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ABSTRACT

This paper introduces Wave Space Sonification (WSS), a novel
class of sonification techniques for time- (or space-) indexed data.
WSS doesn’t fall into the classes of Audification, Parameter-
Mapping Sonification or Model-based Sonification and thus con-
stitutes a novel class of sonification techniques. It realizes a differ-
ent link between data and their auditory representation, by scan-
ning a scalar field – defined as wave space – along a data-driven
trajectory. This allows both the highly controlled definition of the
auditory representation for any area of interest, as well as subtle
yet acoustically complex sound variations as the overall pattern
changes. To illustrate Wave Space Sonification (WSS), we intro-
duce three different WSS instances, (i) the Static Canonical WSS,
(ii) Data-driven Localized WSS and (iii), Granular Wave Space
Sonification (GWSS), and we demonstrate the different methods
with sonification examples from various data domains. We dis-
cuss the technique and its relation to other sonification approaches
and finally outline productive application areas.

1. INTRODUCTION

Sonification allows to experience data by listening, enabling listen-
ers to understand variations in data as they manifest in systematic
variations in auditory space [1]. It affords a systematic connec-
tion of the data space to the sound signal space which in turn, on
listening, navigates the auditory perceptual space and ultimately
leads to shifts in a cognitive space of interpretations, i.e., result in
insights. The art of sonification design is to bring together knowl-
edge of data, sound and perception to craft a suitable linkage be-
tween data- and sound signal space that allows meaningful patterns
in data space to translate to distinguishable patterns in perceptual
space and hence, give listeners insights about patterns in the data
or awareness on their change, whatever the purpose of the auditory
display might be.

Many sonification techniques have been introduced over the
past decades, which illustrates how complex, rich and different a
linkage can be achieved (s. icad.org and [2]). From the perspective
of structure, these sonification techniques can roughly be orga-
nized into five different classes: (1) earcons, (2) auditory icons and
parameterized auditory icons, (3) parameter-mapping sonification
(PMSon), (4), audification, (5) model-based sonification (cf. corre-

This work is licensed under Creative Commons Attribution Non
Commercial 4.0 International License. The full terms of the License are
available at http://creativecommons.org/licenses/by-nc/4.0

Data

Time Series X
Embedding

E(x) vt

Wave Space

V

M
Morphing

Signal   s(t)

GUI / Controls

User

Figure 1: Wave Space Sonification: data-driven trajectories probe
a static or data-refined wave space scalar field.

sponding chapters in [2]). Of course, the classes are never sharply
separated and many sonifications combine different sonification
techniques into hybrid sonifications.

Focusing on time-indexed data, as they occur in all walks of
life and data science, from biomedical data to motion analysis, to
name a few, all the techniques have offers to make, yet the dom-
inating methods are audification and parameter-mapping sonifica-
tion. Let’s review how in these approaches, data space and sound
space are connected.

In audification, the relation is most intimate: the data speak for
themselves, as they are used as instantaneous sound pressure level
that constitutes a sound signal as function of time. Although many
useful processing steps such as resampling, filtering, non-linear
warping and time-stretching allow to refine the transition between
data and sound space, data become a signal.

In parameter-mapping sonification, the relation is mediated:
data features are used as input for a mapping functions which com-
putes synthesis parameters for a sound synthesis. While being
highly flexible and adaptable, the nature of the relation between
data and signal is that data control (rather than become) the sound
signal.

Are there any more different ways of linkage? Model-based
sonification offered yet another way to connect the spaces: here the
data are neither becoming a sound nor used as control, but the data
are turned into (or parameterize) a sound-capable system (in other
words: the instrument), while interaction with them via the model
is left to the user. As, however, relations in the data systematically
translate to properties of the ’data-informed instrument’, it offers



The 24th International Conference on Auditory Display (ICAD 2018) June 10 -15 2018, Michigan Technological University

a versatile and highly interaction-builtin way to explore structures
in data.

We see that all these approaches exercise a qualitatively differ-
ent paradigm how data and sound signals are connected. This pa-
per introduces yet another, novel mechanism for this connection:
the data define the navigation of high-dimensional sound signal
spaces – resulting in a new cluster of methods which are in be-
tween parameter-mapping sonification and audification, yet differ-
ent in structure from both, as will be shown below. This approach
is primarily intended for time- (or space) indexed data, and thus
we start with a focus on multivariate time series data in the fol-
lowing section. In turn, WSS will be formally introduced and then
illustrated by few example instances demonstrated with sonifica-
tion examples. This should provide ample orientation to discuss
how WSS relates to audification, parameter-mapping sonification
and model-based sonification in Sec. 5. The paper concludes with
an outlook on future work.

2. MULTIVARIATE TIME SERIES IN STATE SPACE

A necessary requirement for WSS is that the data are indexed ac-
cording to a scalar variable. The most frequent case for that is
that of time-indexed data, i.e., time series. As most phenomena
of interest deliver several measurements at each point in time, the
more general class is that of multivariate time series. Examples
are EEG, ECG, EMG, inertial sensor data, motion capturing data,
climate models, to name a few. However, WSS will also work if
the index is of other nature, e.g. a spatial variable, such as ice core
or other geological probe properties varying over a spatial index.
As time series are the more typical situation we anchor the mathe-
matical treatment on an index t.

Let ~x(t) be a d-dimensional measurement of a system over
time t. A discrete measurement process of n steps yields a dataset
X = ~x(ti)i=1...n. Often, but not necessarily, timestamps are
equidistant, i.e., ti = i · T = i/ν, where ν is the sampling rate in
Hz and we can more easily write it as ~xi. A frequently used visu-
alization of such data is by plotting component functions of time,
as depicted in Fig. 2 (left). If we interprete measurement tuples
as points in a vector space, we can consider the data to describe
a trajectory in a d-dimensional space. Fig. 2 (right) depicts for il-
lustration the linear projection onto a 3D-subspace spanned by 3
features.

This perspective stimulates interesting paths to deepen the un-
derstanding of the phenomenon. For instance, if we see orbits, this
corresponds to oscillations in the time series; if we see conver-
gence to a point, we understand a fix point attractor. If we see that
trajectories cross each other, i.e., there are divergent trajectories
from one and the same point, we understand that the representa-
tion is not a state, but merely a low-dimensional projection of the
truly higher-dimensional situation. In other words, knowing a vec-
tor doesn’t allow us to infer in what direction it will continue.

For that sake, methods are used to extend the vectors so that
they are states. One of them is delay-embedding, which augments
a time series ~xi by its past version ~xi−k delayed by k time units,
into a now (2·d)-dimensional vector. Figure 3 illustrates delay em-
bedding using a 1-dimensional time series for two delays. While
only low-dimensional projections (up to 3) are attractive for visual-
ization, higher-dimensional embeddings can easily be created (and
may be necessary to yield a state), yet visual inspection is clearly
limited. Here lies an important selling point for WSS, as the au-
dibility of the trajectories in the truly high-dimensional space is

4 6 8 10 12
time[s]

FP1
FP2
F3
F4
C3
C4
P3
P4
O1
O2
F7
F8
T7
T8
P7
P8
FZ
CZ
PZ

vo
lta

ge
 [a

rb
. u

ni
ts

]

F4

20
0

20
40

C3
10

0
10

20

CZ

10

0

10

Figure 2: Typical plot of a multivariate time series (top) and a
projection of the corresponding trajectory on three selected axis
(right). The example shows human EEG during an epileptic
seizure.

possible without problems, as we will see, resp. hear.
We see that details of the dynamics manifests in properties

of the trajectories, such as velocity and its change, curvature and
its change. In modern medicine and systems biology there is the
notion of ’dynamical disease’, which argues that we fail to under-
stand disease by merely looking at averages (e.g. hormone lev-
els, body temperature, etc.) but instead disease manifests in their
rhythmical orchestration and thus how values change in concert
with each other. From that perspective we can take additional mo-
tivation to strive at visualizations and sonifications which make
such coherences explicitly perceivable as shapes that depend on
the dynamics [3].

While time series analysis is a very elaborated research area,
the above-introduced basics should suffice to unfold Wave Space
Sonification.
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Figure 3: Delay-embedding of a one-dimensional time series (few
cycles shown top) using delay τ = 16 (left) and τ = 42 (right),
here showing human ECG.
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3. THE FRAMEWORK OF WAVE SPACE SONIFICATION

Wave Space Sonification, as motivated in the introduction, offers
a novel approach to connect data space with sound (signal) space,
by means of a data-driven sampling of audio signals organized in
a high-dimensional scalar sound field, called here wave space. So
what is a wave space? We are familiar with the idea of audio sig-
nals stored in a vector (i.e., buffer or table) as sequence of samples,
if we look at it as a one-dimensional sound space. Using a phasor
at constant speed and moving along the dimension we reproduce
the stored sound at a specific playback rate, associated with the
phasor increment. WSS generalizes this process by defining the
sonification to be the scanning of a sound space according to the
trajectory that a time series forms in its vector space. Let’s define
it formally before we continue to specify useful fillings of wave
space.

Let ~x(t) be a sampling of time-indexed data X , either as con-
tinuous function or time-discrete sampling, e.g. ti = i/ν. Let
~v(t) ∈ Rd be a trajectory, for instance as directly used by tak-
ing the multivariate time series ~x(t) and/or augmented by selected
appropriate delay embeddings. We obtain ~v(t) = E(X)(t) as
an embedding of X into a d-dimensional space. Furthermore, let
V : Rd → R be a scalar function which we call wave space func-
tion. Finally we need a warping or morphing functionM(t) which
allows to control how exactly we move along the trajectory, which
could be different from how the original time series moves.

With the above assertions, we define a wave space sonification
(WSS) as the transformation of data into a sound signal via

s(t) = V (E(X)(M(t)) = V (~v(M(t))) (1)

which is basically created by sampling the wave space function
while moving along the embedded trajectory by means of a chosen
time-advancement morphing.

WSS defines sonification as a scanning process by means of
(a) a trajectory definition in wave space, and (b) a suitable defi-
nition of a wave space function, and (c) a suitable way of moving
along the trajectory. The method renders interesting auditory views
already for simple and static choices for E, V , and M . However,
a particular benefit will arise from regimes where the wave space
is filled or modified according to the trajectory itself, as will be
demonstrated later on.

As to (a), the trajectory definition, Section 2 has already fea-
tured the most important ideas. However, it may be useful to
additionally apply dimensionality reduction methods to limit the
complexity of the space, e.g., by applying a principal component
analysis (PCA) [4] to select only those dimensions in which the
trajectory exhibits large variations. Often this (or other data min-
ing methods for pre-processing) can remove irrelevant detail and
facilitate focusing on key properties at the same time. The tra-
jectory definition might furthermore involve some filtering to re-
move random processes, such as additive measurement noise, to
get smoother paths through wave space, which in turn translates to
clearer signals in auditory space.

As to (b), the definition of the wave space function can be
achieved at hand of different approaches. Firstly, it can be explic-
itly specified by using an algebraic expression such as

V (x1, . . . , xd) =
d∑
i=1

hi(xi) (2)

for given functions hi : R → R (see examples in Sec. 4.2). Sec-
ondly, it can be defined by help of given sound signals si[n], us-

ing an interpolation/resampling function to define associated real-
valued functions hi, for instance to be used in the linear combin-
tatio in eq. (2) above. Thirdly, it is possible to anchor specific
sound signals at user-selected locations with a defined orientation
in wave space by using a mixture of signals approach, as explained
next.

Assume we wish to anchor K localized wave fields φi() at
given centers ~µj , j = 1, . . . ,K with given orientation defined by
a transformation matrix Σj = UjDjU

τ
j . We can then compute V

by

V (~v) =

K∑
j=1

φj((~v − ~µj)Σj(~v − ~µj)τ ) . (3)

If the localized wave fields contribute only around the origin, for
instance by using

φj(~v) = sj [v1] · exp(~v22...d)/σj , (4)

the resulting WSS will exhibit the selected timbre of sj [·] when-
ever the trajectory passes close to location ~µj . Depending on the
chosen morphing, the sample is activated at higher or lower sam-
pling rate.

As to (c), the suitable way for moving along the trajectory,
the first and most basic choice would be to let the trajectory it-
self determine the speed. The instantaneous velocity is then pro-
portional to the distance between subsequent embedding points,
and so velocity ∝ ~v[n + 1] − ~v[n]. It makes sense to interpolate
the segmentwise velocity linearly to avoid unsteady changes while
moving along. This way, faster trajectories naturally translate to
up-sampled signals. Note that this would mean an equal number
of samples in wave space for any segment [~vj , ~vj+1] in embedding.

In contrast, one could also define a morphing that moves along
the trajectory but at constant velocity, which is called the natural
parameterization (also: unit-speed or arc-length parameterization)
in Differential Geometry of curves. We skip mathematical details,
yet given a set of embedding points ~vi, i = 1, . . . , N we could just
sample each segment [j, j + 1] with a number of samples in wave
space that is proportional to the length ‖~vj+1 − ~vj‖.

Any interpolation in between these two extremes, and also any
extrapolation can be achieved, and they can all be characterized by
means of a morphing function t′ = M(t), which could simply be
said to warp time.

Let’s look at some practical realizations of WSS next, before
we discuss the method further.

4. WAVE SPACE SONIFICATION INSTANCES

To better understand how WSS translates multivariate time series
into sound, let’s explore a few examples. Same as Model-based
Sonification (MBS), as overarching framework, pre-structures
many different sonification models which can be called instances
of MBS, WSS can have different instances, according to the choice
of embedding, wave space and morphing. We start with a most
basic WSS instance, that might be called canonical wave space
sonification, proceed with a data-driven localized wave space def-
inition and close with GWSS, the granular wave space sonifi-
cation. Sound examples are provided via the following DOI:
[10.4119/unibi/2919709].

https://doi.org/10.4119/unibi/2919709
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4.1. Canonical Wave Space Sonification

The most basic choice of constituents for WSS is to (a) use the
data-driven trajectory itself for embedding, (b) define the wave
space as a sum (or product) of mathematical functions, and (c) use
a trajectory-controlled speed, i.e., a temporal morphingM(t) = t.
A canonical choice for wave space is

V (x1, . . . , xd) =

d∑
i=1

sin(2πωixi) . (5)

If angular frequencies ωi = ω0 · i are chosen as multiples of a
fundamental ω0, a straight line trajectory along the i-th axis will
translate into a sine signal of frequency ωi, i.e., a harmonic of
frequency ω0.

Let’s assume for example the multivariate time series
~x(t) = (cos(2πω0t), sin(2πω0t)). The trajectory moves on a cir-
cle in wave space at constant speed. At t = 0, only x2 changes as
x1 varies little around the maximum. Hence, the WSS produces
a tone of frequency ω2. This frequency decreases as the sine’s
slope decreases while at the same time the frequency ω1 of the x-
component increases until t = π/2. This transformation between
activation of the ω2 and ω1 sine continues and becomes the audible
pattern as result of the sonification. Fig. 4 depicts the trajectory,
the wave space and the sound signal. The sonification is provided
as Sound Example S11.
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Figure 4: Canonical Wave Space Sonification - the trajectory is
a circle, the 3D plot depicts it as spiral using t as z-axis. Right
side plots show the beginning of the sonification (first , below the
spectrogram.

Things become auditorily more interesting when more com-
plex timbres are used to define or fill the wave space. For instance
using the same frequency along x1 and x2, but only even/odd har-
monics along x1/x2. Then the trajectory manifests as timbre tran-
sition between two timbres. (sonification example S2).

The following sound examples S3.1-4 illustrate canonical
WSS with the monthly number of sunspots dataset (measurements
over 150 years which exhibits the 11-year solar cycle) [5]. The
embedding of this one-dimensional time series into 2D-space is
obtained by using a delay-embedding of k = 60, i.e. roughly 5
years. According to the choice of the rate parameter, which scales
the velocity at which the trajectory is scanned, very different au-
ditory views emerge, from sonifications that allow to understand

1All sound examples are provided with description on https://
doi.org/10.4119/unibi/2919709

the overall evolution over time (e.g. how does the sunspot oscil-
lation vary over centuries) (see sound examples S3.2 and S3.4)
to auditory views that allow to understand individual orbits (e.g.
fast/slow, small/large) and compare their inner shape and structure
(see sound examples S3.1 and S3.3).
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Figure 5: Wave Space Sonification of monthly sunspot data: top:
time series of monthly sunspots and two delay-embedding of the
filtered signal below, with k=6 (left) and k=24 (right). Listen to
sound examples S3.1-4.

4.2. Static Sample-based Wave Space Sonification

Instead of using merely mathematical functions to define wave
space, it is well possible and acoustically much more interesting
to define wave space by means of available samples, i.e., recorded
sound signals. The most straightforward way is to choose a sound
file si(t) for each dimension i = 1, . . . , d of wave space and de-
fine the wave space function as

V (~x) =
1

d

d∑
i=1

si(ci · xi) , (6)

where ci are scaling factors that allow to tune each dimension dif-
ferently.

As a first sonification example, listen to the sunspot orbits
where the x1 dimension is filled with the spoken vowels ‘a-e-i-
o-u’ (vowels as in bath-bear-bee-beau-boo) with a short gap in-
between, and along the x2 it is left silent. The sonification ex-
amples S4.1-2 (using the sunspots data set) and S4.3-4 (for ECG,
realtime and /4 slowdown) illustrate that now much more under-
standing of the dynamics comes from the more structured layout.
This WSS is called static as the wave space filling does not de-
pend on time or on the data. Both extensions are possible and
likely paths towards more useful sonifications. Of the many pos-
sible paths, the following section examines the manual adaptation
of wave space to given data.

4.3. Data-Driven Localized Wave Space Definition

In many situations time series form a 1D-attractor, i.e., a limit or-
bit, around which deviations occur depending on initial conditions
or external perturbations. For instance, the human ECG signal of a

https://doi.org/10.4119/unibi/2919709
https://doi.org/10.4119/unibi/2919709
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healthy subject will have some variations between individual heart
beats but largely exhibit a structurally reproducible pattern, as de-
picted in Fig. 3. For understanding properties of the cycle in detail,
it would be beneficial to craft data-driven wave space functions
so that samples are centered at relevant locations and aligned to
the dominant direction in the delay-embedding. For instance, the
QRS-complex (the peak of the heart beat) manifests for the large
slightly rotated D-shaped orbit in the lower left plot of Fig. 3,
shown also in Fig. 6. A data-driven wave space definition could
position a sound sample w1(t) on the horizontal part, and likewise
w2(t) and w3(t) on the vertical part and along the main diagonal
at the origin. Naturally the sonification would exhibit a sequence
of w1, w2 and w3 sounds, depending on the idiosyncrasies of in-
dividual spikes.

Specifically, we suggest a mixture of k localized wave space
hyper-cylinders2, centered at locations ~µk, oriented along unit vec-
tors ûk by

V (~x) =

K∑
k=1

gk·wk(rkû
τ
k(~x−~µk))·Kσ (‖(1− ûkûτk)(~x− ~µk)‖) ,

where gk is the gain of wk(t), which is a sound sample, and
Kσ(y) is a window function that decays with increasing y such
as Kσ(y) = exp(−y2/2σ). The scalar factors rk allow to stretch
or squeeze the sound sample along ûk.

The data-driven localized wave space sonification is of prac-
tical utility if the analysis focus is on deviations of orbits from a
reference orbit, such as in monitoring situations, diagnosis or ex-
ploratory data analysis contexts.

Sound example S5.1 is a sonification of the ECG cycle de-
picted in Fig 6, using a sound sample of spoken letter ’r’ and ’s’ for
the outgoing (horizontal towards the right) and returning (vertical,
downward) trajectory of the QRS-complex. A whistling sound is
added to the origin with a 45◦ degree orientation, which is turned
into a discernable pattern by the other parts of the ECG (u-wave, p-
wave, etc.). The used samples were quickly recorded with the lap-
top microphone and are provided as sound example S5.0. Sound
example S5.2 represents a sonification at 1/4 the rate, allowing to
perceive the signal between the QRS-complexes in greater detail.

4.4. Granular Wave Space Sonification

The instances of WSS introduced above use the state trajectory
directly to sample the Wave Space, and thus have a highly direct
coupling between trajectory dynamics and sound signal. However,
this comes at some disadvantages. On the one side, with the data-
driven velocity mode, the changing trajectory speed causes strong
(often too extreme) resampling so that the timbre cannot anymore
be properly recognized, yet at least the timing is correct, i.e., soni-
fication time is proportional to data time. On the other side, us-
ing the ’unit speed’ natural parameterization or arc-length velocity
mode, the extreme sampling problem is solved but then the tem-
poral pattern is strongly distorted, causing short large spikes (such
as the QRS-complex in the ECG data example) to be represented
by much more sonification time than it proportionally takes within
the cardiac cycle.

To overcome these limitations we finally introduce Granular
Wave Space Sonification, which decouples the trajectory from the
sound-collecting process to some degree. While moving along

2’hyper’ because the definition is not only for 3D but any dimension
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Figure 6: Localized Wave Space Sonification of ECG: the spo-
ken sound ’r’, ’s’ and a whistling sound at constant pitch are in-
scribed into wave space at the visible location and orientation. The
whistling sound is high pitched and more quiet and thus less visi-
ble here unless zooming in.

the trajectory we regularly spawn ’particles’ to probe wave space
along the trajectory. These particles have a limited range and can
propagate at their own velocity, independently of the moving tra-
jectory. According to the morphing function (or velocity model)
this spawning could happen equally often per second, or when-
ever a determined distance has been moved along the trajectory.
The Granular Wave Space Sonification (GWSS) is then simply the
superposition of all particles’ individual wave space sonifications.
However, as usual in granular synthesis, we also apply to each
grain a temporal amplitude envelope window (hanning window)
to reduce transient effects.

Compared to standard WSS we gain three control parameters:
(i) the particle rate (in particles per second), the duration (in sec-
onds) of the particles’ life time, allowing the sound to become a
mixture of slighly different particle views on the time series, and
finally (iii) the propagation speed of particles in unit length per
second, which can be adjusted between a narrow local spatially
confined focus at slow speed and and long-ranging particles, even
up to half a cycle or more at large speed.

The following sound examples illustrate GWSS for the ECG
data set used before. A sonification of the Lorenz attractor and
EEG data will be made available as supplementary material and
shown at the conference. Sound example S6.1 is a GWWS ren-
dered with a particle rate of only 3 Hz, particles of 20 msec, using
the static WSS wave space function. You can hear the well isolated
grains and distinguish their timbre. Compare this to sonification
S6.2., where the particle duration has been increased to 100 ms.
Here the temporal contour in each grain becomes perceivable. In
sonification S6.3 the short grains are kept but the particle rate is
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increased to 20 Hz. Try to attend to the rhythm of the heart beat
(0.5 Hz, as a 2x slow-down is used). This is much easier in soni-
fication S6.4 where the particle duration is increased to 3 ms and
the particle rate has been increased to 40 Hz so that grains blend
and you can follow the 5 heart beats. If more details are needed
without affecting the spectrum, the rate can now easily changed,
as for instance to a 6x slow-down in sonification S6.5.

Of course, the GWWS can also be used with any of the other
proposed wave space fillings, such as the localized wave space
samples. Examples S6.6 and S6.7 illustrate sonifications for a used
spoken ’a-e-i-o-u’ sound file laid out along the x0-axis.

5. DISCUSSION

The above presented WSS instances demonstrate that Wave Space
Sonification is a structured yet still quite versatile and flexible
framework to investigate time- (or space-) indexed data. Depend-
ing on the selection of the rate, different phenomena in given data
can be explored – from differences in-between individual orbits to
the overall structure of the dataset as a whole, including trends and
changes in rhythmical organization. The possibility to define the
wave space function at hand of user-selected timbres enables to
rather easily create sonifications that meet expectations in timbral
complexity or pleasantness. For instance, very precise but slightly
annoying wave files which might be perfect for analysis and diag-
nosis could then easily be replaced by less precise but much more
pleasant sounds, whatever is regarded as such, for using the system
in a real-time monitoring scenario.

The number of parameters to control WSS is nicely limited, as
too many parameters would only make it overly difficult to adjust
the system to one’s needs. They include the embedding, the rate,
spatial scale, selection of morphing function, selection resp. def-
inition of wave space. Depending on the latter, a number of ad-
ditional parameters might be needed. For the GWSS, we further-
more have introduced particle duraction, particle rate and parti-
cle speed, which all are self-explanatory when you understand the
sonification process.

The chosen datasets for sonification examples have in com-
mon that their trajectories are repetitive with variations, i.e., they
are quasi-periodic. This is a particularly useful situation as then
the ear can easily understand the cycle, learn and memorize the
basic pattern and subsequently focus on differences therein. How-
ever, non-stationary patterns would also make sense for WSS, for
instance in the case of monitoring: assume that due to a trend or
change of parameters the trajectory shifts to another area of wave
space which is occupied by a completely different timbre – the lis-
teners will very likely notice the salient change corresponding to
such a non-periodic shift.

The second commonality in the datasets is that the trajectories
are sufficiently smooth. This makes both the visualization eas-
ier to follow and the sonifications smoother. Smooth trajectories
can usually be obtained for any data by applying a low-pass filter.
However, it often makes also sense to apply a high-pass filter to re-
move DC-offsets or any slow waves that would manifest in delay
embeddings as spatial translations of the orbits, so that practically
a band-pass filter with user-selected low- and high-frequency cut-
off is the best.

How WSS performs without this filtering, and in how far the
filtering may remove relevant information from the underlying
data depends on the data and remains to be learnt in long-term
experience with – and further investigations of – WSS.

In the introduction, we advertised WSS to be a new class of
sonification technique, on the same level as audification, model-
based sonification and parameter mapping sonification, yet not
well fitting into any of these. Thus, the relation of WSS to these
techniques should be clarified more thoroughly.

5.1. WSS is not Audification

Audification is indeed a special case of Wave Space Sonification:
If we take the wave space definition to be V (~x) = Vaud(~x) = x1,
then the WSS is exactly the audification of the feature represented
as the first feature, i.e., x1. If the state space is defined by a delay-
embedding, then x1 is just directly the series of measurements.

This makes it clear that in turn WSS can not be a special case
of audification. Audification, in its original form, doesn’t gen-
erally include the application of arbitrary transfer functions apart
from probably dynamic compression which is sometimes consid-
ered as signal conditioning [6]. In WSS, an audification with dy-
namic compression is likewise obtained by using V (~x) = h(x1)
where h(x) is a sigmoidal transfer function. More advanced ap-
proaches for signal conditioning in audification is the application
of a phase vocoder or buffer granulator (similar to TGrains UGen
in Suppercollider3) to decouple time progression to some degree.
This would also be a special case of WSS using Vaud(~x) with the
GWSS introduced above.

Looking at audification as special case of WSS illustrates that
WSS is a more general approach, and only in very special situ-
ations a WSS might appear to be an audification. The most im-
portant differences are that (i) typically not the data series alone
but a data-orchestrated trajectory in data- (or state-) space is used
for probing the wave space, that (ii) the wave space is a multi-
dimensional signal and thus much more complex than a linear or
smooth transfer function, and consequently (iii), that thus already
slowly oscillating signals such as 1 Hz rhythms can deliver audible
results – whereas audification would require significant temporal
compression to shift oscillations to the audible frequency range
which would in turn reduce the temporal resolution.

Audification and WSS share the problem that a speedup (i.e.,
resampling in audification resp. scaling of the embedding in WSS)
can easily result in aliasing and cause misleading spectral reflec-
tions at the Nyquist frequency ν. As the wave space might usually
be already filled with many frequencies (up to ν), ways to real-
ize band-limited sonification would be a very useful and relevant
focus of ongoing research.

Extensions of Audifications, such as Augmented Audification
by Vogt and Höldrich [7] perform frequency shifting using a
single-side-band modulation. This is an extension that shares with
WSS the ability for flexible adjustment of the sonifications fre-
quency range and at the same time and independently, to interac-
tively zoom into temporal structures at any scale, yet it is achieved
with a different method (multiplying vs. concatenating functions),
so that the two techniques do not relate easily to each other.

5.2. WSS is not Parameter Mapping Sonification

In Parameter Mapping Sonification (PMSon), data are mapped to
synthesis parameters of a sound synthesis algorithm, thus allowing
to route different data features (i.e., components of a data vector)
to different auditory qualities. If we would use a synth that taps
into a wavetable and map our given time series data to the phasor
(or tapping location) we would look at WSS from the perspective
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of mapping. So, isn’t WSS just a PMSon? The described PMSon
is possible but w.r.t. the key idea of PMSon, it is a bit pathological:
usually in PMSon we would define our parameters to systemati-
cally vary an auditory quality, e.g., pitch, level, duration, attack
time, etc. This is not the case with mapping on a phasor.

Also, with the same argument we could explain an audification
to be but a PMSon – which is obviously not helpful, as in terms of
the central ideas these methods are clearly distinct.

Looking at WSS as a mapping doesn’t do justice to its rather
signal-near (to the level of sample-based control) nature of how
data relates to the sonification – in parameter mapping this is usu-
ally much more indirect and usually driven by the wish to map a
variable’s change to likewise perceivable change of a perceptual
quality.

Furthermore, WSS abstracts from the underlying data towards
the definition of an embedding which is then subjected to a mor-
phing before accessing the wave space, so we can’t really say that
the data index directly a wave table. Finally the WSS is non-
parametric with regards to data and sound parameters: while in
PMSon problems arise when there are more features than synthe-
sis parameters – such as which of them to ignore – WSS is imme-
diately applicable for data of any dimension.

5.3. WSS is not Model-based Sonification

WSS uses the idea of movement in space, which may remind to
the idea of model space in Model-based Sonification. So can we
regard WSS as a sonification model? The key idea in Model-based
sonification is that the data become a dynamic system, capable of
showing acoustic behavior. This is typically achieved by using the
data to determine the setup of elements in the model, e.g. mass-
spring systems, etc. An MBS is usually in a state of equilibrium
and thus silent until excited by interaction, and this interaction is
usually initiated by the data-exploring user. So, this is structurally
quite different from WSS, where the data can more be said to op-
erate on or to drive wave space than to become wave space. Thus
WSS is clearly not a MBS.

In summary, we conclude that Wave Space Sonification is best
regarded as a new class of sonification methods, conceptually clos-
est to audification, and equally distant to parameter mapping soni-
fication and model-based sonification, sharing some characteristics
from the latter.

5.4. Related Sound Synthesis Sonification Methods

Key ingredients of WSS are the definition of wave space and the
use of a trajectory that slowly taps into it and a scanning of wave
space. We don’t know of any other related work that uses this
specific approach for sonification of multivariate time series. So
we start with the more distant area of computer music.

With Scanned synthesis, Verplank et. al. [8] introduced a sim-
ilar idea in computer music, however, more related to allowing
users to interactively control timbre for musical expression. Their
aim was to improve the human interface in controlling complex
timbre using dynamical systems whose ’state’ becomes the wave
form that is scanned.

The Wave Space, if filled with sound files, is related to Wave
Terrain Synthesis by Roads [9], which exercises a similar general-
ization from 1-dimensional wavetables to 2 or 3-dimensional wave
fields, but again only for the sake of computer music applications.

Note that the Wave Space Sonification here is generally introduced
as a scalar field of d dimensions, where d is the dimensionality of
the multivariate data. The definition was tailored to match prop-
erties of time series in state space, which can be high-dimensional
and visualization falls short above 3 dimensions. Here, Wave
Space Sonification might help to give extra information, partic-
ularly when combined with interactive and dynamic visualization.

The idea of following a trajectory in data space for defining the
sonification is for instance used in Principle Curve Sonification by
Hermann et al. [10]. But being a MBS, here some other acoustic
processes are needed to explain the audio signal.

Williamson and Murray-Smith introduced Sonification of
probabilistic feedback using granular synthesis [11]. Here the idea
is to facilitate the operation of a control space by using granu-
lar synthesis to experience the probabilities of likely goals, using
display quickening. While the combination of using state space,
particles and granular synthesis makes this approach to appear si-
miliar, it’s main idea is interactive control space feedback.

Among the many papers on parameter mapping sonifications,
one finds granular synthesis but not with much overlap to this def-
inition of WSS here.

6. CONCLUSION

In summary, this paper has introduced Wave Space Sonification
(WSS) as a new class of sonification techniques, starting from a
formal definition, then presented concrete instances os WSS as
new sonification techniques that apply the WSS logic to repre-
sent a number of test data sets from various areas. The sonifi-
cation examples showed that very different aspects, ranging from
detailed information of individual cycles to overarching structures
such as trends manifest in sound. While the core concepts are
outlined here, much research remains to be done to better handle
issues such as aliasing in canonic WSS or providing guidelines
how to best define Wave Space in case of higher-dimensional sys-
tems. This ongoing work will hopefully also provide some body
of knowledge and experience how to shape wave spaces so that the
resulting sounds are both informative and aesthetically pleasant.

As for applications, we see the highest potential in two areas:
(i) in biomedical data contexts (analysis, differential diagnostics,
monitoring), for instance in fields such as ECG and EEG, and (ii),
in interaction scenarios such as in sports and rehabilitation, since
in these domains we often have repetitive movement cycles that
would naturally translate into orbits in wave space. Since WSS is
realtime-capable, the sound can be perceived as immediate feed-
back during the activity, allowing users to interactively explore the
interrelations between their movement execution and its consecu-
tive Wave Space Sonification.
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