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Abstract. Research of deep learning algorithms, especially in the field
of convolutional neural networks (CNN), has shown significant progress.
The application of CNNs in image analysis and pattern recognition has
earned a lot of attention in this regard and few applications to classify
a small number of common taxa in marine image collections have been
reported yet.
In this paper, we address the problem of class imbalance in marine image
data, i.e. the common observation that 80%-90% of the data belong
to a small subset of L′ classes among the total number of L observed
classes, with L′ << L. A small number of methods to compensate for
the class imbalance problem in the training step have been proposed
for the common computer vision benchmark datasets. But marine image
collections (showing for instance megafauna as considered in this study)
pose a greater challenge as the observed imbalance is more extreme as
habitats can feature a high biodiversity but a low species density.
In this paper, we investigate the potential of various over-/undersampling
methods to compensate for the class imbalance problem in marine imag-
ing. In addition, five different balancing rules are proposed and analyzed
to examine the extent to which sampling should be used, i.e. how many
samples should be created or removed to gain the most out of the sam-
pling algorithms. We evaluate these methods with AlexNet trained for
classifying benthic image data recorded at the Porcupine Abyssal Plain
(PAP) and use a Support Vector Machine as baseline classifier. We can
report that the best of our proposed strategies in combination with data
augmentation applied to AlexNet results in an increase of thirteen basis
points compared to AlexNet without sampling. Furthermore, examples
are presented, which show that the combination of oversampling and
augmentation leads to a better generalization than pure augmentation.

Keywords: class imbalance · CNN · marine imaging · deep learning ·
taxonomic classification

1 Introduction

1.1 Motivation

The classification of objects is of central importance for a multitude of areas,
e.g. autonomous driving, biodiversity studies, public surveillance, etc. With the
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emergence of deep neural networks, especially convolutional neural networks
(CNNs), computer science has made a great leap forward in solving this problem.
In recent years, the performance on benchmark datasets has even surpassed
human performance for the first time[9].

However, in contrast to natural images, i.e. images showing everyday objects,
or even customized benchmark data such as ImageNet [4], biological data have
some unique characteristics in contrast to those mentioned above. The main
differences are a) data quality issues, b) lack of training data and c) class im-
balance. The quality issues are mainly caused by the heterogeneity in capture
setups, i.e. different light sources, occlusion, cast shadows, different camera an-
gles, different camera equipment, development of the images (white balancing,
etc.) and others. The lack of training data is inherent in that the captured objects
are not everyday objects. It is, therefore, more difficult to encounter these objects
and harder to annotate these. For everyday objects, citizen science solutions are
a quick way to acquire a lot of valid annotations. Otherwise, trained experts are
needed to acquire a limited number of error-prone annotations. The class imbal-
ance, i.e.the common observation that 80%-90% of the training data belong to
a small subset of L′ classes among the total number of L observed classes, with
L′ << L, is usually present to varying degrees in biological data, e.g. established
by prey and predator relationships, where the prey is more abundant than the
predators.

Marine images are also a special type of this biological data. Data is scarce
due to the high investment in equipment and difficult setup of the imaging system
needed to acquire underwater imagery. The annotation problem is exacerbated
by the high diversity - low abundance phenomena observed in the deep sea.
Trained experts’ time is limited, and citizen science projects are difficult to
establish, although public interest is generally high. This annotation problem
further skews the class imbalance, since easy to spot/annotate objects will be
annotated much more frequently.

1.2 Prior Work

Different methods for compensating class imbalances exist. These are over- and
undersampling of data[3, 8, 18], class weights/class aware loss functions/cost sen-
sitive learning[5, 11] and postprocessing the output class probabilities also known
as thresholding, which could be regarded as a special case of cost-sensitive learn-
ing[12, 16]. While class weights are dependent on the algorithm used, e.g. applica-
ble for the SVM, over-/undersampling are applied before the classification is run
and are therefore independent of the algorithm used. Class aware loss functions
were proposed for example for some CNN types. They are a powerful instrument
but are algorithm dependent and not easy to tune.

Prior work has been published to investigate the influence of class imbalance
on machine learning algorithms, e.g. [2], but no investigation concerning the case
of marine imaging is known to the authors. For a review have a look at [7].
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2 Dataset

The images used in this study were recorded using an autonomous underwater
vehicle (AUV) at the Porcupine Abyssal Plain (PAP)[13], located southwest of
the UK in international waters. The image set is composed of 12116 images
Ii=0...12115. 30149 circular annotations Aj = (x, y, r, i, l) (with x, y being the
center of the circle with radius r on image Ii) divided into 19 classes, i.e. mor-
phtoypes/taxa l (see Figure 1) were done by experts. These were used to extract
rectangular image patches Pj=0...30148 containing the annotated object. As can
be seen in Figure 1 the distribution of the classes l is skewed, and a class imbal-
ance problem is present.

For the SVM, features are generated by flattening the RGB patches fromPj ∈
N30149×width×height×3 to P ′j ∈ N30149×(width∗height∗3). Then dimensionality re-
duction using a PCA on the patches P ′j is applied to get the dataset ΓSVM =
{PCA(P ′j)} ∈ R30149×64.

For the CNN the image patches Pjwere resized to patches P ′′j of size 64 ×
64× 3. These form the dataset ΓCNN = {P|′′} ∈ N30149×64×64×3.

Oneirophanta Ophiuroidea-Disk

Fig. 1: Example image patches of all classes l and histogram of the classes

3 Methods

3.1 Over/Undersampling methods

Random Oversampling Random oversampling (ROS)[1] is a simple method
designed to balance a dataset. With this method, Pj belonging to the classes
that are to be oversampled are drawn with replacement and added to the data
set until the desired class sizes are reached. This results in a larger data set that
contains some of the Pj multiple times.
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SMOTE Synthetic Minority Over-sampling Technique (SMOTE)[3] is an al-
gorithm that generates synthetic samples from the existing ones of a dataset.
It was originally formulated for two-class classification problems. If s′(l) new
samples are to be created for a class l, s′(l) image patches {Pj}j=1,..,s′(l) ⊂ Γ of

this class are randomly selected. For each of these Pj , the K nearest neighbors
in Γ are estimated forming Pk=1,...,K , while K is a hyper-parameter and must
be determined. One of these K nearest neighbors Pk is selected randomly. The
new sample is determined to be:

P̂ = Pj + λ ∗ (Pk − Pj) (1)

with λ [0, 1] being a random number.

ADASYN Adaptive Synthetic Sampling (ADASYN)[8] is an oversampling
method that generates synthetic samples similar to the SMOTE algorithm and
was originally formulated for a two-class classification problem. Unlike SMOTE,
it does not select the sample pairs from which a new sample is generated only
randomly, but according to the distribution of the data. The K nearest neighbors
for every data point are computed. For each sample Pj of the minority class, the

ratio rj =
δj
k with δj = |{Pk : l(Pk) == Pmaj}| being the number of samples

labeled with lmaj in the k neighborhood is determined.
All rj are normalized r̂j = rj/

∑
j rj so that the result is a probability distri-

bution r̂ =
∑
j r̂j = 1. The number of synthetic samples s′j that are generated

for each Pj is computed as s′j = r̂j ∗ s′(l). A new sample P̂ is computed as
follows:

P̂ = Pj + λ(Pk − Pj) (2)

This algorithm results in more samples being created for a sample that has
many neighbors from the majority class than for samples that have fewer such
neighbors. If a sample has no neighbors from the majority class, no samples are
created for it.

Data Augmentation The term data augmentation describes the application of
different transformations to the training images. This can be e .g. the extraction
of sections from images or flipping, rotations, or Gaussian blurring[10, 15, 14]. It
can be used by temporarily creating randomly transformed copies of the training
data during training and can therefore also be used additionally if the training
set was previously oversampled. It has proven to be helpful to prevent overfitting
and to improve classifier performance[10, 14].

Transformation Oversampling The image transformations used for data
augmentation can also be applied as part of an oversampling method that can
be employed to balance an imbalanced training dataset as proposed by Wang
and Perez [15].
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To balance the dataset the transformations are applied to image patches Pj
from minority classes that are to be oversampled. Hereby, it is paid attention
that if possible no transformations are multiply applied to the same Pj , i.e. the
same transformation is only applied multiple times to the same Pj if all the
other transformations have already been used on it.

The transformations used here are a 90-degree rotation, Gaussian blur with
σ = 1 and flipping using one of both image axes. In the following, this oversam-
pling method is referred to as Transformation Oversampling (TROS).

Random Undersampling Undersampling means that image patches Pj are
removed from the data. The method can be applied to the larger classes in an
unbalanced dataset to reduce the imbalance. Random undersampling (RUS)[1]
is a simple undersampling method that randomly removes Pj from all classes
that are to be subsampled until the desired sample size s(l) is reached.

3.2 Balancing rules

All the used sampling methods introduced above require a desired sample size
s(l) for each class l. The sample size is usually expressed as a percentage of
the sample size s(l) of the majority class lmaj, i.e. the class which is the most
common.

The term balancing rule will be used to describe the rule that defines which
sample size s(l) a class should be sampled to in relation to s(lmaj).

Three different rules for oversampling are introduced in this section
{r100, r50, r50,75,100}.

r100 is the most intuitive one setting the sample size s(l) to the sample size
of the majority class s(lmaj).

r100 : s(l) = s(lmaj) (3)

When resampling imbalanced datasets, the synthetically generated samples
are derived from only a small number of samples. Thus it may be the case that at
some point generating more samples does not significantly increase the accuracy
of the classifier trained on the dataset anymore. Additionally, there may be a loss
of classification performance on the majority classes if all classes are sampled to
the same size.

A solution for this may be oversampling rare classes to a size of 1
2s(lmaj) and

keep the larger classes at their original size.

r50 : s(l) =

{
s(lmaj)

2 if s(l) <
s(lmaj)

2

s(l) else
(4)

This rule may increase the classification accuracy of the rare classes keep-
ing that of the common classes reasonably high, thus preventing a high loss of
average precision per class caused by misclassification of common classes.
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Using the third rule r50,75,100 the sample sizes s(l) are divided up into three
ranges.

r50,75,100 : s(l) =


1
2s(lmaj) if s(l) ≤ 1

4s(lmaj)
3
4s(lmaj) if 1

4s(lmaj) < Mk ≤ 1
2s(lmaj)

s(lmaj) else

(5)

In addition two rules {r̂75, r̂50,100} combining oversampling with undersam-
pling are evaluated. The first rule r75 completely balances the dataset, but de-
creases the variety of the largest classes by removing a certain share of their
training samples randomly. Many of the synthetic minority class samples are
generated from a small number of image patches Pj . Because of this, the vari-
ance of these classes may be smaller than the variance of the majority classes
even after oversampling. Applying this rule may reduce this difference.

r̂75 : s(l) =
3

4
s(lmaj). (6)

The other rule introduced here is adapted from a combined undersampling
and oversampling approach introduced in [3]. The method mentioned there in-
cludes undersampling the majority class to half the size and oversampling the
minority class to s(lmaj) in a two-class classification problem. This is extended
to the multiclass classification problem at hand. The desired sample sizes s(l)
are computed as follows:

r̂50,100 : s(l) =

{
s(lmaj)

2 if s(l) ≥ s(lmaj)
2

s(lmaj) else
(7)

3.3 Evaluation Metrics

The classification results are evaluated using the macro-averaged recall, preci-
sion[17] and the mean f1-score[6]. Macro-averaging means that the measure is
first computed for each class separately, then the arithmetic mean of the per-
class measures is computed to obtain a performance measure that is suitable
for equally weighting all classes regardless of their sample sizes. If the average
of the class-wise measures were weighted by class size, as usual, low scores for
small classes would lower the average much less, while for common classes the
loss would be much stronger. This is important to assess whether a classifier can
classify rare classes as well as common classes.

The macro-averaged recall Rmacro is defined as Rmacro = 1
L

∑
lR(l) where

R(l) denotes the recall of class l.
The macro-averaged precision Pmacro is defined as Pmacro = 1

L

∑
l P (l) where

P (l) denotes the precision of class l.
To evaluate the overall classification performance, the macro-averaged f1-

score F1,macro, which is defined as F1,macro = 1
L

∑
l F1(l) with F1(l) = 2R(l)P (l)

R(l)+P (l)

where F1(l) is the class-wise f1-score, which is the harmonic mean of P (l) and
R(l), with both values weighted equally.



PR
EP
RI
NT

Strategies for Tackling Class Imbalance 7

F1,macro SMOTE ADASYN ROS TROS

baseline 0.6868
r50 0.7571 0.7404 0.7416 0.7651
r50,75,100 0.7525 0.7432 0.7445 0.7766
r100 0.7581 0.7434 0.7433 0.7621
r̂75 0.7653 0.7607
r̂50,100 0.7652 0.7578

(a)

Rmacro SMOTE ADASYN ROS TROS

baseline 0.6585
r50 0.7225 0.7082 0.7266 0.7892
r50,75,100 0.7332 0.7070 0.7249 0.7900
r100 0.7250 0.7067 0.7280 0.7767
r̂75 0.7317 0.7888
r̂50,100 0.7400 0.7961

(b)

Pmacro SMOTE ADASYN ROS TROS

baseline 0.7345
r50 0.8159 0.7915 0.7688 0.7495
r50,75,100 0.7907 0.7985 0.7739 0.7691
r100 0.8087 0.8016 0.7689 0.7563
r̂75 0.8153 0.7425
r̂50,100 0.8065 0.7334

(c)

F1,macro Rmacro Pmacro

baseline 0.6868 0.6586 0.7345
Only DA 0.7213 0.6989 0.7751
DA, SMOTE, r50 0.8000 0.7903 0.8206
DA, TROS, r50,75,100 0.7919 0.7847 0.8030
DA, SMOTE, r̂75 0.8145 0.8110 0.8248
DA, SMOTE, r̂50,100 0.8120 0.8136 0.8157

(d)

Table 1: CNN Results: Best results are shown in boldface.

4 Results

In table 1a) the results of the AlexNet classification using the different balancing
rules compared to the classification results without any sampling (baseline) are
shown. It is evident that sampling helps in increasing the classification perfor-
mance significantly. The best results are achieved using TROS with the r50,75,100
rule, which results in an increase of roughly 9 basis points for the F1,macro score.
SMOTE oversampling combined with random undersmapling is almost as good
comparing the F1,macro score (-1 basis point) but achieves a much higher macro
precision than the aforementioned method (81.5% vs. 76.9%) at the cost of a
much lower macro recall value (74% vs. 79,6%). ADASYN and ROS are under-
performing therefore the undersampling experiments were not executed.

The results of combining the sampling methods with data-augmentation are
shown in table 1 d). Here the runner-up from above – SMOTE combined with the
r̂75 balancing rule is the best, which gains an additional 5 basis points using data-
augmentation. Interestingly, data-augmentation without sampling only gains 3.5
basis points compared to the baseline.

Besides, as can be seen in Figure 2 according to the activations the AlexNet
classifier tends to gain generalization performance, using oversampling in com-
bination with data-augmentation compared to using pure data-augmentation.
In this figure we can see that more, and also more unique filters are active
and that the filters generated by the convolutional neural network are detecting
more edges, or small details like the tentacles of the holothurian, rather than
memorizing the whole holothurian.

Additionally, we investigated the influence of SMOTE and ADASYN over-
sampling on the SVM classifier. The SVM results are listed in table 3. It can
be seen that oversampling is hurting the performance. This is unfortunately in-
herent with the way the SVM classifies and in that SMOTE and ADASYN are
generating data. The SVM tries to find a separating hyperplane between data
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Fig. 2: Example plots of the activations of the first layer of AlexNet. The left
image shows the activations for pure data augmentation and the right image of
data augmentation combined with the best sampling approach (cmp. Table 1d).

classe baseline F1 DA, SMOTE, r̂75 F1 class baseline F1 DA, SMOTE, r̂75 F1

Amperima 0.9378 0.9662 Oneirophanta 0.812 0.9098
Cnidaria 1 0.9683 0.9784 Ophiuroidea 0.932 0.963
Cnidaria 2 0.731 0.7299 Ophiuroidea-Disk 0.3916 0.6063
Cnidaria 3 0.8043 0.9437 Peniagone 0.4663 0.6766
Cnidaria 4 0.78 0.8179 Polychaete 0.7276 0.8956
Cnidaria 5 0.8968 0.9013 Porifera 0.5811 0.7051
Crinoid 1 0.5423 0.8179 Pseudosticho 0.3807 0.7852
Crinoid 2 0.6063 0.7493 Stalkedtunicate 0.684 0.7913
Echiura 0.5178 0.7095 Tunicata 0.4244 0.5829
Foraminifera 0.864 0.9459

F1,macro 0.6868 0.8145
F1 0.8841 0.935

Table 2: Single Class F1 scores including total macro and weighted F1 score

SMOTE ADASYN

Rmacro Pmacro F1,macro Rmacro Pmacro F1,macro

baseline 0.5571 0.6223 0.5796 0.5571 0.6223 0.5796
r50 0.5541 0.6095 0.5729 0.5525 0.6074 0.5711
r50,75,100 0.5528 0.6123 0.5735 0.5494 0.6045 0.5684
r100 0.5503 0.6036 0.5680 0.5475 0.5986 0.5643

Table 3: SVM results: Best results are shown in boldface.
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points of different classes. SMOTE and ADASYN are introducing new data
points in between data points of differently labeled data (cmp. equations 1 and
2). Therefore the data is placed near the separating hyperplane, thus increasing
the number of support vectors (cmp. Figure 3) needed to establish a hyperplane
still separating the differently labeled data, while still not gaining any better
scores. This results in overfitting of the classifier.

Fig. 3: Number of support vectors compared to the balancing rule applied.

5 Conclusion

To sum up the results of this thesis, it can be said that over-/undersampling
is a method that is helpful to improve a classifier’s result achieved on imbal-
anced marine image data. In contrast to other data domains combined over-
/undersampling was only stronger than pure oversampling when combined with
data augmentation. It was shown that over-/unddersampling is a well-suited
method to improve the performance of a convolutional neural network, espe-
cially if it is combined with data augmentation. The balancing rules introduced
and compared in this paper show a big improvement over the intuitive approach
of oversampling every class to the maximum sampling size.

Which sampling algorithm and balancing rule to choose is a question of the
desired result. Applying SMOTE alone, for example, yields a good precision
while using TROS increases the recall more. If data augmentation is applied
additionally to oversampling, the results are more balanced increasing the per-
formance of rare classes. This leads to the best overall classification performance
and increased generalization, which makes it recommendable to combine sam-
pling with data augmentation.
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