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Abstract

Recently, sparse coding methods have been widely in the area of atten-
tion due to their notable benefits to data driven applications such as clas-
sification, clustering and information retrieval [1, 2, 3]. A typical sparse
coding model tries to approximate input signals y as y = Dx using the
learned dictionary D and a sparse vector x. It provides a sparse model
for the data which can capture the important (primitive) characteristics
of the dataset. Also, constructing the sparse coding framework in a non-
negative way can lead to more understandable models of the data [4, 5].
Therefore, an interesting area of application is to use sparse coding for
motion datasets such as human activity to achieve a sparse meaningful
model for it.

A typical challenge for human motion data is their non-vectorial and
high-dimensional representation, however as a solution using alignment
techniques such as DTW [6, 7] let us transfer the data to the kernel space
by calculating their pairwise similarities. Although there are various ker-
nel based sparse coding frameworks which use kernel representation of
the dataset [2, 8, 9]; there are two important aspects to consider while
modeling the motion data:
1-How meaningful the learned model is regarding the original data.
2-How to efficiently deal with different dimensions of the data.
For researchers in the area of Human Activity Analysis it is important
to obtain models which can still be interpretable regarding its compo-
nents, so that they can apply their higher level analysis afterwards. For
example a model for walking examples is desirable to present meaningful
characteristics of walking motion.

To that aim we have designed a specific sparse coding framework which
uses the kernel representation of the motion data in order to produce a
non-negative representation of the dataset [10]. We demonstrate that in
that framework different human activities can be modeled using motion
primitives constructed from similar types of motions.

Our other framework is a feature based sparse coding designed to take
into account the dimension aspect of the motions using multi-manifold
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representation [11]. It finds an efficient model through various combi-
nations of available dimensions in the human motion such as assigning
importance weights to different joints of the body. This representation is
able to provide more interpretable model of human activity regarding its
internal components of the motion, and also can achieve better classifica-
tion on retrieval performance. Moreover, we can demonstrate that having
such a model can make it possible partially recognize unseen categories of
activities.
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