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ABSTRACT. We present a well-posedness and stability result for a class of nondegenerate
linear parabolic equations driven by rough paths. More precisely, we introduce a notion of
weak solution that satisfies an intrinsic formulation of the equation in a suitable Sobolev
space of negative order. Weak solutions are then shown to satisfy the corresponding en-
ergy estimates which are deduced directly from the equation. Existence is obtained by
showing compactness of a suitable sequence of approximate solutions whereas unique-
ness relies on a doubling of variables argument and a careful analysis of the passage to
the diagonal. Our result is optimal in the sense that the assumptions on the deterministic
part of the equation as well as the initial condition are the same as in the classical PDEs
theory.
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1. INTRODUCTION

The so-called variational approach, also known as the energy method, belongs among
the most versatile tools in the theory of partial differential equations (PDEs). It is espe-
cially useful for nonlinear problems with complicated structure which do not permit the
use of (semi-) linear methods such as semigroup arguments, e.g. systems of conservation
laws or equations appearing in fluid dynamics. In such cases, solutions are often known or
expected to develop singularities in finite time. Therefore, weak (or variational) solutions
which can accommodate these singularities provide a suitable framework for studying
the behavior of the system in the long run. But even for linear or semi-linear problems,
weak solutions are the natural notion of solution in cases where a corresponding mild
formulation is not available, for instance due to low regularity of coefficients.

The construction of weak solutions via the energy method relies on basic a priori esti-
mates which can be directly deduced from the equation at hand by considering a suitable
test function. The equation is then satisfied in a weak sense, that is, as an equality in cer-
tain space of distributions. Within this framework, existence and uniqueness are usually
established by separate arguments. The proof of existence often uses compactness of a
sequence of approximate solutions. Uniqueness for weak solutions is much more delicate
and in some cases even not known. Let us for instance mention problems appearing in
fluid dynamics where the questions of uniqueness and regularity of weak solutions remain
largely open.

It has been long recognized that addition of stochastic terms to the basic governing
equations can be used to model an intrinsic presence of randomness as well as to account
for other numerical, empirical or physical uncertainties. Consequently, the field of sto-
chastic partial differential equations massively gained importance over the past decades.
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It relies on the (martingale based) stochastic Itô integration theory, which gave a prob-
abilistic meaning to problems that are analytically ill-posed due to the low regularity of
trajectories of the driving stochastic processes. Nevertheless, the drawback appearing al-
ready in the context of stochastic differential equations (SDEs) is that the solution map
which assigns a trajectory of the solution to a trajectory of the driving signal, known as
the Itô map, is measurable but in general lacks continuity. This loss of robustness has ob-
vious negative consequences, for instance when dealing with numerical approximations
or in filtering theory.

The theory of rough paths introduced by Lyons [Lyo98] fully overcame the gap be-
tween ordinary and stochastic differential equations and allowed for a pathwise analysis
of SDEs. The highly nontrivial step is lifting the irregular noise to a bigger space in a
robust way such that solutions to SDEs depend continuously on this lifted noise. More
precisely, Lyons singled out the appropriate topology on the space of rough paths which
renders the corresponding Itô–Lyons solution map continuous as a function of a suitably
enhanced driving path. As one of the striking consequences, one can allow initial con-
ditions as well as the coefficients of the equation to be random, even dependent on the
entire future of the driving signals - as opposed to the “arrow of time” and the associated
need for adaptedness within Itô’s theory. In addition, using the rough path theory one
can consider drivers beyond the martingale world such as general Gaussian or Markov
processes, in contrast to Itô’s theory where only semimartingales may be considered.

The rough path theory can be naturally formulated also in infinite dimensions to an-
alyze ODEs in Banach spaces. This generalization is, however, not appropriate for the
understanding of rough PDEs. This is due to two basic facts. First, the notion of rough
path encodes in a fundamental way the nonlinear effects of time varying signals without
any possibility of including signals depending in an irregular way on more parameters.
Second, in an infinite dimensional setting the action of a signal (even finite dimensional)
is typically described by differential or more generally unbounded operators. Due to these
difficulties, attempts at application of the rough path theory in the study rough PDEs have
been limited. Namely, it was necessary to avoid unbounded operators by working with
mild formulations or Feynman–Kac formulas or transforming the equation in order to ab-
sorb the rough dependence into better understood objects such as flow of characteristic
curves.

These requirements pose strong limitations on the kind of results one is able to obtain
and the proof strategies are very different from classical PDE methods. The most suc-
cessful approaches to rough PDEs do not even allow to characterize solutions directly but
only via a transformation to a more standard PDE problem. However, there has been an
enormous research activity in the field of rough path driven PDEs lately and the litera-
ture is growing very fast. To name at least a few results relevant for our discussion, we
refer the reader to the works by Friz et al. [CF09, CFO11] where flow transformations
were applied to fully nonlinear rough PDEs. A mild formulation was at the core of many
other works, see for instance Deya–Gubinelli–Tindel [DGT12, GT10] for a semigroup
approach to semilinear evolution equations; Gubinelli–Imkeller–Perkowski [GIP15] for
the theory of paracontrolled distributions and Hairer [Hai14] for the theory of regularity
structures dealing with singular SPDEs.

At this stage, the rough path theory has reached certain level of maturity and it is natural
to ask whether one could find rough path analogues to standard PDEs techniques. From
this point of view various authors started to develop intrinsic formulations of rough PDEs
which involve relations between certain distributions associated to the unknown and the
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driving rough path. Let us mention the work of Gubinelli–Tindel–Torrecilla [GTT14]
on viscosity solutions to fully nonlinear rough PDEs, that of Catellier [Cat15] on rough
transport equations, Diehl–Friz–Stannat [DFS14] for results based on Feynmann–Kac
formula. Finally, Bailleul–Gubinelli [BG15] studied rough transport equations and Deya–
Gubinelli–Hofmanová–Tindel [DGHT16a] conservation laws driven by rough paths.

The last two works laid the foundation for the variational approach to rough PDEs:
they introduced a priori estimates for rough PDEs based on a new rough Gronwall lemma
argument. Consequently, it was possible to derive bounds on various norms of the solution
and obtain existence and uniqueness results bypassing the use of the flow transformation
or mild formulations. In addition, these techniques were used [DGHT16b] in order to
establish uniqueness for reflected rough differential equations, a problem which remained
open in the literature as a suitable Gronwall lemma in the context of rough path was
missing.

In the present paper, we pursue the line of research initiated in [BG15, DGHT16a]. Our
goal is to develop a variational approach to a class of linear parabolic rough PDEs with
possibly discontinuous coefficients. To be more precise, we study existence, uniqueness
and stability for rough PDEs of the form{

du− A(t, x)u dt =
(
σki(x)∂iu+ νk(x)u

)
dZk , on R+ × Rd ,

u(0) = u0 ,
(1.1)

where Z ≡ ((Zk)0≤k≤K , (Z`,k)1≤`,k≤K) is a geometric rough path of finite 1/α−variation,
with α ∈ (1/3, 1/2]. Here and below a summation convention over repeated indexes is
used. Regarding the assumptions on the deterministic part of (1.1), we consider an elliptic
operator A in divergence form, namely,

A(t, x)u = ∂i
(
aij(t, x)∂ju

)
+ bi(t, x)∂iu+ c(t, x)u. (1.2)

The coefficents a = (aij)1≤i,j≤d, b = (bi)1≤i≤d, c are possibly discontinous. More pre-
cisely, we assume that a is symmetric and fulfills a uniform ellipticity condition (see
Assumption 2.1). Moreover integrability conditions depending on the dimension d of
Rd are assumed for b, c (see Assumption 2.2). The coefficients in the noise term σ =
(σki)1≤k≤K,1≤i≤d and ν = (νk)1≤k≤K possess W 3,∞ and W 2,∞ regularity, respectively.
The initial condition u0 belongs to L2.

One can easily see that the above mentioned available approaches to rough PDEs (mild
formulation, flow transformation, Feynman–Kac formula) do not apply in this setting.
Let us stress that our assumptions on the deterministic part of (1.1) coincide with the
classical (deterministic) theory as presented for instance in the book by Ladyzhenskaya,
Solonnikov and Ural’tseva [LSU68]. Consequently, there is no doubt that the very natural
way to establish existence and uniqueness is the energy method. For completeness, let us
mention that problems similar to (1.1) were studied in [CF09, DFS14] (note however that
both these references concern equations written in non-divergence form). In comparison
to these results, the energy method has clear advantages in several aspects. First, it allows
to significantly weaken the required regularity of the coefficients and initial datum. Fur-
thermore, the method does not rely on linearity and thus represents the natural starting
point towards more general nonlinear problems.

More precisely, the (unique) solution constructed in [CF09] was obtained as a trans-
formation of a classical solution to a certain deterministic equation. For that reason, the
coefficients a, b needed to be of class C2

b with respect to the space variable and the initial
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condition had the same regularity, whereas the coefficient σ belonged to Lipγ for some
γ > 1

α
+ 3 (note that c = 0, ν = 0 in [CF09]). Besides, the equation was solved in a

limiting sense only: a solution is defined as a limit point of classical solutions to the PDE
obtained by replacing the driving rough path Z by its smooth approximation. Uniqueness
then corresponded to the fact that there was at most one limit point. We point out that
our notion of uniqueness based on an intrinsic formulation of the equation (see Definition
2.2) is stronger as it compares solutions regardless of the way they were constructed.

In the paper [DFS14], an intrinsic weak formulation of an equation of the form (1.1)
was introduced and existence of a unique weak solution proved. The approach was based
on the Feynman–Kac formula and therefore the equation was solved backward in time.
The result required a, σ ∈ C3

b , b, c ∈ C1
b , ν ∈ C2

b and the terminal condition in C0
b .

Uniqueness was obtained in the class of continuous and bounded weak solutions.

In order to conclude this introductory part, let us be more precise about our approach
and results. We recall that, at a heuristic level, the entries of the geometric rough path
Z ≡ (Z,Z) mimic the first and second order iterated integralsˆ t

s

dZr and
ˆ t

s

ˆ r

s

dZr′ ⊗ dZr,

respectively. Consequently, it is natural to iterate the equation in order to obtain a gen-
eralization of Davie’s [Dav07] interpretation of rough differential equations. Namely, we
formulate the above equation as

ut − us =

ˆ t

s

A(r)ur dr + Zk
st

(
σki∂i + νk

)
us

+ Zk`st
(
σki∂i + νk

)(
σ`j∂j + ν`

)
us + o(t− s), 0 ≤ s ≤ t ≤ T.

(1.3)

The equation (1.3) will be solved in a suitable Sobolev space of negative order. Corre-
spondingly, the smallness of the remainder has to be understood in distributional sense as
well. Intuitively, a function u ∈ C([0, T ];L2) ∩ L2(0, T ;W 1,2) is called a weak solution
to (1.1) provided (1.3) holds true as an equality in W−3,2. We remark that the corre-
sponding functional setting is similar to the classical theory, i.e. we recognize the usual
energy space C([0, T ];L2)∩L2(0, T ;W 1,2) where weak solutions live. Nevertheless, the
regularity required from the test functions is higher (W 3,2 contrary to W 1,2 in the clas-
sical theory). This is a consequence of the low regularity of the driving signal and the
consequent need for a higher order expansion.

The first challenge is to derive the corresponding energy estimates leading to the proof
of existence. In view of the formulation (1.3), it is clear that the main difficulty is to
estimate the remainder term. Indeed, all the other terms in the equation are explicit and
can be easily estimated. However, the only information available on the remainder is
the equation (1.3) itself. In fact, the definition of a weak solution is to be understood as
follows: u is a weak solution to (1.1) provided the 2-index map given by

u\st := ut − us −
ˆ t

s

A(r)ur dr − Zk
st

(
σki∂i + νk

)
us − Zk`st

(
σki∂i + νk

)(
σ`j∂j + ν`

)
us

has finite (1−κ)-variation, for some κ ∈ (0, 1), as a mapping with values inW−3,2. It was
observed in [BG15, DGHT16a] that there is a trade-off between space and time regularity
and a suitable interpolation argument can be used in order to establish sufficient time
regularity of the remainder estimated in terms of the energy norm. This is the core of the
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so-called rough Gronwall lemma argument which in turn yields the desired energy bound
for the solution.

We point out that in view of the required regularity of test functions for (1.3), it is
remarkable that uniqueness in the class of weak solutions can be established. Indeed, this
task requires to test the equation by the weak solution itself and it is immediately seen that
theW 3,2-regularity is far from being satisfied. Nevertheless, as in [BG15, DGHT16a], it is
possible perform a tensorization argument which corresponds to the doubling of variables
technique known in the context of conservation laws: one considers the equation satisfied
by the product ut(x)ut(y) and tested by a mollifier sequence ε−dψ(x−y

ε
). The core of the

proof is then to derive estimates uniform in ε in order to be able to pass to the diagonal
x = y, i.e. to send ε→ 0. Once this is done, one obtains the equation for u2 and proceeds
similarly as in the existence part to derive the energy estimate.

Nevertheless, there is a major difference between the derivation of the energy estimates
in the existence part and in the proof of uniqueness. Namely, in order to establish a priori
estimates needed for existence, one works on the level of sufficiently smooth approxi-
mations. This can be done e.g. by mollifying the driving signal and using classical PDE
theory. Consequently, deriving the evolution of u2 is not an issue and can be easily jus-
tified. On the other hand, within the proof of uniqueness, the only available regularity is
that of weak solutions and the most delicate part is thus to show that u2 satisfies the right
equation.

As discussed above, an important advantage of the rough path theory, as opposed to the
stochastic integration theory, is the continuity of the solution map in appropriate topolo-
gies. Also in our setting, we obtain the following Wong-Zakai type result which follows
immediately from our construction. Let (Zε) be a sequence of smooth paths whose canon-
ical lifts Zε ≡ (Zε,Zε) approximate Z ≡ (Z,Z) in the rough path sense. Let uε be the
weak solution of (1.1) driven by Zε obtained by classical arguments. Then we show that
uε converges in L2(0, T ;L2

loc) to u, which is a solution to (1.1) driven by Z.

Outline of the paper. In Section 2, we introduce the main concepts and notations that
we use throughout the article, and we state our main results, Theorem 1 and Theorem
2. Section 3 is devoted to the presentation of the main tools necessary to obtain a priori
estimates for rough PDEs. The so-called energy inequality, appears at the core of our
variational approach. It arises as a consequence of the a priori estimates, Proposition 3.1,
applied to the remainder term in the equation governing the evolution of the square of the
solution. This is discussed in Section 4. In Section 5 we introduce the above mentioned
tensorization argument, which is required in the proof of uniqueness. We present it in a
rather general way, motivating the particular choice of function spaces. The uniqueness
part, which is treated in Section 6, is the most delicate part of our proof. Finally, the proof
of existence as well as stability is presented in Section 7. Several auxiliary results are
collected in the Appendix.

2. PRELIMINARIES

2.1. Notation. We will denote by N0 the set of all non-negative integers, that is N0 :=
{0, 1, 2, . . . }. Let us recall the definition of the increment operator, denoted by δ. If g is a
path defined on [0, T ] and s, t ∈ [0, T ] then δgst := gt − gs, if g is a 2-index map defined
on [0, T ]2 then δgsθt := gst−gsθ−gθt. For a fixed closed time interval I ⊂ R+, we denote
by ∆,∆2 the simplexes

∆ = ∆I := {(s, t) ∈ I2 , s ≤ t} , ∆2 = ∆2
I := {(s, θ, t) ∈ I3 , s ≤ u ≤ t} . (2.1)
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We call control on I any superadditive map ω : ∆ → R+, that is, for all (s, θ, t) ∈ ∆2

there holds
ω(s, θ) + ω(θ, t) ≤ ω(s, t).

We say that ω is regular provided it vanishes continuously on the diagonal {s = t}.Given
a Banach space E equipped with a norm | · |E , and a > 0, we denote by V 1/a

1 (I;E) the
set of paths g : I → E admitting left and right limits with respect to each of the variables,
and such that there exists a regular control ω : ∆→ R+ with

|δgst|E ≤ ω(s, t)a ,

for every (s, t) ∈ ∆. Similarly, we denote by V 1/a
2 (I;E) the set of 2-index maps g : ∆→

E such that gtt = 0 for every t ∈ I and

|gst|E ≤ ω(s, t)a ,

for all (s, t) ∈ ∆, and some regular control ω. Note that g ∈ V
1/a

1 (I;E) if and only if
δg ∈ V 1/a

2 (I;E). The corresponding semi-norm in V 1/a
2 (I;E) is given by

|g|1/a−var;I;E :=

 sup
p≡(ti)∈P(I)

∑
(p)

|gtiti+1
|1/aE

a

, (2.2)

where

P(I) :=
{
p ⊂ I : ∃l ≥ 2, p = {t1 = inf I < t1 < · · · < tl = sup I}

}
is the set of partitions of I, and where, throughout the paper, we use the notational con-
vention: ∑

(p)

htiti+1

def
=

∑#p−1

i=1
htiti+1

(2.3)

for any 2-index element h. By V 1/a
2,loc(I;E) we denote the space of maps g : ∆→ E such

that there exists a countable covering {Ik}k of I satisfying g ∈ V 1/a
2 (Ik;E) for any k. We

also define the set V 1−
2 (I;E) of negligible remainders as

V 1−
2 (I;E) :=

⋃
a>1

V
1/a

2 (I;E),

and similarly for V 1−
2,loc(I;E).

Furthermore, we denote by AC(I;E) ⊂ V 1
1 (I;E) the set of absolutely continuous

functions, that is: f ∈ AC(I;E) if and only if for every ε > 0 there exists δ > 0 such that
for every non-overlapping family (s1, t1), . . . , (sn, tn) ⊂ I with

∑
(ti − si) < δ, then∑

1≤i≤n

|δfsiti|E < ε .

Given α ∈ (1/3, 1/2] and K ∈ N0, recall that a continuous (K-dimensional) 1/α-
rough path is a pair Z ≡ (Zk,Zk,`)1≤k,`≤K in V 1/α

2 (I;RK)× V 1/(2α)
2 (I;RK×K) such that

Chen’s relations hold, namely:

δZk
sθt = 0 , δZk`sθt = Zk

sθZ
`
θt , for (s, θ, t) ∈ ∆2 , 1 ≤ k, ` ≤ K, (2.4)

and it is called geometric if in addition

Zk` + Z`k = ZkZ` , 1 ≤ k, ` ≤ K . (2.5)
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We refer the reader to the monographs [FV10, FH14] for a thorough introduction to the
rough path theory.

We will consider the usual Lebesgue and Sobolev spaces in the space variable: Lp ≡
Lp(Rd),W k,p ≡ W k,p(Rd), for k ∈ N0, and p ∈ [1,∞], and denote their respective norms
by | · |Lp , | · |Wk,p . The notation ‖ · ‖r,q will be used for the norm in Lr(I;Lq(Rd)), namely:

‖f‖r,q :=

(ˆ
I

(ˆ
Rd
|f(t, x)|q dx

)r/q
dt

)1/r

(note that in contrast to the literature on deterministic PDEs, we write the time variable
first, or with a subscript). To emphasize the domain of time integrability we sometimes
write ‖ · ‖r,q;I . We recall that W k,p

loc (Rd) is the space of functions f such that for every
compact set K ⊂ Rd there holds f |K ∈ W k,p(K).

We also write C(I;E) for the space of continuous function with values in some Banach
space E, endowed with the norm ‖f‖C(I;E) := supr∈I |fr|E.

Given Banach spaces X, Y, we will denote by L(X, Y ) the space of linear, continuous
maps from X to Y, endowed with the operator norm. For f in X∗ := L(X,R), we denote
the dual pairing by

X∗

〈
f, g
〉
X

(i.e. the evaluation of f at g ∈ X). When they are clear from the context, we will simply
omit the underlying spaces and write 〈f, g〉 instead.

2.2. Unbounded rough drivers. In the sequel, we call a scale any sequence
(Gk, · k)k∈N0 of Banach spaces such that Gk+1 is continuously embedded into Gk, for
each k ∈ N0.

For each k ∈ N0, we will also denote by G−k the topological dual of Gk, i.e.

G−k := (Gk)∗ . (2.6)

Except for the case Gk := W k,2, we do not identify G0 with its dual, hence a (minor)
disadvantage of the latter notation is that in general

G0 6= G−0 .

Definition 2.1. For a given α ∈ (1/3, 1/2], a pair of 2-index maps B ≡ (B,B) is called
a continuous unbounded 1/α-rough driver with respect to the scale (Gk)k∈N0 , if
(RD1) Bst ∈ L (G−k,G−k−1) for k ∈ {0, 1, 2}, Bst ∈ L (G−k,G−k−2) for k ∈ {0, 1}, and

there exists a regular control ωB : ∆→ R+ such that[
|Bst|L(G−0,G−1) , |Bst|L(G−2,G−3) ≤ ωB(s, t)α ,

|Bst|L(G−0,G−2) , |Bst|L(G−1,G−3) ≤ ωB(s, t)2α ,
(2.7)

for every (s, t) ∈ ∆.
(RD2) Chen’s relations hold true, namely, for every (s, θ, t) ∈ ∆2 :

δBsθt = 0 , δBsθt = BθtBsθ , (2.8)

as linear operators on G−k, k = 0, 1, 2, resp. k = 0, 1.

We will always understand the driver B in the sense of distributions, namely we assume
that each Gk for k ∈ N0 is canonically embedded into D ′(Rd), and that for u ∈ G−0,
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(s, t) ∈ ∆, the element Bstu (resp. Bstu) is defined as the linear the functional on G1

(resp. G2) given by

〈Bstu, φ〉 = 〈u,B∗stφ〉 , ∀φ ∈ G1 ,

resp. 〈Bstu, ψ〉 = 〈u,B∗stφ〉 , ∀φ ∈ G2 .

In the context of (1.1) we letB∗stφ := Zk
st

(
−∂i(σkiφ) + νkφ

)
,

B∗stφ := Zk`st
(
∂j(σ

`j∂i(σ
kiφ))− ∂j(σ`jνkφ)− ν`∂i(σkiφ) + ν`νkφ

) (2.9)

for a.e. x ∈ Rd and every φ ∈ W 2,∞, assuming that the coefficents σ, ν are regular enough
(see the assumption (2.18) below).

2.3. Assumptions on the coefficients and the main result. Throughout the paper, we
assume that the coefficient a = (aij)1≤i,j≤d corresponding to the highest order terms in A
is measurable and such that the following holds.

Assumption 2.1 (Uniform ellipticity condition). The matrix (aij(t, x))1≤i,j≤d is symmet-
ric, and there exist constants M,m > 0 such that for a.e. (t, x) :

m
d∑
i=1

ξ2
i ≤

∑
1≤i,j≤d

aij(t, x)ξiξj ≤M
d∑
i=1

ξ2
i , ξ ∈ Rd . (2.10)

We also need assumptions on integrability of the coefficients b and c, depending on the
spatial dimension d ∈ N.

Assumption 2.2. We assume

b ∈ L2r
(
I;L2q(Rd;Rd)

)
and c ∈ Lr

(
I;Lq(Rd;R)

)
, (2.11)

where the numbers r ∈ [1,∞) and q ∈ (max(1, d
2
),∞) are such that

1

r
+

d

2q
≤ 1 . (2.12)

The reason for these restrictions will appear in the use of the following interpolation
inequality.

Proposition 2.1. For every f in the space L∞(I;L2) ∩ L2(I;W 1,2), then f belongs to
Lρ(I;Lκ) for every ρ, κ such that

1

ρ
+

d

2κ
≥ d

4
and

 ρ ∈ [2,∞] , κ ∈ [2, 2d
d−2

] for d > 2

ρ ∈ (2,∞] , κ ∈ [2,∞) for d = 2

ρ ∈ [4,∞] , κ ∈ [2,∞] for d = 1 .

(2.13)

In addition, there exists a constant β > 0 (not depending on f in the above space) such
that

‖f‖Lρ(I;Lκ) ≤ β‖f‖L∞(I;L2)∩L2(I;W 1,2) ≡ β

(
‖∇f‖L2(I;L2) + ess sup

r∈I
|fr|L2

)
. (2.14)

Proof. The proof relies on the complex interpolation (see [Lun09])

LρLκ = [L∞L2, L2Lp]θ , (2.15)
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for θ := 2
ρ

and p := 2(1 + ρ( 1
κ
− 1

2
))−1. Then, thanks to Young Inequality, write

‖f‖LρLκ ≤ C‖f‖1−2/ρ

L∞L2‖f‖2/ρ

L2Lp ≤ C ′ (‖f‖L∞L2 + ‖f‖L2Lp) ,

and (2.14) follows from the Sobolev embedding theorem. For instance when d > 2, we
have W 1,2(Rd) ↪→ Lp(Rd) if

2 ≤ p ≡ 2

1− ρ(1
2
− 1

κ
)
≤ 2d

d− 2
, (2.16)

but from 1
ρ

+ d
2κ
≥ d

4
, it holds ρ ≤ 2

d
(1

2
− 1

κ
)−1, and thus p ≤ 2/(1 − 2

d
) ≡ 2d

d−2
, and

since p ≥ 2, it implies (2.16). The cases d = 1, 2 are left to the reader. For a proof under
the stronger assumption that 1

ρ
+ d

2κ
= d

4
, we refer to Theorem 2.2 in [LSU68, Chap. II

(3.4)]. �

As an immediate consequence of Proposition 2.1, we have the following. Let r and q
be as in (2.12) and let u in B. It is easily seen that (2.12) implies (2.13) for the exponents
ρ := 2r

r−1
and κ := 2q

q−1
. Hence, for some universal constant β ≡ β(r, q), one has

‖u‖ 2r
r−1

, 2q
q−1
≤ β‖u‖B . (2.17)

Concerning the coefficients of the driver, we assume the following.

Assumption 2.3. The coefficients σ, ν are such that

σ ∈ W 3,∞(Rd,Rd×K) and ν ∈ W 2,∞(Rd,RK) . (2.18)

Throughout the paper, we will extensively make use of the following scales[
W k,2(Rd) , · k,(2) := | · |Wk,2 ,

W k,∞(Rd) , · k,(∞) := | · |Wk,∞ ,
(2.19)

for k ∈ N0, and their corresponding negative-exponent counterparts as in (2.6) (note that
usually Sobolev spaces of negative order are defined by the relationW−k,p =

(
W k,p/(p−1)

)∗
,

except when p = 1,∞). Owing to Leibniz rule, it is seen that for a.e. x in Rd and every
(s, t) in ∆ :

|∇kB∗stφ| ≤ ωZ(s, t)α (|σ|Wk+1,∞ + |ν|Wk,∞)
∑

0≤`≤k+1

|∇`φ| , k = 0, 1, 2 ,

whereas

|∇kB∗stφ| ≤ ωZ(s, t)2α (|σ|Wk+2,∞ + |ν|Wk+1,∞)
∑

0≤`≤k+2

|∇`φ| , k = 0, 1 .

The driver B = (B,B) defined in (2.9) fulfills the properties of Definition 2.1, namely[
B is an 1/α-unbounded rough driver, with respect to

each of the scales (W k,2)k≥0 and (W k,∞)k≥0.
(2.20)

Moreover, we can set

ωB(s, t) := C (|σ|W 3,∞ , |ν|W 2,∞)ωZ(s, t) (2.21)

for a constant depending on the indicated quantities.
We now need a suitable notion of solution for the problem (1.1). The following defini-

tion corresponds to that given in [BG15] (see also [DFS14]).
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Definition 2.2. Let T > 0, I := [0, T ] and α ∈ (1/3, 1/2]. Let B = (B,B) be a
continuous 1/α-unbounded rough driver with respect to a given scale (Gk)k∈N0 , and let
µ ≡ µt be a path of finite variation in G−1.

A continuous path g : I → G−0 is called a weak solution to the rough PDE

dg = dµ+ dBg (2.22)

on I × Rd, with respect to the scale (Gk)k∈N0 , if for every φ ∈ G3, and every (s, t) ∈ ∆,
there holds

〈δgst, φ〉 = 〈δµst, φ〉+ 〈gs, B∗stφ〉+ 〈gs,B∗stφ〉+ 〈g\st, φ〉 , (2.23)

for some g\ ∈ V 1−
2,loc(I;G−3).

We have now all in hand to state our main results.

Theorem 1. Fix T > 0, I := [0, T ], assume that u0 ∈ L2, and consider coefficients
a, b, c, σ, ν such that Assumptions 2.1-2.2-2.3 hold. There exists a unique weak solution u
to (2.22) in the sense of Definition 2.2 such that

u ∈ B0,T := C(I;L2) ∩ L2(I;W 1,2) . (2.24)

In addition the following Itô formula holds for the square of u:

〈δu2
st, φ〉 = 2

ˆ t

s

〈Au, uφ〉 dr + 〈u2
s, B̂

∗
stφ〉+ 〈u2

s, B̂∗stφ〉+ 〈u2,\
st , φ〉 , (2.25)

for every φ in W 3,∞ and (s, t) in ∆, where B̂ is the unbounded rough driver obtained by
replacing ν by ν̂ := 2ν in (2.9), and where the remainder u2,\ belongs to V 1−

2,loc(I; (W 3,∞)∗).
Finally the B-norm of u is estimated as

‖u‖B0,T
≤ C

(
α, T,m,M, ‖b‖2r,2q, ‖c‖r,q, ωZ , |σ|W 3,∞ , |ν|W 2,∞

)
|u0|L2 , (2.26)

for a constant depending on the indicated quantities.

Theorem 2. Under the conditions of Theorem 1, let Pm,M be defined as those coefficents
aij ∈ L∞(I ×Rd) such that Assumption 2.1 holds, and let C α

g be the space of continuous
geometric rough paths of finite 1/α-variation. The solution map
S : L2 × Pm,M × L2rL2q × LrLq ×W 3,∞ ×W 2,∞ × C α

g −→ C
(
I;W−1,2

loc

)
∩ L2(I;L2

loc)

(u0, a, b, c, σ, ν,Z) 7−→ S(u0, a, b, c, σ, ν,Z) :=

{
the solution given
by Theorem 1

(2.27)
is continuous.

Remark 2.1. Note that by interpolation it follows from (2.26) and (2.27) that the solution
map is continuous in Lκ(I;W γ,2

loc ) whenever γ = θ − (1 − θ) and κ ≤ 2/θ for some
θ ∈ (0, 1).

Remark 2.2. The map u ≡ ut(x) given by Theorem 1 solves du = Au dt + dBu in the
sense that for every φ in W 3,2 and all (s, t) in ∆, it holds

〈δust, φ〉 =

ˆ t

s

〈Au, φ〉 dr +

ˆ t

s

〈(σ · ∇+ ν)u, φ〉 dZ , (2.28)

where the latter makes sense as a rough integral – note that, as a by-product of Proposition
3.1 below, we have that for each 1 ≤ ` ≤ K the path t 7→ 〈(σ` ·∇+ν`)ut, φ〉 is controlled
by (Zk)1≤k≤K with Gubinelli derivative t 7→

〈
(σ` ·∇+ν`)(σk ·∇+νk)ut, φ

〉
, 1 ≤ k ≤ K.
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Remark 2.3 (the case of time-dependent coefficents). It is possible to assume that σ, ν are
coefficients depending on space and time, in such a way that the path t 7→ σt ≡ σ(t, ·) is
controlled by Z in a suitable sense (and similarly for ν), provided one shows counterparts
of Propositions 6.1 and 6.2.

Letting V := W 3,∞(Rd;Rd×K), and assuming for simplicity that ν = 0, consider a
V -valued path σ = σt(x) ∈ Cα([0, T ];V ) controlled by Z, in the sense that there is some
(σ′)kt (x) in Cα([0, T ];V K) such that(

(s, t) ∈ ∆ 7→ σs − (σ′s)
kZk

st

)
belongs to V

1/(2α)
2 ([0, T ];V ) .

We can then define the driver B as the 2-index family of unbounded operators given for
ϕ in W 1,2 by

Bstϕ :=

ˆ t

s

σk · ∇ϕ dZk = lim
|p|→0

p∈P([s,t])

∑
(p)

σkti · ∇ϕZ
k
titi+1

+ (σ′)k`ti · ∇ϕZ
k`
titi+1

,

where we take the limit in the space W−1,2, and make use of the summation convention
(2.3). The second part of the driver is then defined as the iterated rough integral

Bstϕ :=

ˆ t

s

Bs,r dBr(ϕ) = lim
|p|→0

p∈P([s,t])

∑
(p)

BstiBtiti+1
ϕ+ σkti · ∇

(
σ`ti · ∇ϕ

)
Zk`titi+1

,

for ϕ in W 2,2, where it can be easily checked that the former limit makes sense as an
element of W−3,2.

With this definition at hand, it is a simple exercise to check that
• B ≡ (B,B) is an 1/α-unbounded rough driver on the scale (W k,2)k∈N0 ;
• any weak solution of the equation “du = Au dt+dBu” (in the sense of Definition

2.2), is is such that that the integral equation (2.28) is fulfilled.

3. ANALYSIS OF ROUGH PARTIAL DIFFERENTIAL EQUATIONS

In this section, we introduce the basic tools necessary for the study of rough PDEs of the
form (2.22), namely, the rough Gronwall Lemma and an a priori estimate on the remainder
in (2.23). The results were originally introduced in [BG15, DGHT16a] where we also
refer the reader for a more detailed introduction. The statements we present below are
slightly different than in [BG15, DGHT16a] and hence for readers convenience we also
include the proofs. These tools represent the core of our analysis and will be repeatedly
used in order to obtain a priori estimates leading to existence as well as uniqueness of
weak solutions.

3.1. Rough Gronwall Lemma. An important ingredient in order to obtain uniform esti-
mates on weak solutions of (1.1) is the following generalized Gronwall-like estimate.

Lemma 3.1 (Rough Gronwall). Let G : I ≡ [0, T ] → [0,∞) be a path such that there
exist constants L > 0, κ ≥ 1, a regular control ω, and a superadditive map ϕ with:

δGst ≤
(

sup
s≤r≤t

Gr

)
ω(s, t)1/κ + ϕ(s, t) , (3.1)

for every (s, t) ∈ ∆ satisfying ω(s, t) ≤ L. Then

sup
0≤t≤T

Gt ≤ exp

(
ω(0, T )

αL

)[
G0 + sup

0≤t≤T
|ϕ(0, t)| exp

(
−ω(0, t)

αL

)]
(3.2)
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where α := 1 ∧ L−1(2e2)−κ.

Remark 3.1. A proof under slightly different hypotheses can be found in [DGHT16a].
Note that here we allow for ϕ which has no sign. This may be relevant in the context of
stochasic PDEs, where typically relations such as (3.1) may involve ϕ(s, t) := Mt −Ms,
the increments of a martingale M.

Proof. Define K to be the largest integer such that

α(K − 1)L ≤ ω(0, T ) ≤ αKL. (3.3)

Since the control ω is regular, there exists a sequence t0 ≡ 0 < t1 < · · · < tK−1 <
tK ≡ T such that for each k in {1, . . . , K − 1},

ω(0, tk) = αLk

and, using superadditivity, such that

ω(tk, tk+1) ≤ αL .

Next, for t ∈ [0, T ], we define:

G≤t := sup
0≤r≤t

Gr , Ht := G≤t exp

(
−ω(0, t)

αL

)
, H≤t := sup

0≤r≤t
Hr .

Fix t ∈ [tk−1, tk] for some k ∈ {1, . . . , K}. Note that since α ≥ 1, we may apply the
estimate (3.1) on each subinterval [ti, ti+1]. Hence using (3.1) and the superadditivity of
ϕ, we write:

Gt = G0 +
∑k−2

i=0
δGtiti+1

+ δGtk−1t

≤ G0 + (αL)1/κ
∑k−2

i=0

(
G≤ti+1

+ ϕ(ti, ti+1)
)

+ (αL)1/κG≤t + ϕ(tk−1, t)

≤ G0 + (αL)1/κ
∑k−1

i=0
Hti+1

exp

(
ω(0, ti+1)

αL

)
+ ϕ(0, t)

≤ G0 + (αL)1/κH≤T
∑k−1

i=0
exp(i+ 1) + ϕ(0, t)

≤ G0 + (αL)1/κH≤T exp(k + 1) + ϕ(0, t) .

Whence, using that ω(0, t) ≥ ω(0, tk−1), we have the following estimate of H :

Ht ≤
{
G0 + |ϕ(0, t)|+ (αL)1/κ exp(k + 1)H≤t

}
exp

(
−ω(0, t)

αL

)
≤ G0 + sup

t≤T

{
|ϕ(0, t)| exp

(
−ω(0, t)

αL

)}
+ (αL)1/κe2H≤T ,

According to our definition of α, this yields the bound:

H≤T ≤
1

1− e2(αL)1/κ

(
G0 + sup

t≤T

{
|ϕ(0, t)| exp

(
−ω(0, t)

αL

)})
,

from which (3.2) follows. �
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3.2. Remainder estimates. As in the classical theory, the rough Gronwall Lemma pre-
sented above is a simple tool that, among others, permits to obtain a priori estimates for
rough PDEs of the general form (2.22). It should be stressed however that the most del-
icate part of this argument is to estimate the remainder in such a way that Lemma 3.1 is
indeed applicable. This step is by no means trivial, in particular, due to unboundedness
of the involved operators (in the noise terms as well as in the deterministic part of the
equation) and the corresponding loss of derivatives. The key observation is that there is a
tradeoff between space and time regularity which can be balanced using a suitable inter-
polation technique. To this end, let us introduce the notion of smoothing operators on a
given scale (Gk).

Definition 3.1. Assume that we are given a scale (Gk)k∈N0 with a topological embedding

∪k∈N0Gk ↪→ D ′,

and let Jη : D ′ → D ′, η ∈ (0, 1), be a family of linear maps. For m ≥ 1 we say that
(Jη)η∈(0,1) is an m-step family of smoothing operators on (Gk) provided for each k ∈ N0 :

(J1) Jη maps Gk onto Gk+m, for every η ∈ (0, 1),

and there exists a constant CJ > 0 such that for any ` ∈ N0 with |k − `| ≤ m :

(J2) if 0 ≤ k ≤ ` ≤ m+ 1, then

|Jη|L(Gk,G`) ≤
CJ
η`−k

, for all η ∈ (0, 1) ; (3.4)

(J3) if 0 ≤ ` ≤ k ≤ m+ 1, then

| id−Jη|L(Gk,G`) ≤ CJη
k−` , for all η ∈ (0, 1) . (3.5)

Remark 3.2. Whenever the spaces Gk are Sobolev-like with exponents of integrability
different from 1,∞, examples of 1-step families of smoothing operators are provided by

Jη := (id−η2∆)−1 or Jη := eη
2∆ (3.6)

(under suitable assumptions on the domain of ∆). In W k,2(Rd) this is easily seen using
the Fourier transform: for instance, concerning the first family we can use the inequality

1

1 + (η|ξ|)2
− 1 ≤ Cα(η|ξ|)2α ,

which holds for every α ∈ [0, 1], and then apply Parseval Identity (the cases α = 1
2
, 1

yield (J3)). Note that smoothing operators similar to the second family above were also
extensively used in [OW16].

If Gk consists of functions φ supported on the whole space Rd, one can simply let
Jηφ := %η ∗ φ, where %η is a well-chosen approximation of the identity. The existence of
such smoothing families when elements of Gk are compactly supported is not trivial and
is therefore treated in Appendix A.3.

Let us now formulate the main result of this section.

Proposition 3.1 (Estimate of the remainder). Let α ∈ (1/3, 1/2] and fix an interval I ⊂
[0, T ]. Let B = (B,B) be a continuous unbounded 1/α-rough driver on a given scale
Gk, · k, k ∈ N0, endowed with a two-step family of smoothing operators (Jη). Consider
a continuous drift µ ∈ V 1

1 (I;G−1) and let ωµ be a regular control such that

δµst −1 ≤ ωµ(s, t) . (3.7)
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Let g be a weak solution of (2.22) in the sense of Definition 2.2, such that g is controlled
over the whole interval I , that is: g\ ∈ V 1−

2 (I;G−3).
Then, there exist constants C,L > 0, such that if ωB(I) ≤ L, for all (s, t) ∈ ∆I ,

g\st −3 ≤ C

(
sup
s≤r≤t

gr −0ωB(s, t)3α + ωµ(s, t)ωB(s, t)α
)
. (3.8)

Furthermore, defining for each (s, t) ∈ ∆ the first order remainder

g]st := δgst −Bstgs , (s, t) ∈ ∆I , (3.9)

it holds true that

g]st −1 ≤ C

(
ωµ(s, t) + sup

s≤r≤t
g −0

(
ωµ(s, t)α + ωB(s, t)α

))
, (3.10)

g]st −2 ≤ C

(
ωµ(s, t) + sup

s≤r≤t
g −0ωB(s, t)2α

)
, (3.11)

and finally

δgst −1 ≤ C

(
ωµ(s, t) + sup

s≤r≤t
g −0

(
ωµ(s, t)α + ωB(s, t)α

))
, (3.12)

for every (s, t) ∈ ∆I , such that (ωµ + ωB)(I) ≤ L.

Remark 3.3. It is a classical fact (see [FV10]) that a product

ω1(s, t)aω2(s, t)b

where a + b ≥ 1, and ω1, ω2 are controls, is also a control. Consequently, the conclusion
(3.8) in the proposition above can be changed to:

ω\(s, t) ≤ C

(
sup
s≤r≤t

gr −0ωB(s, t)3α + ωµ(s, t)ωB(s, t)α
)
, (3.13)

where for a given (s, t) ∈ ∆ we define

ω\(s, t) := inf{ω(s, t) : ω ∈ Cs,t} (3.14)

Cs,t :=
{
ω : ∆[s,t] → R+ , control | ∀(θ, τ) ∈ ∆[s,t], ω(θ, τ) ≥ g\θτ −3

}
. (3.15)

Indeed, this is justified by the following basic observation.
Claim. The map ω\ : ∆→ R+ is a control.

Proof of claim. For (s, θ, t) ∈ ∆2, since both Cs,θ,Cθ,t contain Cs,t,we have by definition:

ω\(s, θ) + ω\(θ, t) ≤ ω(s, θ) + ω(θ, t) ≤ ω(s, t) , (3.16)

for every ω ∈ Cs,t.
Taking the infimum in (3.16), the claim follows. �

Now, since the r.h.s. of (3.8) is a control, according to the above claim, then (3.13)
clearly holds.

We now have all in hand to prove Proposition 3.1.
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Proof of Proposition 3.1. Proof of (3.8). To estimate the remainder g\st, we apply δ to
(2.23) and use Chen’s relations (2.8), leading to

δg\sθt = Bθtδgsθ −BθtBsθgs + Bθtδgsθ
= Bθtg

]
sθ + Bθtδgsθ

=: T] + Tδ ,
(3.17)

for every (s, θ, t) ∈ ∆2. Note that by definition of g] in (3.9) and the original equation
(2.23), it holds

g]sθ ≡ δgsθ −Bsθgs = δµsθ + Bsθgs + g\sθ (3.18)

hence it is both an element of G−1 and G−2, (with corresponding different time regulari-
ties). This basic fact will be exploited in the sequel, in order to apply Proposition A.1.

In (3.17), test against φ ∈ G3 such that φ 3 ≤ 1. Substituting (3.18) into (3.17) and
then making use of (Jη), there comes

〈T], φ〉 ≡ 〈δµsθ + Bsθgs + g\sθ, B
∗
θtJηφ〉+ 〈δgsθ −Bsθgs, B

∗
θt(id−Jη)φ〉 .

Each term above can be estimated using the bounds on B as well as ωµ and the estimates
(3.4). Denoting for simplicity

G := sup
s≤r≤t

gr −0 , (3.19)

we have:

〈T], φ〉 ≤ ωµ B∗sθJηφ 1 + 〈gs,B∗sθB∗θtJηφ〉+ 〈g\sθ, B
∗
θtJηφ〉

+ 〈δgsθ, B∗θt(id−Jη)φ〉+ 〈gs, B∗sθB∗θt(id−Jη)φ〉

≤ CJ

(
ωµω

α
B +Gω3α

B +
ω\ω

α
B

η
+ 2GωαBη

2 +Gω2α
B η
)
.

(3.20)

We now choose η that equilibrates the various terms, namely

η := 4CJ |Λ|ωB(s, t)α , (3.21)

where |Λ| is the constant from the Sewing Lemma, see Proposition A.1. Provided (s, t) ∈
∆I are sufficiently close to each other, e.g. assuming

ωB(s, t) < L :=

(
1

4CJ |Λ|

)1/α

(3.22)

then η belongs to (0, 1). We end up with the inequality

T] −3 ≤ C
(
ωµω

α
B +Gω3α

B

)
+

ω\
4|Λ|

(3.23)

for some constant C > 0 depending only on |Λ| and CJ . The previous computations also
show that for φ ∈ G1 with φ 1 ≤ 1 :

〈g], φ〉 ≤ ωµ Jηφ 1 +Gω2α
B Jηφ 2 + ω\ Jηφ 3

+ δg −0 (id−Jη)φ 0 +G B∗(id−Jη)φ 0

≤ CJ

(
ωµ +G

ω2α
B

η
+
ω\
η2

+ 2Gη +GωαB

) (3.24)
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where we have used again (3.4). Choosing η as in (3.21), we obtain that g] ∈ V α
2 (I;G−1) ,

together with the bound:

g]st −1 ≤ C
(
ωµ +GωαB

)
+

ω\
4|Λ|ω2α

B

. (3.25)

Now, for the second term in (3.17) we can use (3.25): taking φ ∈ G3 with φ 3 ≤ 1, there
comes

〈Tδ, φ〉 ≡ 〈g] +Bgs,B∗φ〉
≤ g]st −1 B∗φ 1 + gs −0 B∗B∗φ 0

≤ C
(
ωµω

2α
B +Gω3α

B

)
+

ω\
4|Λ|

+Gω3α
B .

(3.26)

From the bounds (3.26) and (3.23), we obtain

δg\sθt −3 ≤ C
(
ωµ(s, t)ωB(s, t)α +GωB(s, t)3α

)
+
ω\(s, t)

2|Λ|
,

for some absolute constant C > 0. We are now in position to apply the Sewing Lemma,
Proposition A.1, so that g\ = Λδg\ and moreover for all (s, t) ∈ ∆I :

g\st −3 ≤ ω′\ ≡ C
(
ωµ(s, t)ωB(s, t)α +GωB(s, t)3α

)
+

1

2
ω\(s, t) .

Since ω\ is taken to be the smallest control ω′\ such that the inequality above holds (see
Remark 3.3), we eventually obtain

g\st −3 ≤ 2C
(
ωµ(s, t)ωB(s, t)α +Gω3α

B (s, t)
)
,

which proves (3.8).
Proof of (3.10). From (3.24) and (3.8), there holds (again we omit the time indexes):

〈g], φ〉 ≤ C

(
ωµ +G

(
ω2α
B

η
+ ωαB + η

)
+

1

η2

(
ωµω

α
B +Gω3α

B

))
φ 1 ,

whence provided (ωµ + ωB)(I) < L is small enough, taking η := (ωµ + ωB)α ∈ (0, 1),
we end up with the a priori estimate

g]st −1 ≤ C
(
ωµ +G

(
ωαµ + ωαB

))
,

for (s, t) ∈ ∆I (here we have used the trivial bounds ωB ≤ ωµ + ωB, 1− α > α, as well
as (ωµ + ωB)α ≤ Cα(ωαµ + ωαB)).

Proof of (3.12) Writing that δg = g] + Bg, we see that the same bound holds for δg
instead of g], namely

δgst −1 ≤ C
(
ωµ +G

(
ωαµ + ωαB

))
(with another such universal constant C).

Proof of (3.11) Proceeding similarly, we have

〈g], φ〉 ≤ C
(
ωµ +G

(
ω2α
B + η2 + ωαBη

)
+

1

η

(
ωµω

α
B +Gω3α

B

) )
φ 2 ,

whence taking η := ωαB, we end up with

g]st −2 ≤ C
(
ωµ +Gω2α

B

)
for some universal C > 0. �
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Remark 3.4 (On the link between weak solutions and the notion of controlled path). Fol-
lowing Gubinelli’s approach on rough paths [Gub04], it would be natural in this setting to
define the set DB of controlled paths as those couples g, g′ in V 1/α

1 (I;G−1), such that the
first order remainder

(s, t) ∈ ∆ 7→ g]st := δgst −Bstg
′
s (3.27)

defines an element of V 1/(2α)
2,loc (I;G−2) (meaning that a cancellation occurs in (3.27)).

If g denotes a weak solution of (2.22), in the sense of Definition 2.2, we have in fact
(g, g′) ∈ DB with g′ = g. Therefore, given (Gk), (Jη), µ, and B as in Proposition 3.1,
we can alternatively define a weak solution to (2.22) as an element (g, g) of DB such that
(2.23) holds, i.e. a continuous path g : [0, T ]→ G−0 such that

δg ∈ V 1/α
2 (I,G−1) ,

g] ≡ δg −Bg ∈ V 1/(2α)
2,loc (I,G−2) ,

g\ ≡ δg −Bg − Bg − δµ ∈ V 1/(3α)
2,loc (I,G−3) .

4. THE ENERGY INEQUALITY

In this section we assume that the driving path z is smooth and we establish an estimate
on the B-norm of a weak solution to (2.22) which only depends on the rough path norm
of the corresponding canonical lift Z of z. However it should be noted that the conclusion
of Proposition 4.1 below remains true provided the square u2 satisfies the equation (2.25),
which will be shown to hold for any weak solution u, see Section 6.

4.1. The main statement. Using the standard theory for non-degenerate parabolic PDEs
(see [LSU68, Chap. III]), we know that there exists a unique u in the Banach space B
(note this space is denoted by V 1,0

2 in the latter reference), solving the the evolution prob-
lem

∂u

∂t
− Au =

(
σki∂iu+ νku

)
żk , u0 ∈ L2 , (4.1)

in the sense that

−
¨
I×Rd

u∂tη dt dx+

¨
I×Rd

(
aij∂ju∂iη − bi∂iuη − cuη

)
dt dx

=

¨
I×Rd

(
σki∂iη + νkuη

)
żk dt dx , (4.2)

for every test function η in the Sobolev space

W 1,1
2 (I × Rd) := {η ∈ L2(I × Rd) : ∇η, ∂tη ∈ L2(I × Rd)} ,

and such that η vanishes, in the sense of traces at t = T and t = 0.
Our aim is to prove following.

Proposition 4.1 (Energy inequality). Consider a smooth path z, together with its canon-
ical geometric lift Z ≡ (Z,Z), and let ωZ be the smallest control such that for each
(s, t) ∈ ∆

ωZ(s, t) ≥ |Zst|1/α + |Zst|1/(2α) .

Then every weak solution of (1.1) satisfies

sup
0≤t≤T

|ut|2L2 +

ˆ T

0

|∇ur|2L2 dr ≤ C|u0|2 , (4.3)
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for a constantC > 0 depending on the quantities ωZ , |σ|W 3,∞ , |ν|W 2,∞ ,m,M, and ‖b‖2r,2q,
‖c‖r,q, but not on the individual element u in B.

Although u does not belong to W 1,1
2 a priori, by considering time averages of the form

uh(t, x) :=
1

h

ˆ t+h

t

u(t, τ) dτ ,

(extended by zero if t /∈ [0, T − h]) and passing to the limit h→ 0, it is seen that in (4.2)
we can formally test against

η(r, x) := 1[s,t](r)φ(x)u(r, x)

with φ ∈ W 1,∞, (see the equality (2.13) in [LSU68, Chap. III, S2] for the case where
η := 1[s,t]u, the proof being identical for η as above). This yields, for each (s, t) in ∆,
and every φ in W 1,∞ :

ˆ
Rd

((ut)
2 − (us)

2)φ dx = 2

¨
[s,t]×Rd

(
−aij∂ju∂i(uφ) + bi∂iuuφ+ cu2φ

)
dr dx

+

¨
[s,t]×Rd

(
σki∂i(u

2)φ+ 2νku2φ
)
żk dr dx . (4.4)

4.2. Proof of Proposition 4.1. We are going to make use of the tools presented in Section
3. More precisely, we will show that

• suitable estimates relative to the scale (W k,∞)k∈N0 hold for the drift part of (4.4),
i.e. for ˆ ·

0

uAu dr

understood as a linear functional on W 1,∞;
• equation (4.4) implies that d(u2) = 2 d

(´
uAu dr

)
+ dB̂(u2) holds in the sense

of Definition 2.2.

An important observation is the following Lemma. For convenience, and because it
will be useful in the proof of Theorem 2, we also include bounds on the drift term of u in
(4.2).

Lemma 4.1. Given u in B, define the drift terms

〈λt, φ〉 :=

ˆ t

0

〈Arur, φ〉 dr ≡
¨

[0,t]×Rd
(−aijr ∂iur∂jφ+ bir∂iurφ+ crurφ) dr dx , (4.5)

for φ in W 1,2, (s, t) ∈ ∆, and

〈µt, φ〉 := 2

ˆ t

0

〈urArur, φ〉 dr ≡ 2

¨
[0,t]×Rd

(
− aijr ∂iur∂jurφ

− uraijr ∂iur∂jφ+ bir∂iururφ+ cr(ur)
2φ
)

dr dx , (4.6)

for φ in W 1,∞. Then, there exist regular controls ωµ, ωλ, and a constant C > 0, the latter
three being dependent on

T, r, q,M, ‖b‖2r,2q, ‖c‖r,q , (4.7)
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but not on u in the space B, such that

δλst −1,(2) ≤ ωλ(s, t) ≤ C
(

1 + ‖u‖2
Bs,t

)
, (4.8)

δµst −1,(∞) ≤ ωµ(s, t) ≤ C‖u‖2
Bs,t

, (4.9)

for every (s, t) in ∆.

Remark 4.1. Taking a, b, c such that Assumptions 2.1-2.2 hold true, and u in B, the fol-
lowing quantities are controls

a(s, t) := M
(
‖∇u‖2

2,2;[s,t] + ‖u∇u‖1,1;[s,t]

)
b(s, t) :=

(
‖b‖2r,2q;[s,t]

)2r
,

c(s, t) :=
(
‖c‖r,q;[s,t]

)r
,

u(s, t) :=
(
‖u‖ 2r

r−1
, 2q
q−1

;[s,t]

) 2r
r−1

.

(4.10)

This will be extensively used in the sequel.

Proof of Lemma 4.1. Proof of (4.8). Take any φ ∈ W 1,2. For u in B, we have

−
¨

[s,t]×Rd
aij∂ju∂iφ dr dx ≤M‖∇u‖1,2;[s,t] φ 1,(2) ≤M(t− s)1/2‖∇u‖2,2;[s,t] φ 1,(2) .

By the equality
1

2r
+

1

2
+
r − 1

2r
= 1 , (4.11)

(and similarly for q), Hölder’s inequality yields:¨
[s,t]×Rd

bi∂iuφ dr dx ≤ ‖b‖2r,2q;[s,t]‖∇u‖2,2;[s,t](t− s)
r−1
2r |φ|

L
2q
q−1

. (4.12)

Now, in dimension one and two, W 1,2 embeds into every Lp space for p ∈ [1,∞), so the
term |φ|

L
2q
q−1

is bounded by a constant times φ 1,(2). For d > 2, since by assumption

q > max(1,
d

2
) =

d

2
,

it is seen that
2q

q − 1
<

2d

d− 2
=: p∗ .

By the the Sobolev embedding theorem, we have

W 1,2 ↪→ Lp
∗ ⊂ L

2q
q−1 .

Hence, in both cases, we see from (4.12) that¨
[s,t]×Rd

bi∂iuφ ≤ ‖b‖2r,2q;[s,t]‖∇u‖2,2;[s,t](t− s)
r−1
2r φ 1,(2) .

Similarly, we have for the last term¨
[s,t]×Rd

cuφ dr dx ≤‖c‖r,q;[s,t]‖u‖ 2r
r−1

, 2q
q−1

;[s,t]|φ|
L

2q
q−1

(t− s)
r−1
2r

≤‖c‖r,q;[s,t]‖u‖ 2r
r−1

, 2q
q−1

;[s,t](t− s)
r−1
2r φ 1,(2) .
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This yields the inequality

δλst −1,(2) ≤ (t− s)1/2u(s, t)1/2 + b(s, t)1/(2r)a(s, t)1/2(t− s)
r−1
2r

+ c(s, t)1/ru(s, t)
r−1
2r (t− s)

r−1
2r .

(4.13)

By (4.11) together with Remark 3.3, we see that the r.h.s. above is in fact a control, which
proves the first inequality in (4.8).

Now, from ‖u∇u‖1,1 ≤ (t− s)1/2‖u‖∞,2‖∇u‖2,2 it is clear that

a(s, t)1/2 ≤ C(M,T )‖u‖Bs,t , (4.14)

whereas for the other terms, we use (2.17), so that u(s, t)
r−1
2r ≡ ‖u‖ 2r

r−1
, 2q
q−1

;[s,t] ≤ β‖u‖Bs,t .

The conclusion follows: using (4.13)-(4.14) we have

δλst −1,(2) ≤ C(M, ‖b‖2r,2q, ‖c‖r,q, T, r, q)
(

1 + ‖u‖2
Bs,t

)
,

which proves the second part.
Proof of (4.9). Take any φ in W 1,∞. From Hölder Inequality, it holds true that¨

[s,t]×Rd
−aij∂ju∂i(uφ) ≤M

(
‖∇u‖2

2,2;[s,t] + ‖u∇u‖1,1;[s,t]

)
φ 1,(∞) . (4.15)

Now, because of (4.11) we have¨
[s,t]×Rd

|u||bi||∂iu||φ| dr dx ≤ ‖b‖2r,2q;[s,t]‖∇u‖2,2;[s,t]‖u‖ 2r
r−1

, 2q
q−1

;[s,t] φ 0,(∞) (4.16)

as well as ¨
[s,t]×Rd

|c||u|2|φ| dr dx ≤ ‖c‖r,q;[s,t]‖u‖2
2r
r−1

, 2q
q−1

;[s,t]
φ 0,(∞) . (4.17)

This yields the inequality

1

2
δµst −1,(∞) ≤ a(s, t) + b(s, t)1/(2r)a(s, t)1/2u(s, t)

r−1
2r + c(s, t)1/ru(s, t)

r−1
r , (4.18)

as for the case of λ above, the r.h.s. in (4.18) is a control, which proves the first part of
(4.9).

Making use again of the bounds (4.14)-(2.17) we obtain finally:

δµst −1,(∞) ≤ C(T,M, ‖b‖2r,2q, ‖c‖r,q, r, q)‖u‖2
Bs,t

. (4.19)

�

As a straightforward, but important consequence, we have the following result.

Corollary 4.1. Given a smooth path z and its canonical geometrical lift Z ≡ (Z,Z), let
u be a weak solution of (4.1), in the sense of (4.2). Define the path u2 : I → L1(Rd) by
u2
t (x) := ut(x)2, for a.e. (t, x) ∈ I × Rd.
Then, u2 is a weak solution in the sense of Definition 2.2 to

δu2
st = 2

ˆ t

s

uAu dr + B̂st

(
u2
s

)
+ B̂st

(
u2
s

)
+ u2,\

st , (4.20)

on the scale (W k,∞)k∈N0 , where we denote by B̂ ≡ (B̂, B̂) the 1/α-unbounded rough
driver given by (2.9), with ν replaced by ν̂ := 2ν.
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Proof. For simplicity, in this proof we let σ := σ· · ∇ ≡
∑

i σ
·,i(x)∂i. Define the 2-index

distribution-valued map

u2,\
st := δu2

st − 2

ˆ t

s

(Au)u dr − B̂st(u
2
s)− B̂st(u2

s) .

Using the equation (4.4) twice we see that for any φ ∈ C∞(Rd) :

〈u2,\
st , φ〉 =

ˆ t

s

〈
u2
r − u2

s, (σ
k,∗ + ν̂k)φ

〉
dzkr − 〈u2

s, B̂∗stφ〉

=

¨
∆2

[s,t]

〈
u2
τ , (σ

`,∗ + ν̂`)(σk,∗ + ν̂k)φ
〉

dz`τ dzkr − 〈u2
s, B̂∗stφ〉

+ 2

¨
∆2

[s,t]

〈uτAτuτ , (σk,∗ + ν̂k)φ〉 dτ dzkr

=

¨
∆2

[s,t]

〈
δu2

sτ , (σ
`,∗ + ν̂`)(σk,∗ + ν̂k)φ

〉
dz`τ dzkr

+ 2

¨
∆2

[s,t]

〈uτAτuτ , (σk,∗ + ν̂)φ〉 dτ dzkr

:= Tδu2 + TA .
From Assumption 2.3 on σ, ν, and the fact that, by the classical theory for (4.2), u belongs
to the space B, it is immediately seen that every term above makes sense. It remains to
show that each of the terms above belongs to V 1−

2,loc(I;R),with a bound depending linearly
on φ 3,(∞).

For the first term, observe that

sup
|φ|W1,∞≤1

〈φ, δu2
st〉 ≤ µst −1,(∞) + sup

|φ|W1,∞≤1

ˆ t

s

〈σki∂i(u2), φ〉 dzk

+ sup
|φ|W1,∞≤1

ˆ t

s

〈ν̂ku2, φ〉 dzk

≤ ε(s, t) .

where ε(s, t) is a control depending on |z|1−var, |ν|L∞ , |σ|W 1,∞ , supr∈[s,t] |ur|2L2 and the
control ωµ given in Lemma 4.1. Consequently, we have the bound

Tδu2 ≤
(∑

k,`

¨
∆2

[s,t]

d|z`| d|zk|
)
ε(s, t) (σ∗ + ν)((σ∗ + ν))φ 1,(2)

≤ C(|σ|W 3,∞ , |ν|W 2,∞)
(
|z|1−var;[s,t]

)2
ε(s, t) φ 3,(2) .

(4.21)

Similarly, we have

TA ≤
(∑

k

ˆ t

s

ωµ(s, r) d|zkr |
)

(σ∗ + ν̂)φ 1,(∞)

≤ C(|ν|W 1,∞ , |σ|W 2,∞)|z|1−var;[s,t]ωµ(s, t) .

(4.22)

The conclusion follows from (4.21), (4.22), and Remark 3.3, we have:

u2,\ ∈ V 1−
2,loc(I; (W 3,∞)∗) ,

which proves the corollary. �
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Proof of Proposition 4.1. Testing against φ = 1 ∈ W 3,∞ in (4.20), we have, using (2.10)
and the inequality |

∑
bi∂iu| ≤ m/2

∑
(bi)2 + 1/(2m)

∑
(∂iu)2 :

δ
(
|u|2L2

)
st

+ 2m

ˆ t

s

|∇ur|2L2 dr ≤
¨

[s,t]×Rd

(
m|∇ur|2 +

(
1
m

∑
i≤d(b

i)2 + 2|c|
)
u2
)

dr dx

+
(
ωB(s, t)α + ωB(s, t)2α

)
|us|2L2 + 〈u2,\

st , 1〉 .
(4.23)

Note that by (2.14),
¨

[s,t]×Rd
1
m

(∑
(bi)2 + |c|

)
u2 dr dx ≤

∥∥ 1
m

∑
(bi)2 + |c|

∥∥
r,q
‖u‖2

2r
r−1

, 2q
q−1

≤ (1 + β2

2m
)
(
‖b‖2

2r,2q;[s,t] + ‖c‖r,q;[s,t]
)
‖u‖2

Bs,t

= C
(
b(s, t)1/r + c(s, t)1/r

)
‖u‖2

Bs,t
,

where we make use of the notation (4.10) and we recall that β > 0 denotes the sharpest
constant in (2.17). Therefore, defining Gt := |ut|2L2 + min(1,m)

´ t
0
|∇ur|2L2 dr we have

δGst ≤ C
(
b(s, t)1/r + c(s, t)1/r + ωB(s, t)α + ωB(s, t)2α

)
‖u‖2

Bs,t
+ 〈u2,\

st , 1〉 , (4.24)

for a constant C > 0 depending on m, r, q only. Now, combining Lemma 4.1 and Propo-
sition 3.1, we can estimate the remainder as follows

u2,\
st −3,(∞) ≤ C

(
ωB(s, t)3α + ωB(s, t)α

)
‖u‖2

Bs,t
, (4.25)

where the constant above depends on ‖b‖2r,2q, ‖c‖r,q, but also on |σ|W 3,∞ , |ν|W 2,∞ .Hence,
using (4.24), (4.9) and (2.14), we obtain that

δGst ≤ ω(s, t)1/κ
(

sup
r∈[s,t]

Gr

)
, (4.26)

for the control

ω := C
(
bκ/r + cκ/r + (ωZ)κα + (ωZ)2κα + (ωZ)3κα

)
,

for an appropriate constantC = C(κ,M, |σ|W 2,∞ , |ν|W 1,∞),where we let κ := max(1/α, r).
Applying Lemma 3.1 with ϕ := 0, this gives us the energy inequality (4.3), for a

constant depending, through (2.21) and Proposition 3.1, on the quantities

ωZ ,m,M, T, ‖b‖2r,2q, ‖c‖r,q, |σ|W 3,∞ and |ν|W 2,∞ . �

5. TENSORIZATION

The aim of this section is to introduce the set-up for the proof of uniqueness presented
in Section 6. Recall that in Section 4 we considered a smooth driving signal Z and derived
an energy estimate depending only on the rough path norm of the associated canonical lift
Z. Nevertheless, the smoothness of Z was only used in Corollary 4.1 in order to verify
that u2 solves (4.20). Accordingly, the result of Proposition 4.1 remains valid in the case
of a rough driving signal Z provided one can justify the equation for u2. This is the main
challenge of the proof of uniqueness. Indeed, by linearity of (2.22), uniqueness follows
once we show that ‖u‖C(I;L2) ≤ C|u0|L2 is satisfied by every weak solution in the sense
of Definition 2.2. However, recall that due to Definition 2.2, the required regularity of
test functions that guarantees smallness of the remainder is out of reach for general weak
solutions. Consequently, it is not possible to simply test by the solution and to obtain the
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equation for u2. Our approach relies on a tensorization procedure which is an analog of
the doubling of variables method known from the classical PDE theory.

5.1. Preliminary material and main result. For j = 1, 2 consider Bj ≡ (Bj,Bj), an
unbounded rough driver on the scale (W k,2)k∈N0 , a drift term λj ∈ V 1

1 (I;W−1,2) and
assume the existence of a weak solution uj ∈ C(I;L2) of

duj = dλj + dBjuj , (5.1)

in the sense of Definition 2.2 on the scale (W k,2)k∈N0 . For R > 0 we define BR := {x ∈
Rd :

∑
i≤d |xi|2 ≤ R2} and let

Ω :=

{
(x, y) ∈ Rd × Rd :

x− y
2
∈ B1

}
. (5.2)

As the first step, we aim to show that the new unknown

u(x, y) := (u1 ⊗ u2)(x, y) = u1(x)u2(y) , (x, y) ∈ Ω , (5.3)

is itself a solution in the sense of Definition 2.2 of a rough PDE on a suitable scale. This
is the first step towards the proof of uniqueness and can be regarded as a linearization
of the product operation u(x)u(x). The second step, which we perform in Section 6,
then consists of the passage to the diagonal. Namely, we prove that the evolution of
u(x, x) = u(x)u(x) is given by (2.25).

For k ∈ N0, define

Fk :=
{

Φ ∈ W k,∞(Rd), Supp Φ ⊂ Ω
}
, L · Mk := | · |Wk,∞ , (5.4)

and additionally, let F−k := (Fk)∗.
Denote by X ≡ (X,X) the unbounded rough driver given for every (s, t) ∈ ∆ by[

Xst := B1
st ⊗ id + id⊗B2

st,

Xst := B1
st ⊗ id + id⊗B2

st +B1
st ⊗B2

st ,
(5.5)

(the proof that the properties (RD1)-(RD2) are fulfilled is an easy exercise left to the
reader). Furthermore, for every Φ ∈ F1 and (s, t) ∈ ∆, define the approximate drift as
the distribution

πst := u1
s ⊗ δλ2

st + δλ1
st ⊗ u2

s . (5.6)

Remark 5.1. Let k ∈ N0, and define

Nk := #{γ ∈ Nd
0, |γ| := γ1 + · · ·+ γd ≤ k} .

In the proof below, we will make use of the following well-known characterization of the
spaces W−k,2 ≡ (W k,2)∗ (see e.g. [Bre10, Proposition 9.20]). For each v in W−k,2, there
exist a (non-unique) f in (L2)Nk such that

for every φ ∈ W k,2 ,
W−k,2

〈
v, φ
〉
Wk,2 =

∑
|γ|≤k

(
fγ,D

γφ
)
L2 (5.7)

where (·, ·)L2 denotes the L2 inner product, and Dγφ := ∂γ1 · · · ∂γdφ. Moreover, there
holds

|v|W−k,2 ≤ |f |L2 and inf
f∈(L2)Nk , s.t. (5.7) holds

∑
|γ|≤k

|fγ|2L2

1/2

≤ |v|W−k,2 . (5.8)

First, we need the following.
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Lemma 5.1. The distribution-valued 2-index map π defined in (5.6) has finite variation
with respect to F−1, and we have the bound

L πst M−1 ≤ C
(
δλ1

st −1,(2) u
2
s 0,(2) + u1

s 0,(2) δλ
2
st −1,(2)

)
, ∀(s, t) ∈ ∆ , (5.9)

for some universal constant C > 0.
Furthermore, assuming that λ1, λ2 ∈ AC(I;W−1,2), then there is a unique Ξ ∈ V 1

1 (I;E)
such that for every t ∈ I and every sequence of partitions |pn| → 0 of [0, t] we have

lim
n→∞

∑
(pn)

πtiti+1
→ Ξt in F−1 . (5.10)

Notation 5.1. For a ∈ Rd, we will henceforth denote by τa the translation operator,
namely for ψ ∈ L2(Rd):

τaψ(x) := ψ(x− a) , x ∈ Rd . (5.11)

We recall that τa is an isometry in every Lp space, p ∈ [1,∞]. In addition, we have the
following property: for every p in [1,∞), and every f ∈ Lp,

‖τaf − f‖Lp → 0 as a→ 0 ; (5.12)

(it suffices to check this for f in C∞ and then to argue by density).

Proof of Lemma 5.1. Fix (s, t) in ∆.Due to Remark 5.1, for j = 1, 2 there exists (f jγ)|γ|≤1

in (L2)N1 such that for every φ ∈ W 1,2(Rd) :

W−1,2(Rd)

〈
δλjst, φ

〉
W 1,2(Rd)

=
∑
|γ|≤1

(
Λj
γ,D

γφ
)
L2(Rd)

. (5.13)

Then, for Φ ∈ F1 we have by definition

〈πst,Φ〉 =

ˆ
Rd
u1(x)

W−1,2

〈
δλ2,Φ(x, ·)

〉
W 1,2 dx+

ˆ
Rd
u2(y)

W−1,2

〈
δλ1,Φ(·, y)

〉
W 1,2 dy

=
∑
|γ|≤1

ˆ
Rd
u1(x)

(
Λ2
γ,D

γ
yΦ(x, ·)

)
L2
y(Rd)

dx+
∑
|γ|≤1

ˆ
Rd

(
Λ1
γ,D

γ
xΦ(·, y)

)
L2
x(Rd)

u2(y) dy

≤ C

¨
Ω

(
|u1(x)||Λ2(y)|+ |Λ1(x)||u2(y)|

)
(|Φ|+ |∇x,yΦ|)(x, y) dx dy

= C

¨
Rd×B1

(
|u1(x+ + x−)||Λ2(x+ − x−)|+ |Λ1(x+ + x−)||u2(x+ − x−)|

)
× (|Φ|+ |∇x,yΦ|)(x+ + x−, x+ − x−) dx− dx+

≤ C

ˆ
B1

(
|τ−x−u1|L2

+
|τx−Λ2|L2

+
+ |τ−x−Λ1|L2

+
|τx−u2|L2

x+

)
dx−L Φ M1

= C|B1|
(
|u1|L2|Λ2|L2 + |Λ1|L2|u2|L2

)
L Φ M1 ,

(5.14)
where in the third line we have made the change of variables (x+, x−) = (x+y

2
, x−y

2
).

Now, the constant above does not depend on the choice of Λ1,Λ2 in (5.13), hence we can
take the infimum, which, thanks to (5.8), yields the first part of the Lemma.

We need to justify the existence and uniqueness of Ξ such that (5.10) holds. Recall that
since λj ∈ AC(I;W−1,2) and since W−1,2 is reflexive, then λ̇r ≡ limε→0(λjr+ε − λjr)/ε ∈
W−1,2 exists a.e. in I, and we have

δλjst =

ˆ t

s

λ̇jr dr
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(Bochner sense). On the other hand, from similar computations as in (5.14) we have´
I
Lu1

r ⊗ λ̇2
r + λ̇1

r ⊗ u2
r M−1 dr < ∞. Observing that the mapping r ∈ I 7→ fr := u1

r ⊗
· + · ⊗ u2

r ∈ L
(
W−1,2;F−1

)
is well defined and continuous, with a norm not exceeding

‖u1‖∞,2 +‖u2‖∞,2, we can then apply (A.10), so that for every pn ∈P([0, t]), |pn| → 0 :∑
(pn)

πtiti+1
→ Ξt ≡

ˆ t

0

(−u1
r ⊗ λ̇2

r − λ̇1
r ⊗ u2

r) dr strongly in F−1 . �

The main result of this section is the following.

Proposition 5.1. (a) There exists Π ∈ V 1
1 (I;F−1) such that for every (s, t) ∈ ∆,

L δΠst − πst M−2 ≤ ω(s, t)a (5.15)

for some control ω and some a > 1. If in addition λ1, λ2 belong toAC(I;W−1,2),
then Π is unique and we have Π = Ξ, where Ξ is as in (5.10).

(b) the tensor product u ≡ u1 ⊗ u2 is a weak solution of the rough PDE

du = dΠ + dXu , (5.16)

on the scale (Fk)k∈N0 , in the sense of Definition 2.2.

5.2. Proof of Proposition 5.1. Proof of (a). The first claim follows by the same argu-
ments as in Lemma 5.1, together with an application of the Sewing Lemma (see Appendix
A.2). More precisely, there holds for (s, θ, t) ∈ ∆ :

δ(π)sθt = −δu1
sθ ⊗ δλ2

θt − δλ1
θt ⊗ δu2

sθ .

Now, for j = 1, 2 let Λj in (L2)N1 such that (5.13) holds (with θ, t instead of s, t), and
similarly let (f jβ)|β|≤1 ∈ (L2)N1 such that for every φ in W 1,2

〈δujsθ, φ〉 =
∑
|β|≤1

(
f jβ,D

βφ
)
L2 . (5.17)

Let Φ ∈ F2. Then we see that

〈δπsθt,Φ〉 =

−
∑
|γ|,|β|≤1

(
f 1
β ,
(

Λ2
γ,D

β
xDγ

yΦ
)
L2
y

)
L2
x

−
∑
|γ|,|β|≤1

(
Λ1
γ,
(
f 2
β ,D

γ
xD

β
yΦ
)
L2
y

)
L2
x

≤ C

¨
Ω

(
|f 1(x)||Λ2(y)|+ |Λ1(x)||f 2(y)|

)(
|Φ|+ |∇x,yΦ|+ |∇2

x,yΦ|
)
(x, y) dx dy .

Proceeding as as before with the change of variables (x+, x−) = (x+y
2
, x−y

2
), taking the

infimum over Λ1,Λ2, f 1, f 2 such that (5.13), (5.17) hold, and then using (5.8), we obtain
that

L δπsθt M−2 ≤ C
(
δu1

sθ −1,(2) δλ
2
st −1,(2) + δλ1

θt −2,(2) δu
2
sθ −1,(2)

)
, ∀(s, θ, t) ∈ ∆2 .

for some universal constant C > 0. Hence, for every (s, θ, t) in ∆2 :

L δπsθt M−2 ≤ C
(
ωλ1(s, t)ωδu2(s, t)

α + ωδu1(s, t)
αωλ2(s, t)

)
(5.18)

where for j = 1, 2 and (s, t) ∈ ∆, we set

ωδuj(s, t) := inf
{
ω(s, t)

∣∣∣ω : ∆[s,t] → R+ control s.t. ωα ≥ δuj −1,(2)

}
. (5.19)
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Note that this quantity is finite by Proposition 3.1 and defines a control (this is seen from
similar arguments as that of Remark 3.3). Consequently, the r.h.s. of (5.18) fulfills the
hypotheses of the Sewing Lemma, i.e. δπ ∈ Z1−

3 (I;F−2).
Hence by Corollary A.1, there is a unique Π† in V 1

1 (I;F−2) such that (π − δΠ†) ∈
V 1−

2 (I;F−2). It is given by the rough integral

Π†t = I0t(π) ≡ (F−2) – lim
|p|→0

p∈P([0,t])

∑
(p)

πtiti+1
. (5.20)

We need to justify that Π† can be extended in a unique way to an element Π in V 1
1 (I;F−1),

which is not trivial since F2 is not dense in F1. However, letting |pn| → 0 and Inπ be
the partial sum associated to pn in the r.h.s. of (5.20), we have that lim supnL Inπ M−1 ≤
ωπ(s, t) <∞,where ωπ is any control such that ωπ ≥ L π M−1.Hence by the Hahn-Banach
Theorem, there exists such an extension Π. Finally, by Lemma 5.1, we have Inπ → Ξ in
F−1, yielding that Π = Ξ. This proves part (a). �

Proof of (b). Define Π := I0·(π) as above. We have to show that the distribution-
valued 2-index map u\ defined for each (s, t) ∈ ∆ as

u\st := δust − δΠst −Xstus − Xstus , (5.21)

belongs to V 1−
2,loc(I;F−3).

A straightforward, but very useful observation is the following.

Claim 5.1. For (s, t) ∈ ∆ and j = 1, 2, we define the corresponding first order remainder

uj,]st := δujst −B
j
stu

j
s . (5.22)

Then we have the identity

u\st = u1,\
st ⊗ u2

s + u1
s ⊗ u

2,\
st + πst − δΠst + u1,]

st ⊗ δu2
st +B1

stu
1
s ⊗ u

2,]
st . (5.23)

Proof of Claim. First observe that adding and subtracting, we have

δust = δu1
st ⊗ u2

s + u1
s ⊗ δu2

st + δu1
st ⊗ δu2

st ,

which, omitting time indexes, is equal to :

(δu1 −B1u1 − B1u1)⊗ u2 + u1 ⊗ (δu2 −B2u2 − B2u2)

+Xu + Xu−B1u1 ⊗B2u2 + δu1 ⊗ δu2

≡ (δu1 −B1u1 − B1u1)⊗ u2 + u1 ⊗ (δu2 −B2u2 − B2u2) +Xu + Xu
+ (δu1 −B1u1)⊗ δu2 +B1u1 ⊗ (δu2 −B2u2) .

Similarly, adding and subtracting the drift term and using (5.21), we obtain that:

u\st = (δu1
st −B1

stu
1
s − B1

stu
1
s − λ1

st)⊗ u2
s + u1

s ⊗ (δu2
st −B2

stu
2
s − B2

stu
2
s − λ2

st)

+ πst − δΠst + (δu1
st −B1

stu
1
s)⊗ δu2

st +B1
stu

1
s ⊗ (δu2

st −B2
stu

2
s) .

hence the claim is proved. �
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End of the Proof of Proposition 5.1. Take any Φ in F3. From the identity (5.23), we
can decompose 〈u\,Φ〉 into

〈u\st,Φ〉 =
〈
u1,\
st ⊗ u2

s + u1
s ⊗ u

2,\
st ,Φ

〉
+ 〈πst − δΠst,Φ〉

+
〈
u1,]
st ⊗ δu2

st,Φ
〉

+
〈
B1
stu

1
s ⊗ u

2,]
st ,Φ

〉
=: T\ + Tλ + T 1

] + T 2
] .

In the above formula, it is immediately seen, according to Remark 3.4, that each term
above has the needed size in time, namely 〈u\,Φ〉 belongs to the space V 1−

2,loc(I;R). That
being said, it is necessary to evaluate u\ as a path with values in F−3, and not in D ′(Rd)
only. For that purpose, we use the characterization of Sobolev Spaces of negative order
given by Remark 5.1. Fix (s, t) in ∆ and for j = 1, 2 let gj, hj ∈ (L2)N2 and hj ∈ (L2)N3

be such that

for every φ ∈ W 2,2 , 〈uj,]st , φ〉 =
∑

|γ|≤2

(
gjγ,D

γφ
)
L2 (5.24)

for every φ ∈ W 3,2 , 〈uj,\st , φ〉 =
∑

|β|≤3

(
hjβ,D

βφ
)
L2 , (5.25)

and let f j be as in (5.17).
For the first term, we have by definition:

T\ =
〈
u2, 〈u1,\,Φ〉x

〉
y

+
〈
u1, 〈u2,\,Φ〉y

〉
x

=
∑

|β|≤3

(
u2,
(
h1
β,D

β
xΦ
)
L2
x

)
L2
y

+
∑

|β|≤3

(
u1,
(
h2
β,D

β
yΦ
)
L2
y

)
L2
x

.

Changing variables as before, there comes

T\ ≤ C

¨
B1×Rd

(|u2(x+ − x−)||h1(x+ + x−)|+ |u1(x+ + x−)||h2(x+ − x−)|)

× (|Φ|+ |∇Φ|+ |∇2Φ|+ |∇3Φ|)(x+ + x−, x+ − x−) dx+ dx−

≤ C
(
|u2
s|L2|h1|L2 + |u1

s|L2|h2|L2

)
L Φ M3 ,

where again we have used Fubini’s theorem, together with the fact that the translations
τx− , τ−x− are isometries in L2. Hence, taking the infimum over the choice of h1, h2 in
(5.25), it holds true that for every (s, t) ∈ ∆,

T\ ≤ C
(
u2
s 0,(2) u

2,\
st −3,(2) + u1

s 0,(2) u
2,\
st −3,(2)

)
L Φ M3 , (5.26)

for some constant C > 0, independent of (s, t) in ∆ and Φ in F3.
For the third term, we have

T 1
] =

〈
u1,], 〈δu2,Φ〉y

〉
x

=
∑

|γ|≤2,|β|≤1

(
g1
γ,
(
f 2
β ,D

γ
xD

β
yΦ
)
L2
y

)
L2
x

≤ C|g1|L2|f 2|L2L Φ M3 .

Hence, taking the infimum over g1, f 2 gives

〈T 1
] ,Φ〉 ≤ C δu2

st −1,(2) u
1,]
st −2,(2)L Φ M3 , (5.27)

for a constant depending neither on (s, t) ∈ ∆, neither on Φ in F3.



28 ANTOINE HOCQUET AND MARTINA HOFMANOVÁ

Proceeding similarly for the fourth term, there holds:

T 2
] =

〈
B1u1, 〈u2,],Φ〉y

〉
x

=
∑

|γ|≤2

(
u1,
(
g2
γ, B

1,∗
x Dγ

yΦ
)
L2
y

)
L2
x

Hence, we have

T 2
] ≤ CωB1(s, t)α u1

s 0,(2) u
2,]
st −2,(2)L Φ M3 . (5.28)

for some universal constant C > 0.
Now, note that the drift term has been already estimated in Lemma 5.1, namely, we

have
Tλ =〈(Λδπ)st,Φ〉
≤C (ωλ1(s, t)ωδu2(s, t)

α + ωδu1(s, t)
αωλ2(s, t)) L Φ M2 .

(5.29)

The conclusion follows by (5.26)-(5.27)-(5.28)-(5.29). Indeed, making use of the con-
trols defined in (5.19), and furthermore defining for j = 1, 2 :

ωj,](s, t) := inf
{
ω(s, t)

∣∣∣ ω : ∆[s,t] → R+ control s.t. (ω)2α ≥ uj,] −2,(2)

}
ωj,\(s, t) := inf

{
ω(s, t)

∣∣∣ ω : ∆[s,t] → R+ control s.t. (ω)3α ≥ uj,\ −3,(2)

}
.

(these quantities are well-defined controls from Proposition 3.1 and Remark 3.3), then we
see that:

L u\st M−3 ≤ C
(
α, ‖u1‖CL2 , ‖u2‖CL2

) (
(ω1,\)

3α+(ω2,\)
3α+(ωδu2)

α(ω1,])
2α+(ωB1)α(ω2,])

2α

+ ωλ1(ωδu2)
α + (ωδu1)

αωλ2
)
,

where all the controls are evaluated at (s, t). Since each term on the above right hand side
is of homogeneity at least 3α, we see that

u\ ∈ V 1/(3α)
2,loc (I;F−3) ⊂ V 1−

2,loc(I;F−3) ,

which completes the proof of Proposition 5.1. �

Remark 5.2. Assume that for j = 1, 2 and t ∈ I :

λjt :=

ˆ t

0

Ajuj dr

where we are given uj in B and

Aj(t, x) := ∂α(aj,αβ(t, x)∂β·) + bj,α(t, x)∂α + cj(t, x) ,

with coefficents aj, bj, cj such that Assumption 2.1 and Assumption 2.2 hold. Using the
explicit form (4.13) for the control ωλ appearing in Lemma 4.1, we see that λj belongs to
AC(I;F−1). Moreover, making use of the notations of Proposition 5.1, we have for every
t ∈ I :

Πt :=

ˆ t

0

(u1
r ⊗ A2

ru
2
r + A1

ru
1
r ⊗ u2

r) dr .

in the Bochner sense, in F−1.
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6. UNIQUENESS

After the preliminary step of tensorization presented in Section 5 we proceed with the
proof of uniqueness. The ultimate goal is to test the tensor equation for u(x)u(y) by
a Dirac mass δx=y which finally gives the desired equation for u2. To achieve this, we
first consider a smooth approximation to the identity ψε which is a legal test function for
(5.16). The core of the proof then consists in the justification of the passage to the limit as
ε→ 0. More precisely, it is necessary to bound all the terms in the equation uniformly in
ε ∈ (0, 1). Similarly to the a priori estimates in Section 4, the main challenge is to bound
the remainder term. Our approach relies on a suitable blow-up transformation together
with uniform bounds for all the other terms in the equation which permits to employ
again Proposition 3.1 and yields an estimate uniform in ε.

Consider u ∈ B, a weak solution to (2.22) in the sense of Definition 2.2 and define

u(x, y) := u(x)u(y) , for every (x, y) in Rd × Rd . (6.1)

Denote by S ≡ (S,S) the symmetric driver, given for every (s, t) ∈ ∆, by[
Sst := Bst ⊗ id + id⊗Bst,

Sst := Bst ⊗ id + id⊗Bst +Bst ⊗Bst ,
(6.2)

and also by

Πt :=

ˆ t

0

(
Arur ⊗ ur + ur ⊗ Arur

)
dr .

Fix ε > 0. Then replacing Ω by

Ωε :=

{
(x, y) ∈ Rd × Rd :

|x− y|
2

≤ ε

}
(6.3)

in Section 5, then Proposition 5.1 and Remark 5.2 yield that

du = dΠ + dSu , (6.4)

holds with respect to the scale (Fk(Ωε))k∈N0 , in the sense of Definition 2.2.
We now define the blow-up transformation Tε : F0(Ω) → F0(Ωε) as follows: given

Φ ∈ F0(Ω), we let

TεΦ(x, y) := (2ε)−dΦ

(
x+ y

2
+
x− y

2ε
,
x+ y

2
− x− y

2ε

)
, for any (x, y) ∈ Ωε .

(6.5)
This operation is invertible and we have for (x, y) ∈ Ω :

T−1
ε Φ(x, y) = (2ε)dΦ

(
x+ y

2
+ ε

x− y
2

,
x+ y

2
− εx− y

2

)
. (6.6)

Given k ∈ {0, 1, 2, 3} and v in F−k(Ωε), we can define a distribution T ∗ε v ∈ F−k(Ω)
by duality, and similary T−1,∗

ε v makes sense as an element of ∈ F−k(Ωε).
For any Ψ ∈ F3(Ω), we can test (6.4) against

Φ := TεΨ ∈ F3(Ωε) .

We deduce that for all Ψ ∈ F3(Ω) and (s, t) ∈ ∆ :

〈T ∗ε δust,Ψ〉 = 〈T ∗ε δΠst,Ψ〉+ 〈T ∗ε (Sst + Sst)uεs,Ψ〉+ 〈T ∗ε u
\
st,Ψ〉 ,

whence letting uε := T ∗ε u, S
ε := T ∗ε ST−1,∗

ε , Πε := T ∗ε Π, and u\,ε := T ∗ε u
\, we see that uε

is a weak solution of
duε = dΠε + dSεuε , (6.7)
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with respect to the scale (Fk(Ω))k∈N0 , in the sense of Definition 2.2.
As the next step, we establish uniform bounds for the renormalized driver Sε as well as

for the drift Πε, which in turn implies a uniform bound for the remainder u\,ε. The proof
of uniqueness is then concluded in Subsection 6.3.

6.1. Renormalizability of symmetric drivers. Let us begin with the uniform bound for
the driver Sε. Following [DGHT16a], the following definition will be useful.

Definition 6.1 (Renormalizable drivers). We say that a family Sε ≡ (Sε, Sε), ε ∈ (0, 1),
of 1/α-unbounded rough drivers is renormalizable, with respect to a scale (Gk), if there
exists a control ωS such that the bounds (2.7) hold uniformly with respect to ε ∈ (0, 1),
namely for all (s, t) ∈ ∆,

|Sεst|L(G−k,G−k−1) ≤ ωS(s, t)α , for k = 0, 1, 2 and (6.8)

|Sεst|L(G−k,G−k−2) ≤ ωS(s, t)2α , for k = 0, 1 . (6.9)

For every k we henceforth omit to mention the domain Ω and writeFk forFk(Ω) (recall
(5.2)). We have the following.

Proposition 6.1. Consider a driver S as in (6.2) and define for each ε ∈ (0, 1) :

Sε ≡ (Sε,Sε) := (T ∗ε SstT
−1,∗
ε , T ∗ε SstT−1,∗

ε ) .

Then, the family (Sε)ε∈(0,1), is renormalizable with respect to the scale (Fk).
Moreover, the bounds (6.8)-(6.9) hold with a control of the form

ωS(s, t) := C (|σ|W 3,∞ , |ν|W 2,∞)ωZ(s, t) , (6.10)

where the constant above only depends on the indicated quantities.

We now need to introduce some useful notations.

Notation 6.1. Recall (5.11). Given a ∈ Rd and ε > 0, it is useful to introduce the “local
mean” as the linear map:

ma
ε :=

1

2
(τ−εa + τεa) . (6.11)

Notation 6.2. For a ∈ Rd, we define the finite-difference operator

∆a
ε :=

τ−εa − τεa
2ε

. (6.12)

For the reader’s convenience, the main properties of ∆x−
ε are provided in Appendix A.1.

Notation 6.3. Similarly to Section 5, it will be convenient to use the new coordinates
χ : Ω→ Rd ×B1 defined by

(x+, x−) = χ(x, y) :=
(
x+y

2
, x−y

2

)
, for (x, y) ∈ Ω . (6.13)

Note that | det Dχ| = 2−d and that
√

2χ is a rotation.

Notation 6.4. Given Φ : Rd × Rd → R, we will occasionally denote by Φ̌ := Φ ◦ χ−1,
namely the map Φ̌ : Rd × Rd → R given by:

Φ̌(x+, x−) := Φ(x+ + x−, x+ − x−) , for (x+, x−) ∈ Rd × Rd. (6.14)

Provided Φ ∈ F1, we have the identities[
[(∇x +∇y)Φ] ◦ χ−1 = ∇+Φ̌

[(∇x −∇y)Φ] ◦ χ−1 = ∇−Φ̌
(6.15)
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where ∇+,∇− denote the gradients with respect to the new variables x+, x−. In view of
these relations, we will henceforth write (with a slight abuse of notation):

∇±[Φ(x, y)] = ∇xΦ(x, y)±∇yΦ(x, y) .

Proof of Proposition 6.1. By definition we have

Sε,∗st =: Zk
stT
−1
ε (Γkx + Γky)Tε .

where for k ≤ K, Γk : W 1,∞(Rd)→ L∞(Rd) is the first order differential operator

Γk = −σk · ∇ − div σk + νk . (6.16)

Intuitively, the problematic terms are those that contain derivatives. Indeed, whenever
we differentiate TεΦ, we obtain a blow up in ε. The key observation is then that the
blow up only appears in the x− direction and the bad terms are always multiplied by
σ(x)− σ(y) (or similar), which allows to compensate this blow-up by making use of the
higher regularity of σ.

Estimate on Sεst in L(F−0,F−1). For any Φ ∈ F1, we have

(σk(x) · ∇x + σk(y) · ∇y)(TεΦ)(x, y)

= σk(x) · Tε
(

1
2
∇+Φ + 1

2ε
∇−Φ

)
+ σk(y) · Tε

(
1
2
∇+Φ− 1

2ε
∇−Φ

)
=
(σk(x) + σk(y)

2

)
· Tε∇+Φ +

(σk(x)− σk(y)

2ε

)
· Tε∇−Φ.

(6.17)

Now, making use of the notations (6.11) and (6.12) we obtain that for a.e. x, y in Rd × Rd

T−1
ε (Γkx + Γky)Tε ≡ −

(
mx−

ε σ
k
)

(x+) · ∇+−
(
∆x−

ε σ
k
)

(x+) · ∇− + 2mx−
ε (− div σk + νk)

(6.18)
and we abbreviate

x+ :=
x+ y

2
, x− :=

x− y
2

. (6.19)

For the first term in (6.18), we have

L
(
mx−

ε σ
k
)
· ∇+Φ M0 ≡ ess sup

x+,x−

∣∣∣(τ−εx− + τεx−
2

)
σk(x+) · ∇+Φ̌(x+, x−)

∣∣∣
≤ |σ|L∞L Φ M1 .

For the second term, using Lemma A.1 and the fact that a.e., Supp Φ̌(x+, ·) ⊂ B1 we
have

L (∆x−
ε σ

k) · ∇−Φ M0 ≤ |∇σ|L∞L Φ M1 . (6.20)

Concerning the last term in (6.18), we have

L 2mx−
ε (− div σk + νk)Φ M0 ≤ ess sup

x+,x−

|
(
τ−εx− + τεx−

)
(νk − div σk)(x+)Φ̌(x+, x−)|

≤ 2(|ν|L∞ + | div σ|L∞)L Φ M0 .

Summing these bounds, we obtain the first estimate, namely:

|Sε,∗st |L(F1,F0) ≤ C(|σ|W 1,∞ , |ν|L∞)ωZ(s, t)α . (6.21)

Estimate on Sεst in L(F−2,F−3). Let Φ ∈ F3. First we observe that since the change of
coordinates

√
2χ is a rotation, in order to estimate LSε,∗st Φ M2, it is sufficient to estimate
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L (∇±)2Sε,∗st Φ M0. To this end, we further note that the only critical term in (6.18) is the
second one which contains ε−1. But in that case, it holds

∇−[(∆x−
ε σ

k)(x+) · ∇−Φ] = mx−
ε (∇σk)(x+) · ∇−Φ + (∆x−

ε σ
k)(x+) · ∇2

−Φ,

∇+[(∆x−
ε σ

k)(x+) · ∇−Φ] = ∆x−
ε (∇σk)(x+) · ∇−Φ + (∆x−

ε σ
k)(x+) · ∇+∇−Φ,

(6.22)

where, similarly as before, Lemma A.1 yields that a.e. on Ω :

|∆x−
ε (∇σk)| ≤ |σ|W 2,∞ , |∆x−

ε σ
k| ≤ |σ|W 1,∞ .

By the same arguments we can proceed further and apply ∇± to (6.22). This finally
leads to

|Sε,∗st |L(F3,F2) ≤ C(|σ|W 3,∞ , |ν|W 2,∞)ωZ(s, t)α .

Estimates on Sε in L(F−0,F−2) and L(F−1,F−3). Using geometricity, renormalizabil-
ity of the term Sε can be reduced to the previous cases. This is a consequence of the
identity

S∗st
def
= Zk`st (Γ`xΓkx + Γ`yΓ

k
y) + Zk

stZ
`
stΓ

`
yΓ

k
x = Zk`st (Γ`x + Γ`y)(Γ

k
x + Γky) , (s, t) ∈ ∆ ,

(6.23)
where Γk is as in (6.16).

Indeed, emphasizing summations, denoting by symZk`st := 1
2
(Zk`st +Z`kst ) ≡ 1

2
Zk
stZ

`
st and

antiZk`st := 1
2
(Zk`st−Z`kst ), and splitting the term

∑
k,` Z

k
stZ

`
stΓ

`
yΓ

k
x into two equal parts, one

can write:

S∗ =
∑
k,`

(symZk`st + antiZk`st )(Γ`xΓkx + Γ`yΓ
k
y) +

∑
k,`

Zk
stZ

`
st

2
Γ`yΓ

k
x +

∑
k′,`′

Z`′
stZ

k′
st

2
Γ`
′

xΓk
′

y

=
∑
k,`

symZk`st (Γ`x + Γ`y)(Γ
k
x + Γky) +

∑
k,`

antiZk`st (Γ`xΓkx + Γ`yΓ
k
y) .

(6.24)
However, using antisymmetry, the second term above can be written as

∑
k,` antiZk`st (Γ`x+

Γ`y)(Γ
k
x + Γky). Summing in (6.24), we see that (6.23) holds.

Now, let Φ in F2 and estimate

LSε,∗st Φ M0 ≤ |Zk`st |LT−1
ε (Γ`x + Γ`y)TεT

−1
ε (Γkx + Γky)TεΦ M0

≤ C(|σ|W 1,∞ , |ν|L∞)ωZ(s, t)2αLT−1
ε (Γkx + Γky)TεΦ M1

≤ C(|σ|W 2,∞ , |ν|W 1,∞)ωZ(s, t)2αL Φ M2 ,

where we have used the bounds obtained in the first part. This yields our first estimate.
The second estimate again reduces to the previous bounds: we have for Φ ∈ F3 :

LSε,∗st Φ M1 ≤ |Zk`st |LT−1
ε (Γ`x + Γ`y)TεT

−1
ε (Γkx + Γky)TεΦ M1

≤ C(|σ|W 2,∞ , |ν|W 1,∞)ωZ(s, t)2αLT−1
ε (Γkx + Γky)TεΦ M2

≤ C(|σ|W 3,∞ , |ν|W 2,∞)ωZ(s, t)2αL Φ M3 ,

which proves the claimed bound. �

6.2. Uniform bound on the drift. We proceed with a uniform estimate for the drift in
(6.7).

Proposition 6.2. There exists a control ωΠ, depending on u in B, b in L2rL2q, c in LrLq,
and on M, r, q, such that uniformly in ε ∈ (0, 1), for every (s, t) in ∆ :

L δΠε
st M−1 ≤ ωΠ(s, t) . (6.25)
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Furthermore, we have the bound

ωΠ(s, t) ≤ C(M, r, q)
(
‖u‖∞,2;[s,t]‖∇u‖1,2;[s,t]

+ ‖∇u‖2
2,2;[s,t] + ‖b‖2r,2q;[s,t]‖u‖2

Bs,t
+ ‖c‖r,q;[s,t]‖u‖2

Bs,t

)
, (6.26)

uniformly over (s, t) ∈ ∆, where C > 0 depends only the listed quantities.

Let k ≥ 0, and assume that we are given a measurable v(x, y) in F−k(Ωε), such that
its trace γΓv onto the diagonal Γ := {x, y ∈ R2d : x = y} is a well-defined element in
(W k,∞(Γ))∗ (this is the case for instance if v(x, y) = f 1(x)f 2(y) where f 1 ∈ W−k,2(Rd)
and f 2 ∈ W k,2(Rd)). The adjoint of Tε is given a.e. on Ω by the formula

T ∗ε v(x, y) = 2−d
(
τ−εx−y

2
⊗ τεx−y

2

)
v
(x+ y

2
,
x+ y

2

)
, (x, y) ∈ Ω , (6.27)

which, integrating against Φ ∈ Fk, and letting (x,+, x−) := χ(x, y) yields the represen-
tation

〈T ∗ε v,Φ〉 =

¨
Rd×B1

(
τ−εx− ⊗ τεx−

)
v(x+, x+)Φ(x+ + x−, x+ − x−) dx+ dx−

=

ˆ
B1

Wk,∞(Rd)∗

〈
γΓ

(
τ−εx− ⊗ τεx−

)
v, Φ̌(·, x−)

〉
Wk,∞(Rd)

dx− .

(6.28)

Proof. By definition, we have δΠε
st =

´ t
s
〈Au ⊗ u + u ⊗ Au, TεΦ〉 dr. For notational

simplicity, we now fix r in [s, t], and denote by u := ur, a
ij = aijr . For Φ ∈ F1 we have

〈Au⊗ u+ u⊗ Au, TεΦ〉
= F−1(Ωε)

〈
divx(ax∇xux)uy, TεΦ

〉
F1(Ωε)

+ F−1(Ωε)

〈
divy(ay∇yuy)ux, TεΦ

〉
F1(Ωε)

+

¨
Ωε

bi(x)∂iu(x)u(y)TεΦ dx dy +

¨
Ωε

bi(y)∂iu(y)u(x)TεΦ dx dy

+

¨
Ωε

c(x)u(x)u(y)TεΦ dx dy +

¨
Ωε

c(y)u(x)u(y)TεΦ dx dy ,

=: T 1
a + T 2

a + T 1
b + T 2

b + T 1
c + T 2

c .
(6.29)

Estimate on Ta. Using (6.28), the first term can be written as:

T 1
a =

ˆ
B1

(W 1,∞(Rd))∗

〈
γΓ

[
τ−εx− div(a∇u)τεx−u

]
, Φ̌(·, x−)

〉
W 1,∞(Rd)

dx−

=

ˆ
B1

(W 1,∞(Rd))∗

〈
γΓ

[
divx+

(
τ−εx−(a∇u)

)
τεx−u

]
, Φ̌(·, x−)

〉
W 1,∞(Rd)

dx−

=

ˆ
B1

W−1,2
+

〈
divx+

(
τ−εx−(a∇u)

)
, τεx−uΦ̌(·, x−)

〉
W 1,2

+

dx−

= −
ˆ
B1

(
τ−εx− [a∇u],∇+

(
τεx−u(x+)

)
Φ̌(·, x−) + τεx−u∇+Φ̌(·, x−)

)
L2
+

dx−

= −
ˆ
B1

(
τ−εx− [a∇u], τεx−∇uΦ̌(·, x−)

)
L2
+

dx−

−
ˆ
B1

(
τ−εx− [a∇u], τεx−u∇+Φ̌(·, x−)

)
L2
+

dx− .

(6.30)



34 ANTOINE HOCQUET AND MARTINA HOFMANOVÁ

Using that τεx− leaves the L2 norm invariant for every fixed x− in Rd, we have

T 1
a ≤
ˆ
B1

|τ−εx− [a∇u]|L2
+
|τεx−∇u|L2

+
|Φ̌(·, x−)|L∞+ dx−

+

ˆ
B1

|τ−εx− [a∇u]|L2
+
|τεx−u|L2

+
|∇+Φ̌(·, x−)|L∞+ dx−

=

ˆ
B1

|a∇u|L2
+
|∇u|L2

+
|Φ̌(·, x−)|L∞+ dx− +

ˆ
B1

|a∇u|L2
+
|u|L2

+
|∇+Φ̌(·, x−)|L∞+ dx− ,

Hence, doing similar computations for T 2
a , it follows thatˆ t

s

Ta dr ≤ 2M
(
‖∇u‖2

2,2L Φ M0 + ‖∇u‖2,2‖u‖∞,2L Φ M1

)
. (6.31)

Estimate on Tb. By (6.27), we have

T 1
b =

¨
B1×Rd

τ−εx−(bi∂iu)(x+)τεx−u(x+)Φ̌(x+, x−) dx+ dx−

≤
ˆ
B1

|τ−εx−b|L2q
+
|τ−εx−∇u|L2

+
|τεx−u|

L
2q
q−1
+

dx−L Φ M0 .

(6.32)

Using Hölder, (2.17), and then proceeding similarly for T 2
b , we obtainˆ t

s

(T 1
b + T 2

b ) dr ≤ 2‖b‖2r,2q;[s,t]‖∇u‖2,2;[s,t]‖u‖ 2r
r−1

, 2q
q−1

;[s,t]L Φ M0

≤ 2β‖b‖2r,2q;[s,t]‖∇u‖2,2;[s,t]‖u‖Bs,tL Φ M0 .

(6.33)

Estimate on Tc. Similarly, it suffices to show the estimate for T 1
c . Using again (6.27),

there comes
T 1
c =

¨
B1×Rd

τ−εx− [cu](x+)τεx−u(x+)Φ̌ dx+ dx− . (6.34)

Hence, Hölder inequality and (2.17) yieldˆ t

s

(T 1
c + T 2

c ) dr ≤ 2‖c‖r,q;[s,t]‖u‖2
2r
r−1

, 2q
q−1

;[s,t]
≤ 2β2‖c‖r,q;[s,t]‖u‖2

Bs,t
L Φ M0 . (6.35)

Combining (6.31), (6.33) and (6.35), we obtain the claimed bound. �

6.3. The proof of uniqueness. Finally, we have all in hand to complete the proof of
uniqueness. To this end, we let ωΠ(s, t) be as in Proposition 6.2 and recall that according
to Proposition 3.1, the following uniform estimate holds true for the remainder term:

L u\,εst M−3 ≤ C
(

sup
r∈[s,t]

L uεr M−0ωB(s, t)3α + ωΠ(s, t)ωB(s, t)α
)
. (6.36)

for (s, t) ∈ ∆. Note that for every u1, u2 ∈ L2 we have¨
B1×Rd

|T ∗ε (u1 ⊗ u2)(x, y)| dx dy

=

¨
B1×Rd

|τ−εx−u1(x+)τεx−u
2(x+)| dx+ dx− ≤ C|u1|L2|u2|L2 . (6.37)

Since we have the embedding L1(Ω) ⊂ L∞(Ω)∗, using (6.37) with u1 = u2 = u, there
comes

sup
r∈[s,t]

L uεr M−0 ≤ C sup
r∈[s,t]

|ur|2L2 , (6.38)
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uniformly in ε > 0. Combining the latter with (6.36) yields therefore a uniform bound of
the remainder u\,ε.

Now, take φ ∈ W 3,∞(Rd) and ψ ∈ C∞c (B1) with
´
B1
ψ dx = 1 and define

Φ(x, y) := φ
(
x+y

2

)
ψ
(
x−y

2

)
. (6.39)

Observe furthermore that L Φ M3 ≤ C|φ|W 3,∞ ≡ C φ 3,(∞) for a positive constant depend-
ing on ψ only.

Lemma 6.1. Let u2
t (x) := ut(x)2 which defines an element of

C(I;L1(Rd)) ⊂ C(I; (L∞(Rd))∗).

Then we have for every φ in W 3,∞ :

〈δu2
st, φ〉 =

ˆ t

s

(
− 2〈aij∂ju, ∂i(uφ)〉+ 〈bi∂i(u2) + 2cu2, φ〉

)
dr

+ 〈u2
s, B̂

∗
stφ〉+ 〈u2

s, B̂∗stφ〉+ 〈u2,\
st , φ〉 , (6.40)

where B̂ ≡ (B̂, B̂) is obtained by replacing ν by 2ν in the definition of B, and u2,\ belongs
to V 1−

2,loc(I, (W
3,∞)∗). Moreover the latter remainder term is estimated by the right hand

side of (6.36).

Proof. Recall that, by definition of u\,ε :

〈δust, TεΦ〉 = 〈δΠst, TεΦ〉+ 〈Sstus, TεΦ〉+ 〈Sstus, TεΦ〉+ 〈u\,εst ,Φ〉 ,

where, gathering the terms in (6.31), (6.33), (6.34), it holds:

〈δΠst, TεΦ〉 =

˚

[s,t]×B1×Rd

[
− τ−εx−(aij∂ju)(τεx−∂iu)(x+)φ(x+)ψ(x−)

− τ−εx−(aij∂ju)(τεx−u)(x+)∂iφ(x+)ψ(x−)

− τεx−(aij∂ju)(τ−εx−∂iu)(x+)φ(x+)ψ(x−)

− τεx−(aij∂ju)(τ−εx−u)(x+)∂iφ(x+)ψ(x−)

+ τ−εx−(bi∂iu)(x+)τεx−u(x+)φ(x+)ψ(x−)

+ τεx−(bi∂iu)(x+)τ−εx−u(x+)φ(x+)ψ(x−)

+ τ−εx−(cu)(x+)τεx−u(x+)φ(x+)ψ(x−)

+ τεx−(cu)(x+)τ−εx−u(x+)φ(x+)ψ(x−)
]

dx+ dx− dr

=:
∑8

i=1
T i .

Step 1: convergence of the drift. Property (5.12), Assumption 2.1 and the dominated
convergence theorem imply

T 1 + T 3 →− 2

ˆ
B1

ψ(x−)
(¨

[s,t]×Rd
aij(x+)∂ju(x+)∂iu(x+)φ(x+) dx+ dr

)
dx−

≡ −2

ˆ t

s

〈
aij∂ju, ∂iuφ

〉
dr ,

since
´
B1
ψ dx− = 1. Likewise, it holds T 2 + T 4 → −2

´ t
s
〈aij∂ju, u∂iφ〉 dr.
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Now, because of (5.12), it follows that

T 5 + T 6 → 2

ˆ t

s

〈bi∂iu, uφ〉 dr , and T 7 + T 8 → 2

ˆ t

s

〈cu2, φ〉 dr .

Summing all the terms above, we end up with the claimed convergence.
Step 2: Convergence of the left hand side. We have:

〈δust, TεΦ〉 =

¨
Ωε

δust(x)
(us(y) + ut(y)

2

)
TεΦ dx dy

+

¨
Ωε

δust(y)
(us(x) + ut(x)

2

)
TεΦ dx dy

=

¨
B1×Rd

τ−εx−δust(x+)τεx−
(us + ut

2

)
(x+)φ(x+)ψ(x−) dx+ dx−

+

¨
B1×Rd

τεx−δust(x+)τ−εx−
(us + ut

2

)
(x+)φ(x+)ψ(x−) dx+ dx− .

Using again the strong continuity of (τa)a∈Rd in L2, it holds

〈δust, TεΦ〉 →
¨
B1×Rd

ψ(x−)δust(x+)
(us + ut

2

)
(x+)φ(x+) dx+ dx−

+

¨
B1×Rd

ψ(x−)δust(x+)
(us + ut

2

)
(x+)φ(x+) dx+ dx−

≡ 〈δ(u2)st, φ〉 .

(6.41)

Step 3: convergence the driver. Let 1 > δ > 0. Since C∞(Rd) is dense in L2(Rd), we
can write u = v + w where v ∈ C∞ is such that |v|L2 ≤ 2|u|L2 and |w|L2 ≤ δ. Hence for
every δ > 0, we have

u = v + w , where v ≡ v ⊗ v ∈ C∞(Rd × Rd)

and |w|L1(Rd×Rd) ≡ |v ⊗ w + w ⊗ v + w ⊗ w|L1 ≤ 4|u|L2δ + δ2 ≤ Cδ . (6.42)

where we use (6.37). Since ε−dψ(x−
ε

) approximates the identity, changing variables as
before and then using dominated convergence, we have

〈Sv, TεΦ〉 ≡
¨

Rd×Rd

(
Bv(x)v(y)+v(x)Bv(y)

)
φ(x+y

2
)(2ε)−dψ(x−y

2ε
) dx dy → 〈B̂(v2), φ〉 ,

and also

〈Sv, TεΦ〉 ≡
¨

Rd×Rd

(
Bv(x)v(y)+Bv(x)Bv(y)+v(x)Bv(y)

)
φ(x+y

2
)(2ε)−dψ(x−y

2ε
) dx dy

→ 〈B̂(v2), φ〉 .

Using Proposition 6.1, we have

lim sup
ε→0

〈Sw, TεΦ〉 ≡ lim sup
ε→0

〈T ∗ε w, T−1
ε S∗TεΦ〉

≤ C(|v|L2|w|L2 + |w|2L2)|φ|W 1,∞δ ≤ C ′|φ|W 1,∞δ .

Similarly:

lim sup
ε→0

〈Sw, TεΦ〉 ≡ lim sup
ε→0

〈T ∗ε w, T−1
ε S∗TεΦ〉 ≤ C|φ|W 2,∞δ .
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Since δ > 0 is arbitrary, we conclude that

lim
ε→0
〈Su, TεΦ〉 = 〈B̂(u2), φ〉 . (6.43)

and
lim
ε→0
〈Su, TεΦ〉 = 〈B̂(u2), φ〉 . (6.44)

Conclusion. By (6.36)-(6.38) we have the following estimate, for (s, t) ∈ ∆ :

〈u\,εst ,Φ〉 ≤ C
(
‖u‖2

C(L2)ωZ(s, t)3α + ωµ(s, t)ωZ(s, t)α
)
|φ|W 3,∞ .

From the Banach-Alaoglu theorem, and since the other terms in the equation converge,
we see that for each (s, t) ∈ ∆, there exists a linear functional u2,\

st ∈ (W 3,∞)∗, such that

〈u\,εst ,Φ〉 → 〈u
2,\
st , φ〉 .

for every φ in W 3,∞. From (6.36) we see that u2,\ belongs to V 1−
2,loc(I; (W 3,∞)∗), proving

therefore that (6.40) is fulfilled. �

We can now establish uniqueness of weak solutions in B.

Proof of Theorem 1, uniqueness part. Testing (6.40) against φ := 1 ∈ W 3,∞, and pro-
ceeding as in Section 4, we see from the Rough Gronwall Lemma that every weak solution
to (2.22) in the sense of Definition 2.2 satisfies

‖u‖2
C([0,T ];L2) + min(1,m)

ˆ T

0

|∇ur|2L2 dr

≤ C
(
ωZ , |σ|W 3,∞ , |ν|W 2,∞ ,M, ‖b‖2r,2q, ‖c‖r,q, α, T

)
|u0|2L2 .

which gives (2.26). By linearity we deduce that there cannot be more than one weak
solution for (2.22), hence uniqueness is proven. �

7. EXISTENCE AND STABILITY

Finally, we intend to prove existence and stability of weak solutions to (2.22). To this
end, we approximate the driving signal by smooth paths such that the classical PDE the-
ory applies and yields existence of a unique approximate solution. The results of Section
4 yield uniform a priori estimates and the passage to the limit then follows from a com-
pactness argument.

Let zn : I → RK , n ∈ N0, be a sequence of smooth paths. We define their canonical
lift by Zn = δzn and Znst :=

´ t
s
δznsr dznr and assume that Zn ≡ (Zn,Zn) approximates

the given rough path Z ≡ (Z,Z) in the sense that

|Zn − Z|1/α−var + |Zn − Z|2/α−var −→
n→∞

0 . (7.1)

Let
un0 → u0 in L2 ,

an → a in L∞ , with an ∈ Pm,M ,

bn → b in L2r(I;L2q) , cn → c in Lr(I;Lq) ,

σn → σ in W 3,∞, νn → ν in W 2,∞,

(7.2)

and let
An := ∂j

(
an;ij∂j ·

)
+ bn;i∂i + cn ,

Bn := Zn;k(σn;ki∂i + νn;k) , Bn := Zn;k`(σn;ki∂i + νn;k)(σn;`j∂j + νn;`) .
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We can assume without loss of generality that uniformly in n :

|un0 |L2 + ‖an‖∞,∞ + ‖bn‖2r,2q + ‖cn‖r,q + |σn|W 3,∞ + |νn|W 2,∞

≤ 1 + |u0|L2 + ‖a‖∞,∞ + ‖b‖2r,2q + ‖c‖r,q + |σ|W 3,∞ + |ν|W 2,∞ , (7.3)

and that[
|Bn

st|L(W−k,2,W−k−1,2) ≤ ωB(s, t)α , k ∈ {0, 1, 2}
|Bnst|L(W−k,2,W−k−2,2) ≤ ωB(s, t)2α , k ∈ {0, 1} , for (s, t) in ∆ ,

(7.4)

where ωB is as in (2.21).
Recall that since zn is smooth, existence and uniqueness of a weak solution un ∈ B0,T

to
∂tu

n = Anun + Ḃnun, un|t=0 = un0 ,

in the sense of distributions, follows from the classical PDE theory (see the discussion in
Section 4.1 for more details). Consequently, by Proposition 4.1, together with (7.3) and
(7.4), the B0,T -norm of un is uniformly bounded, namely,

‖un‖2
B0,T

= sup
0≤t≤T

|unt |2L2 +

ˆ T

0

|∇unr |2L2 dr ≤ C(1 + |u0|2L2) . (7.5)

Hence the Banach-Alaoglu theorem ensures (up to a subsequence) that

un → u and ∇un → ∇u weakly in L2([0, T ]× Rd), (7.6)

and by weak lower semicontinuity of the norm we obtain

‖u‖2
B0,T

<∞ . (7.7)

By (7.6) and the strong convergence ‖an − a‖∞,∞ → 0 it follows that:ˆ t

s

〈−an;ij
r ∂ju

n, ∂iφ〉 dr →
ˆ t

s

〈−aijr ∂ju, ∂iφ〉 dr

for each φ in W 1,2. Moreover, using (7.2) we have

‖(bn − b)φ‖2,2 ≤ ‖bn − b‖2r,2q‖φ‖ 2r
r−2

, 2q
q−2
≤ β‖bn − b‖2r,2q|φ|W 1,2T

r−2
2r → 0 ,

and similarly
‖(cn − c)φ‖2,2 ≤ β‖cn − c‖r,q|φ|W 1,2T

r−2
2r → 0 .

As a consequence, using the strong/weak convergence principle, we have alsoˆ t

s

〈bn;i∂iu
n + cnun, φ〉 dr →

ˆ t

s

〈bi∂iu+ cu, φ〉 dr .

The weak convergence obtained above is however not sufficient to take the pointwise limit
in time, which is needed in order to pass to the limit on the left hand side of the equation
as well as in the rough integral. For that purpose, we will show that the sequence (un)
satisfies an equicontinuity property in the space W−1,2.

Proof of uniform equicontinuity. Using Lemma 4.1, (4.13), (7.4) and (7.5), we have the
estimateˆ t

s

Anun dr −1,(2) ≤ ωn(s, t) ≡ (t− s)1/2un(s, t)1/2 + bn(s, t)1/(2r)an(s, t)1/2(t− s)
r−1
2r

+ cn(s, t)1/run(s, t)
r−1
2r (t− s)

r−1
2r

(7.8)



AN ENERGY METHOD FOR ROUGH PDES 39

where we adapt the notations (4.10) in an obvious way.
Moreover, from similar computations as that of Corollary 4.1 (the proof is left to the

reader) we see that un is a weak solution of

dun = Anun dt+ dBnun ,

in the sense of Definition 2.2, with respect to the scale (W k,2)k∈N0 . Namely:

〈δunst, φ〉 =

ˆ t

s

〈Anun, φ〉 dr + 〈Bn
stu

n
s , φ〉+ 〈Bnstuns , φ〉+ 〈u\,nst , φ〉 (7.9)

for each φ in W 3,∞, and (s, t) ∈ ∆. Applying Proposition 3.1 (more specifically using
(3.12)), we have the bound

δunst −1,(2) ≤ C (ωn(s, t) + ωn(s, t)α + ωB(s, t)α) . (7.10)

Now, recall that an(s, t) ≤ C(1 + 2M‖u‖B0,T
) ≤ C1, and, by (2.17), that un(s, t) ≤

C‖u‖B0,T
≤ C2. Using moreover (7.2), the controls bn and cn are equicontinuous in the

sense that for each ε > 0 there exist δ > 0 such that

|s− t| ≤ δ(ε) =⇒ bn(s, t) + cn(s, t) ≤ ε2

max(C1, C2)2
.

Letting δ′ ≤ min(δ(ε), ε2) and substituting in (7.8) we see that

ωn(s, t) ≤ ε , for all n ∈ N0 , provided |t− s| ≤ δ′ .

which shows uniform equicontinuity for ωn, n ≥ 0. By (7.10), the same property holds
for δunst −1,(2), hence uniform equicontinuity in W−1,2 is proved. �

Thanks to the compact embedding

L2(Rd) ↪→ W−1,2
loc (Rd) ,

the bound (7.5) shows that (uns )n∈N0 has a compact closure for each s in I.Using equicon-
tinuity, a well-known infinite-dimensional version of Ascoli Theorem (we refer, e.g. to
[Kel75]) ensures that, up to a subsequence:

uns → us in W−1,2
loc (Rd) uniformly for s ∈ I . (7.11)

By (7.6), (7.11), fixing a compactly supported φ in W 1,2(Rd), we have for every (s, t) ∈
∆ :

〈unt − uns , φ〉 → 〈ut − us, φ〉 .
Furthermore, by (2.18), for each φ ∈ W 3,2 with compact support, we have

σ∗φ 1,(2) , σ∗σ∗φ 1,(2) , νσ∗φ 1,(2) , σ∗(νφ) 1,(2) , <∞ .

Finally, using (7.11) as well as (7.10), we obtain the following:

Zn
st · 〈uns , (σn)∗φ〉 → Zst · 〈us,σ∗φ〉 , Zn

st · 〈uns , νφ〉 → Zst · 〈us, νφ〉 ,
Znst · 〈uns , (σn)∗(σn)∗φ〉 → Zst · 〈us,σ∗σ∗φ〉 , Znst · 〈uns , (σn)∗(νφ)〉 → Zst · 〈us,σ∗(νφ)〉 ,

Znst · 〈uns , ν(σn)∗φ〉 → Zst · 〈us, νσ∗φ〉 , Znst · 〈uns , ν2φ〉 → Zst · 〈us, ν2φ〉 .
Using in addition the estimate (3.8), we can take the limit in (7.9), so that u satisfies
the corresponding weak formulation of (1.1) for every compactly supported test function
in W 3,2. Due to the energy bound (7.7) we may then relax the assumptions on the test
function φ and deduce that u is indeed a weak solution of (1.1), with respect to the scale
(W k,2)k∈N0 .
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Therefore the existence part of Theorem 1 follows. It was already shown in Section 6
that the weak solution u ≡ S(u0, a, b, c, σ, ν,Z) is unique. In addition, due to our con-
struction, every subsequence of (un)n∈N0 contains a further subsequence which converges
towards the same limit S(u0, a, b, c, σ, ν,Z). Hence we deduce that the original sequence
(un)n∈N0 converges. Moreover, thanks to (7.6), (7.11), continuity of S holds with respect
to each of its variables. Indeed, it is enough to observe that the above proof remains ap-
plicable if Zn is not necessarily a smooth approximation of Z in Cg. This completes the
proof of the Theorem 1 and Theorem 2. �

APPENDIX A. AUXILIARY RESULTS

A.1. Convergence of finite-difference approximations. Recall (6.12). We have the fol-
lowing.

Lemma A.1. Let 1 ≤ p <∞. and fix a in Rd. We have for every ϕ ∈ W 1,∞(Rd) :

|∆a
εϕ|L∞ ≤ |a||∇ϕ|L∞ .

Moreover, as ε goes to 0, we have

∆a
εϕ→ a · ∇ϕ strongly in Lp(Rd) ,

provided
• either p <∞ and ϕ ∈ W 1,p;
• or p =∞ and ϕ ∈ W 2,∞.

Proof. The first bound is an easy consequence of Taylor Formula, since for every a ∈ Rd

∆a
εϕ(x) = a ·

ˆ 1

0

∇ϕ
(
x+ ε(2θ − 1)a

)
dθ . (A.1)

Case p ∈ [1,∞). By Taylor Formula, we have for a.e. x in Rd :

∆a
εϕ− a · ∇ϕ(x) = a ·

ˆ 1

0

(
∇ϕ
(
x+ ε(2θ − 1)a

)
−∇ϕ(x)

)
dθ

whenceˆ
Rd
|∆a

εϕ− a · ∇ϕ(x)|p dx ≤ |a|p
ˆ
Rd

ˆ 1

0

∣∣∇ϕ(x+ ε(2θ − 1)a
)
−∇ϕ(x)

∣∣p dθ dx

= |a|p
ˆ 1

0

(ˆ
Rd

∣∣∇ϕ(x+ ε(2θ − 1)a
)
−∇ϕ(x)

∣∣p dx

)
dθ

= |a|p
ˆ 1

0

|(τ−ε(2θ−1)a − id)∇ϕ(x)|pLp dθ

→ 0 , as ε→ 0 ,

using the strong Lp continuity of (τa)a∈Rd when p ∈ [1,∞) and dominated convergence.
Case p =∞. Similarly, we have

|∆a
εϕ− a · ∇ϕ|L∞ ≤

ˆ 1

0

sup
x∈Rd
|(τ−ε(2θ−1)a − id)∇ϕ(x)| dθ

≤
ˆ 1

0

ε|2θ − 1| sup
x∈Rd

ˆ 1

0

|∇2ϕ
(
x+ θ′ε(2θ − 1)a

)
| dθ′ dθ

≤ Cε|ϕ|W 2,∞ → 0 , as ε→ 0 ,

which proves the lemma. �
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A.2. The Sewing Lemma. A proof of the following classical result, for the case where
E is a (finite-dimensional) normed vector space, can be found e.g. in [Gub04, GT10], the
Banach space case being treated e.g. in [FH14]. The result appears to have an immediate
extension to the case of a complete locally convex topological vector space E (l.c.v.s.),
which is a repeatedly encountered scenario in PDE theory (see Remark A.1 below).

As before, we set I := [0, T ], for some T > 0, and ∆ ≡ ∆I , ∆2 ≡ ∆2
I to be the

corresponding simplexes. Given a l.c.v.s.E equipped with a family of seminorms (pγ)γ∈Γ,
and a > 0 we define the space V 1/a

1 (I;E) as the set of paths h : I → E such that for every
γ ∈ Γ and every (s, t) ∈ ∆, there holds pγ

(
δhst

)
≤ ωh,γ(s, t)

a for (s, t) ∈ ∆, for some
control depending on h and γ. Note that V 1/a

1 (I;E) is also a locally convex topological
vector space given by the seminorms

h 7→ sup
p∈P(I)

(∑
(p)
pγ(δhtiti+1

)1/a

)a
, γ ∈ Γ ,

(see (2.3)). The space V 1/a
2 (I;E) is defined in a similar fashion. Furthermore, V 1−

2 (I;E)
corresponds to those 2-index maps g ≡ gst such that for each pγ as above, there is a
control ωh,γ and aγ > 1 with pγ(gst) ≤ ωh,γ(s, t)

aγ for (s, t) ∈ ∆.

Proposition A.1 (Sewing Lemma). Let E be a complete, locally convex topological vec-
tor space. Let (pγ)γ∈Γ be a family of semi-norms.

Define Z1−(I;E) as the set of 3-index maps h : ∆2 → E such that
• there exists a continuous B : ∆→ E with h = δB;
• for each γ ∈ Γ, there is a control ωh,γ : ∆→ [0,∞) and aγ > 1, such that

pγ (hsθt) ≤ ωh,γ(s, t)
aγ , (A.2)

uniformly as (s, θ, t) ∈ ∆2.

Then, there exists a linear map Λ : Z1−(I;E) → V 1−
2 (I;E), continuous in the sense

that for every γ ∈ Γ and h ∈ Z1−(I;E) there holds

pγ (Λhst) ≤ Caγωh,γ(s, t)
aγ , for every (s, t) ∈ ∆ , (A.3)

where the above constant only depends on the value of aγ > 1. In addition, Λ is a right
inverse for δ, namely

δΛ = id |Z1− , (A.4)
and it is unique in the class of linear mappings fulfilling the properties (A.3)-(A.4).

Finally, for any (s, t) ∈ ∆, we have the explicit formula:

Λsth = lim
|p|→0

(
Bst −

∑
(p)
Btiti+1

)
, (A.5)

where we use the summation convention (2.3).

Example A.1. The above infinite-dimensional Sewing Lemma applies in D ′(O), the space
of distributions over an open subset O of some Euclidean space, for which a family of
semi-norms is provided by

pφ(v) := |〈v, φ〉| , φ ∈ C∞c (O) ,

for v in D ′(O).
We could replace D ′ by the space of Schwarz distributions S ′, or any Banach space of

linear functionals endowed with the weak-* topology.
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Proof. The proof is similar to that of [FH14]. Fix (s, t) ∈ ∆, and consider a partition
p := {s ≡ t1 < t2 < · · · < tk ≡ t} of [s, t], such that #p = k ≥ 2. Define

Λph := Bst −
∑

1≤i≤k−1

Btiti+1
,

where B is such that δB = h.
Let γ ∈ Γ. By the superadditivity of ωh,γ, there exists i1 ∈ {1, . . . , k} such that

ωh,γ(ti1−1, ti1+1) ≤ 2

k − 1
ωh,γ(s, t) .

Moreover, we have the relation

pγ
(
Λp\{ti1}h− Λph

)
= pγ(δBti−1,ti,ti+1

) ≤
(

2

k − 1
ωh,γ(s, t)

)aγ
. (A.6)

Replacing p by p \ {ti1}, we can iterate this procedure until we end up with the trivial
partition p \ {ti1 , . . . , tik−2

} ≡ {s, t} for which Λ{s,t}h = 0 (note that the order in which
the points ti are dropped out may depend on γ in Γ, but this is not a problem since the
final expression does not). Writing that

Λph =
(
Λp − Λp\{ti1}

)
h+ · · ·+

(
Λp\{ti1 ,...,tik−3

} − Λ{s,t}
)
h ,

and using (A.6) k − 2 times, we find the maximal inequality

pγ (Λph) ≤ 2aγωh,γ(s, t)
aγ

k−2∑
i=1

i−aγ ≤ 2aγωh,γ(s, t)
aγ

∞∑
i=1

i−aγ ≤ Caγωh,γ(s, t)
aγ ,

(A.7)
and this holds for every γ in Γ.

Now, let us consider a refined partition p′ ⊂ p. We have

Λph− Λp′h = −
∑

1≤i≤k−1

(
Btiti+1

−
∑

{θ,τ}⊂p′∩[ti,ti+1], θ<τ

Bθτ︸ ︷︷ ︸
Λp′∩[ti,ti+1]h

)

whence, using the maximal inequality (A.7) on each [ti, ti+1], there comes:

pγ

(
Λph− Λp′h

)
≤

∑
ti∈p, i<k

Caωh,γ(ti, ti+1)aγ .

Since aγ > 1, the r.h.s. above vanishes as the size of p goes to 0, which by completeness
of E shows the convergence of Λph towards some Λsth, for any (s, t) ∈ ∆.

Finally, one can follow the lines of Step 4 in [GT10, Proposition 2.3] to show that we
have δΛh = h. This completes the proof. �

Corollary and definition A.1. Given α ∈ (0, 1], let B in V 1/α
2 (I;E) and assume that

δB ∈ Z1−. Define
I(B) := B − ΛδB ∈ V 1/α

2 (I;E) . (A.8)

Then, the linear map I : V
1/α

2 (I;E) → V
1/α

2 (I;E), B 7→ I(B) fulfills the following
properties

• δI = 0;

• if h ∈ V
1/α

2 (I;E) is another 2-index map such that δh = 0 and h − B ∈
V 1−(I;E), then h = I(B);
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• for any B as above, I(B) is given by

IstB = lim
|p|→0

∑
(p)
Btiti+1

; (A.9)

• let E be a reflexive Banach space, and assume that f : I → L(E,F ), g : I → E
are measurable maps, f being continuous, and such that g belongs to AC(I;E).
Let ġ ∈ L1(I;E) denote the weak derivative of the path g. Assume in addition
that δ(fδg) ∈ Z1−(I;F ). Then, we have

´
I
|frġr|F dr <∞ and

I(fδg)st =

ˆ t

s

frġr dr (Bochner integral in F ) , (A.10)

where fδg is to be understood as the map (s, t) ∈ ∆ 7→ fsδgst.

For B as above, the 2-index map (s, t) ∈ ∆ 7→ I(B)st is called the rough integral of
B.

Proof. The three first statements are immediate consequences of Proposition A.1, (for a
proof in the Banach space setting, we refer e.g. to [Gub04, FH14]).

Let us check the last point. First, note that the weak derivative of g exists, because any
reflexive space fulfills the Radon-Nikodym property (see [DU77, Definition 3 p. 61 and
Corollary 13 p. 76]). From the formula (A.9), it holds that I(fδg) is the limit, as n→∞
of the partial sums

In :=
∑
(pn)

ftni δgtni tni+1
≡
∑
(pn)

ftni

ˆ tni+1

tni

ġr dr =

ˆ
I

frġr dr −
∑
(pn)

ˆ tni+1

tni

(fr − ftni )ġr dr ,

where pn ≡ (tni ) is such that |pn| → 0. The mapping f : I ≡ [0, T ] → R is continu-
ous, hence uniformly continuous, so that the second term above goes to 0 as n → ∞.
Therefore, I(fδg) ≡ lim In =

´
I
frġr dr, which proves (A.10). �

A.3. Families of smoothing operators. Let Rη denote the family of smoothing opera-
tors defined on ϕ ∈ W k,∞ ≡ W k,∞(Rd), k ∈ N0, by

Rηϕ(x) := [ϕ ∗ %η](x) =

[
ϕ ∗ %

( ·
η

)
η−d
]

(x) ≡
ˆ
Rd
ϕ(ξ)%

(x− ξ
η

)dξ

ηd
, x ∈ Rd ,

(A.11)
where % ∈ C∞(Rd;R) is a non-negative, radially symmetric function that integrates to
1, and such that Supp % ⊂ B1. As a consequence, Rη reproduces affine linear functions
exactly and it is then possible to recover the error of order η2 for |(Rη− id)ϕ|L∞ provided
ϕ belongs toW 2,∞ (this is classical and follows from a Taylor expansion of the integrand).
More precisely, we have the following.

Lemma A.2. The family (Rη)η∈(0,1) is a 2-step family of smoothing operators over the
scale W k,∞(Rd).

Remark A.1. One could also consider different mollifiers (no longer nonnegative) which
would reproduce polynomials of higher order exactly, in order to obtain higher rates of
convergence of |(Rη−id)ϕ|Wn,∞ under suitable regularity assumption on ϕ. Second order
estimates in η are however sufficient here.

Since Rη increases the support of test functions, it cannot define a smoothing family
for the scale (Fk)k∈N0 defined in (5.4). To deal with that problem, we need to introduce a
suitable cut-off function. Let θη ∈ C∞c (R) such that

0 ≤ θη ≤ 1 , Supp θη ⊂ B1−2η ⊂ R , θ ≡ 1 on B1−3η ⊂ R , (A.12)
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and such that for k = 1, 2 :

|∇kθη| ≤
C

ηk
.

Next, we define
Θη(x) := θη(|x|2) , for x ∈ Rd . (A.13)

The following has been shown in [DGHT16a].

Lemma A.3. There is a constant Cθ > 0 such that for k = 0, 1, 2, and every ψ in
W k,∞(Rd) compactly supported in B1 :

|Θηψ|Wk,∞ ≤ Cθ|ψ|Wk,∞ . (A.14)

If in addition we assume ψ ∈ W k,∞(Rd), with 0 ≤ ` ≤ k ≤ 3 then

|(1−Θη)ψ|W `,∞ ≤ Cθη
k−`|ψ|Wk,∞ . (A.15)

Corollary A.1. The linear mappings Jη : F0(Ω)→ F0(Ω), η ∈ (0, 1), defined by

Jηφ := χ ◦
(
Rη ⊗ (RηΘη)(φ ◦ χ−1)

)
where we keep the notations of Lemma A.2, (6.13) and (A.13), provide a 2-step family of
smoothing operators with respect to the scale (Fk(Ω))k∈N0 .

Proof. Since
√

2χ is a rotation, it is sufficient to show the corollary on the scale

Fk :=
{
φ ∈ W k,∞(Rd × Rd) , Suppφ ⊂ Rd ×B1

}
, (A.16)

endowed with the norm L · Mk := | · |Wk,∞ , and Jη := Rη ⊗ (RηΘη).
Note first that for any fixed x ∈ Rd, and φ ∈ Fk :

Supp
(

id⊗(RηΘη)φ(x, ·)
)
⊂ Supp(Θηφ(x, ·)) + Supp(%η) ⊂ B1 (A.17)

Since we have Jηφ = (Rη ⊗ id)(id⊗RηΘη)φ, we see that

Supp Jηφ ⊂ B1 ,

and because Jηφ is smooth, the property (J1) follows.
Concerning (J2), let for instance fix k = 0, and φ ∈ F0. Using Lemma A.2, denoting

by ψy := (id⊗RηΘη)φ(·, y), we have for any 1 ≤ i ≤ d and x, y ∈ Rd :

|∂xiJηφ(x, y)| ≡ |∂xi(Rη⊗id)[ψy](x)| ≤ C

η
|ψy|L∞x ≤

C

η

ˆ
Rd

Θη(y
′)|φ(·, y′)|L∞x %η(y−y

′) dy′

≤ C

η
Lφ M0 .

Similarly, denoting by ψ̃x := (Rη ⊗ id)(1−Θη)φ(x, ·), it holds

|∂yiJηφ(x, y)| ≤ |∂yi(Rη ⊗Rη)φ|+ |∂yi(id⊗Rη)ψ̃
x(y)| ≤ C

η
Lφ M0 +

C

η
|ψ̃x|L∞y

≤ C

η
Lφ M0 +

C

η

ˆ
Rd
|(1−Θη(y))φ(x′, ·)|L∞y %η(x− x

′) dx′ ≤ C ′

η
Lφ M0 .

Inequalities corresponding to k = 1, 2 are shown in a similar way, using in addition
(A.14)-(A.15). The bounds related to (J3) are similar. �
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