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1 Introduction

1 Introduction

In this work, we are going to study the crossover of quantum chromodynamics (QCD)
as a function of the baryon chemical potential. We base this analysis on findings [1, 2]
that at vanishing chemical potentials strong interaction matter does not have a genuine
phase transition from a gas of hadrons and their resonances (HRG) to a quark-gluon
plasma (QGP). In fact, it is an analytic crossover when increasing the temperature of a
HRG system at zero chemical potential. Our goal is to understand up to which baryon
chemical potential the crossover is still analytic. In other words, we are searching for
signs of a second order QCD critical point as it would be the start of a genuine first
order phase transition line. If no signs can be found, the change from a HRG to a
QGP has to be an analytic crossover. In the following section, we introduce the current
understanding of the QCD phase diagram. It primarily summarizes parts of [3, 4, 5].
For a more detailed introduction refer to the given references.

1.1 The QCD phase diagram

Quantum chromodynamics is the theory of strong interactions between fundamental
constituents of matter, quarks and gluons. They become asymptotically free at high
temperatures leading to a formation of a new phase referred to as quark-gluon plasma.
Strong evidences, both from the theoretical as well as the experimental side, have been
given that a QGP phase must exist [6, 7]. However, beyond that little is known about
the actual phase structure of QCD at the physical point, i.e. the phases of a system
with quark masses of nature. In Fig. 1.1, we show a possible QCD phase diagram as a
function of the thermodynamic variables temperature T and baryon chemical potential
µB. In particular interesting is the nature of the change from a HRG to a QGP. As
mentioned above, it is known that at vanishing chemical potentials the hadronic phase
has an analytic crossover to a QGP. Whether this analytic crossover endures for any µB
or ends in a critical end-point (CEP) depends on the QCD structure far away from the
physical point. This is why we first discuss the so-called Columbia plot which will guide
us to understand possible structures of the QCD phase diagram at the physical point.

The Columbia plot is shown in Fig. 1.2. It describes the QCD structure as a function
of the quark masses of a system with one strange quark and two light quarks at zero
chemical potentials. At large quark masses, the system can be described by a SU(3) pure
gauge theory which has an exact Z(3) symmetry. It has a first order phase transition
with the Polyakov loop as the order parameter. In the chiral limit, i.e. ms = ml → 0,
the QCD Lagrangian has a global SUL(Nf )⊗SUR(Nf )⊗UV (1)⊗UA(1) symmetry. The
axial UA(1) symmetry is explicitly broken in order g2 perturbation theory, known as the
axial anomaly. The flavor symmetry SUL(Nf )⊗SUR(Nf ) is spontaneously broken giving
rise to N2

f − 1 Goldstone particles. For finite quark masses, the only exact symmetry is
the UV (1) vector transformations group leading to quark number conservation. In the
chiral limit, the transition is known to be of first order with the chiral condensate as the
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1 Introduction

~156 MeV

Figure 1.1: A sketch of the QCD phase diagram taken from [3]. Shown are three phases of
QCD matter: the hadronic phase in which quarks and gluons are confined in
hadrons, the quark-gluon plasma phase where quarks and gluons are asymptot-
ically free, as well as ordinary nuclear matter. The dotted line represents the
analytic crossover between these phases. In this sketch, a critical end-point (CEP)
is assumed as the end of the crossover. The solid line would then correspond to
a true first order phase transition.

order parameter. Both first order regions are expected to end on a second order critical
line corresponding to a universality class of a three-dimensional Ising model with Z(2)
symmetry. At vanishing light quark mass and sufficiently large strange quark mass, the
QCD Lagrangian has a global O(4) symmetry. The associated second order transition
line is believed to continuously connect to the Z(2) second order line at a strange quark
mass mtri

s . However, the exact location of the tri-critical point mtri
s is unknown. In

particular interesting is its relative location to the physical strange quark mass mphys
s

as the Z(2) critical line from the chiral limit region could be continuously connected
to a critical point at the physical point for non-zero baryon chemical potential. This
critical point would also have the universality class of a three-dimensional Ising model
with Z(2) symmetry. However, this highly depends on whether the size of the first order
transition region close to the chiral limit shrinks or grows with increasing µB. For all
other regions, the hadronic phase undergoes an analytic crossover to a QGP. The QCD
phase structure is a matter of current research in heavy-ion collision experiments at the
Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL), and
the Large Hadron Collider (LHC) at the European Organization for Nuclear Research
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Figure 1.2: A sketch of the Columbia plot taken from [3]. Shown is the structure of QCD
with a strange quark and two degenerate light quarks as a function of their
masses at vanishing chemical potentials. Solid lines represent a second order
phase transition while green regions correspond to a first order phase transition.
The gray shaded area only has an analytic crossover from a HRG to a QGP.

(CERN). The so-called fireball created in heavy-ion collisions traverses through several
states of matter each described by a specific set of temperature and density. After
thermalization, the fireball is in the state of a quark-gluon plasma, then subsequently
expands and cools down until hadrons form again. During this evolution, the medium
crosses three lines in the (T, µB) plane whereby the properties of the system change.
Depending on the reached baryon density, the system might cross a genuine phase
transition line or has a rapid crossover from a quark-gluon plasma to a gas of heavy
interacting hadrons. In this phase, hadrons scatter both elastically and inelastically, thus,
the particle content is not fixed. Only after the so-called chemical freeze-out, inelastic
interactions cease and the particle content is fixed. This state is characterized by a freeze-
out temperature Tf and a freeze-out baryon chemical potential µfB. Finally, the system
is diluted sufficiently such that elastic collisions between hadrons cease, referred to as
kinetic freeze-out. In heavy-ion collisions, detected hadrons only stem from chemical
freeze-out. In particular interesting for current experiments are observables which reflect
the thermal conditions of the system, i.e. are sensitive to the inner structure of the fireball.
Fluctuations of globally conserved charges such as: baryon number B, electric charge Q
and strangeness S vary strongly between the confined and deconfined phase, thus, can
be measured to distinguish between the phases of QCD [8, 9]. However, fluctuations
can only be observed in sub-volumes of a fireball. In experiments this can be studied
on an event-by-event basis, i.e. fluctuations are obtained from measured ensembles of
conserved charges in several heavy-ion collision events [10]. The idea of these fluctuation
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probes of the QCD phases is based on a simple picture: In the HRG all hadrons have
electric charge of ±1 or ±2, while in the quark-gluon plasma the unit of charge is ±1/3
or ±2/3. Thus, the fluctuations of charged particles in or out of a sub-volume in the
fireball produce a larger mean square fluctuation of the net electric charge while the
system is in the hadronic phase [9]. The same applies for baryon-number fluctuations
since baryons have baryon-number ±1 and quarks have only baryon-number ±1/3.

In order to search for a QCD critical point, it is mandatory to consider chiral observ-
ables as the crossover and a possible phase transition are supposed to be closely related
to chiral symmetry restoration. If a critical point exists, we should be able to observe
scaling of chiral observables with the critical exponents of a three-dimensional Ising
model with Z(2) symmetry at finite baryon chemical potential. The correlation length
ξ, the chiral condensate Σ and the chiral susceptibility χ are supposed to scale as

ξ ∼ t−ν , Σ− Σ0 ∼ tβ, χ ∼ t−γ, (1.1)

where t is the reduced temperature1, ν ' 0.63, β ' 0.33 and γ ' 1.24 [4]. At finite
quark mass, the chiral condensate does not act as an order parameter, thus, approaches
some non-zero value Σ0. When approaching a critical point, a significant increase of
chiral susceptibility fluctuations along the crossover must be observed. This scaling
behavior will be the starting point of the present work. Similar arguments can be made
for baryon-number fluctuations as these couple to the condensate [11, 12] which we are
also going to investigate.

This work is organized in three parts. In the first part (see Sec. 1.2 and Sec. 2), we
outline the basic constructs of lattice QCD in the so-called Highly-Improved Staggered
Quark formulation and define chiral observables such as: subtracted condensate, sub-
tracted susceptibility and disconnected susceptibility. Complementary, we derive their
Taylor expansions in the chemical potentials µB, µQ and µS around vanishing chemical
potentials.

The second part (see Sec. 3 and Sec. 4) extracts the curvature of the QCD crossover
line, in terms of a Taylor expansion of Tc(µB), from the subtracted condensate and dis-
connected susceptibility for systems with different constraints, e.g. the initial conditions
of heavy-ion collisions. Further, we compare it to the chemical freeze-out curve from
heavy-ion collision experiments as well as lines of constant physics determined by lattice
QCD simulations.

In the last part (see Sec. 5), we use the determined crossover curve to study chiral
susceptibility fluctuations and baryon-number fluctuations along Tc(µB) as both are
supposed to resemble singular behavior in the vicinity of a critical point. Additionally,
we measure fluctuations of the chiral condensate along the crossover line.

1At finite chemical potential, the reduced temperature is dependent on the quark chemical potentials
as well as their critical values.
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1 Introduction

1.2 Lattice QCD in the HISQ formulation2

In this work, we study the QCD phase diagram from first principles using a numerical
technique referred to as lattice QCD (see [14, 15] for an in-depth summary). In particular
in the low-energy regime, lattice QCD is the only theory which is able to really predict
behavior of experiments as QCD is presently not solvable by analytic mathematical
methods. Lattice QCD introduces a non-perturbative cut-off through replacing space-
time with a discrete four-dimensional lattice defined by

Λ = { (n0, n1, n2, n3) |ni = 0, 1, . . . , Nσ−1 ∧ n0 = 0, 1, . . . , Nτ−1 } , (1.2)

where Nσ and Nτ are the number of sites in each spatial and the temporal dimension,
respectively. The volume and temperature are given by

1

T
= Nτa and V = (Nσa)3 . (1.3)

Here, a is the lattice spacing and represents a minimum wavelength, thus, in lattice
QCD, no ultraviolet divergences arise from interactions between quarks and gluons. On
the lattice, all observables are calculated in units of the lattice spacing a. To set the
scale, the physical value of a can be extracted by comparison with a physical observable
as obtained in experiments. Typically, this is done by comparison with the kaon decay
constant fK or the Sommer-scales

r2
0

dVqq(r)

dr

∣∣∣∣
r=r0

= 1.65 and r2
1

dVqq(r)

dr

∣∣∣∣
r=r1

= 1.0 , (1.4)

where Vqq is the heavy quark potential at zero temperature. The physical value for r1 is
often extracted from a fit to the 2S-1S energy splittings of the bottomonium meson [16].
Different methods for setting the scale have been described and compared in [17]. We
mainly use fK to set the scale in this work but also perform a comparison to continuum
extrapolations using the r1 scale (see Sec. 3 and Sec. 4). Our lattice formulation of
choice is the so-called Highly-Improved Staggered Quark (HISQ) action [18] which we
outline in the following paragraph.

Improved staggered quarks. The partition function is given by

Z =

∫
DUDχDχ exp (−S) with S = SF + SG (1.5)

where U is a standard SU(3) link variable and S the HISQ action consisting of a gluonic
part SG and a fermionic part SF . The staggered fermion fields have been introduced
as χ and χ. They carry only one spin component and can be expressed in terms of

2Based on [13].
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Grassmann numbers which enable to perform the fermion field integration. By doing so,
the partition function Z further simplifies to

Z =

∫
DU detMf exp (−SG) . (1.6)

When using staggered fermions [19], the number of fermion doublers is reduced from
16 to only four degenerate species, referred to as tastes. At finite lattice spacing, these
tastes are allowed to interact with each other, i.e. are unphysical as they can change
their species through exchanging a gluon. However, in the continuum limit all tastes
decouple and each taste contributes equally to the fermion determinant, i.e. detMf

describes four physical quarks with mass mf . In order to perform simulations with only
two light quarks u and d, and a strange quark s, we can modify the partition function
by taking the fourth root of each fermion determinant. It is then given by

Z =

∫
DU detM1/4

u detM
1/4
d detM1/4

s exp (−SG) . (1.7)

This approach, known as rooting, has caused a lot of controversy in the last decade [20].
Nonetheless, it has been shown successfully [21, 18] that rooting is a valid method for
simulations with positive quark masses and zero quark chemical potentials. For vanishing
taste mass, the staggered formulation has as in the continuum limit a SUL(4)⊗SUR(4)⊗
UV (1) symmetry. It is spontaneously broken to SUV (4) ⊗ UV (1) and gives rise to 15
massless Goldstone particles. However, the most important property of this formulation
is that in the chiral limit, at finite lattice spacing, it is invariant under independent
U(1) transformations of fermion fields at even and odd sites. A site is called even or
odd if the sum of the coordinates, in units of the lattice spacing, is even or odd. It is
a remnant of the chiral flavor symmetry and is only reduced to a subgroup by taste
interactions. Thus, even at finite lattice spacing the staggered formulation enables to
study the spontaneously broken chiral symmetry. It was shown in the so-called No-go
theorem [22] that in a four-dimensional theory with a local action, it is not possible to
create a lattice action which preserves the chiral symmetry and at the same time has no
fermion doublers. This it why it is advantageous to allow for a certain number of fermion
doublers in the action even when introducing additional taste-violations. Nonetheless,
the HISQ formulation introduced a new fermionic action [23] which has no order a2

errors in the kinetic properties as well as in the taste-violations. It is given by

SHISQ
F = Snaive

F [X] + SNaik
F [W ] +m

∑
n

χnχn , (1.8)

where Snaive
F is the naive 1-link term

Snaive
F [U ] =

∑
n

χn
∑
µ

ηn,µ c1

(
Un,µχn+µ̂ − U †n−µ̂,µχn−µ̂

)
=
∑
n

χn
∑
µ

ηn,µ c1 q qs -�
n

(1.9)
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Name Path Multiplicity Coefficients
Ff7 Ff7L

1-link x̂ 1 1/8 1

3-staple ŷ + x̂− ŷ 6 1/16 1/16

5-staple ŷ + ẑ + x̂− ẑ − ŷ 24 1/64 1/64

7-staple ŷ + ẑ + t̂+ x̂− t̂− ẑ − ŷ 48 1/384 1/384

Lepage ŷ + ŷ + x̂− ŷ − ŷ 6 0 −1/8

Table 1.1: The smearing staples of the HISQ action for a link in x̂ direction. There exist
several other combinations for each staple (see Eq. (1.13)), e.g. the path ẑ+ x̂− ẑ
is also allowed for the 3-staple. Each staple has also contributions from paths
starting in the backward direction. Taking this into account, the total number
of possible paths (multiplicity) is shown for each staple. The coefficients for the
first (Ff7) and second (Ff7L) level of smearing are shown and are motivated by
perturbation theory [16] such that taste-violations are reduced.

and SNaik
F the 3-link term

SNaik
F [U ] =

∑
n

χn
∑
µ

ηn,µ c3

(
Nn,µχn+3µ̂ −N †n−3µ̂,µχn−3µ̂

)
=
∑
n

χn
∑
µ

ηn,µ c3 q q q s q q q� � � - - -
n

. (1.10)

This so-called Naik term uses a product of three links defined asNn,µ≡ Un,µUn+µ̂,µUn+2µ̂,µ.
As required, it preserves the staggered phases ηn,µ which are the remnants of the Dirac
structure as removed by diagonalizing the lattice action in spin space. The staggered
phases are given by

ηn,1 = 1 , ηn,2 = (−1)n1 , ηn,3 = (−1)n1+n2 , ηn,0 = (−1)n1+n2+n3 , (1.11)

where n0, n1, n2 and n3 are the coordinates of site n in units of the lattice spacing.
The naive and Naik action stem from replacing the partial derivative in the Dirac
operator with a higher-order difference quotient. At tree-level, they exactly cancel order
a2 discretization errors when defining their coefficients as

c1 =
9

16
and c3 = − 1

48
. (1.12)

The action (1.8) is not invariant under translation of multiples of the lattice spacing due
to the alternating sign of ηn,µ. Only under translations of multiples of 2a, the staggered
phase does not change its sign, therefore, a staggered action can be read as to describe
fermions on a lattice where the sites are separated by b ≡ 2a. This can be understood
as that the 16 degrees of freedom, of the four fermion doublers, are distributed over a
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24 hypercube of the original lattice. On the lattice, the momenta pµ are restricted to
(−π/a, π/a], thus, tastes within a hypercube have momentum components which differ
by π/a. Additionally, this hypercube structure implies that the four tastes for each
physical flavor interact with different link variables. This is why large taste symmetry-
breaking effects are mainly produced by strongly fluctuating link variables, i.e. their
origin is from virtual exchange of gluons with high momentum π/a or multiple gluons
with total momentum π/a between tastes. This problem can be solved by smoothing
each link with a perturbative motivated weighted sum of neighboring links, referred to as
smearing. Following [23], a 3-link staple (see Eq. (1.13) and Tab. 1.1) removes coupling
to gluons with a single transverse momentum of π/a. Likewise, a 5- and 7-link staple
remove coupling to gluons with more components of momentum equal to π/a [16]. We
refer to this as Ff7 smearing which can be written as

Vn,µ ≡ Ff7Un,µ

= c1S
-r

n
µ

+ c3S

∑
ν 6=µ

6

?

-

-
6

?r
n

ν

µ

+ c5S

∑
ρ6=ν 6=µ

6
���

-
��	

?

?
��	-���

6
r
n

ν

µ
ρ

+ c7S

∑
σ 6=ρ 6=ν 6=µ

6
���
@@I
-
@@R
��	

?

?
��	
@@R -@@I
���

6
r
n

ν

µ
σ

ρ

. (1.13)

The coefficients for each staple are shown in Tab. 1.1. Smeared links are no longer
elements of the gauge group SU(3) due to the sums in the Ff7 scheme. To keep the
good effects of smearing, it is needed to bound the smeared links by a projection to U(3)
before the Naik links W are built. We define these reunitarized links as

Wn,µ ≡ UU(3)Vn,µ , (1.14)

where UU(3) is the projection operator. This smearing is a modification of the quark-gluon
vertex in the action. It introduces a form factor that vanishes for taste-changing gluons
with momenta π/a, but leaves gluons with low momenta unchanged [23]. Nonetheless,
by exchanging multiple gluons with total momentum π/a, these taste-violations can
still occur [16]. If each link on the lattice is smeared using Eq. (1.13), this introduces
new lattice artifacts in the action of order a2. An additional second level of smearing
including a straight 5-link staple, called Lepage term (see Tab. 1.1), creates an action
that is still order a4 improved. Still, this smoothing increases the number of products
of links in the smeared variables, thereby, the contribution of two-gluon vertices on
quark lines are enhanced [18]. By smearing the 1-link term a second time using Ff7L,
it is guaranteed that gluons with high momenta are suppressed and order a2 errors are
removed. It is not required to project the 1-link terms back to U(3). The smeared links

8



1 Introduction

in the naive fermion action can then be expressed as

Xn,µ ≡ Ff7LWn,µ (1.15)

with

Ff7LUn,µ ≡ Ff7Un,µ + cL
∑
ν 6=µ

6

6
-

?

?

?

?-
6

6
r
n

ν

µ

. (1.16)

Note that in Eq. (1.8), the coefficient c1 of the naive action has to take into account
that the second level of smearing already includes a factor 9/8 of the 1-link term. In
order to achieve the correct continuum limit at tree-level, the coefficients have to be

c1 =
1

2
and c3 = − 1

48
. (1.17)

Additionally, the HISQ action has an Symanzik improved gauge action. It is given by

SG = β
∑
n

∑
µ<ν

cPUn,µν + cRRn,µν with β=6/g2 , (1.18)

where

Rn,µν = 1− 1

6
Re Tr

 +


n,µν

(1.19)

and Un,µν is the standard plaquette. At tree-level, the gauge action eliminates all order
a2 corrections if the coefficients are chosen to be

cP =
5

4
and cR = −1

6
. (1.20)

Compared to other staggered actions, such as stout [24] or the naive formulation, it
was shown that the HISQ action greatly reduces the large pion mass splitting even at
finite lattice spacing. Note that all these improvements of the action are only valid for
simulations with the two light quarks u and d and the slightly heavier strange quark s.
If applied with an additional charm quark, the coefficient for the Naik term has to be
improved according to the bare charm mass [23].
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Importance Sampling. The expectation value of an observable can be evaluated using
Monte Carlo methods. For simulations with dynamical quarks, the expectation value of
an observable O is obtained as

〈O〉 =
1

Z

∫
DU O exp (−Seff) . (1.21)

with an effective action

Seff = SG −
∑
f

Tr lnMf . (1.22)

The factor exp (−Seff) is real for vanishing quark chemical potential and can be inter-
preted as a probability density. This is why the path integral can be solved numerically
using importance sampling. This method samples link configurations U (i) with a proba-
bility

P
(
U (i)

)
=

1

Z[U (i)]
exp

(
−Seff [U (i)]

)
. (1.23)

The expectation value is then given by the sample average

〈O〉 = lim
N−→∞

1

N

N∑
i=1

O[U (i)] (1.24)

and can be approximated using a finite number of configurations. The error of this
quantity can be estimated by a Jackknife or a statistical Bootstrap [14]. For the HISQ
formulation, the only known exact algorithm for generating configurations with proba-
bility (1.23) is the Rational Hybrid Monte Carlo (RHMC) as described in [25].

Chemical potential. On the lattice, the chemical potential cannot be introduced as
in the continuum. It has been shown that the naive way leads to quadratic divergences
even for free fermions [26]. To achieve the correct continuum limit for finite density, we
have to modify the link variables in temporal direction as

Un,0 −→ exp (µ)Un,0

U †n,0 −→ exp (−µ)U †n,0 . (1.25)

However, it is also possible to introduce the chemical potential as

Un,0 −→ µ Un,0

U †n,0 −→ −µ U †n,0 . (1.26)

In this so-called linear-µ formulation, it has been shown [27, 28] that in e.g. a µ expansion
of the pressure all orders higher than O(µ4) are free of divergences (see Sec. 2.3). If
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applied to Monte Carlo simulations, this transformation leads to the so-called sign
problem. For finite chemical potential, the fermion determinant becomes complex if
µ is real. This is why the integrand in Eq. (1.23) cannot be interpreted anymore as
a probability density, therefore, importance sampling is ill-defined. However, for small
chemical potentials different approaches exist to simulate QCD at finite net quark
density such as: Taylor expansion around µ = 0 (see Sec. 2.1), imaginary µ [29] and
reweighting [30].

1.3 Simulation setup

We have generated gauge field ensembles using a RHMC for 4 lattice volumes with
Nτ = 6, 8, 12 and 16 in a temperature range from 135 MeV to 175 MeV. The simulations
have been performed using the tree-level improved HISQ formulation with two degenerate
light quarks and a heavier strange quark with a physical ratio of ms/ml = 27. The quark
masses have been set to their physical values. The parameters are shown in Tab. 1.2 and
have been tuned such that the continuum limit is taken on a line of constant physics [31].

10k

100k

1M

 135  145  155  165  175

#configurations

T [MeV]

ms/ml=27, N
τ
=16

12
8
6

Figure 1.3: The number of configurations per temperature for ensembles with Nτ = 6, 8, 12
and 16 as used in this work. The lattices have an aspect ratio of 4, i.e. Nσ = 4Nτ .
Each configuration is separated by 10 trajectories of unit length and have been
generated using a RHMC algorithm with physical quark masses. The parameters
are shown in Tab. 1.2.
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1 Introduction

In the continuum limit, these parameters correspond to a physical pion mass of about
140 MeV. For determining the lattice spacing a(β), we use the kaon decay constant as
a scale [32] with a value of fK = 155.7(9)/

√
(2) MeV. This allows us to determine the

temperature T as shown in Tab. 1.2.

Nτ = 6 Nτ = 8
β ml T [MeV] #conf. β ml T [MeV] #conf.

5.980 0.00435 135.29 77392 6.245 0.00307 134.64 433848
6.010 0.00416 139.71 120797 6.285 0.00293 140.45 552049
6.045 0.00397 145.05 120777 6.315 0.00281 144.95 504390
6.080 0.00387 150.59 56160 6.354 0.00270 151.00 362474
6.120 0.00359 157.17 79545 6.390 0.00257 156.78 656149
6.150 0.00345 162.28 68159 6.423 0.00248 162.25 250234
6.170 0.00336 165.98 83980 6.445 0.00241 165.98 298445
6.200 0.00324 171.15 138476 6.474 0.00234 171.02 141528
6.225 0.00314 175.76 125281 6.500 0.00228 175.64 142705

Nτ = 12 Nτ = 16
β ml T [MeV] #conf. β ml T [MeV] #conf.

6.640 0.00196 134.94 66012 7.010 0.00132 144.9 3403
6.680 0.00187 140.44 75648 7.054 0.00129 151.0 7280
6.712 0.00181 144.97 79848 7.095 0.00124 156.9 4156
6.754 0.00173 151.10 78925 7.130 0.00119 162.0 3085
6.794 0.00167 157.13 72321 7.156 0.00116 166.0 4322
6.825 0.00161 161.94 50012 7.188 0.00113 170.9 3742
6.850 0.00157 165.91 88726
6.880 0.00153 170.77 85661
6.910 0.00148 175.76 79769

Table 1.2: The parameters for generating gauge ensembles using the HISQ action with two
degenerate light quarks and a heavier strange quark for lattices with Nτ = 6, 8, 12
and 16. The temperature T has been determined using the fK scale.
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2 Chiral observables

2 Chiral observables

The QCD crossover as well as a possible phase transition from a HRG to a QGP is
supposed to be closely related to chiral symmetry restoration. This is why we consider
three chiral observables to study the QCD crossover and in particular the pseudo-
critical temperature T0 at vanishing chemical potential. These can be derived from mass
derivatives of the partition function lnZ. In the following, we start from a staggered
partition function with three non-degenerate quarks

Z =

∫
DU detM1/4

u detM
1/4
d detM1/4

s e−SG (2.1)

as it will be important at a later point3. For a quark flavor f , the chiral condensate is
given by

Σf =
T

V

∂

∂mf

lnZ =
T

V

1

4

〈
TrM−1

f

〉
(2.2)

where M is the fermion matrix and V the spatial volume. It is more natural to study the
light condensate in a two-flavor formulation where contributions from u and d quarks
are taken into account. It is given by

Σl =
T

V

(
∂

∂mu

+
∂

∂md

)
lnZ = Σu + Σd . (2.3)

To remove additive non-logarithmic UV divergences in Σl, we subtract the strange
chiral condensate. Additionally, we multiply Σl and Σs respectively with the bare quark
masses ms and mu+md to cancel multiplicative renormalization factors. The subtracted
condensate is given by

Σsub = msΣl − (mu +md)Σs . (2.4)

The point of largest fluctuations, i.e. T0, is given by the inflection point of the condensate
defined by the condition

d2

dT 2
Σsub ≡ 0 . (2.5)

However, with limited data points it is usually hard to obtain T0 from a fit of the
condensate. A more pronounced observable to determine the crossover temperature is

3For vanishing chemical potential and degenerate light quark masses, it is not necessary to make
a distinction between u and d quarks. However, in a constrained Taylor expansion the u and d quark
expansion coefficients have different contributions, thus, have to be treated independently even for
degenerate light quarks.
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2 Chiral observables

the chiral susceptibility which is supposed to diverge at T0 in the chiral limit. The total
chiral susceptibility is given by

χf =
∂

∂mf

Σf = χf,conn + χf,disc (2.6)

with

χf,conn = −T
V

1

4

〈
TrM−2

f

〉
, χf,disc =

T

V

1

16

[〈(
TrM−1

f

)2
〉
−
〈
TrM−1

f

〉2
]
. (2.7)

Similarly as for the condensate, the total susceptibility in two-flavor formulation is given
by

χl =
T

V

(
∂

∂mu

+
∂

∂md

)
Σl = χu + χd + 2χud (2.8)

with

χfg =
∂

∂mf

Σg =
T

V

1

16

(〈
TrM−1

f TrM−1
g

〉
−
〈
TrM−1

f

〉 〈
TrM−1

g

〉)
. (2.9)

For degenerate quark masses, i.e. mf ≡ mg, the mixed term χfg is equal to the discon-
nected susceptibility. This formulation still suffers from UV divergences and renormal-
ization factors. This is why we define the subtracted susceptibility as

χsub =
T

V
ms

(
∂

∂mu

+
∂

∂md

)
Σsub

= m2
sχl − 2msΣs −ms(mu +md)(χsu + χsd) . (2.10)

We also introduce the two-flavor disconnected susceptibility

χdisc = m2
s (χu,disc + χd,disc + 2χud) . (2.11)

For finite light quark masses, the subtracted and disconnected susceptibility still have a
pronounced maximum at T0, thus, the pseudo-critical temperature can be easily obtained
by solving

d

dT
χsub ≡ 0 and

d

dT
χdisc ≡ 0 . (2.12)

In contrast to the total susceptibility, the disconnected susceptibility has no additive
UV divergences and only requires multiplicative renormalization. It should reproduce
the dominant singular behavior in the chiral limit. This is why we also use χdisc to
determine T0.
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2 Chiral observables

2.1 Taylor series in chemical potentials

We want to study the chiral properties of a system as a function of the chemical potentials
µX for conserved charges X: baryon number B, electric charge Q and strangeness S. In
this BQS ensemble, the quark chemical potentials can be derived from

µB = µu + 2µd

µQ = µu − µd (2.13)

µS = µd − µs .

In this work, we focus on the observables χdisc and Σsub and Taylor expand these in the
dimensionless parameter µ̂X ≡ µX/T at vanishing chemical potential. These expansions
are closely related to the expansion coefficients of the QCD pressure as the only difference
is further mass derivatives. They have been first described for simplified cases in [33, 34].
This is why it is natural to first introduce relations needed for the Taylor series of the
pressure which can be written as

P

T 4
=

1

V T 3
lnZ =

∞∑
i,j,k=0

χBQSijk

i!j!k!
µ̂iBµ̂

j
Qµ̂

k
S (2.14)

with

χBQSijk =
1

V T 3

∂ lnZ

∂µ̂iB∂µ̂
j
Q∂µ̂

k
S

∣∣∣∣∣
µ=0

and χBQS000 =
P (T, µ = 0)

T 4
. (2.15)

The derivatives ∂/∂µX needed for the generalized susceptibilities are given in terms of
quark chemical potential derivatives

∂

∂µB
=

1

3

(
∂

∂µu
+

∂

∂µd
+

∂

∂µs

)
(2.16)

∂

∂µQ
=

1

3

(
2
∂

∂µu
− ∂

∂µd
− ∂

∂µs

)
(2.17)

∂

∂µS
= − ∂

∂µs
. (2.18)

It will be useful to define the partition function as

Z =

∫
DU eD

u
0 eD

d
0 eD

s
0 e−SG with Df

i =
1

4
∂if ln detMf . (2.19)

Here, ∂if denotes the i-th derivative w.r.t. quark chemical potential µf . In the following,
we use fgh for quark flavors and ijk for the order of derivatives. The derivative of an
expectation value of an observable is given by

∂f 〈O〉 = 〈∂fO〉+
〈
ODf

1

〉
− 〈O〉

〈
Df

1

〉
. (2.20)
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2 Chiral observables

Higher order derivatives of Z can be derived by using

Afi =
1

Z
∂ifZ = 〈afi 〉 (2.21)

with

afi = e−D
f
0 ∂if eD

f
0 (2.22)

as a kernel. Here, the first orders are given by

af0 = 1 (2.23)

af1 = Df
1 (2.24)

af2 = Df
2 +Df

1

2
(2.25)

af3 = Df
3 + 3Df

2D
f
1 +Df

1

3
. (2.26)

We can define a more general formulation for derivatives w.r.t. three different quark
flavors in terms of Eq. (2.22). It is given by

Afghijk =
1

Z
∂if∂

j
g∂

k
hZ =

〈
afi a

g
ja
h
k

〉
. (2.27)

By using Eq. (2.20), derivatives of A can be derived iteratively as

∂hA
fgh
ijk = Afghi,j,k+1 − A

fgh
ijk A

h
1 . (2.28)

At this point, we can derive derivatives of lnZ iteratively by solving

∂if∂
j
g∂

k+1
h lnZ = ∂if∂

j
g∂

k
hA

fgh
i,j,1 . (2.29)

Chiral Condensate. For a single quark flavor f , the expansion of the chiral condensate
is given by

Σf

f 3
K

=
∞∑

i,j,k=0

ΓBQSijk

i!j!k!
µ̂iBµ̂

j
Qµ̂

k
S with ΓBQSijk =

∂Σf/f
3
K

∂µ̂iB∂µ̂
j
Q∂µ̂

k
S

∣∣∣∣∣
µ=0

(2.30)

where fK is the kaon decay constant. In the following, we introduce relations needed to
compute the expansion coefficient ΓBQSijk . For expanding the chiral condensate, we have
to compute higher order derivatives of TrM−1 which can be expressed using a similar
iterative scheme. As a generator we use

F f
i =

〈
wfi

〉
with wfi = e−D

f
0 ∂if

(
Cf

0 eD
f
0

)
(2.31)
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2 Chiral observables

and

Cf
i =

1

4
∂if TrM−1

f . (2.32)

The first orders of Eq. (2.31) are given by

wf0 = Cf
0 (2.33)

wf1 = Cf
1 + Cf

0D
f
1 (2.34)

wf2 = Cf
2 + 2Cf

1D
f
1 + Cf

0D
f
2 + Cf

0D
f
1

2
(2.35)

wf3 = Cf
3 + 3Cf

2C
f
1 + 3Cf

1D
f
2 + Cf

0C
f
3 + 3Cf

1D
f
1

2
+ 3Cf

0D
f
2D

f
1 + Cf

0D
f
1

3
. (2.36)

We are now able to define derivatives w.r.t. several flavors

(F f
0 )fghijk =

〈
wfi a

g
ja
h
k

〉
(2.37)

(F g
0 )fghijk =

〈
afi w

g
ja

h
k

〉
(2.38)

(F h
0 )fghijk =

〈
afi a

g
jw

h
k

〉
. (2.39)

Here, (F f
0 ) denotes the quark dependency of the chiral condensate. However, in the

following we drop this notation and use F instead of (F f
0 ) since the general structure of

higher order derivatives of TrM−1
f , in terms of F fgh

ijk , is always the same for any f . By
using Eq. (2.20), derivatives of F can be derived iteratively as

∂hF
fgh
ijk = F fgh

i,j,k+1 − F
fgh
ijk A

h
1 with F = (F

f/g/h
0 ) . (2.40)

We can now express the expansion coefficient ΓBQSijk in Eq. (2.30) in the quark basis F fgh
ijk

by using Eq. (2.18) and solving

ΓBQSijk =
1

f 3
K

N
−1−(i+j+k)
τ

N3
σ

∂F

∂µiB∂µ
j
Q∂µ

k
S

=
1

f 3
K

N
−1−(i+j+k)
τ

N3
σ

FBQS
ijk (2.41)

with

Γ = (Γu/d/s) . (2.42)

E.g., the explicit form of FBQS
200 is given by

FBQS
200 =

1

9

(
− Auds002F − 2Auds011F − Auds020F − 2Auds101F − 2Auds110F (2.43)

− Auds200F + F uds
002 + 2F uds

011 + F uds
020 + 2F uds

101 + 2F uds
110 + F uds

200

)
.
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The Taylor expansion of the subtracted condensate can be written as

Σsub

f 4
K

=
∞∑

i,j,k=0

ΩBQS
ijk

i!j!k!
µ̂iBµ̂

j
Qµ̂

k
S (2.44)

with

ΩBQS
ijk =

1

fK

[
ms

(
(Γu)BQSijk + (Γd)BQSijk

)
− (mu +md)(Γ

s)BQSijk

]
. (2.45)

Note that even for degenerate light quark masses

(Γu)BQSijk 6= (Γd)BQSijk for j > 0 (2.46)

as can be seen from Eq. (2.17). This is why it is necessary to make a distinction between
u and d quark coefficients in expansions which include µQ derivatives.

Chiral Susceptibility. For expanding the disconnected chiral susceptibility, we have to
compute higher order derivatives of (TrM−1)2 which can be expressed using a similar
iterative scheme. As a generator we use

Gf
i =

〈
gfi

〉
with gfi = e−D

f
0 ∂if

(
Cf

0

2
eD

f
0

)
. (2.47)

The first orders are given by

gf0 = Cf
0

2
(2.48)

gf1 = 2Cf
0C

f
1 + Cf

0

2
Df

1 (2.49)

gf2 = 2Cf
0C

f
2 + 4Cf

0C
f
1D

f
1 + 2Cf

1

2
+ Cf

0

2
Df

2 + Cf
0

2
Df

1

2
. (2.50)

We are now able to define derivatives w.r.t. several flavors

(Gf
0)fghijk =

〈
gfi a

g
ja
h
k

〉
(2.51)

(Gg
0)fghijk =

〈
afi g

g
ja

h
k

〉
(2.52)

(Gh
0)fghijk =

〈
afi a

g
jg
h
k

〉
. (2.53)

By using Eq. (2.20), derivatives of G can be derived iteratively as

∂hG
fgh
ijk = Gfgh

i,j,k+1 −G
fgh
ijk A

h
1 with G = (G

f/g/h
0 ) . (2.54)

The expansion of the disconnected susceptibility for a quark flavor f is given by

χf,disc

f 2
K

=
∞∑

i,j,k=0

ΥBQS
ijk

i!j!k!
µ̂iBµ̂

j
Qµ̂

k
S (2.55)
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with

ΥBQS
ijk =

1

f 2
K

N
−1−(i+j+k)
τ

N3
σ

∂ (G− F 2)

∂µiB∂µ
j
Q∂µ

k
S

∣∣∣∣∣
µ=0

. (2.56)

For the two-flavor susceptibility, we have to compute derivatives of χud. In particular
for the first term in Eq. (2.9), we introduce

Kuds
ijk =

〈
wui w

d
ja

s
k

〉
. (2.57)

Note that the definition of K is specific for χud. Similarly, derivatives of K can be
derived iteratively as

∂hK
fgh
ijk = Kfgh

i,j,k+1 −K
fgh
ijk A

h
1 . (2.58)

The expansion of the two-flavor disconnected susceptibility can be expressed as

χdisc

f 4
K

=
∞∑

i,j,k=0

ΞBQS
ijk

i!j!k!
µ̂iBµ̂

j
Qµ̂

k
S (2.59)

with

ΞBQS
ijk =

m2
s

f 2
K

(
(Υu)BQSijk + (Υd)BQSijk + 2HBQS

ijk

)
(2.60)

and

HBQS
ijk =

1

f 2
K

N
−1−(i+j+k)
τ

N3
σ

∂
(
K − F u

0 F
d
0

)
∂µiB∂µ

j
Q∂µ

k
S

∣∣∣∣∣
µ=0

. (2.61)

2.2 Constrained series expansions

The initial conditions in heavy-ion collisions of e.g. Au-Au and Pb-Pb are given by

nS = 0,
nQ
nB

= 0.4 , (2.62)

where nX are the densities for baryon number B, strangeness S and electric charge Q.
By imposing these constrains, we can can fix the chemical potentials µQ and µS. Their
expansions in µ̂B can be expressed as

µ̂Q = q1µ̂B + q3µ̂
3
B + q5µ̂

5
B +O

(
µ̂7
B

)
(2.63)

µ̂S = s1µ̂B + s3µ̂
3
B + s5µ̂

5
B +O

(
µ̂7
B

)
, (2.64)
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where qn and sn are ratios of sums of generalized susceptibilities and can be derived by
requiring these constrains order by order. The coefficients can be found in [35]. By using
the above equations, we can reorder the Taylor expansions in Eq. (2.44) and Eq. (2.55)
in powers of µ̂B. We introduce the following notation for the constrained expansion of
the subtracted condensate

Σsub

f 4
K

=
∞∑
n=0

cΣ
n

n!
µ̂nB (2.65)

and the disconnected susceptibility

χdisc

f 4
K

=
∞∑
n=0

cχn
n!
µ̂nB . (2.66)

Here, the first non-vanishing coefficients are defined as

cΣ
2 = ΩBQS

200 + ΩBQS
020 q2

1 + 2ΩBQS
101 s1 + ΩBQS

002 s2
1 + 2q1(ΩBQS

110 + ΩBQS
011 s1) (2.67)

and

cχ2 = ΞBQS
200 + ΞBQS

020 q2
1 + 2ΞBQS

101 s1 + ΞBQS
002 s2

1 + 2q1(ΞBQS
110 + ΞBQS

011 s1) . (2.68)

In general, the structure of the constrained Taylor expansion coefficients are always
the same. Therefore, the 4th order of the subtracted condensate and the disconnected
susceptibility are both given by

c4 =XBQS
400 +XBQS

040 q4
1 + 4XBQS

301 s1 + 6XBQS
202 s2

1 + 4XBQS
103 s3

1 +XBQS
004 s4

1 (2.69)

+ 24q3(XBQS
110 +XBQS

011 s1) + 4q3
1(XBQS

130 +XBQS
031 s1)

+ 6q2
1(XBQS

220 + 2XBQS
121 s1 +XBQS

022 s2
1) + 24XBQS

101 s3 + 24XBQS
002 s1s3

+ 4q1(XBQS
310 + 6XBQS

020 q3 + 3XBQS
211 s1 + 3XBQS

112 s2
1 +XBQS

013 s3
1 + 6XBQS

011 s3)

with X = Ω for cΣ
4 and X = Ξ for cχ4 . The 6th order becomes lengthy but is straightfor-

ward to derive. By setting the coefficients sn and qn to zero, the expansion coefficients
cn represent a system with vanishing µQ and µS which we discuss in Sec. 4.1.

2.3 Computation of traces

The equations for Df
i and Cf

i can be solved using the identities

∂ ln detMf

∂µf
= Tr

∂ lnMf

∂µf
= Tr

(
M−1

f

∂Mf

∂µf

)
(2.70)
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and

∂M−1
f

∂µf
= −M−1

f

∂Mf

∂µf
M−1

f . (2.71)

The first orders are given by

Df
1 =

1

4
Tr

(
M−1

f

∂Mf

∂µf

)
(2.72)

Df
2 =

1

4
Tr

(
M−1

f

∂2Mf

∂µ2
f

)
− 1

4
Tr

(
M−1

f

∂Mf

∂µf
M−1

f

∂Mf

∂µf

)
(2.73)

and

Cf
1 = −1

4
Tr

(
M−1

f

∂Mf

∂µf
M−1

f

)
(2.74)

Cf
2 = −1

4
Tr

(
M−1

f

∂2Mf

∂µ2
f

M−1
f

)
+

2

4
Tr

(
M−1

f

∂Mf

∂µf
M−1

f

∂Mf

∂µf
M−1

f

)
. (2.75)

All higher orders can be derived simply by using the product rule and above identities.
In general, the traces required for Df

i and Cf
i contain only products of the inverse

fermion matrix M−1 and higher orders of the local operator ∂M/∂µ. It follows from the
Γ5-hermiticity

M †(µ) = Γ5M(−µ)Γ5 and
∂nM †(µ)

∂µn
= (−1)nΓ5∂

nM(−µ)

∂µn
Γ5 (2.76)

that these traces must obey

Tr

(∏
i

M−1
f

∂niMf

∂µnif

)∗
= (−1)

∑
i ni Tr

(∏
i

M−1
f

∂niMf

∂µnif

)
. (2.77)

Therefore, Cf
n and Df

n are imaginary for odd n, and real for even n as from the above
equation follows that

Df
n

∗
= (−1)nDf

n and Cf
n

∗
= (−1)nCf

n . (2.78)

Random noise method. In practice, the individual traces can be stochastically es-
timated using the so-called random noise method [36]. In this method, the trace is
replaced by a sum over NS random noise vectors ηk each with the properties of white
noise

〈ηi〉 = lim
NS→∞

1

NS

NS∑
k=1

ηki = 0 , 〈ηiηj〉 = lim
NS→∞

1

NS

NS∑
k=1

η∗kiηkj = δij . (2.79)
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Here, ηki is component i of random vector k. On a single gauge configuration, the trace
of e.g. products of matrix derivatives and inversions can be obtained as

Tr

(
M−1∂

nM

∂µ̂n

)
= lim

N→∞

1

N

N∑
k=1

η†kM
−1∂

nM

∂µ̂n
ηk . (2.80)

This equation can be approximated by using only a finite number of random vectors. In
these traces, each step of the form M−1(∂M/∂µ̂)ηk=x is then obtained by solving

M x =
∂M

∂µ̂
ηk (2.81)

using a Conjugate Gradient (CG) where x is the unknown vector. The product of the
fermion matrix derivative with ηk is very similar to computing the Dslash operator of
the HISQ action. When a chemical potential is introduced (see Sec. 1), all time-like
links receive a factor exp(±µ). Therefore, terms in the fermion action which contain
products of k links receive a factor exp(±kµ). For the Naik link k is equal to 3. To
avoid confusion, we denote in the following the lattice coordinates with n ≡ (nt, n) and
the unit vector in time direction with t̂. In this notation, the derivative of the fermion
matrix is given by(

∂jM

∂(µ)j

∣∣∣∣
µ=0

χ

)
n

= c1

(
Un,tχn+t̂ − (−1)j U †

n−t̂,tχn−t̂

)
+ 3jc3

(
Nn,tχn+3t̂ − (−1)j N †

n−3t̂,t
χn−3t̂

)
. (2.82)

Here, the factors 3j and (−1)j stem from the derivative of exp(±kµ) taken at µ=0. For
the physical derivative w.r.t. µ/T , this equation needs to be multiplied with a factor
1/N j

τ . It has been shown before that 1500 random vectors for all traces give reliable
results for coefficients up to 6th order in µ as the stochastic noise is well reduced below
the gauge noise [35]. In Fig. 2.1, we show the normalized error of

Au4 = Du
4 + 4Du

3D
u
1 + 3Du

2
2 + 6Du

2D
u
1

2 +Du
1

4 (2.83)

as a function of the number of random vectors NS averaged over 45 gauge configurations
for two cases. In the first case, all individual traces in Eq. (2.83) are calculated with the
same number of random vectors. In the second case, the trace Du

1 is always calculated
with 1500 random vectors. By doing so, we greatly reduce the error even when using only

a small NS for the remaining traces. In particular, trace products which contain Df
1

2

seem to be dominating the error. We conclude that when using 2000 random vectors
for all D1 traces and 500 for all others no additional bias is introduced. Additionally,
a great reduction in computing time of about a factor 2 is achieved compared to the
naive calculation where NS is fixed to 1500 for all traces. The technique to calculate the
error of individual traces as a function of the number of random vectors NS has been
described in [13].
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Figure 2.1: The standard error of Au4 normalized with the mean of Au4 as a function of the
number of random vectors NS . The traces were measured on 45 configurations
from the Nτ = 8 ensemble at a temperature of 144.95 MeV. Here, “improved”
means that the trace Du

1 is calculated at each NS with 1500 random vectors.

Unbiased estimators. When computing products of traces, e.g. Df
1D

f
2 , we have to

take into account that Df
1 and Df

2 are correlated if derived from the same random noise
vector. In particular for simulations with degenerate u and d quark, terms like Du

1D
d
1

are most likely correlated as there is no difference between the operators Du
1 and Dd

1,
thus, can be estimated with the same random vector set to save computing time. As
long as the traces for quark flavor f and g were computed using different sets of random
noise vectors no unbiased estimators have to be used. In order to remove the bias for
all other cases, we can compute these products only for different random noise vectors,
i.e. expectation values on a single gauge configuration require sums of the form

∑
i 6=j

where i and j label different random vectors. For a large number of random vectors,

these sums consume a lot of computing time especially for e.g. Df
1

4
which would require

a sum similar to
∑

i 6=j 6=k 6=l. However, we can rewrite these sums in such a way that the
required computing time scales linearly with the number of random vectors. We use
the following unbiased estimators [37] for the expectation value of trace products on
a single gauge configuration which are based on Newton-Girad formulae. We want to
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2 Chiral observables

calculate product of traces of the form

unbiased

(
Ntr∏
i=1

aγii

)
=

∏Ntr
i=1 γi!

NS(NS − 1) · · · (NS − |γ|+ 1)
eγ (2.84)

where Ntr is the total number of traces, ai a specific trace operator and γi the corre-
sponding power of trace ai. The unbiased estimate eγ can be expressed as

eγ = − 1

|γ|
∑

α+β=γ,α6=(0,0,··· ,0)

(−1)|α|
(
|α|
α

)
pαeβ (2.85)

with

e(0,0,··· ,0) = 1 . (2.86)

Here, γ, β and α are integer valued vectors with dimension equal to the total number

of traces in the product and
(
|α|
α

)
is the multinomial coefficient. The vector γ contains

the power exponents of each trace. The sum in Eq. (2.85) has to be understood as the
sum over all possible combinations which fulfill α + β = γ while leaving out the case
where all components of α are zero. The power sums pα are defined as

pα =

NS∑
j=1

Ntr∏
i=1

aαii,j (2.87)

where ai,j is the i-th trace calculated using the j-th random vectors. E.g., the unbiased
trace product of the form AB2 would correspond to γ = (1, 2) and translates into

〈
AB2

〉
v

=

∑
iAi (

∑
iBi)

2 −
∑

iAi
∑

iB
2
i − 2

∑
iAiBi

∑
iBi + 2

∑
iAiB

2
i

NS(NS − 1)(NS − 2)
. (2.88)

Here, Ai and Bi are arbitrary traces of operators calculated using the i-th random
noise vector and 〈·〉v denotes the expectation value over random vectors on a single
configuration.

Deflated Conjugate Gradient. The computing time required to solve a single random
vector, as required in Eq. (2.81), is dominated by low-lying eigenvalues of −M †M . We
can reduce the CG iteration count by computing an initial guess x0 for the CG using
the lowest Nev eigenvalues λi and eigenvectors qi. It is given by

x0 =
Nev∑
i=1

〈qi, ηk〉
λi

. (2.89)
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Figure 2.2: The required number of CG iterations for computing TrM−1 as a function of
the number of eigenvectors Nev for reaching a residual of 10−6. The tests were
performed on a single Nτ = 8 configuration for three temperature values.

By using this initial guess, the CG only has to solve the remaining high mode part of the
problem. The eigenvectors and eigenvalues can be computed with a Kalkreuter-Simma
algorithm [38] or a Lanczos [39]. In Fig. 2.2, we show the required CG iterations to
reach a residual of 10−6 when computing the chiral condensate, i.e. solving Mx = ηk, as
a function of the number of eigenvectors Nev. We achieve a speed-up of 6 to 8 depending
depending on the temperature. Typically, configurations at lower temperatures have
smaller eigenvalues, thus, deflation is more effective. In our simulations, we use always
256 eigenvectors as there is still a speed-up of about 1.4 when going from 192 to 256
eigenvectors. Deflation only helps to reduce computing time and has no effect on the
accuracy as the CG always converges into the same minimum.

Linear-µ formulation. As discussed in Sec. 1, the chemical potential can be introduced
by multiplying all time-like forward links with µ and all time-like backward links with
−µ. However, this formulation does not achieve the correct continuum limit as UV
divergences still survive for Taylor coefficients of the pressure in the orders O(µ2) and
O(µ4). It has been shown successfully [27, 28] for the pressure expansion that divergences
stem from the free case in order O(µ2) and O(µ4), as well as that higher orders do not
show any difference between linear-µ and exponential-µ, thus, are divergence free. In the
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Figure 2.3: The 2nd order Taylor expansion coefficient of the subtracted condensate (left)
and the disconnected two-flavor susceptibility (right) for a lattice spacing with
Nτ = 12 in a strangeness neutral system calculated using the exponential-µ
(purple) and linear-µ (green) formulation.

following, we argue schematically that for the chiral condensate and chiral susceptibility
only the 2nd order in µ does not produce the physical value in the continuum limit when
using the linear-µ formulation [40]. On the lattice, the pressure expansion in linear-µ
formulation is given by

a4 (P (T, µ)− P (T, 0)) = a4Pphys + a4Pdiv (2.90)

where Pphys is the physical pressure without the leading order. The term Pdiv contains
all the divergences which originate from the linear-µ formulation. In the free case, Pdiv

can be described as a joined expansion in µ and mass m. It is given by

a4Pdiv =
∞∑
n=0

(am)2n

∞∑
k=1

cnk(aµ)2k (2.91)

where cnm are the expansion coefficients. We have made clear that the expansion has to
be even in m due to chiral symmetry. Relevant for this discussion are only the leading
and next-to-leading orders in m as higher orders vanish in the continuum limit. After
truncating the series after the relevant orders, we find

a4Pdiv = (am)0
(
c01(aµ)2 + c02(aµ)4 + c03(aµ)6 + · · ·

)
+ (am)2

(
c11(aµ)2 + c12(aµ)4 + c13(aµ)6 + · · ·

)
+ · · · . (2.92)

As can be seen in the above equation, Pdiv itself has a divergence proportional to a−2

in the c01 term. Additionally, the terms c11 and c02 have a constant contribution to Pdiv

as they do not vanish in the continuum limit. This is why the 2nd and 4th µ derivative
of the pressure do not achieve the correct continuum limit. From this point, we are able
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Figure 2.4: The 2nd order Taylor expansion coefficient of the strange condensate (left) and
the disconnected strange susceptibility (right) for a lattice spacing with Nτ = 12
in a strangeness neutral system calculated using the exponential-µ (purple) and
linear-µ (green) formulation.

to give similar arguments for the chiral condensate and chiral susceptibility by taking
further mass derivatives of Pdiv. The chiral condensate contribution from Pdiv is given
by

a3Σdiv = 2am
(
c11(aµ)2 + c12(aµ)4 + c13(aµ)6 + · · ·

)
+ · · · . (2.93)

We find that the 2nd order has a constant contribution in the continuum limit while
higher orders are free of divergent terms. For the chiral susceptibility, we find similarly
that

a2χdiv = 2
(
c11(aµ)2 + c12(aµ)4 + c13(aµ)6 + · · ·

)
+ · · · (2.94)

has a constant contribution from the c11 term. However, in this work we study the Taylor
expansion of the disconnected susceptibility for which the physical value is exactly zero in
the free case. Therefore, the series of the disconnected susceptibility starts in order (am)2

and thus all orders are expected to be free of divergent as well as constant terms. These
dimensional arguments for the condensate and susceptibility are in good agreement
with our findings when comparing actual simulations using both µ formulations. In
Fig. 2.3, we compare exponential-µ and linear-µ formulation for the 2nd order of the
subtracted condensate and disconnected susceptibility. A relatively small difference is
visible for the condensate as all linear-µ values are systematically slightly higher. This
discrepancy seems to be highly mass dependent as for the expansion of the strange
condensate we observe larger difference for the 2nd order (see Fig. 2.4). As expected,
no difference is visible for the two-flavor disconnected susceptibility (see Fig. 2.3) and
the strange disconnected susceptibility (see Fig. 2.4) in 2nd order. We conclude that
it is valid to use the linear-µ formulation for the condensate starting at 4th order and
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for the disconnected susceptibility in all orders.When using the linear-µ formulation,
the equations for Cf

n and Df
n are greatly simplified as derivatives ∂nM/∂µn are equal

to zero for n > 1. They are given by

Df
n =

1

4
(−1)n+1 (n− 1)! Tr

[(
M−1

f

∂Mf

∂µf

)n]
(2.95)

and

Cf
n =

1

4
(−1)n n! Tr

[(
M−1

f

∂Mf

∂µf

)n
M−1

f

]
. (2.96)

This simplification directly translates into a significant reduction in computing time
of about a factor 4 as the number of required fermion matrix inversions reduces from
35 to 9 when computing coefficients of the pressure up to 8th order. Note that when
computing all required traces for the pressure up to e.g. 8th order, we can only compute
the expansion of the condensate and the disconnected susceptibility up to 6th order.

28



3 The QCD crossover at zero chemical potential

3 The QCD crossover at zero chemical potential

We extract the crossover temperature T0 from the inflection point of the condensate
and the maximum of the susceptibility. For this, we calculate the first and second T
derivatives of Σsub and χdisc/sub, respectively, from a combined fit of the data using several
Padé approximations [m,n] up to order m + n < 8. We use the Akaike information
criterion (AIC) to give each Padé approximation a weight to determine the mean and
the systematic error. The statistical error is estimated using a statistical bootstrap [14].
Using these weighted Padé sums, we are able to calculate T derivatives as required for
Eq. (2.5) and Eq. (2.12). These equations are solved numerically for T0. In the following
section, we describe and test the validity of the Padé AIC fit method for a problem
where the exact solution is known.

3.1 Padé AIC fit method

Given a data set with N points including errors, we fit several Padé approximations
[m,n] of the form

P (T ) =

∑m
i=0 ajT

j

1 +
∑n

k=1 bkT
k

with m+ n < N (3.1)

to the data. Here, ai and bk are real coefficients. If the data can be described well by
Padé approximations, different values for [m,n] give similar results. However, for small
data sets it is important to carefully tune the initial guess of each fit. From now on, we
speak of a models instead of Padé approximations. Following [41], in a set of R models
the best model is given by the smallest AICc value

AICc = 2k +
2k(k + 1)

N − k − 1
+ χ2 (3.2)

where k is the number of parameters in a model and χ2 is given by a fit of a model to
the data. This definition of AICc assumes Gaussian distributed errors. It is important to
note that the smallest AICc value only finds the best model in the given set. Therefore,
it is crucial to provide reasonable good models. However, the AIC method can suffer
from model selection uncertainties. This is why it is advantageous to average over all
models using weights defined by

wi =
exp(−1

2
∆i)∑R

r=1 exp(−1
2
∆r)

(3.3)

where

∆i = AICc,i − AICmin (3.4)
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Figure 3.1: The fake subtracted condensate (left) and its first T derivative (right). It has been
generated by using ansatz (3.7) which is shown as the black line. The blue data
points were generated from this ansatz in combination with random noise. The
blue band corresponds to the Padé AIC model mean which includes systematic
and statistical errors.

is the AICc difference of model i to the best model wit AICc ≡ AICmin. The model
mean is then given by

P (T ) =
R∑
i=0

wiPi(T ) . (3.5)

Still, models Pi which are not physical should be discarded by hand. Even with a
comparably small weight wi, poles in Pi can have a significant contribution to P . The
variance of P can be calculated by

var
(
P (T )

)
=

(
R∑
i=0

wi

√
var(Pi(T )) +

(
Pi(T )− P (T )

)2

)2

(3.6)

where var(Pi(T )) is the statistical variance of model Pi, e.g. estimated by a statistical
bootstrap. In order to test the quality of the model mean P (T ) for physical observables
when having only a small number of data points, we generated random data using an
ansatz

cΣ
0 (T ) = A+B arctan(C(T − T0)) (3.7)

which should be a good approximation of the chiral condensate cΣ
0 at vanishing chemical

potential. We determined reasonable values for the parameters A,B,C and Tc by fitting
the ansatz to our Nτ = 8 ensemble. Using this ansatz, we generated data points at 9
temperatures as also used in our simulations. We then added random noise to the mean
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Figure 3.2: The 2nd (left) and 3rd (right) T derivative of the fake subtracted condensate. It
has been generated by using ansatz (3.7) which is shown as the black line. The
blue band corresponds to the Padé AIC model mean which includes systematic
and statistical errors.
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Figure 3.3: Histogram for the subtracted two-flavor chiral condensate. The probability p has
been calculated by dividing a Nτ = 12 ensemble at T = 144.97 MeV in about
1200 samples where each sample consists of about 60 configurations.

of each data point and included errors of similar magnitude as for the Nτ = 8 ensemble.
As constructed, the data points agree with the ansatz within errors. In Fig. 3.1, we
show the ansatz in comparison to the random data points and the model mean. We
found that within errors the model mean agrees with the exact solution. In particular for
determining Tc from the second T derivative of the condensate as well as the curvature
of the crossover line, it is important to study the quality of T derivatives of P . In Fig. 3.1
and Fig. 3.2, we compare derivatives of P (T ) up to 3rd order to the exact derivatives.
For all orders, we observe in the crossover region excellent agreement within 1σ to the
exact derivatives. Only the third derivative of the condensate shows a discrepancy at
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of the subtracted two-flavor chiral condensate in a constrained case with nS = 0
and nQ/nB = 0.4. The probability p has been calculated by dividing a Nτ = 12
ensemble at T = 144.97 MeV in about 1200 samples where each sample consists
of about 60 configurations.

the borders which is still within 3 σ. However, it is expected that these fits fail at the
borders due to missing information about the low and high T behavior. Nevertheless,
in this work only the results close to T0 are important. We conclude that the Padé
AIC fit method is a robust tool to determine fits close to T0 which produce good
behavior even at higher derivatives within errors. In Fig. 3.3, we show the distribution
of the subtracted condensate for our Nτ = 12 ensemble at a temperature below T0. The
subtracted condensate is Gaussian distributed as required for the here described method.
In Sec. 4.1, we fit higher order Taylor expansion coefficients using this method. Their
distribution is shown in Fig. 3.4 and is also Gaussian. Additionally, we verified that the
distribution of the chiral susceptibility is Gaussian. Therefore, we can use the Padé AIC
fit method for higher order Taylor expansion coefficients for all observables considered
in this work.

3.2 Determination of T0

In Fig. 3.5 and Fig. 3.6, we show the condensate and susceptibility normalized using
the fK scale of 155.7(9)/

√
2 MeV. We have data for Nτ = 6, 8, 12 and 16 in the

temperature range of 135 MeV to 175 MeV. The temperature has been fixed using
the fK scale as described in [32]. The temperature range is sufficient to determine the
peak location of the susceptibility for Nτ = 6, 8 and 12 with an uncertainty of about
0.2 MeV. For Nτ = 16, the errors are about 10 times larger. Given the small errors of
the susceptibility itself, the Padé fits are very stable and show no dependency on the low
or high temperature data points. The significant contribution comes from data points
around T0. Having more data points at low and high temperatures only helps to stabilize
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Figure 3.5: The subtracted susceptibility (top) and the disconnected susceptibility (bottom)
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formulation and normalized using the kaon decay constant fK . The colored bands
are given by the AIC weighted Padé approximations and include statistical as
well as systematic errors.
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3 The QCD crossover at zero chemical potential

Nτ T0(Σsub) T0(χsub) T0(χdisc) [MeV]
6 161.5(2) 163.8(6) 160.0(1)
8 158.8(2) 161.1(2) 157.8(1)
12 157.4(2) 158.5(2) 157.0(2)
16 155.8(10) 157.6(7) 156.2(13)
∞ 155.9(2) 156.6(2) 155.6(2)
∞ excluding Nτ = 6 156.2(3) 156.4(2) 156.3(2)

Table 3.1: The chiral crossover temperature T0 in MeV extracted from AIC weighted Padé
fits to the condensate and susceptibility at vanishing chemical potential. All ob-
servables use the two-flavor formulation. We show continuum extrapolated values
for T0 from a bootstrap using an ansatz with O(N−2

τ ) corrections. The last row
shows the effect of a continuum extrapolation without Nτ = 6.

Nτ T0 (Σsub) [MeV] (r1 scale)
6 168.4(3)
8 163.0(2)
12 158.9(2)
16 156.5(10)
∞ 155.7(2)
∞ excluding Nτ = 6 155.6(3)

Table 3.2: The values for the chiral crossover temperature T0 in MeV extracted from the
subtracted condensate using the r1 scale [32] (see Tab. 3.1 for fK scale).

the statistical bootstrap. Determining the inflection point of the condensate is typically
more prone to systematic errors. In particular, it is not possible to leave out low or high
temperature data points as the fits become unstable and cannot interpolate the data.
This is why the condensate gives slightly larger errors for T0. As expected, we observe
for all observables in Fig. 3.6 that T0 shifts to smaller values for increasing Nτ . For the
subtracted observables4, the difference between our Nτ = 12 and Nτ = 16 ensemble is
small which may indicated that these observables are already close to the continuum.
However, the disconnected susceptibility still shows significant cut-off effects even at
large Nτ values. The extracted T0 values are summarized in Tab. 3.1. We bootstrap a
continuum extrapolation using an ansatz with O(N−2

τ ) corrections with and without our
smallest Nτ = 6 ensemble. For the subtracted observables, we cannot observe a difference
by excluding Nτ = 6 given that both extrapolations agree within errors. Due to the
larger cut-off effects in the disconnected susceptibility, we see a significant difference of
about 1 MeV between both extrapolations. Taking only the chiral observables Σsub, χsub

and χdisc into account, the chiral crossover at vanishing chemical potential must occur in

4The Nτ = 6 subtracted susceptibility has been measured by Sheng-Tai Li. The Nτ = 16 subtracted
condensate and subtracted susceptibility have been measured by Nikhil Karthik.
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3 The QCD crossover at zero chemical potential

Nτ T0

(
cΣ

2

)
T0 (cχ2 ) [MeV]

6 161.3(3) 158.9(6)
8 160.1(2) 157.9(3)
12 157.7(5) 156.6(12)
∞ 157.8(5) 156.4(9)

Table 3.3: The values for the chiral crossover temperature T0 in MeV extracted from the
2nd order expansion coefficient of the subtracted condensate and the disconnected
susceptibility in case of vanishing µQ and µS (see Sec. 4.1). All observables use
the two-flavor formulation. We show continuum extrapolated values for T0 from a
bootstrap using an ansatz with O(N−2

τ ) corrections.

the temperature range from 155.4 MeV to 156.8 MeV. We crosschecked our analysis by
using smoothing splines5 which show similar values for T0 compared to the Padé analysis.
In Tab. 3.2, we show the crossover temperature extracted from the condensate using the
r1 scale [32]. At finite Nτ , we see a significant difference to the fK scale of about 7 MeV
for Nτ = 6 and about 1 MeV for Nτ = 16. As expected, in the continuum limit the
difference to T0(χsub) using the fK scale is small and less than 0.3 MeV. However, this
good agreement might only be accidental as the typical error for fixing the temperature
using r1 or fK as a scale is of about 1 MeV [32, 17]. This systematic error is not included
in the T0 values shown in our tables and figures.

Additionally, we extract T0 from the 2nd order expansion coefficient (see Sec. 4.1)
of the subtracted condensate and the disconnected susceptibility as they should also
diverge in the chiral limit. In these cases, T0 is defined by

cχ2 = 0 and
d

dT
cΣ

2 = 0 (3.8)

and shown in Tab. 3.3 in combination with the continuum extrapolated values. In theory,
these should be similar to the crossover temperatures from the subtracted condensate
and the disconnected susceptibility. For each Nτ , the temperatures T0 agree with each-
other as well as the continuum T0 from cχ2 within errors. However, the continuum T0

from cΣ
2 deviates by about 1 MeV to T0(Σsub).

Our final values for the crossover temperature including statistical and systematic
errors are: 155.9(2)(10) MeV for the subtracted condensate, 156.6(2)(10) MeV for the
subtracted susceptibility and 155.6(2)(10) MeV for the disconnected two-flavor suscep-
tibility. Here, the first bracket stands for the statistical and systematic error resulting
from the Padé AIC fits, and the second bracket denotes the systematic error from setting
the scale which is about 1 MeV as discussed above. We have shown that the difference
in the continuum limit between the r1 scale and the fK scale is insignificant for T0, thus,
can be neglected.

5The smoothing splines were generated by Swagato Mukherjee.
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3 The QCD crossover at zero chemical potential

The latest value for the crossover temperature at vanishing chemical potential using
the HISQ action with physical quark masses can be found in [32]. They report a value
for the crossover temperature of 154(9) MeV from a scaling analysis of the renormalized
two-flavor total susceptibility. This value is in good agreement with our determination
of T0 given the rather large errors. Compared to our results, we drastically reduce the
error by about a factor 50 as expected due to increased statistics.

The publication [42] has studied the subtracted light quark condensate using the
stout action with physical quark masses. They report a value of 157(3)(3) MeV for
the crossover temperature T0 which is about 1 MeV larger than our value. Still, within
errors it agrees with our results. Additionally, they show a T0 of 147(2)(3) MeV for some
light quark susceptibility normalized with T 4. Using this T 4 normalization shifts the
pseudo-critical temperature to smaller values. It is not clear from their publication and
references which definition has been used for the susceptibility, thus, a direct comparison
to our data is not possible.

There is another publication [43] which also determined T0 using the stout action
with physical quark masses. They report 154.7(8) MeV for the subtracted condensate
and 154.4(8) MeV for the renormalized light quark susceptibility.
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4 The curvature of the QCD crossover line

4 The curvature of the QCD crossover line

The QCD crossover line can be parameterized as

Tc(µB)

T0

= 1− κ2

(
µB
T0

)2

− κ4

(
µB
T0

)4

+O(µ6
B) (4.1)

where T0 is the pseudo-critical temperature at vanishing chemical potential. The curva-
ture coefficients κn can be obtained by requiring that each order µnB in

d

dT

χdisc(T, µ̂B)

f 4
K

≡ 0 and
d2

dT 2

Σsub(T, µ̂B)

f 4
K

≡ 0 . (4.2)

vanishes. Note that it is also common to formulate Eq. (4.2) using partial T derivatives
evaluated at constant µB/T . However, we have compared both definitions and did not
find any difference for the mean of κ2 and κ4 as well as the corresponding errors. From
now on, we use only Eq. (4.2).

4.1 Systems with vanishing µQ and µS

The Taylor expansions for vanishing µQ and µS are given only by µB derivatives, i.e.
the coefficients from Sec. 2.2 for the subtracted chiral condensate Σsub simplify to

cΣ
n = ΩBQS

n00 (4.3)

and for the disconnected chiral susceptibility χdisc to

cχn = ΞBQS
n00 . (4.4)

In the following, we derive κ2 from the coefficients of the chiral susceptibility. First, we
expand the susceptibility in T and µ̂B around (T0, µ̂B = 0). The relevant terms for κ2

are given by

χdisc(T, µB)

f 4
K

= cχ0 |(T0,0) +
∂cχ0
∂T

∣∣∣∣
(T0,0)

(T − T0) +
1

2

∂2cχ0
∂T 2

∣∣∣∣
(T0,0)

(T − T0)2 (4.5)

+
1

2
cχ2 |(T0,0) µ̂

2
B +

1

2

∂cχ2
∂T

∣∣∣∣
(T0,0)

(T − T0)µ̂2
B + ... .

Taking into account that the first T derivative of χdisc is zero at T0 and not writing
terms which have no contribution to order µ2

B, we obtain for the T derivative of the
Taylor expansion

d

dT

χdisc(T, µB)

f 4
K

=
∂2cχ0
∂T 2

∣∣∣∣
(T0,0)

(T − T0)− cχ2 |(T0,0)

µ2
B

T 3
+

1

2

∂cχ2
∂T

∣∣∣∣
(T0,0)

µ̂2
B + ... (4.6)

=

(
1

2

∂cχ2
∂T

∣∣∣∣
(T0,0)

1

T 2
0

− ∂2cχ0
∂T 2

∣∣∣∣
(T0,0)

κ2

T0

− cχ2 |(T0,0)

µ2
B

T 3
0

)
µ2
B +O(µ4

B) .
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4 The curvature of the QCD crossover line

In the last step, we used that the equation is only equal to zero at the crossover tem-
perature, i.e. has to be evaluated at T = Tc(µB). In combination with Eq. (4.1), the
difference T − T0 can be written as

T − T0 ≡ Tc(µB)− T0 = −κ2
µ2
B

T0

+O(µ4
B) (4.7)

and 1/T 3 as

1

T 3
=

1

T 3
0

(
1 + 3κ2

(
µB
T0

)2

+O(µ4
B)

)
. (4.8)

By demanding that the order O(µ2
B) vanishes, we find that

κχ2 =
1

2T 2
0

T0
∂cχ2
∂T

∣∣∣
(T0,0)

− 2 cχ2 |(T0,0)

∂2cχ0
∂T 2

∣∣∣
(T0,0)

. (4.9)

Note that κ2 is independent of the fK normalization used in the expansion coefficients
cχn. Similarly, we find that the second curvature coefficient can be determined from the
subtracted condensate as

κΣ
2 =

1

2T 3
0

6 cΣ
2

∣∣
(T0,0)

− 4T0
∂cΣ2
∂T

∣∣∣
(T0,0)

+ T 2
0
∂2cΣ2
∂T 2

∣∣∣
(T0,0)

∂3cΣ0
∂T 3

∣∣∣
(T0,0)

. (4.10)

However, determining κ2 from the condensate requires higher T derivatives of the expan-
sion coefficients compared to from the susceptibility which leads to higher systematic
errors. The T derivatives of all expansion coefficients can be analytically obtained by
derivating the AIC weighted Padé sums. The equation for κ4 derived from the discon-
nected susceptibility is given by requiring that O(µ4

B) in Eq. (4.6) vanishes. It reads

κχ4 =
1

24T 2
0

−72κχ2 c
χ
2 − 4cχ4 + T0

[
∂cχ4
∂T

+ 12κχ2

(
4
∂cχ2
∂T
− T0

∂2cχ2
∂T 2 + κχ2T

2
0
∂3cχ0
∂T 3

)]
∂2cχ0
∂T 2

(4.11)

where all coefficients and their derivatives have to be evaluated at (T0, µ̂B = 0). For the
subtracted condensate the 4th order curvature coefficient is given by

κΣ
4 =

288κΣ
2 c

Σ
2 + 20cΣ

4 − 216T0κ
Σ
2
∂cΣ2
∂T
− 8T0

∂cΣ4
∂T

1
24T 3

0

∂3cΣ0
∂T 3

+
T 2

0

(
∂2cΣ4
∂T 2 + 12κΣ

2

(
6
∂2cΣ2
∂T 2 − T0

∂3cΣ2
∂T 3 + κΣ

2 T
2
0
∂4cΣ0
∂T 4

))
1

24T 3
0

∂3cΣ0
∂T 3

. (4.12)
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Figure 4.1: The 2nd (top left), 4th (top right) and 6th (bottom left) order expansion co-
efficients of the subtracted chiral condensate as a function of the temperature
normalized with fK and factorials. The data is shown for a system with vanishing
µQ and µS at three lattice spacings with Nτ = 6, 8 and 12. The colored bands
represent the AIC weighted Padé fits of the coefficients. In the bottom right, we
show the 2nd and 4th order curvature coefficients κ2 and κ4 of the chiral crossover
line Tc(µB) as a function of 1/N2

τ extracted from the subtracted condensate.

Nτ κ2(Σsub) κ4(Σsub) σ(κ4)
6 0.0209(21) 0.00252 0.00182
8 0.0164(13) 0.00107 0.00164
12 0.0256(47) 0.000113 0.00380
∞ O(N−2

τ ) 0.0150(35) -0.000737 0.00344

Table 4.1: The curvature coefficients κ2 and κ4 of the chiral crossover line Tc(µB) extracted
from the subtracted condensate Σsub for a system with vanishing µQ and µS at
three lattice spacings with Nτ = 6, 8 and 12. The error of κ4 is denoted with σ(κ4).
In the last column, we show a continuum extrapolation from a bootstrap with
O(N−2

τ ) corrections.
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Figure 4.2: The 2nd (top left), 4th (top right) and 6th (bottom left) order expansion coeffi-
cients of the disconnected chiral susceptibility as a function of the temperature
normalized with fK and factorials. The data is shown for a system with vanishing
µQ and µS at three lattice spacings with Nτ = 6, 8 and 12. The colored bands
represent the AIC weighted Padé fits of the coefficients. In the bottom right, we
show the 2nd and 4th order curvature coefficients κ2 and κ4 of the chiral crossover
line Tc(µB) as a function of 1/N2

τ extracted from the disconnected susceptibility.

Nτ κ2(χdisc) κ4(χdisc) σ(κ4)
6 0.0168(35) -0.00205 0.00404
8 0.0155(15) -0.000424 0.00213
12 0.0185(53) 0.00224 0.00690
∞ O(N−2

τ ) 0.0158(47) 0.00238 0.00592

Table 4.2: The curvature coefficients κ2 and κ4 of the chiral crossover line Tc(µB) extracted
from the disconnected susceptibility Σsub for a system with vanishing µQ and µS
at three lattice spacings with Nτ = 6, 8 and 12. The error of κ4 is denoted with
σ(κ4). In the last column, we show a continuum extrapolation from a bootstrap
with O(N−2

τ ) corrections.
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4 The curvature of the QCD crossover line

The 2nd and 4th order coefficients of the subtracted condensate and the disconnected
susceptibility are shown in Fig. 4.1 and Fig. 4.2. Close to the crossover temperature
T0, the 2nd order of the condensate cΣ

2 has a pronounced minimum. Additionally, cΣ
2 is

negative in the considered temperature range. When increasing Nτ , the shape of cΣ
2 and

the value of the minimum do not change significantly. Only the location of the minimum
shifts to smaller temperature values. Including the factorials from the Taylor series, we
find that the 4th order cΣ

4 is significantly smaller compared to cΣ
2 . In the crossover region,

cΣ
4 passes through zero and one may argue that the slope increases for larger Nτ values.

However, the errors of cΣ
4 are significantly larger compared to the 2nd order coefficient

and do not allow a proper distinction of different lattice spacings.
For the 2nd order of the susceptibility cχ2 , we see a zero in the crossover region which

shifts to smaller temperatures values for increasing Nτ . As for the condensate, the
4th order Taylor series coefficient is significantly smaller compared to the 2nd order.
Although, cχ4 has a minimum in the crossover region while cχ2 has a zero, thus, the
contribution of the 4th order might be larger or of similar magnitude close to the
crossover line Tc(µB).

In Fig. 4.1 and Fig. 4.2, we show values for κ2 obtained from the subtracted condensate
Σsub and the disconnected susceptibility χdisc. The continuum extrapolated values are
shown in Tab. 4.2 and Tab. 4.1. The continuum results were generated using a bootstrap
which takes into account O(N−2

τ ) corrections. As expected, κ2 is positive for both
observables and all Nτ , thus, for increasing and moderately large µB, the crossover
temperature Tc(µB) shifts to smaller values. Within error bars, we do not see a difference
between κ2(Σsub) and κ2(χdisc). Nevertheless, the mean of κ2 from the disconnected
susceptibility is slightly larger.

We show the values and continuum extrapolations of κ4 in Fig. 4.2 and in Tab. 4.2.
Using the error bars as a bound, we find that κ4 is about a factor 5 smaller than the
second order κ2.

4.2 Strangeness neutral systems

In a strangeness neutral system, the curvature coefficients can be derived similarly as for
the µQ=µS =0 case in Sec. 4.1. The only difference is that in Eq. (4.5) the disconnected
susceptibility has to be expanded in the chemical potentials µB, µQ and µS. By combining
all coefficients for each order in µB, as shown in Eq. (2.68), the first contributing order κ2

of the crossover line is similarly given by Eq. (4.9). The required expansion coefficients
cΣ
n and cχn are smaller compared to the µQ = µS = 0 case and have smaller errors due

to the electric charge and strangeness contributions. However, the general behavior of
the coefficients is similar as described in Sec. 4.1. In Fig. 4.3 and Fig. 4.5, we show the
constrained expansion coefficients up to 4th order for Nτ = 6, 8 and 12. Additionally,
we show the 6th order using our Nτ = 8 ensemble. For the condensate, the 6th order
cΣ

6 is significantly smaller compared to the 4th order. The 6th order coefficient of the
susceptibility cχ6 has large error bars but is at least a factor two smaller than cχ4 in
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Figure 4.3: The 2nd (top left), 4th (top right) and 6th (bottom left) order expansion co-
efficients of the subtracted chiral condensate as a function of the temperature
normalized with fK and factorials. The data is shown for a strangeness neutral
system at three lattice spacings with Nτ = 6, 8 and 12. The colored bands repre-
sent the AIC weighted Padé fits of the coefficients. In the bottom right, we show
the 2nd and 4th order curvature coefficients κ2 and κ4 of the chiral crossover line
Tc(µB) as a function of 1/N2

τ extracted from the subtracted condensate.

Nτ κ2(Σsub) κ4(Σsub) σ(κ4)
6 0.0161(12) 0.00209 0.00116
8 0.0131(10) 0.000836 0.00136
12 0.0159(23) 0.000393 0.00229
∞ O(N−2

τ ) 0.0120(20) -0.000432 0.00235

Table 4.3: The curvature coefficients κ2 and κ4 of the chiral crossover line Tc(µB) extracted
from the subtracted condensate Σsub for a strangeness neutral system at three
lattice spacings with Nτ = 6, 8 and 12. The error of κ4 is denoted with σ(κ4).
In the last column, we show a continuum extrapolation from a bootstrap with
O(N−2

τ ) corrections.
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Figure 4.4: The third T derivative of the subtracted condensate (top left), the first T deriva-
tive (top right) and the second T derivative (bottom) of the 2nd order expansion
coefficient as a function of the temperature as needed for the determination of
κ2. The colored bands stem from derivatives of the AIC weighted Padé sums.

the vicinity of the crossover temperature T0. In Fig. 4.6, we illustrate the two main
contribution to κ2 extracted from the disconnected susceptibility. Here, the derivatives
of the coefficients are determined from derivatives of the AIC weighted Padé sum. The
contribution of the cχ2 term to κ2 in Eq. (4.9) is insignificant. Similarly, we show the
main contributions to κ2 determined from the subtracted condensate in Fig. 4.4. The
obtained κ2 values are sown in Fig. 4.3 and Tab. 4.3. We have performed a continuum
extrapolation with O(N−2

τ ) corrections using three lattice spacings with Nτ = 6, 8 and
12. In general, we do not see a difference between a strangeness neutral system and the
µQ = µS = 0 case within error bars. However, the mean of κ2 is about 10% smaller
in the strangeness neutral case. Given the larger errors of the expansion coefficients
required for κ4, we were only able to determine a bound on the 4th order of the crossover
line Tc(µB). In Tab. 4.3, we show values for κ4 obtained from three lattice sizes with
Nτ = 6, 8 and 12. Due to the large errors for κ4, no statement on the sign of κ4 can
be made. Nevertheless, the error of κ4 is one order of magnitude smaller than κ2, thus,
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Figure 4.5: The 2nd (top left), 4th (top right) and 6th (bottom) order expansion coefficients of
the disconnected chiral susceptibility as a function of the temperature normalized
with fK and factorials. The data is shown for a strangeness neutral system at
three lattice spacings with Nτ = 6, 8 and 12. The colored bands represent the
AIC weighted Padé fits of the coefficients. In the bottom right, we show the 2nd
and 4th order curvature coefficients κ2 and κ4 of the chiral crossover line Tc(µB)
as a function of 1/N2

τ extracted from the disconnected susceptibility.

Nτ κ2(χdisc) κ4(χdisc) σ(κ4)
6 0.0134(26) -0.000170 0.00260
8 0.0128(11) -0.000277 0.00135
12 0.0128(29) 0.00134 0.00577
∞ O(N−2

τ ) 0.0123(30) 0.000131 0.00406

Table 4.4: The curvature coefficients κ2 and κ4 of the chiral crossover line Tc(µB) extracted
from the disconnected susceptibility χdisc for a strangeness neutral system at three
lattice spacings with Nτ = 6, 8 and 12. The error of κ4 is denoted with σ(κ4).
In the last column, we show a continuum extrapolation from a bootstrap with
O(N−2

τ ) corrections.
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Figure 4.6: The second T derivative of the disconnected susceptibility (left) and the first
T derivative of the 2nd order expansion coefficient (right) as a function of the
temperature as needed for the determination of κ2. The colored bands stem from
derivatives of the AIC weighted Padé sums.

even for moderately large µB the contribution of κ2 to Tc(µB) should be dominant. The
dependency on the scale to fix the temperature is supposed to be small. When using
the r1 scale, the mean of κ2(Σsub) increases only by 5% and is given by 0.0127(20).

At present, there is only one other publication [44] which calculated the curvature of
the crossover line for a system which fulfills the initial conditions of heavy-ion collisions.
In that publication, they extracted the leading order κ2 from the renormalized condensate
and the renormalized total light quark susceptibility. They used the stout action and
performed simulations at imaginary baryon chemical potential in combination with an
analytic continuation to real values. They report a κ2 of 0.0158(13) from the total chiral
susceptibility and 0.0138(11) from the chiral condensate. Since we determine κ2 from the
disconnected susceptibility, we can only compare to values for κ2 from the condensate.
Our value (0.0120(20)) does agree within errors although the reported mean in the
publication is about 15% larger. They do not report values for κ4.

The publication [43] performed similar simulations compared to the above mentioned
reference. The only difference is that they do not have exact strangeness neutrality
as required from the initial conditions of heavy-ion collisions. Instead, they performed
simulations at vanishing strangeness chemical potential µS and gave arguments that
the difference to exact strangeness neutrality is small. They used two determination
methods for κ2 and report (0.0132(10), 0.0131(12)) extracted from the renormalized
light quark susceptibility and (0.0134(13), 0.0145(11)) from the subtracted condensate.
These values are comparable to our results.

47



4 The curvature of the QCD crossover line

4.3 Comparison to chemical freeze-out curve

In heavy-ion collision experiments, measured particles stem from chemical freeze-out,
thus, signs of criticality can only be found if the chemical freeze-out line is close to the
crossover line as it is supposed to end in a critical point, if one exists. In the following,
we compare the freeze-out line and crossover line with data from heavy-ion collision
experiments and other lattice QCD simulations. For this, we first have to study up to
which baryon chemical potential µB we can trust the Taylor expansions of the subtracted
condensate and disconnected susceptibility. The difference between these truncated
Taylor expansions up to O(µ2

B), O(µ4
B) and O(µ6

B) can be seen in Fig. 4.7 at fixed µB.
Most important for this work is the difference around Tc(µB), i.e. along the crossover
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Figure 4.7: The Taylor expansion of the subtracted condensate (top) and the disconnected
susceptibility (bottom) for one lattice spacing with Nτ = 8 in a strangeness
neutral system. The left figures show the Taylor expansion up to O(µ2

B), O(µ4
B)

and O(µ6
B) at fixed µB and the right figures shows the expansion up to O(µ6

B)
for several µB values. The colored bands correspond to different values for the
baryon chemical potential µB and were constructed from the Padé AIC fits to the
Taylor coefficients. The expansion coefficients are shown in Fig. 4.3 and Fig. 4.5.
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line. For the condensate, almost no difference is visible even at µB = 250 MeV between
a 6th and 2nd order expansion. However, at low and high temperature the difference
is larger. Only the 4th and 6th order expansions agree well within errors in the whole
temperature range. This is expected as along Tc(µB) the 4th order is about 30 times
smaller than the 2nd order. Likewise, the 4th order is about 5 times smaller than the 6th
order. In general, these higher order corrections to the leading order of the subtracted
condensate are small and never larger than 20%. This can be seen in the right of Fig. 4.7
which shows the Taylor expansion up to 6th order as a function of T for fixed µB ranging
from 100 MeV to 250 MeV. We conclude that the Taylor expansion of the subtracted
condensate can be trusted up to µB = 250 MeV close to the crossover temperature,
i.e. µB/T ' 1.65. For a baryon chemical larger than 250 MeV the statistical errors
become more pronounced and no statement about the truncation errors of the series can
be made. Similar arguments can be made for the disconnected susceptibility. However,
the disconnected susceptibility expansion can only be trusted up to µB = 200 MeV
given the relatively larger errors in the Taylor coefficients (see Fig. 4.7). In Fig. 4.8, we
compare the parameterization of the O(µ2

B) and O(µ4
B) crossover line Tc(µB) extracted

from the Taylor expansion of the subtracted condensate. As discussed above, the Taylor
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Figure 4.8: The crossover temperature Tc as a function of the baryon chemical potential µB
for a strangeness neutral system. All required expansion coefficients κn have been
extracted from the subtracted condensate Σsub. The 2nd and 4th order crossover
line are continuum extrapolated using three lattice spacings with Nτ = 6, 8 and
12. Also shown are freeze-out parameters from the experiments ALICE [45] and
STAR [46].
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expansion including 4th order corrections can be trusted up to µB ≤ 250 MeV. We
argue that for µB ≤ 250 MeV fourth order corrections are insignificant. For µB values
above 250 MeV, the uncertainty of κ4 becomes a more dominant contribution to the
curvature of the crossover line as the spread of the error band increases from about
0.5 MeV to almost 4.0 MeV at µB = 250 MeV. We also compare the crossover line with
results on freeze-out temperatures extracted from particle yields measured in heavy-ion
collision experiments such as ALICE [45] (LHC) and STAR [46] (RHIC). The mean of
the ALICE freeze-out temperature of 156(2) MeV agrees very well with our crossover
line at almost vanishing baryon chemical potential. The STAR data seems to extrapolate
to a freeze-out temperature of about 167 MeV which is significantly higher than the
ALICE data point. Also, the curvature of the STAR data at small µB would require to
have a κ2 which is at least a factor 6 larger than our value. Given this rather large κ2,
the 4th order κ4 would need to be negative and at least 30 times larger than our value.
When leaving out the first two STAR data points the curvature agrees well with the
crossover line from the subtracted condensate. At present, no statement can be made
whether the chemical freeze-out line is close to the QCD crossover by just comparing
with ALICE and STAR data. However, several arguments [47, 48] have been made
that chemical freeze-out might be related to lines of constant physics (LCPs), i.e. lines
TX(µB) where an observable X stays constant. This is why we compare in the following
the crossover line to LCPs from lattice QCD simulations [35]. In that publication, LCPs
are parameterized similarly to the crossover line. For LCPs starting at T = 155.9 MeV,
they report second order curvature coefficients κX2 for constant energy density ε

0.00932 ≤ κε2 ≤ 0.0114 , (4.13)

for constant entropy density s

0.00818 ≤ κs2 ≤ 0.0100 (4.14)

and for constant pressure P

0.00767 ≤ κP2 ≤ 0.00971 . (4.15)

The LCP curvatures from energy density and entropy density agree to the crossover
curvature although the overlap to κΣ

2 = 0.00120(20) within error bars is only at the
border of 1σ. This might suggest that physics do not change much along the crossover
line (see Sec. 5). In particular, the energy density seems to stay constant as there is
good agreement to κΣ

2 . They also report 4th order curvature coefficients κX4 . Given our
rather large errors in κ4 from the crossover live, the agreement to 4th order curvature
coefficients from LCPs is expected.
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4.4 The crossover surface

The methods described in this work allow to perform Taylor expansions in any combina-
tion of µB, µQ and µS as well as the quark chemical potentials µu, µd and µs by simply
evaluating gauge configurations generated at zero chemical potential. This freedom en-
ables to study the curvature of the QCD crossover line for different systems using the
method outlined in Sec. 4. In theory, combining curvatures from several combinations
of µB, µQ and µS would allow to map out a 4-dimensional crossover surface in a QCD
phase diagram, i.e. the plane (T, µB, µQ, µS).

κ2(χdisc)
µB = µS = 0 0.0314(39)
µQ = µS = 0 0.0158(47)
µB = µQ = 0 0.0146(35)
nS = 0, nQ/nB = 0.5 0.0127(30)
nS = 0, nQ/nB = 0.4 0.0123(30)
nS = 0, nQ/nB = 0.1 0.0117(26)

Table 4.5: The continuum extrapolations of the 2nd order curvature coefficient κ2 extracted
from Taylor expansions of the disconnected two-flavor susceptibility using different
constrains which are shown in the first column.

The only remaining cases, i.e. Taylor expansions in a single chemical potential, which
were not covered yet in previous sections are expansions in µQ, and in µS. In these cases,
the expansion coefficients from Sec. 2.2 simplify for the subtracted chiral condensate
Σsub to

cΣ
n = ΩBQS

0n0 for µB = µS = 0 , (4.16)

cΣ
n = ΩBQS

00n for µB = µQ = 0 , (4.17)

and for the disconnected chiral susceptibility χdisc to

cχn = ΞBQS
0n0 for µB = µS = 0 , (4.18)

cχn = ΞBQS
00n for µB = µQ = 0 . (4.19)

As shown in the last sections, the curvatures extracted from the condensate and dis-
connected susceptibility give similar results. This is why in the following we only focus
on the disconnected susceptibility. In Fig. 4.9, we compare the curvature κ2 from the
Taylor expansions in µB, in µQ and in µS for finite temporal extent with Nτ = 6, 8 and
12. The continuum extrapolated values are summarized in Tab. 4.5. We found that the
µB = µS = 0 case has a curvature of 0.314(39) which is about two times larger than
all other cases ranging from 0.0146(35) (µB = µQ = 0) to 0.0158(47) (µQ = µS = 0).
This large curvature can be explained phenomenological as pions are light compared
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Figure 4.9: The 2nd order curvature coefficient κ2 as a function of 1/N2
τ extracted from

Taylor expansions of the disconnected two-flavor susceptibility using different
constrains.

to baryons and kaons. Therefore, when increasing µQ, with µB = µS = 0 fixed, pions
are added to the system more easily which leads to a larger temperature reduction
compared to just increasing µB or µS. This argument assumes that the energy density
stays constant along the crossover line. As shown above, this seems to be correct for
heavy-ion collisions. To fully support this argument, we would need to identify lines
of constant energy density for e.g. the µB = µS = 0 case and compare these to the
corresponding crossover line. In theory, it is also expected that the case µQ = µS = 0
has a larger curvature than the µB = µQ = 0 case. However, within errors we observe
no difference between both curvatures. The origin of this increased curvature stems
from the slope of the 2nd order expansion coefficient of the disconnected susceptibility.
It is the main contribution to κ2 (see Eq. 4.9) as it is multiplied with T0. Note that
the denominator is independent of the constrains, thus, is in all cases equivalent. In
Fig. 4.10, we compare cχ2 and its slope for µB = µS = 0 to the strangeness neutral case.
The slope for µB = µS = 0 is about a factor 3 larger than the strangeness neutral case.

We have also studied the curvature κ2 in systems with constrains of the form

nS = 0,
nQ
nB

= r (4.20)

at three r values. We chose r = 0.5 the isopin symmetric case, r = 0.4 the initial

52



4 The curvature of the QCD crossover line

-30

-20

-10

 0

 10

 20

 135  145  155  165  175

ms/ml=27, N
τ
=8

c2
χ
/2

T [MeV]

nS=0, nQ/nB=0.4
µB=µS=0

-1500

-1000

-500

 0

 500

 1000

 1500

 135  145  155  165  175

ms/ml=27, N
τ
=8

T dc2
χ
/dT

T [MeV]

nS=0, nQ/nB=0.4
µB=µS=0

Figure 4.10: The 2nd order expansion coefficient of the disconnected susceptibility (left) and
the first T derivative (right) at a finite lattice spacing with Nτ = 8 shown for a
system with µB = µS = 0 as well as for a strangeness neutral system.

conditions in Au-Au and Pb-Pb collisions (see Sec.4), and r = 0.1 which is a value close
to the charge neutral case. In Tab. 4.5, we show the continuum results for the mentioned
cases using three lattice spacings with Nτ = 6, 8 and 12. We observe when decreasing r
from 0.5 to 0.1 the mean of κ2 changes by about 8% to smaller values. However, within
errors all cases can be considered equal.

At present, there are no publications which report the curvature for the cases investi-
gated in this section except the r = 0.4 case and the µQ = µS = 0 case which we already
discussed in Sec. 4.1 and Sec. 4.2.

53





5 Fluctuations along the QCD crossover line

5 Fluctuations along the QCD crossover line

In this section, we are going to study the behavior of observables along the QCD
crossover line. We have already shown in Sec. 4 that the pressure stays constant along
the crossover line. However, other observables might have more interesting behavior
as their properties are strongly related to the correlation length of the system when
approaching a theoretical critical point, thus, might show signs of increased fluctuations
with increasing baryon-density. In particular of interest are the disconnected suscepti-
bility and net baryon-number fluctuations as both are supposed to diverge at a critical
point in an infinite volume [32, 11, 12]. Additionally, we investigate the change of the
chiral condensate along the crossover line as its change is an important input parameter
for models to calculate e.g. the nucleon mass [49].

5.1 Chiral observables

In the following, we derive equations for the relative change of the disconnected two-
flavor susceptibility along the crossover line Tc(µB). In general, these steps are equivalent
for other observables as long as they are normalized with a T independent variable. In
our case, we use the kaon decay constant fK . Similarly as for the crossover line, we
compute curvature coefficients λ2 and λ4 defined by

χdisc(Tc(µB), µB)− χdisc(T0, 0)

χdisc(T0, 0)
= λ2

(
µB
T0

)2

+ λ4

(
µB
T0

)4

+ · · · . (5.1)

In order to determine the coefficients λ2 and λ4, we start from a joint Taylor expansion
in µ̂ and T around (T0, µ̂ = 0). It is given by

χdisc(T, µB)

f 4
K

= cχ0 |(T0,0) +
∂cχ0
∂T

∣∣∣∣
(T0,0)

(T − T0) +
1

2

∂2cχ0
∂T 2

∣∣∣∣
(T0,0)

(T − T0)2 (5.2)

+
1

2
cχ2 |(T0,0) µ̂

2
B +

1

24
cχ4 |(T0,0) µ̂

4
B +

1

2

∂cχ2
∂T

∣∣∣∣
(T0,0)

(T − T0)µ̂2
B + · · · .

Here, we have used the Taylor coefficients cχn as introduced in Sec. 2.2 and neglected
higher orders in T and µ̂B which do not contribute to O(µ2

B) and O(µ4
B). This expansion

has to be evaluated along the crossover line, i.e. the temperature difference T − T0 and
powers of 1/T are given by

T − T0 ≡ Tc(µB)− T0 = −κ2
µ2
B

T0

− κ4
µ4
B

T 3
0

+O(µ6
B) (5.3)

and

1

T n
=

1

T n0

(
1 + nκ2

(
µB
T0

)2

+O(µ4
B)

)
. (5.4)
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Figure 5.1: The first T derivative of the subtracted condensate (left) and the first T derivative
of the disconnected two-flavor susceptibility (right) as needed for the determina-
tion of λ2. The colored bands stem from derivatives of the AIC weighted Padé
sums.

We can now reorder the joint Taylor expansion in powers of µB/T0 to

χdisc(T, µB)

f 4
K

= cχ0 |(T0,0) +

(
−T0

∂cχ0
∂T

∣∣∣∣
(T0,0)

κ2 +
1

2
cχ2 |(T0,0)

)(
µB
T0

)2

+

(
−T0

∂cχ0
∂T

∣∣∣∣
(T0,0)

κ4 +
1

2
T 2

0

∂2cχ0
∂T 2

∣∣∣∣
(T0,0)

κ2
2 + cχ2 |(T0,0) κ2 (5.5)

+
1

24
cχ4 |(T0,0) −

1

2
T0

∂cχ2
∂T

∣∣∣∣
(T0,0)

κ2

)(
µB
T0

)4

+ · · · .

The last step is to normalize each order with cχ0 . We find for the coefficients λn along
the crossover line

λ2 =
−∂cχ0

∂T
κ2T0 + 1

2
cχ2

cχ0
(5.6)

and

λ4 =
−∂cχ0

∂T
κ4T0 + 1

2

∂2cχ0
∂T 2 κ

2
2T

2
0 + cχ2κ2 + 1

24
cχ4 − 1

2

∂cχ2
∂T
κ2T0

cχ0
. (5.7)

Here, all Taylor coefficients have to be evaluated at (T0, 0). Note that in this last step
all coefficients λn become independent of the normalization choice as all terms in the
numerator and denominator contain a factor 1/f 4

K . In our simulations, we extract the
crossover parameters T0 and κn from the observable of interest, i.e. in Eq. (5.6) and
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Figure 5.2: The relative change of the disconnected susceptibility (top) along the corre-
sponding crossover line Tc(µB) for systems with µQ = µS = 0 and strangeness
neutrality. The blue band includes continuum extrapolated corrections up to 2nd
order in µB and the yellow band up to 4th order in µB. The values for λ2 and
λ4 at finite Nτ are shown in the bottom.

Nτ λ2(χdisc) σ(λ2) λ4(χdisc) σ(λ4)
6 −0.0163 0.00779 −0.00234 0.00866
8 −0.000180 0.00366 0.000765 0.00446
12 −0.00336 0.0143 −0.0241 0.0155
∞ nS = 0, nQ/nB = 0.4 0.0148 0.0113 −0.00697 0.0128

6 −0.0208 0.0122 0.00236 0.0141
8 0.00186 0.00441 −0.000217 0.00624
12 −0.00327 0.0207 −0.0366 0.0260
∞ µQ = µS = 0 0.0230 0.0163 −0.0165 0.0201

Table 5.1: The coefficients λ2 and λ4 extracted from the disconnected susceptibility χdisc for
systems with µQ = µS = 0 and strangeness neutrality at three lattice spacings
with Nτ = 6, 8 and 12. The continuum extrapolated values stem from a bootstrap
using an ansatz with O(N−2

τ ) corrections. Here, σ denotes the standard error.
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Figure 5.3: The relative change of the subtracted condensate (top) along the corresponding
crossover line Tc(µB) for systems with µQ = µS = 0 and strangeness neutrality.
The blue band includes continuum extrapolated corrections up to 2nd order in
µB and the yellow band up to 4th order in µB. The values for λ2 and λ4 at finite
Nτ are shown in the bottom.

Nτ λ2(Σsub) σ(λ2) λ4(Σsub) σ(λ4)
6 0.0237 0.00945 0.0140 0.00885
8 0.00674 0.00668 0.00511 0.0101
12 0.0220 0.0162 0.00118 0.0163
∞ nS = 0, nQ/nB = 0.4 0.000902 0.0152 −0.00440 0.0171

6 0.0323 0.0119 0.0182 0.0140
8 0.0115 0.00904 0.00718 0.0121
12 0.0289 0.0217 −0.000892 0.0271
∞ µQ = µS = 0 0.00329 0.0199 −0.00703 0.0252

Table 5.2: The coefficients λ2 and λ4 extracted from the subtracted condensate Σsub for
systems with µQ = µS = 0 and strangeness neutrality at three lattice spacings
with Nτ = 6, 8 and 12. The continuum extrapolated values stem from a bootstrap
using an ansatz with O(N−2

τ ) corrections. Here, σ denotes the standard error.
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Eq. (5.7) the values were extracted from the disconnected susceptibility χdisc. Therefore,

it is expected that the second order λ2 is small because the contribution of
∂cχ0
∂T

to λ2

is exactly zero at T0, as it is the definition of the crossover temperature (see Fig. 5.1).
Likewise, the last term cχ2 is small as it passes through zero in the crossover region (see
Fig. 4.5). This is why in particular the 4th order λ4 is important for the disconnected
susceptibility. However, the difference in λ2 and λ4 is small when using the chiral
condensate to determine the crossover curvature κn and the crossover temperature T0.

In Fig. 5.2, we show the relative change of the disconnected two-flavor susceptibility
for systems with strangeness neutrality and µQ = µS = 0 up to O(µ2

B) and O(µ4
B). The

coefficients λn are shown up to 4th order in Tab. 5.1 for finite Nτ and in the continuum.
In both cases, the change is small and never larger than 15% for µB < 250 MeV. For
the strangeness neutral case, the change is always smaller than 10%. We argue that this
insignificant change in an observable which should diverge at a critical point is a strong
sign to disfavor a critical point in the region defined by our crossover line for baryon
chemical potentials up to 250 MeV. To truly exclude a critical point in this region, we
would have to study the change of the parameters λn with increasing lattice volumes. In
this work, all simulations were performed at a fixed lattice volume which sets a bound
on the maximal correlation length. However, it has been shown by [50] that volume
effects are small for an aspect ratio of 4, i.e. lattices with Nσ/Nτ = 4.

For the subtracted condensate, it is not expected that the leading order λ2 is small

given that the contributing terms,
∂cΣ0
∂T

and cΣ
2 , are finite and not close to zero in the

transition region (see Fig. 5.1 and Fig. 4.3). However, we found that λ2 and λ4 are small.
Consequently, the subtracted condensate stays constant along the crossover line. This
can be seen in Fig. 5.3 for systems with strangeness neutrality and µQ =µS = 0 up to
O(µ2

B) and O(µ4
B). The relative change of Σsub along the crossover line has almost no

slope, only the error band widens with increasing µB. For both systems, the relative
change of Σsub along the crossover line stays below 3% for a baryon chemical potential
smaller than 200 MeV. For larger µB, the errors become more dominant but still limit
the deviations to zero chemical potential to be relatively small.

5.2 Conserved charges

In Sec. 2, we have introduced generalized susceptibilities χBQSijk as the Taylor coefficients
of the normalized QCD pressure P/T 4. They can be directly related to observables
measured in heavy-ion collision experiments [51]. In particular, these Taylor coefficients
are proportional to higher order moments: mean MX , variance σ2

X , skewness SX and
kurtosis kX which are obtained by net charge fluctuations δNX =NX− 〈NX〉 for each
charge X in the BQS ensemble. Their relations to generalized susceptibilities are shown
in Tab. 5.3. Unfortunately, in heavy-ion collisions the volume is unknown. However,
ratios of higher order moments can be constructed in a volume independent way allow-
ing a direct comparison to lattice simulations [52, 53, 54]. In the following, we study

59



5 Fluctuations along the QCD crossover line

Moment Symbol Experiment Lattice

mean MX 〈NX〉 V T 3χX1

variance σ2
X

〈
(δNX)2〉 V T 3χX2

skewness SX

〈
(δNX)3〉
σ3
X

V T 3χX3

(V T 3χX2 )
3/2

kurtosis kX

〈
(δNX)4〉
σ4
X

− 3
V T 3χX4

(V T 3χX2 )
2

Table 5.3: Higher order moments as measured in heavy-ion experiments and their associated
lattice observables obtained from higher order susceptibilities. Here,X corresponds
to the conserved charges: baryon number B, electric charge Q and strangeness S.

fluctuations of net baryon-number along the QCD crossover line, i.e. the change of σ2
B.

To stick with our notation, we chose to normalize σ2
B with V f 3

k . As already discussed in
in Sec. 5.1, normalizing an observable with a constant term does not have an influence
on the coefficients λn. These coefficients can be calculated as for the chiral condensate
and chiral disconnected susceptibility (see Eq. (5.6) and Eq. (5.7)). Accordingly, the
second order is obtained by

λ2 =
−∂cB0

∂T
κ2T0 + 1

2
cB2

cB0
. (5.8)

Here, we use the crossover parameters κn and T0 extracted from the subtracted chiral
condensate. The Taylor expansion of σ2

B/(V f
3
K) can be written as

σ2
B

V f 3
K

=
1

V f 3
K

∂ lnZ

∂µ̂2
B

=
∞∑

i,j,k=0

ξBQSijk

i!j!k!
µ̂iBµ̂

j
Qµ̂

k
S (5.9)

with

ξBQSijk =
1

V f 3
K

∂ lnZ

∂µ̂i+2
B ∂µ̂jQ∂µ̂

k
S

∣∣∣∣∣
µ=0

. (5.10)

For a constrained Taylor expansion, we introduce the following notation

σ2
B

V f 3
K

=
1

V f 3
K

∂ lnZ

∂µ̂2
B

=
∞∑
n=0

cBn
n!
µ̂nB (5.11)

where the coefficients cBn have the same structure as derived for chiral observables in
Sec. 2.2. In a system with vanishing µQ and µS, these coefficients simplify to

cBn = ξBQSn00 . (5.12)
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Figure 5.4: The net baryon-density fluctuations normalized with f3
K (left) and the correspond-

ing first T derivative (right). The colored bands stem from the AIC weighted Padé
sums and their derivatives. The data is shown for three finite lattice spacings
with Nτ = 6, 8 and 12.
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Figure 5.5: The 2nd order Taylor expansion coefficient of σ2
B/(V f

3
K) for systems with

strangeness neutrality (right) and µQ = µS = 0 (left). The colored bands stem
from the AIC weighted Padé sums and their corresponding derivatives. The data
is shown for three finite lattice spacings with Nτ = 6, 8 and 12.

In Fig. 5.4, we show the leading order cB0 of net baryon-density fluctuations for three
lattice spacings with Nτ = 6, 8 and 12. The errors and cut-off effects are small and
allow a good determination of the first T derivative of cB0 as required for λ2. The 2nd
order cB2 also has small cut-off effects but slightly larger statistical errors which can
be seen in Fig. 5.5 In general, the behavior in a system with strangeness neutrality is
similar to a system with µQ=µS =0. However, the expansion coefficients are about 30%
larger for vanishing µQ and µS which directly translates into larger fluctuations of σ2

B

along the crossover line. The values for the expansion coefficients λn are summarized
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Figure 5.6: The relative change of σ2
B (top) along the crossover line Tc(µB) extracted from

Σsub for systems with µQ = µS = 0 and strangeness neutrality. The blue band
includes continuum extrapolated corrections up to 2nd order in µB and the yellow
band up to 4th order in µB. The values for λ2 and λ4 at finite Nτ are shown in
the bottom. The dashed lines represent the mean of the shown observable. The
HRG results are shown using a solid black line.

Nτ λ2(σ2
B) err(λ2) λ4(σ2

B) err(λ4)
6 0.0873 0.0131 −0.0204 0.0139
8 0.132 0.00929 −0.0177 0.0146
12 0.116 0.025 0.0107 0.0539
∞ nS = 0, nQ/nB = 0.4 0.165 0.0219 −0.00680 0.0340

6 0.181 0.0148 −0.0361 0.0195
8 0.229 0.0109 −0.0311 0.0188
12 0.212 0.0281 0.0211 0.0776
∞ µQ = µS = 0 0.263 0.0250 −0.0130 0.0454

Table 5.4: The coefficients λ2 and λ4 extracted from the relative change of σ2
B for systems with

µQ = µS = 0 and strangeness neutrality at three lattice spacings with Nτ = 6, 8
and 12. The continuum extrapolated values stem from a bootstrap using an ansatz
with O(N−2

τ ) corrections. Here, err(·) denotes the standard error.
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5 Fluctuations along the QCD crossover line

in Tab. 5.4 for finite Nτ and in the continuum. We found that the mean of the 4th
order λ4 is about factor 20 smaller than λ2. The relative change of σ2

B is shown in
Fig. 5.6 for both cases using O(µ2

B) and O(µ4
B) corrections. We observe a moderate

increase of about 60% for net baryon-number fluctuations along the QCD crossover
at µB = 250 MeV and µQ = µS = 0 relative to σ2

B evaluated at (T0, µ = 0). For a
strangeness neutral system, the increase is about a factor 2 smaller. It has been shown
successfully [11, 12] that net baryon-number fluctuations couple to the condensate and
thus would show critical behavior when approaching a critical point. This is why we
expect it to a be strong indicator to disfavor a critical point if no increased fluctuations
can be observed. In particular interesting is to study deviations from the HRG model.
Even for a finite volume, as given in heavy-ion collision and our simulations, these
fluctuations should resemble some critical behavior in the vicinity of a critical point,
i.e. show substantially larger fluctuations compared to HRG. In the HRG model, the
partition function factorizes in a sum over all hadrons and their resonances [55]. It can
be written as

lnZHRG =
∑

i∈hadrons

lnZi =
∑

i∈baryons

lnZB
i +

∑
i∈mesons

lnZM
i . (5.13)

The mesonic and baryonic partition functions are given for each hadron i by a fugacity
expansion

lnZB
i =

V T 3

π2
di

(mi

T

)2
∞∑
k=1

(−1)k+1

k2
K2(kmi/T ) cosh (k(BiµB +QiµQ + SiµS)/T )

(5.14)

and

lnZM
i =

V T 3

π2
di

(mi

T

)2
∞∑
k=1

1

k2
K2(kmi/T ) cosh (k(QiµQ + SiµS)/T ) , (5.15)

where di is the spin degeneracy and K2 is a modified Bessel function of second kind.
For the baryonic sector we can further simplify the partition function. In the con-
finement region, even the lightest baryon is much heavier than the temperature of
interest. This is why we can approximate the Bessel function for large arguments as
K2(x) '

√
π/2x exp(−x). In this case, all higher terms of the fugacity expansion are

strongly suppressed and the contribution to the baryonic partition function is well de-
scribed by the first term, referred to as Boltzmann approximation [56]. For the case
µQ = µS = 0, only baryons contribute to the fluctuations of net baryon-number σ2

B. As
described in Eq. (5.9), we can express σ2

B in the HRG model as(
σ2
B

V

)HRG

=
T

π2

∑
i∈baryons

dim
2
iK2(mi/T ) cosh (µB/T ) . (5.16)
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5 Fluctuations along the QCD crossover line

Here, we have used that the baryon-number Bi is ±1. When calculating the relative
change of σ2

B, the T dependent term in front of cosh (µB/T ) is not canceled by the
denominator as the numerator has to be evaluated at Tc(µB). It is given by(

σ2
B(Tc(µB), µB)− σ2

B(T0, 0)

σ2
B(T0, 0)

)HRG

= α(Tc(µB)) cosh (µB/Tc(µB))− 1 (5.17)

with

α(Tc(µB)) =
Tc(µB)

T0

∑
i dim

2
iK2(mi/Tc(µB))∑

i dim
2
iK2(mi/T0)

. (5.18)

We have checked that the sum in α(Tc(µB)) can be approximated by including only
baryons up to 1.6 GeV as listed in [57]. Already baryons with masses of about 1.3 GeV
have almost no visible effect on the fluctuations. For the HRG with the initial conditions
of heavy-ion collisions, the equations become more complex and require an expansion
similarly as shown in Sec. 2.2. This is why in this case we rely on [58] for the HRG results.
In Fig. 5.6, we compare the fluctuations of σ2

B to the HRG model for a fixed curvature
defined by the mean of the crossover parameters. The fluctuations are slightly larger in
the HRG model with µQ = µS = 0 along the crossover line up to µB = 250 MeV. For the
strangeness neutral case, the fluctuations are at least a factor two smaller compared to
HRG. Given that the HRG model has an infinite convergence radius and substantially
larger fluctuations compared to our lattice simulations, we conclude it is unlikely that a
QCD critical point can be found for µB < 250 MeV along the crossover line. This is in
agreement with our findings from the analysis of chiral susceptibility fluctuations along
the crossover line (see Sec. 5.1).
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6 Summary

6 Summary

We have studied the crossover from a hadron gas to a quark gluon plasma using lattice
QCD techniques in the HISQ formulation with physical quark masses. At vanishing
chemical potential, we determined the crossover temperature T0 from chiral observables
such as: subtracted condensate, subtracted susceptibility and disconnected susceptibility.
By combining their values, we found that the crossover at zero chemical potential must
occur in a temperature range from 155.4 MeV to 156.8 MeV.

Using a Taylor expansion up to 6th order in µB of these chiral observables, we were
able to map out the QCD crossover line Tc(µB). For a system with initial conditions
of a heavy-ion collision, we report a curvature κ2 of 0.0120(20) from the subtracted
condensate and 0.0123(30) from the disconnected susceptibility. The next order κ4 is
one magnitude smaller. We have compared this crossover line to the chemical freeze-out
curve from heavy-ion collision experiments and lines of constant physics from lattice
QCD simulations. We conclude that the crossover happens indeed close to the chemical
freeze-out as well as along constant energy density and constant entropy density. We
have explored the QCD phase diagram for several other cases using the above methods.
In particular, µQ = µS = 0, µB = µS = 0, µB = µQ = 0 as well as a strangeness neutral
system with nQ/nB = r where we varied r between 0.1 and 0.5. The dependence on r
is small. We found that the QCD phase diagram has very similar curvatures κ2 in all
directions except for µB = µS = 0. In this case, the curvature κ2 is 0.0314(39), i.e. a
factor two larger. Complementary, we measured 6th order expansion coefficients for a
fixed lattice spacing and outlined that these higher order corrections are negligible for
µB < 250 MeV.

This crossover line parameterization enabled us to study net baryon-number fluctua-
tions as a function of Tc(µB). Along the crossover, their increase is substantially smaller
compared to a HRG. Similarly, we have analyzed chiral susceptibility fluctuations along
the crossover and showed that they can be seen as constant. Given this strong evi-
dence, we conclude that no critical point can be found for the crossover region with
µB < 250 MeV.
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A Data

A Data

A.1 Chiral condensate

Nτ = 6 T [MeV] Σl/T
3 err(Σl/T

3)
135.29 14.4041 0.0055
139.71 12.8407 0.0057
145.05 10.9964 0.0042
150.59 9.1731 0.0087
157.17 6.8713 0.0093
162.28 5.2775 0.0077
165.98 4.3304 0.0080
171.15 3.1760 0.0021
175.76 2.4719 0.0028

Table A.1: The Nτ = 6 light quark chiral condensate as defined in Sec. 3.5.

Nτ = 6 T [MeV] Σs/T
3 err(Σs/T

3)
135.29 19.8638 0.0016
139.71 18.8669 0.0011
145.05 17.7121 0.0010
150.59 16.6032 0.0016
157.17 15.3486 0.0016
162.28 14.4418 0.0016
165.98 13.8492 0.0017
171.15 12.9961 0.0003
175.76 12.3201 0.0011

Table A.2: The Nτ = 6 strange quark chiral condensate as defined in Sec. 3.5.
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A Data

Nτ = 8 T [MeV] Σl/T
3 err(Σl/T

3)
134.64 16.8727 0.0023
140.45 14.2496 0.0034
144.95 12.2943 0.0031
151.00 9.8550 0.0044
156.78 7.5605 0.0030
162.25 5.7199 0.0078
165.98 4.6493 0.0042
171.02 3.5823 0.0030
175.64 2.8890 0.0042

Table A.3: The Nτ = 8 light quark chiral condensate as defined in Sec. 3.5.

Nτ = 8 T [MeV] Σs/T
3 err(Σs/T

3)
134.64 30.26437 0.00051
140.45 28.16075 0.00080
144.95 26.59860 0.00059
151.00 24.84251 0.00097
156.78 23.12819 0.00059
162.25 21.78016 0.00174
165.98 20.85494 0.00097
171.02 19.76819 0.00075
175.64 18.83039 0.00149

Table A.4: The Nτ = 8 strange quark chiral condensate as defined in Sec. 3.5.

Nτ = 12 T [MeV] Σl/T
3 err(Σl/T

3)
134.94 18.6824 0.0093
140.44 15.9043 0.0097
144.97 13.8023 0.0092
151.10 11.0801 0.0096
157.13 8.6638 0.0091
161.94 7.0019 0.0180
165.91 5.8801 0.0058
170.77 4.8848 0.0089
175.76 4.1109 0.0061

Table A.5: The Nτ = 12 light quark chiral condensate as defined in Sec. 3.5.
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A Data

Nτ = 12 T [MeV] Σs/T
3 err(Σs/T

3)
134.94 53.9234 0.0022
140.44 50.7552 0.0017
144.97 48.4404 0.0015
151.10 45.4176 0.0012
157.13 42.8728 0.0010
161.94 40.9633 0.0026
165.91 39.3996 0.0012
170.77 37.7773 0.0024
175.76 36.2869 0.0020

Table A.6: The Nτ = 12 strange quark chiral condensate as defined in Sec. 3.5.

Nτ = 16 T [MeV] Σl/T
3 err(Σl/T

3)
144.9 15.9847 0.071
151.0 13.3869 0.056
156.9 10.7595 0.055
162.0 8.8264 0.080
166.0 7.6947 0.067
170.9 6.6667 0.054

Table A.7: The Nτ = 16 light quark chiral condensate as defined in Sec. 3.5.

Nτ = 16 T [MeV] Σs/T
3 err(Σs/T

3)
144.9 76.569 0.0071
151.0 73.536 0.0058
156.9 69.706 0.0059
162.0 66.552 0.0086
166.0 64.403 0.0078
170.9 62.168 0.0102

Table A.8: The Nτ = 16 strange quark chiral condensate as defined in Sec. 3.5.
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A Data

A.2 Chiral susceptibility

Nτ = 6 T [MeV] 4χf,disc/T
2 err(4χf,disc/T

2) f = u, d
135.29 31.15 0.24
139.71 35.31 0.20
145.05 41.58 0.22
150.59 48.16 0.37
157.17 57.26 0.38
162.28 53.95 0.40
165.98 45.86 0.19
171.15 29.87 0.14
175.76 18.48 0.09

Table A.9: The Nτ = 6 light quark disconnected chiral susceptibility as defined in Sec. 3.5.

Nτ = 8 T [MeV] 4χf,disc/T
2 err(4χf,disc/T

2) f = u, d
134.64 43.99 0.16
140.45 50.26 0.15
144.95 57.32 0.16
151.00 66.45 0.22
156.78 71.04 0.24
162.25 62.26 0.25
165.98 49.06 0.08
171.02 31.56 0.25
175.64 19.47 0.13

Table A.10: The Nτ = 8 light quark disconnected chiral susceptibility as defined in Sec. 3.5.
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A Data

Nτ = 12 T [MeV] 4χf,disc/T
2 err(4χf,disc/T

2) f = u, d
134.94 62.98 0.49
140.44 71.76 0.56
144.97 81.36 0.73
151.10 94.78 0.45
157.13 95.69 1.24
161.94 84.52 0.70
165.91 66.03 0.60
170.77 47.15 0.62
175.76 31.18 0.28

Table A.11: The Nτ = 12 light quark disconnected chiral susceptibility as defined in Sec. 3.5.

Nτ = 16 T [MeV] 4χf,disc/T
2 err(4χf,disc/T

2) f = u, d
144.9 107.92 6.56
151.0 128.32 4.27
156.9 126.94 3.96
162.0 115.64 4.64
166.0 89.32 4.45
170.9 69.68 3.84

Table A.12: The Nτ = 16 light quark disconnected chiral susceptibility as defined in Sec. 3.5.

Nτ = 8 T [MeV] 2χf,conn/T
2 err(2χf,conn/T

2) f = u, d
134.64 118.43 0.30
140.45 123.58 0.36
144.95 131.12 0.44
151.00 140.88 0.29
156.78 152.77 0.29
162.25 156.87 0.22
165.98 155.01 0.33
171.02 145.09 0.30
175.64 131.53 0.51

Table A.13: The Nτ = 8 light quark connected chiral susceptibility as defined in Sec. 3.5.
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A Data

Nτ = 12 T [MeV] 2χf,conn/T
2 err(2χf,conn/T

2) f = u, d
134.94 209.61 0.25
140.44 213.74 0.31
144.97 217.90 0.43
151.10 223.90 0.51
157.13 227.47 0.53
161.94 226.52 0.38
165.91 220.24 0.30
170.77 208.57 0.42
175.76 196.49 0.21

Table A.14: The Nτ = 12 light quark connected chiral susceptibility as defined in Sec. 3.5.

Nτ = 16 T [MeV] 2χf,conn/T
2 err(2χf,conn/T

2) f = u, d
144.9 304.90 0.61
151.0 304.35 0.53
156.9 307.11 0.55
162.0 304.95 0.84
166.0 299.60 0.80
170.9 291.57 0.97

Table A.15: The Nτ = 16 light quark connected chiral susceptibility as defined in Sec. 3.5.
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