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ARTICLE

The Kalanchoë genome provides insights into
convergent evolution and building blocks of
crassulacean acid metabolism
Xiaohan Yang et al.#

Crassulacean acid metabolism (CAM) is a water-use efficient adaptation of photosynthesis

that has evolved independently many times in diverse lineages of flowering plants. We

hypothesize that convergent evolution of protein sequence and temporal gene expression

underpins the independent emergences of CAM from C3 photosynthesis. To test this

hypothesis, we generate a de novo genome assembly and genome-wide transcript expression

data for Kalanchoë fedtschenkoi, an obligate CAM species within the core eudicots with a

relatively small genome (~260Mb). Our comparative analyses identify signatures of con-

vergence in protein sequence and re-scheduling of diel transcript expression of genes

involved in nocturnal CO2 fixation, stomatal movement, heat tolerance, circadian clock, and

carbohydrate metabolism in K. fedtschenkoi and other CAM species in comparison with non-

CAM species. These findings provide new insights into molecular convergence and building

blocks of CAM and will facilitate CAM-into-C3 photosynthesis engineering to enhance water-

use efficiency in crops.
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Crassulacean acid metabolism (CAM) is a metabolic adap-
tation of photosynthetic CO2 fixation that enhances plant
water-use efficiency (WUE) and associated drought

avoidance/tolerance by reducing transpirational water loss
through stomatal closure during the day, when temperatures are
high, and stomatal opening during the night, when temperatures
are lower1. In the face of the rapidly increasing human population
and global warming predicted over the next century, the out-
standing WUE of CAM plants highlights the potential of the
CAM pathway for sustainable food and biomass production on
semi-arid, abandoned, or marginal agricultural lands2–4.

CAM photosynthesis can be divided into two major phases: (1)
nocturnal uptake of atmospheric CO2 through open stomata and
primary fixation of CO2 by phosphoenolpyruvate carboxylase
(PEPC) to oxaloacetate (OAA) and its subsequent conversion to
malic acid by malate dehydrogenase; and (2) daytime decarbox-
ylation of malate and CO2 refixation via C3 photosynthesis,
mediated by ribulose-1,5-bisphosphate carboxylase/oxygenase
(RuBisCO)5,6. Malic acid is stored in the vacuole of photo-
synthetically active cells reaching a peak at dawn and can be used
as a reference point to divide the two phases. CAM is found in
over 400 genera across 36 families of vascular plants4 and is
thought to have evolved multiple times independently from
diverse ancestral C3 photosynthesis lineages7. The core bio-
chemical characteristics of the CAM cycle are similar in all the
plant lineages in which CAM has evolved, with some variation in
the enzymes that catalyze malate decarboxylation during the day,
and in the storage carbohydrates that provide substrates for malic
acid synthesis at night8,9.

We hypothesize that convergent evolution in protein sequence
and/or temporal diel gene expression underpins the multiple and
independent emergences of CAM from C3 photosynthesis. Con-
vergent evolution is generally defined as the appearance of similar
phenotypes in distinct evolutionary lineages10. Although pheno-
typic convergence is widely recognized, its evolutionary
mechanism has been extensively debated. Morris11 argues that
the evolutionary course is not random but selection-constrained,
along certain pathways, to arrive at the same solution or outcome.
Recently, comparative genomics analysis began to provide new
insight into the molecular mechanism of convergent evolution.
For example, Foote et al.12 performed comparative genomic
analyses of three species of marine mammals (the killer whale,
walrus, and manatee) that share independently evolved pheno-
typic adaptations to a marine existence, and identified convergent
amino-acid substitutions in genes evolving under positive selec-
tion and putatively associated with a marine phenotype. Also, Hu
et al.13 compared the genomes of the bamboo-eating giant and
red pandas, two obligate bamboo-feeders that independently
possess adaptive pseudothumbs, and identified 70 adaptively
convergent genes (i.e., under positive selection in these two spe-
cies), of which nine genes, featuring nonrandom convergent
amino-acid substitution between giant and red pandas, are closely
related to limb development and essential nutrient utilization.
These two examples indicate that specific amino-acid replace-
ments at a small number of key sites can result in highly pre-
dictable convergent outcomes, supporting the constrained
selection theory of Morris11. However, such predictable protein
sequence convergence was not found in the convergence of
hemoglobin function in high-altitude-dwelling birds, indicating
that possible adaptive solutions are perhaps contingent upon
prior evolutionary history14. This finding supports the contingent
adaptation theory15 that evolution is contingent upon history and
consequently replaying life’s tape will give different outcomes. In
addition to protein sequence convergence, convergent changes in
gene expression were found to be associated with convergent
evolution of vocal learning in the brains of humans and song-

learning birds16. Therefore, convergent changes in both protein
sequence and gene expression are important aspects of the
molecular basis of convergent evolution.

We sought to investigate whether changes in protein sequence
and/or gene expression contribute to the evolutionary con-
vergence of CAM through genome-wide screening for signatures
of convergent changes in protein sequences and diel mRNA
expression patterns that meet the following criteria: the signatures
are (1) isomorphic in the CAM genomes of distant groups, such
as eudicots and monocots, which diverged ~135 million years
ago17, and (2) dimorphic in related C3 photosynthesis genomes.
Recently, the genome sequences of two monocot CAM species,
Ananas comosus (L.) Merr. (pineapple)18, and Phalaenopsis
equestris (Schauer) Rchb.f. (moth orchid)19, were published. Here
we present the genome sequence of Kalanchoë fedtschenkoi
Raym.-Hamet & H. Perrier, which is an emerging molecular
genetic model for obligate CAM species in the eudicots4,6,20. Our
analyses reveal the genomic signatures of convergence shared
between eudicot (represented by Kalanchoë) and monocot
(represented by pineapple and orchid) CAM species.

Results
Kalanchoë genome assembly and annotation. The diploid K.
fedtschenkoi (2n= 2x= 34 chromosomes; Supplementary Fig. 1)
genome size was estimated to be ~260Mb (Supplementary
Table 1). The K. fedtschenkoi genome was assembled from ~70×
paired-end reads and ~37× mate-pair reads generated using an
Illumina MiSeq platform (Supplementary Table 2 and Supple-
mentary Fig. 2). The genome assembly consisted of 1324 scaffolds
with a total length of 256Mb and scaffold N50 of 2.45 Mb
(Supplementary Table 3), in which we predicted and annotated
30,964 protein-coding genes (Supplementary Table 4).

The phylogenetic placement of Kalanchoë. Kalanchoë is the first
eudicot CAM lineage with a genome sequence to date and serves
as an important reference for understanding the evolution of
CAM. In addition, K. fedtschenkoi is the first sequenced species in
the distinct eudicot lineage, Saxifragales. Although the mono-
phyly of this morphologically diverse order is well supported by
molecular data, its phylogenetic placement has been less
clear21,22. The recent consensus view, based mainly on analyses of
plastid DNA sequences, has placed the Saxifragales as a sister
group to the rosids, and together they comprise the large clade of
superrosids23,24. However, there have been indications of conflict
between trees based on plastid genomes and nuclear genomes for
this clade19,24. Additionally, the major lineages of core eudicots
are thought to have diversified rapidly following their first
appearance, making resolution of the relationships among these
clades particularly challenging17,25 and implicating incomplete
lineage sorting (ILS) as a potentially important process that would
result in discordance among gene histories26.

We performed phylogenetic analyses with 210 single-copy
nuclear genes from 26 sequenced plant genomes using multiple
phylogenetic inference strategies. The resulting species trees
are congruent with each other except for the placement of
K. fedtschenkoi, which was placed either as sister to the rosids in a
phylogenetic tree reconstructed using a quartet-based coalescent
species tree method (Fig. 1) or as sister to all other core eudicots
as revealed by alternative phylogenetic trees reconstructed from
(1) concatenated protein sequence alignment without gene
partition using maximum-likelihood (Supplementary Fig. 3), (2)
a partitioned analysis of multi-gene alignment using maximum-
likelihood and Bayesian methods (Supplementary Fig. 4), and (3)
analysis of individual gene trees using fully Bayesian multispecies
coalescent method (Supplementary Fig. 5). Despite substantial
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discordance among estimated nuclear gene trees, the coalescence-
based tree was consistent with the results of the plastome-based
analyses, placing Kalanchoë as sister to the rosids (Fig. 1).
Coalescent species tree estimation can account for gene tree
discordance due to ILS27. At the same time, alternative
placements of Kalanchoë as sister to the asterids, or as sister to
all other core eudicots were observed in many gene trees (Fig. 1
and Supplementary Fig. 5). Gene tree discordance due to rapid
diversification early in eudicot history has also been characterized
by others24. Regardless of the optimal placement of the
Saxifragales, including Kalanchoë, individual gene trees will often
have alternative histories due to ILS in the face of rapid species
diversification.

Kalanchoë genome duplication. The grape genome has no
additional genome duplication after the ancestral gamma hex-
aploidization28,29 and is the best available reference for studying
ancestral eudicot genome duplication events. Syntenic depth
analyses30,31 showed that there are multiple K. fedtschenkoi
blocks covering each grape gene (Fig. 2a and Supplementary
Fig. 6). Specifically, 65% of the grape genome had from one to
four syntenic blocks in K. fedtschenkoi. In contrast, a sudden drop
in syntenic depth occurred after a depth of 4× (Fig. 2a), indicating
that each grape genome region has up to four K. fedtschenkoi
blocks and thus providing strong evidence for two distinct whole-
genome duplications (WGDs) events in K. fedtschenkoi. The
microsynteny patterns further support two WGDs on the lineages
leading to K. fedtschenkoi. Specifically, the microsynteny pattern
reflects a 1:4 gene copy ratio between the grape genome and the
diploid K. fedtschenkoi genome (Fig. 2b).

From the Kalanchoë point of view, we found that 49% of the
Kalanchoë genome was covered by one grape-Kalanchoë block,
7% covered in two grape-Kalanchoë blocks, and 1% covered in

three grape-Kalanchoë blocks (Supplementary Fig. 7). This
suggests that we could often find one best grape-Kalanchoë block
out of the three gamma triplicated regions in grape. This fits the
scenario that the gamma WGD predated the divergence and there
has been no WGD in the grape lineage since grape-Kalanchoë
diverged. Alternatively, if the divergence predated the gamma
WGD, then from the Kalanchoë point of view we should instead
see three matching grape regions. Hence, the grape-Kalanchoë
genome comparisons strongly supported the gamma WGD as a
shared event, and further supported the phylogenetic position of
Kalanchoë in Fig. 1.

Despite two apparent WGDs in the K. fedtschenkoi lineage,
synonymous substitutions per synonymous site (Ks) between
duplicate gene pairs showed only one prominent peak ~0.35
(Supplementary Fig. 8). The unimodal distribution of Ks suggests
the two WGD events occurring close in time. Similarly, two
distinct peaks appear in the distribution of the four-fold
transversion substitution rate (4dtv) values between the K.
fedtschenkoi gene pairs (Fig. 2c). Grape-Kalanchoë gene pairs
show a prominent peak around Ks= 1.5 (Supplementary Fig. 8),
indicating that the WGDs in the K. fedtschenkoi lineage occurred
well after its divergence from grape early in the history of the
rosid lineage.

Gene co-expression modules and clusters in Kalanchoë. To
elucidate gene function in K. fedtschenkoi, we performed a
weighted correlation network analysis of transcript expression in
16 samples including 12 mature leaf samples collected every 2 h
over a 24-h period and four non-leaf samples collected 4 h after
the beginning of the light period, including shoot tip (leaf pair 1
plus the apical meristem), stem (between leaf pair 3 and leaf pair
8), root, and flower. Our analysis identified 25 co-expression
modules, among which one module (MEblack containing 782
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genes) was significantly (Student’s t-test, P< 0.001) associated
with the leaf samples collected during the dark period (Supple-
mentary Fig. 9), with an increase in transcript abundance at night
(Supplementary Fig. 10). Several biological processes (e.g., car-
boxylic acid biosynthesis, terpene biosynthesis, and lipid meta-
bolism) were over-represented (hypergeometric enrichment test,
P< 0.05) (Supplementary Data 1), and several key genes encod-
ing proteins involved in nocturnal CAM carboxylation and
vacuolar uptake of malate such as Kaladp0018s0289 (β-CA),
Kaladp0048s0578 (PEPC2), Kaladp0037s0517 (PPCK),
Kaladp0022s0111 (MDH), and Kaladp0062s0038 (ALMT6) were
present in this module (Fig. 3a, Supplementary Note 1 and
Supplementary Table 5). These results suggest that genes in the
co-expression module MEblack play important roles in the
nighttime processes that define CAM. One alternate module
(MEblue containing 1911 genes) was significantly correlated with
the leaf samples collected during the day (Supplementary Fig. 9),
with an increase in transcript abundance during the light period

(Supplementary Fig. 10). Several biological processes (e.g., starch
biosynthesis, coenzyme biosynthetic process) were over-
represented (hypergeometric enrichment test, P< 0.05) in this
module (Supplementary Data 1). One gene in the CAM dec-
arboxylation process, Kaladp0010s0106 (PPDK-RP), belongs to
this module (Supplementary Table 6).

We also performed cluster analysis on the CAM leaf time-
course expression data for the transcripts that showed signifi-
cantly (ANOVA of glm models where H0= a flat line, P< 0.05)
time-structured diel expression patterns as determined by a
polynomial regression. Clustering of transcripts with time-
structured expression identified 11 clusters (Supplementary
Fig. 11 and Supplementary Table 7). Networks constructed for
each cluster implicated highly connected hub genes and their
direct or indirect interactions with CAM-related genes (Supple-
mentary Data 2). For example, cluster 7, which contains PEPC1
(Kaladp0095s0055) and PPCK2 (Kaladp0604s0001), has a zinc-
finger protein CONSTANS-like gene as a central hub
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(Supplementary Data 2). CONSTANS-like genes are part of the
circadian clock regulatory network32. Similarly, multiple
REVEILLE transcripts, which encode transcription factors for
genes with evening elements in their promoters33, are hubs in
cluster 4 that contains NADP-ME genes (Kaladp0092s0166)
(Supplementary Data 2).

Overview of genes that have undergone convergent evolution.
To determine the possibility that the diel reprogramming of
metabolism that distinguishes CAM from C3 photosynthesis
was achieved, at least in part, by convergent shifts in diel
patterns of gene expression, we performed comparative analysis
of diel transcript abundance patterns in CAM and C3 photo-
synthesis species. Specifically, we compared the diel expression
patterns of 9733 ortholog groups of genes from K. fedtschenkoi
(eudicot, CAM photosynthesis), A. comosus (monocot, CAM

photosynthesis), and Arabidopsis thaliana (eudicot, C3 photo-
synthesis), with transcript abundances >0.01 FPKM in mature
leaf samples collected at six or more diel time points. Sampling
time points included dawn (22, 24, and 2 h from the start of the
light period), midday (4, 6, and 8 h from the start of the light
period), dusk (10, 12, and 14 h from the start of the light period),
and midnight (16, 18, and 20 h from the start of the light period)
(Fig. 4a). A gene from K. fedtschenkoi was defined as having
undergone convergent evolution of gene expression if it met all of
the following criteria: (1) its diel transcript expression pattern was
highly correlated (Spearman’s rank correlation coefficient, r>
0.8) with those of at least one of the orthologs in A. comosus, but
not highly correlated (r< 0.5) with those of any of the orthologs
in A. thaliana; (2) it displayed a significant difference (false dis-
covery rate <0.01) in transcript abundance either between mid-
day and midnight (e.g., Fig. 4b), or between dawn and dusk (e.g.,
Fig. 4c); and (3) the time shift between K. fedtschenkoi and A.
comosus transcript time-courses was less than or equal to 3 h,
whereas the time shifts between CAM species (K. fedtschenkoi
and A. comosus) transcripts and their A. thaliana ortholog
transcript were equal to or greater than 6 h. Based on these cri-
teria, 54 K. fedtschenkoi genes were identified as candidates for
involvement in the convergent shift in diel gene expression pat-
terns specific to the two CAM species relative to A. thaliana
(Supplementary Note 2, Supplementary Data 3 and Supplemen-
tary Table 8).

To identify genes that had likely undergone convergent
evolution in protein sequence in the CAM species, we
reconstructed gene tribes based on protein sequences from the
species listed in Supplementary Fig. 4. We then created
phylogenetic trees for the genes from all tribes that include at
least one gene from each of the 13 studied species (Supplementary
Table 9). A K. fedtschenkoi gene was defined as having undergone
convergent evolution in protein sequence if it met all of the
following criteria: (1) the K. fedtschenkoi gene is clustered
with gene(s) from at least one of the two monocot CAM species
(A. comosus and P. equestris) in a phylogenetic clade containing
no genes from C3 or C4 photosynthesis species; (2) convergent
amino-acid changes were detected between the K. fedtschenkoi
gene with gene(s) from at least one of the two monocot CAM
species; and (3) the K. fedtschenkoi gene shared at least one
amino-acid mutation with its ortholog in at least one of the two
monocot CAM species, as compared with C3 and C4 photo-
synthesis species. A total of four K. fedtschenkoi genes showing
convergent changes in protein sequences were identified
(Supplementary Figs. 12–15 and Supplementary Table 10).

We also performed genome-wide positive selection analysis in
each of the three CAM species (i.e., A. comosus, P. equestris,
and K. fedtschenkoi) in comparison with 21 non-CAM
species (Supplementary Method 1) and identified two genes that
were under positive selection in the dicot CAM species
K. fedtschenkoi and one of the monocot CAM species
(Supplementary Figs. 16–17).

Convergent evolution of genes involved in CO2 fixation. PEPC
is a key enzyme for nocturnal CO2 fixation and PPCK is a pivotal
protein kinase that regulates PEPC in response to the circadian
clock in CAM plants4,6,34. PPCK phosphorylates PEPC in the
dark (Fig. 5a) and thereby reduces malate inhibition of PEPC
activity, promoting nocturnal CO2 uptake35,36. Multiple PPCK
genes were identified in the K. fedtschenkoi genome, among
which two genes (Kaladp0037s0517 and Kaladp0604s0001)
showed higher transcript abundance than the others in CAM
leaves (Supplementary Table 5). The diel expression patterns of
the most abundant PPCK transcripts in K. fedtschenkoi
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(Kaladp0037s0517.1) and A. comosus (Aco013938.1) were highly
correlated, with only a 1.5-hour time shift between them, whereas
both showed an ~11-hour time shift relative to their best matched

ortholog in Arabidopsis (AT1G08650) (Fig. 4b and Supplemen-
tary Table 8). Peak PPCK transcript abundance was shifted from
daytime in C3 photosynthesis species (Arabidopsis) to nighttime
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in the two CAM species (Fig. 4b), which suggests convergence
and is consistent with PPCK activation of PEPC-mediated
nocturnal CO2 fixation. Among the PEPC genes identified in
K. fedtschenkoi, Kaladp0095s0055 and Kaladp0048s0578 showed
higher transcript abundance than the others (Supplementary
Table 5). Kaladp0095s0055 (named PEPC1 herein) was an
abundant transcript throughout both the light and the dark
period, with its peak transcript level phased to dusk. The second
most abundant PEPC transcript (Kaladp0048s0578, named
PEPC2 herein) showed a much higher transcript level during
the dark period than during the light period (Fig. 5b). We
found that a duplicated pair of K. fedtschenkoi PEPC2 genes
(Kaladp0048s0578 and Kaladp0011s0355) clustered together with
a PEPC gene (PEQU_07008) from P. equestris (Supplementary
Fig. 12). PEQU_07008 was recently reported as the CAM-type
PEPC in P. equestris, and, like Kaladp0048s0578, this orchid
PEPC gene also showed higher transcript abundance during the
dark period than during the light period37.

Convergent changes in PEPC2 protein sequence were found
between K. fedtschenkoi and P. equestris (Fig. 6a, b). Specifically,
multiple protein sequence alignment revealed that an aspartic
acid residue (D509) in Kaladp0048s0578 is conserved in
PEQU_07008 and Kaladp0011s0355 (a duplicated copy of
Kaladp0048s0578), but there was an arginine (R), lysine (K), or
histidine (H) in the corresponding sites of the PEPC protein
sequences of other tested species (Fig. 6c and Supplementary
Fig. 12). The structural model of the Kaladp0048s0578 protein
indicates that this single amino-acid substitution (from a basic
amino-acid R/K/H to an acidic amino-acid D) is located in an
α-helix adjacent to the active site in a β-barrel (Fig. 7a). We
hypothesize that an activator binds to the active site of one

subunit of the tetrameric complex of PEPC2, leading to allosteric
conformational changes that subsequently activate another
subunit of the tetramer (Fig. 7b). This model was supported by
a recent crystallography structure of the Flavaria trinervia (a C4

photosynthesis plant) PEPC with an activator glucose-6-
phosphate (G6P) bound at the β-barrel active center38. Based
on this model, because D509 of PEPC2 (Kaladp0048s0578) is also
negatively charged as G6P, the observed substitution may play a
similar role as the activator by triggering allosteric conforma-
tional changes that lead to activation of the other subunits of
PEPC tetramer. Nimmo39 reported that PEPC is subject to
posttranslational regulation in the dark via phosphorylation by
PPCK. In vitro analysis of the activities of different heterologously
expressed PEPC isoforms showed that without phosphorylation
by PPCK, PEPC1 from K. fedtschenkoi had a much lower activity
than PEPC2 from either K. fedtschenkoi or P. equestris (Fig. 6d).
Further, the R515D mutation significantly (Student’s t-test,
P < 0.01) increased the activity of K. fedtschenkoi PEPC1, whereas
the D509K and D504K mutations significantly (Student’s t-test,
P < 0.01) reduced the activities of K. fedtschenkoi PEPC2 and
P. equestris PEPC2, respectively (Fig. 6d). These results indicate
that a single amino-acid mutation could significantly modify
PEPC activity.

Our evolutionary analyses did not detect convergent evolution
in either protein sequence or diel transcription patterns for the
various decarboxylation genes that are expressed in Kalanchoë
and A. comosus. In Kalanchoë, NAD(P)-ME genes were highly
expressed, whereas the expression of the PEPCK gene was very
low (Supplementary Fig. 18), consistent with the known high
extractable activities of NAD-ME and NADP-ME in CAM leaves
of Kalanchoë40,41. By contrast, in A. comosus the transcript
abundance of PEPCK was much higher than that of malic enzyme
(ME) (Supplementary Fig. 18), supporting the model that malate
decarboxylation in Kalanchoë is mediated by ME, which was
recently substantiated using a transgenic RNAi approach20,40,
whereas in pineapple a combination of MDH, working in the
OAA-forming direction, coupled with PEPCK, converting OAA
to PEP and CO2, are the candidate decarboxylation enzymes18,
consistent with previous enzyme activity studies8.

Convergent evolution of genes involved in stomatal movement.
A unique feature of CAM physiology is the inverted light/dark
pattern of stomatal movement relative to C3 photosynthesis, with
stomata opening during the night in CAM and during the day in
C3 photosynthesis plants6. Blue light is a key environmental
signal that controls stomatal opening and phototropin 2 (PHOT2;
AT5G58140), a blue light photoreceptor, mediates blue light
regulation of stomatal opening in Arabidopsis42. Twenty genes
that could potentially be involved in stomatal movement in K.
fedtschenkoi were predicted based on homology to Arabidopsis
genes involved in the regulation of stomatal movement (Sup-
plementary Table 11). One of these genes, Kaladp0033s0113,
which encodes PHOT2, showed only a 1-h time shift in transcript
abundance pattern relative to its A. comosus ortholog
(Aco014242) (Supplementary Table 8), possibly indicating a
convergent change in the diel pattern of its transcript abundance
pattern in the two CAM species. In support of a convergent
evolution hypothesis, the transcript abundance patterns of the
two PHOT2 genes in the CAM species showed 11- (Kalanchoë)
and 9- (pineapple) hour phase shifts, respectively, relative to that
of the PHOT2 gene (AT5G58140) in the C3 photosynthesis spe-
cies Arabidopsis (Fig. 4c). The timing of peak transcript abun-
dance shifted from dawn in Arabidopsis to dusk in the two CAM
species (Fig. 4c). This convergent change in diel transcript
abundance pattern suggests that PHOT2 might contribute to the
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inverted day/night pattern of stomatal closure and opening in
CAM species such that PHOT2 might function as a switch
mediating the blue-light signal to open the stomata at dusk and
the stomata could then remain open during the dark period.

Convergent evolution of genes involved in heat tolerance. The
stomata of mature CAM leaves of K. fedtschenkoi close for the
majority of the light period40, which may exacerbate the internal
heat load on the leaves43. Photosynthesis is sensitive to heat stress
and can be inhibited long before other symptoms of heat stress
are detected44. Numerous studies have shown that the inhibition
of photosynthesis by moderate heat stress is a consequence of
RuBisCO deactivation, caused, in part, by the thermal instability
of RuBisCO activase45. Heat-shock proteins can play a critical
role in the stabilization of proteins under heat stress conditions46.
Wang et al.47 reported that HSP40 (SlCDJ2) contributed to the
maintenance of CO2 assimilation capacity mainly by protecting

RuBisCO activity under heat stress and that HSP70 (cpHsp70)
acted as a binding partner for SlCDJ2 in tomato. HSP70 can also
function as nano-compartments in which single RbcL/RbcS
subunits can fold in isolation, unimpaired by aggregation48, as
illustrated in Fig. 8a. Among the HSP70 genes predicted in
K. fedtschenkoi, Kaladp0060s0296 displayed peak transcript
abundance in the morning, with only a 1-h shift in diel transcript
abundance pattern relative to its A. comosus ortholog Aco031458,
whereas these two HSP70 genes in the CAM species showed
~10-h shifts in diel transcript abundance pattern relative to their
best-matched A. thaliana ortholog, AT5G02490 (Fig. 8b and
Supplementary Table 8), suggesting that HSP70 has undergone
convergent changes in diel transcript expression patterns during
the evolution of CAM.

Convergent evolution of genes in the circadian clock. Key
physiological and biochemical features of CAM including net CO2
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exchange and PEPC phosphorylation are well established as outputs
of the circadian clock, displaying robust oscillation under free-
running constant conditions20,40. Thus, the circadian clock could be
a key regulator of the diel reprogramming of metabolism and sto-
matal function that defines CAM. The molecular basis of circadian
rhythms has been studied extensively in non-CAM species33. Based
on homology to Arabidopsis genes that have been shown to play
important roles as molecular components of the circadian clock, 35
K. fedtschenkoi genes were predicted to be involved in circadian
rhythms (Supplementary Table 12). None of these K. fedtschenkoi
genes are among the list of genes showing convergent changes in diel
expression pattern (Supplementary Data 3), suggesting that CAM
evolution did not involve major changes in the diel expression
pattern of these known circadian rhythm genes shared between
Arabidopsis and K. fedtschenkoi. However, we cannot rule out the
possibility of convergent evolution in unknown circadian rhythm
genes between these two species. Also, it is possible that genes that
are not involved in circadian rhythms in Arabidopsis could have
taken on this function in K. fedtschenkoi. On the other hand,
Kaladp0060s0460, which encodes ELONGATED HYPOCOTYL5
(HY5), showed a convergent change in protein sequences between
K. fedtschenkoi and P. equestris (Supplementary Table 10). HY5 is a
bZIP family transcription factor in the blue light signaling pathway
that acts as an input to entrain the circadian clock33 (Fig. 9a). A
single amino-acid mutation (E-to-R) occurred in the C-terminal
bZIP domains of the proteins encoded by Kaladp0060s0460 and its
P. equestris ortholog PEQU_13446 as compared with HY5 from C3

or C4 photosynthesis species (Fig. 9b and Supplementary Fig. 14).
The bZIP domain determines the DNA-binding ability of HY5 as a
transcription factor49, mediating the interaction between HY5 and
G-BOX BINDING FACTOR 150. HY5 has been shown to move
from shoot to root to coordinate aboveground plant carbon uptake
in the leaf and belowground nitrogen acquisition in the root51.
Therefore, the potential roles of HY5, Kaladp0060s0460, in circadian
rhythmicity and shoot-to-root communication in K. fedtschenkoi
needs to be investigated using experimental approaches such as loss-
of-function mutagenesis52.

Convergent evolution of genes in carbohydrate metabolism.
Nocturnal production of phosphoenolpyruvate (PEP) as a sub-
strate for dark CO2 uptake represents a substantial sink for car-
bohydrates in CAM plants, which has to be balanced with the
provision of carbohydrates for growth and maintenance53. Car-
bohydrate active enzymes (CAZymes) play critical roles in

regulating carbohydrate synthesis, metabolism, and transport in
living organisms. There are six CAZyme classes: glycoside
hydrolases (GHs), glycosyltransferases (GTs), polysaccharide
lyases, carbohydrate esterases, auxiliary activities, and
carbohydrate-binding modules. Each of these classes contains
from a dozen to over one hundred different protein families based
on sequence similarity54. The six classes of CAZymes have dif-
ferent functions. For example, GH enzymes catalyze the hydro-
lysis of glycosidic bonds, while GT enzymes catalyze the
formation of glycosidic bonds. Using CAZyme domain-
specific hidden Markov models, defined in the dbCAN data-
base55, we identified 100 CAZyme families, including 1093
genes in the K. fedtschenkoi genome, comparable to the total
number (1149) of CAZyme genes in A. thaliana (Supplementary
Data 4 and 5). Among these CAZyme genes, four ortholog
groups (ORTHOMCL68, ORTHOMCL93, ORTHOMCL207,
and ORTHOMCL9830) of genes (e.g., Kaladp0550s0020,
Kaladp0011s0363, Kaladp0037s0421, Kaladp0055s0317, respec-
tively) belonging to the CAZyme families GH100, GT20, GT2,
and GT5, respectively, displayed convergent changes in their
patterns of diel transcript abundance in two CAM species (K.
fedtschenkoi and A. comosus) compared with the C3 photo-
synthesis species (A. thaliana) (Supplementary Data 3). Specifi-
cally, the K. fedtschenkoi CAZyme genes with convergent changes
in diel transcript abundance pattern (e.g., Kaladp0550s0020
[GH100], Kaladp0011s0363 [GH20], Kaladp0037s0421 [GT2],
and Kaladp0055s0317 [GT5]) showed higher transcript
abundance in the dark and early light period (Supplementary
Fig. 19). In particular, two genes (Kaladp0011s0363 and
Kaladp0055s0317) were predicted to be involved in starch and
sucrose metabolism (Supplementary Fig. 20). Kaladp0011s0363
encodes a probable trehalose phosphate synthase. Trehalose
6-phosphate is an important sugar signaling metabolite and is
thought to link starch degradation to demand for sucrose and
growth56. Kaladp0550s0020 encodes an alkaline-neutral invertase
that catalyzes the hydrolysis of sucrose to glucose and fructose.
This invertase has also been implicated in metabolic signaling
processes as an important regulator of plant growth and devel-
opment57. Taken together, these data suggest that the evolution of
CAM from C3 photosynthesis requires re-scheduling of the
transcription of metabolic and signaling genes that regulate the
partitioning of carbohydrates between reserves that provide
substrates for CAM and carbohydrates required for growth.

In addition to the above convergent changes in expression
pattern of four CAZyme genes, we also identified convergent

S8 D509

a b

Fig. 7 Protein structure model of phosphoenolpyruvate carboxylase 2 (PEPC2) in Kalanchoë fedtschenkoi. a PEPC2 (Kaladp0048s0578.1) structural model
with a glucose-6-phosphate (G6P) substrate (orange spheres) bound at the β-barrel active site (yellow). D509 (red spheres) is located at an α-helix (red)
in adjacent to the β-barrel and far from the hallmark serine residue (S8, green spheres) that is the phosphorylation target of PPCK1. b PEPC tetramer
structure. The phosphorylation site (S8, green) is located at the interphase of the tetramer and D509 (spheres) is located at the peripheral of the tetramer.
The β-barrel active site is shown in red, and no G6P activator may be required for activation of the PEPC activity following the competitive activating model
of PEPC
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changes in protein sequences of another two CAZyme genes
(Kaladp0016s0058 [GT29] and Kaladp0067s0114 [GH35]) that
were under positive selection (CodeML implemented in Posi-
Gene58, P < 0.05) in the dicot CAM species K. fedtschenkoi and
one of the two monocot CAM species (A. comosus and
P. equestris) (Supplementary Figs. 16–17). Kaladp0016s0058
encodes a putative sialyltransferase-like protein. Two single
amino-acid mutations were found in Kaladp0016s0058 and its
A. comosus ortholog Aco018360, as compared with the
orthologous protein sequences of non-CAM species (Supplemen-
tary Fig. 16). These two mutations are close to each other (i.e.,
within a four-amino-acid distance), suggesting the possibility that
the two mutations affect the same functional domain.
Kaladp0067s0114 encodes a beta-galactosidase protein that
hydrolyses the glycosidic bond between two or more carbohy-
drates. Two single amino-acid mutations were identified in

Kaladp0067s0114 and its P. equestris ortholog PEQU_04899, as
compared with the orthologous protein sequences of non-CAM
species (Supplementary Fig. 17). These two mutations are close to
each other (i.e., within an 11-amino-acid distance) in the middle
of galactose-binding domain (Supplementary Fig. 17), which can
bind to specific ligands and carbohydrate substrates for enzymatic
catalytic reactions59. The relevance of these convergent changes
in protein sequence to CAM evolution needs further
investigation.

Discussion
The CAM pathway has been found in 36 families of vascular
plants4, among which Crassulaceae plays a unique role in CAM
research because the pathway was first discovered in this succu-
lent plant family and was thus named60. Within Crassulaceae, the
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genus Kalanchoë has been the most widely used for CAM
research. As a model species for research into the molecular
biology and functional genomics of CAM, K. fedtschenkoi stands
out due to its relatively small genome, low repetitive sequence
content, and efficient stable transformation protocols20. The
genome sequence presented in this study renders K. fedtschenkoi

as a new model for plant evolutionary and comparative genomics
research, both for CAM photosynthesis and beyond. Although
this study focused on genome-wide analysis of convergent evo-
lution in CAM plants, the K. fedtschenkoi genome data can be
used to facilitate CAM research related to: (1) generating loss-of-
function mutants for functional characterization of CAM-related
genes using genome-editing technology; (2) deciphering the
regulation of CAM genes through identification of transcription
factors and promoters of their target genes; (3) analyzing CAM
gene expression by serving as a template for mapping of RNA
sequencing reads and protein mass spectrometry data; and (4)
identifying DNA polymorphisms related to genetic diversity of
plants in the genus Kalanchoë.

Our genome-wide comparison of CAM species and non-CAM
species revealed two types of convergent changes that could be
informative with respect to the evolution of CAM: protein
sequence convergence and convergent changes in the diel re-
scheduling of transcript abundance. In the present study, a total
of 60 genes exhibited convergent evolution in divergent eudicot
and monocot CAM lineages. Specifically, we identified protein
sequence convergence in six genes involved in nocturnal CO2

fixation, circadian rhythm, carbohydrate metabolism, and so on
(Supplementary Table 10 and Supplementary Figs. 16–17). Also,
we identified convergent diel expression changes in 54 genes that
are involved in stomatal movement, heat stress response, carbo-
hydrate metabolism, and so on (Supplementary Data 3). These
results provide strong support for our hypothesis that convergent
evolution in protein sequence or gene temporal expression
underpins the multiple and independent emergences of CAM
from C3 photosynthesis. New systems biology tools and genome-
editing technologies52,61 offer great potential for plant functional
genomics research based on loss- or gain-of-function mutants to
characterize the role of the genes predicted here to have under-
gone convergent evolution.

Convergent gene function can arise by (1) a mutation or muta-
tions in the same gene or genes that result in homoplasy in organ-
isms or (2) independent causal mutation or mutations in different
genes in each lineage10,62. We identified four genes that showed
convergent changes in protein sequences, none of which were shared
by the three CAM species A. comosus, K. fedtschenkoi, and P.
equestris (Supplementary Table 10 and Supplementary Figs. 12–15),
suggesting that CAM convergences result mainly from the second
scenario. Alternatively, K. fedtschenkoi shares the convergent muta-
tion in the PEPC2 protein sequence with P. equestris (Fig. 6), whereas
it shares the convergent change in the pattern of diel transcript
abundance of PPCK1 with A. comosus (Fig. 4b). These results suggest
that two alternative modes of convergent evolution could have
occurred in pathways for nocturnal CO2 fixation. First, PPCK shifted
from light period to dark period to promote the activation of PEPC1
(the most abundant isoform), as exemplified by K. fedtschenkoi and
A. comosus. Second, a single amino-acid mutation from R/K/H to D
to maintain the active state of PEPC2, without the need for phos-
phorylation, then occurred, as in K. fedtschenkoi and P. equestris.

According to the constrained selection theory of Morris11, we
expected to see convergent changes in protein sequences in all the
three CAM species. However, in this study, single-site mutations
were found in only two of the three CAM species. Our additional
positive selection analysis revealed that Kalanchoë did share
convergent sequence mutation with the other two CAM species,
but at alternate sites (Supplementary Figs. 16–17). This is con-
sistent with a recent report showing that single amino-acid
mutations were not shared by all the bird species that displayed
convergent evolution of hemoglobin function as an adaptation to
high-altitude environments14. Alternatively, our results, to some
extent, support the contingent adaptation theory of Gould15. The
relevance of these predicted convergent changes to CAM needs to
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be investigated using experimental approaches, such as transfer-
ring the convergent CAM genes to C3 photosynthesis species to
test the effect of these genes on C3-to-CAM photosynthesis
transition.

In this study, we did not identify any gene that exhibited both
convergent changes in transcript abundance patterns (Supple-
mentary Data 3) and convergent changes in protein sequence
(Supplementary Table 10 and Supplementary Figs. 16–17), sug-
gesting that convergent evolution of a gene in CAM species was
achieved through either protein sequence convergence or rewir-
ing of gene expression. Indeed, we have not seen any reports
showing that both protein convergence and convergent gene
expression change occurred in the same gene in any type of
organisms to date. Thus, we can hypothesize that convergent
evolution follows the “law of parsimony” that emphasizes the
fewest possible assumptions for explaining a thing or event63. An
implication of this hypothesis is that reuse of the key genes via
altered diel expression patterns would be the shortest path for
C3-to-CAM photosynthesis evolution; and on the other hand,
mutations in some key sites of protein sequences, while keeping
the temporal gene expression pattern unchanged, would be the
shortest path for evolving new protein function required by
CAM. Although our data fit this hypothesis, additional screens
for genes that have convergent changes in both protein sequence
and expression pattern in the future are merited.

Increasing human population and changes in global tempera-
ture and precipitation are creating major challenges for the sus-
tainable supply of food, fiber, and fuel in the years to come. As a
proven mechanism for increasing WUE in plants, CAM offers
great potential for meeting these challenges. Engineering of
CAM-into-C3 photosynthesis plants could be a viable strategy to
improve WUE in non-CAM crops for food and biomass pro-
duction4,6. The genes predicted here to have undergone con-
vergent evolution during the emergence of CAM are crucial
candidates for CAM-into-C3 photosynthesis engineering. Our
results suggest that CAM-into-C3 photosynthesis engineering
requires rewiring of the diel transcript abundance patterns for
most of the candidate genes in the target C3 photosynthesis
species, along with amino-acid mutations in the protein
sequences of several other candidate genes. Specifically, CAM-
into-C3 photosynthesis engineering efforts should be focused on
changing the temporal patterns of transcript expression of
endogenous genes in the target C3 photosynthesis species corre-
sponding to the K. fedtschenkoi genes listed in Supplementary
Data 3. CRISPR/Cas9-based knock-in approach52 can be used to
replace the original endogenous promoters of the target genes
with temporal promoters that confer temporal expression pat-
terns similar to those of their orthologous genes in the CAM
species. For example, dark-inducible promoters such as Din1064

can be used to drive the expression of carboxylation gene modules
during the nighttime and light-inducible promoters, such as GT1-
GATA-NOS10165, can be used to drive the expression of dec-
arboxylation gene modules during the daytime. To make the
protein sequence changes needed for CAM-into-C3 photosynth-
esis engineering, transferring the K. fedtschenkoi genes listed in
Supplementary Table 10 to target C3 photosynthesis species via
the Agrobacterium-mediated transformation could provide a
relatively straightforward path to an efficient engineered CAM
pathway. Alternatively, one could mutate the amino acids shown
in Supplementary Figs. 12–15 using a knock-in strategy with
emerging genome-editing technology52.

In summary, this study provides an important model genome
for studying plant comparative, functional, and evolutionary
genomics, as well as significant advances in our understanding of
CAM evolution. Our findings hold tremendous potential to
accelerate the genetic improvement of crops for enhanced

drought avoidance and sustainable production of food and
bioenergy on marginal lands.

Methods
Plant material. Kalanchoë fedtschenkoi ‘M2’ plants were purchased from Mass
Spectrum Botanicals (Tampa, FL, USA) (Supplementary Method 2).

Estimation of DNA content. The DNA contents of young leaf tissue samples were
analyzed using flow cytometry analysis service provided by Plant Cytometry Ser-
vices (The Netherlands). The internal standard was Vinca minor (DNA = 1.51 pg/
2 C= 1477Mbp/2 C).

Chromosome counting. Images were collected using an Olympus FluoView
FV1000 confocal microscope (Center Valley, PA, USA) with a 60× objective.
Images were sharpened using Adobe Photoshop and chromosomes were counted
using ImageJ software (Supplementary Method 3).

Illumina sequencing of genome. The genomic DNA libraries of K. fedtschenkoi
were sequenced on a MiSeq instrument (Illumina, CA, USA) using MiSeq Reagent
Kit v3 (600-cycle) (Illumina, CA, USA) (Supplementary Method 4).

Transcriptome sequencing. In order to capture mRNA abundance changes
responsive to diel conditions, samples were collected in triplicate from mature K.
fedtschenkoi leaves (i.e., the fifth and sixth mature leaf pairs counting from the top)
every 2 h over a 24 h time course under 12 h light/12 h dark photoperiod. Addi-
tional tissues were sampled in triplicate including roots, flowers, shoot tips plus
young leaves, and stems at one time point, 4 h after the beginning of the light
period (Supplementary Method 5).

Genome assembly and improvement. The K. fedtschenkoi genome was initially
assembled using platanus66 from 70X Illumina paired-end reads (2 × 300 bp reads;
unamplified 540 bp whole-genome shotgun fragment library), and three mate-
libraries (3 kb, 14X; 6 kb, 12X; 11 kb, 11X). Further genome scaffolding was per-
formed using MeDuSa67 sequentially with the genome assemblies of K. laxiflora
v1.1 (Phytozome), Vitis vinifera Genoscope.12X (Phytozome), and Solanum
tuberosum v3.4 (Phytozome).

Protein-coding gene annotation. The genome annotation for K. fedtschenkoi was
performed using homology-based predictors facilitated with transcript assemblies
(Supplementary Method 6).

Construction of orthologous groups. The protein sequences of 26 plant species
were selected for ortholog group construction (Supplementary Method 7).

Construction of species phylogeny. The phylogeny of plant species was con-
structed from the protein sequences of 210 single-copy genes identified through
analysis of orthologous groups (see “Construction of orthologous groups” section).
The details for species phylogeny construction are described in Supplementary
Method 8.

Construction of protein tribes and phylogenetic analysis. The protein
sequences used for ortholog analysis (see “Construction of orthologous groups”)
were also clustered into tribes using TRIBE-MCL68, with a BLASTp E-value cutoff
of 1e-5 and an inflation value of 5.0. Phylogenetic analysis of the protein tribes is
described in Supplementary Method 9.

Analysis of convergence in protein sequences in CAM species. The phyloge-
netic trees of protein tribes (see aforementioned “Construction of protein tribes
and phylogenetic analysis”) were examined to identify the “CAM-convergence”
clade, which was defined to contain genes from K. fedtschenkoi (dicot) and at least
one of the two monocot CAM species (A. comosus and P. equestris) without any
genes from C3 or C4 species. The rationale for defining the “CAM-convergence”
clade is that the dicot CAM species K. fedtschenkoi should be separated from the
monocot CAM species if there is no convergence between Kalanchoë and the
monocot CAM species (Supplementary Method 10).

Gene Ontology analysis and pathway annotation. Whole-genome gene ontology
(GO) term annotation was performed using BLAST2GO69,70 with a BLASTP E-
value hit filter of 1 × 10−6, an annotation cutoff value of 55, and GO weight of 5.
The enrichment of GO biological process and pathway annotation are described in
Supplementary Method 11.

Analysis of carbohydrate active enzymes. The protein sequences were searched
against the dbCAN database55 using HMMER3 (http://hmmer.org/). The HMMER
search outputs were parsed to keep significant hits with E-value <1e-23 (calculated
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by HMMER) and coverage >0.2 (calculated on the HMM, which is equal to (end
position - start position)/total length of HMM), as suggested by a large scale
benchmark analysis71.

Estimation of transcript abundance in Kalanchoë. The RNA-seq data in fastq
format were mapped to the K. fedtschenkoi genome using TopHat272. Transcript
abundance in FPKM (Fragments Per Kilobase of transcript per Million mapped
reads) was estimated using Cufflinks73. All mapped read counts of the transcripts
were counted by using htseq-count, a subprogram of HTseq74.

Co-expression network analysis in Kalanchoë. The expression data of 16 samples
in triplicates were used for co-expression network analysis, which included time-
course data (12 time points: 2, 4, 6, …, 24 h after the beginning of the light period)
from mature leaf and one time point data (4 h after the beginning of the light
period) from roots, flowers, stems, and shoot tips plus young leaves collected in
triplicate from the K. fedtschenkoi plants grown under 12 h light/12 h dark pho-
toperiod. The details for co-expression network analysis are described in Supple-
mentary Method 12.

Cluster analysis of gene expression in Kalanchoë. Count values for each RNA-
seq library were used to calculate polynomial regressions across time (Supple-
mentary Method 13).

Comparative analysis of gene expression. The diurnal expression data with 4-h
intervals for Arabidopsis thaliana were obtained from Mockler et al.75 and adjusted
to 2-h interval time series by interpolation using the SRS1 cubic spline function
(http://www.srs1software.com/). The diurnal expression data with 2-h intervals for
K. fedtschenkoi was generated in this study. The diurnal expression data with 2-h
intervals for Ananas comosus was obtained from Ming et al.4. The gene expression
data were normalized by Z-score transformation. The hierarchical clustering of
gene expression was performed for genes in each ortholog group using the
Bioinformatics Toolbox in Matlab (Mathworks, Inc.) based on Spearman corre-
lation (Supplementary Method 14).

Genome synteny analysis. Pairwise genome alignments were performed between
grape genome (Genoscope.12X; https://phytozome.jgi.doe.gov) and K. fedtschenkoi
(Supplementary Method 15).

Protein 3D structural simulation. The protein structural models were built using
the iterative threading assembly refinement (I-TASSER, V4.3) structural modeling
toolkit76,77.

Gas chromatography-mass spectrometry metabolite profiling. For the major
metabolites of K. fedtschenkoi, a total of 36 leaf samples (the 5th and 6th fully
expanded leaf pairs counting from the top) were collected with three biological
replicates sampled every 2-h for a 24-h diurnal cycle. Additionally, three biological
replicate samples of stems, roots, shoot tips plus young leaves, and flowers were
also collected (Supplementary Method 16).

In vitro protein expression and analysis of enzyme activity. The PEPC proteins
were expressed in bacterial BL21strains (Novagen BL21 (DE3) pLysS Singles), and
purified via Glutathione Sepharose 4B beads (GE Healthcare Life Sciences, Pitts-
burgh, PA, USA). The protein quality was checked via western blot using anti-
PEPC antibody (Agrisera, Sweden) and the PEPC activity was determined (Sup-
plementary Method 17).

Data availability. The Department of Energy (DOE) will provide public access to
these results of federally sponsored research in accordance with the DOE Public
Access Plan (http://energy.gov/downloads/doe-public-access-plan). The K. fedt-
schenkoi genome sequence and annotation are deposited in Phytozome (https://
phytozome.jgi.doe.gov). The K. fedtschenkoi genome sequence is also deposited at
NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/) under the accession
code NQLW00000000. The genome sequencing reads are deposited in NCBI
Sequence Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra) with the Bio-
Sample accession SAMN07509503, which is the combination of the five individual
BioSamples: SAMN07453935, SAMN07453936, SAMN07453937, SAMN07453938,
and SAMN07453939. The RNA-Seq reads are deposited in NCBI SRA with the
BioSample accession codes SAMN07453940 - SAMN07453987. The metabolite
data is deposited at MetaboLights (http://www.ebi.ac.uk/metabolights/) under the
accession code MTBLS519.
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