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ABSTRACT	
	

CD95	 is	considered	as	 the	classical	death	receptor	and	well	studied	 for	 its	

role	 as	 apoptosis	 mediator.	 Consequently	 CD95	 is	 often	 associated	 as	 a	 tumor	

suppressor.	Recent	data	indicate	that	CD95	activation	also	transmits	non-apoptotic	

signals	 and	 that	 CD95	 has	 a	 growth-promoting	 role	 during	 tumorigenesis.	 The	

exact	mechanisms	that	lead	either	to	cell	death	or	survival/proliferation	mediated	

by	CD95	seem	to	be	highly	context	dependent	and	yet	not	completely	understood.		

In	this	work,	we	investigated	whether	the	receptor	tyrosine	kinase	receptor	

EGFR	 and	 CD95	 share	 similarities	 in	 their	 spatial	 and	 temporal	 dynamics	 and	

whether	EGFR	activation	can	alter	the	response	properties	of	CD95	in	terms	of	its	

reactivity	towards	FasL.	For	that	we	used	two	cell	lines,	Huh7	liver	carcinoma	cells	

ectopically	expressing	CD95	and	EGFR	and	HCC827,	a	non-small	 cell	 lung	cancer	

line,	 expressing	 wild-type	 CD95	 but	 harboring	 a	 constitutively	 active	 EGFR	

mutation.	We	were	able	to	show	that	EGFR	and	CD95	interact	with	each	other	and	

that	 EGF	 treatment	 leads	 to	 CD95	phosphorylation.	Moreover,	we	 show	 that	 the	

pre-treatment	with	EGF	is	sufficient	to	protect	cells	from	FasL-induced	apoptosis,	

which	is	dependent	on	EGFR-mediated	phosphorylation.	Finally,	we	used	the	non-

small	cell	 lung	cancer	cell	 line	HCC827	to	verify	our	findings	 in	a	relevant	cancer	

model.	We	were	able	to	show	that	inhibition	of	the	constitutive	activity	of	EGFR	by	

utilizing	 the	 tyrosine	 kinase	 inhibitor	 (TKI)	 Erlotinib	 re-sensitizes	 HCC827	 cells	

towards	FasL-induced	apoptosis.		

Considering	 EGF	 exposure	 and	 consequently	 a	 high	 EGFR	 activity	 as	

‘historical	context’	of	a	cell,	we	provide	evidence	that	the	responsiveness	of	CD95	

to	its	own	ligand	is	not	following	a	simple	‘binding-and-respond	pattern’	but	rather	

that	the	intrinsic	state	of	CD95	is	influenced	by	the	prior	history	of	the	cell	and	in	

turn	 determines	 the	 cellular	 response	 to	 subsequent	 FasL	 stimulation.	
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ZUSAMMENFASSUNG	
	

CD95	 wird	 als	 der	 klassische	 ‚Todesrezeptor’	 angesehen	 und	 seine	 Rolle	 als	

Apoptose-induzierendes	Protein	 ist	sehr	gut	beschrieben.	Auf	Grund	dessen	wird	

CD95	 häufig	 als	 Tumorsuppressorprotein	 wahrgenommen.	 Neuere	

Veröffentlichungen	 deuten	 allerdings	 daraufhin,	 dass	 die	 Aktivierung	 von	 CD95	

auch	 nicht-apoptotische	 Signale	 vermittelt	 und	 sogar	 eine	 wachstumsfördernde	

Rolle	während	der	Tumorentstehung	hat.	Die	genauen	Mechanismen,	die	entweder	

zu	 CD95-induziertem	 Zelltod	 oder	 zu	 CD95-induziertem	 Überleben	 bzw.	

Wachstum	führen,	scheinen	jedoch	höchst	kontextspezifisch	zu	sein	und	sind	nur	

ungenügend	beschrieben.	

In	 dieser	 Arbeit	 wurde	 untersucht,	 ob	 die	 Rezeptortyrosinkinase	 EGFR	 und	

CD95	Gemeinsamkeiten	in	ihrer	räumlichen	und	zeitlichen	Dynamik	zeigen	und	ob	

die	Aktivität	vom	EGF	Rezeptor	die	Reaktionseigenschaften	von	CD95	beeinflusst,	

indem	beispielsweise	die	Aktivierung	von	CD95	durch	FasL	beeinflusst	wird.	Um	

dies	 zu	 untersuchen,	wurden	 zum	 einen	 eine	 Leberkarzinomzelllinie	 verwendet,	

die	sowohl	CD95	als	auch	EGFR	ektopisch	exprimiert	und	eine	‚non-small	cell	lung	

cancer’-Zelllinie,	 die	 zwar	 wildtyp-CD95	 exprimiert,	 allerdings	 eine	 mutierte	

EGFR-Variante	 mit	 konstitutiver	 Aktivität.	 	 Wir	 konnten	 zeigen,	 dass	 EGFR	 und	

CD95	 miteinander	 interagieren	 und	 dass	 die	 Stimulation	 mit	 EGF	 zur	 Tyrosin-

Phosphorylierung	 von	 CD95	 führt.	 Weiterhin	 konnten	 wir	 zeigen,	 das	 die	 prä-

Stimulation	mit	EGF	ausreicht,	um	Zellen	vor	FasL-induziertem	Zelltod	zu	schützen	

und	 dass	 dies	 von	 der	 EGFR-vermittelten	 Phosphorylierung	 abhängt.	

Schlussendlich,	 haben	 wir	 unsere	 Erkenntnisse	 in	 der	 Krebszelllinie	 HCC827	

validieret.	 	Dort	 konnten	wir	 zeigen,	 dass	die	 Inhibition	der	 konstitutiven	EGFR-

Aktivität	durch	den	Tyrosin-Kinase-Inhibitor	Erlotinib	zur		Wiederherstellung	der	

Sensibilität		von	FasL-vermittelter	Apoptose	führt.		

Wenn	 EGF-Stimulation	 und	 die	 daraus	 resultierende	 erhöhte	 EGFR-Aktivität	

als	 ‚historischer	 Kontext’	 einer	 Zelle	 angesehen	 werden	 kann,	 deuten	 unsere	

Ergebnisse	daraufhin,	dass	die	Reaktionseigenschaften	von	CD95	gegenüber	FasL	

nicht	einem	simplen	‚Bindungs-und-Reaktionsmuster’	folgen,	sondern	stattdessen	

stark	 vom	 ‚historischen	 Kontext’	 der	 Zelle	 beeinflusst	 werden.	 Dieser	 prägt	 im	
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besonderen	Maße	den	intrinsischen	Zustand	von	CD95	und	hat	im	weitern	Verlauf	

maßgeblichen	 Einfluss	 ob	 und	 wie	 CD95	 auf	 Stimulation	 mit	 FasL	 reagiert.



	 X	
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1. INTRODUCTION	
	

1.1 A	PROTEIN	ON	THE	EDGE	
	

A	 correct	 balance	 between	 apoptosis	 and	 proliferation	 is	 necessary	 in	

embryonic	 development	 and	 later	 for	 tissue	 maintenance.	 While	 during	

embryogenesis	the	internal	structure	of	each	organ	and	tissue	is	defined,	later	this	

complex	internal	structure	must	be	preserved.	For	this	essential	task	cells	evolved	

complex	 intercellular	 communication	 mechanisms	 whereby	 signals	 from	

neighboring	 cells	 are	 interpreted	 and	 an	 appropriate	 response	 for	 the	 current	

tissue	 context	 can	 be	 engaged.	 This	 appears	 especially	 remarkable	 as	 under	

physiological	conditions	cells	are	exposed	to	a	high	amount	of	different	and	often	

opposing	 signals.	 Yet,	 cells	 can	 efficiently	 distinguish	 signals	 from	 noise	 and	

respond	 precisely.	 The	main	 regulator	 that	 orchestrates	 the	 cellular	 response	 to	

incoming	 signals	 is	 the	 plasma	membrane	 (PM).	 The	 composition	 of	 the	 plasma	

membrane,	 in	 relation	 to	 the	concentration	of	a	particular	 receptor,	 for	example,	

can	be	modulated	by	the	cellular	context/surrounding.	This	raises	the	question	of	

how	 the	 historical	 context	 of	 a	 cell,	 in	 terms	 of	 exposure	 to	 a	 certain	 stimuli,	

influences	 the	 cellular	 fate	 by	 determining	 e.g.	 the	 concentration	 of	 a	 particular	

receptor	and	thereby	promoting	a	certain	response.		

Two	well-known	classes	of	membrane	proteins	 that	regulate	cell	 fate	are	 the	

receptor	 tyrosine	 kinase	 (RTK)	 family	 of	 receptors,	 like	 EGFR,	 and	 cytokine	

receptors,	 like	 CD95	 (1,	2).	While	 EGFR	 is	well	 known	 for	 its	 growth-promoting	

role,	 CD95	 is	 often	 referred	 to	 as	 the	death	 receptor.	 So	 both	 receptors	 regulate	

opposing	 cellular	 responses,	 but	 still,	 if	 contemplated	 in	 a	 bigger	 scale,	 like	 for	

example	a	tissue,	both	pathways	are	tightly	linked.	In	a	recent	review	dealing	with	

life-death	signaling	in	single	cells,	Flusberg	and	Sorger	give	nice	examples	showing	

the	tight	bond	between	both	pathways	(3).	Stress-response	signaling	is	mentioned	

as	an	example	as	it	often	has	a	dual	role;	survival	pathways	are	activated	to	buffer	

and	repair	damage,	and	death	pathways	are	required	to	kill	cells	when	the	damage	

is	 beyond	 repair.	 But	 also	 under	 “normal”,	 healthy	 conditions,	 individual	 tissues	

and/or	 organs	 operate	 at	 a	 cellular	 homeostasis	 where	 cell	 proliferation	 is	
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required	 to	 counter	 continuous	 cell	 death.	 This	 equilibrium	 between	 cell	

production	 and	 cell	 death	 needs	 to	 be	 tightly	 maintained	 since	 already	 small	

differences	would	 cause	 extensive	 effects.	Despite	 that	 the	 essential	 players	 that	

determine	cell	fate	are	well	known,	other	equally	important	aspects	like	different	

cellular	states	in	a	multicellular	organism	and	a	resulting	cell-to-cell	variability	are	

less	 well	 understood.	 Accordingly,	 the	 question	 of	 what	makes	 one	 cell	 die	 and	

what	let	the	others	survive,	is	dependent	on	a	variety	of	environmental	states.	So,	

whether	 a	 cell	 survives	 or	 dies	 after	 a	 certain	 stimuli	 is	 dependent	 on	 both	 the	

extra-	but	also	intracellular	context,	like	the	activity	state	of	involved	proteins,	the	

microenvironment	 of	 certain	 proteins	 but	 also	 on	 the	 cell	 type	 and	 on	 specific	

adoptions.	

It	 becomes	 even	 more	 complicated	 as	 some	 proteins	 are	 pleiotropic	 and	

exhibit	 several	 functions	 simultaneously	 and	 the	 surroundings	 of	 those	 proteins	

determine	whether	one	over	the	other	function	dominates.	This	can	be	influenced	

by	 several	 means,	 e.g.,	 inhibition/activation	 through	 interactors	 or	 positive	 and	

negative	 feedback	 loops.	The	death	 receptors	of	 the	 tumor	necrosis	 factor	 (TNF)	

family,	 like	 CD95,	 represent	 this	 phenotype	 exceptionally	 as	 some	 members	

activate	 opposing	 pathways	 in	 a	 strongly	 context-dependent	 manner.	 The	

particular	case	of	CD95	and	its	duality	will	be	in	the	following	sections	discussed	in	

depth	 and	moreover	how	 the	EGFR	 is	 linked	 to	 this	 duality	 despite	 its	 opposing	

function	as	a	growth	factor	receptor.		

	

1.1.1 THE	TUMOR	NECROSIS	FACTOR	SUPERFAMILY	
	

The	 cytokines	 of	 the	 TNF	 super	 family	 have	 numerous	 cellular	 functions,	

ranging	 form	 apoptosis	 to	 proliferation	 and	 can	 be	 found	 in	 several	 tissues	 and	

cells.	The	allegory	of	the	‘double-edged	sword’	is	often	used	to	describe	TNFs	and	

their	cognate	receptors	due	to	the	high	duality	and	the	often-opposing	functional	

tendencies	 of	 individual	 TNFs.	 Until	 now	 the	 TNF	 superfamily	 encompass	 19	

ligands	and	29	receptors	(2).		

Almost	 all	 TNF	 ligands	 are	 type	 II	 transmembrane	 proteins	 with	 an	

intracellular	amino-terminal	and	an	extracellular	carboxy-terminal.	Characteristic	

for	 all	 TNF	 ligands	 is	 the	TNF	homology	domain	 at	 the	 extracellular	 C-terminus,	

which	 is	 responsible	 for	 receptor	 binding	 (Fig.	 1.1).	 TNF	 ligands	 are	 mainly	
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expressed	 by	 cells	 of	 the	 immune	 system	 including	 B	 cells,	 T	 cells,	 NK	 cells,	

monocytes	and	dendritic	cells.	The	transmembrane	expression	of	TNFs	is	a	feature	

indicating	 that	TNFs	are	destined	 to	rather	act	 locally.	This	 is	exemplified	by	 the	

interesting	observation	that	some	 ligands,	once	present	 in	 their	soluble	 form,	act	

antagonistically,	as	for	example	shown	for	CD95	and	its	cognate	ligand	FasL	(2,	4-

6).		

	

	
Figure	1.1:	The	ligands	and	receptors	of	the	Tumor	Necrosis	Factor	Superfamily.		

Shown	 are	 the	 19	 ligands	 and	 29	 receptors	 of	 the	 TNF	 superfamily.	 On	 the	 left	 side	 the	 receptors	 are	
illustrated	and	on	 the	 right	 side	 the	 ligands.	The	arrows	pointing	 from	 the	 ligands	 to	 the	 receptors	 indicate	
receptor-ligand-binding	 potential.	 The	 number	 next	 to	 the	 receptor	 name	 represents	 the	 number	 of	 amino	
acids	in	the	cytoplasmic	domain	of	the	receptor.	The	composition	of	the	different	structural	domains	is	color-
coded	and	the	key	is	presented	in	the	box.	TRAF=	TNFR-associated	factor	(Figure	adapted	from	(2))	
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Unlike	 the	 ligands,	 TNF	 receptors	 (TNFRs)	 are	 type	 I	 transmembrane	

proteins	and	are	expressed	in	a	broad	diversity	of	cells.	Common	for	all	receptors	

is	 a	 cysteine-rich	domain	 (CRD)	 in	 the	 extracellular	 fraction	of	 the	proteins	 (Fig.	

1.1).	Generally,	TNFRs	can	be	largely	divided	into	two	groups	–	the	ones	with	the	

death	domain	(DD)	and	the	ones	without	a	death	domain.		

The	death	domain	is	an	amino	acid	sequence	of	approximately	80	residues	

and	localized	in	the	 intracellular	domain	of	the	receptors	(Fig	1.1).	Two	different	

research	groups	 first	described	 the	death	domain	as	 cytoplasmic	 region	of	CD95	

and	 TNFR1	 and	 showed	 independently	 that	 mutations	 in	 that	 region	 abolish	

ligand-induced	 apoptosis	 (7,	 8).	 While	 receptors	 with	 the	 death	 domain	 are	

referred	 as	 ‘death	 receptors’,	 the	 ones	 without	 the	 death	 domain	 are	 called	

‘activating	receptors’.	

	The	 activating	 receptors	 contain	 TNFR-associated	 factor	 (TRAF)-	

interacting	 motifs	 in	 their	 intracellular	 region	 and	 depending	 on	 the	 individual	

TRAFs	 that	 bind	 the	 receptor	 different	 signaling	 pathways	 are	 activated	 (9,	 10).	

The	main	proteins	activated	by	TNFRs	are	nuclear	 factor-κBs	(NF-κBs),	mitogen-

activated	protein	kinases	(MAPKs),	or	interferon-regulatory	factors	(IRFs)	(10,	11).	

In	 four	 TNFRs,	 a	 functional	 cytosolic	 domain	 is	 lacking	 and	 they	 mainly	 act	 as	

decoy	receptors	by	reducing	ligand	signaling	(2).		

	

1.1.2 CD95	–	A	SHORT	JOURNEY	THROUGH	ITS	HISTORY		
	

CD95	 (also	 known	 as	 Fas,	 APO-1	 or	 TNFR6)	 is	 one	 of	 the	 most	 famous	

members	of	the	TNF	superfamily.	Its	function	as	a	death	receptor	is	well	described	

and	also	its	role	apart	from	apoptosis	induction	has	been	intensively	studied	since	

the	early	nineties.		

CD95s	 ability	 to	 induce	 apoptosis	 was	 firstly	 discovered	 in	 1989	

independently	 by	 two	 different	 groups,	 which	 performed	 monoclonal	 antibody	

screenings	 (12,	 13).	 While	 one	 group	 characterized	 cell	 surface	 molecules	 by	

testing	monoclonal	antibodies	on	lymphocytes,	the	other	group	used	primarily	the	

rhabdomyosarcoma	A673	cell	 line	but	 tested	also	other,	mostly	 cancer	 cell	 lines.	

Both	 discovered	 antibodies,	 once	 called	 anti-APO-1	 (12)	 and	 one	 called	 anti-Fas	

(13),	 completely	 blocked	 proliferation	 and	 induced	 cell	 death.	 As	 Trauth	 and	

colleagues	 showed	 this	 effect	 on	 activated	 human	 lymphocytes,	 on	 malignant	
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human	 lymphocytes	but	 also	on	 some	patient-derived	 leukemic	 cells,	 anti-APO-1	

was	immediately	considered	as	a	therapeutic	drug	in	the	treatment	of	malignancy	

(12).	With	 those	 first	 studies	 a	 huge	 interest	 in	 CD95	 grew	 and	more	 and	more	

details	were	published	in	the	following	decades	about	its	structure,	activation	and	

overall	function.	

In	 1991,	 for	 example,	 the	 polypeptide	 sequence	 for	 CD95	 was	 first	

described	and	the	classification	into	the	TNF	superfamily	occurred	(14).	Two	years	

later	 two	different	groups	described	a	domain	 in	 the	cytoplasmic	region	of	CD95	

and	 TNFR1,	 which	 is	 required	 for	 ligand-induced	 apoptosis	 and	 thus	 called	 the	

‘death	domain’	(7,	8).	In	the	same	year	Suda	et	al.	identified	the	ligand	for	CD95	(in	

the	 following	denoted	as	FasL)	and	successfully	cloned,	expressed	and	described	

the	amino	acid	sequence	of	the	protein	(15).	The	full	structure	of	the	human	CD95	

gene	was	 published	 in	 1994	 and	 further	 details	 about	 the	 exact	 gene	 locus,	 the	

exon/intron	 distribution	 and	 the	 transcriptional	 starting	 sides	 were	 described	

(16).	 First	 insights	 into	 the	 protein	 structure	 were	 given	 two	 years	 later.	 NMR	

spectroscopy	revealed	the	three-dimensional	structure	of	the	death	domain	in	the	

C-terminal	 part	 of	 CD95	 and	 one	 year	 later,	 in	 1997,	 the	 structure	 of	 the	

extracellular	part	was	predicted	and	modeled	(17,	18).	

Apart	 from	 the	 structural	 characterization	 of	 CD95	 also	 more	 and	 more	

functional	 aspects,	 like	 interactors	 and	 posttranslational	 modifications	 were	

described.	 In	 this	 context	 one	of	 the	most	 important	discoveries	was	 the	 ‘death-

inducing	 signaling	 complex’	 (DISC),	 which	 was	 already	 introduced	 in	 1995	 by	

Kischkel	 et	 al.	 (19).	 The	 authors	 not	 only	 discovered	 the	 cytotoxicity-dependent	

APO-1-associated	proteins	(CAP)	1-4	but	also	that	those	proteins	are	only	bound	to	

aggregated	CD95.	They	could	also	identify	CAP1	and	CAP2	as	MORT1/FADD	(19).	

The	meaning	of	the	interaction	between	CD95	and	MORT1,	which	is	better	known	

as	 ‘Fas-associated	protein	with	death	domain’	(FADD)	was	described	in	the	same	

year	 independently	 by	 two	 different	 groups	 (20,	 21).	 Both	 groups	 showed	 that	

MORT1/FADD	 is	mandatory	 for	 CD95-mediated	 induction	 of	 apoptosis	 and	 thus	

represents	 one	 of	 the	 most	 important	 interactors	 (20-23).	 Another	 essential	

protein	 of	 the	 DISC	 is	 Caspase-8.	 	 In	 1996	 it	 was	 first	 shown	 that	 Caspase-8,	

initially	known	as	MACH	or	also	as	FLICE,	is	associated	to	FADD	and	important	for	

CD95-mediated	apoptosis	(24,	25).	Also	in	1996,	it	was	shown	that	FLICE/Caspase-

8	is	part	of	the	DISC	and	finally	CAP3/4	was	identified	as	FLICE/Caspase-8	(26-28).	
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Since	the	discovery	of	CD95	the	role	of	tyrosine	kinase	activity	and	protein	

phosphorylation	upon	CD95	activation	has	been	controversial.	Already	in	1994	it	

was	published	that	activation	of	 lck	and	fyn,	both	src	 family	kinases,	provides	an	

early	 and	 necessary	 signal	 for	 Fas-induced	 apoptosis	 in	 lymphocytes	 (29).	 One	

year	 later,	a	study	was	published	showing	that	src	kinase	activity	 is	not	required	

for	 CD95	 activation	 but	 that	 inhibition	 of	 kinases	 rather	 enhances	 CD95-driven	

apoptosis	(30).	In	the	following	years	further	paradoxical	reports	were	published,	

showing	 either	 that	 src	 family	 kinases	 are	 activated	 upon	 FasL	 ligation	 and	

required	 for	 apoptosis	 induction	 or	 that	 kinase	 activity	 has	 no	 effect	 on	 CD95-

medaited	apoptosis	(31-33).		The	overall	opinion	derived	from	this	controversy	is	

that	 the	 requirement	 of	 tyrosine	 kinase	 activity	 for	 CD95	 signaling	 is	 highly	 cell	

type	specific	and	also	strongly	context	dependent.	

The	 context	 dependency	 and	 cell	 type	 specificity	 of	 CD95-driven	 effects	

became	even	more	obvious	in	1995	when	the	first	report	was	published	showing	

that	CD95	 is	promoting	proliferation	(34).	Aggarwal	et	al.	 showed	 that	 in	human	

diploid	 fibroblasts	 CD95	 activation	 leads	 to	 proliferation	 in	 a	 dose-dependent	

manner.	 Since	 then	a	whole	new	 field	of	 CD95-related	 science	 appeared.	 Shortly	

after	 Aggarwal’s	 publication	 a	 similar	 study	 showed	 that	 CD95	 either	 triggers	

proliferation	or	apoptosis	 in	human	fibroblasts,	depending	on	the	context	(35).	A	

dual	 role	 of	 CD95	 was	 also	 shown	 in	 immune	 system,	 which	 was	 especially	

surprising,	 as	 CD95s	 role	 particularly	 in	 the	 immune	 response	 was	 strongly	

coupled	 to	 apoptosis	 (36,	37).	 In	 the	 following	 years,	more	 reports	 accumulated	

showing	 that	 the	 role-played	 by	 CD95	 is	 not	 restricted	 only	 to	 that	 of	 a	 death	

receptor	but	rather	a	multifunctional	protein	involved	in	several	cellular	tasks	(for	

reviews	see	(38-40)).	Until	 today	the	exact	mechanisms	of	switching	the	function	

of	CD95	are	not	completely	understood	and	even	 those	studies	 that	describe	 the	

switch-like	 behavior	 of	 CD95	 do	 not	 always	 provide	 a	 concrete	 mechanism	

explaining	corresponding	observations.		
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1.1.3 PROPERTIES	OF	CD95		
	

The	 human	 gene	 encoding	 for	 CD95	 is	 located	 on	 chromosome	 10	 and	

approximately	 25	 kb	 in	 length	 (16).	 It	 is	 composed	 of	 9	 exons	 separated	 by	 8	

introns.	 Exons	 1-5	 encode	 the	 extracellular	 region,	 exon	 6	 the	 transmembrane	

region	 and	 exons	 7-9	 encode	 the	 intracellular	 region.	 According	 to	 Ensembl,	 the	

gene	has	18	splice	variants	and	three	of	those	encode	for	proteins	(41,	42).		While	

the	longest	protein	version	contains	335	amino	acids,	the	shortest	has	220	amino	

acids	and	in	the	third	version	the	transmembrane	domain	is	lacking	resulting	in	a	

soluble	form	of	the	receptor	(42).	

CD95	is	a	type	I	transmembrane	proteins	and	accordingly	its	N-terminus	is	

located	extracellular	and	the	C-terminus	intracellular.	The	distinctive	feature	of	all	

TNF	 receptors	 is	 several	 CRDs	 in	 the	 extracellular	 part	 of	 the	 receptors.	 CD95	

harbors	three	CRDs	in	the	N-terminal	domain,	which	are	termed	CRD1-3	and	reach	

from	aa	46	to	aa	167	(Fig.	1.2;	all	aa	numbering	for	CD95	always	includes	the	signal	

peptide)	 (43).	 In	 the	 ligand-unbound	 state	 CD95	 exists	 a	 pre-associated	 trimer.	

This	is	accomplished	via	the	so-called	pre-ligand	binding	assembly	domain	(PLAD),	

which	is	part	of	the	CRD1	and	reaches	from	aa	59	to	aa	82	(Fig.	1.2)	(44-46).	CRD2	

and	the	N-terminal	part	of	CRD3	interact	with	FasL	and	are	consequently	required	

for	ligand	binding	(Fig.	1.2)(47).	The	transmembrane	domain	reaches	from	aa	174	

to	aa	191	and	makes	a	single	pass	to	the	PM.		

	

	
Figure	1.2:	Schematic	representation	of	a	CD95	monomer.		

As	CD95	belongs	to	the	type	I	transmembrane	protein,	the	transmembrane	(TM)	domain	makes	a	single	pass	
through	the	PM.	The	extracellular	part	of	CD95	contains	the	N-terminal	domain	 including	the	signal	peptide	
(SP)	and	 the	 three	 cysteine-rich	domains	 (CRD)	1-3.	 	While	CRD1	contains	 the	pre-ligand	binding	assembly	
domain	 (PLAD),	CRD2	and	CRD3	are	 important	 for	 the	CD95-FasL	 interaction.	The	C-terminal	part	 of	CD95	
contains	the	death	domain,	which	is	composed	of	6	alpha	helices.	Numbers	represent	the	amino	acid	position,	
including	the	signal	peptide	(adapted	from	(43,	48)).		
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The	 intracellular	 part	 of	 CD95	 contains	 the	84	 aa	 long	DD,	which	 reaches	

from	aa	230	to	aa	314	(Fig.	1.3)	(17,	49).	The	DD	is	composed	of	six-amphipathic	α-

helices,	which	 are	 arranged	 anti-parallel	 to	 one	 another	 (31).	Within	 the	DD	 are	

two	 tyrosine	 residues	 at	 position	 Y232	 and	 Y291,	 whose	 functions	 are	 not	 yet	

completely	 understood.	 However,	 already	 in	 1996	 it	 was	 shown	 that	 CD95	 is	

phosphorylated	 in	vitro	 and	 also	 in	vivo	 (50).	Moreover	 it	was	 shown	 that	 CD95	

harbors	 a	 conserved	 phosphotyrosine-containing	motif	within	 the	 death	 domain	

that	 under	 certain	 circumstances	 is	 recognized	 by	 SH2-containing	 tyrosine	

phosphatase	1	(SHP-1)	and	SH2-containing	inositol	phosphatase	(SHIP),	resulting	

in	 inhibitory	 functions	 (51).	 Apart	 from	 that,	 the	 apoptotic	 function	 of	 CD95	 is	

inhibited	by	the	 interaction	of	Fas	associated	phosphatase	1	(FAP1),	which	binds	

the	last	15	aa	of	CD95	(52,	53).		

	

1.1.4 ACTIVATION	MECHANISMS	OF	CD95	
	

CD95	mediated	apoptosis	 is	generally	 initiated	by	binding	of	FasL.	FasL	 is	

mainly	expressed	by	T	lymphocytes	and	natural	killer	cells	but	was	also	found	in	

immune	 privileged	 tissues	 like	 eyes,	 brain	 and	 testis	 (15,	 54-56).	 Both	 proteins	

exist	 as	 pre-associated	 homo-trimers	 on	 the	 cell	 surface	 (45,	 57).	 The	 exact	

mechanism	 by	which	 FasL	 activates	 pre-associated	 CD95	 is	 not	 yet	 solved	 (43).	

The	main	question	 in	 this	 context	 that	 remains	 to	be	 solved	 is	whether	all	CD95	

molecules	 are	 already	 pre-assembled	 into	 stable	 complexes	 or	 if	 also	 a	 pool	 of	

monomeric	 molecules	 exists.	 In	 case	 of	 a	 complete	 pre-assembly	 of	 CD95	

molecules	 prior	 to	 ligand	 binding,	 the	 signaling	 induction	 is	 most	 likely	 due	 to	

structural	reorganization	(58).	The	other	model	of	signaling	induction	is	based	on	

a	dynamic	equilibrium	between	a	large	fraction	of	monomeric	CD95	molecules	and	

a	 smaller	 fraction	 of	 pre-assembled	 CD95	 complexes.	While	monomeric	 CD95	 is	

supposed	to	have	a	low	affinity	for	FasL,	the	pre-assembled	complexes	of	CD95	are	

supposed	 to	 have	 a	 high	 affinity	 for	 FasL.	 Signaling	 activation	 in	 this	 model	 is	

driven	 by	 the	 dynamics	 of	 the	 equilibrium,	 which	 would	 eventually	 lead	 to	 an	

accumulation	of	ligand-bound,	signal	competent	CD95	complexes	(43).			

Regardless	 of	 the	 exact	 mechanism	 that	 activates	 the	 pre-associated	

receptor,	 once	 CD95	 binds	 FasL	 and	 gets	 eventually	 activated,	 CD95	 undergoes	

conformational	changes	of	its	DD.	It	was	shown	that	ligand	binding	leads	to	a	shift	
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of	 helix	 6	 and	 fusion	 with	 helix	 5,	 which	 leads	 to	 FADD	 recruitment	 and	

oligomerization	 of	 CD95-DD:DD-FADD	 complexes	 (49,	 59,	 60).	 Especially	

oligomerization	 and	 cluster	 formation	 of	 CD95-DD:DD-FADD	 complexes	 are	

mandatory	 for	DISC	 formation	 and	 represent	 the	 initial	 step	 in	 this	 process	 (60,	

61).	The	DISC	 is	 further	composed	of	procaspases-8,	procaspases-10	and	cellular	

FLICE-like	inhibitory	proteins	(c-FLIPs)	(see	Fig.	1.3).		

The	occurring	interactions	in	the	DISC	are	all	based	on	homotypic	contacts.	

While	FADD	binding	is	accomplished	by	the	DD	of	both	proteins,	all	other	binding	

events	are	mediated	via	the	so-called	death	effector	domain	(DED)	(Fig.	1.3)(62).	

The	actual	apoptotic	cascade	is	then	induced	by	activation	of	the	initiator	caspases,	

which	in	turn	activate	the	executor	caspases,	caspase-3	and	-7.	Only	recently	it	was	

unraveled	 how	 exactly	 the	 initiator	 caspase-8	 is	 activated	 in	 the	 DISC.	 It	 was	

shown	that	procaspase-8	is	activated	via	the	formation	of	DED	chains	at	the	DISC,	

which	 allow	 for	 the	 formation	 of	 homodimers	 that	 enable	 full	 activation	 of	

caspase-8	due	to	autoproteolytic	processing	and	eventually	the	formation	of	fully	

active	heterotetramers	(Fig.	1.3)	(63,	64).	Another	important	protein	group	of	the	

DISC	are	c-FLIPs,	which	also	contains	a	DED,	but	unlike	the	other	components,	c-

FLIPs	mostly	inhibit	apoptosis	induction.	c-FLIPs	hamper	the	apoptosis	induction	

by	interfering	with	procaspase-8	and	-10	recruitment	(65,	66).	
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Figure	1.3:	FasL-induced	DISC	formation			

Scheme	represents	the	classical	model	of	FasL-induced	apoptotic	signaling.	Both,	the	receptor	and	the	ligand	
are	expressed	at	the	plasma	membrane	as	pre-associated	homotrimers.	Binding	of	FasL	leads	to	formation	of	
the	DISC.	The	DISC	is	composed	of	CD95/FADD/Procaspase-8,	-10	and	c-FLIPs.	Recruitment	of	procaspase-8/-
10	 to	 the	DISC	 leads	 to	 auto-processing	 of	 the	 caspases	 followed	 by	 the	 release	 of	 active	 caspases	 into	 the	
cytoplasm,	which	in	turn,	leads	to	apoptosis	execution	and	eventually	cell	death.	A	higher	concentration	of	c-
FLIP	binding	at	the	DISC,	however,	inhibits	apoptosis	formation	(based	on	(43)).		

	
Beside	 the	 ligand-induced	 oligomerization	 of	 CD95	 and	 the	 thereby	

enhanced	DISC	formation,	an	alternative	apoptosis-signaling	pathway	mediated	by	

CD95-FasL	 occurs	 in	 vivo.	 In	 fact,	 there	 are	 two	 prototypic	 apoptotic	 CD95	

signaling	pathways	that	operate	in	a	cell	type-specific	manner	and	accordingly	are	

classified	in	the	type	I/type	II	cell	model	(67,	68).		While	type	I	cells	show	a	rapid	

DISC	formation	and	a	large	amount	of	active	caspase-8/10	that	is	released	into	the	

cytosol,	in	type	II	cells	the	released	amount	of	active	caspase-8/-10	is	insufficient	

to	activate	caspases-3	and	 -7.	Apoptosis	 induction	 in	 type	 II	 cells	 is	activated	via	

the	 so-called	 intrinsic	 apoptosis	 pathway,	 which	 involves	 the	 mitochondria	 and	

formation	of	a	complex	called	apoptosome.	Upon	FasL	binding	only	a	small	amount	

of	 procaspase-8/-10	 is	 activated,	 which	 is	 just	 sufficient	 to	 cleave	 BID	 and	 thus	

initiate	 the	 intrinsic	 apoptosis	 cascade.	 BID	 is	 a	 BH3-only	 protein	 and	 after	

cleavage	 designated	 as	 truncated	 BID	 (tBID).	 Active	 tBID	 translocates	 to	

mitochondria	 and	 triggers	 the	 release	 of	 pro-apoptotic	 factors	 from	 the	

mitochondria	 and	 the	 formation	 of	 the	 apoptosome,	 which	 is	 composed	 of	 the	
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adapter	protein	‘apoptotic	protease	activating	factor	1’	(Apaf-1),	cytochrome	c	and	

the	 initiator	procaspase-9.	Gathering	of	procaspase-9	 in	 the	apoptosome	 leads	 to	

autoproteolytic	 activation	 of	 caspase-9,	 which	 in	 turn	 activates	 caspase-3	 and	

eventually	 leads	 to	 apoptosis	 execution	 (67).	 Apart	 from	 the	 different	 apoptosis	

execution	mechanism,	 another	 substantial	 difference	 between	 type	 I	 and	 type	 II	

cells	exists,	which	 further	elucidates	especially	 the	mitochondrial	dependency.	 In	

type	II	cells	members	of	the	inhibitor	of	apoptosis	(IAP)	protein	family	are	higher	

concentrated	and	prevent	caspase	activity	(69).	The	proteins	XIAP,	c-IAP1	and	c-

IAP2	are,	 for	 example,	 able	 to	directly	bind	 caspases-3,	 -7	 and	procaspase-9	 and	

degrade	 those,	 thus	 leading	 to	 apoptosis	 inhibition	 (70-72).	 This	 inhibition	 is	

eliminated	by	‘second	mitochondria-derived	activator	of	caspase’	(SMAC;	DIABLO	

‘direct	IAP-binding	protein	with	low	PI’),	which	is	released	from	the	mitochondria	

by	 tBID	 and	 separates	 IAPs	 from	 caspases	 and	 thereby	 restores	 the	 apoptotic	

induction	(73).	Even	thought	type	II	cells	show	a	reduced	DISC	formation	they	are	

not	less	sensitive	to	CD95-mediated	apoptosis	induction	in	comparison	with	type	I	

cells	(67,	68).		

	

1.1.5 CD95	AS	DEATH	RECEPTOR		
	

The	 importance	 of	 the	 CD95/FasL	 system	 became	 oblivious	 when	 both	

proteins	 were	 linked	 to	 three	 mutant	 mouse	 strains	 that	 showed	

lymphadenopathy	 and	 “systemic	 lupus	 erythematosus”	 (SLE)-like	 autoimmune	

diseases.	It	was	shown	that	those	mouse	strains	carry	homozygous	defects	in	the	

genes	 either	 encoding	 CD95	 or	 FasL.	 For	 instance,	 the	 so-called	

lymphoproliferation	mice	(FasLpr/Lpr)	have	an	insertion	of	a	retrotransposon	in	the	

CD95	gene,	which	leads	to	a	down	regulation	of	the	receptor	expression	(74,	75).	

The	 lpr	 gene	 complementing	 gld	 mice	 (Faslprcg/lprcg)	 show	 an	 impaired	 DISC	

formation	caused	by	a	spontaneous	mutation	within	the	DD	of	CD95	(76,	77)	and	

the	 generalized	 lymphoproliferative	 disease	 mice	 (FasLgld/gld)	 show	 a	 reduced	

affinity	 of	 FasL	 for	 CD95,	 due	 to	 a	 mutation	 in	 the	 FasL	 gene	 (78).	 Even	 more	

important	 was	 the	 discovery	 that	 also	 patients	 of	 the	 “autoimmune	

lymphoproliferative	 syndrome”	 (ALPS)	 have	 heterozygous	mutations	 in	 the	 FAS	

gene	 (79,	 80).	 ALPS	 is	 an	 inherited	 genetic	 disorder	 and	 also	 known	 as	 Canale-
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Smith	 syndrome	 (81).	 ALPS	 patients	 mostly	 suffer	 from	 chronic	 non-malignant	

lymphoproliferation,	autoimmune	diseases,	and	secondary	cancers	(82).		

Taken	together,	the	general	consensus	of	both	studies,	with	CD95-	or	FasL-

deficient	 mice	 and	 ALPS	 patients,	 show	 that	 the	 CD95/FasL	 system	 has	 an	

important	function	in	immune	surveillance	and	is,	for	example,	responsible	for	the	

elimination	 of	 obsolete	 and	 potentially	 dangerous	 lymphocytes,	 but	 also	

transformed	 and	 infected	 cells	 (reviewed	 in	 (83)).	 Moreover,	 both	 proteins	 are	

responsible	for	immune	system	homeostasis.	

	

1.1.6 THE	NON-APOPTOTIC	ROLE	OF	CD95		
	

Apart	from	the	well-known	function	as	death	receptor,	during	the	last	twenty	

years	the	interest	in	CD95s	non-apoptotic	functions	grew	tremendously.	Already	in	

1993	 it	 was	 shown	 for	 the	 first	 time	 that	 under	 certain	 circumstances	 CD95	

stimulation	results	 in	the	activation	and	proliferation	of	normal	T	cells	(37).	Two	

years	 later	Aggarwal	and	colleges	showed	that	CD95	signals	also	 in	non-immune	

system	 related	 cells	 proliferation.	 In	 fact	 they	 showed	 that	 CD95	 signals	

proliferation	in	fibroblasts	(34).	Other	reports	soon	followed	and	more	and	more	

functions	 were	 described	 for	 CD95	 and	 FasL	 of	 being	 different	 from	 inducing	

apoptosis.	 Even	 though	 initially	most	 studies	 showed	 non-apoptotic	 functions	 of	

the	 CD95/FasL	 system	 primarily	 in	 the	 immune	 system,	 especially	 in	 the	 late	

nineties	also	other	tissues	and	cell	types	came	to	the	fore.		

It	 was	 shown,	 for	 example,	 that	 CD95	 engagement	 is	 able	 to	 activate	 the	

release	 of	 pro-inflammatory	 cytokines,	 like	 IL-1,	 IL-6	 and	 IL-8,	 and	 thus	 induce	

inflammatory	changes	(84-87).	Further,	it	was	shown	that	CD95	stimulation	leads	

to	inflammatory	angiogenesis	in	a	murine	model	after	application	of	the	agonistic	

anti-Fas	 mAb.	 In	 comparison,	 CD95-mediated	 angiogenesis	 was	 absent	 in	 the	

FasLpr-mice	 (88).	 CD95	 is	 also	 able	 to	 induce	 the	 up-regulation	 of	 cell	 surface	

integrins	 leading	 to	 increased	 cell	migration	 (89).	One	of	 the	most	 striking	 early	

studies	 showed	 that	 CD95	 is	 involved	 in	 liver	 regeneration	 upon	 partial	

hepatectomy	 (90).	 Desbarats	 and	 colleges	 showed	 that	 partial	 hepatectomy	

protected	 mice	 against	 the	 pro-apoptotic	 effects	 of	 CD95	 in	 vivo	 and	 that	 CD95	

engagement	 accelerated	 liver	 regeneration	 (90).	 The	 same	 group	 showed	 some	

years	 later	 that	CD95	 is	even	 important	 for	brain	development	and	might	have	a	
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growth	 receptor-like	 function	 in	 some	 cells	 of	 the	 nervous	 system	 (91,	 92).	

Likewise,	 several	 reports	 showed	 that	 CD95	 is	 enhancing	 proliferation	 in	 tumor	

cells	 originating	 from	 many	 different	 tissues	 (reviewed	 in	 (93-95)).	 A	 tumor	

growth-promoting	 role	 of	 CD95	 could	 also	 be	 shown	 in	 vivo	 (96).	 A	 remarkable	

connection	between	cancer	and	CD95	signaling	was	found	by	Hadji	et	al.	 in	2014.		

They	showed	that	elimination	of	CD95	or	FasL	results	in	a	‘new’	form	of	cell	death	

that	 preferentially	 affects	 cancer	 cells	 and	 resembles	 a	 necrotic	 form	 of	 mitotic	

catastrophe	 (97).	 This	 process	 was	 designated	 as	 ‘death	 induced	 by	 CD95R/L	

elimination’	(DICE)	and	might	offer	the	possibility	of	a	new	cancer	therapy	(98).		

Even	 though	 many	 details	 regarding	 the	 alternative	 functions	 of	 CD95	 and	

FasL	have	been	elucidated,	 so	 far	neither	a	well-defined	mechanism	nor	a	global	

mechanism	has	been	provided	that	explains	the	duality	of	CD95.	However,	at	least	

for	certain	cell	types	and/or	tissues	some	involved	proteins	and	their	participation	

in	switching	CD95’s	function	is	described.		

A	promising	group	of	proteins	being	involved	in	switching	the	outcome	of	the	

activity	 of	 CD95	 are	 the	 cFLIP	 proteins.	 They	 contain	 a	 DED	 and	 via	 a	 direct	

interaction	with	FADD	they	are	components	of	the	DISC.	So	far	five	c-FLIP	proteins	

have	been	characterized,	three	c-FLIP	isoforms	and	two	cleavage	products.	Two	of	

the	three	c-FLIP	 isoforms	are	considered	as	short	c-FLIP	 isoforms,	c-FLIPS	and	c-

FLIPR,	and	one	as	long	isoform,	c-FLIPL	(99).	The	short	isoforms	exclusively	block	

caspase-8	 activation,	 whereas	 the	 long	 isoform	 can	 both	 block	 and	 accelerate	

caspase-8	 activation,	 depending	 on	 the	 c-FLIPL	 concentration	 (100).	 The	 two	

cleavage	 products	 of	 c-FLIP	 are	 called	 p43-FLIP	 and	 p22-FLIP	 and	 are	 cleavage	

products	 of	 caspase-8.	 Both	 cleavage	 products	 are	 capable	 of	 inducing	 NF-kB	

activity	 by	 binding	 to	 the	 IKK	 complex	 (101).	 The	 contribution	 of	 the	 individual	

cFLIP	proteins	 in	blocking	apoptosis	after	CD95	stimulation	 is	mainly	dependent	

on	the	ratio	between	procaspase-8	and	c-FLIPL	at	the	DISC	(102,	103).	However,	as	

mention	above	cFLIP	protein	are	also	able	to	activate	anti-apoptotic	proteins,	like	

NF-κB.		

Various	studies	that	describe	the	non-apoptotic	functions	of	CD95	from	a	more	

mechanistic	perspective	are	based	on	cancer	cells	lines	from	different	origins	(for	

review	 see	 (40,	 95,	 104)).	 	 There,	 it	 was	 shown	 that	 CD95	 engagement	 leads	 to	

activation	 of,	 for	 example,	 NF-κB	 and	 all	 three	major	MAPK	 pathways:	 ERK1/2,	

p38,	and	JNK1/2.		
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However,	 depending	 on	 the	 exact	 cell	 type,	 activation	 of	 those	 pathways	 is	

resulting	 in	 different	 CD95-mediated	 cell	 responses	 including	 inflammation,	

proliferation	and	migration/invasion	(Fig.	1.4).	In	this	context,	NF-κB	represents	a	

fitting	 example,	 as	 it	 is	 known	 for	 mediating	 different	 cellular	 outcomes	 after	

CD95-mediated	 activation,	 like	 inflammation	 and	 invasion.	 The	 first	 study	

describing	 a	 link	 between	 NF-κB	 and	 CD95	was	 already	 published	 in	 1996	 and	

showed	that	CD95	activation	 leads	 to	NF-κB	activation	and	that	 this	activation	 is	

independent	 from	 CD95s	 cytotoxic	 function	 (105).	 This	 was	 in	 good	 agreement	

with	the	observation	that	an	enhanced	NF-κB	activity	was	especially	observable	in	

apoptosis-resistant	 tumor	 cells	 (106).	 In	 those	 tumor	 cells	 an	 increased	motility	

and	 invasiveness	was	observed	after	FasL	engagement,	which	was	dependent	on	

NF-κB	as	well	as	Erk1/2	and	caspase-8.	In	contrast,	another	study	showed	that	the	

CD95-induced	NF-κB	activation	is	mediated	via	FADD,	caspase-8	and	the	‘receptor	

interacting	protein	kinase’	(RIPK),	which	also	contains	a	death	domain	and	is	able	

to	bind	CD95	(23,	107,	108).	There	it	was	shown	that	NF-κB	activation	is	switching	

CD95’s	 function	 from	 a	 pro-apoptotic	 signal	 into	 an	 inflammatory	 mediating	

response.	Later	it	was	found	that	also	in	CD95-sensitive	tumor	cells,	NF-κB	activity	

was	detectable	(109).	This	finding	lead	to	the	hypothesis	that	activation	of	NF-κB	is	

part	of	a	default	CD95	pathway	in	some	cells	and	has	different	functions	depending	

on	its	activity	resulting	in	different	cell	fates.			
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Figure	1.4:	CD95	signaling	outcomes			

The	scheme	illustrates	the	different	cellular	outcomes	after	CD95	activation	and	the	involved	proteins.	While	
the	 left	side	shows	simplified	CD95-mediated	apoptosis,	 the	right	side	gives	an	overview	about	 the	proteins	
involved	in	the	non-apoptotic	CD95	signaling	(adapted	from	(95)).		

	
	 One	 important	 route	 in	 the	 pro-survival	 signaling	 of	 CD95	 leads	 towards	

Erk1/2	 activation.	 CD95-mediated	 Erk	 activation	 plays	 an	 important	 role	

especially	 in	 the	 central	 nervous	 system.	 It	 was	 for	 example	 shown	 that	 CD95	

ligation	activates	Erk	and	thus	induces	neurite	outgrowth	in	sensory	neurons	(91).	

In	 addition,	MAP	 kinase	 activation	was	 also	 observed	 in	 fibroblast,	 neurons	 and	

neural	progenitor	cells	but	also	in	gliomas	and	epithelial	tumor	cells	(95,	110,	111).		

Another	 interesting	 candidate,	 who	 is	 mostly	 associated	 with	 non-apoptotic	

functions	of	CD95,	 is	PI3K.	Activity	of	PI3K	is	typically	connected	to	proliferation	

and	 survival	 upon	 growth	 factor	 stimulation	 (for	 review	 see	 (112)).	 PI3K	 is	

composed	 of	 a	 regulatory	 subunit,	 generally	 referred	 as	 p85	 and	 a	 catalytic	

subunit,	which	is	called	p110.	The	regulatory	subunit	p85	is	recruited	to	receptor	

tyrosine	 kinases	 (RTK),	 which	 are	 activated	 by	 growth	 factor	 stimulation	 and	

binds	 phosphorylated	 tyrosine	 residues	 via	 a	 Src-homology	 domains	 2	 (SH2).	 In	

the	 canonical	 PI3K	 pathway	 activation	 of	 the	 catalytic	 subunit	 leads	 to	

phosphorylation	 of	 the	 membrane	 lipid	 ‘phosphatydilinositol-4,5-bis-phosphate’	

(PIP2)	resulting	in	‘phosphatydilinositol-3,4,5-tris-phosphate’	(PIP3).	PIP3	enables	
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the	 recruitment	 of	 the	 ‘Pleckstrin	 Homology’	 (PH)	 domain	 containing	 proteins,	

PDK1	 and	 AKT.	 PDK1	 phosphorylates	 AKT,	 which	 in	 turn	 phosphorylates	many	

different	 cellular	 substrates	 mostly	 involved	 in	 survival	 and	 cell	 cycle.	

Interestingly,	 the	 first	 study	 showing	 a	 connection	 between	 CD95	 and	 PI3K	

observed	 a	 prevention	 of	 apoptosis	 if	 PI3K	 was	 inhibited	 in	 CD95	 apoptosis-

sensitive	glioma	cells	(33).	Moreover,	Gulbins	et	al.	connected	the	CD95-mediated	

PI3K	 phosphorylation	 to	 Lyn,	 a	 member	 of	 the	 ‘Src	 family	 kinases’	 (SFK)	 and	

known	to	get	activated	by	CD95	 ligation	(32).	 In	2008,	Kleber	et	al.	 linked	CD95-

induced	 PI3K	 activation	 to	 basal	 invasion	 of	 glioblastoma	 in	 vivo	 (113).	 They	

observed	recruitment	of	PI3K	and	Yes	to	CD95	upon	receptor	activation.		

In	 this	 context,	 phosphorylation	 of	 CD95	 as	 a	 conceivable	 interface	

participating	 in	 the	 paradoxical	 signaling	 of	 CD95	 has	 been	 discussed	 since	 the	

mid-nineties.	 CD95	 contains	 two	 tyrosine	 residues	 in	 its	DD	at	 position	232	 and	

291	 (Fig	 1.2).	 The	 function	 of	 these	 tyrosine	 residues	 and	 whether	 they	 get	

phosphorylated	 upon	 CD95	 activation	 is	 still	 controversial.	 The	 first	 study,	

however,	showing	that	both	tyrosine	residues	in	the	DD	can	be	phosphorylated	has	

been	published	almost	two	decades	ago	(50).	Since	then	both	tyrosine	residues	are	

often	 mentioned	 as	 potential	 binding	 sites	 for	 proteins,	 which	 are	 mainly	

participating	 in	 apoptosis-independent	 functions	 of	 CD95	 (113-116).	 In	 this	

context	 Chakrabandhu	 et	 al.	 recently	 showed	 that	 phosphorylation	 indeed	

functions	 as	 a	 dominant	 anti-apoptosis	 and	 a	 pro-survival	mechanism	 in	 SW480	

and	 SW620	 cells	 (117).	 Yet,	 the	 idea	 that	 phosphorylation	 serves	 a	 switch	

mechanism,	 requires	 the	 activity	 of	 kinases.	 Several	 lines	 of	 evidence	 exist	 that	

especially	SFK	are	activated	upon	CD95	activation	and	might	phosphorylate	CD95.	

This	was	also	confirmed	by	Chakrabandhu	and	colleges,	 since	 they	 identified	Src	

and	 Yes	 as	 regulators	 for	 the	 detected	 phosphorylation	 of	 CD95	 in	 the	 two	 cell	

lines	(117).	Another	promising	group	of	proteins	that	may	be	involved	in	affecting	

CD95-mediated	signaling	by	phosphorylating	CD95	are	RTKs,	especially	the	EGFR,	

as	evidence	for	an	interaction	between	both	proteins	exists	already	(118,	119).		

Apart	from	downstream	proteins,	the	composition	of	the	PM	also	participates	

in	 the	 signaling	 output	 of	 CD95.	 In	 this	 context,	 membrane	 raft	 domains	 and	

phosphatidylinositol	 phosphates	were,	 for	 example,	 shown	 to	 play	 an	 important	

role	in	the	outcome	of	CD95s	signaling	(94,	120).	Membrane	raft	domains	strongly	

participate	in	the	regulation	of	cell	fate,	as	they	control	the	promotion	of	survival	
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and	 cell	 death	 by	 tethering	 respective	 proteins.	 Most	 reports	 describing	 the	

membrane	 raft	 domains	 in	 relation	 to	 CD95	 signaling	 link	 these	 structures	with	

enhanced	apoptosis	signaling.	However,	depending	on	the	context,	membrane	raft	

domains	 can	 be	 depleted,	 apoptosis	 signaling	 prevented	 and	 thus	 the	 cell	 fate	

influenced	 (120,	 121).	 Another	 membrane	 component	 that	 typically	 affects	 cell	

signaling	 are	 phosphatidylinositol	 phosphates.	 As	 the	 level	 of	 individual	

phosphatidylinositol	 phosphates	 is	 regulated	 via	 the	 PI3K/Akt	 pathway,	 it	 is,	 as	

mentioned	 above,	 directly	 influencing	 CD95	 signaling	 (38).	 Moreover,	

internalization	and	vesicular	 trafficking	were	shown	 to	 influence	 the	signaling	of	

CD95.	In	fact,	not	much	is	known	about	CD95	trafficking,	but	one	study	from	Lee	

and	colleges	demonstrate	that	internalization	of	CD95	is	indeed	important	for	the	

outcome	of	CD95	stimulation	(122).	They	showed	a	general	requirement	of	CD95	

internalization	for	ligand-induced	DISC	formation	and	apoptosis	induction	in	type	I	

cells.	 Moreover,	 they	 showed	 that	 recruitment	 of	 the	 DISC	 components	

predominantly	occurs	in	the	endosomal	compartment	and	that	inhibition	of	CD95	

internalization	impairs	apoptosis.	On	the	other	hand,	CD95	stimulation	of	cells	that	

are	 unable	 to	 internalize	 CD95	 results	 in	 activation	 of	 Erk	 and	 NF-κB	 signaling	

pathways.	

One	 of	 the	 most	 essential	 modulators	 of	 the	 CD95-mediated	 cell	 fate	 is	

probably	FasL	itself.	Several	studies	show	that	FasL	can	exist	in	two	configurations,	

membrane-bound	 or	 as	 soluble	 form	 (sFasL)	 and	 that	 depending	 on	 the	

configuration	 either	 apoptosis	 or	 survival	 is	 induced	 (4,	6,	54,	94,	106,	123,	124).	

The	key	regulators	of	sFasL	are	metalloproteinases	(MMP)	and	over	the	last	years	

several	different	MMPs	were	identified	that	cleave	membrane-bound	FasL,	such	as	

MMP3,	 MMP7,	 MMP9	 and	 	 ‘A	 disintegrin	 and	metalloproteinase	 10’	 (ADAM-10)	

(125).	 However,	 the	 exact	 mechanisms	 about	 how	 the	 soluble	 form	 of	 FasL	 is	

changing	the	receptor’s	output	are	not	known.		

Taken	together,	the	non-apoptotic	signaling	of	CD95	is	highly	tissue-,	cell	type-	

and	 especially	 context-dependent	 and	 the	 question	 whether	 a	 ubiquitous	

mechanism	exists	that	switches	CD95s	function	towards	survival	remains	open.			
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1.2 EPIDERMAL	GROWTH	FACTOR	RECEPTOR	
	

EGFR	 (also	 refereed	 as	 ErbB1	 or	Her1)	 belongs	 to	 the	 ErbB	 receptor	 family,	

which	is	one	of	20	subfamilies	of	receptor	tyrosine	kinases	(RTKs)	(1).	In	total	the	

ErbB	 receptor	 family	has	 four	members,	which	are	ErbB1	 (EGFR	or	Her1;	 in	 the	

following	 referred	 to	 as	 EGFR),	 ErbB2	 (Her2/Neu),	 ErbB3	 (Her3),	 and	 ErbB4	

(Her4).	The	main	 tasks	of	 the	 four	members	of	 the	ErbB	receptor	 family	 include	

proliferation,	differentiation	and	migration	during	embryogenesis	but	they	are	also	

responsible	for	carcinogenesis.	EGFR	is	the	most	thoroughly	investigated	member	

of	the	ErbB	receptor	family,	as	it	is	abundantly	expressed	and	often	constitutively	

active	in	different	types	of	cancers	due	to	activating	mutations.		

	

	
Figure	1.5:	Schematic	representation	of	an	EGFR	monomer.		

As	all	four	members	of	the	ErbB	receptor	family,	EGFR	consists	of	an	extracellular	domain,	which	contains	four	
subdomains	 including	 the	 ligand	 binding	 domain,	 followed	 by	 a	 single	 transmembrane	 helix	 and	 an	
intracellular	 domain,	 which	 contains	 the	 juxtamembrane	 domain,	 the	 kinase	 domain	 and	 a	 C-terminal	 tail,	
which	 functions	 as	 a	 regulatory	 region.	 The	 first	 and	 the	 third	 extracellular	 subdomain	 are	 important	 for	
ligand	binding	and	often	referred	as	L1	and	L2;	the	second	and	fourth	subdomain	are	cysteine-rich	domains	
(126).		

	

Like	all	RTKs,	each	ErbB	receptor	contains	a	large	extracellular	region,	a	single	

transmembrane	 helix,	 an	 intracellular	 juxtamembrane	 (JM)	 domain,	 a	 tyrosine	

kinase	 domain	 and	 a	 C-terminal	 regulatory	 region	 (Fig.	 1.5)	 (126).	 The	

extracellular	domain	of	the	ErbB	family	members	contains	four	subdomains	(I-IV),	

where	 two	 domains	 (L1	 and	 L2	 or	 domains	 I	 and	 III)	 are	 homologous	 ligand	

binding	 domains	 and	 the	 other	 two	 (CR1	 and	 CR2	 or	 domains	 II	 and	 IV)	 are	

cysteine	 rich	domains.	The	 transmembrane	domain	makes	 a	 single	pass	 through	

the	membrane	and	is	followed	by	the	juxtamembrane	domain,	which	is	important	

for	 activation	 of	 the	 catalytic	 domain	 (127).	 The	 intracellular	 part	 contains	 the	

catalytic	 or	 kinase	 domain	 and	 the	 regulatory	 region.	 Activation	 of	 the	 receptor	

leads	 to	 autophosphorylation	 of	 tyrosine	 residues	 in	 the	 cytoplasmic	 tail	 and	

eventually	 to	 recruitment	 of	 effector	 proteins,	 which	 induce	 different	 signaling	

pathways.	
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1.2.1 FROM	ACTIVATION	TO	DEGRADATION	
	

In	the	ligand-unbound	state	EGFR	exists	in	two	conformations,	the	‘tethered	

conformation’	 and	 the	 ‘extended	 conformation’	 (126,	 128).	 In	 the	 tethered	

conformation,	 dimerization	 of	 the	 receptor	 is	 auto-inhibited	 by	 an	 interaction	 of	

the	subdomains	II	and	IV.	In	the	extended	conformation	the	so-called	‘dimerization	

arm’	of	 subdomain	 II	 is	exposed,	which	 increases	 the	 ligand	binding	affinity.	The	

extended	conformation	 is	stabilized	upon	 ligand	binding	(128).	Ligand	binding	 is	

accomplished	 by	 the	 subdomains	 I	 and	 III	 and	 leads	 to	 active	 dimer	 formation	

(129,	130).	The	main	ligand	for	the	EGFR	is	epidermal	growth	factor	(EGF)	but	also	

other	 ligands	are	known	to	bind	EGFR,	such	as	transforming	growth	factor	alpha	

(TGF-α),	heparin-binding	epidermal	growth	factor-like	factor	(HB-EGF),	epiregulin,	

betacellulin	 and	 amphiregulin	 (131).	 An	 interesting	 feature	 of	 EGFR	 is	 that	 the	

process	 of	 dimerization	 is	 ‘receptor-mediated’	 rather	 than	 ‘ligand-mediated’,	

which	means	that	dimerization	occurs	also	 independently	of	 ligand	binding	(132,	

133).	In	fact,	it	is	still	a	matter	of	discussion	how	the	signaling	dimer	is	formed.	One	

theory	 suggests	 that	 dimer	 formation	 occurs	 between	 two	 EGF-bound	 receptor	

monomers,	while	another	theory	 implies	the	existence	of	so-called	pre-dimers	or	

inactive	 dimers	 (133,	 134).	 Independently	 from	 the	 way	 the	 dimer	 forms,	 upon	

ligand	engagement	the	so-called	‘signaling	dimer’	or	‘asymmetric	dimer’	is	formed,	

where	 the	 term	 ‘asymmetric’	 refers	 to	 the	 intracellular	 kinase	domains	 (135).	 In	

this	 active	 conformation	 the	 kinase	 domain	 of	 one	 receptor	 catalyzes	 the	 trans-

phosphorylation	of	the	other	receptor	or	in	other	words	one	receptor	is	acting	as	

an	‘activator’	and	the	other	as	a	‘receiver’	kinase	(135).	Phosphorylation	of	specific	

tyrosine	residues	in	the	regulatory	region	of	EGFR	leads	to	recruitment	of	several	

adaptor	 proteins,	 which	 directly	 interact	 with	 EGFR	 through	 either	

phosphotyrosine	 binding	 (PTB)	 domains	 or	 SH2	 domains.	 Upon	 binding	 of	 the	

adaptor	proteins	different	signaling	pathways	are	activated	including,	for	example,	

the	Ras/Raf/MEK/ERK	and	the	PI3K/Akt/mTOR	pathway	(Fig.	1.6).	

One	 of	 the	most	 important	 adaptor	 proteins	 binding	 the	 EGFR	 is	 growth-

factor-receptor	bound-2	(Grb2).	Grb2	can	form	a	complex	with,	for	example,	 ‘Son	

of	Sevenless’	(SOS),	which	leads	to	activation	of	Ras	and	eventually	to	initiation	of	

the	 	 ‘mitogen-activated	 protein	 kinase’	 (MAPK)	 cascade.	 This	 in	 turn	 leads	 to	

activation	of	a	number	of	transcriptional	regulators	that	provoke	cell	growth	and	
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proliferation	 (136-138).	 Grb2	 also	 activates	 the	 PI3K/Akt/mTOR	 signaling	

pathway	 via	 recruitment	 of	 Gab1	 and	 PI3K	 (112).	 Activation	 of	 the	

PI3K/Akt/mTOR	 pathway	 is	 important	 for	 the	 regulation	 of	 the	 cell	 cycle	 and	

survival.		Another	essential	protein	that	is	bound	by	Grb2	is	the	ubiquitin	ligase	c-

Cbl,	 which	 is	 responsible	 for	 signal	 termination.	 c-Cbl	 attaches	 ubiquitin	

monomers	 to	 EGFR	 and	 thus	 targeting	 the	 receptor	 for	 endocytosis	 and	

degradation.		

	

	
Figure	1.6:	EGFR	signaling	network.		

The	schematic	illustration	shows	some	of	the	EGFR-activated	signaling	pathways,	such	as	the	PI3K/Akt/mTor	
signaling	pathway	or	the	MAPK	signaling	pathway.	Upon	EGFR	phosphorylation	specific	adaptor	proteins	are	
binding	to	phosphorylated	tyrosine	or	serine	residues,	leading	to	recruitment	of	further	proteins.	To	the	EGFR-
mediated	cell	responses	belong	among	other,	survival,	cell	cycle	regulation,	migration	and	proliferation.				

	

The	process	of	endocytic	trafficking	is	a	crucial	regulatory	mechanism	that	

ensures	 a	 robust	 EGFR	 activity	 in	 space	 and	 in	 time	 (139-141).	 Endocytic	

trafficking	can	either	culminate	in	receptor	recycling	or	degradation,	depending	on	

the	activity	state	of	receptor.	Generally,	 internalization	of	EGFR	helps	to	avoid	an	

excessive	 receptor	 expression	 level	 at	 the	 PM,	which	would	 possibly	 elevate	 the	

basal	 phosphorylation	 and	 thus	 the	 activation	 state	 of	 EGFR.	 In	 this	 regard,	 un-

ligated	 receptors	 are	 constitutively	 internalized	 from	 the	 PM	 to	 endosomes	 and	
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simultaneously	recycled	from	endosomes	to	the	PM.	Therefore,	the	recycling	rate	

to	the	PM	is	more	or	less	equal	to	the	internalization	rate,	which	still	guarantees	a	

high	level	of	receptors	at	the	PM	(142).	Another	important	aspect	about	vesicular	

recycling	is	the	regulation	of	spontaneous	phosphorylation.	Recently	it	was	shown	

that	 receptor	 endocytosis	 into	 the	 perinuclear	 area	 suppresses	 autocatalytic	

phosphorylation	of	un-ligated	EGFR	monomers,	as	the	perinuclear	areas	contains	a	

high	phosphatase	activity	(143).		Upon	ligand	binding,	Grb2	and	c-Cbl	are	recruited	

to	 phosphorylated	 receptors,	 where	 c-Cbl	 polyubiquitinates	 EGFR	 and	 guides	 it	

into	 clathrin-coated	 pits	 (144,	 145).	 Clathrin-coated	 vesicles	 then	 release	 their	

cargo	 after	 fusing	 with	 early	 endosomes	 (141).	 Early	 endosomes	 are	 highly	

dynamic	 and	 from	 there	 receptors	 get	 either	 rapidly	 recycled	 via	 the	 recycling	

endosome	or	early	endosomes	mature	into	late	endosomes	and	eventually	fuse	to	

lysosomes	where	receptors	are	degraded.		

Besides	 internalization,	 several	 other	 mechanisms	 exist	 that	 regulate	 the	

activity	 of	 EGFR.	 Protein	 tyrosine	 phosphatases	 (PTPs)	 play,	 for	 example,	 an	

essential	 role	 in	 safeguarding	 the	EGFR	activity	but	 are	 also	 involved	 in	positive	

and	negative	feedback	loops.	How	crucial	a	tight	regulation	of	the	EGFR	signaling	

network	is	can	often	be	seen	in	cancer,	as	overexpression	and	hyper-activation	of	

EGFR	leads	to	oncogenic	transformation.	

	

1.2.2 EGFR	IN	CANCER	
	

The	 expression	 of	 EGFR	 and	 other	 ErbB	 receptors	 has	 been	 described	 to	

appear	 in	 the	majority	 of	 human	 carcinomas.	 On	 average,	 50%	 to	 70%	 of	 lung,	

colon	 and	 breast	 carcinomas	 have	 been	 found	 to	 express	members	 of	 the	 ErbB	

family	and	particularly	EGFR	(reviewed	in	(146,	147)).	The	most	common	genetic	

transformation	that	is	found	in	tumors	with	EGFR	contribution	is	an	amplification	

of	the	EGFR	gene	and	consequently	a	protein	over-expression.	Other	mechanisms	

of	 enhanced	 EGFR	 activation	 include	 overexpression	 of	 receptor	 ligands,	 loss	 of	

negative	regulation	pathways	and	activating	mutations	of	the	EGFR	tyrosine	kinase	

domain	(147).		

In	 non-small-cell	 lung	 cancer	 (NSCLC),	 for	 example,	 which	 comprises	 up	 to	

80%	of	all	primary	pulmonary	tumors,	EGFR	is	expressed	in	up	to	93%	of	patients.	

While	about	45%	of	NSCLC	patients	show	EGFR	gene	amplifications,	in	17%	of	the	
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cases	mutations	in	the	EGFR	tyrosine	kinase	are	found	(148).	Although	a	variety	of	

different	mutations	are	 found	 in	 the	TK	domain	of	EGFR,	89%	occur	 in	exons	19	

and	21.	 In	 fact,	 two	mutations	are	of	particular	 significance;	 first,	 the	deletion	of	

amino	acids	746–750	 in	exon	19	and	a	 leucine	 to	arginine	substitution	at	858	 in	

exon	21	(L858R).	Both	mutations	account	for	approximately	66%	of	all	alterations	

found	 in	 the	 EGFR	 gene	 (149).	 Both	 mutations	 affect	 the	 activation	 loop	 of	 the	

kinase	 domain	 and	 lead	 to	 a	 constitutive	 EGFR	 activity	 even	 without	 EGF	

stimulation.	 Some	NSCLCs	with	 those	mutations	 are	 reported	 to	 respond	 to	 two	

competitive	tyrosine	kinase	inhibitors	(TKI),	namely	Gefitinib	and	Erlotinib	(150-

152).	Both	TKIs	are	small	molecules	that	bind	to	the	ATP	binding	site	of	the	kinase	

and	the	binding	affinity	of	Gefitinib,	for	example,	is	about	20-fold	stronger	than	to	

the	 wild	 type	 EGFR	 (153).	 However,	 still	 the	 majority	 of	 patients	 with	 NSCLCs	

show	 no	 response	 to	 both	 TKIs	 and	 only	 the	 combination	 of	 different	 therapies	

increases	the	median	survival	(149,	154).	

	

1.3 CD95	AND	EGFR	–	EVIDENCE	FOR	A	LINK	BETWEEN	GROWTH	AND	DEATH	
	

One	 promising	 candidate	 that	 may	 be	 involved	 in	 affecting	 the	 signaling	 of	

CD95	 towards	survival	 is	 the	epidermal	growth	 factor	 receptor	 (EGFR).	The	 first	

article	describing	a	connection	between	EGFR	signaling	and	CD95	was	published	in	

1999	by	Gibson	et	al.,	who	 showed	 that	 EGF	 stimulation	protects	 epithelial	 cells	

against	 Fas-induced	 apoptosis	 (155).	 They	 used	 two	 breast	 adenocarcinoma	 cell	

lines,	 T47D	 and	 MCF7	 cells,	 as	 well	 as	 an	 embryonic	 kidney	 epithelial	 cell	 line	

(HEK293	cells)	and	successfully	established	a	correlation	between	EGF-mediated	

RTK	activation,	subsequent	Akt	activation	and	apoptosis	blockade	in	these	cells.	In	

the	same	year	a	different	group	published	an	article	showing	exactly	the	opposite	

effect	of	EGFR	activation	on	Fas-	mediated	apoptosis	(156).	They	showed	that	Fas-

mediated	 apoptosis	 is	 enhanced	 by	 EGFR	 activation	 in	 human	 endometrial	

epithelial	cells,	since	increased	Fas-mediated	DNA	fragmentation	could	be	detected	

upon	EGF	pretreatment.	In	fact,	the	literature	connecting	EGFR/EGF	signaling	and	

CD95	is	ambiguous,	and	at	points	contradictory.		

In	this	regard,	one	of	 the	most	puzzling	examples	 is	by	 far	 the	 liver.	An	early	

report	 shows	 that	 mouse	 hepatocytes	 were	 protected	 from	 FasL-induced	

apoptosis	by	EGF	 treatment	 (157).	This	protection	was	partially	decreased	when	
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cells	were	treated	with	two	specific	inhibitors	that	abolish	the	TK	activity	of	EGFR.	

In	 rat	 hepatocytes	 it	 was	 shown	 that	 EGFR	 catalyzes	 phosphorylation	 of	 CD95	

upon	FasL	stimulation	and	that	both	receptors	interact	and	translocate	to	the	PM	

(119).	 Further	 it	 was	 presented	 that	 CD95	 phosphorylation	 and	 translocation	 is	

necessary	for	apoptosis	induction	and	that	inhibition	of	the	EGFR	association	with	

CD95	 abolished	 cell	 death.	 Similar	 observations	were	 also	 described	 in	 the	 liver	

carcinoma	cell	line,	Huh7,	where	Fluorescence	Resonance	Energy	Transfer	(FRET)	

experiments	 revealed	 a	 direct	 interaction	 of	 CD95	 and	 EGFR	 upon	 FasL.	

Mutagenesis	experiments	identified	the	two	tyrosine	residues,	Y232	and	Y291,	as	

essential	for	CD95–EGFR	interaction	and	trafficking	to	the	PM	(118).	In	quiescent	

hepatic	 stellate	 cells	 (HSCs),	 however,	 FasL	 stimulation	 triggers	 anti-apoptotic	

signaling,	which	is	dependent	on	a	ligand-dependent	EGFR	phosphorylation	(123).	

Unlike	 Musallam	 et	 al.,	 the	 latter	 publications	 could	 not	 detect	 effects	 on	 CD95	

after	EGF	stimulation.	The	exact	role	played	by	EGFR	in	the	liver	seems	to	be	highly	

cell	type,	species	and	context	dependent.		

Another	 interesting	 example,	 which	 points	 to	 a	 protective	 role	 of	 EGFR	 in	

relation	to	CD95,	was	found	in	human	glioma	cells	(158).	Steinbach	and	colleagues	

reported	 that	 FasL-induced	 apoptosis	 is	 enhanced	 after	 EGFR	 inhibition.	 They	

showed	 that	 the	 anti-apoptotic	 effect	 of	 EGFR	 is	mediated	 through	 a	 caspase	 8-

dependent	 pathway.	 Indeed,	 a	 few	 years	 later	 it	 was	 shown	 that	 the	 tyrosine	

kinase	 Src	 phosphorylates	 procaspase-8	 upon	 EGFR	 activation	 (159).	

Phosphorylation	 of	 procaspase-8	 blocks	 the	 catalytic	 activity	 of	 caspase-8	 and	

protects	 cells	 from	 FasL-induced	 apoptosis.	 Moreover	 it	 was	 shown	 that	

phosphorylated	procaspase-8	supports	the	recruitment	of	the	p85	subunit	of	PI3K	

and	 thus	 actively	 promotes	 the	 non-apoptotic	 signals	 induced	 by	 CD95	 (160).	

Recently	a	link	between	EGFR,	CD95	and	PI3K	was	described	also	in	a	caspase	8-

independent	 manner	 (161).	 In	 this	 study	 soluble	 FasL	 enhanced	 the	 motility	 of	

triple-negative	breast	cancers	cells	(TNBC),	which	lack	estrogen	and	progesterone	

receptors	 and	 HER2.	 In	 these	 cells,	 mobility	 was	 stimulated	 by	 production	 of	

nicotinamide	 adenine	 dinucleotide	 phosphate-oxidase	 oxidase-3	 (Nox3)-driven	

reactive	oxygen	species	(ROS),	which	activates	the	Src	kinase	c-yes	and	eventually	

leads	 to	 PI3K	 signaling	 through	 activation	 of	 the	 EGFR	 in	 an	 EGF-independent	

manner.	Noteworthy	is	a	recent	study	showing	that	knockdown	of	CD95	and	NF-

κB	 enhanced	 cell	 death	 induced	 by	 the	 EGFR	 tyrosine	 kinase	 inhibitor	 (TKI)	
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Erlotinib	 in	 lung	cancer	cells.	The	authors	used	human	 lung	adenocarcinoma	cell	

lines	 that	 harbor	 constitutively	 active	 EGFR.	 They	 showed	 that	 even	 Erlotinib-

resistant	EGFR-mutant	 lung	 cancer	models	were	 sensitized	 for	Erlotinib-induced	

apoptosis	after	inhibition	of	CD95	and	NF-κB.		

Taken	together,	the	existing	literature	that	connects	CD95	and	EGFR	contains	

meaningful	 evidence	 that	 EGFR	 can	 affect	 CD95	 signaling,	 and	 vice	 versa,	which	

may	function	in	regulating	the	balance	between	cell	life	and	death.		

	

1.4	RATIONALE	
	

In	 dynamic	 multicellular	 systems,	 life	 and	 death	 signals	 orchestrate	 the	

surveillance	of	tissue	homeostasis	and	thus	help	to	maintain	the	intrinsic	structure	

of	tissues	and	organs.	There,	the	response	to	such	opposing	signals	is	on	one	hand	

regulated	by	the	individual	cellular	composition	within	the	tissue,	as	one	cell	type,	

for	 example,	 expresses	 a	 certain	 protein	 that	 reacts	 to	 a	 particular	 stimuli	 and	

another	does	not	and,	on	the	other	hand,	by	a	high	cell-to-cell	variability	among	the	

same	 cell	 type.	 Especially	 the	 latter	 form	 of	 regulation	 is	 important	 for	 cell	 fate	

determination	but	yet	not	well	understood.	An	essential	question	in	this	regard	is	

for	example,	 from	where	 this	 cell-to-cell	 variability	originates	and	how	exactly	 it	

participates	 in	 the	 process	 of	 cell	 fate	 determination?	 It	 becomes	 particularly	

difficult	as	 some	proteins	by	 themselves	have	a	dual	 character.	 Such	a	protein	 is	

CD95,	 which	 is	 known	 as	 the	 classical	 death	 receptor	 but	 at	 the	 same	 time	 has	

several	non-apoptotic	functions.	

The	 mechanisms	 that	 control	 the	 duality	 of	 CD95	 are	 not	 yet	 completely	

understood	 and	 seem	 to	 be	 highly	 context	 dependent.	 In	 this	 regard,	

posttranslational	 modifications	 represent	 likely	 interfaces	 in	 modulating	 CD95’s	

function.	 One	 promising	 candidate	 for	 adjusting	 the	 function	 of	 CD95	 via	

phosphorylation	is	EGFR.	In	literature	several	reports	describe	a	relation	between	

both	receptors,	but	so	far,	a	clear	defined	function	is	missing.		

The	global	objective	of	this	work	is	to	elucidate	how	the	historical	context	of	a	

cell	 influences	 the	 response	 properties	 of	 CD95	 towards	 its	 ligand	 and	whether	

this	 provokes	 CD95’s	 duality.	 In	 this	 regard,	 activation	 of	 EGFR	 will	 be	 used	 to	

simulate	a	 ‘defined’	cellular	context,	 in	which	the	responsiveness	of	CD95	will	be	
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investigated	 towards	 its	 cognate	 ligand	 and	how	 cell	 fate	 is	 influenced	 in	 such	 a	

framework.	To	accomplish	this,	the	following	sub-questions	were	addressed:	

	

1.		 Do	EGFR	 and	CD95	 share	 similarities	 in	 their	 spatial	 and	 temporal	

dynamics?	How	does	the	activity	state	of	either	protein	influence	the	

other?		

2.		 Is	 there	 a	 direct	 interaction	 between	 both	 proteins?	 Is	 a	 potential	

interaction	between	both	proteins	influenced	by	the	activity	state	of	

either	protein?	

3.		 Is	 CD95	 phosphorylated	 and	 is	 this	 phosphorylation	 EGFR-

mediated?	 How	 does	 phosphorylation	 affect	 CD95’s	 response	

properties?
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2. MATERIALS	AND	METHODS	
	

2.1 MATERIALS	

2.1.1 CHEMICALS		
	 	
2-Mercapto-ethanol	 SERVA	Electrophoresis	GmbH	
Acetic	acid	 Sigma-Aldrich®	
Ammonium	persulfate	(APS)	 SERVA	Electrophoresis	GmbH	
Ampicillin	sodium	salt	 SERVA	Electrophoresis	GmbH	
Bromophenolblue	 Sigma-Aldrich®	
Dimethyl	sulfoxide	(DMSO)	 SERVA	Electrophoresis	GmbH	
Dithiothreitol	(DTT)	 Fluka®	Analytical	
Ethanol	 J.T.Baker	
Ethylenediaminetetracetic	acid	(EDTA)	 Fluka®	Analytical	
Fluorescein	isothiocyanate		 EGA-Chemie	
Glycerol	 GERBU	Biotechnik	GmbH	
Isopropanol	 J.T.Baker	
Kanamycin	sulfate	 GERBU	Biotechnik	GmbH	
Magnesium	chloride	(MgCl2)	 Merck	KG/J.T.Baker	
Methanol	 AppliChem	GmbH	
Monopotassium	phosphate	(KH2PO4)	 J.T.Baker	
N,N,N’,N’-Tetramethylene-diamine	

(TEMED)	

Sigma-Aldrich®	

Para-formaldehyde	(PFA)	 SERVA	Electrophoresis	GmbH	
Sodium	chloride	(NaCl)	 Fluka®	Analytical	
Sodium	dodecyl	sulfate	(SDS)	 SERVA	Electrophoresis	GmbH	
Tris-base	 Carl	Roth	GmbH	
Tris-HCl	 J.T.Baker	
Tritox	X-100	 SERVA	Electrophoresis	GmbH	
Tween	20	 SERVA	Electrophoresis	GmbH	
UltraPure™ Agarose	 Invitrogen™	Life	Technologies	
	

2.1.2 ENZYMES	
	 	
AgeI-HF	(10,000	U/ml)	 New	England	Biolabs	Inc.	
Calf	 Intestinal	 Phosphatase	 (10,000	

U/ml)	

New	England	Biolabs	Inc.	

HindIII-HF	(20,000	U/ml)	 New	England	Biolabs	Inc.	
NheI-HF	(20,000	U/ml)	 New	England	Biolabs	Inc.	
T4-DNA	ligase	 	 Invitrogen™	Life	Technologies	
XhoI	(20,000	U/ml)	 New	England	Biolabs	Inc.	
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2.1.3 ANTIBODIES	

2.1.3.1 PRIMARY	ANTIBODIES	
	
Antibody	 Dilution	

(WB)	
Dilution	
(ICC)	

Supplier	

goat	anti-CD95	 1:500	 	 AF326,	R&D	Systems,	Minneapolis	
goat	anti-EGFR	 1:1000	 1:100	 AF231,	R&D	Systems	
Living	colors®	mouse	

anti-GFP	

1:1000	 	 632681,	Clontech	

Living	 colors®	 rabbit	

anti-GFP		

1:1000	 	 632593,	Clontech	

mouse	anti-Akt		 1:1000	 	 2920,	Cell	Signaling	Technology	
mouse	anti-CD95	 1:500	 	 LifeSpan	BioSciences,	Inc.	
mouse	anti-Erk		 1:1000	 	 ab36991,	Abcam	
mouse	anti-GAPDH		 1:5000	 	 CALBIOCHEM	
mouse	 anti-

phosphotyrosine	

(PY72)	

1:730	 	 P172.1,	 InVivo	 Biotech	 Services	
GMBH	

mouse	anti-α-tubulin	 1:7500	 	 Sigma-Aldrich®	
rabbit	anti-Caspase-3		 1:100	 	 H-277,	Santa	Cruz	Biotechnologies	
rabbit	anti-CD95	 1:500	 	 Cell	Signaling	Technology	
rabbit	anti-CD95	 	 1:25	 Santa	Cruz	Biotechnologies	
rabbit	anti-EGFR	 1:1000	 1:50	 4267,	Cell	Signaling	Technology	
rabbit	anti-GAPDH	 1:2000	 	 14C10,	Cell	Signaling	Technology	
rabbit	anti-Parp		 1:500	 	 Cell	Signaling	Technology	
rabbit	 anti-phoshpo	

Akt	

1:500	 	 9271,	Cell	Signaling	Technology 

rabbit	 anti-phoshpo	

Erk	

1:500	 	 Cell	Signaling	Technology	

	

2.1.3.2 SECONDARY	ANTIBODIES	
	
Antibody	 Dilution	

(WB)	
Dilution	
(ICC)	

Supplier	

Alexa	 Fluor®	 488	

donkey	anti-rabbit	IgG	

	 1:200	 Invitrogen™	Life	Technologies	

Alexa	 Fluor®	 546	 goat	

anti-mouse	IgG	

	 1:200	 Invitrogen™	Life	Technologies	

Alexa	 Fluor®	 555	

donkey	anti-goat	IgG	

	 1:200	 Invitrogen™	Life	Technologies	

IRdye®	 680	 donkey	

anti-goat	IGg	

1:10000	 	 LI-COR®	Biosciences	

IRdye®	 680	 donkey	

anti-mouse	IGg	

1:10000	 	 LI-COR®	Biosciences	

IRdye®	 680	 donkey	

anti-rabbit	Igg	

1:10000	 	 LI-COR®	Biosciences	

IRdye®	 800	 donkey	

anti-goat	IGg	

1:10000	 	 LI-COR®	Biosciences	
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IRdye®	 800	 donkey	

anti-mouse	IGg	

1:10000	 	 LI-COR®	Biosciences	

IRdye®	 800	 donkey	

anti-rabbit	IGg	

1:10000	 	 LI-COR®	Biosciences	

	

2.1.4 KITS	AND	COMMERCIAL	SOLUTIONS	

2.1.4.1 MOLECULAR	BIOLOGY	
	 	
BigDye®	 Terminator	 v3.1	 cycle	

sequencing	kit	

Applied	Biosystems	

100x	BSA	 New	England	Biolabs	Inc.	
2-log	DNA	ladder	 New	England	Biolabs	Inc.	
DyeEx®	2.0	Spin	kit	 QIAGEN	
NucleoBond®	Xtra	Maxi	EF	kit	 Macherey-Nagel	GmbH	&	Co.	KG.	
NucleoSEQ	 Macherey-Nagel	GmbH	&	Co.	KG.	
QIAprep®	Spin	Miniprep	kit	 QIAGEN	
QIAquick®	Gel	Extraction	kit	 QIAGEN	
RedSafe	 nucleic	 acid	 staining	

solution	

iNtRON	

10x	Restriction	Enzyme	Buffer	1-4	 New	England	Biolabs	Inc.	
Roti®-Prep	Plasmid	MINI	 Carl	Roth	GmbH	
T4	DNA	Ligase		 Invitrogen™	Life	Technologies	
5x	T4	DNA	Ligation	Buffer	 Invitrogen™	Life	Technologies	
	

2.1.4.2 CELL	CULTURE	
	 	
Dulbecco’s	Modified	 Eagle’s	Medium	

(DMEM)	

PAN™	Biotech	

Dulbecco’s	 Phosphate	 Buffered	

Saline	(DPBS)	

PAN™	Biotech	

Fetal	calf	serum	(FCS)	 PAN™	Biotech	
FuGENE®	HD	Transfection	Reagent	 Promega	
L-Glutamine	 PAN™	Biotech	
Lipofectamine®	 Transfection	

Reagent	

Invitrogen™	Life	Technologies	

Non-essential	amino	acids	100x	 PAN™	Biotech	
OptiMEM	 Gibco®	 by	 Invitrogen™	 Life	

Technologies	
Roswell	 Park	 Memorial	 Institute	

(RPMI)	medium	1640	 	

PAN™	Biotech	

Trypsin/EDTA	 Macherey-Nagel	GmbH	&	Co.	KG.	
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2.1.4.3 PROTEINBIOCHEMISTRY	
	 	
30	%	Acrylamide/Bis	solution	 Bio-Rad	Laboratories,	Inc.	
Bradford	reagent	 Sigma-Aldrich®	
Cell	lysis	buffer	10x	 Cell	Signaling	Technology	
Chameleon	 Duo	 Pre-Stained	 Protein	

Ladder	

Li-Cor®	Biosciences	GmbH	

Complete	 Mini	 EDTA-free	 protease	

inhibitor	tablets	

Roche	Applied	Science	

Dynabeads®	Protein	G	 Novex™	
MES	buffer	 	
Novex	NuPAGE	LDS-Sample	Buffer	4x	 Invitrogen™	Life	Technologies	
Odyssey Infrared Imaging System 
blocking buffer 

LI-COR	Biosciences	GmbH	

Phosphatase	Inhibitor	Cocktail	2	 Sigma-Aldrich®	
Phosphatase	Inhibitor	Cocktail	3	 Sigma-Aldrich®	
Precision	Plus	ProteinTM	Dual	Color	

Prestained	standards	

Bio-Rad	Laboratories,	Inc.	

XT	Reducing	Agent	20x	 Bio-Rad	Laboratories,	Inc.	
XT	Sample	Buffer	4x	 Bio-Rad	Laboratories,	Inc.	
	

2.1.5 BUFFERS,	MEDIA	AND	SOLUTIONS	

2.1.5.1 MOLECULAR	BIOLOGY	
	 	
2-log	DNA	ladder	 1	 mg/ml	 2-log	 DNA	 ladder	 (NEB)	 diluted	 in	 1x	 DNA	

loading	buffer	(50	µg/ml)	
DNA	loading	buffer	 50%	glycerol,	0.1%	Orange	G,	0.1	M	EDTA	
LB	medium	 10	g/l	 Bacto-Trypton,	 5	g/l	 yeast	 extract,	 10	g/l	 NaCl,	

pH7.4	
LB	agar	 15	g/l	agar	in	LB	medium		

(ZE	Biotechnologie,	MPI	Dortmund)	
SOC	medium	 20	 g/l	 Bacto-Trypton,	 5	 g/l	 Bacto	 yeast	 extract,	 0.5	 g/l	

NaCl,	2.5	mM	KCl,	10	mM	MgCl2,	20	mM	glucose		
(ZE	Biotechnologie,	MPI	Dortmund)	

1x	TAE	 40	mM	Tris/Acetate	(pH	7.5),	20	mM	NaOAc,	1	mM	EDTA	
	

2.1.5.2 CELL	CULTURE	
	 	
4%	PFA	 4	%	 (w/v)	 Paraformaldehyde,	 10	mM	NaOH,	 1x	 PBS	 (pH	

7.4)	
CGM-DMEM	 10	%	FCS,	1	%	NEAA	and	2	mM	L-Glutamine	in	DMEM		
CGM-RPMI	1640	 10	%	FCS	in	RPMI	1640	
1x	PBS			 137	mM	NaCl,	10	nM	Na2HPO4,	2.6	mM	KCl,	1.8	mM	

KH2PO4	(pH	7.4)	
Starvation	Medium	

(DMEM)	

0.5	%	FCS,	1	%	NEAA	and	2	mM	L-Glutamine	in	DMEM	

Starvation	Medium	

(RPMI	1640)	

0.5	%	FCS	in	RPMI	1640	
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2.1.5.3 PROTEINBIOCHEMISTRY	
	 	
RIPA	lysis	buffer	 50mM	 Tris	 (pH	 7.5),	 150	 mM	 NaCl,	 1	 mM	 EGTA,	 1	 mM	

EDTA,	 1%	 IGEPAL,	 0.25%	 Na	 deoxycholate,	 2.5	 mM	 Na	
pyrophosphate,	1	mM	β-glycerophosphate,	0.1	mM	PMSF	

SDS	running	buffer	 25	mM	Tris-base,	192mM	glycine,	0,1%	SDS	
	

SDS	 sample	 buffer	

5x	

60	mM	Tris-HCl	(pH	6.8),	25	%	glycerol,	2	%	SDS,	14.4	
mM	2-mercapto-ethanol,	0.1	%	bromo-phenolblue	

1x	TBS	 100	mM	Tris-HCl,	150	mM	NaCl	
1x	TBS-T	 100	mM	Tris-HCl,	150	mM	NaCl,	0.1	%	Tween®-20	
Transfer	buffer	 25	mM	Tris-base,	192mM	glycine,	20%	methanol	
	

2.1.6 CELL	LINES	
	
Cell	line	 Origin	 Supplier	
Cos-7	 Grivet	kidney	fibroblast	 ATCC	
HCC827	 Human	epithelial	adenocarcinoma	 German	 Collection	 of	

Microorganisms	and	
Cell	Cultures	

Huh7	 Human	hepato	carcinoma	 Kindly	 provided	 by	 our	
collaborators	
of	University	Düsseldorf	

	

2.1.7 OLIGONUCLEOTIDES	
	
All	oligonucleotides	were	purchased	from	MWG	Eurofins	as	unmodified	DNA	

Oligos.	

	 	
pECFP-C1-1548R	 GTAACCATTATAAGCTGCAATAAAC	
FAS_822-F	 GTTCAACTGCTTCGTAATTGGC	
Human_CD95_481	 AGCAACACCAAGTGCAAAGAGGAAGGATCC	
CMV-F	 CGCAAATGGGCGGTAGGCGTG	
	

2.1.8 PLASMIDS	
	
Plasmid	name	 Description	 Origin	
CD95-mCitrine	 Encoding	 CD95	 with	 C-

terminally	fused	mCitrine	
Georgia	 Xouri	 @	 MPI	
Dortmund	

CD95-mTagBPB	 Encoding	 CD95	 with	 C-
terminally	fused	mTagBFP	

this	study	

CD95-mTFP	 Encoding	 CD95	 with	 C-
terminally	fused	mTFP	

this	study	

CD95-Y232,291F-

mCitrine	

Encoding	 CD95-mCitrine	
with	point	mutations	Y232F	
and	Y291F	

Georgia	 Xouri	 @	 MPI	
Dortmund	
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EGFR-mCherry	 Encoding	 ErbB1	 with	 C-
terminally	fused	mCherry	

Jenny	 Ibach	 @	 MPI	
Dortmund	

EGFR-mCitrine	 Encoding	 ErbB1	 with	 C-
terminally	fused	mCitrine	

Jenny	 Ibach	 @	 MPI	
Dortmund	

EGFR-mTFP	 Encoding	 ErbB1	 with	 C-
terminally	fused	mTFP	 	

Doro	 Vogt	 @	 MPI	
Dortmund	

mTagBFP-N1	 mTagBFP-N1	 encoding	
plasmid	

Clontech	 Laboratories	
Inc.	

mTagBFP-Rab11	 encoding	human	Rab11	
into	mTagBFP-C1	vector	

Jutta	 Luig,	 Lisawata	
Roßmannek	

mTFP-N1	 mTFP-N1	encoding	plasmid	 Evrogen	 Laboratories	
Inc.	

PTB-mCherry	 Encoding	PTB	domain	 from	
Shc	 with	 C-terminal	
mCherry	

Jenny	 Ibach	 @	 MPI	
Dortmund	

SNAP-ErbB1	K721A	 Encoding	 SNAP-ErbB1	with	
point	mutation	K721A	

Jenny	 Ibach	 @	 MPI	
Dortmund	

	

2.1.9 LIGANDS	AND	INHIBITORS	
	 	
EGF,	human	 Sigma-Aldrich®	
Erlotinib	 Cayman	Chemical	
SuperFasLigand™	 Enzo	Life	Sciences,	Inc.	
	

2.1.10 EQUIPMENT	
	 	
1.5	mm	10-well	combs	 Invitrogen™	Life	Technologies	
1.5	mm	cassettes	for	western	blots	 Invitrogen™	Life	Technologies	
35-mm	MatTek	petri	dishes	 MatTek	Corporation	
4-well	LabTek	chambers	 Nunc	by	Thermo	Fischer	
8-well	LabTek	chambers	 Nunc	by	Thermo	Fischer	
BD	LSM	II	Flow	Cytometer	 BD	Bioscience		
BioRad	ChemiDocTM	XRS	 Bio-Rad	Laboratories,	Inc.	
BioRad	Power	Pac	HC	 	 Bio-Rad	Laboratories,	Inc.	
Cell	scraper	16cm	2-Pos.-blade	 Sarstedt	AG	and	Co.	
Centrifuge	5415R	 Eppendorf	
Centrifuge	5810R	 Eppendorf	
Centrifuge	RC	26	Plus	 	 Sorvall®	
Cuvettes	(1	ml)	Ref.	67.742	 Sarstedt	Aktiengesellschaft	&	Co.	
ddH2O	 Millipore	
Dual	Plate	xCELLigence	 Roche	Applied	Science	
Eppendorf	safe	lock	tubes	(0.5/1.5/2	ml	 Eppendorf	
Falcon	tubes	(15/50	ml)	 	 BD	FalconTM	
Heatable	magnetic	stirrer	‘IKMAG®RCT’	 IKA®Labortechnik	
Incubation	box	for	western	blots	 LI-COR	Biosciences	
Mini	and	Midi	agarose	gel	chamber	 Carl	Roth	GmbH	
Molecular	Imager	Gel	Doc	XR	 Bio-Rad	Laboratories	
NALGENE®	Cryo	1	°C	freezing	container	 Nunc	by	Thermo	Fischer	
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Nanodrop®	ND-1000	spectrophotometer	 Peqlab	Biotechnologie	GmbH	
NuaireTM	 Cellgard	 Class	 II	 Biological	 Safety	

Cabinet	Integra	Biosciences	

Integra	Biosciences	

NuPage	4-12%	Bis-Tris	Gel	 Novex	by	Life	Technologies	
Odyssey	Infrared	Imager	 Licor®	Biosciences	
Parafilm®	 	 Pechiney	Plastic	Packaging	
Pipetboy	acu	 Integra	Biosciences	
PVDF	membrane	 Bio-Rad	Laboratories,	Inc.	
Sarstedt	serological	pipettes	(5/10/25	ml)	 Sarstedt	AG	&	Co.	
T25	tissue	culture	flask	 Sarstedt	AG	and	Co.	
T75	tissue	culture	flask	 Sarstedt	AG	and	Co.	
Test	tube	rotator	34528	 Snijders	
Tissue	culture	plates	(24-well)	 Sarstedt	AG	and	Co.	
Tissue	culture	plates	(6-well)	 	 Sarstedt	AG	and	Co.	
Vacuum	centrifuge	 Eppendorf	
Vi-CellTM	XR	cell	viability	analyzer	 Beckman	Coulter,	Inc.	
XCell	IITM	Blot	Module	 	 Invitrogen™	Life	Technologies	
XCell	 SureLockTM	 Mini-Cell	 Electrophoresis	

System	

Invitrogen™	Life	Technologies	

	

2.1.11 MICROSCOPES	
	 	
Cell^R	 Olympus	
Fiber	coupling	unit	 PicoQuant	GmbH	
Fluo	View	FV1000	 Olympus	
HCX	PL	APO	40x/1.25-	0.75	 Leica	MICROSYSTEMS	
HCX	PL	APO	(λ blue)	63x/1.4	 Leica	MICROSYSTEMS	
HCX	PL	APO	CS2	63x/1.4	 Leica	MICROSYSTEMS	
IU-LH75XEAPO:	75W	xenon	APO	lamp	 Olympus	
IX	81:	inverse	microscope	 Olympus	
IX2-UCB	controlling	unit	 Olympus	
Leica	TCS	SP5	 	 Leica	MICROSYSTEMS	
Leica	TCS	SP8	 Leica	MICROSYSTEMS	
LUCPlanFL	N	40x/0.6	 Olympus	
Orca/ER	CCD	camera	 Hamamatsu		
PR-IX2	motorised	stage	 Olympus	
Scan	Stage	 Olympus	
Sepia	II	 PicoQuant	GmbH	
U-HSTR2:	hand	switch	 Olympus	
U-RFL-T	 Olympus	
UPlanSApo	60x/1.35	NA	 Olympus	
UPLSApo	20x/0.75	NA	 Olympus	
UPLSApo	40x/0.9	NA	 Olympus	
UPLSApo	60x/1.2	NA	 Olympus	
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2.1.12 SOFTWARE	
	 	
Adobe	Illustrator	CS4	 Adobe	Systems	Inc.	
ApE	 http://biologylabs.utah.edu/jorgensen/wayned

/ape/	
BD	FACSDiva	v6.1.2	 	
Fiji	 	 Schindelin	et	al.	Nat.	Meth.	(2012)	
FlowJo	v10.1r5	 FlowJo	
FV10-ASW	Fluoview	Software	 Olympus	
Igor	Pro	v6.35A5	 Wavemetrics	
ImageJ64	v1.48i	 	 http://imagej.nih.gov/	
Leica	Application	Suite	 Leica	
Microsoft	Office	2011	 Microsoft	Corporation	
Prism	6	 GraphPad	Software,	Inc.	
RTCA	Software	v2.0	 ACEA	Bioscience,	Inc.	
SymPhoTime	v5.12	 Picoquant	GmbH	
VirtualBox	v5.0.8	 Oracle	Corporation	
	

2.2 METHODS	

2.2.1 MOLECULAR	BIOLOGY	

2.2.1.1 SUBCLONING	
	

Subcloning	 is	 a	 technique	 in	molecular	 biology	 to	move	 a	 certain	 gene	 of	

interest	from	one	vector	to	another.	Therefor	the	gene	of	interest	is	in	a	first	step	

released	 from	 the	 parent	 vector	 by	 restriction	 digestion,	 purified	 by	 agarose	 gel	

electrophoresis	and	eventually	 inserted	 into	 the	destination	vector,	which	also	 is	

cut	 via	 restriction	 enzymes.	 In	 the	 following	 all	 required	 steps	 are	 explained	 in	

detail.	

	

2.2.1.2 RESTRICTION	DIGESTION	
	

Restriction	 digestions	 are	 accomplished	 by	 the	 use	 of	 restriction																																														

endonucleases,	which	are	enzymes	that	cut	dsDNA	at	particular	recognition	sites	

within	the	DNA	molecule,	the	so-called	restriction	sites.	Each	enzyme	has	a	specific	

restriction	site	and	usually	inserts	double	strand	breaks.	The	most	commonly	used	

group	 of	 restriction	 enzymes	 are	 the	 restriction	 endonucleases	 type	 II,	 which	

recognize	mainly	palindromic	dsDNA	sequences	and	either	leave	sticky	ends	or	blunt	

ends.	For	subcloning	it	was	targeted	to	find	common	restriction	sites	in	the	parent	and	

the	destination	vector.		
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	 For	 each	 digestion	 reaction	 mix	 an	 appropriate	 amount	 of	 dsDNA,	 generally	

between	1-5	µg	dsDNA	was	used	and	mixed	with	the	enzyme	specific	10x	restriction	

buffer,	100x	BSA	 if	 indicated,	abundant	restriction	enzyme	(usually	2-5	U/µ	of	DNA)	

and	ddH2O	ad	30	µl	or	50	µl,	depending	on	the	amount	of	dsDNA.			

	

2.2.1.3 DEPHOSPHORYLATION	OF	5’-PHOSPHORYLATED	DNA	FRAGMENTS	
	

To	 inhibit	self-ligation	of	 the	destination	vector	DNA,	 the	5’-end	of	 the	cut	

vector	can	be	dephosphorylated	by	alkaline	phosphatase.	For	dephosphorylation,	

1	U/µg	DNA	CIP	was	added	to	the	restriction	digest	reaction	mix	and	incubated	for	

an	1	h	at	37	°C.	

	

2.2.1.4 AGAROSE	GEL	ELECTROPHORESIS	
	

Agarose	gel	electrophoresis	is	used	to	separate	DNA	fragments	according	to	

their	 size.	 Due	 to	 negatively	 charged	 phosphates	 on	 the	 backbone	 of	 DNA	

molecules,	 the	 net-charge	 of	 DNA	 is	 negative.	 By	 creating	 an	 electric	 field	

negatively	 charged	 DNA	 molecules	 migrate	 to	 the	 positively	 charged	 anode.	

Depending	 on	 the	 size	 of	 the	 DNA	 fragments,	 the	 distance	 of	 migration	 in	 the	

electric	 field	 is	dependent	on	 the	pore	size	of	 the	agarose	matrix,	 as	 the	mass	 to	

charge	ratio	per	DNA	fragment	is	the	same.		The	pore	size	of	the	agarose	matrix	is	

dependent	on	the	agarose	concentration	used	per	gel	and	chosen	according	to	the	

size	of	the	DNA	fragments	to	be	separated.		

For	all	 gels	1-2%	agarose	 (1	%	 for	DNA	 fragments	of	0.5-7.0	kb,	1.5%	 for	

0.3-3.0	kb	and	2	%	for	0.1-1.0	kb)	was	melted	in	1x	TEA	buffer	and	supplemented	

with	RedSafe	nucleic	 acid	 staining	 solution	 (1:20000).	RedSafe	 is	 a	 chemical	dye	

that	 intercalates	 into	dsDNA	molecules	and	allows	for	DNA	visualization	if	exited	

with	UV	light.	RedSafe	has	two	excitation	maxima	one	at	309	nm	and	the	other	one	

at	419	nm	and	its	fluorescence	emission	is	at	537	nm.	After	cooling	down	the	gel	to	

RT	and	polymerization,	gels	were	placed	into	electrophoresis	chambers	and	filled	

with	1x	TEA	buffer.	Samples	containing	the	DNA	fragments	to	be	separated	were	

mixed	with	DNA	loading	buffer	(6x)	and	 loaded	 into	the	gel.	Electrophoresis	was	

performed	at	 constant	voltage	of	100-120V,	depending	on	 the	size	of	 the	gel,	 for	
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about	 20-30	 min.	 For	 proper	 size	 to	 distance	 correlation	 of	 the	 separated	 DNA	

fragments	2-log	DNA	ladder	was	used.		

	

2.2.1.5 ISOLATION	OF	DNA	FRAGMENTS	FROM	AGAROSE	GELS	
	

To	 isolate	DNA	fragments	(70	bp	to	10	kb,	up	to	10	µg)	 from	agarose	gels	

the	 QIAquick®	 Gel	 Extraction	 Kit	 was	 used	 according	 to	 the	 manufacturer’s	

protocol.	 First,	 the	DNA	 fragments	of	 interest	were	 excised	 from	 the	 agarose	 gel	

and	 dissolved	 in	 the	 provided	 buffer	 at	 50	 °C	 for	 approximately	 10	 min	 while	

shaking.	For	DNA	purification	specific	columns	are	provided,	which	bind	DNA	to	a	

silica-membrane	under	high	salt	 conditions.	Contaminating	proteins,	 agarose	but	

also	small	DNA	fragments	(<50	bp)	were	washed	out	and	in	a	final	step	the	DNA	of	

interest	was	eluted	in	30-50	µl	EB.	The	quality	and	concentration	of	the	DNA	was	

measured	with	a	Nanodrop® spectrophotometer at a wavelength of 260 nm. The 

DNA quality was determined by measuring the 260/280 nm and the 260/230 
nm ratios.  

 

2.2.1.6 LIGATION	OF	DNA	FRAGMENTS	
	

To	catalyze	the	insertion	of	the	gene	of	interest	into	the	destination	vector	

T4-DNA	 ligase	 was	 used,	 which	 links	 the	 3’-hydroxy	 and	 5’-phosphate	 ends	 of	

double-stranded	DNA.	For	each	ligation	mix	50	ng	destination	vector	was	used	and	

different	amounts	of	insert,	usually	a	three-fold	and	a	five-fold	molar	excess	of	the	

insert	 DNA.	 The	 actual	 amount	 of	 insert	 DNA	 was	 calculated	 according	 to	 the	

following	formula:	

	

	!"#$%& !"#$%& [!" !"] = !"#$%& !"#$%& !" !" ×!"#$%& !"#$ [!" !"]
!"#$%& !"#$ [!" !"] 	

	

The	 destination	 vector	 and	 the	 appropriate	 amounts	 of	 insert	 DNA	were	mixed	

with	5	x	T4	DNA	ligase	buffer,	1	U	T4	ligase	and	ddH2O	ad	20	µl.	Ligation	reaction	

was	incubated	overnight	at	16	°C.		
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2.2.1.7 TRANSFORMATION	OF	CHEMICALLY	COMPETENT	E.COLI	
	

For	 chemical	 transformations	 the	 competent	 bacterial	 cells	 E.	 Coli	 XL	 10	

Gold	were	used.	First,	100	µl	of	cells	were	mixed	with	3.25	µl	of	2.25	mM	DTT	and	

divided	into	50	µl	aliquots.	For	each	transformation	50	µl	of	cells	were	inoculated	

with	5	µl	ligation	mix,	incubated	on	ice	for	30	min	and	head	shocked	for	45	sec	at	

42	°C.	After	cooling	down	the	tubes	on	ice	for	about	2-5	min,	250	µl	SOC	medium	

was	 added	 to	 the	 transformation	mix	 and	 tubes	were	 incubated	 for	 at	 least	 one	

hour	at	37	°C,	225	rpm	shaking.		Finally	the	transformed	bacteria	cells	were	plated	

on	 agar	 plates	 containing	 the	 appropriate	 antibiotics	 and	 incubated	 at	 37	 °C	

overnight.		

	

2.2.1.8 DNA	PREPARATION	USING	QIAprep®	Spin	Miniprep	Kit	
	

To	 isolate	 plasmid	 DNA	 from	 transformed	 bacteria,	 the	 QIAprep®	 Spin	

Miniprep	Kit	was	used	by	 following	 the	manufacturer’s	protocol.	Generally,	5	ml	

LB	 medium	 supplemented	 with	 appropriate	 antibiotic	 was	 inoculated	 with	

bacterial	cells	transformed	with	the	desired	plasmid	DNA	and	incubated	overnight	

at	37	 °C.	On	 the	next	day	 cell	 suspension	was	 centrifuged	at	5000	x	 g	 at	4	 °C	 to	

harvest	 the	cells	and	processed	as	described	 in	 the	manufacturer’s	protocol	with	

cell	lysis	and	DNA	isolation.	In	a	final	step	the	purified	plasmid	DNA	was	eluted	in	

30	µl	EB	or	ddH2O.		

	

2.2.2 CELL	CULTURE	

2.2.2.1 CULTIVATION	OF	IMMORTALIZED	MAMMALIAN	CELLS	
	

The	 human	 hepatocyte	 derived	 carcinoma	 cell	 line	 Huh7	 and	 the	 money	

kidney	derived	cell	line	Cos-7	were	maintained	in	DMEM	supplemented	with	10%	

FBS,	 1%	 L-glutamine	 and	 1%	NEAA.	 The	 non-small-cell	 lung	 carcinoma	 cell	 line	

HCC827	was	cultured	in	RPMI	1640	medium	supplemented	with	10%	FBS.	All	cell	

lines	were	grown	at	37	°C	in	a	humidified	incubator	with	5%	CO2.	In	order	to	avoid	

overgrowth	 of	 the	 cells,	 cells	 were	 split	 once	 cell	 density	 reached	 80-90%	

confluency.	Therefor,	the	medium	was	aspirated,	the	flask	washed	with	DPBS	and	

the	cells	detached	from	the	dish	with	trypsin/EDTA	solution	(0.05%	/	1	mM).	After	
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5	min	 incubation	 at	 37	 °C,	 the	 enzymatic	 reaction	was	 stopped	by	 adding	10	ml	

CGM	containing	10%	FBS.	Detached	cells	were	transferred	into	a	 falcon	tube	and	

gently	 triturated	with	 the	1ml	pipet.	To	determine	 the	cell	number	500	µl	of	 the	

cell	suspension	was	used	and	counted	with	the	Vi-Cell™	XR	cell	viability	analyzer.	

Finally,	the	volume	containing	the	desired	cell	number	was	calculated	and	seeded	

into	fresh	flasks	or	other	cell	culture	dishes	if	required.		

	

2.2.2.2 CRYO-PRESERVATION	OF	MAMMALIAN	CELLS	
	

For	long-term	storage	of	cell	lines	cryo-stocks	were	prepared	and	stored	at	

temperatures	below	-80	°C.	To	avoid	intracellular	ice	formation	and	thus	increase	

cell	 viability	 after	 thawing,	 cryo-stocks	 were	 supplemented	 with	 the	 cryo-

preservative	DMSO.		

For	 cryo-stock	 preparation	 T75	 flasks	 were	 split	 as	 described	 above	 and	

cells	were	diluted	in	cryo-media	(for	HCC827:	60%	RPMI	1640,	30%	FBS	and	10%	

DMSO;	for	all	other	cell	lines:	90%	CGM	and	10%	DMSO)	at	a	concentration	of	1.5	x	

106	 cells/ml.	 Cell	 suspension	 was	 applied	 into	 pre-cooled	 cryo	 vials	 and	

transferred	to	a	NALGENE®	Cryo	1	°C	freezing	box	filled	with	isopropanol,	which	

allows	for	a	controlled	freezing	rate	of	1	°C/min.	Freezing	boxes	were	kept	at	-80	

°C	overnight	and	on	the	next	day	the	cryo-stocks	transferred	to	a	-150	°C	freezer	

for	long	term	storage.		

Thawing	of	cells	was	done	as	quickly	as	possible	in	a	37	°C	water	bath.	The	

cell	 suspension	 was	 after	 complete	 thawing	 transferred	 to	 pre-warmed	 culture	

flasks	containing	10	ml	CGM.		On	the	next	day	medium	was	exchanged	to	remove	

DMSO	and	death	cells.		

	

2.2.2.3 TRANSIENT	TRANSFECTION	WITH	PLASMID	DNA	
	

Cells	were	transiently	transfected	with	FuGENE®	HD	Transfection	Reagent	

or	 Lipofectamine®	 Transfection	 Reagent	 according	 to	 the	 manufacturer’s	

guidelines.	Both	 transfection	 reagents	 are	based	on	 lipofection,	where	 liposomes	

are	 formed,	 which	 contain	 the	 plasmid	 DNA	 and	 are	 able	 to	 fuse	 with	 the	 cell	

membrane	to	release	the	genetic	material	into	the	cells.			
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Depending	 on	 the	 planned	 experiments	 cells	 were	 seeded	 in	 the	

appropriate	 culture	 dish	 one	 or	 maximum	 two	 days	 before	 transfection.	 The	

seeded	 cell	 density	 was	 chosen	 accordingly	 to	 the	 culture	 dish,	 the	 used	

transfection	reagent	and	the	seeding	time	point	but	always	targeted	to	reach	50-

80%	confluency	 for	 transfections	with	 the	FuGENE®	HD	Transfection	Reagent	or	

90%	confluency	for	Lipofectamine®	Transfection	Reagent.	The	amount	of	DNA	was	

dependent	on	the	culture	dish	and	the	amount	of	transfection	reagent	was	used	in	

the	 following	 DNA	 to	 transfection	 reagent	 ratios:	 FuGENE®	 HD	 Transfection	

Reagent	to	DNA	3:1	and	Lipofectamine®	Transfection	Reagent	to	DNA	2.5:1.		

On	 the	 day	 of	 transfection	 the	 recommended	 end	 volume	 of	 serum	 free	

media	(SFM)	was	divided	into	two	tubes	and	into	one	tube	the	respective	volume	

of	 transfection	reagent	was	added	and	 into	 the	second	tube	 the	DNA.	Both	 tubes	

were	left	aside	for	5	min	at	RT	and	then	mixed	together.	Next,	the	whole	mix	was	

incubated	for	15-20	min	at	RT	to	allow	complex	formation.	Finally	the	transfection	

reagent	 –	 DNA	 complexes	 were	 added	 drop	 wise	 to	 the	 cells	 and	 dishes	 were	

carefully	swung.	Cells	were	incubated	at	37	°C	in	a	humidified	incubator	with	5%	

CO2	until	next	day.		

	

2.2.2.4 REAL	TIME	CELL	ANALYSIS	(RTCA)	
	

Real	 time	 cell	 analysis	 is	 a	 method,	 where	 the	 development	 of	 the	 cell	

number	 is	 measured	 over	 time	 by	 determining	 the	 impedance-based	 cell	 index	

(CI),	which	 is	 a	dimensionless	parameter.	RTCA	assays	are	performed	 in	 specific	

16-well	 E-plates	 with	 gold	 electrodes	 at	 the	 dish	 bottom	 to	 evaluate	 the	 ionic	

environment	 at	 the	 electrode/solution	 interface.	 The	 Dual	 Plate	 xCELLigence	

instrument	correlates	then	this	information	to	the	cell	number	over	time.		

RTCA	assays	were	performed	with	HCC827	cells	and	 for	each	assay	about	

7.5	x	103	cells	were	seeded	per	well.	Before	the	cells	were	added	to	the	dishes	100	

µl	 CGM-RPMI	 was	 used	 to	 measure	 a	 blank	 value	 to	 subtract	 the	 background.	

Afterwards	 the	 cells	 were	 added	 in	 another	 100	 µl	 CGM-RPMI	 so	 that	 the	 final	

volume	was	200	µl	per	well.	The	dishes	were	then	placed	into	the	RTCA	machine,	

which	 is	 stored	 in	 a	 humidified	 incubator	 at	 37	 °C	 and	 5%	 CO2.	 The	 CI	 was	

monitored	 every	 15	min	 for	 up	 to	 120	 hours.	 After	 24	 hours	 in	which	 the	 cells	

reached	 a	 steady	 growth,	 the	 desired	 treatment	 was	 applied.	 Each	 condition	 in	
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each	assay	was	performed	 in	duplicates.	For	better	 comparison	of	 the	 individual	

stimuli	the	cell	index	was	normalized	to	1	at	the	time	point	of	FasL	administration.	To	

finally	 summarize	 the	 individual	 experiments,	 each	 data	 set	 was	 normalized	 to	 the	

untreated	condition	and	displayed	as	percentage	from	the	untreated	condition.			

	

2.2.3 PROTEIN	BIOCHEMISTRY	

2.2.3.1 PREPARATION	OF	WHOLE	CELL	LYSATES	
	

Whole	 cell	 lysates	were	 prepared	 from	 cells	 cultured	 either	 in	 6-well	 cell	

culture	plates	or	 in	6	cm	cell	culture	dishes.	Cells	were	places	on	 ice,	cell	culture	

medium	 was	 removed	 and	 cells	 were	 washed	 once	 with	 ice-cold	 PBS.	 Shortly	

before	 use	 cell	 lysis	 buffer	 was	 supplemented	 with	 Complete	 Mini	 EDTA-free	

protease	 inhibitor	 cocktail	 and	 the	 phosphatase	 inhibitor	 cocktail	 2	 and	 3.	 	 If	

cultured	in	6-well	cell	culture	plates	50	µl	ice-cold	cell	lysis	buffer	was	added	to	the	

cells	and	incubated	for	5	min.	For	cells	cultured	in	6	cm	cell	culture	dishes	400	µl	

ice-cold	 cell	 lysis	 buffer	 was	 used.	 After	 the	 5	min	 incubation	 on	 ice	 cells	 were	

scraped	and	suspension	transferred	to	pre-cooled	1.5	ml	reaction	tubes.	Cell	debits	

were	removed	from	lysates	by	using	a	conventional	tabletop	centrifuge	for	15	min	

at	 13000	 rpm	 and	 4	 °C.	 Supernatants	were	 carefully	 transferred	 into	 fresh	 pre-

cooled	 1.5	 ml	 reaction	 tubes	 and	 protein	 concentration	 was	 determined.	 If	

experiment	was	continued	on	a	different	day	samples	were	 flash-frozen	 in	 liquid	

nitrogen	and	stored	at	-80	°C.	

	

2.2.3.2 PROTEIN	CONCENTRATION	DETERMINATION	WITH	BRADFORD	REAGENT	
	

Bradford-Assay	 is	 a	photometrical	method	 in	which	 the	Bradford-reagent,	

Coomassie	brilliant	blue	G-250,	 is	binding	to	hydrophobic	amino	acid	residues	 in	

the	solution	of	interest,	leading	to	a	change	of	its	absorbance	maximum.	Is	the	dye	

in	a	complex	with	proteins	the	blue	form	of	the	dye	is	stabilized	and	its	absorbance	

maximum	 is	 shifted	 from	 465	 to	 595	 nm.	 In	 combination	 with	 a	 calibration	

measurement	 the	 absorbance	 at	 595	 nm	 can	 be	 correlated	 to	 the	 protein	

concentration	within	the	solution	of	interest.		

The	 protein	 concentration	 of	 all	 cell	 lysates	was	 determined	 by	 using	 the	

Bradford	assay	according	to	the	manufacturers	protocol.	Briefly,	protein	standards	
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were	prepared	by	 a	 serial	 dilution	of	 a	1	mg/ml	BSA	 stock	 solution	 in	ddH2O	 to	

obtain	 concentrations	 ranging	 from	1-16	µg/µl	 in	 a	 total	 volume	of	 500	µl.	 Each	

standard	was	prepared	in	a	separate	plastic	cuvette	and	500	µl	Bradford	reagent	

was	added	to	receive	a	total	volume	of	1	ml.	Also	for	all	samples	of	interest	a	total	

volume	 of	 1	ml	was	 prepared	 in	 a	 separate	 plastic	 cuvette,	 composed	 of	 500	 µl	

ddH2O,	500	µl	Bradford	 reagent	and	1	µl	 cell	 lysate.	The	absorption	values	were	

measured	at	595	nm	in	a	spectrophotometer.	To	calibrate	the	spectrophotometer	a	

blank	sample	was	used	composed	of	500	µl	ddH2O,	500	µl	Bradford	reagent	and	1	

µl	lysis	buffer.	The	measured	absorption	values	were	plotted	against	the	standard	

protein	concentrations	and	the	resulting	standard	curve	was	then	used	to	calculate	

the	protein	concentration	of	the	samples	of	interest.	

	

2.2.3.3 SAMPLE	PREPARATION	FOR	SDS-PAGE	
	

After	 determination	 of	 the	 protein	 concentration	 samples	 were	 prepared	

for	 SDS-PAGE.	 25-50	 µg	 of	 total	 protein	 were	 mixed	 with	 4x	 sample	 buffer	

supplemented	with	50	mM	DTT	as	reducing	reagent	and	an	appropriate	volume	of	

lysis	puffer	to	receive	a	total	volume	of	max	40	μl	for	10	well	gels	and	max	20	μl	for	

15	well	gels	with	a	thickness	of	1.5	mm.	After	short	centrifugation,	samples	were	

heated	 for	 10	 min	 at	 70	 °C	 to	 denature	 the	 protein	 structure	 and	 after	 cooling	

down	on	ice	again	briefly	centrifuged.	If	experiment	was	continued	on	a	different	

day	samples	were	stored	at	-20	°C.	

	

2.2.3.4 DENATURING	SDS-POLYACRYLAMIDE	GEL	ELECTROPHORESIS	(SDS-PAGE)	
	

SDS-PAGE	 (Sodium-dodecylsulfate-polyacrylamid-gelelectrophoresis)	 is	

used	 to	 separate	 proteins	 in	 solution	 according	 to	 their	 size.	 SDS	 is	 an	 anionic	

detergent,	which	binds	proteins,	linearizes	them	and	eventually	creates	a	negative	

net-charge	of	the	SDS-protein	complex.	By	creating	an	electric	field	the	linearized,	

negatively	charged	proteins	migrate	to	the	positively	charged	anode.	Depending	on	

the	size	of	the	protein	the	distance	of	migration	in	the	electric	field	is	proportional	

to	the	pore	size	of	the	polymerized	acrylamide.		The	pore	size	is	dependent	on	the	

amount	 of	 polyacrylamide	 and	 this	 was	 chosen	 accordingly	 to	 the	 molecular	

weight	of	the	protein	of	interest.		
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For	all	SDS-PAGEs	the	Invitrogen-gel-system	was	used,	which	provides	gel	

cassettes	of	1.5	mm	thickness.	Each	cassette	was	first	filled	with	the	separating	gel	

and	subsequently	after	polymerization	of	 the	separating	gel	 the	stacking	gel	was	

poured	on	top.		Depending	on	the	amount	of	samples	either	10-	or	15-well	combs	

were	 inserted	into	the	stacking	gel	and	stayed	inside	the	gels	until	samples	were	

loaded.		All	gels	were	prepared	using	the	following	compositions:	

	

	 Compounds	 8%	Gel	 10	%	Gel	 12	%	Gel	

Separation	Gel	 ddH2O	 9.3	ml	 7.9	ml	 6.6	ml	

Acrylamide	30%	 5.3	ml	 6.7	ml	 8.0	ml	

1.5	M	Tris	(pH	8.8)	 5	ml	 5	ml	 5	ml	

10%	SDS	 200	µl	 200	µl	 200	µl	

10	%APS	(w/v)	 200	µl	 200	µl	 200	µl	

TEMED	 12	µl	 8	µl	 8	µl	

	 TOTAL	 20	ml	

	 	 	

Stacking	Gel	 ddH2O	 6.8	ml	

Acrylamide	30%	 1.7	ml	

1	M	Tris	(pH	6.8)	 1.25	ml	

10%	SDS	 100	µl	

10	%APS	(w/v)	 100	µl	

TEMED	 10	µl	

	 TOTAL	 10ml	

	

After	 gel	 polymerization	 combs	 were	 carefully	 removed,	 pockets	 washed	 with	

ddH2O	and	gels	placed	into	a	gel	electrophoresis	chamber	(Invitrogen)	filled	with	

1x	 running	buffer.	 Protein	 samples	were	 filled	 into	 individual	 pockets,	while	 the	

first	 pocket	 was	 regularly	 used	 for	 the	 protein	 standard	 to	 determine	 size	

differences	of	 the	 separated	protein.	 If	 some	 individual	pockets	 remained	empty	

they	were	filled	with	sample	buffer.	Gel	electrophoresis	was	performed	first	at	80	

V	until	samples	entered	the	separation	gel	and	then	voltage	was	increased	to	130	V	

for	approximately	1.5h.	
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For	 some	 assays	 commercial	 4-12	 %	 Bis-Tris	 precast	 gels	 (Novex)	 were	

used	to	separate	proteins	in	a	range	of	3.5-200	kD	according	to	the	manufacturers	

instructions.	 The	 main	 differences	 to	 the	 above	 described	 procedure	 are	 the	

following:	For	gel	electrophoresis	with	precast	gels	MES	buffer	supplemented	with	

an	antioxidant	instead	of	the	1x	running	buffer	was	used	and	electrophoresis	was	

performed	at	200	V	for	approximately	40	min.			

	

2.2.3.5 WESTERN	BLOT	
	

Western	 blotting	 is	 one	 form	 of	 immuno-blotting,	 in	 which	

electrophoretically	separated	proteins	are	transferred	to	a	nitrocellulose	or	PVDF	

membrane,	where	the	proteins	of	interest	can	get	detected	with	antibodies.		

All	Western	blots	were	performed	with	the	XCell™	II	wet	tank	blot	modules	

according	 to	 manufacturer’s	 instructions.	 After	 SDS-PAGE	 the	 stacking	 gel	 was	

removed	 and	 the	 separation	 gel	 was	 placed	 into	 ice-cold	 transfer	 buffer.	 After	

activation	 of	 PVDF	membrane	 in	methanol	 for	 2-5	min	 also	 the	membrane,	 two	

pieces	 of	Whatman	 filter	 paper	 and	 the	 sponges	 for	 the	 blotting	 sandwich	were	

placed	into	ice-cold	transfer	buffer	to	equilibrate.	The	blotting	sandwich	was	then	

build	as	follows:	two	layers	of	blotting	sponges,	the	first	Whatman	filter	paper,	gel,	

PVDF	membrane,	the	second	Whatman	filter	paper	and	finally	three	more	sponges.	

The	blotting	module	was	placed	 in	a	running	chamber,	 filled	with	transfer	buffer	

and	transfer	was	carried	out	for	1	h	and	15	min	at	40	V.		

After	 the	 transfer	membranes	were	moved	 into	 a	 Li-Cor®	 incubation	box	

filled	 with	 Li-Cor®	 Odysseys	 blocking	 buffer	 and	 incubated	 for	 1	 h	 at	 room	

temperature	 on	 a	 shaker.	 For	 visualization	 of	 the	 proteins	 of	 interest,	 the	 blots	

were	 incubated	 with	 appropriate	 primary	 antibodies	 diluted	 in	 blocking	 buffer	

overnight	at	4	°C	on	a	shaker.	On	the	next	day,	the	membranes	were	washed	three	

times	 for	 10	 min	 with	 TBS/T	 and	 incubated	 with	 appropriated	 secondary	

antibodies	diluted	in	blocking	buffer	for	1	h	at	RT,	shaking.	The	membranes	were	

washed	 three	 times	 again	 with	 TBS/T	 and	 finally	 scanned	 with	 the	 Odyssey	

Imaging	System.		
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2.2.3.6 IMMUNOPRECIPATION	
	

Cell	 lysis	 and	 protein	 quantification	 were	 accomplished	 as	 described	 in	

2.2.3.1	and	2.2.3.2.	All	 Immunoprecipitations	were	done	with	magnetic	Protein-G	

Dynabeads®.	 Before	 Dynabeads®	 were	 used	 the	 desired	 amount	 of	 beads	 was	

washed	 twice	with	0.02%	Tween®-20	 in	PBS	 to	remove	 the	preservative	sodium	

azide.	 After	 sample	 preparation	 and	 concentration	 determination,	 the	 required	

volume	 of	 total	 cell	 lysate,	 to	 receive	 about	 200-400	 µg	 protein	was	mixed	with	

lysis	 buffer	 to	 obtain	 a	 total	 volume	 of	 200	 µl	 per	 sample.	 To	 each	 sample	 the	

appropriate	 primary	 antibody	 was	 added	 and	 incubated	 overnight	 at	 4	 °C	 on	 a	

wheel-over-wheel-shaker.	On	the	next	day,	about	15	µl	Dynabeads®	were	added	to	

each	sample	and	again	rotated	for	2h	at	4°C.	Next,	samples	were	washed	5	times	

with	300	µl	lysis	buffer	and	with	the	last	wash	step	samples	were	transferred	into	

new	tubes.	Proteins	were	re-suspended	by	adding	8	µl	4X	NuPAGE®	sample	buffer	

and	16	µl	lysis	buffer.	Finally,	the	samples	were	vortexed,	briefly	centrifuged	(800	

x	 g)	 and	 boiled	 for	 10	 minutes	 at	 75°C.	 Western	 Blotting	 was	 performed	 as	

described	in	section	2.2.3.5.		If	SDS-PAGE	was	not	immediately	done	samples	were	

stored	at	-	20°C.		

	

2.2.3.7 IMMUNOFLUORESCENCE	
	

Transfected	 cells	 were	 first	 treated	 as	 desired	 and	 then	 fixed	 with	 4%	

paraformaldehyde	 in	 PBS	 for	 10	 min	 at	 RT.	 Afterwards,	 the	 fixed	 cells	 were	

washed	once	with	50	mM	NH4Cl/PBS	for	5	minutes	and	then	twice	with	TBS	for	5	

min	at	RT.	Next,	the	cells	were	permeabilized	with	0.1%	TritonX-100	in	TBS	for	5	

min	at	RT,	followed	by	three	wash	steps	with	TBS	for	5	min	at	RT.	After	washing,	

cells	were	 blocked	with	Li-Cor®	Odysseys	 blocking	 buffer	 for	 30	min	 at	RT	 and	

then	 incubated	with	the	primary	antibodies	 for	60	min	at	RT.	Cells	were	washed	

three	 times	with	 TBS	 and	 secondary	 antibodies	were	 applied	 for	 30	min	 at	 RT.	

After	three	further	washing	steps	with	TBS,	the	cells	were	incubated	with	Hoechst-

reagent	 diluted	 in	 TBS	 (1:10000)	 for	 15	min	 at	 RT	 and	 then	washed	 once	with	

water.	 Finally,	 cells	were	 imaged	 in	PBS	with	 the	 appropriate	microscope.	 If	 not	

imaged	directly,	cells	were	stored	in	1%	azide	in	TBS	at	4	°C.		
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2.2.4 FLOW	CYTOMETRY	
	

Transfected	 cells	were	 first	 treated	as	 required	and	 then	 stained	with	 the	

PE	 Annexin	 V	 Apoptosis	 Detection	 Kit	 I	 according	 to	 the	 manufacturer’s	

instructions.	 	 Briefly,	 medium	 was	 removed	 and	 transferred	 into	 pre-cooled	

Falcon™	 round-bottom	 tubes.	 Cells	 were	 washed	 with	 cold	 PBS	 and	 the	

supernatant	 also	 collected	 in	 the	 tubes.	 To	 detach	 cells	 trypsin/EDTA	 solution	

(0.05%	/	1	mM)	was	added	and	cells	were	incubated	for	5	min	at	37	°C.	Detached	

cells	were	transferred	into	the	Falcon™	tubes	and	culture	dishes	were	rinsed	with	

PBS	to	collect	all	the	cells.	Cell	suspension	was	centrifuged	at	1000	rpm	for	5	min.		

Meanwhile,	 the	 staining	 mix	 was	 prepared,	 composed	 of	 1X	 Binding	 Buffer	

supplemented	 with	 PE	 Annexin	 V	 and	 7-AAD	 (5	 µl	 per	 sample).	 After	

centrifugation	 the	 supernatant	was	discarded,	 cells	were	 re-suspended	 in	100	µl	

staining	mix	and	gently	vortexed.	Samples	were	incubated	for	15	min	at	RT	in	the	

dark	and	measured	with	the	BD	LSR	II	Cytometer.		

PE	Annexin	V	and	7-AAD	were	excited	with	the	488	nm	laser	line	(Coherent	

Sapphire™).	 For	 PE	Annexin	V	 the	 530/30	 nm	 longpass	 dichroic	 excitation-filter	

was	used	and	fluorescence	was	detected	using	the	515/45	nm	filter.	The	PMT	was	

set	to	330V.	For	7-AAD	the	695/40	nm	longpass	dichroic	excitation-filter	was	used	

and	 fluorescence	was	detected	using	 the	675-715	nm	 filter.	 The	PMT	was	 set	 to	

450V.	The	forward	(FSC)	and	side	scatter	(SSC)	signals	were	also	generated	with	

the	 488	 nm	 laser.	 For	 instrument	 control	 and	 data	 acquiring	 the	 BD	 FACSDiva	

Software	8.0.1	was	used.	All	data	sets	were	analyzed	with	FlowJo	v10.1r5.		

	

2.2.5 MICROSCOPY	

2.2.5.1 WIDEFIELD	MICROSCOPY	
	

Fluorescence	images	were	obtained	with	an	Olympus	Cell^R	IX81	inverted	

microscope.	Excitation	of	fluorophores	was	done	with	a	MT-20	150	W	mercury	arc	

burner.	The	following	table	lists	the	excitation	and	emission	filters:	
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Plasmid	name	 Excitation	filter	 Dichroic	mirror	 Emission	filter	

TagBFP	 BP425-445	 U-M3DAFITR	 BA460-510	
mCitrine		 BP490-500HQ	 DM505	 BA515-560HQ	
mCherry	 BP545-580	 DM600	 BA610IF	
	

Images	 were	 sequentially	 acquired	 using	 a	 40x	 air	 objective	 and	 an	 Orca	 CCD	

camera.	 For	 instrumental	 control	 and	 data	 acquisition	 the	 Cell^R	 software	 was	

used.	

	

2.2.5.2 LASER	SCANNING	MICROSCOPE	(LSM)	

2.2.5.2.1 OLYMPUS	FLUOVIEW	FV1000	
	

Confocal	image	were	recorded	with	an	Olympus	FluoView	FV1000	confocal	

laser-scanning	microscope.	The	excitation	 source,	wavelength	and	 the	 respective	

emission	filter	bandwidth	are	presented	in	the	table:	

	
Plasmid	name	 Laser	 Wavelength	

(nm)	
Emission	
bandwidth	(nm)	

TagBFP	 UV	 405	 425-478	
mTFP		 Multiline	Argon	 458	 468-500	
Alexa	Fluor®	488		 Multiline	Argon	 488	 498-550	
mCitrine		 Multiline	Argon	 488	 525-550	
mCherry,	 Alexa	 Fluor®	
546,	Alexa	Fluor®	555	

DPSS	 561	 571-671	

	
For	 sequential	 image	 recording	 the	 laser	 beam	 was	 separated	 using	 a	 SDM510	

beam	splitter	 to	 spectrally	 separate	blue	and	yellow	 fluorescence	and	a	SDM560	

beam	splitter	 to	 separate	yellow	and	 red	 fluorescence.	For	TagBFP	or	UV	dyes	a	

SDM490	emission	beam	splitter	was	used.	Excitation	 light	was	focus	towards	the	

sample	 either	 by	 a	 60x/1.35	 NA	 oil	 objective	 or	 a	 40x/0.9	 NA	 air	 objective.	

Depending	on	the	used	fluorophore	combinations	either	the	DM405/488/561/633	

or	 the	DM458/515	 dichroic	mirror	was	 used.	 Fluorescence	was	 detected	with	 a	

photomultiplier	tube	(PMT).	Live	cell	imaging	was	done	in	an	incubation	chamber	

adjusted	to	37	°C	and	if	cells	were	fixed	images	were	recorded	at	RT.		
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2.2.5.2.2 LEICA	
	

Time-lapse	 microscopy	 was	 performed	 either	 with	 the	 Leica	 TCS	 SP5	

confocal	 laser-scanning	microscope	 or	 the	 Leica	 TCS	 SP8.	 The	 excitation	 source,	

wavelength	and	the	respective	emission	filter	bandwidth	are	listed	in	the	table:	

	

Plasmid	name	 Laser	 Wavelength	(nm)	 Emission	
bandwidth	

TagBFP	 UV	 405	 425-478	
mTFP		 Argon	or	WLL	 458	 468-500	
Alexa	Fluor®	488		 Argon	or	WLL	 488	 498-550	
mCitrine		 Argon	or	WLL	 488	 525-550	
mCherry,	 Alexa	 Fluor®	 546,	
Alexa	Fluor®	555	

DPSS	or	WLL	 561	 571-671	

	

On	 the	 Leica	 Sp5	 Acousto-optical	 tunable	 filters	 (AOTF)	 were	 used	 to	 select	

excitation	wavelengths	and	the	 following	excitation	and	emission	 filter	cubes	are	

used:	

	

Filter	cube	 Excitation	

filter	
Dichronic	Mirror	 Emission	

filter	
CFP/TFP	 BP	436/20	nm	 455	nm	 BP	480/40	nm	
YFP	 BP	500/20	nm	 515	nm	 BP	535/30nm	
N2,	1		 BP	515/560	nm	 580	nm	 LP	590	nm	
	

The	excitation	light	on	the	SP5	was	focus	into	the	sample	by	a	HCX	PL	APO	lambda	

blue	63.0x/1.40	oil	objective.	Fluorescence	was	detected	with	PMTs.	On	the	Leica	

Sp8	excitation	modulation	is	also	achieved	by	AOTFs,	with	the	following	excitation	

and	emission	filter	cubes:		

		

Filter	cube	 Excitation	

filter	
Dichroic	Mirror	 Emission	

filter	
DAPI	 BP	350/50	nm	 435	nm	 BP	460/50	nm	
CFP/TFP	 BP	436/20	nm	 455	nm	 BP	480/40	nm	
GFP		 BP	470/40	nm	 500	nm	 BP	525/50	nm	
RHOD	LP		 BP	540/45	nm	 580	nm	 LP	590	nm	
	

On	the	Leica	SP8	the	excitation	light	was	focus	into	the	sample	by	a	HC	PL	APO	CS2	

63x/1.40	NA	oil	objective	and	fluorescence	was	either	detected	with	PMTs	or	HyD	
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detectors.	Live	cell	imaging	was	done	in	an	incubation	chamber	adjusted	to	37	°C	

and	humidified	with	5%	CO2.		

	

2.2.5.3 FLUORESCENT	LIFETIME	MICROSCOPY	(FLIM)	
	

Fluorescence	 lifetime	 imaging	 microscopy	 (FLIM)	 is	 one	 of	 the	 most	

advanced	 fluorescence-based	 quantitative	 method	 and	 especially	 suitable	 to	

spatially	resolve	protein	interactions.	In	particular,	FLIM	is	basically	a	specialized	

method	 to	 analyze	 Förster	 resonance	 energy	 transfer	 (FRET)	 in	 a	 biochemical	

context	(162).	FRET	is	the	non-radiative	transfer	of	energy,	resulting	from	dipole-

dipole	 coupling	 between	 two	 fluorophores	 that	 are	 within	 a	 few	 nanometers	 of	

each	 other.	 The	 efficiency	 of	 FRET	 depends	 on	 the	 condition	 that	 the	 emission	

spectrum	of	the	donor	fluorophore	sufficiently	overlaps	the	excitation	spectrum	of	

the	acceptor	and	the	relative	orientation	of	the	fluorophores	(163).			

FRET	 reduces	 the	 fluorescence	 lifetime	 (τ)	of	 the	donor	 fluorophore,	 as	 it	

provides	an	additional	channel	 through	which	the	excited	donor	 fluorophore	can	

decay.	 The	 advantage	 of	 FRET-FLIM	 over	 other	 FRET	 monitoring	 techniques	 is	

predominantly	that	the	lifetime	reduction	of	the	donor	fluorophore	is	independent	

of	 the	 fluorescence	 intensity	 (both	 of	 donor	 and	 acceptor)	 and	 therefore	 also	 of	

bleaching	(162).	

The	donor	 lifetime	can	be	determined	either	 in	 the	 time-domain	or	 in	 the	

frequency-domain.	 For	 time-domain	 FLIM	measurements	 the	 donor	 of	 the	 FRET	

pair	 is	 excited	 with	 a	 short	 laser	 pulse	 and	 its	 fluorescence	 emission,	 which	

decreases	exponentially	over	time,	is	monitored.	Thereby	the	laser	pulse	should	be	

preferably	 shorter	 than	 the	 lifetime	 of	 the	 fluorophore	 (164).	 To	 obtain	 the	

fluorescence	lifetime	from	experimental	time-domain	data,	the	fluorescence	decay	

is	 fitted	 to	 a	 function	 describing	 the	 exponential	 decay	 (164).	 If	 the	 sample	

contains	 a	 single	 fluorescent	 species,	 the	 fluorescence	decay	 is	 ideally	 fitted	 to	 a	

mono-exponential	decay	model:		

	

! ! = !!!!!/!	
	
I(t)	=	fluorescence	intensity	at	time	t;	I0	=	fluorescence	intensity	at	t	=	0;	τ	=	fluorescence	lifetime.	
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If	 the	 sample	 contains	 both,	 donor	 fluorophores	 and	 donor-acceptor	 pairs	

undergoing	 FRET,	 the	 lifetime	 of	 the	 donor	 fluorophore	 population	 has	 two	

components,	τ1	and	τ2,	and	the	fluorescence	decay	model	is	bi-exponential:	

	

! ! = !!!!!/!! + !!!!!/!! + !	
	
A1	and	A2	=	amplitudes;	B	=	background	

	

To	determine	the	donor	fluorescence	lifetime	in	the	frequency-domain,	the	

donor	 is	 excited	 with	 an	 intensity-modulated	 light	 source.	 Due	 to	 the	 inherent	

fluorescence	 lifetime	 of	 the	 fluorophore	 the	 emitted	 donor	 fluorescence	 is	

demodulated	 and	 phase-shifted	 relatively	 to	 the	 excitation	 light	 source.	 Both	

properties	can	be	used	to	determine	the	lifetimes	[REF]:		

	

	 	 !! = !!! !"#!		 and	 	!! = !
!

!
!! − !

!
!	

	

τϕ	=	phase	lifetime;	τm	=	modulation	lifetime	

	

	All	 functions	are	dependent	on	 the	 fluorescence	 lifetime	of	 the	donor	molecules,	

which	 is	an	 intrinsic	property	of	 the	specific	 fluorophore	and	 independent	of	 the	

fluorophore	 concentration,	 excitation	 intensity	 and	 light	 path	 length	 (164).	 In	

addition,	the	fraction	of	FRETing	molecules	can	be	calculated.			

	

2.2.5.3.1 DATA	ACQUISITION	
	

FLIM	measurements	were	acquired	on	the	Olympus	FluoView	FV1000	laser	

scanning	 confocal	 microscope	 equipped	 with	 an	 external	 PicoQuant’s	 time	

correlated	 single	 photon	 counting	 (TCSPC)	 system, PicoHarp 300.	 The	 pulsed	

lasers	(repetition	rate	of	40	MHz)	used	 for	 time-domain	FLIM	are	coupled	to	 the	

FV1000	through	an	independent	port	and	are	controlled	by	a	Sepia	II	unit.	Emitted	

photons	 were	 detected	 via	 a	 Single	 Photon	 Avalanche	 Photodiode	 (SPAD). For	

mCitrine	excitation,	the	507	nm	pulsed	laser	and	the	DM458/515	dichroic	mirror	

were	used.	Fluorescence	emission	was	detected	using	a	537/26	bandpass	filter.	To	
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collect	enough	photons	to	reliably	determine	the	fluorescence	lifetimes,	the	image	

integration	time	was	about	3	min.	All	FLIM	measurements	were	obtained	with	the	

SymPhoTime	software	v5.12.	

	

2.2.5.3.2 FLIM	ANALYSIS	
	

FLIM	data	was	 analyzed	by	 global	 analysis	 (165)	 implemented	 into	 an	 in-

house-developed	 software	 (jediFLIM),	 which	 is	 based	 on	 frequency	 domain	

analysis	of	TCSPC	data	(166).	Briefly,	TCSPC	histograms	were	in	a	first	step	Fourier	

transformed.	The	complex	Fourier	coefficients	are	thereby	calculated	from	the	first	

Harmonic	 of	 the	 TCSPC	 histogram,	 which	 describes	 the	 change	 in	 phase	 and	

modulation.	This	calculation	is	performed	for	each	pixel	of	the	acquired	images.	In	

a	second	step	the	Fourier	coefficients	are	corrected	with	an	 instrument	response	

function	 (IRF).	 For	 this	 the	 “autoglobal”	method	was	 used,	which	 utilizes	 higher	

harmonic	content	of	the	data	to	fit	the	IRF	(166).	The	corrected	Fourier	coefficients	

are	then	plotted	into	a	phasor	plot,	so	that	the	Fourier	coefficients	from	each	pixel	

of	the	image	are	represented	by	one	point	in	the	phasor	plot.	By	fitting	a	straight	

line	 through	 all	 points	 in	 the	 phasor	 plot,	 the	 “global	 lifetimes”	 τD	 and	 τDA	 are	

determined	at	the	intersections	with	the	half-circle.	τDA	 is	the	donor	fluorescence	

lifetime	 in	 presence	 of	 the	 acceptor	 and	 τD	 the	 donor-only	 lifetime.	 Finally,	 the	

projection	of	each	point	in	the	phasor	plot	into	the	fitted	segment	between	τD	and	

τDA	can	be	used	to	calculate	the	relative	fraction	of	donor-only	and	donor-acceptor	

pairs	(α)	in	each	pixel.		

	

2.2.5.4 FLUORESCENCE	ANISOTROPY	MICROSCOPY	
	
Fluorescence	 anisotropy	 microscopy	 is	 based	 on	 the	 fact	 that	 if	 a	 fluorescence	

molecule	 is	 excited	 using	 a	 polarized	 light	 source	 also	 the	 emitted	 light	 will	 be	

polarized.	 Thereby	 photoselection	 takes	 places,	 which	 means	 that	 molecules	

whose	 absorption	 moment	 is	 perpendicularly	 aligned	 to	 the	 polarization	 of	 the	

excitation	 light	will	not	be	excited.	The	 rest	of	 the	molecules	will	 be	excited	and	

will	 emit	photons	with	 a	polarization	dependent	on	 the	particular	 orientation	of	

each	molecule.	The	degree	of	polarization	can	be	described	by	the	anisotropy	(r),	a	

dimensionless	 parameter	 defined	 as,	 where	 !∥ 	and	 !! 	are	 the	 parallel	 and	
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perpendicular	 intensities	 emitted	 by	 the	 excited	 molecules	 with	 respect	 to	 the	

polarization	direction	of	the	excitation	light.	The	anisotropy	value	(ranging	from	0	

to	0.4)	will	decrease	if	there	is	an	increase	in	depolarization.		

	

! = !∥ − !!
!∥ − !"!

	

	

I∥ = Intensity	(parallel	polarized	emission);	I!=	Intensity	(prependicular	polarized	emission)	

	
Several	 processes	 can	 influence	 the	 fluorescence	 anisotropy	 and	 lead	 to	

depolarization	of	the	emitted	light.	Some	of	those	processes	can	be	used	as	tools	as	

they	provide	 information	about	 the	 local	environment	of	 the	 fluorescent	 species.	

One	 of	 such	 processes	 is	 homo-FRET,	 which	 is	 FRET	 between	 identical	

fluorophores.	 If	 the	 emission	 dipoles	 of	 the	 donor	 and	 acceptor	 fluorophore	 are	

not	 parallel,	 the	 measured	 fluorescence	 will	 be	 depolarized.	 This	 effect	 can,	 for	

example,	 be	 used	 to	 determine	 protein	 structure,	 protein	 oligomerization	 or	

protein	clustering	and	protein	interactions	(167).	

	

2.2.5.4.1 DATA	ACQUISITION	
	

Fluorescence	 anisotropy	microscopy	measurements	were	 acquired	 on	 the	

Olympus	 IX81	 inverted	 microscope	 equipped	 with	 an	 Olympus	 MT-20	 150W	

mercury	arc	burner.	For	the	anisotropy	measurements	three	high	extinction	linear	

polarizers	were	used.	One	polarizer	was	used	for	the	polarization	of	the	excitation	

light,	 hence	 placed	 in	 the	 illumination	 path	 of	 the	 microscope.	 The	 other	 two	

polarizers	are	used	for	the	detection	and	are	placed	in	the	motorized	filter	wheel	in	

front	of	the	camera.	These	two	polarizers	are	oriented	parallel	and	perpendicular,	

respectively,	in	relation	to	the	excitation	light.	The	microscope	was	equipped	with	

a	BP460-480	HQ	filter	for	excitation	light	as	well	as	a	485	dichroic	and	a	495-540	

HQ	 filter	 for	 emission	 light.	 Fluorescence	 was	 collected	 using	 a	 20x/0.7	 NA	 air	

objective.	 All	 images	 were	 acquired	 sequentially	 with	 an	 Orca	 CCD	 camera.	 For	

data	acquisition	and	instrumental	control	the	Olympus	Cell^R	software	was	used.	
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2.2.5.4.2 ANISOTROPY	MICROCOPY	ANALYSIS	
	

Anisotropy	data	was	analyzed	with	an	in-house-developed	software.	Briefly,	

the	 product	 of	 each	 anisotropy	 measurement	 is	 two	 images	 per	 field	 of	 view.	

Thereby,	one	image	was	acquired	with	the	emission	polarizer	oriented	parallel	to	

the	 excitation	 polarizer	(!∥)	and	 the	 other	 image	 with	 the	 emission	 polarizer	
oriented	perpendicular	to	the	excitation	polarizer	(!!).	From	those	two	images	the	
anisotropy	was	calculated	in	each	pixel	i	by:	

	

!! = !!!∥! − !!!
!!!∥! + 2!!!

	

	

Before	 calculating	 the	 anisotropy,	 the	 corresponding	 parallel	 and	

perpendicular	images	were	aligned.	Cells	were	analyzed	individually	by	selecting	a	

region	 of	 interest	 (ROI).	 For	 each	ROI,	 the	 background	 intensity	was	 subtracted.	

The	 G-factor	 (Gi),	 that	 accounts	 for	 differences	 between	 the	 parallel	 and	

perpendicular	detection	channels,	was	determined	by	calculating	 the	 ratio	of	 the	

fluorescence	intensities	at	perpendicular	and	parallel	orientations	for	mCitrine	in	

solution,	 which	 steady-state	 anisotropy	 value	 is	 close	 to	 zero	 due	 to	 its	 fast	

rotation.	 For	 each	 cell,	 the	 obtained	 anisotropy	 values	 per	 pixel	were	 binned	 by	

intensity.		

	

2.2.5.5 IMAGE	PROCESSING	
	

All	 images	 were	 processed	 with	 Fiji	 ImageJ	 software.	 First,	 images	 were	

converted	into	32-bit	and	then	corrected	by	the	subtraction	of	the	mean	intensity	

of	 the	 background.	 If	 specific	 ROIs	were	 quantified	 for	mean	 intensity	 values	 or	

integrated	intensity	values,	the	minimum	intensity	was	set	to	0	before	the	ROI	was	

measured	 (e.g.	 for	 Western	 Blot	 quantifications).	 If	 images	 were	 used	 for	

calculations	to,	for	example,	divide	it	by	itself	to	generate	a	mask,	a	threshold	was	

set	and	background	pixels	were	set	to	“Not	a	Number”	(NaN).		For	representation,	

contrast	 and	 brightness	 of	 the	 particular	 images	 may	 have	 been	 adjusted	 and	

images	 may	 have	 been	 cropped	 to	 only	 show	 a	 ROI	 with	 the	 important	

information.			
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2.2.6 STATISTICAL	ANALYSIS	
	

Results	 are	 expressed	 as	 the	 mean	 ±	 SEM,	 unless	 otherwise	 stated.	

Statistical	significance	of	ungrouped	data	was	estimated	either	by	one-way	ANOVA	

or	 Student’s	 t-test.	 Statistical	 significance	 of	 grouped	 data	 (e.g.	 wt	 vs.	 mut	 data	

sets)	 was	 estimated	 by	 two-way	 ANOVA.	 For	 one-	 and	 two-way	 ANOVA	 a	

Bonferroni	 correction	 was	 done	 and	 adjusted	 p-values	 were	 calculated	 and	

indicated	 in	 the	 figures.	Significance	 level	of	p=0.05	was	used,	p<0.05	(*),	p<0.01	

(**)	and	p<0.001	(***).	
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3. RESULTS	
	

3.1 THE	EGF-MEDIATED	CD95	RESPONSE	
	

3.1.1 INTERACTION	OF	EGFR	AND	CD95	
	

Stimulation	with	FasL	often	results	in	the	initiation	of	the	apoptotic	cascade.	If	

the	 stimulated	 cells	 are	 sensitive	 towards	 FasL-mediated	 apoptosis	 the	 classical	

indications	 of	 cell	 death,	 like	 membrane	 bubbling	 and	 cell	 shrinkage	 are	

observable	after	a	certain	amount	of	 time.	To	validate	 that	Huh7	cells,	which	are	

CD95	negative	and	consequently	insensitive	towards	stimulation	with	FasL	(168),	

serve	 as	 a	 proper	 model	 system	 and	 that	 the	 CD95-mCitrine	 construct	 is	

functional,	 we	 first	 determined	 how	 Huh7	 cells	 transfected	 with	 CD95-mCitrine	

and	 EGFR-mCherry	 behave	 after	 FasL	 stimulation.	 Huh7	 cells	 were	 transfected	

with	both	receptors	and	stimulated	with	100	ng/ml	FasL	for	a	total	of	120	minutes.	

The	 spatial	 distribution	 of	 both	 receptors	 showed	 a	 high	 degree	 of	 similarity	

within	the	cell	prior	to	stimulation,	with	a	strong	accumulation	in	the	perinuclear	

area	(Fig	3.1).	As	exemplified	in	Fig	3.1	approximately	90	minutes	after	stimulation	

with	FasL	the	first	cells	became	apoptotic	and	after	120	min	most	cells	underwent	

apoptosis.	The	 localization	of	both	 receptors	however	did	not	 change	during	 the	

entire	time	of	stimulation.		

	

	
Figure	3.1:	FasL	induced	cell	death.	

Huh7	 cells	 co-expressing	 CD95-mCitrine	 and	 EGFR-mCherry	were	 stimulated	with	 100	 µg/ml	 FasL	 for	 120	
min	 and	 imaged	with	 a	 fluorescence	microscope.	Approximately	90	minutes	 after	 FasL	 stimulation	 the	 first	
cells	became	apoptotic	and	after	120	min	most	cells	underwent	cell	death.	Scale	bar	represents	40	µm.	
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After	 validation	 that	 Huh7	 cells	 recovered	 sensitivity	 towards	 FasL	 after	

transfection,	that	the	CD95-mCitrine	construct	is	functional	and	that	co-expression	

of	 EGFR-mCherry	 is	 not	 affecting	 the	 apoptotic	 response	 in	 Huh7	 cells,	 we	 now	

wanted	 to	 investigate	 whether	 EGF	 stimulation	 has	 an	 effect	 on	 CD95.	 As	 both	

receptors	 co-localize	 in	 unstimulated	 Huh7	 cells	 (Fig	 3.1),	 we	 first	 asked	 if	 EGF	

stimulation	 regulates	 this	 co-localization,	 as	 EGF	 stimulation	 usually	 leads	 to	

changes	 in	 the	 spatiotemporal	 distribution	 of	 EGFR.	 Huh7	 cells	 ectopically	

expressing	 CD95-mCitrine	 and	 EGFR-mCherry	 were	 stimulated	 with	 100	 ng/ml	

EGF	 and	 co-localization	 was	 determined	 using	 Li’s	 approach,	 which	 is	 a	 global	

statistic	 approach	 performing	 a	 intensity	 correlation	 coefficient-based	 (ICCB)	

analysis	 (169,	 170).	 After	 EGF	 addition	 a	 clear	 translocation	 of	 both	 receptors	

towards	 the	 plasma	 membrane	 was	 observable.	 Both	 receptors	 co-localized	

especially	 at	 the	 PM	 but	 also	 in	 the	 perinuclear	 area	 (Fig.	 3.2	 (A)).	 For	

quantification	 the	 intensity	correlation	quotient	 (ICQ)	was	measured	and	plotted	

as	 mean	 ±	 SEM	 (Fig	 3.2	 (A)).	 	 The	 receptors	 showed	 a	 high	 fraction	 of	 co-

localization	with	 no	 significant	 difference	 before	 and	 after	 stimulation	with	 EGF	

(ICQ	 value	 before=	0.452±0.017	 vs.	 ICQ	 value	 after=	 0.458±0.014;	 n=	 62	 cells	 of	

four	independent	experiments).		

To	 investigate	 whether	 the	 observed	 co-localisation	 is	 due	 to	 an	 interaction	

between	EGFR	 and	CD95,	 co-immunoprecipitation	 experiments	were	 performed.	

Huh7	cells	were	transfected	with	CD95-mCitrine	and	EGFR-mTFP	and	stimulated	

with	 EGF	 (100	 ng/ml)	 or	 FasL	 (100	 ng/ml),	 respectively.	 After	 cell	 lysis	 an	

antibody	specific	for	CD95	was	used	to	precipitate	the	receptor	and	its	associated	

proteins	in	the	total	cell	lysate.	Subsequent	Western	Blots	with	antibodies	specific	

for	EGFR	revealed	a	constitutive	binding	of	EGFR	to	CD95	(Fig.	3.2	(B)).	Moreover,	

it	 could	be	 shown	 that	 following	EGF	 treatment,	 the	EGFR	 fraction	 associated	 to	

CD95	is	phosphorylated	(Fig.	3.2	(B)).	

The	 co-localization	 between	 EGFR	 and	 CD95	 was	 further	 investigated	 on	

endogenous	protein	level	in	Cos-7	cells	by	an	immunocytochemical	staining.	Cos-7	

cells	 were	 stimulated	 with	 100	 ng/ml	 EGF	 for	 10	 min,	 fixed	 and	 probed	 with	

antibodies	specific	for	EGFR	and	CD95.	Similar	as	in	Huh7	cells,	before	stimulation	

both	receptors	co-localize	 in	the	perinuclear	area	and	the	PM	(Fig.	3.3	(A)).	After	

10	min	of	stimulation,	EGFR	internalization	could	be	observed,	visible	by	vesicles	
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inside	the	cell	and	less	receptor	was	visible	at	the	periphery	of	the	cells.	CD95	in	

comparison	remained	at	the	PM	and	was	not	present	in	the	EGFR-positive	vesicles	

(Fig.	3.3	(A),	see	arrow).				

	

	
Figure	3.2:	EGFR	and	CD95	interact	before	and	after	EGF	stimulation.		

(A)	Huh7	cells	ectopically	expressing	CD95-mCitrine	and	EGFR-mCherry	were	stimulated	with	100	µg/ml	EGF	
for	10	min	and	imaged	with	a	fluorescence	microscope.	Both	receptors	co-localize	before	stimulation	with	EGF	
and	remain	associated	10	min	after	EGF	addition.	The	blow-up	shows	that	both	receptors	highly	co-localize	in	
the	 PM.	 The	 intensity	 correlation	 quotient	 (ICQ)	 shows	 a	 high	 fraction	 of	 association	 before	 (ICQ	 value=	
0.458±0.014)	 and	 after	 (ICQ	 value=	 0.452±0.017)	 stimulation	with	 EGF.	 Data	 represent	mean	 ICQ	 values	 ±	
SEM	of	n=62	cells	of	four	individual	experiments.	(B)	Co-Immunoprecipitation	of	CD95-mCitrine	in	Huh7	cells	
after	stimulation	with	EGF	(100ng/ml)	or	FasL	(100ng/ml)	for	the	indicated	times.	Co-IP	was	probed	with	an	
anti-CD95	 antibody	 and	 Western	 Blot	 with	 anti-EGFR	 (EGFR-mTFP),	 anti-CD95	 (CD95-mCitrine)	 and	 anti-	
pY72	(pEGFR)	antibodies.	Scale	bar	represents	40	µm	and	in	the	blow	up	20	µm.	

	

So	 far,	 in	 the	 experiments	 involving	 overexpression,	 after	 10	 min	 of	 EGF	

stimulation	 still	 a	 high	 fraction	 of	 receptors	 were	 co-localizing	 and	 the	 level	 of	

receptor	 internalization	was	 low.	To	 see	 if	 in	 transfected	 cells	 the	 association	 of	

both	 proteins	 remains	 for	 a	 longer	 time	 period	 or	 if	 also	 in	 Huh7	 cells	 EGFR	

internalization	 can	 be	 observed	 but	 delayed	 compared	 to	 immunofluorescence,	
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Huh7	cells	co-expressing	both	proteins	were	imaged	over	in	total	60	min	after	the	

addition	of	EGF.	Before	stimulation	with	EGF	the	distribution	of	both	proteins	was	

again	 mainly	 restricted	 to	 the	 perinuclear	 area	 (Fig.	 3.3	 (B)).	 Upon	 EGF	 (100	

ng/ml)	addition	both	receptors	clearly	translocated	towards	the	PM.	At	later	time	

points	EGFR	was	internalized	by	vesicular	transport,	while	CD95	remained	on	PM	

(Fig.	3.3	(B),	see	arrows).	The	amount	of	vesicles	however	was	not	as	high	as	in	the	

immunofluorescence.	

	

	
Figure	3.3:	CD95	translocates	to	the	PM	upon	EGF	stimulation	

(A)	Cos-7	cells	were	stimulated	with	100	ng/ml	EGF	for	10	min,	fixed	and	immunocytochemically	stained	with	
antibodies	 specific	 for	 EGFR	 and	 CD95,	 respectively.	 Confocal	 images	 show	 that	 the	 EGFR	 receptor	 is	
internalized	after	10	min	EGF	stimulation,	while	CD95	is	accumulating	at	the	PM.	(B)	Huh7	cells	transfected	
with	 CD95-mCitrine	 and	 EGFR-mCherry	were	 stimulated	with	 100	 µg/ml	 EGF	 for	 60	min	 and	 imaged	 over	
time	 with	 a	 confocal	 microscope.	 Both	 receptors	 co-localize	 before	 stimulation	 with	 EGF	 and	 remain	
associated	in	the	beginning.	At	later	time	points	the	EGFR	receptor	is	internalized	and	CD95	remains	at	the	PM.	
All	scale	bars	represent	20	µm.			
	

To	 investigate	 whether	 the	 EGF-mediated	 internalization	 of	 EGFR	 leads	 to	 a	

loss	 of	 the	 interaction	 between	 CD95	 and	 EGFR,	 ‘Fluorescence	 Lifetime	 Imaging	

Microscopy’	 (FLIM)	 measurements	 were	 performed	 in	 Huh7	 cells.	 For	 FLIM	

measurements	 we	 choose	 mCitrine	 and	 mCherry	 as	 FRET	 pair,	 with	 EGFR-

mCherry	as	an	acceptor	 for	CD95-mCitrine.	 In	 the	absence	of	EGF,	an	 interaction	

between	 both	 receptors	 was	 observable,	 evident	 by	 a	 reduced	 fluorescence	

lifetime	(τ)	compared	to	the	donor	only	lifetime	(Fig	3.4	(B)).	EGF	stimulation	(100	

ng/ml)	caused	an	 increase	of	 the	 fluorescence	 lifetime	(τ)	over	time,	 indicating	a	

loss	 of	 interaction	 (Fig	 3.4	 (A)	 &	 (B)).	 This	 increasing	 fluorescence	 lifetime	was	

observable	in	various	cells,	showing	a	consistent	trend	of	an	EGF-mediated	loss	of	

interaction	between	both	receptors	(Fig	3.4	(C)).		
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Figure	3.4:	Loss	of	interaction	between	EGFR	and	CD95	measured	by	FLIM		
(A)	Huh7	cells	ectopically	expressing	CD95-mCitrine	and	EGFR-mCherry	were	stimulated	with	100	µg/ml	EGF	
for	40	min	and	imaged	over	time.	The	FL	(τ)	of	mCitrine	was	measured	at	various	time	points.	In	the	upper	row	
the	 average	 lifetime	 (τ) maps	 are	 shown	 (color	 coding	 is	 shown	 on	 the	 right);	 the	 middle	 row	 shows	 the	
corresponding	images	of	the	donor	counts	and	the	bottom	row	shows	the	EGFR-mCherry	images,	which	were	
recorded	with	 a	 confocal	microscope.	 (B)	Histogram	shows	 the	distribution	of	 the	measured	average	FL	 (τ)	
before	stimulation	and	after	40	min	EGF	of	 the	cell	 shown	 in	 (A).	Dotted	 line	 represents	 the	average	 FL	 (τ)	of	a	
donor	 only	 sample.	 The	 average	 FL	 (τ)	 distributions	 show	 that	 before	 stimulation	 the	 lifetime	 (τ)	 is	 reduced	
compared	to	the	donor	only	sample	(grey	line)	and	that	after	40	min	EGF	stimulation	the	average	FL	 (τ)	increases	
(green	line).	(C)	Measured	average	FL	(τ)	of	various	cells	over	before	and	after	EGF	(turquoise	lines).	Mean	±	SEM	
is	shown	in	black.	Scale	bar	represent	20	µm.			
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Taken	together,	CD95	and	EGFR	interact	with	each	other	in	the	un-stimulated	

state.	 EGF	 stimulation	 leads	 to	 translocation	 of	 both	 receptors	 to	 the	 plasma	

membrane	and	 to	a	 loss	of	 the	constitutive	 interaction	over	 time,	as	 the	EGFR	 is	

internalization	by	vesicular	transport,	while	CD95	remains	bound	to	the	PM.	

	

3.1.2 RECYCLING	AT	STEADY	STATE		
	

Due	to	the	observation	that	EGFR	and	CD95	co-localize	and	interact	with	each	

other	in	un-stimulated	Huh7	and	Cos-7	cells	(Fig.	3.3	and	3.4),	we	asked	whether	

both	 receptors	 are	 co-trafficked	 through	 the	 endocytic	 system.	 It	was	previously	

shown	 that	 EGFR	 is	 constitutively	 recycled	 via	 the	 Rab11a-positive	 recycling	

endosome	 (RE)	 in	 un-stimulated	 Cos-7	 cells	 and	 that	 EGF	 binding	 redirects	 the	

receptor	 towards	 lysosomes,	 where	 ligand-bound	 receptors	 eventually	 get	

degraded	 (143).	 In	 the	 case	 of	 CD95,	 not	 much	 is	 known	 about	 its	 trafficking	

dynamics	at	steady	state	or	the	protein	machinery	involved.			

To	 investigate	whether	 also	 CD95	 is	 constitutively	 recycled	 in	 un-stimulated	

Huh7	 cells,	 we	 first	 investigated	 if	 CD95	 recycles	 via	 Rab11a-positive	 RE,	 like	

EGFR.	In	a	first	experiment	only	CD95-mCitrine	and	BFP-Rab11a	(Fig.	3.5	(A)	left	

upper	panel)	 or	EGFR-mCherry	 and	BFP-Rab11a	 (Fig.	 3.5	 (A)	 right	upper	panel)	

were	 co-expressed	 in	 Huh7	 cells	 and	 in	 a	 second	 test	 both	 receptors,	 CD95-

mCitrine	 and	 EGFR-mCherry	were	 co-expressed	 together	with	 BFP-Rab11a	 (Fig.	

3.5	(A)	bottom	panel).		

While	 CD95	 clearly	 co-localized	with	 Rab11a	 in	 all	 analysed	 cells,	 EGFR	 and	

Rab11a	 were	 found	 to	 co-localize	 only	 in	 some	 of	 the	 analysed	 cells	

(approximately	 4%,	 Fig.	 3.5	 (B)).	 Co-expression	 of	 CD95-mCitrine	 with	 EGFR-

mCherry	slightly	increased	the	proportion	of	cells	that	showed	a	co-localization	of	

EGFR	and	Rab11a	but	overall	the	amount	remained	low.	Conversely	co-expression	

of	 EGFR-mCherry	 significantly	 decreased	 the	proportion	of	 CD95	 in	 the	Rab11a-

positive	compartment	(Fig	3.5	(A)).		
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Figure	3.5:	EGFR	slows	down	recycling	of	CD95.		

(A)	Huh7	cells	were	either	transfected	with	CD95-mCitrine	and	BFP-Rab11	(left	upper	panel,	green	frame)	or	
EGFR-mCherry	and	BFP-Rab11	(right	upper	panel,	green	frame)	or	CD95-mCitrine,	EGFR-mCherry	and	BFP-
Rab11	(bottom	panel,	blue	frame).	Diagram	shows	the	fluorescence	intensity	of	CD95	or	EGFR	in	the	RE	over	
the	total	fluorescence	intensity	of	double	(green	bars)	or	triple	(blue	bars)	transfected	cells.	Bars	represent	the	
fraction	of	both	receptors	within	the	RE	in	percent	±	SEM	(analyzed	cells	for	CD95:	CD95	+	Rab11	n=	52;	CD95	
+	EGFR	+	Rab11	n=63;	 analyzed	 cells	 for	 EGFR:	 EGFR	+	Rab11	n=	39;	 CD95	+	EGFR	+	Rab11	n=63,	 of	 two	
independent	 experiments)	 (*	 p<	 0.05,	 two-way	 ANOVA	 with	 Bonferroni’s	 multiple	 comparison	 test)	 (B)	
Quantification	of	cells	showing	a	co-localization	of	EGFR	and	Rab11	of	two	independent	experiments.	Scale	bar	
represents	40	µm.	
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As	 EGFR	 is	 only	 co-localizing	 in	 some	 cells	 with	 Rab11a	 we	 repeated	 the	

experiment	in	Cos-7	cells,	where	a	co-localization	of	EGFR	and	Rab11a	has	already	

described.	 Again	 cells	 were	 transfected	 with	 each	 receptor	 individually	 or	 with	

both	 receptors	 simultaneously	 along	with	 Rab11a	 (Fig.	 3.6).	 In	 Cos-7	 cells,	 both	

CD95	and	EGFR	were	 found	to	co-localize	with	Rab11a	 in	all	observed	cells	 (Fig.	

3.6).	Contrary	to	the	Huh7	cells,	receptor	co-expression	did	not	lead	to	a	significant	

reduction	 of	 CD95	 in	 the	 Rab11a	 compartment,	 but	 a	 significant	 increase	 in	 the	

amount	of	EGFR	in	the	RE	was	observed	upon	CD95	co-expression.	

Taken	 together,	 CD95	 co-localizes	with	Rab11a	 suggesting	 an	 involvement	of	

Rab11a	 in	 the	 recycling	of	CD95	at	 steady	 state.	The	ectopic	 expression	of	EGFR	

decreases	 the	 amount	 of	 CD95	 in	 the	 RE,	 which	 might	 be	 due	 to	 a	 reduced	

recycling	 rate	 caused	 by	 the	 interaction	 between	 both	 proteins.	 EGFR	 is	 not	 co-

localizing	 with	 Rab11a	 in	 Huh7	 cells	 pointing	 towards	 a	 different	 recycling	

mechanism	in	those	cells	or	changed	recycling	dynamics.	 	In	Cos-7	cells,	however	

CD95	positively	affects	trafficking	of	EGFR.	

	

3.1.3 CD95	RECYCLING	AFTER	EGF	STIMULATION	
	
At	steady	state,	a	 fraction	of	EGFR	is	maintained	at	the	PM	by	vesicular	recycling	

from	the	RE	to	the	PM.	Once	EGF	binds,	the	receptor	is	redirected	to	lysosomes	and	

thus	the	RE-bound	receptor	pool	 is	 temporarily	depleted	(143).	As	CD95	also	co-

localizes	 with	 Rab11a-positive	 recycling	 endosomes	 and	 since	 both	 receptors	

interact	 at	 steady	 state,	 we	 asked	 whether	 EGF	 stimulation	 also	 modulates	 the	

trafficking	 fate	 of	 CD95.	 To	 ascertain	 if	 EGF	 stimulation	 has	 an	 effect	 on	 CD95	

trafficking,	Huh7	cells	were	transfected	with	both	receptors	and	BFP-Rab11a	and	

imaged	over	time.	
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Figure	3.6:	CD95	enhances	the	slow	recycling	of	EGFR.		

Cos-7	 cells	 ectopically	 expressing	 either	 CD95-mCitrine	 and	 BFP-Rab11	 (left	 upper	 panel,	 green	 frame)	 or	
EGFR-mCherry	and	BFP-Rab11	(right	upper	panel,	green	frame)	or	CD95-mCitrine,	EGFR-mCherry	and	BFP-
Rab11	(bottom	panel,	blue	frame).	Diagram	displays	the	ratio	of	 the	fluorescence	 intensity	of	CD95	or	EGFR	
measured	 in	 the	 RE	 over	 the	 total	 fluorescence	 intensity	 of	 double	 (green	 bars)	 or	 triple	 (blue	 bars)	
transfected	cells.	Bars	represent	the	amount	of	both	receptors	within	the	RE	in	percent	±	SEM	(analyzed	cells	
for	CD95:	CD95	+	Rab11	n=	20;	CD95	+	EGFR	+	Rab11	n=33;	analyzed	cells	 for	EGFR:	EGFR	+	Rab11	n=	29;	
CD95	 +	 EGFR	 +	 Rab11	 n=33,	 of	 one	 experiment)	 (*	 p<	 0.05,	 two-way	 ANOVA	 with	 Bonferroni’s	 multiple	
comparison	test).	Scale	bar	represents	40	µm.	
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Figure	3.7:	CD95	depletion	from	Rab11a-positive	RE	after	EGF	stimulation	in	Huh7	cells	

(A)	 Huh7	 cells	 ectopically	 expressing	 CD95-mCitrine,	 EGFR-mCherry	 and	 BFP-Rab11	were	 stimulated	with	
100	 µg/ml	 EGF	 for	 60	min	 and	 imaged	 over	 time	with	 a	 confocal	microscope.	 Changes	 of	 the	 fluorescence	
intensity	of	CD95-mCitrine	were	measured	in	the	indicated	regions	and	plotted	over	time.	(B)	Diagram	shows	
the	mean	integrated	intensity	±	SEM	of	the	in	(A)	measured	cells.	Scale	bars	represent	40	µm.			
	

By	 using	 a	 mask	 of	 the	 RE,	 which	 was	 created	 by	 using	 the	 BFP-Rab11a	

fluorescence,	 the	 amount	 of	 CD95-mCitrine	 in	 that	 compartment	 was	measured	

before	and	after	EGF	stimulation	(Fig	3.7).	The	quantification	revealed	a	more	or	

less	 linear	 reduction	 of	 the	CD95-mCitrine	 fluorescence	 intensity	 in	 the	Rab11a-

positive	endosomes	over	time.	This	effect	was	even	more	rapid	in	the	Cos-7	cells,	

where	 the	 reduction	 of	 the	 CD95-mCitrine	 fluorescence	 intensity	 in	 the	 RE	was	

observable	 approximately	 after	 10	min	 and	 stayed	 constantly	 low	over	 time	but	

rather	followed	an	exponential	reduction	(Fig	3.8).		
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Figure	3.8:	CD95	depletion	from	Rab11a-positive	RE	after	EGF	stimulation	in	Huh7	cells.	

(A)	 Cos-7	 cells	 transfected	 with	 CD95-mCitrine,	 EGFR-mCherry	 and	 BFP-Rab11	 were	 stimulated	 with	 100	
µg/ml	EGF	and	imaged	at	the	 indicated	time	points	with	a	confocal	microscope.	Changes	of	 the	fluorescence	
intensity	of	CD95-mCitrine	were	measured	in	the	indicated	regions	and	plotted	over	time.	(B)	Diagram	shows	
the	mean	integrated	intensity	±	SEM	of	n=	10	cells	from	three	independent	experiments.	Scale	bars	represent	
40	µm.		
	

In	summary	it	could	be	shown	that	the	amount	of	CD95-mCitrine	within	the	RE	

decreases	 after	 EGF	 stimulation	 in	 both	 tested	 cell	 lines,	 suggesting	 that	 EGF	

stimulation	 regulates	 CD95	 trafficking,	 leading	 to	 changes	 in	 its	 spatial	

distribution.			

	

3.1.4 	EGFR-DEPENDENT	PHOSPHORYLATION	OF	CD95	
	

It	was	previously	 shown	 that	CD95	exhibits	 two	 tyrosine	 residues,	which	are	

located	 within	 the	 DD	 at	 the	 positions	 232	 and	 291	 and	 are	 known	 to	 be	

phosphorylated	in	vivo	(50).	After	finding	that	CD95	and	EGFR	show	a	constitutive	

interaction,	 we	 asked	 whether	 EGFR	 phosphorylates	 CD95.	 To	 assess	 if	 EGF	

stimulation	 and	 the	 resultant	 EGFR	 activation	 leads	 to	 CD95	 phosphorylation,	

immunoprecipitation	 experiments	 were	 performed	 in	 Huh7	 cells	 after	 ectopic	

expression	 of	 CD95-mCitrine	 and	 EGFR-mTFP.	 Transfected	 Huh7	 cells	 were	

stimulated	with	EGF	(100	ng/ml)	or	FasL	(100	ng/ml),	 lysed	and	either	EGFR	or	
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CD95	 was	 pulled-down	 with	 the	 respective	 antibody.	 Immunoblotting	 with	

antibodies	against	GFP	 to	detect	 total	CD95	and	EGFR	as	well	as	pY72,	a	generic	

phospho-tyrosine	antibody	showed	that	upon	EGF	stimulation	both	receptors	are	

phosphorylated	(Fig	3.9).	FasL	stimulation,	on	the	other	hand,	did	not	change	the	

phosphorylation	 of	 CD95	 (Fig	 3.9	 (A)).	 For	 EGFR,	 a	 basal	 phosphorylation	 was	

detectable	 in	 the	un-stimulated	case,	which	seems	to	slightly	decrease	after	FasL	

addition	(Fig	3.9	(B)).		

	

	
Figure	3.9:	EGF-dependent	phosphorylation	of	CD95.		

Huh7	cells	were	 transfected	with	CD95-mCitrine	and	EGFR-mTFP	stimulated	with	EGF	(100	ng/ml)	or	FasL	
(100ng/ml).	 After	 cell	 lysis	 immunoprecipitations	 of	 CD95-mCitrine	 or	 EGFR-mTFP	 were	 performed.	 Pull-
down	was	probed	with	antibodies	against	anti-CD95	and	anti-EGFR,	respectively.	Western	Blots	were	probed	
with	 anti-EGFR	 (EGFR-mTFP),	 anti-GFP	 (CD95-mCitrine)	 and	 anti-	 pY72	 (pEGFR	 and	 pCD95,	 respectively)	
antibodies.	Diagrams	show	either	the	pCD95/tCd95	ratios	or	the	pEGFR/tEGFR	ratios	after	EGF	stimulation.		
	

	

As	phosphorylation	of	CD95	appeared	relatively	low,	we	tested	if	its	detection	

could	be	 enhanced	by	 inhibition	of	phosphatases	with	pervanadate.	Again,	Huh7	

cells	were	 transfected	with	CD95-mCitrine	and	EGFR-mTFP,	stimulated	with	100	

ng/ml	 EGF	 or	 1	 mM	 pervanadate	 and	 immunoprecipitation	 experiments	 with	

subsequent	Western	 Blots	 performed	 as	 described	 above.	 Both	 stimuli,	 EGF	 and	

pervanadate,	 induced	 phosphorylation	 of	 CD95	 (Fig	 3.10).	 However,	 the	 signal	

intensity	of	the	pervanadate	stimulation	was	almost	40-times	higher	then	the	EGF-

induced	phospho	signal	(Fig	3.10,	see	range	of	y-axis).		

In	summary,	EGF	stimulation	but	also	phosphatase	 inhibition	by	pervanadate	

induced	 phosphorylation	 of	 CD95.	 FasL	 addition	 though	 did	 not	 induce	 any	

detectable	phosphorylation	of	CD95.		
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Figure	3.10:	Inhibition	of	phosphates	increases	phosphorylation	of	CD95.		

Huh7	 cells	 ectopically	 expressing	 CD95-mCitrine	 and	 EGFR-mTFP	 were	 either	 stimulated	 with	 EGF	 (100	
ng/ml)	 or	 treated	 with	 pervanadate	 (1	 mM)	 for	 5	 and	 15	 minutes.	 After	 cell	 lysis	 CD95-mCitrine	 was	
immunoprecipitated	with	an	anti-CD95	antibody	and	Western	Blots	were	probed	with	antibodies	against	anti-
GFP	(CD95-mCitrine)	and	anti-	pY72	(pCD95).	The	middle	image	shows	a	low-contrast-image	of	the	detected	
CD95	phospho-signal	while	the	bottom	image	shows	the	same	image	with	increased	contrast.		Diagrams	show	
the	pCD95/tCd95	ratios	after	EGF	stimulation	and	pervanadate	treatment,	respectively.			
	

3.1.5 PHOSPHORYLATION	SWITCHES	THE	FUNCTION	OF	CD95	TO	SURVIVAL	
	

After	 finding	 that	EGF	stimulation	 induced	phosphorylation	of	CD95,	we	next	

questioned	 if	 EGF-promoted	 phosphorylation	 of	 CD95	 influences	 its	 cellular	

function.	 For	 this,	 Huh7	 cells	 ectopically	 expressing	 both	 receptors	 were	 first	

stimulated	with	EGF	and	 subsequently	 treated	with	FasL	 for	2	hours.	Measuring	

the	number	of	apoptotic	cells	via	flow	cytometry	showed	that	pre-stimulation	with	

EGF	had	a	protective	effect	on	Huh7	cells,	as	FasL-induced	apoptosis	was	reduced	

compared	 to	 cells	 only	 treated	 with	 FasL	 (Fig	 3.11	 (A)).	 To	 test	 if	 this	 effect	 is	

directly	 related	 to	 the	 kinase	 activity	 of	 EGFR	 we	 repeated	 the	 measurements	

using	a	kinase-dead	mutant	EGFR	harboring	a	point	mutation	 in	 its	ATP-binding	

site	 (171).	Huh7	 cells	 transfected	with	 the	kinase-death	mutant	of	 the	EGFR	and	

stimulated	 with	 EGF	 showed,	 similar	 to	 cells	 only	 stimulated	 with	 FasL,	 an	

increased	apoptosis	rate	compared	to	cells	transfected	with	the	wild	type	form	of	

EGFR	(Fig	3.11	(A)).			

In	order	to	investigate	the	protective,	anti-apoptotic	effect	of	EGF	more	precisely	in	

space	 and	 time	 we	 performed	 time-lapse	 microscopy	 experiments.	 To	 further	

investigate	 the	 role	 of	 EGFR	 kinase	 activity	 in	 this	 effect,	 we	 used	 the	 tyrosine	

kinase	inhibitor	(TKI)	Erlotinib,	which	completely	reverses	EGFR	phosphorylation	

within	15’	of	treatment	(Fig	3.11	(B)).	For	the	microscopy	experiments	Huh7	cells	
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were	 transfected	 with	 CD95-mCitrine	 and	 EGFR-mTFP	 and	 either	 directly	

stimulated	with	EGF	and	FasL	or	pre-incubated	with	1	µM	Erlotinib	 for	2	hours.	

The	addition	of	EGF	for	10	minutes	prior	to	the	FasL	addition	protected	Huh7	cell	

from	 undergoing	 apoptosis,	 whereas	 the	 pre-incubation	 with	 Erlotinib	 and	 the	

resulting	 kinase	 inhibition	 abolished	 the	 protective	 effect	 (Fig	 3.11	 (C)	 without	

Erlotinib	and	(D)	with	Erlotinib	pre-incubation).		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
Figure	3.11:	Phosphorylation	of	CD95	protects	cells	from	FasL	induced	apoptosis	

(A)	Huh7	 cells	 ectopically	 expressing	CD95	and	 either	EGFR	wild	 type	or	 the	kinase	death	mutant	 of	EGFR	
were	 pre-stimulated	with	 100	 µg/ml	 EGF	 for	 10	min	 and	 subsequently	 treated	with	 FasL	 for	 2	 hours.	 The	
amount	 of	 apoptotic	 cells	 was	 measured	 via	 flow	 cytometry	 and	 the	 normalized	 apoptosis	 plotted	 for	 the	
individual	 conditions.	 EGF	 pre-treatment	 significantly	 reduces	 the	 amount	 of	 apoptosis	 compared	 to	 FasL	
stimulation	 without	 EGF	 pre-treatment.	 Diagram	 shows	 the	 mean	 fold-increase	 ±	 SEM	 of	 three	 individual	
experiments.	 (*	p<	0.05,	 two-way	ANOVA	with	Bonferroni’s	multiple	 comparison	 test).	(B)	Huh7	 cells	were	
transfected	with	EGFR-mTFP	and	pre-stimulated	with	100	µg/ml	EGF	 for	 10	min	 and	 subsequently	 treated	
with	1	µM	Erlotinib	for	different	time	points.		After	cell	lysis	Western	Blots	with	antibodies	against	anti-EGFR	
and	 pY72	 (pEGFR)	 were	 performed.	 Diagram	 shows	 the	 densitometric	 quantification	 of	 the	 pEGFR/tEGFR	
ratio.	 (C)	 Huh7	 cells	 ectopically	 expressing	 CD95-mCitrine	 and	 EGFR-mTFP	were	 first	 stimulated	with	 100	
µg/ml	EGF	for	10	min	and	then	treated	with	FasL	for	2h.	EGF	pre-treatment	is	preventing	apoptosis	induction.	
(D)	Huh7	cells	transfected	with	CD95-mCitrine	and	EGFR-mTFP	were	first	treated	with	1	µM	Erlotinib	for	2h,	
then	pre-stimulated	with	100	µg/ml	EGF	for	10	min	and	finally	treated	with	FasL	for	2h.	Inhibition	of	the	EGFR	
abolishes	the	EGF-mediated	protective	effect.	Scale	bars	represent	40	µm.		
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After	showing	that	the	kinase	domain	of	EGFR	is	mandatory	for	the	EGF-mediated	

protection	 against	 FasL-induced	 apoptosis,	 we	 wanted	 to	 confirm	 that	 the	 two-

tyrosine	 residues	 in	 the	 DD	 of	 CD95	 are	 the	 ones	 affected	 by	 the	 EGF	 pre-

stimulation	 and	 responsible	 for	 the	 protective	 effect.	 For	 this,	 Huh7	 cells	 were	

transfected	with	a	construct	in	which	these	two	tyrosine	residues	were	exchanged	

by	 phenylalanine	 (CD95-Y232,291F-mCitrine)(118).	 Again,	 Huh7	 cells	 were	

stimulated	 with	 FasL	 with	 and	 without	 EGF	 pre-treatment	 (Fig	 3.12).	 Cells	

expressing	 the	 unphosphorylatable	 CD95	 mutant	 remained	 highly	 sensitive	 for	

FasL	induced	apoptosis	even	after	pre-stimulation	with	EGF.		

Altogether,	 these	 results	 suggest	 that	 EGF-induced	 phosphorylation	 of	 Y232	

and	Y291	in	the	DD	of	CD95	has	a	protective	effect	against	FasL-induced	apoptosis.	

It	was	further	shown	that	kinase	activity	of	the	EGFR	is	essential	for	the	protective	

effect	of	the	EGF	pre-stimulation.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
	Figure	3.12:	Tyrosine	residues	in	the	DD	of	CD95	are	mandatory	apoptosis	protection		
Huh7	 cells	 were	 either	 transfected	 with	 CD95-mCitrine	 and	 EGFR-mCherry	 (A)	 or	 transfected	 with	 CD95-
Y232,291F-mCitrine	and	EGFR-mCherry	(B)	In	both	cases	cells	were	first	stimulated	with	EGF	for	10	min,	then	
treated	with	FasL	and	imaged	with	a	fluorescence	microscope	for	 in	total	2	hours.	Again,	EGF	pre-treatment	
significantly	 increases	 the	 amount	 of	 survival	 compared	 to	 FasL	 stimulation	 without	 EGF	 pre-treatment.	
Survival	 is	 strongly	 reduced	 though,	 if	 the	 two-tyrosine	 residues	 in	 the	 DD	 of	 CD95	 are	 replaced	 by	
phenylalanine.		Diagram	shows	the	survival	in	percentage	±	SEM	of	three	individual	experiments.	(**	p<	0.01,	
two-way	ANOVA	with	Bonferroni’s	multiple	comparison	test).	Scale	bars	represent	40	µm.		
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3.1.6 EGF-DRIVEN	EFFECT	ON	CD95	CLUSTERING	
	

CD95	is	a	pre-associated	homo-trimer	before	ligand	binding.	It	is	commonly	

accepted	 that	 this	 conformation	 is	 mandatory	 for	 apoptosis	 induction	 and	 that	

mutations	in	regions	required	for	the	trimer	formation	cause	apoptosis	resistance.	

As	 EGF	 stimulation	 causes	 phosphorylation	 of	 CD95,	 we	 tested	 whether	 this	

posttranslational	modification	modulates	the	capacity	of	CD95	to	self-associate.	To	

do	 so,	 homo-FRET	 was	 measured	 with	 fluorescence	 anisotropy	 using	 widefield	

microscopy.		

Homo-FRET	is	based	on	non-radiative	transfer	of	energy	between	similar	or	

identical	fluorescent	proteins.	If	the	fluorescent	proteins	are	close	enough,	like	in	a	

cluster	 of	 fluorescently	 labeled	 monomers,	 a	 decrease	 in	 the	 fluorophore’s	

anisotropy	can	be	measured	(167).		

First,	anisotropy	was	measured	in	Huh7	cells	stimulated	with	EGF	that	were	

transiently	transfected	with	EGFR-mCherry	and	either	CD95-mCitrine	wt	or	CD95-

Y232,291F-mCitrine.	In	the	case	of	wt	CD95,	stimulation	with	a	100	ng/ml	EGF	led	

to	a	slight	but	significant	 increase	of	the	anisotropy	in	nearly	all	binned	intensity	

ranges	(Fig.	3.13	(A)).	Only	the	first	intensity	bin	with	a	low	fluorescent	signal	and	

the	 last	 two	bins	with	high	 fluorescent	 signals	 gave	no	 significant	 change.	 In	 the	

case	of	 the	CD95-Y232,291F	mutant,	EGF	stimulation	caused	a	 slight	decrease	 in	

the	anisotropy,	with	a	significant	change	only	in	the	intensity	range	between	1000	

and	 1400	 (Fig.	 3.13	 (B)).	 No	 change	 in	 the	 anisotropy	 was	 measured	 for	 cells	

stimulated	with	100	ng/ml	FasL	for	15	min.		

These	anisotropy	measurements,	therefore,	suggest	that	the	anti-apoptotic	

effect	of	EGF-promoted	CD95	phosphorylation	might	result	 from	the	dissociation	

of	 pre-associated	 homo-trimers	 necessary	 for	 apoptosis	 induction.	 This	 effect	 is	

lost	 with	 the	 unphosphorylatable	 mutant	 of	 CD95	 and,	 in	 fact,	 an	 increase	 in	

cluster	 formation	 is	 observed	 after	 EGF	 stimulation,	 further	 implicating	 CD95	

phosphorylation	in	regulating	cluster	formation.		
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Figure	3.13:	Measuring	of	CD95	clustering	in	Huh7	cells.	

(A)	Steady-state	anisotropy	was	measured	in	Huh7	cells	transiently	expressing	CD95-mCitrine	wt	and	EGFR-
mCherry	before	and	15	min	after	stimulation	with	100	ng/ml	EGF.	Plot	shows	anisotropy	±	SEM	of	n=33	cells	
of	 four	 individual	 experiments	 (B)	 Steady-state	 anisotropy	 was	 measured	 in	 Huh7	 cells	 expressing	 CD95-
Y232,291F-mCitrine	and	EGFR-mCherry	again	before	and	after	stimulation	with	100	ng/ml	EGF.	Plot	 shows	
anisotropy	±	SEM	of	n=10	cells	of	two	individual	experiments	(C)	Steady-state	anisotropy	measured	in	Huh7	
cells	transiently	expressing	CD95-mCitrine	wt	and	EGFR-mCherry	before	and	after	stimulation	with	FasL	for	
15	min.	Plot	shows	anisotropy	±	SEM	of	n=10	cells	of	two	individual	experiments.		
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3.1.7 DOWNSTREAM	SIGNALING		
	

An	important	survival-signaling	pathway	is	the	Akt/PI3K	pathway.	In	previous	

reports,	 it	could	be	shown	that	PI3K	activation	can	modulate	CD95	signaling	(38,	

113,	 172).	 To	 ascertain	whether	 the	 EGFR	 signaling	 contributes	 to	 the	 observed	

protection	against	FasL-induced	apoptosis,	we	measured	Akt-	and/or	Erk-pathway	

activation	under	 different	 stimulation	 conditions.	Huh7	 and	Cos-7	 cells	were	 co-

transfected	with	either	wt	CD95-mCitrine	or	CD95-Y232,291F-mCitrine	and	EGFR-

mTFP	 and	 the	 relative	 phosphorylation	 of	 Akt	 and	 Erk	 was	 determined	 via	

Western	Blots.		

Both	 cell	 lines	 were	 pre-stimulated	 with	 EGF	 (100	 ng/ml)	 for	 10	 min	 and	

subsequently	treated	with	100	ng/ml	FasL	for	at	least	2	h.	 	Akt	activation	in	cells	

expressing	wt	 CD95	was	 significantly	 higher	 compared	 to	 cells	 transfected	with	

the	phospho-deficient	mutant	of	CD95	in	both	cell	 lines	following	treatment	with	

EGF	 alone	 or	 in	 combination	with	 FasL	 (Fig.	 3.14	 (A)	&	 (B)).	 FasL	 alone	 had	 no	

effect	on	Akt	activation.		

The	 level	 of	 phosphorylated	 Erk	was	 increased	 upon	 EGF	 stimulation	 but	 in	

contrast	to	Akt,	showed	no	significant	difference	between	the	CD95	wild	type	and	

mutant.	FasL	stimulation	also	had	no	effect	on	the	phosphorylation	state	of	Erk.		

These	 results	 suggest	 that	 the	 phosphorylation	 ability	 of	 the	 two-tyrosine	

residues	of	CD95	are	positively	influencing	the	amount	of	activated	Akt.		
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Figure	3.14:	Ectopic	expression	of	CD95	elevates	pAkt	level.		

(A)	 Huh7	 transfected	 with	 either	 CD95-mCitrine	 wt	 or	 mut	 and	 EGFR-mCherry	 were	 stimulated	 with	 100	
ng/ml	EGF	only	(lane	2	and	8),	pre-stimulated	with	EGF	for	10	min	(lanes	3-4	and	9-10)	or	PBS	(lane	5-6	and	
11-12)	and	subsequently	stimulated	with	100	ng/ml	FasL	for	2h	(lanes	3	&	5;	9	&	11)	or	4h	(lanes	4	&	6;	10	&	
12).	Diagram	shows	the	phospho-Akt	level	over	total-Akt	ratio	and	represents	mean	±	SEM	of	two	independent	
experiments.	(B	&	C)	Cos-7	cells	co-expressing	CD95-mCitrine	wt	or	mut	and	EGFR-mCherry	were	either	pre-
stimulated	with	100	ng/ml	EGF	(lane	4	and	9)	or	PBS	(lane	5	and	10)	for	10	min	and	subsequently	stimulated	
with	100	ng/ml	FasL	or	treated	with	EGF	alone	as	control	(lane	3	and	8).	For	Western	Blots	either	antibodies	
against	p/tAkt	(B)	were	used	or	against	p/tErK	(C).	Diagram	in	(B)	shows	the	phospho-Akt	level	over	total-
Akt	and	diagram	in	(C)	the	phospho-Erk	level	over	total-Erk.	Both	diagrams	represent	the	mean	ratio	±	SEM	of	
four	 independent	 experiments.	 (*	 p<	 0.05,	 two-way	 ANOVA	 with	 Bonferroni’s	 multiple	 comparison	 test).	
Individual	repetitions	were	done	by	R.	Ettelt.	
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3.2 CD95	IN	NON-SMALL	CELL	LUNG	CANCER	CELLS	
	

3.2.1 CD95-MEDIATED	APOPTOSIS	IN	HCC827	CELLS	
	

Based	on	our	hypothesis	that	EGFR	phosphorylates	the	two	tyrosine	residues	

in	 the	DD	 of	 CD95	 and	 thus	 prevents	 FasL-induced	 apoptosis,	we	 used	 the	 non-

small	 cell	 lung	 cancer	 (NSCLC)	 cell	 line	HCC827,	which	 is	known	 for	 carrying	an	

activating	 mutation	 in	 the	 EGFR	 gene,	 to	 reassess	 our	 hypothesis	 in	 a	 cellular	

background	with	 constitutive	 EGFR	 activity	 and	 to	 examine	 the	 possible	 role	 of	

EGF-dependent	 CD95	 phosphorylation	 on	 cell	 survival	 in	 an	 oncogenic	 context.	

The	 constitutive	EGFR	activity	 in	HCC827	 cells	 is	 a	 result	 of	 an	 in-frame	exon19	

deletion,	which	encodes	part	of	the	kinase	domain.		

	

	
Figure	3.15:	HCC827	cells	are	insensitive	to	FasL	mediated	apoptosis.		

(A)	Representative	Western	blot	showing	that	FasL-stimulation	does	not	increase	apoptosis	activity.	HCC827	
cells	 were	 stimulated	 for	 6h	 with	 FasL	 in	 a	 dose-dependent	 manner.	 Immunoblots	 were	 probed	 with	
antibodies	 recognizing	 total	 and	 cleaved	PARP	and	GAPDH.	 (B)	Amount	of	 cleaved	PARP	 is	 increasing	after	
stimulation	with	Staurosporine,	as	indicated	by	immunoblots.	HCC827	cells	were	stimulated	with	10	µM	and	
1µM	Staurosporine	for	5h.	Immunoblots	were	probed	with	antibodies	recognizing	total	and	cleaved	PARP	and	
GAPDH.	Diagram	represents	the	normalized	ratio	of	cPARP	over	GAPDH,	n=1.			
	
	



	

87	 	

	

We	 first	 tested	 if	HCC827	cells	are	able	 to	undergo	FasL-mediated	apoptosis.	

Apoptosis	induction	was	measured	by	the	amount	of	cleaved	PARP	in	a	FasL	dose	

dependent	manner.	Western	blots	showed	that	FasL-stimulation	does	not	 induce	

apoptosis	 (Fig.	 3.15	 (A)).	 To	 check	 if	 HCC827	 cells	 are	 generally	 insensitive	 for	

apoptosis	 induction,	 cells	were	 treated	with	 two	 concentrations	of	 the	 apoptosis	

inducer	Staurosporine	(10	µM	and	1	µM)	for	5h	and	cleaved	PARP	was	measured.	

Immunoblots	revealed	that	both	concentrations	of	Staurosporine	are	sufficient	to	

induce	apoptosis	as	indicated	by	an	increasing	amount	of	cleaved	PARP	(Fig.	3.15	

(B)).		

	 Following	 the	hypothesis	 that	EGFR-mediated	phosphorylation	 is	blocking	

FasL-induced	 apoptosis,	 we	 asked	 whether	 the	 observed	 insensitivity	 towards	

FasL	 is	 due	 to	 an	 elevated	 basal	 phosphorylation	 of	 CD95	 caused	 by	 the	

constitutive	EGFR	activity.	In	order	to	test	if	CD95	is	basally	phosphorylated	in	the	

presence	of	a	constitutively	active	EGFR	mutant	immunoprecipitation	experiments	

were	 performed,	 showing	 that	 CD95	 is	 phosphorylated	 in	 both	 basal	 and	 EGF-

treated	 HCC827	 cells	 (Fig.	 3.16).	 Densitometric	 analysis	 of	 the	 Western	 Blot	

revealed	 that	 the	 level	 of	 phosphorylation	 after	 EGF	 stimulation	 is	 only	 slightly	

higher	 compared	 to	 the	 basal	 phosphorylation	 level	 of	 CD95	 (Fig.	 3.16,	 see	

diagram).			

	

	
Figure	3.16:	CD95	is	phosphorylated	in	HCC827	cells.		

Immunoprecipitation	of	CD95	in	HCC827	cells	after	stimulation	with	EGF	(100	ng/ml)	for	15	and	30	minutes.	
Pull-down	was	achieved	with	antibodies	against	anti-CD95.	Western	Blots	were	probed	with	anti-CD95	and	
anti-	pY72	(pCD95)	antibodies.	Diagram	shows	the	ratio	of	pCD95	over	total	CD95,	n=1.		
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These	 results	 demonstrate	 that	 HCC827	 cells	 are	 in	 principle	 able	 to	

undergo	 apoptosis	 but	 seem	 to	 be	 insensitive	 for	 FasL-induced	 apoptosis,	which	

might	be	due	to	the	basal	phosphorylation	of	CD95	detected.		

	

3.2.2 EGFR	ACTIVITY	IN	HCC827	CELLS	
	

We	 next	 assessed	 how	 the	 phosphorylation	 status	 of	 EGFR	 in	 HCC827	 cells	

relates	to	their	sensitivity	to	FasL-mediated	apoptosis.	We	first	performed	an	EGF	

dose-response	 experiment	 in	 which	 HCC827	 cells	 were	 treated	 with	 increasing	

EGF	concentrations.	Cells	were	stimulated	with	0.25,	0.5,	1,	50	and	100	ng/ml	EGF	

for	 15	min,	 lysed	 and	 biochemically	 analyzed.	While	 low	doses	 of	 EGF	were	 not	

sufficient	 to	 increase	 the	 EGFR	 phospho-signal	 in	 comparison	 to	 the	 high	 basal	

phospho-level,	high	EGF	concentrations	could	still	increase	the	EGFR	activity	(Fig.	

3.17).		

	

	
Figure	3.17:	EGF	dose-response	in	HCC827	cells.	

HCC827	 cells	 were	 stimulated	 with	 increasing	 EGF	 concentrations	 (0,	 0.25,	 0.5,	 1,	 50,	 100	 ng/ml).	
Immunoblots	 were	 probed	with	 antibodies	 against	 EGFR	 and	 pY72	 (pEGFR).	 Diagram	 represents	 the	 fold-
change	of	the	pEGFR/EGFR	ratio	±	SEM	of	n	=	4.	Individual	repetitions	were	done	by	R.	Ettelt.	
	

Next,	the	ability	to	inhibit	the	constitutive	EGFR	activity	was	tested.	An	often-

used	inhibitor	for	NSCLC	cell	 lines	 is	the	drug	Erlotinib	hydrochloride,	which	is	a	

reversible	 tyrosine	 kinase	 inhibitor	 (TKI)	 (152).	 In	 a	 time-dose-response	

experiment	 different	 Erlotinib	 concentrations	 were	 tested	 for	 two	 different	

incubation	times.	The	tested	Erlotinib	concentrations	were	ranging	from	1	nM	to	

10	µM	and	the	incubation	time	was	either	1h	or	24h.	Western	Blots	revealed	that	

the	 EGFR	 activity	 was	 similarly	 inhibited	 for	 both	 incubation	 times	 for	 all	 EGF	

concentrations	(Fig.	3.18	(A)	&	(B)).		
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Taken	 together,	 HCC827	 cells	 exhibit	 high	 constitutive	 EGFR	 activity,	 which	

can	be	further	increased	or	decreased	by	EGF	or	Erlotinib,	respectively.		

	

3.2.3 RECONSTITUTION	OF	CD95-MEDIATED	APOPTOSIS	IN	HCC827	CELLS	
	

As	already	mentioned,	HCC827	cells	are	insensitive	to	FasL-induced	apoptosis	

and	 have	 a	 high	 basal	 phosphorylation	 level	 of	 both	 EGFR	 and	 CD95.	 We	 next	

assessed	if	sensitivity	to	FasL-induced	apoptosis	can	be	restored	in	these	cells	by	

inhibition	of	EGFR.	To	test	if	inhibition	of	the	constitutive	EGFR	activity	influences	

FasL-induced	apoptosis,	real-time	cell	analyzer	(RTCA)	assays	and	flow	cytometric	

measurements	were	 performed	 following	 FasL	 treatment	with	 and	without	 pre-

treatment	with	Erlotinib.		

	

	
Figure	3.18:	EGF	time-dose-response	in	HCC827	cells.	

HCC827	cells	were	stimulated	with	increasing	EGF	concentrations	(0,	0.25,	0.5,	1,	50,	100	ng/ml)	for	either	1h	
(A)	 or	 24h	 (B).	 Immunoblots	 were	 probed	 with	 antibodies	 against	 EGFR	 and	 pY72	 (pEGFR).	 Diagrams	
represent	the	fold-change	of	the	pEGFR/EGFR	ratio	normalized	to	the	basal	phosphorylation	level.	Plotted	are	
means	±	SEM	of	n	=	4.	Individual	repetitions	were	done	by	R.	Ettelt.	
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For	 both	 assays	 HCC827	 cells	 were	 either	 stimulated	 with	 FasL	 only	 (500	

ng/ml),	Erlotinib	only	 (1	µM)	or	 first	with	Erlotinib	and	subsequently	with	FasL.	

The	pre-stimulation	with	Erlotinib	was	carried	out	either	for	1h	or	for	24h.	RTCA	

assays	 revealed	 that	 treatment	 with	 FasL	 alone	 induced	 a	 growth	 arrest	 of	 the	

HCC827	 cells,	 while	 pre-treatment	 with	 Erlotinib	 led	 to	 a	 reduced	 cell	 number	

after	about	48h	(Figure	3.19,	1h	(A)	and	24h	(B)).	To	test	whether	the	reduction	in	

cell	 growth	 is	 due	 to	 apoptosis	 induction,	 flow	 cytometric	 measurements	 were	

performed	 under	 the	 same	 conditions.	 As	 shown	 before,	 stimulation	 with	 FasL	

only	 was	 not	 sufficient	 to	 induce	 apoptosis.	 The	 treatment	 with	 Erlotinib	 only	

increased	the	amount	of	dead	cells	after	1h	slightly	and	after	24h	incubation	nearly	

1.5	–fold.	Pre-treatment	with	Erlotinib	enhanced	FasL-induced	apoptosis	induction	

by	over	1.5-fold	compared	to	FasL	alone.		

To	 summarize,	 it	 could	 be	 shown	 that	 the	 inhibition	 of	 constitutive	 EGFR	

activity	 in	 NSCLC	 leads	 to	 the	 re-sensitization	 of	 HCC827	 cells	 towards	 FasL-

induced	apoptosis.	
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Figure	3.19:	Inhibition	of	constitutively	active	EGFR	re-sensitizes	HCC827	cells	towards	apoptosis			

(A	&	B)	Growth	curves	of	HCC827	cells	recorded	by	RTCA	measurements.	HCC827	cells	were	either	treated	
with	 FasL	 only	 (500	 ng/ml),	 Erlotinib	 only	 (1	 µM)	 or	 both	 together.	 In	 the	 latter	 case	 the	 Erlotinib	 pre-
treatment	 took	 place	 either	 for	 1h	 (A)	 or	 for	 24h	 (B).	 The	 RTCA	 measurements	 were	 carried	 out	 for	
approximately	5	days.	Curves	show	the	normalized	cell	index	as	percentage	from	the	untreated	condition.	The	
intersection	 with	 the	 y-axis	 represents	 the	 time	 of	 FasL	 addition.	 Shown	 is	 the	 mean	 ±	 SEM	 of	 n=3	 (C)	
Inhibition	 of	 EGFR	 increases	 apoptosis	 induction.	 Diagram	 shows	 the	 apoptosis	 rate	 of	 HCC827	 cells	 after	
different	stimuli	flow	cytometrically	analyzed.	Shown	is	the	apoptosis	fold-change	in	percent	normalized	to	the	
DMSO	control.	Bars	represent	means	±	SEM	of	three	independent	experiments.	(*	p<	0.05	and	**	p<	0.01,	two-
way	ANOVA	with	Bonferroni’s	multiple	comparison	test)	
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4. DISCUSSION	
	

CD95	clearly	represents	a	protein	that	exhibits	contrary	functional	roles	in	the	

cell.	 Although	 initially	 identified	 as	 a	 cytokine	 receptor	 mainly	 known	 for	 its	

function	as	an	apoptosis	 inducing	protein,	 it	 is	becoming	 increasingly	recognised	

for	 its	 apoptosis-independent	 functions.	 Already	 in	 the	 late	 1990,	 reports	

describing	 functions	 of	 CD95	distinct	 from	apoptosis	 induction	 accumulated	 and	

even	became	the	focus	for	a	whole	decade.	One	reason	for	the	growing	interest	in	

the	non-apoptotic	function	of	CD95	is	increasing	evidence	for	a	growth-promoting	

role	 in	 tumours.	 The	 first	 reported	 indications	 of	 the	 non-apoptotic	 functions	 of	

CD95	were	 the	 observations	 that	 CD95	 and/or	 FasL	 are	 often	 overexpressed	 in	

certain	 tumours	 and	 that	 stimulation	 with	 FasL-induced	 activation	 of	 CD95	 in	

some	 contexts	 actually	 promoted	 events	 like	 proliferation,	 migration	 and	

angiogenesis	 (88,	113,	114).	 However,	 the	mechanisms	 underlying	 this	 switch	 in	

the	function	of	CD95	still	remain	unclear,	as	is	the	reason	why	FasL	ligation	causes	

in	one	cell	type	apoptosis	and	in	another	cell	type	survival.		

In	 this	 work	 we	 show	 that	 posttranslational	 modifications	 of	 CD95	 are	

sufficient	to	shift	CD95’s	function	from	apoptosis	to	survival.	We	show	for	the	first	

time	 that	 the	 EGF	 receptor,	 once	 activated,	 phosphorylates	 CD95	 and	 that	 cells	

harbouring	 the	 phosphorylated	 form	 of	 CD95	 are	 protected	 against	 apoptosis	

induction.	On	 the	other	hand,	we	 show	 that	 the	phospho-deficient	 form	of	CD95	

(CD95-Y232,291F)	 is	 hypersensitive	 towards	 FasL	 induced	 apoptosis.	 We	 also	

present	 indications	 for	a	CD95-mediated	elevation	of	Akt	activation,	which	might	

be	 important	 the	 survival	 signalling	 initiated	 by	 CD95.	 Finally,	 we	 show	 the	

importance	 of	 understanding	 the	 underlying	 mechanism	 for	 the	 opposing	

tendencies	of	CD95	in	a	cancer	model.	We	could	show	that	inhibition	of	the	EGFR	

activity	 in	 combination	 with	 FasL	 stimulation	 increases	 the	 apoptosis	 rate	 of	

NSCLC	 cells,	 which	 provides	 an	 interesting	 possibility	 for	 a	 therapeutic	

implementation.			
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4.1 INTERACTION	OF	CD95	AND	EGFR	IS	STIMULATION	INDEPENDENT	
	

The	 literature	 that	 describes	 a	 connection	 between	 EGFR	 and	 CD95,	 like	 an	

interaction	 between	 both	 receptors,	 is	 contradictory.	 As	 some	 reports	 observe	 a	

death-promoting	role	of	the	EGFR,	other	reports	describe	a	rather	protective	role	

of	the	EGFR	in	the	context	of	CD95-mediated	cell	death	(118,	119,	155,	172-174).	To	

untangle	these	ambiguous	observations,	we	started	our	own	experiments	and	first	

asked	 if	 both	 receptors	 share	 similar	 spatial	 and	 temporal	 dynamics	 after	

stimulation	with	FasL	or	EGF.	As	a	model	cell	line	we	chose	the	liver	carcinoma	cell	

line	Huh7,	as	previous	reports	observed	an	interaction	between	CD95	and	EGFR	in	

those	cells	(118,	175).	Another	advantage	of	Huh7	cells	is	that	they	are	negative	for	

CD95	 and	 endogenous	 CD95	 would	 not	 mask	 effects	 of,	 for	 example,	 further	

experiments	with	mutated	 versions	 of	 CD95	 (168).	 Surprisingly,	 in	 unstimulated	

Huh7	 cells	 a	 strong	 spatial	 correlation	 of	 both	 receptors	 was	 detectable	 in	 all	

experiments	(Fig.	3.1,	3.2	A,	3.3	B,	3.11	C	&	D,	3.12	A	&	B).	Stimulation	with	FasL	

did	not	induce	any	change	of	the	localization	pattern	for	both	receptors	(Fig	3.1),	

while	EGF	stimulation	 lead	 to	 increased	 translocation	of	both	receptors	 from	the	

RE	to	the	PM	(Fig	3.2	A,	3.3).		

As	 seen	 in	 previous	 reports,	 addition	 of	 FasL	 to	 Huh7	 cells	 that	 co-express	

fluorescently	 tagged	 CD95	 and	 EGFR	 successfully	 induced	 apoptosis	 (118,	 175).	

Eberle	 and	 colleges	 observed	 an	 interaction	 between	 the	 receptors	 after	 FasL	

exposure	 and	 translocation	 of	 both	 proteins	 to	 the	 PM	 after	 approximately	 120	

min	FasL	stimulation	(118),	while	the	effect	of	EGF-stimulation	was	not	tested.	We	

observe	instead	that	after	120	min	FasL	exposure	most	cells	underwent	apoptosis.	

Furthermore,	 our	 results	 indicate	 that	 the	 strong	 initial	 co-localization	 between	

both	receptors	is	due	to	a	direct	interaction	and	does	not	require	stimulation	with	

FasL	or	EGF	(Fig	3.2	B	and	3.4).		

The	 inconsistencies	between	our	observations	and	the	 findings	of	Eberle	and	

colleges	concerning	the	interaction	between	both	receptors	in	unstimulated	Huh7	

cells	might	be	explained	by	different	activation	states	of	the	receptors.	It	is	known,	

for	 example,	 that	 a	 high	 EGFR	 concentration	 at	 the	 PM	 is	 directly	 affecting	 its	

activity	 state,	 as	 it	 is	 leading	 to	 spontaneous	 receptor	 activation	 (143).	 	 As	most	

experiments	 in	 both	 studies	 are	 performed	 with	 cells	 overexpressing	 both	

receptors,	different	expression	levels	caused	by	variation	in	transfection	efficiently	
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might	 affect	 especially	 the	 initial	 receptor	 states.	Whether	 especially	 the	 activity	

state	of	EGFR	is	changing	the	response	properties	of	CD95	will	be	discussed	below	

(see	chapter	4.3).	

The	 reason	 that	 CD95	 does	 not	 translocate	 towards	 the	 PM	 upon	 FasL	

stimulation,	as	previously	shown,	remains	unclear.	As	FasL	engagement	is	neither	

causing	 aggregation	 of	 CD95	 nor	 induces	 receptor	 trafficking,	 it	 is	 possible	 that	

Huh7	 cells	 rather	 act	 like	 type	 II	 cells	 which	 have	 less	 DISC	 formation	 and	 a	

caspase-9-mediated	apoptosis	execution	(67,	122).	But,	whether	Huh7	cells	belong	

to	type	I	or	type	II	cells	was	not	tested	here	or	elsewhere.		

	

4.2 RECEPTOR	TRAFFICKING				
	

Besides	 of	 the	 initial	 interaction	 of	 CD95	 and	 EGFR,	 an	 equally	 interesting	

observation	 is	 that	 the	 EGF	 stimulation	 induces	 an	 initial	 translocation	 of	 both	

CD95	 and	 EGFR	 to	 the	 PM	 followed	 by	 a	 loss	 of	 interaction	 after	 some	 time	 as	

EGFR	 is	 endocytosed	 and	 CD95	 remains	 at	 the	 periphery	 (Fig	 3.4).	 In	 un-

stimulated	 cells	 ectopically	 expressing	 both	 receptors,	 a	 high	 fraction	 of	 both	

proteins	appears	to	be	localized	in	the	perinuclear	area	and	only	a	small	fraction	is	

visible	at	the	PM.	In	the	case	of	the	EGFR,	the	membrane	fraction	of	the	receptor	is	

under	 dynamic	 flow,	 continuously	 internalizing	 via	 vesicular	 transport	 and	

recycling	back	to	the	PM	as	part	of	a	mechanism	to	safeguard	against	autonomous	

receptor	activation	(141,	143).	EGF	binding	promotes	EGFR	enrichment	on	the	PM	

due	 to	 dimer	 stabilization	 and	 leads	 to	 fully	 active	 receptors.	 Ligand-induced	

internalization	 negatively	 regulates	 receptor	 activity	 and	 culminates	 in	 the	

degradation	 of	 the	 receptor.	 For	 CD95,	 however,	 no	 reports	 exist	 that	 describe	

steady	state	trafficking	and	whether	recycling	of	CD95	is	 important	for	apoptosis	

induction	 or	 other	 functions	 of	 the	 receptor.	 All	 reports	 that	 address	

internalization	 and	 subcellular	 compartmentalization	 of	 CD95	 only	 focus	 on	

ligand-induced	effects	and	about	the	differences	in	type	I	vs.	type	II	cells	(122,	176-

178).		

Due	 to	 the	 interaction	of	CD95	and	EGFR	as	well	as	 the	accumulation	of	both	

receptors	 in	 the	perinuclear	 area,	 co-expression	 experiments	were	performed	 to	

investigate	 whether	 a	 similar	 trafficking	 route	 is	 observable	 also	 for	 CD95.	

Recycling	 of	 the	 EGFR	 was	 previously	 described	 for	 different	 cell	 types,	 for	
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example,	Cos-7	cells,	but	unknown	in	Huh7	cells.	We	found	that	in	Huh7	cells	the	

amount	of	EGFR	in	Rab11a-positive	RE	is	for	unknown	reasons	quite	low	and	that	

co-localization	of	both	receptors	was	barely	found	(Fig	3.5).	One	possibility	is	that	

in	 those	 cells	 EGFR	 recycles	 through	 an	 alternative,	 Rab11-independent	 route.	

CD95,	however,	was	found	in	the	Rab11a-positive	RE	in	Huh7	cells	and	stays	more	

or	less	stable	even	if	EGFR	is	ectopically	co-expressed.	In	fact,	the	amount	of	CD95	

in	 the	RE	 is	only	slightly	reduced	 if	EGFR	 is	co-expressed.	This	might	be	because	

CD95	 is	 kept	more	 efficiently	 on	 the	PM	due	 to	 the	 interaction	of	 both	proteins.	

However,	as	the	actual	idea	was	to	test	whether	EGFR	is	influencing	trafficking	of	

CD95	or	vice	versa,	we	also	investigated	trafficking	of	both	receptors	in	Cos-7	cells,	

because	 for	 those	 cells	 trafficking	 of	 the	 EGFR	 is	 well	 described	 and	 EGFR	 is	

associating	with	Rab11a-positive	RE	 (143).	 Similar	 to	Huh7	 cells,	 CD95	 is	 highly	

expressed	 in	 Rab11a-positive	 RE	 and	 also	 EGFR	 is	 accumulated	 in	 the	 RE	 of	 all	

investigated	cells.	Interestingly,	our	data	indicate	that	in	un-stimulated	Cos-7	cells	

CD95	co-expression	increases	the	amount	of	EGFR	that	co-localizes	with	Rab11a-

positive	RE.	Ectopic	expression	of	all	 three	proteins	seems	 to	either	enhance	 the	

internalization	rate	of	EGFR	 from	the	PM	to	 the	RE	or	 to	decreases	 the	recycling	

rate	from	the	RE	to	the	PM	in	comparison	to	cells	that	only	over-express	the	EGFR	

and	Rab11a.	However,	as	the	performed	co-expression	experiments	only	indirectly	

offer	information	about	the	recycling	rate,	other	experiments,	like	photoactivation-

microscopy	experiments	or	similar	would	be	more	suitable.		

Next,	 we	 wanted	 to	 examine	 how	 stimulation	 with	 EGF	 is	 affecting	 the	

subcellular	distribution	of	both	receptors.	As	mentioned	above,	EGF	binding	leads	

to	 an	 initial	 enrichment	of	EGFR	on	 the	PM,	which	promotes	 receptor	 activation	

due	to	the	autocatalytic	nature	of	EGFR,	 followed	by	receptor	 internalization	and	

degradation.	CD95	was	also	observed	to	accumulate	on	the	PM	after	EGF	treatment	

(Fig	3.2	A,	3.3),	but	unlike	EGFR	the	amount	of	vesicular	CD95	that	is	internalized	

upon	EGF	stimulation	is	smaller	and	a	higher	fraction	seems	to	stay	on	the	PM	(Fig.	

3.3	B	and	3.4	A).	Furthermore,	the	proportion	of	CD95	residing	in	the	RE	after	EGF	

stimulation	decreases	with	time.	Interestingly,	while	in	Huh7	cells	the	depletion	of	

CD95	in	the	RE	was	more	linear	and	appeared	slower,	in	Cos-7	cells	the	depletion	

occurred	in	an	exponential	relatively	rapid	progression	(Fig	3.7	and	3.8),	pointing	

to	 additional	 differences	 in	 the	 trafficking	 dynamics	 between	 Huh-7	 and	 Cos-7	

cells.		
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It	 is	conceivable	 that,	 in	un-stimulated	cells,	CD95	and	EGFR	are	co-trafficked	

and	that	high	expression	level	of	either	receptor	increases	the	vesicular	fraction	to	

avoid	 self-activation	 of	 both	 systems.	 Upon	 EGF	 stimulation	 both	 receptors	

translocate	from	the	RE	and	accumulate	at	the	PM,	and	while	ligand-bound	EGFR	is	

progressively	 internalized	 and	 degraded,	 CD95	 remains	 at	 the	 PM.	 It	 is	 possible	

that,	for	example,	the	EGFR-mediated	phosphorylation	is	trapping	CD95	at	the	PM.	

Nevertheless,	more	 experiments	 are	 required	 to	proof	 these	hypotheses	 as	most	

data	are	exclusively	based	on	co-localisation	experiments.		

	

4.3 THE	EFFECT	OF	EGF	STIMULATION	ON	CD95		
	
Undoubtedly,	EGF	stimulation	leads	to	activation	of	the	protein-tyrosine	kinase	

domain	of	the	EGFR	and	recruitment	of	several	proteins	to	the	regulatory	domain,	

such	as	adaptor	protein	and	many	others.		After	observing	co-localisation	between	

CD95	and	EGFR	in	unstimulated	cells,	 translocation	of	both	proteins	 towards	the	

PM	 upon	 EGF	 stimulation	 and	 a	 strong	 indication	 for	 a	 physical	 interaction,	 the	

next	 obvious	 step	 was	 to	 test	 whether	 CD95	 is	 phosphorylated	 in	 an	 EGFR-

mediated	 fashion.	 Pull-down	 experiments,	 indeed,	 confirmed	 a	 weak	 but	

detectable	 phosphorylation	 of	 CD95	 upon	 EGF	 addition	 but	 not	 upon	 FasL	

exposure	(Fig	3.9	A	and	3.10).	We	believe	that	the	weak	detected	signal	in	Western	

Blots	 is	 because	 EGFR	 only	 phosphorylates	 the	membranal	 fraction	 of	 CD95,	 as	

inhibition	 of	 phosphatases	 by	 the	 addition	 of	 pervanadate,	which	 should	 lead	 to	

the	phosphorylation	of	CD95	throughout	the	cell,	promoted	a	substantial	increase	

in	CD95	phosphorylation	(Fig.	3.10).	

Posttranslational	modifications	 such	 as	 tyrosine	 phosphorylation	 represent	 a	

suitable	mechanism	for	a	switch	of	CD95’s	function	in	a	more	general	way	and	yet	

the	 purpose	 of	 tyrosine-phosphorylated	 CD95	 remains	 puzzling.	 CD95	 is	 serine,	

threonine	and	also	tyrosine	phosphorylated,	as	indicated	by	one	of	the	very	early	

studies,	but	it	was	also	shown	that	tyrosine	phosphorylation	is	not	obligatory	for	

CD95-mediated	 apoptosis,	 which	 raised	 the	 question	 of	 the	 role	 of	 such	

posttranslational	modifications	in	regulating	CD95	activity	(31,	50).		

If	kinase	activity	and	consequently	phosphorylated	CD95	are	not	required	for	

apoptosis	induction,	what	is	then	the	function	of	EGFR-mediated	phosphorylation	

of	CD95?	Pre-stimulation	of	EGFR	decreased	the	sensitivity	of	Huh7	cells	to	FasL-
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induced	apoptosis	(Fig	3.11,	3.12).	This	effect	required	the	kinase	activity	of	EGFR,	

strengthening	the	idea	of	a	direct	phosphorylation	of	CD95	via	EGFR.	On	the	other	

hand,	experiments	with	a	mutated	version	of	CD95,	in	which	the	tyrosine	residues	

232	 and	 291	 are	 exchanged	 by	 phenylalanine	 residues,	 revealed	 that	

phosphorylation	of	those	two	tyrosine	residues	 is	essential	 for	the	EGF-mediated	

inhibition	of	apoptosis.	Those	effects	point	towards	a	regulatory	role	of	the	EGFR	

activity	in	the	framework	of	CD95-mediated	cell	fate.	So	far,	nearly	all	studies	that	

investigated	 the	 role	 of	 phosphorylated	 CD95	 focus	 on	 FasL-induced	

phosphorylation	 (113-117,	119,	175).	 In	 those	 reports,	however,	phosphorylation	

of	 CD95	 seems	 to	 be	 important	 for	 both	 apoptosis	 induction	 but	 also	 survival.	

While	 early	 reports	 show	 that	 tyrosine	 phosphorylation	 is	 dispensable	 for	

apoptosis	induction,	later	studies	claim	that	CD95	phosphorylation	is	necessary	for	

apoptosis	 induction.	 It	 was,	 for	 example,	 shown	 that	 in	 hepatocytes	 and	 liver	

carcinoma	 cells	 CD95	 is	 phosphorylated,	 that	 phosphorylation	 of	 CD95	 is	 EGFR-

mediated	 and	 that	 by	 regulating	 CD95	 receptor	 oligomerization,	 this	

phosphorylation	 is	 required	 for	 apoptosis	 induction	 (118,	 119,	 123,	 175).	 Other	

reports	 suggest	 rather	 an	 anti-apoptotic	 function	 of	 FasL-induced	CD95	 tyrosine	

phosphorylation	(113-117).	In	this	context,	a	recent	study	shows	the	importance	of	

the	tyrosine	residues	Y232	and	Y291	in	an	evolution-guided	analysis	(117).	They	

show	 that	 a	 FasL-induced	 phosphorylation-based	 pro-survival	 mechanism	 that	

favours	 apoptosis	 resistance.	 It	 is	 mentioned	 that	 dephosphorylation	 of	 both	

tyrosine	residues	provokes	cell	death.	Consistent	 to	other	studies,	Chakrabandhu	

et	al.	indicated	that	phosphorylation	of	the	death	domain	is	SFK-mediated.		

Another	hypothesis	implies	that	the	tyrosine	residue	at	position	291	in	the	C-

terminal	DD	of	the	CD95	is	important	for	internalization	of	the	receptor	after	FasL	

binding.	In	this	context	Lee	et	al.	showed	that	internalization	of	CD95	is	impaired	if	

this	 particular	 tyrosine	 is	 mutated	 and	 replaced	 by	 a	 phenylalanine(122).	

Interestingly,	 in	 the	 same	 report	 it	was	described	 that	A20	cells,	 a	murine	B	 cell	

lymphoma	line,	transfected	with	CD95	Y291F	are	unable	to	undergo	apoptosis	as	a	

result	of	the	impaired	internalization,	thereby	speculating	about	the	importance	of	

internalization	 for	 CD95-mediated	 apoptosis	 (122).	However,	 Chakrabandhu	 and	

colleges	 repeated	 those	 experiments	 and	 could	 not	 observe	 impaired	

internalization	of	CD95	(117).	On	the	contrary,	mutation	of	the	tyrosine	residue	at	
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position	 291	 resulted	 in	 a	more	 efficient	 FasL	 uptake,	 indicating	 that	 the	 added	

negative	charge	favoured	receptor	trafficking.		

	

4.4 CD95	PHOSPHORYLATION?	WHAT	IS	IT	IMPORTANT	FOR?	
	
How	is	EGFR-mediated	phosphorylation	of	CD95	changing	 its	responsiveness	

towards	 FasL	 and	why	 does	 survival	 signaling	 becomes	 dominant	 once	 CD95	 is	

phosphorylated?	 CD95	 exists	 as	 a	 pre-associated	 homotrimer	 and	 this	

configuration	is	required	for	FasL	binding	and	DISC	formation	(43).	Therefore,	one	

potential	way	to	switch	the	functionality	of	CD95	would	be	to	influence	its	ability	

to	 self-aggregate.	 To	 investigate	 this	 hypothesis,	 we	 performed	 anisotropy	

measurements	of	cells	ectopically	expressing	EGFR	and	either	wild	 type	CD95	or	

mutated	 CD95	 (Fig	 3.13).	 Interestingly,	 EGF	 stimulation	 in	 cells	 expressing	wild	

type	 CD95	 caused	 a	 slight	 increase	 of	 the	 anisotropy,	 which	 corresponds	 to	 a	

decrease	in	CD95	self-association.	On	the	other	hand,	if	the	tyrosine	residues	232	

and	 291	 in	 death	 domain	 are	 exchanged	 by	 phenylalanine,	 the	 EGF	 stimulation	

promotes	 a	 decrease	 in	 anisotropy,	 indicating	 an	 increase	 in	 cluster	 formation.	

FasL	 addition	 had	 no	 effect	 on	 the	measured	 anisotropy.	Wang	 et	 al.	 pursued	 a	

similar	 idea,	but	 they	 targeted	 in	 their	 studies	 the	 relationship	between	 the	HGF	

receptor	c-Met	and	CD95	(179).	They	showed	that	CD95	and	c-Met	pre-exist	as	a	

complex	 and	 physically	 interact	 with	 each	 other.	 This	 interaction	 inhibits	 self-

aggregation	 of	 CD95,	 thereby	 preventing	 FasL	 binding	 and	 leading	 to	 apoptosis	

resistance	 with	 a	 consequently	 increased	 survival	 rate.	 In	 contrast	 to	 our	

observation	that	EGF	prevents	FasL-induced	apoptosis,	Wang	et	al.	tried	to	explain	

why	high	concentrations	of	HGF	lead	to	apoptosis	induction	in	some	cells,	such	as	

liver	cells.	As	HGF	stimulation	abrogates	 the	association	between	both	receptors,	

Wang	et	al.	concluded	that	this	sensitizes	cells	again	to	FasL-induced	apoptosis.	In	

spite	of	 the	different	 intentions	of	Wang	and	colleges,	 this	study	clearly	supports	

the	 idea	 that	RTK-CD95	 interactions	 can	 affect	 the	 self-aggregation	 of	 CD95	 and	

might	regulate	the	function	of	CD95.		

Apart	from	effects	on	self-aggregation	as	a	potential	switching	mode,	an	often-

observed	‘phenomenon’	of	the	non-apoptotic	function	of	CD95	is	activation	of	the	

PI3K/Akt	 signaling	 pathway	 (reviewed	 in	 (38)).	 To	 also	 consider	 downstream	

signaling	as	potential	source	for	the	dominating	survival	signaling,	we	determined	
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the	activation	state	of	Akt	but	also	of	Erk	in	cells	that	ectopically	express	EGFR	and	

either	wild	 type	 or	 a	 phospho-deficient	mutant	 of	 CD95	 (Fig	 3.14).	 The	 level	 of	

phosphorylated	 Erk	 is	 increased	 upon	 EGF	 addition,	 but	 no	 differences	 were	

observed	between	 cells	 expressing	 the	wild	 type	CD95	 and	 the	mutant	 CD95.	 In	

contrast,	 in	 cells	 expressing	 the	 phospho-deficient	 CD95	 the	 level	 of	

phosphorylated	Akt	was	significantly	reduced	upon	EGF	stimulation	compared	to	

cells	 expressing	 the	 wild	 type	 protein.	 Kleber	 et	 al.	 showed	 similar	 results	 in	

glioblastoma	 cells	 upon	 the	 addition	 of	 a	 specific	 FasL,	 which	 obtains	 a	 stable	

trimer-building	capacity	(113).	They	showed	that	CD95	directly	contributes	to	the	

aggressively	 invasive	phenotype	of	 glioblastoma	multiforme	via	 activation	of	 the	

PI3K/Akt	signaling	pathway.	The	authors	provide	evidence	that	the	p85	subunit	of	

PI3K	 directly	 binds	 to	 CD95,	 leading	 to	 elevated	 Akt	 phosphorylation	 and	

activation.	In	their	proposed	model,	activated	Akt	phosphorylates	and	inactivates	

GSK3β,	which	allows	for	β-catenin	translocation	into	the	nucleus,	where	it	induces	

transcription	of	MMPs.	Activation	of	MMPs	then	triggers	invasion	of	glioma	cells.		

The	constancy	of	an	Akt	participation	 in	 the	non-apoptotic	 signaling	of	CD95	

might	point	towards	a	more	general	survival	pathway	of	CD95	that	might	include	

Akt	 activation.	 Also	 our	 data	 provides	 some	 evidence	 of	 a	 positive	 correlation	

between	phosphorylation	of	CD95	and	elevated	level	of	phospho-Akt.		

	

4.5 THE	MECHANISTIC	POINT	OF	VIEW		
	

By	gathering	all	observations	together	we	suggest	the	following	model	for	the	

EGF-mediated	 effect	 on	 CD95	 signaling.	 In	 the	 un-ligated	 state	 both	 receptors	

weakly	 interact	 with	 each	 other	 and	 are	 localized	 at	 the	 PM	 but	 also	 in	 the	

perinuclear	 area	 (Fig.	 4.1	 I).	 From	 the	 PM	 both	 receptors	 get	 constantly	

internalized	to	the	endosomal	compartment	and	recycle	back	to	the	PM.	Upon	EGF-

binding	both	receptors	accumulate	at	the	PM	and	activated	EGFR	phosphorylates	

the	membrane	 fraction	of	CD95	 (Fig.	 4.1	 II).	 The	weak	 initial	 interaction	of	 both	

receptors	 is	 depleted	 after	 some	 time,	 as	 ligand-bound	 EGFR	 follows	 a	 different	

internalization	 route	 compared	 to	 un-ligated	 receptor,	 which	 is	 culminating	 in	

degradation	(Fig.	4.1	III).		

In	 the	 phosphorylated	 state	 induction	 of	 apoptosis	 is	 inhibited	 by	 three	

mechanisms.		
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• First	 phosphorylation	 of	 CD95	 prevents	 internalization	 of	 CD95	 and	

thus	leads	to	accumulation	of	phosphorylated	CD95	at	the	PM.		

• Second	 the	 EGF-promoted	 phosphorylation	 of	 CD95	 effects	 pre-

association	and	thereby	leads	to	hindrance	of	cluster	formation,	which	

is	required	for	DISC	formation	(Fig.	4.1	IV).		

• Third	 phosphorylated	 CD95	 serves	 as	 docking	 site	 for	 SH2	 domain	

containing	 proteins	 like	 PI3K,	 which	 is	 resulting	 in	 increased	 pAkt	

levels	and	enhanced	survival	signaling	(Fig.	4.1	IV).		

	

	
Figure	4.1:	Model	of	the	EGF-mediated	switch	in	CD95	signaling	

	

4.6 NSCLC	CELLS	AS	MODEL	
	

To	validate	parts	of	our	model	in	a	physiologically	and	therapeutically	relevant	

context	we	chose	the	non-small	cell	lung	cancer	(NSCLC)	cell	line,	HCC827,	which	

expresses	 constitutively	 active	 EGFR	 due	 to	 an	 exon	 19	 deletion.	 Furthermore,	

CD95	 has	 previously	 been	 demonstrated	 to	 play	 an	 anti-apoptotic	 role	 in	 lung	

cancer	cells	was	already	published	in	2003	by	Lee	and	colleges.	They	showed	that	

overexpression	 of	 CD95	 in	 Lewis	 lung	 carcinoma	 (3LL)	 cells	 causes	 enhanced	

tumour	progression	in	vivo	(180).	Another	remarkable	role	of	CD95	specifically	in	
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NSCLC	cells	was	shown	by	Bivona	et	al.,	as	they	showed	that	knockdown	of	CD95	

and	individual	components	of	the	NF-κB	pathway	specifically	enhanced	cell	death	

in	 lung	 cancer	 cells	 (181).	 Those	 findings	 together	with	 the	 fact	 that	 NSCLC	 cell	

lines	 often	 have	 a	 constitutive	 EGFR	 activation	 made	 the	 HCC827	 cells	 to	 an	

attractive	model	cell	line	to	examine	the	cellular	consequences	of	our	model.	

We	first	assessed	the	cellular	response	to	FasL	stimulation	in	the	constitutively	

active	 EGFR	 background	 provided	 by	 HCC827	 cells.	 According	 to	 our	 model,	

persistent	EGFR	activity	should	promote	basal	CD95	phosphorylation	and	provide	

protection	 against	 FasL-induced	 apoptosis.	 We	 could	 indeed	 demonstrate	 both;	

first	 that	 stimulation	with	FasL	does	not	 induce	apoptosis	 (Fig	3.15)	 and	 second	

that	CD95	 is	phosphorylated	 in	 those	 cells	 and	 that	 the	basal	phosphorylation	 is	

relatively	high	compared	to	the	EGF-stimulated	state	(Fig	3.16).	The	next	question	

we	wanted	to	address	was	whether	inhibition	of	EGFR,	and	a	resultant	decrease	in	

CD95	 phosphorylation	 could	 restore	 sensitivity	 to	 FasL-induced	 apoptosis.	 To	

inhibit	EGFR	we	used	 the	TKI	Erlotinib,	which	rapidly	and	efficiently	suppressed	

constitutive	 EGFR	 activity	 (Fig	 3.18).	 Moreover,	 we	 observed	 that	 Erlotinib	

treatment	 also	 restored	 sensitivity	 of	 HCC827	 cells	 towards	 FasL	 induced	

apoptosis	 (Fig	 3.19).	 However,	 we	 also	 observed	 that	 Erlotinib	 alone	 exhibited	

negative	 effect	 on	 survival	 and	 although	 subsequent	 FasL	 stimulation	 further	

decreased	survival	compared	to	Erlotinib	alone,	we	cannot	exclude	the	possibility	

that	 this	 effect	 is	 purely	 additive.	 A	 further	 point	 that	 needs	 to	 be	 confirmed	 is	

whether	inhibition	of	EGFR	indeed	leads	to	a	reduction	in	CD95	phosphorylation.		

Several	lines	of	evidence	point	towards	the	validation	of	our	model	in	HCC827	

cells.	 As	 activating	 mutations	 are	 often	 found	 in	 tumours,	 the	 presented	 model	

provides	 a	 potential	mechanism	 for	 tumour	 cells	 to	 become	 insensitive	 towards	

apoptosis	 induction.	 The	 fact	 that	 the	 activation	 status	 of	 EGFR	 tremendously	

influences	 the	 cellular	 response	 to	 CD95	 activation	 represents	 a	 fascinating	

regulatory	mechanism	that	acts	in	a	context	dependent	manner.			

	

4.7 FUTURE	DIRECTIONS		
	

CD95	 is	 a	 multifunctional	 protein,	 with	 several	 regulating	 mechanisms	 that	

precisely	act	 in	space	and	time	to	ensure	a	robust	and	appropriate	response	 in	a	

given	cellular	context.	Its	importance	is	therefore	not	only	manifested	by	its	role	as	
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a	 classical	 ‘death	 receptor’,	 but	 also,	 and	 maybe	 to	 some	 extent,	 by	 its	 non-

apoptotic	 functions.	 The	 results	 presented	 here	 demonstrate	 the	 importance	 of	

context	 in	the	CD95-mediated	signaling	output	and	may	even	provide	a	model	of	

how	 CD95s	 function	 is	 switching	 in	 a	 more	 general	 manner.	 A	 better	

understanding	of	how	such	an	important	protein	functions	and	how	the	historical	

and	 environmental	 context	 influences	 its	 signaling	 outcome	 might	 reveal	

promising	new	therapeutic	avenues	in	dysregulated	systems	like	cancer.	

It	would,	for	example,	be	interesting	to	investigate	whether	phosphorylation	of	

CD95	 is	preventing	DISC	 formation.	The	 tyrosine	residues	 that	are	 important	 for	

the	non-apoptotic	function	of	CD95	are	located	in	the	DD.	So	it	is	likely	that	due	to	

the	recruitment	and	binding	of	proteins	that	rather	signal	survival,	such	as	PI3K,	

the	 induction	of	apoptosis	 is	 literally	blocked.	Alternatively	 it	 is	possible	 that	 the	

negative	charge	that	 is	added	to	CD95	by	the	two	phospho-groups	 is	affecting	 its	

conformation,	and	therefore	FADD	binding	and	ultimately	DISC	formation.		

Further	experiments	would	be	required	to	precisely	explain	the	elevated	pAkt	

level.	The	current	idea	sees	CD95	as	an	additional	‘signaling	hub’	that	provides	two	

phosphorylated	 tyrosine	 residues	 as	 docking	 site	 for	 different	 proteins.	 We	

proposed	that	the	elevated	pAkt	level	is,	for	example,	caused	by	PI3K	recruitment	

to	 CD95,	 which	 was	 indeed	 shown	 before,	 but	 is	 not	 experimentally	 confirmed	

here.		

Furthermore,	a	role	for	Src	and	other	members	has	previously	been	described	

in	 the	phosphorylation	of	CD95	and	 some	SFK	members	 are	 activated	upon	EGF	

stimulation.	It	would	be	interesting	to	address	whether	the	EGF-mediated	effect	on	

CD95	requires	the	activity	of	SFK	members.		

Not	 much	 is	 known	 about	 how	 vesicular	 trafficking	 of	 CD95	 regulates	 its	

function,	as	is	the	case	for	other	transmembrane	signaling	proteins	like	EGFR.	We	

provide	first	insights	into	a	potential	recycling	mechanism	via	the	Rab11a-positive	

endosome.	 A	more	 quantitative	 investigation	 describing,	 for	 example,	 trafficking	

rates,	 but	 also	 studying	 the	 involved	 proteins	 and	 cell-type	 specific	 regulation	

might	 elucidate	 important	 features	 about	 the	 role	 of	 CD95	 trafficking	 in	 its	

regulation.		
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