitional and control strategies (IV) and
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lower level processes, such as automatized movements and reflexes (I),
respectively [25,26]. The two representational levels of sensorimotor (II) and mental
representation (III) build the cognitive information basis. Whereas perceptual effects
and their spatial-temporal features are stored on the sensorimotor representation level
(II), the cognitive units of complex actions, the so-called basic action concepts (BACs),
are located on the level of mental representation (III). BACs can be seen as the building
blocks of motor memory that are connected to perceptual effects of actions [12,13]. A
number of studies have investigated the essential role of BACs in long-term memory in
manual actions [27], sports actions [6, 28], sports tactics [29] or rehabilitation [30,31].
The results characteristically show that mental representations of people with a high
level of competence and expertise are well-integrated tree-like structures that are in line
with the biomechanical structure of the task. However, the mental representations of
novices, young children or stroke patients reveal less hierarchically organized cognitive
structures. These findings are supported by experiments from [25] regarding modularity
in motor control [32] which indicated a clear structural relationship between mental
representation and the kinematic structure of movement. Furthermore, current projects
and investigation on job-related knowledge have been conducted [13, 33, 34]. We assume
that, as for tactical knowledge and complex actions, the structures of working tasks in
occupational rehabilitation are stored in memory [29] and change over the course of
learning [35]. The cognitive representation of such tasks can be investigated by applying
the structural-dimensional analysis of mental representations (SDA-M) method.

2.2 Analysis with the SDA-M method

With the SDA-M it is possible to analyze human memory structures related to a given
set of items (e.g. actions). We argue that well-integrated cognitive networks lead to
structured decisions in the SDA-M split procedure. The method then provides
psychometric data that can be analyzed on an individual and on a group level. To this
end, SDA-M can comprise up to four phases [5, 36] which are outlined in the following.

2.2.1 Step 1: Split procedure and distance scaling

When SDA-M is used to analyze a specific task or activity, the task/activity is first split
into sub-tasks or actions which are indicated by textual descriptions, pictures or
illustrations, short video clips, or a combination of those means. This is done by
researchers in collaboration with domain experts (e.g. coaches) in order to provide a
“plausible and workable set” of actions [5]. These action items are then shown to study
participants or users on a computer screen. Fig 1 shows the split procedure user
interface concept for the mobile touch-friendly version of our SDA-M software. Actions
are chosen in random order as reference objects or “targets” and then, one after
another, all other actions are compared to the current target in random order. The user
must decide for each pair of actions whether these are directly associated during task
execution or not. The decisions made in the context of each target result in a particular
decision tree, i.e. in the end the number of decision trees is equal to the total number of
actions. The tree for a given target consists of nodes containing the subsets of actions
which the user considered as “associated” or “not associated” to the target in a splitting
step. Hereby a value of xi = si ∗ |Ni| is assigned to each action, with |Ni| being the
number of actions contained in the node; si = 1 if the user stated that the actions in the
node were “associated” to the target, and si = −1 otherwise. (Note: Multiple splitting
steps may be performed for each reference action in order to yield a more fine-grained
distance measure. However, most contemporary applications of SDA-M, including this
study, are restricted to only one splitting step for each reference action, resulting in
binary decision trees of height 1, in order to reduce the required time and effort for
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Fig 1. SDA-M software interface. In this UI concept illustration of our SDA-M
tool for mobile devices the two exemplary action representations are related to the
activity ’building a birdhouse’.

participants.) [37] argued that a metrically defined measure of distance from a reference
object (target) to any other can be obtained by standardizing the respective xi values
to z-scores, thus establishing a “Z matrix” containing one such (row) vector of z-scores
for each action. The SDA-M software then creates matrices containing the correlations
(“R matrix”) and Euclidean distances (“D matrix”) between all rows of the Z matrix.
The distance values in the D matrix (or, equivalently, the correlation values in the R
matrix) contain all information to completely define an individual’s representational
structure [38]. The subsequent steps of SDA-M are therefore functions of these matrices.

2.2.2 Step 2: Hierarchical clustering and visualization

The distances calculated in the first step are now used as the metric for hierarchical
agglomerative average-linkage clustering. The results are visualized by a dendrogram to
facilitate human assessment of the mental representation structure. Many SDA-M
applications stop at this point.

2.2.3 Step 3: Extraction of feature dimensions

The third step aims to uncover the latent criteria or feature dimensions that seem to
have guided subjects’ decisions during the split procedure. To this end, the R matrix is
subjected to factor analysis with a special cluster-oriented rotation procedure [5,36], the
details of which are irrelevant for this article.

2.2.4 Step 4: Analysis of interindividual differences

Finally, pairs of individual or subgroup-specific cluster structures can be analyzed for
their degree of similarity. SDA-M employs the invariance measure λ for this purpose,
which takes the total numbers of clusters and their pairwise congruence into account.
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2.2.5 Usage in individual cognitive assessment and coaching

Numerous previous studies have indicated that educated psychologists and domain
experts could use dendrograms from SDA-M (step 2) to detect individual issues
regarding action execution and derive helpful advice for performance optimization,
e.g. [16, 24,39–41]. The SDA-M method enables addressing individual needs by taking
the essential information about the underlying cognitive-perceptual action system into
account [16]. For example, mental representations related to gymnastics skills were
retrieved from novices and experts. Individual mistakes in carrying out the movement
were analyzed based on SDA-M data. It was reported that individual interventions
based on those mental representations accelerated and optimized the learning process
and brought novices’ mental representation structures closer to those of
experts [26,35,39]. The SDA-M method has been applied to numerous activities in
manual action, sports, dancing and rehabilitation [13,24,26,28,42] to investigate
expertise-dependent memory structures and develop related individualized training
strategies [16,43].

3 Algorithmic prediction of human action errors

With reference to the abovementioned research publications we take for granted that
SDA-M data visualized as dendrograms can be interpreted by appropriately trained
human specialists (psychologists, mathematicians etc.) to identify deficits in memory
structures. On account of this, the current study investigated how SDA-M data can be
automatically interpreted by a technical system and trigger corresponding assistance
when needed. We developed two alternative algorithmic approaches to human error
prediction based on SDA-M data. These shall be called Analysis of Most Probable
Actions (AMPA), and Correct Action Selection Probability Analysis (CASPA),
respectively. Both algorithmic approaches require as input

� a predefined list of all correct action sequences (related to an activity), and

� valid SDA-M data for a specific person X (related to an activity).

The output of the algorithms then indicates when (i.e. after which actions) person X
may require assistance while performing the activity.

3.1 Assumptions and prerequisites

Both algorithms require the overarching activity or task to be represented in SDA-M
through a set of n subtasks or actions (“BACs”) satisfying the following criteria:

� Atomicity : Each action is self-contained insofar as it is assumed to be executable
by each person without issues. If this was not the case, it must be divided further
into feasible sub-actions before performing the SDA-M split procedure. The
resulting BACs can be understood as problem-solving operators available to users.

� Sequential discreteness: Actions do not overlap in time. All correct sequences of
actions can be formed by strictly ordering a subset of all actions.

� Non-recurrence: Each action appears at most once in each correct action sequence.
(Note: In practical applications this restriction can often be worked around by
adding sequential information to descriptions of identical actions in the SDA-M
split procedure, e.g. “Pressing the yellow button for the first time” and “Pressing
the yellow button for the second time”.)
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� Completeness: The total set of actions considered during the SDA-M split
procedure comprises all actions that can be executed while performing the activity.

� Context-independence: Environmental and contextual factors not explicitly
incorporated into action descriptions do not influence behavior.

� Currentness: The SDA-M data for a given person is valid in the sense that his or
her task-related memory structure has not changed since the SDA-M split
procedure was performed.

In practical applications these theoretical assumptions may not hold to full extent,
hence decreasing the achievable accuracy of predictions, but not necessarily rendering
the results unusable. For example, the assumption of completeness will commonly be
violated to some degree by focusing, for pragmatic reasons, on a set of probable
task-related actions instead of all possible actions. This is inevitable because the
SDA-M split procedure (the “manual” part of the method) has a time complexity of
Θ(n2), i.e. the time for performing it grows quadratically as a function of the number of
actions. According to our experience in practice this usually limits the number of
incorporable actions to approximately 10-15 (depending on the time required for each
decision), because subjects are rarely willing to perform split procedures lasting much
longer than quarter of an hour. In a similar vein [38] stated that the number of actions
“should not be chosen higher than 20. Otherwise, the decisions made regarding the
similarity of stimuli may become inconsistent”. The requirement of sequential
discreteness must be accounted for when determining the actions (“BACs”).
Furthermore, participants should be disposed to ideally associate each action exactly
with what they believe to be the immediate preceding and subsequent actions with
respect to correct sequences. To this end, the current version of our SDA-M software
incorporates an introductory video (in German) that instructs participants to state
whether the displayed actions are executed immediately before or after another during
task execution. Note that many, but not all previous applications of SDA-M complied
with the requirement of sequential discreteness [30,31,43].

3.2 Algorithm I: Analysis of Most Probable Actions (AMPA)

The first step of SDA-M involves calculating a measure of distances between any two of
the analyzed items (e.g. objects or actions) in a person’s long-term memory. Algorithm I
determines whether there is a correct immediate follow-up action which has lowest
distance among all actions (or second-lowest distance in the case that the second-last
action has lowest distance to the last executed action), which equates to the strongest
association between these actions. We call this a “Correct Most-Probable Action”
(CMPA), being aware that there may be more than one CMPA in any situation. If there
are no CMPAs in a current situation then it is probable that the person will either
choose an (incorrect) action with stronger association or not know how to proceed, i.e.
assistance is required. The concept of assuming that exactly those chunks which have
the highest activation (=̂ lowest distance) are always chosen is very straightforward and
may seem highly simplified given the noisy nature of human behavior. Nonetheless it
constitutes a promising heuristic; e.g. it has successfully been used as a basic
assumption for a computational cognitive model of instance-based learning [44].

To formalize this approach, let n ∈ N be the total number of actions related to the
considered task and A = {a1, ..., an} the set of all these actions. Let S ⊂ A be the set of
all actions a specific person has already executed in a given situation, including action
ai ∈ S as the second-most recent one and aj ∈ S being the most recent one. Let
CS ⊆ A \ S be the set of all correct immediate follow-up actions in this situation, and
Dax,ay the distance between any two actions ax and action ay in the person’s memory
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(as calculated by SDA-M; see paragraph 2.2.1). Then the value of competent(S)
indicates whether in this situation, after action aj , the person is assumed to know what
to do next on their own:

competent(S) :=

{
1 if ∃ac ∈ CS : ∀(x ∈ N | x ≤ n ∧ x 6= i, j) : Daj ,ac ≤ Daj ,ax

0 otherwise
(1)

In this formula, action ac is a CMPA. Note that it is not required that there is a
correct action with strictly smaller distance than all other actions, but only that it is
among those actions closest to the most recent one. Action aj itself as well as its
immediate predecessor ai are hereby disregarded (in contrast to less recent actions from
set S). Since SDA-M’s pairwise distance values are undirected, it would be neither
unexpected nor detrimental to task execution if ai had lower distance to aj than all
correct follow-up actions, but it seems rather improbable that ai would be repeated
after aj . With respect to these aspects, AMPA is an optimistic heuristic.

As an example, assume that exactly these two action sequences are correct for some
task:

seq1 := (a1, a2, a3, a4, a7)

and

seq2 := (a1, a2, a3, a5, a6).

(2)

Now assume that a person has already executed the actions (a1, a2, a3) with S being
the set of this tuple’s elements. If, among all actions, the most recently executed action
a3 has lowest distance to its predecessor a2, then action a3 must have second-lowest
distance to either action a4 ∈ CS or action a5 ∈ CS for the person to be considered
“competent” in this situation. If not, action a3 must have lowest distance to a4 or a5.
Otherwise the person would be deemed unable to determine a correct follow-up action.
For example, if a6 is closest to a3 in memory, i.e. arg minax(Da3,ax) = a6, the person
would probably try to execute action a6 after action a3, which would be wrong.

3.3 Algorithm II: Correct Action Selection Probability
Analysis (CASPA)

In contrast to the AMPA algorithm, CASPA does not only output a plain binary
assessment of competence in a given situation, but a continuous measure of probability.
This allows for a much more fine-grained assessment of mental representation structures
as well as task-, user- and context-specific thresholds for when to provide assistance.
For this purpose CASPA inherited concepts used by the “Adaptive control of
thought–rational” (ACT-R) cognitive architecture [45,46]. According to the ACT-R
theory, human behavior is predominately controlled by a central production rule system
which is neurophysiologically associated to the basal ganglia. Functionally it is related
to procedural knowledge as it represents possible actions as production rules, i.e.
“IF–THEN” rules. These rules take current goals, sensory inputs and chunks from
declarative memory into account by matching the left side of rules (“IF”) with the
contents of buffers associated with the respective subsystems (called “modules”). The
right sides of rules (“THEN”) describe possible actions. Overall this symbolic level
describes which actions are in principle applicable in a given situation. ACT-R then
draws on an additional subsymbolic layer to decide which of the applicable actions shall
be executed. This subsymbolic layer is a lower-level abstraction related to neural
processes. A very similar mechanism is used for selecting one of several chunks from
declarative memory when a specific type of long-term memory content is required.
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Therefore it does not matter for our purposes whether the actions of a specific task
covered by an SDA-M procedure are (in terms of ACT-R) more related to contents of
declarative memory or to executive functions associated with the production rule
system. In fact, the distinct behavior of the subsymbolic levels of these two processes is
modeled using the same basic mathematical approach: The ACT-R mechanisms for
selecting production rules and for selecting memory chunks both use the Boltzmann
distribution as a “softmax rule” for conflict resolution when more than one rule or
chunk is applicable [47]. As we will show now, this approach can be adapted to estimate
the probability of a specific person choosing a correct action in a given situation based
on SDA-M data.

3.3.1 Calculations

Let A = {a1, ..., an} be the set of all actions related to the considered activity, and
S ⊂ A the set of all actions the person has already executed in a given situation,
including action ai ∈ S as the second-most recent and aj ∈ S as the most recent one.
Let CS ⊆ A \ S be the set of all correct immediate follow-up actions in this situation,
and IS ⊆ A \ CS be all actions which are applicable, but incorrect in the given situation
with respect to successful task execution. Then the probability that the person will
know what to do after action aj is estimated as follows:

PS =
∑

ac∈CS

eρ(aj ,ac)/s∑
ax∈(CS∪IS)\{ai,aj} e

ρ(aj ,ax)/s
(3)

This calculation incorporates a constant s > 0 that reflects noise and for our
application is set at 0.4, which is a typical value concerning chunk activation in
ACT-R [46]. This noise value s plays an analogous role to the “temperature” value in
Boltzmann machines or simulated annealing [48]: The higher s, the less preference is
given to actions with higher activation. Eq (3) further requires a measure ρ(ax, ay)
representing the strength of association between actions ax and ay in users’ memory or,
in this context equivalently, the activation level of an action ay after action ax has been
executed. Lander proposed such a measure, called π, as part of the original SDA
method [36], the predecessor of SDA-M:

π(ax, ay) = exp(−
Dax,ay

Dkrit
) = 1/ exp(

√
1− rax,ay√
1− rkrit

), 0 < π(ax, ay) ≤ 1 (4)

A drawback of this formula is that the value of π depends on the “incidental correlation
value” rkrit as defined by [5], which in turn depends on an arbitrarily chosen significance
level α as well as the total number of actions. Furthermore, uncorrelated and even
negatively correlated actions (i.e. rax,ay ≤ 0) still show association strength values
π(ax, ay) > 0, no matter which rkrit value is determined (cf. Fig 2). Overall the slope of
the function leads to insufficient discrimination between negatively or weakly correlated
items and moderately correlated ones. To mitigate these issues, an alternative
calculation based on the ACT-R formulas for production strength and chunk activation
can be used. These formulas reflect the log-odds that an applicable chunk will be
matched in the present context [45,49,50]. For our purposes, the SDA-M correlation
analogon r is used analogous to the respective probability values in ACT-R (cf. Fig 3):

Activation ρ(ax, ay) := log(
rax,ay

1− rax,ay
) (5)

Finally, Eq (3) is adjusted to take those actions into consideration which are positively
correlated to (i.e. associated with) the most recent action aj , such that CASPA regards
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Fig 2. Relation of Lander’s association strength measure π to the SDA-M
correlation analogon r. Green: rkrit = 0. Orange: rkrit = 0.39. Red: rkrit = 0.8.

February 27, 2019 9/22



Fig 3. Relation of activation measure ρ to the SDA-M correlation analogon
r.
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these as applicable to the given situation in terms of the ACT-R theory:

PS =
∑

ac∈CS , raj,ac>0

eρ(aj ,ac)/s∑
ax∈A\{ai,aj}, raj,ax>0 e

ρ(aj ,ax)/s
(6)

3.3.2 Default vs. informed threshold

In order to decide whether assistance should be given, arbitrary thresholds for PS can
be used. The most natural approach a priori would be to choose a probability threshold
of 0.5, i.e. whether it is supposedly more likely that assistance is needed or dispensable.
However, it may be beneficial to determine an informed threshold setting using
empirical data if available. To this end, a sufficiently large number of SDA-M data sets
for the respective task must be available so that the average probability estimated for
different situations by CASPA sufficiently converges. The threshold is then set to that
average estimated value of PS . The assumed benefit of this is the compensation of
possible systematic biases of PS as determined by CASPA. Such systematic biases may
occur when the SDA-M split procedure is slightly easier or harder for subjects to
perform than the real task due to artifacts of modeling the real actions in the form of
visual and/or textual representations. This approach also takes another potential issue
into account: Theoretically, the value of PS should to some degree be dependent on the
total number of actions considered during the SDA-M split procedure. Assuming purely
random decisions on part of the subject, it holds that the more actions are included in
the split procedure, the lower the expected value of PS . In practice subjects may induce
such bias through random tie-breaking in case of doubt as well. Concerning the final
binary decision regarding competence or feedback, an empirically informed threshold
may mitigate these issues. In the following the binarized output of CASPA using the
default threshold (0.5) will be referred to as CASPAd while an informed threshold will
be denoted as CASPAi.

3.4 Relations between the algorithms

In the following, let the sets CS and IS contain only “applicable” actions which are
positively correlated with (i.e. associated to) the most recent action aj , i.e. exactly
those considered by CASPA (cf. Eq 6). In some special cases the output of CASPA is
identical to that of AMPA:

� All applicable follow-up actions are correct:
|CS | ≥ 1 ∧ I = ∅ ⇒ output(AMPA) = output(CASPA) = 1.

� There is no correct applicable action:
CS = ∅ ⇒ output(AMPA) = output(CASPA) = 0.

� The noise value is set at s→ 0 and among the applicable actions with maximum
activation is no incorrect action, but at least one correct:
(∀ai ∈ IS : ρ(aj , ai) < maxax ρ(aj , ax)) ∧ (∃ac ∈ CS : maxax ρ(aj , ax) =
ρ(aj , ac))⇒ output(AMPA) = output(CASPA) = 1

� The noise value is set at s→ 0 and among the actions with maximum activation
is no correct one:
@ac ∈ CS : ρ(aj , ac) = maxax ρ(aj , ax)⇒ output(AMPA) = output(CASPA) = 0

It should be remarked that since the regular noise value for CASPA is constant at
s = 0.4 the relations depending on zero noise are merely theoretical statements.
Generally the following relations hold:
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� If there is a correct applicable action with maximum activation:
∃ac ∈ CS : ρ(aj , ac) = maxax ρ(aj , ax)⇒ 0 < output(CASPA) ≤ output(AMPA)
= 1.

� If there are correct applicable actions, but none of these has maximum activation:
CS 6= ∅ ∧ ∀ac ∈ CS : ρ(aj , ac) < maxax ρ(aj , ax)⇒ 0 = output(AMPA) <
output(CASPA) < 1.

Because of these relations it is not possible to tell in general which algorithm is “more
optimistic” or “more pessimistic”, or to derive the output of one algorithm from the
other algorithm’s output.

4 Evaluation Material and Methods

As mentioned before, previous studies have demonstrated that human experts (scholars)
could use specific visualizations of mental representation structures based on SDA-M
data to detect individual issues regarding action execution and derive helpful advice or
training concepts for performance optimization. This substantiates the assumption that
feasible algorithms would achieve the same if they interpreted SDA-M data in a way
that conforms to interpretation by humans. This study investigates to which degree the
different computational approaches from section 3 satisfy this criterion.

4.1 Data base

In order to establish a suitable test set of SDA-M data as a data pool for further
analyses, we cooperated with a local diaconal non-profit foundation working with people
with various mental disorders. In a first step, we identified the relevant working tasks
related to preparing, opening and cleaning a kiosk at the foundation by observing the
operational procedure. These tasks had been used by the foundation as part of an
educational program for people with mental disorders for several years. In the second
step we interviewed two coaches to detect the underlying working structure. In the
third step the amount of working steps was reduced by integrating similar and related
steps. In the next step we tested the set of concepts in a pilot study. At the end, the set
of working tasks was adjusted and retested. Afterwards, these items were applied to the
SDA-M software. A total of 27 trainees with mental disorders, comprising depression,
schizophrenia, substance use disorders, autism spectrum disorders, attention deficit
hyperactivity disorder, anxiety and mood disorders, used the software to judge whether
a pair of actions belongs together during their work in the kiosk. All participants gave
informed consent in written form. Their capacity to do so was ensured by asking our
contacts at the foundation (trained professionals in coaching people with disabilities) to
exclude all trainees for whom this might be questionable. In the SDA-M splitting
procedure, a total of 15 different actions were covered, which could be divided into four
independent activities:

Kiosk preparation:

� Refill cutlery cart

� Fill in coffee beans and cocoa

� Refill fridge with drinks

� Put plate for rolls in place

� Allocate cart for dirty dishes
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Kiosk customer service:

1. Welcome the customer and take the order

2. Prepare coffee and cocoa

3. Serve drinks and food

4. Take the money

Kiosk wrap-up:

� Wash the dishes and start the dishwasher

� Clean the glass pane of the refrigerator

� Clean the coffee machine

� Wipe the surfaces

Laundry:

1. Wash the laundry

2. Hang up and iron the laundry

The actions related to customer service and laundry naturally have to be executed in
a sequential order (as indicated by the numbering above). Therefore, ideally these
actions should pairwise be strongly associated in long-term memory structures to
represent the correct sequence. Actions related to the kiosk preparation and wrap-up
activities can be executed in arbitrary order (indicated by bullet points). Generally,
actions related to different activities should ideally not be associated to each other in
long-term memory.

The trainees were familiar with these actions and activities to differing degrees,
because they were trained in these tasks at the diaconal organization for different
lengths of time (between a few weeks and several months). In line with previous studies,
e.g. on actions in judo [42], windsurfing [16], soccer [51] or manual actions in humans
and robots [12,13], we assume that potential problems and deficits in action execution
are reflected in the mental structure of the tasks. Thus, unrelated or wrongly related
actions on the cognitive level are expected to lead to decreased real-life performance, e.g.
forgetting of the next relevant action or executing a wrong task. For example, a trainee
might start cleaning a table instead of serving a customer who is waiting in line.

4.2 Retrieval of experts’ manual assessments

The data pool was then used to compare assessment by human SDA-M experts with
algorithmic interpretation. To this end, we created an assessment task consisting of 80
different hypothetical situations related to the kiosk-servicing activities listed above.
Each of these “situations” was specified by

� SDA-M data visualization of a random subject, and

� a fictitious sequence of actions this subject was said to have executed up to now.

The fictitious action sequences had been created by selecting representative subsets
from the set of all correct sequences and applying a random cut-off length to each
sequence. By definition, a “correct sequence” was a sequence containing actions from
only one of the four activities and, where applicable, in correct temporal order. The
first half of the final set of sequences was initially chosen randomly. The resulting set
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was then manually revised to mitigate a bias towards sequences from the larger,
unordered activities caused by the disproportionate number of permutations of actions
in these activities. The second half was determined by randomly selecting from a set of
sequences that was priorly adjusted by adding duplicates of some sequences to
compensate for over-/underrepresentation of activities. The resulting test sequences are
provided as S1 Table.

These “situations” or test cases were then presented (as shown in Fig 4), one after
another, to a group of N = 12 human scholars, along with a general overview of all
correct sequences for each of the four kiosk-service-related activities. The participating
scholars were experts with extensive education regarding the SDA-M method and
personally experienced in using it for scientific purposes before, but they were blind
with respect to the algorithmic analyses that we investigated in this study. Each scholar
had to assess independently for each situation, based on the given SDA-M data
visualizations, whether or not the respective subject would more likely need assistance
or be able to determine a correct follow-up action in the given situation (see S1 File for
survey sheets). The same test cases were also fed into our AMPA and CASPA
algorithms. As both experts and algorithms pursued the same goal (predicting human
errors), their results could then be compared as described in the next section.

Fig 4. Example of a test case representing a fictitious “situation” for
assessment. The right side shows a dendrogram visualizing a subject’s mental
representation structure for the kiosk service activities. In this example some actions
from the “kiosk preparation” activity (IDs 2, 3 and 4) are clustered with actions from
the “customer service” activity (IDs 6, 7, 8 and 9), indicating a corresponding relation
in memory.

5 Data analysis and results

The assessments by each of the human experts have been translated into binary vectors
with value 1 representing the assessment “the subject in this scenario is probably able to
determine a correct follow-up action in the given situation on their own, i.e. assistance
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is not required”, and value 0 representing the opposite case. We found that the
assessments from 11 out of 12 human SDA-M experts correlated positively with the
group average, while those from one expert correlated negatively. Presumably this was
due to misunderstandings regarding the assessment task. Therefore we excluded this
expert’s ratings from further analyses. The remaining assessments served as our ground
truth for comparison with the respective results from the AMPA and CASPA
algorithms. As CASPA delivers estimated probability values PS ∈ [0, 1], a direct
comparison was possible with the portion of experts PE ∈ [0, 1] who supposed in each
test case that the respective subjects were competent. We found a positive correlation
of r = .62 which, considering that the average correlation (determined using Fisher
z-transformation) of each individual expert’s assessments to the average assessments of
the remaining experts was almost identical (r = .59), indicates an adequate fit between
manual and algorithmic assessments.

In order to evaluate the (binary) output from AMPA and the influence of different
thresholds for CASPA, several common metrics for the evaluation of binary classifiers
have been employed. For this purpose the Median value of the experts’ assessments was
used for each test case. Due to an odd number of experts (N = 11) this equals majority
decision. CASPA’s continuous PS values were converted into binary decisions as
described in section 3.3.2, i.e. using either the default threshold of 0.5 (“CASPAd”) or
an informed threshold of PS = 0.2396 (“CASPAi”), where PS was the average of all
probability values output by CASPA for all 80 test cases from the study. In the
following, let Nab with a, b ∈ {0, 1} be the total number of situations where the human
experts’ assessment equals a and an algorithm’s prediction equals b. The simple
matching coefficient (SMC) for binary vectors yields the percentage of cases where
human and algorithmic assessments came to the same results, thus representing the
accuracy of matching the human experts’ assessments regarding expected action errors:

Accuracy = SMC =
N00 +N11

N00 +N01 +N10 +N11
(7)

One-tailed binomial tests with H1 : P (success) > P (failure) were performed for each
algorithmic approach to determine whether the degree of match between human and
algorithmic assessments, i.e. the accuracy, is significantly above chance level. Hereby
each matching pair of assessments counted as a successful Bernoulli trial and each
deviating pair as a failure. Correlations between the respective vectors of binary
decisions were calculated and tested for significance as well. Sensitivity, specificity, and
positive/negative predictive values can be defined analogously to accuracy (Eq 8 to 11).
In this context a “true positive” denotes cases of both algorithm and human experts
suspecting that assistance was required because the subject’s mental representation
structure is not suitable (N00).

Sensitivity =
N00

N00 +N01
(8)

Specificity =
N11

N11 +N10
(9)

Positive predictive value (PPV) =
N00

N00 +N10
(10)

Negative predictive value (NPV) =
N11

N11 +N01
(11)

In addition to these classic metrics the balanced accuracy should be considered, because
this measure safeguards against a biased classifier taking advantage of an imbalanced
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test set [52]. If an algorithm performs equally well regarding its positive and negative
predictive values, its balanced accuracy reduces to the conventional accuracy.

Balanced accuracy =
1

2
(

N11

N11 +N01
+

N00

N00 +N10
) (12)

Table 1 shows how AMPA, CASPAd (threshold = 0.5), and CASPAi (threshold =
0.2396) performed with respect to these metrics. Balanced and conventional accuracy
values were close to each other with all algorithms ranging between 0.79 and 0.86 for
these metrics (Fig 5). Binomial tests showed that with all three algorithm variants the
match with human experts’ assessments was highly significant above chance level.
Differences between the algorithms were marginal, though CASPAi generally tended to
score slightly better than AMPA.

Table 1. Full results of the evaluation study.

Algorithm Correlation Accuracy Sensitivity Specificity PPV NPV Balanced accuracy

AMPA 0.61*** 0.84*** 0.86 0.77 0.91 0.68 0.79

CASPAd 0.61*** 0.85*** 0.93 0.64 0.87 0.78 0.82

CASPAi 0.67*** 0.86*** 0.88 0.82 0.93 0.72 0.82

*** p < 0.0001.

Fig 5. Key results of the evaluation study. Accuracy and balanced accuracy (see
Eq 12) measure the congruence of algorithmic (AMPA, CASPAd, CASPAi) and human
experts’ assessments.

6 Discussion

The analysis of mental representation structures using the SDA-M method is a
well-established approach (cf. e.g. [5, 6, 12,13,25,27–32,34,35]) for gaining insight into
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the degree of individual expertise related to various activities, ranging from basic
grasping actions to complex system interactions. Traditionally this information was
computationally pre-processed and visualized to be interpreted by human SDA-M
experts. As this requires human resources, specific training and is time-demanding, this
approach is inefficient, nondeterministic and not applicable in real-time systems.
Therefore we investigated different approaches to algorithmically automatize the
interpretation of SDA-M data. In order to enable suitable predictions about error-prone
steps during task execution, specific prerequisites must be satisfied. Most notably, the
considered activity must be divisible into a limited set of sequential actions or sub-tasks
which can be assumed to be executable without issues. When used as a component of a
technical assistance system, this approach is most advantageous if the expected benefits
from error predictions outweigh spending approximately 10-15 minutes for performing
the SDA-M split procedure before system usage. This may commonly apply when
executing the assisted actions in reality is relatively time-consuming and/or when errors
have severe consequences, e.g. when wrong actions are difficult to reverse. Presumably
it might also help specific target groups overcoming insecurity and hesitation to tackle
unfamiliar activities. In order to take learning processes into account and further reduce
unneeded assistance, users may want to update the data about their mental
representation structures from time to time by repeating the SDA-M split procedure.

In a first evaluation study, our proposed algorithms for SDA-M-based error
prediction, AMPA, CASPAd and CASPAi, showed a high degree of consistency with
human experts’ assessments about probable action errors based on SDA-M
visualizations of subjects’ mental representation structures. The percentage of matches
between algorithmic and experts’ assessments was significantly higher than would be
expected by chance, ranging from 84% to 86%. The differences between the proposed
algorithmic variants were insignificant, but the more sophisticated CASPAi algorithm
scored slightly higher regarding all metrics we considered than the simpler AMPA
algorithm. It should be noted that the existence of some non-matching cases did not
necessarily imply that the respective algorithmic predictions were wrong. On the one
hand, human experts also varied from one another in their judgments regarding error
predictions to some degree. On the other hand, some of the information contained in
the raw data is lost when visualizing mental representation structures via dendrograms
for manual interpretation. On this account the algorithmic interpretations may actually
have been better than those from human experts. However, due to a lack of definitive
ground truth regarding the actual mental structures of subjects from this study, this
hypothesis can neither be confirmed nor rejected so far. Generally, the evaluation study
reported in this article constitutes a proper indication of suitability of the algorithmic
interpretations of SDA-M data in comparison with the traditional approach of manual
assessment for a specific task. Noteworthy limitations of the study are the relatively
small number of activities that were analyzed, as well as the present empiric evidence in
favor of our new algorithmic approaches being restricted to a comparison with experts’
assessments.

7 Outlook

Further research is mandatory to reliably assess the degree of match between predicted
errors and human errors actually occurring during task execution in reality. Pertaining
to categorizations of human errors [53,54], we expect our approach to cover most
(knowledge- and rule-based) mistakes, and potentially also some types of slips, e.g. due
to associative activation and capture errors (excluding external event sources), loss of
activation and faulty triggering. However, since many occurrences of slips are
context-dependent and unreproducible, the SDA-M split procedure certainly cannot be
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expected to capture all (and possibly not even most) instances of slips. A promising
extension may be to incorporate eyetracking and physiological sensor measurements in
addition to SDA-M data into a real-time error prediction component. This data can be
used to determine users’ current stress level, which in many situations influences the
predetermined probability of making errors.

An interesting philosophical question is under which conditions assistance systems
incorporating our prediction module may be considered anticipatory systems according
to Rosen [55]. Following Rosen’s pertinent definition, this would be the case if the
human user is regarded as (part of) the system’s environment, and the system’s internal
predictive model “provides an alternate description of the entailment structure of the
mapping representing the [biological] process itself” [56]. With respect to the intended
application this seems to be the case if (and only if) the predictive model is grounded on
neurocognitive actualities. Arguably, both Schack’s theory (CAA-A) [24] underlying the
SDA-M method and Anderson’s ACT-R, from which CASPA’s calculations are derived,
may be regarded as sufficiently well-grounded in this regard. Furthermore, the
predictive model M of an anticipatory system S should be “equipped with a set E of
effectors that operate either on S itself or on the environmental inputs to S, in such a
way as to change the dynamical properties of S” [56]. Such effectors could for example
be the visual or auditory displays of an assistance system which cause its user to behave
in a different way, i.e. “the effect of the model M creates a discrepancy – S would have
behaved differently if M were absent” [56]. According to Louie [56], such a “predictive
or anticipatory mode” would cause a system to “become more like an organism, and less
like a machine”.

Supporting information

S1 Table. Test sequences list. Spreadsheet table containing the action sequences
used as test cases (two blocks with 40 test sequences each).

S1 File. SDA-M experts assessments survey sheets. ZIP file containing the
response sheets that were provided to each SDA-M expert for indicating their
assessment of each test case.
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