

Task-Driven Sparse Coding for Classification of Motion Data

Babak Hosseini, Barbara Hammer

24. July. 2017

Bielefeld University Cognitive Interaction Technology - Centre of Excellence

Sparse coding

• Sparse coding:

- Providing a sparse representation of data
- Y: Matrix of data vectors (columns)
- D: a matrix of basic primitives (Dictionary)
- X: Matrix of the Coefficient Vector
- Sparsity constraints/objectives
 - 1-norm, cardinality, etc

 $\min_{X,D} \quad \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2$ s.t $\|\vec{X}_i\|_0 \le T, \forall i = 1...N.$

- Sparse coding → Classification:
 - Classifier on top of sparse representation (X)
 - SVM
 - Linear/nonlinear classifier
 - nonlinear feature mapping

 $\min_{X,D} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2$ s.t $\|\vec{X}_i\|_0 \le T, \forall i = 1...N.$

- Sparse coding → Classification:
 - Classifier on top of sparse representation (X)
 - SVM
 - Linear/nonlinear classifier
 - nonlinear feature mapping

 $\min_{X,D} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2$ s.t $\|\vec{X}_i\|_0 \le T, \forall i = 1...N.$

Sparse coding → Classification:

- Classifier on top of sparse representation (X)
 - SVM
 - Linear/nonlinear classifier

- Augmenting the classifier to the main optimization:
- *f*: Classifier function/objective

 $\min_{X,D} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2$ s.t $\|\vec{X}_i\|_0 \le T, \forall i = 1...N.$

$$\min_{\mathbf{X}, \mathbf{W}, \mathbf{D}} \frac{\|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2}{\text{s.t} \quad \|\mathbf{x}_i\|_0 \le T}$$

• Task Driven dictionary learning

- Bi-level optimization
- Coupled

• Task Driven dictionary learning

- If X^{*} is closed-form solution based on D
- Augmenting {X,D} relationship into the 2nd optimization

• Task Driven dictionary learning

- If X^{*} is closed-form solution based on D
- Augmenting {X,D} relationship into the 2nd optimization
- Optimizing D based on the classification task

Task driven framework

- Task-driven sparse coding:
- Each x_i^* use a different D_{I_i}
 - I_i : selected columns of D to reconstruct y_i
- Each x_i^* would result in a different $g_i(D_{I_i}, W)$
- $g(D, W) = \sum g_i(D_{I_i}, W)$
- !! Not a single structure
- Solution: Stochastic GD methods

$$\nabla_D g_i = \frac{\partial g_i}{\partial x_i} \frac{\partial x_i}{\partial D}$$

$$abla_D g \approx \sum_i
abla_D g_i$$
 Batch Optimization

 $X^* = \arg\min_X f(X, D)$

$$\{W^*,D^*\} = \arg\min_{W,D}\,g(D,W)$$

Task driven framework

- Alternating Optimization:
- Solving wrt. X*, D*, W* in a sequence in a loop

 $X^* = \arg\min_X f(X, D)$

$$\{W^*, D^*\} = \arg\min_{W, D} g(D, W)$$

Our task-driven framework

- Task Driven Kernel Sparse Coding:
 - Kernel space
 - $\Phi^*(D) = \Phi(Y) * A$
 - $A \in \mathbb{R}^{N \times k}$ in the input space

 $\min_{\mathbf{X}} \| \Phi(\mathbf{Y}) - \Phi(\mathbf{Y}) \mathbf{A} \mathbf{X} \|_{F}^{2}$ s.t $\mathbf{x}_{ij} \ge 0, \quad \| \mathbf{x}_{i} \|_{0} \le T$

- None-Negative framework
 - {*X*,*A*} are positive → interpretability
- Linear classifier
 - H: training labels

$$\min_{\mathbf{W},\mathbf{A}} \|\mathbf{H} - \mathbf{W}\mathbf{X}\|_F^2 + \lambda \|\mathbf{W}\|_F^2$$

s.t $\mathbf{a}_{ij} \ge 0$, $\|\mathbf{a}_i\|_2 = 1$

Task Driven K-Sparse Coding

- Derivations:
 - nnKOMP solution :

$$x_i^* = (A_I^\top \mathcal{K} A_I)^{-1} (\mathcal{K}_{y_i} A_I)$$

- I: selected columns from A
- Calculating $\nabla_A(\|h_i \mathbf{W}x_i\|_2^2)$:

$$= 2[(x_i\rho)^\top + x_i\rho - (x_is)^\top - (x_is)]l + 2[\mathcal{K}_{y_i}s - \mathcal{K}_{y_i}\rho]^\top$$
$$s = [(\mathbf{A}_I^\top \mathcal{K} \mathbf{A}_I)^{-1} \mathbf{W} \mathbf{W}^\top x_i]^\top$$
$$\rho = h_i^\top \mathbf{W} (\mathbf{A}_I^\top \mathcal{K} \mathbf{A}_I)^{-1}$$

 $\min_{\mathbf{X}_{i}} \| \boldsymbol{\Phi}(\mathbf{Y}_{i}) - \boldsymbol{\Phi}(\mathbf{Y}) \mathbf{A} \mathbf{X}_{i} \|_{2}^{2}$ s.t $\mathbf{X}_{i} \ge 0, \quad \| \mathbf{X}_{i} \|_{0} \le T$

Task Driven K-Sparse Coding

- Task Driven Algorithm:
- Loop till convergence:
 - Finding X*: None-negative kernel OMP
 - Finding A*: stochastic projected gradient descent
 - Finding W*: linear programing (ridge regression)

 $\min_{\mathbf{X}} \| \boldsymbol{\Phi}(\mathbf{Y}) - \boldsymbol{\Phi}(\mathbf{Y}) \mathbf{A} \mathbf{X} \|_{F}^{2}$ s.t $\mathbf{x}_{ij} \ge 0, \quad \| \mathbf{x}_{i} \|_{0} \le T$

 $\min_{\mathbf{W},\mathbf{A}} \frac{\|\mathbf{H} - \mathbf{W}\mathbf{X}\|_F^2 + \lambda \|\mathbf{W}\|_F^2}{\text{s.t} \quad \mathbf{a}_{ij} \ge 0, \quad \|\mathbf{a}_i\|_2 = 1}$

Application

- Motion data classification:
 - Multi-dimension Time-series
 - Kernel matrix:
 - Pair-wise similarity between the motions $\{y_i, y_j\}$
 - Using DTW distance

Experiments

• Results:

	CMU		Cricket Signals		Articulatory Words		Squat	
	Acc	Rec. Err	Acc	Rec. Err	Acc	Rec. Err	Acc	Rec. Err
Task-KSC	93.17	5.72	86.6	10.2	98.88	10.5	100	1.02
LC-NNKSC	90.91	4.17	83.33	11.07	97.33	14.52	95	0.14
LC-KKSVD	86.36	7.44	83.33	10.1	97.33	7.8	85	3.4
NNKSC + SVM	82.12	2.26	80.74	7.3	95.28	5.3	85	1.8
K-Means+SVM	68	_	56.25	_	90	_	81	_
Affinity P.	90.1	_	68.75	_	92	—	100	_
K-PCA+SVM	50	_	56.25	_	60.66	_	37	_
kNN	86.36		79.16	_	96.66	_	100	_

Conclusion and Future works

- Summary
- Task-driven framework orients sparse coding towards the *classification* objective.
- The *none-negative* sparse representation improves classification performance.
- Non-negative kernel framework provides an *interpretable* model while classifying the data.

• Future works:

- Feature based classifier via an additional parameter
- Online version of the problem
- − Enhancing the optimization strategy → Speed, Robustness

• Thank you very much!