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Abstract

Enabling computers to understand natural human communication is a goal researchers have

been long aspired to in artificial intelligence. Since the concept demonstration of “Put-That-

There” in 1980s, significant achievements have been made in developing multimodal interfaces

that can process human communication such as speech, eye gaze, facial emotion, co-verbal

hand gestures and pen input. State-of-the-art multimodal interfaces are able to process pointing

gestures, symbolic gestures with conventional meanings, as well as gesture commands with

pre-defined meanings (e.g., circling for “select”). However, in natural communication, co-

verbal gestures/pen input rarely convey meanings via conventions or pre-defined rules, but

embody meanings relatable to the accompanied speech.

For example, in route given tasks, people often describe landmarks verbally (e.g., two

buildings), while demonstrating the relative position with two hands facing each other in the

space. Interestingly, when the same gesture is accompanied by the utterance a ball, it may

indicate the size of the ball. Hence, the interpretation of such co-verbal hand gestures largely

depends on the accompanied verbal content. Similarly, when describing objects, while verbal

utterances are most convenient for conveying meanings symbolically (e.g., describing colour

and category with the utterance “a brown elephant”), hand-drawn sketches are often deployed

to convey iconic information such as the exact shape of the elephant’s trunk, which is typically

difficult to encode in language.

This dissertation concerns the task of learning to interpret multimodal descriptions com-

posed of verbal utterances and hand gestures/sketches, and apply corresponding interpretations

to tasks such as image retrieval. Specifically, I aim to address following research questions:

1) For co-verbal gestures that embody meanings relatable to accompanied verbal content, how

can we use natural language information to interpret the semantics of such co-verbal gestures,

e.g., does a gesture indicate relative position or size? 2) As an integral system of commu-

nication, speech and gestures not only bear close semantic relations, but also close temporal

relations. To what degree and on which dimensions can hand gestures benefit the interpreta-

tion of multimodal descriptions? 3) While it’s obvious that iconic information in hand-drawn

sketches enriches the verbal content in object descriptions, how to model the joint contribu-

tions of such multimodal descriptions and to what degree can verbal descriptions compensate

reduced iconic details in hand-drawn sketches?

To address the above research questions, in this dissertation, I first introduce three mul-

timodal description corpora: a spatial description corpus composed of natural language and

placing gestures (also referred as abstract deictics), a multimodal object description corpus

composed of natural language and hand-drawn sketches, and an existing corpus - the Bielefeld
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Speech and Gesture Alignment Corpus (SAGA), which provides fine-grained annotations of

speech and hand gestures in a route giving and following task.

After introducing the corpora related to studies in this dissertation, I first describe a sys-

tem that models the interpretation and application of spatial descriptions and explored three

variants of representation methods of the verbal content. When representing the verbal content

in the descriptions with a set of automatically learned symbols, the system’s performance is

on par with representations with manually defined symbols (e.g., pre-defined object proper-

ties), showing that besides learning to interpret and apply multimodal spatial descriptions, the

system can also learn to automatically represent the multimodal content. Moreover, I show

that abstract deictic gestures not only lead to better understanding of spatial descriptions, but

also result in earlier correct decisions of the system, which can be used to trigger immediate

reactions in dialogue systems.

Going beyond deictics in multimodal descriptions, I also investigated the interplay of se-

mantics between symbolic (natural language) and iconic (sketches) modes in multimodal object

descriptions, where natural language and sketches jointly contribute to the communications. I

model the meaning of natural language and sketches two existing models and combine the

meanings from both modalities with a late fusion approach. The results show that even adding

reduced sketches (30% of full sketches) can help in the retrieval task. Moreover, in current

setup, natural language descriptions can compensate around 30% of reduced sketches.

In the above tasks, I modelled the interpretation of multimodal descriptions composed of

deictic and iconic elements separately. Deictic and iconic elements were represented with dif-

ferent methods, assuming that the system automatically knows how to represent deictic and

iconic content (i.e., extracting position information from deictics while encoding drawing tra-

jectories as vectors). In a more realistic setup, a system should learn to resolve how to repre-

sent the semantics of hand gestures. I frame the problem of learning gesture semantics as a

multi-label classification task using natural language information and hand gesture features. I

describe an experiment conducted with the SAGA corpus, and show show that natural language

is informative for the learning the semantics of verbal utterances and hand gestures.
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Kurzfassung

Schon lange strebt die Forschung in der Künstlichen Intelligenz danach, Maschinen zu en-

twickeln, die natürliche menschliche Kommunikation verstehen. Seit der ersten Entwicklung

der Idee von “Put That There” in den 1980ern wurden signifikante Fortschritte bei der Im-

plementierung von multimodalen Schnittstellen gemacht, die menschliche Kommunikation via

gesprochener Sprache, Blickbewegungen, Mimik, ko-verbalen Gesten und Zeichnungen mit

Stift verarbeiten. Auf dem aktuellen Stand der Forschung sind multimodale Schnittstellen

in der Lage, gesprochene Sprache, deiktische Gesten, symbolische Gesten mit konventional-

isierter Bedeutung zu verarbeiten, sowie gestenbasierte Kommandos mit vordefinierten Bedeu-

tungen (z.B. Kreisen für “Auswahl”). Allerdings verwenden Sprecher in natürlicher Kommu-

nikation oft Gestik oder Zeichnungen, die nicht konventionalisiert sind und keine vordefinierte

Bedeutung tragen, sondern die nur relativ zur gleichzeitig gesprochenen Sprache Bedeutung

zum Ausdruck bringen.

Ein Beispiel sind Wegerklärungsaufgaben, bei denen Sprecher oft Orientierungspunkte

beschreiben (zwei Kirchen) und ihre relative Position mit zueinander ausgerichteten Händen

demonstrieren. Interessanterweise kann die gleiche Geste, wenn sie mit einer Äußerung wie

der Ball auftritt, auf die Größe des Balls hindeuten. Daher ist die Interpretation von ko-verbalen

Gesten zu einem großen Teil abhängig vom verbalen Inhalt der gleichzeitig kommuniziert

wird. In ähnlicher Weise können bei der Beschreibung von Objekten (ein brauner Elefant)

zum Beispiel handgezeichnete Skizzen verwendet werden um ikonische Information wie die

exakte Form des Elefantenüssels zu übermitteln, während natürliche Sprache in diesem Fall

eher geeignet ist, Information wie Farbe oder Kategorie des Objekts zu beschreiben.

Diese Dissertation beschäftigt sich damit, multimodale Äußerungen, die aus nat”urlicher

Sprache und ko-verbalen Gesten bestehen, zu interpretieren und in Anwendungen wie z.B. im-

age retrieval auszunutzen. Wir bearbeiten dabei folgende Forschungsfragen: 1) Wie können

wir natürliche Sprache nutzen um die Semantik ko-verbaler Gesten vorherzusagen, da doch die

Interpretation ko-verbaler Gesten vom verbalen Inhalt abhängt? 2) Als integrale Bestandteile

von Kommunikation stehen Sprache und Gestik nicht nur in enger semantischer Beziehung,

sondern auch in temporaler. In welchem Maße und in welchen Dimensionen können Gesten

dabei helfen, multimodale Beschreibungen zu interpretieren? 3) Während es einerseits offen-

sichtlich ist, dass ikonische Information in handgezeichneten Skizzen den verbalen Inhalt von

Objektbeschreibungen anreichert, stellt sich andererseits die Frage, wie diese multimodalen

Beschreibungen modelliert werden und in welchem Maße verbale Beschreibungen reduzierte

ikonische Information kompensieren können. Um diese Fragen zu untersuchen, führen wir

zunächst drei multimodale Korpora mit Objektbeschreibungen ein: räumliche Beschreibun-
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gen bestehend aus natürlicher Sprache und platzierenden Gesten (auch als abstrakte deiktis-

che Gesten bezeichnet), multimodale Beschreibungen bestehend aus natürlicher Sprache und

handgezeichneten Skizzen und ein existierendes Korpus - den Bielefeld Speech and Gesture

Alignment Corpus (SAGA) (Kapitel 3). Dann operationalisieren wir das Problem des Lernens

von Gestensemantik mittels Multi-Label-Klassifikation basierend auf natürlicher Sprache und

annotierten Merkmalen der Handgesten und zeigen das natürliche Sprache die Interpretation

von Handgesten informiert.

Außerdem beschreiben wir ein System, dass die Interpretation und die Anwendungen von

räumlichen Beschreibungen modelliert und explorieren dabei 3 Varianten von Repräsentationen

des verbalen Inhalts. Wir zeigen, dass abstrakte deiktische Gesten nicht nur zu einem besseren

Verständnis von räumlichen Beschreibungen beitragen, sondern auch zu früheren korrekten

Entscheidungen des Systems führen, was ausgenutzt werden kann, um unmittelbare Reaktio-

nen in Dialogsystemen zu implementieren.

Schließlich untersuchen wir die semantischen Interaktionen von symbolischer (natürlich-

sprachlicher) und ikonischer (auf Zeichnungen basierender) Modalität in multimodalen Objek-

tbeschreibungen, bei denen natürliche Sprache und ikonische Information gemeinsam zur Be-

deutung der Beschreibung beitragen. We modellieren die Bedeutung natürlicher Sprache und

Skizzen mit zwei existierenden Modellen und kombinieren deren Bedeutungsrepräsentationen

mit einem late fusion-Ansatz. Wir zeigen, dass sogar reduzierte Skizzen positiv zur Performanz

des Retrieval-Systems beitragen. Zudem können in diesem Ansatz verbale Beschreibungen bis

zu 30% der reduzierten Skizzen kompensieren.
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1
Introduction

Human communication is multimodal in nature. While language is convenient and intuitive

for conveying symbolic information, other modalities are often involved in situated commu-

nications to complement/supplement verbal content. Hands, being readily available to almost

everyone, are often deployed for such purposes.

For example, when giving route descriptions, people often describe the landmarks verbally,

while placing hands in the shared space to demonstrate the spatial relations of landmarks, such

as:

(1) here [deictic] is the bus stop, [deictic]a bit left of it is a restaurant ...

by placing hands in the space (conventionally referred as abstract deictic gestures (McNeill

et al., 1993)), a speaker maps spatial layout of the landmarks from his/her mental image to

the shared space. Together with the verbal descriptions, a listener can build his/her mental

representation of the landmarks, later navigating itself with the represented knowledge.

Besides the spatial layout, a route giver often also provides detailed visual descriptions of

the landmarks such as shape and orientation. A convenient way to describe the contour of a

building is to use the gesture space as a canvas and roughly draw the shape of the referent in

the space (Cassell et al., 2007). For example:
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(2) the cafeteria in a bell-shaped [drawing] building

while the verbal description specifies the entity name, the trajectory of the drawing gesture

(i.e., iconic gesture) visually signifies the shape of the building.

In gesture studies, abstract deictics and iconic gestures are conventionally referred as repre-

sentational gestures. Representational gestures often reflect conceptual demands of a speaker

(Hostetter et al., 2007). Together with natural language, they help a speaker to constitute

thoughts (Kita, 2000) and facilitate communication by conceptualising underlying mental rep-

resentations. Such gestures also enhance listeners’ comprehension (Kita, 2000; Alibali, 2005;

Beattie and Shovelton, 1999) as the joint meaning of a multimodal utterance occurr in an or-

ganised manner and distribute across both modalities (Bergmann et al., 2014).

Note that iconic gestures are not the only approach to resemble visual similarity in natural

communications. When a pen and a canvas (e.g., a piece of paper or a painting board) are

at hand, one could also illustrate the shape of an object with hand-drawn sketches. Similar to

iconic gestures, sketches can also supplement verbal utterances to form a mental representation

of the described object.

Although sketches are similar to iconic gestures in the sense of conveying iconic infor-

mation, there are significant differences between them. Due to the abstract nature of hand

gestures and timing pressure in situated communications, iconic gestures usually only signify

salient parts of objects. Consequently, iconic gestures bear closer temporal and semantic re-

lations with accompanied verbal content. Thus, the meaning of iconic gestures is relatable to

the accompanying verbal content. In comparison, as sketches drawn on a real canvas are static,

they can encode more details than iconic gestures and are only loosely related to accompanied

content on the temporal level.

As an integral part of human communication, hand gestures have motivated various studies

across disciplines. Researchers have investigated the temporal and semantic relations between

speech and gestures through empirical studies (Kendon, 1997; McNeill, 2005). These works

not only shed light on the interplay of speech gestures in natural human behaviours, but also

help to form theoretical hypothesis in computationally modelling multimodal behaviours in

natural human communication. To computationally construct the meaning of multimodal com-

munications, multimodal semantic models have been proposed to explore the representation of

multimodal semantics in computational systems, providing insights of building and applying

the interpretations of speech and co-verbal hand gestures (Lascarides and Stone, 2009; Gior-

golo, 2010).

While humans can easily understand the above mentioned multimodal communicatio, rep-

resent the content in their mind, and probably later apply the knowledge to perform real-life
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tasks, it remains a challenging task for computers to understand such communication as hu-

mans do in artificial intelligence. Researchers in the multimodal human-computer interfaces

(HCIs) community have made prominent achievements on enabling computers to understand

speech and hand gestures, but only limited to a set of gestures with conventional meanings

(Karam and Schraefel, 2005; Turk, 2014) or pre-defined gesture commands, rather than natural

representational gestures.

This dissertation aims to explore the interpretation and application of multimodal descrip-

tions composed of natural language and representational gestures/hand-drawn sketches as dis-

cussed above. More specifically, I investigate how to learn semantic concepts of representation

gestures, how (abstract) deictic gestures facilitate better interpretation of spatial descriptions,

and how iconic information together with natural language descriptions encode richer informa-

tion than language alone. This dissertation contributes to building natural multimodal human-

computer interfaces that goes beyond understanding symbolic gestures and deictic gestures.

1.1 Tasks

In this dissertation, I intend to model the interpretation and application of multimodal descrip-

tions. Specifically, I focus on multimodal descriptions composed of representational gestures

and hand-drawn sketches.

First of all, I model the interpretation and application of multimodal descriptions com-

posed of deictics and verbal utterances. To this end, I started with a task of interpreting spatial

scene descriptions, in which abstract deictics supplement the verbal content with spatial layout

information.

When describing several landmarks that are not in the situated environment, humans often

accompany natural language descriptions with deictic gestures, demonstrating the relative po-

sitions with hands in the space. For instance, to help a person to locate a hotel not in current

view, a route giving description might be:

(3) “Here[deixis] is the train station, [deixis]here is the bus stop, and next to it[deixis] is the

hotel.”

While the verbal utterances indicate the entity name (e.g., train station) and relative position

(e.g., next to it), deictic gestures visually indicate the spatial configurations which complement

the verbal content. For example, although the phrase “next to” indicates relative positions of

the landmarks, the spatial layout between the two landmarks is still unclear. As given the

description, a listener still cannot figure out whether the bus stop is to the right or left of

the hotel. In this case, the deictic gestures complement speech with concrete spatial layout
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information, and consequently result in a clearer route description.

The deictic gestures in the above description are referred as abstract deictics in gesture

studies (McNeill et al., 1993), featured for placing abstract referents in the gesture space and

mapping mental spatial configurations to the shared space. Only together with accompanied

speech, the deictic gestures can have determined meanings.

To model the interpretation of spatial descriptions, I started with an empirical study of such

descriptions with a simplified setup. Participants were asked to describe several geometric

objects and their relative spatial configurations. With the collected corpus, I first explored 3

methods of representing the multimodal descriptions in a multimodal system, then modelled

the interpretation of multimodal descriptions and applications with a real-time system and eval-

uated the system on the general and incremental level.

Figure 1.1: A photograph described with a sketch (on the right) and the utterance “an elephant, trunk

coiled towards mouth”.

Comparing to deictics, sketches enrich the verbal content with shape information, which

convey meanings by assemble visual similarities rather than position information. Such iconic

information is typically difficult to describe symbolically with verbal descriptions. For in-

stance, as shown in Figure 1.1, it is a bit ambiguous when there are several elephants with

trunks coiled, drawing a trajectory to show how the trunk is coiled.

Although iconic gestures share similar nature of conveying visual information, modelling

such descriptions with computational approaches requires large scale corpora. Due to technical

challenges, collecting such a corpus with hand motion data is not feasible currently. Therefore,

in this dissertation, I focus on the task of interpreting object descriptions composed of natural

language and hand-drawn sketches, leaving it as future work to model the interpretation task

of iconic gestures. Comparing to iconic gestures, it’s easier to collect sketches with detailed

timing and path information of drawing strokes by saving them as SVG files and rendering into

images, making the data amenable for computational models in the computer vision tasks such

as deep neural networks.
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To investigate how iconic information facilitates natural communications, I first collected

a corpus of of real-life photograph descriptions from English speakers using the Crowdflower

service,1. The photographs were selected from ImageNet, and paired with hand-drawn sketches

from an existing corpus – the Sketchy dataset, originally introduced in Sangkloy et al. (2016).

Note that the language descriptions and sketches were collected separately (see details in the

data description in Chapter 3), the temporal relations between language and drawing strokes

are not available. As the current study focus on the semantics, I leave it as future work to

investigate temporally aligned multimodal descriptions.

I investigated the interplay of symbolic and iconic modes in object descriptions, with

sketches representing iconicity of objects and natural language representing symbolic infor-

mation. Mono-modal and multimodal experiments were designed to evaluate the contributions

of symbolic and iconic modes with an image retrieving task, which shows multimodal descrip-

tions out perform mono-modal descriptions.

While full sketches are informative as they encode detailed iconic information, in natural

communications, humans often only gesture for the most salient part of an object due to timing

pressure. Therefore, it’s an interesting question that to what degree the reduced sketch details

can be covered by natural language? To this end, I designed multimodal experiments with

reduced details of sketches and evaluated the image retrieval performance. The results show

that around 30% reduced details in sketches can be recovered by natural language descriptions.

After exploring the modelling of deictic and iconic elements separately, I address the task of

interpreting co-verbal gestures, which contain both deictic and iconic elements. As aforemen-

tioned, representational gestures bear close temporal and semantic relations to accompanied

verbal content. Thus, they do not receive coherent interpretations on their own. Their inter-

pretation must be resolved by reasoning about how they are related to its accompanied verbal

content. In this dissertation, I represent the interpretation of verbal content and gestures with

a set semantic concepts such as size and shape. Based on an existing corpus of route giving

descriptions (i.e., the SAGA corpus), I frame the task of representing multimodal descriptions

with semantic concepts as a multi-label classification problem. Verbal utterances and hand ges-

tures features are used to learn to predict the semantic categories of co-verbal gestures. I show

that natural language is informative for predicting the semantic categories of hand gestures and

verbal utterances.

The contributions of this thesis are summarised as follows:

• Two multimodal corpora were collected and publicly available to further research works.

The corpora go beyond previous works which either only contain uni-modal data or only

include gesture commands rather than multimodal descriptions.

1https://www.crowdflower.com/

https://www.crowdflower.com/
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• With empirical experiments, this dissertation shows that natural language is informative

for interpreting the semantics of accompanied iconic gestures.

• Three variants of representing multimodal descriptions in real-time systems are explored

in this dissertation. The results show that automatically learned symbolic labels outper-

forms verbatim represents and overcome the limitations of representation method with

pre-defined symbolic labels.

• This dissertation describes a real-time system which builds and applies multimodal spa-

tial scene descriptions – fusing abstract deictics with speech. The results demonstrate

that deictic gestures not only improve overall performance of the spatial interpretation

task, but also result in earlier final correct decision of the system due to its parallel nature

to language.

• This dissertation investigates the interplay of semantics between natural language and

iconic information in sketches, drawing the conclusion that multimodal object descrip-

tions outperform language-only or sketch-only descriptions in an image retrieving task.

1.2 Thesis outline

This thesis is structured as follows:

• Chapter 2 gives an overview of previous work related to the dissertation. Firstly, I in-

troduce previous work on gesture studies which inspect the relation between speech and

gestures in natural communications. Secondly, I provide an overview of existing theories

on multimodal semantic models and discuss formal semantic representations of speech

and co-verbal gestures. Thirdly, I summarise works on multimodal human-computer

interfaces, which mainly focus on frameworks and methods of interpreting speech and

gesture inputs from humans. I finish this chapter with a discussion of how HCIs can be

improved by jointly interpreting natural language and co-verbal gestures/sketches.

• Chapter 3 introduces following multimodal corpora: a) spontaneous spatial scene de-

scription corpus. This corpus is composed of intuitive natural language and deictic/i-

conic hand gestures of a scene description task. With this corpus, I investigate the nat-

ural behaviour of spatial scene descriptions and how well natural deictic gestures can

represent the spatial configurations in human mind; b) spatial scene descriptions with

explicit instructions. This corpus is elicited with a spatial description task similar to pre-

vious corpus, however, to collect data amenable for modelling the interpretation of such

descriptions with computational methods (Chapter 5), I constrained the setup by making



22 CHAPTER 1. INTRODUCTION

task-oriented instructions. It results in a corpus with larger amount of multimodal de-

scriptions; c) multimodal object description corpus. In this corpus, real-life photographs

are paired with hand-drawn sketches from an existing corpus (Sangkloy et al., 2016) and

natural language descriptions collected using Crowdflower, a crowd-sourcing platform.2

This corpus provided materials of investigating symbolic and iconic semantics of ob-

jects descriptions in Chapter 6. For each of the corpus, I describe the data collection

procedures as well as data statistics.

• Chapter 4 presents three methods of representing multimodal scene descriptions in a

computer system. Namely, verbatim representation, representation with pre-defined con-

cepts, and representation with a set of concepts learned from the data. After introducing

each method, I describe the evaluation setup and corresponding results, then discuss the

pros and cons of each method.

• Chapter 5 presents a real-time system that models the building and application of spatial

scene descriptions. The system is supposed to take speech and abstract deictic gestures

as input, build representations of the multimodal descriptions and apply the representa-

tions to retrieve the target scenes from a set of distractor scenes. First of all, I describe

the system framework which is composed of following components: automatic speech

recognition (ASR), natural language processing (NLU) module, gesture detection mod-

ule, gesture interpretation module, multimodal fusion and application module. Then

I introduce individual system components and discuss evaluation results of the system

performance which demonstrate that deictic gestures not only benefit the overall perfor-

mance of the system, but also result in earlier final correct decisions .

• Chapter 6 presents a study of investigating the contributions of symbolic and iconic se-

mantic modes in object descriptions. I conduct the investigation with an image retrieving

task that takes joint words and hand-drawn sketches as input. After briefly introducing

the image retrieving task, I describe the models of grounding words and sketches to

images, which judge the fitness between an image and giving words/sketches. Then, I

describe how we evaluate the contributions of words and sketches with controlled input

from words and sketches, namely, mono-modal and multi-modal experiments. Finally, I

discuss the evaluation results and conclude that the iconic information in sketches com-

plement natural language descriptions. This chapter draws a conclusion that even in-

corporating iconic information from reduced sketches leads to better performance of an

image retrieving task.

2www.crowdflower.com

www.crowdflower.com
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• Chapter 7 intends to address the task of interpreting co-verbal iconic gestures and con-

struct multimodal representations with a set of semantic concepts. I frame the task of

learning multimodal semantic concepts as a multi-label classification task using words

and annotations of hand gestures as features. The evaluation results show that natural

language is informative for learning the categories of semantic concepts of hand ges-

tures in route giving descriptions.

• Chapter 8 finishes this dissertation with a summarisation of the presented work. This is

followed by a discussion on future work of interpreting multimodal communication and

building multimodal human-computer interfaces.

In the rest of the dissertation, when referring to work that is my own, I will use I, while

mentioning work that has been done in collaboration with my co-authors such as experiment

design in the studies, I will use we.



2
Related work

In this chapter, I introduce background knowledge on human multimodal communication and

multimodal human-computer interfaces. This includes an overview of language-related mul-

timodal communications, previous works on hand gestures, temporal and semantic relations

between co-verbal gestures and accompanied verbal content. The works in this dissertation

benefited from studies in hand gestures. The knowledge in gesture studies forms theoretical

hypothesis for building multimodal systems that can understand human multimodal communi-

cation. In addition to co-verbal hand gestures, I also mentioned hand-drawn sketches in mul-

timodal communication, as pen inputs are also one of the important input modality in human-

computer systems and share some similarities with gestures in terms of conveying iconic infor-

mation. After discussing previous work in gesture studies, I give an overview of state-of-the-art

of multimodal human-computer systems and components of these systems.

2.1 Speech and gestures in natural communications

“We think, therefore, we gesture” (Alibali et al., 2000). When talking, humans often accom-

pany their speech with hand or arm movements. These movements, though different from

speech, are part of our communication system that convey meanings together with speech

(Quek et al., 2002).

24
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Stated of the art gesture studies show that co-verbal gestures are part of our thinking pro-

cedure (Alibali et al., 2000). Co-verbal gestures not only enrich verbal content with useful

information, they also help humans to speak (Goldin-Meadow, 2005; Kita, 2000). Kita (2000)

proposed the Information Packing Hypothesis. It suggests that gestures conceptualising in-

formation for speaking. Hostetter et al. (2007) supports the hypothesis with a study of an

ambiguous dot-patter description task. The study shows that participants gesture more fre-

quently when dots are not connected by geometric shapes, suggesting that gestures occur when

information is difficult to conceptualise. Moreover, studies also have shown that, even when

the verbal content does not match the same spatial ideas in the accompanying speech, repre-

sentational gestures resemble underlying mental representations Church and Goldin-Meadow

(1986); Roth (2002).

In spatial description tasks, humans often produce representational gestures to depict the

image they are describing (McNeill, 1992), which also provides a good test case for multi-

modal systems (Cassell et al., 2007; Striegnitz et al., 2005; Kopp et al., 2004). Route giving

description is such a typical scenario of spatial descriptions, which typically involve verbal

descriptions and hand gestures. The most common gesture in route descriptions is pointing

gesture, which indicate a direction to follow or direct a listener’s attention to a visible land-

mark from the situated environment. Moreover, in route giving descriptions, people often talk

about landmarks and routes that are not in the shared environment. To demonstrate the spa-

tial relation between several landmarks that are not visible, humans often place their hands in

the space to represent these landmarks. These “placing gestures”, conventionally referred as

abstract deictics create abstract concepts of the landmarks in the shared space. They map the

spatial layout from a speakers’ mind to the gesture space, so that a listener can try to imagine

the layout in his mind and understand the spatial relations even when the landmarks are not

actually visible.

Iconic gestures also often appear in route descriptions, especially when describing shapes

of a complex route or landmarks (Cassell et al., 2007; Beattie and Shovelton, 1999; Emmorey

et al., 2000b). For example, to clearly describe the route with several turns, a route giver may

draw in gesture space to visualise the directions; to specify the contour of a building while

describing its colour, name and other attributes with verbal utterances, one might draw the

most salient part of the contour e.g., “a dark church with a round window like this [drawing

the shape of the window]” or “an elephant with trunk coiled like this [drawing the shape of the

trunk]”. The descriptions which intends to refer to landmarks are conventionally referred as

Referring expressions.

Although it’s widely accepted that hand gestures do convey meanings, human conversations

are rarely composed of pure gestures. This lies in the fact that, in natural conversations, speech
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and co-verbal gestures often closely related to each other both on the semantic and temporal

level. Hence, the interpretation of co-verbal gestures not only depends its own, but also depends

on the coordinated verbal content.

The meaning of hand gestures is also multi-dimensional. For example, an iconic gesture

can indicate the size of a window may indicate its shape at the same time. While semantics of

gestures concern the meanings, gestures can also function pragmatically such as indicating of

emotions (Freigang and Kopp, 2016; Freigang et al., 2017). In this dissertation, I focus on the

semantics of iconic gestures without considering the pragmatics.

Pen-input such as lines and circles are also commonly used in route giving descriptions

when a sketch board or a piece of paper is available. For example, a rouge giver can circle a

landmark on a map to indicate the selection of that location; he/she can also draw a short line to

indicate the direction, or even several connected lines to signify a route a listener should follow

Bolt (1998); Hui and Meng (2014). Thus, these pen inputs’ functions are similar to pointing

gestures in the sense of intending to locating landmarks or giving directions.

Similar to iconic gestures, pen inputs can also enrich verbal utterances with iconic infor-

mation when giving descriptions such as drawing the contour of a building or an object, e.g.,

drawing a landmark to visually signify its shape. However, as aforementioned, pen-inputs are

also different from iconic gesture as sketches can encode much more details than iconic ges-

tures. Moreover, sketches with full details can convey information on their own, hence, in these

cases, sketches are only loosely related to the accompanying speech both on the semantic and

temporal level, e.g., a full sketch of a cat is informative as a depiction of the cat, verbal descrip-

tions doesn’t have to co-occur with the sketch to make it informative such as in sketch-based

image retrieval tasks (Eitz et al., 2011; Li et al., 2012; Sangkloy et al., 2016).

Despite the fact that pen-inputs are able to enrich verbal content, it requires support of

devices such as pens, papers or sketch board to perform the functions. In comparison, hand

gestures, without requiring support from other devices, appear more often and more natural

in situated conversations. In what follows, I will first have a look at the typologies of hand

gestures in natural communications, then discuss representational gestures: abstract deictic

gestures and iconic gestures, as well as the semantic and temporal relations between co-verbal

gestures and the accompanying speech.

2.2 Typologies of hand gestures

In this section, I give an overview of gesture categories based on gesture movements and the re-

lation between gestures and the accompanied speech. Although this dissertation only concerns

representational gestures, to given a complete view of hand gestures in natural communica-
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tions, I review all categories of gestures while focusing the discussions on representational

gestures.

According to the characteristics of gesture movements, hand gestures are usually cate-

gorised as: iconic, deictic, metaphoric, and beats (McNeill, 1992).

• Iconic gestures represent concrete objects by resembling the visual similarities between

gestures and the referred objects. For example, drawing in the space to indicate the shape

of a window. Hence, they bear close formal relationship to the semantic content of the

verbal utterances.

• Deictics are also referred as pointing gestures which often communicate by directing a

listener’s attention to the spot it points to. Such deictic gestures are featured with the

index finger extended, other fingers closing. However, much of the deictics we see in

daily conversations are actually abstract deictics which do not point to visible objects in

the situated environment and are not with extended index finger, but point to the space to

create an imagined (abstract) object in the shared environment (McNeill, 2005).

• metaphoric gestures present an image of an abstract concept such as knowledge, thus,

metaphoric gestures often indicate that the accompanying speech is meta, rather than

concrete objects.

• beats are movements which do not present discernible meanings, but can be recognised

by the pattern of their movements. Beats can function to signal the temporal locus of

something a speaker thinks important. That is, to stress the important of something.

In this dissertation, I focus on deictics in spatial descriptions and iconic gestures in route

descriptions.

Kendon’s continuum According to the relation between gestures and the accompanied speech,

Kendon’s continuum (McNeill, 1992) distinguishes gestures of different kinds along as con-

tinuum as shown in Figure 2.1. Along the continuum from left to right, two kinds of reciprocal

changes occur: the degree of semantic relations between speech and gestures decreases, while

the degree of a gesture shows the properties of a language increases.

• Gesticulation is the most frequent type of gestures in our daily communications. It

refers to gestures that embody meanings relatable to the accompanied speech, e.g., iconic

gestures and abstract deictic gestures. Therefore, gesticulation bears close semantic ad

temporal relations with the accompanied speech. The stroke phase of gesticulations often

precede or synchronise the accompanying speech (Kendon, 1980a).
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Gesticulation Speech-framed-gestures Emblems Pantomime Signs
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 2.1: Kendon’s Continuum. As one moves from left to right, the degree of semantic relations

between speech and gestures decreases, while the degree of a gesture shows the properties of a language

increases.

• Speech-framed-gestures can be considered as part of the accompanied speech. As a

result, speech-framed-gestures do not synchronise with the accompanied speech, but fill

grammar slots. McNeill (2006) gives an example of speech-framed-gestures as follows:

“Sylvester went [gesture of an object flying out laterally]”.

• Emblems are also referred as symbolic gestures. Emblems are gestures with conven-

tional meanings, e.g., thumbs-up for “great”. The meaning of emblems may vary across

different cultures.

• Pantomime can be one or a sequence of gestures that tell a story, produced without

speech. Pantomime is also referred as dumbshow.

• Signs are a different language such as ASL. Each sign functions as a lexical in sign

language, thus, the least relevant to the accompanying speech.

The gestures this dissertation concerns fall into the gesticulation category and closely re-

lated to the accompanying speech.

2.2.1 Abstract deictics in spatial descriptions

Gestures are not limited to describe concrete world, they can also describe objects that are not

in the situated environment. e.g., objects out of current view and the relations between them.

In route giving descriptions, abstract deictics are often deployed to exhibit spatial layout of

landmarks (Cassell et al., 2007). In such cases, anchoring the destination in configurations

of landmarks and indicating their relative spatial layout with deictic gestures pointing into the

empty gestural space is a common practice (Emmorey et al., 2000a; Alibali, 2005; Cassell

et al., 2007).

In multimodal route descriptions, deictic gestures map the spatial layout of the landmarks

from the speaker’s mental image to the shared gesture space (McNeill, 1992). Together with

the verbal descriptions, a listener can build a mental representation of the landmarks, later

navigating itself by comparing the mental representation with real-world landmarks.
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While the verbal utterances describe some important attributes of the referential objects

(e.g., entity name: the bus stop, relative position: a bit left of ), the deictic gestures comple-

ment the verbal content with spatial information (i.e., points with coordinates in the gesture

space, standing in for the real locations of the referents, and indicating their spatial relation).

When combining the verbal content with gestures, a listener may form a complete and more

accurate understanding of the description (e.g., how much left is a bit left, relative to below).

Importantly, such deictic gestures only encode position information, thus their meanings rely

on the temporally aligned verbal content. That is, an abstract deictic is meaningful when the

accompanied verbal content describes other attributes of an object, otherwise, the deictic would

not receive a defined meaning. Hence, the task of interpreting such descriptions goes beyond

previous works on pointing gestures, in which gestures can be grounded to objects present in

the environment (Stiefelhagen et al., 2004).

Psycholinguistic studies show that humans process gestures and speech jointly and incre-

mentally (Campana et al., 2005). While descriptions unfold, listeners immediately integrate

information from co-occurring speech and gestures. Moreover, to apply the interpretation later,

it’s essential to form a hypothesis in mind, making it a very demanding cognitive, language-

related task (Schneider and Taylor, 1999). Hence, incremental processing is essential to build

a real-time system that can understand the descriptions in the way humans do (Schlangen and

Skantze, 2009).

2.2.2 Describe objects with iconic gestures/sketches

Humans often use iconic gestures to describe object (i.e., referential expression), ad iconic

gestures are convenient to convey visual information which might be difficult to encode in

language (McNeill, 1992).

For example, one can describe an elephant with the utterance “an elephant facing right

trunk coiled towards mouth”. While the utterance gives accurate information the category

of the entity (i.e., elephant), it does not specify the exact shape of the trunk. Consequently,

a listener’s mental representation of the “trunk” is ambiguous. Accompanying the utterance

with an iconic gestures that draws the shape of the trunk may help a listener to understand the

description with more accurate details.

Due to the nature that iconic gestures convey meanings by resembling visual similarities,

the same iconic gestures when accompanied with different verbal content, can convey different

meanings. For example, an iconic gesture with a coiled trajectory may indicate the shape of

an elephant in our previous example, it can also indicate locations when accompanied by the

utterance: “from A to B” (McNeill, 1992; Sowa and Wachsmuth, 2003).

Especially descriptions of visual objects or situations can be supported by the iconic mode
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of reference provided by gestures or sketches, that is, reference via similarity rather than via

symbolic convention (Pierce, 1867; Kendon, 1980b; McNeill, 1992; Beattie and Shovelton,

1999).

2.3 Relations between speech and co-verbal hand gestures

In this section, I discuss previous studies on the relations between co-verbal gestures and ac-

companied verbal content both on semantic and temporal level.

2.3.1 Semantic coordinations between co-verbal gestures and verbal content

In the Growth Points in thinking for speaking model, McNeill and Duncan (1998) claims that

speech and gestures are systematically organised in relation to one another, although they ex-

press the same underlying ideas, but in different modalities and not necessarily express identical

aspects of the ideas. In many cases, the two modalities serve to reinforce one another, e.g., the

drawing gesture of an elephant’s trunk enriches the verbal description with shape information

that are not exactly covered in language. In such cases, the information to be expressed is

distributed across both modalities such that the full communicative intentions of the speaker

are interpreted by combining verbal and gestural information. The semantic synchrony of both

modalities can be thought of as a continuum of co-expressivity, with gestures encoding com-

pletely the same aspects of meaning as speech on one extreme (Bergmann et al., 2011; Kita

and Özyürek, 2003).

When speech and gestures express the same meanings, gestures may seem to be redundant

in the descriptions. For example, humans may describe a fountain as “round” while drawing a

circle to indicate the shape of the fountain. In this case, the drawing gesture does not add extra

information to enrich the verbal content, but visualises the same information so that a listener

can “see” the shape of the fountain.

In the two above example, the information in iconic gestures were also expressed by the

verbal content, either partially or completely. Iconic gestures can also encode information that

are not uttered verbally. That is, these gestures complement speech. For example, one can

describe a fountain with utterance “a fountain” while drawing a circle to indicate its shape.

Without the accompanied gesture, a listener’s mental representation of the fountain would miss

the shape information. Only when combining both modalities, a listener can form a more

complete representation (Pine et al., 2007; McNeill, 1992).

Although the semantic coordination between speech and co-verbal gestures have been used

to generate speech and co-verbal gestures (Kopp and Bergmann, 2017b; Bergmann et al.,
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2013a), human-computer interfaces rarely deploy this knowledge to interpret multimodal com-

munications, but focus on the semantics of human gestures with conventions or pre-defined

rules.

2.3.2 Temporal alignment between gestures and speech

Besides close semantic coordinations, speech and co-verbal gestures also bear close tempo-

ral relations. As verbal utterances unfold word-by-word in situated conversations, co-verbal

gestures often co-occur with the words they shared the same semantic meanings (Nobe, 2000;

Schegloff, 1984; McNeill, 1992, 2005).

Studies have shown that when talking, speakers produce a perceptible link between the

motion they impose upon a referent and the prosodic structure of their speech. Listeners readily

use this prosodic cross-modal relationship to resolve referential ambiguity in word-learning

situations (Jesse and Johnson, 2012; Özyürek et al., 2007). Temporally unaligned gestures and

speech often result in mis-understandings of the content.

Chui (2005) found, in Chinese, there is a higher proportion of gestures synchronised with

speech than gestures anticipating speech. In English, on the contrary, Schegloff (1984) ob-

served that gesture strokes are generally produced in anticipation to lexical affiliates. Similarly,

Leonard and Cummins (2009) also found an anticipation of gestures in English.

Although temporal and semantic relations between speech and gestures are not indecent,

they affect each other. For example, Bergmann et al. (2011) investigated how far temporal

synchrony is affected by the semantic relationship of gestures and their lexical affiliates in the

SAGA corpus (Lücking et al., 2010). The results showed that when gestures encode redundant

information, gestures’ onsets are closer to that of co-occurred lexical affiliates than when ges-

tures convey complementary information. That is, the closer speech and gestures are related

semantically, the closer is their temporal relation.

By far, I have had an overview of gestures in natural communications, categories of hand

gestures, as well as the relation between representational gestures and accompanied speech.

Next, I provide an overview of state-of-the-art multimodal interfaces which are designed to

interpret multimodal communication and respond to multimodal input from humans.

2.4 Multimodal human-computer interfaces

In this section, I will first give an overview of previous works on general frameworks of mul-

timodal interfaces, then discuss works on individual components of M-HCIs such as natural

language processing, gesture recognition and multimodal fusion.
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Multimodal human-computer interfaces aim to enable computers/robots/virtual agents to

understand multimodal human communications in the way humans do. Therefore, a M-HCI

must be able to understand natural language (NLU), recognise and interpret hand gestures,

combine information from both modalities (multimodal fusion) and represent multimodal con-

tent in a way that later can be applied to real-life tasks with humans, e.g., after hearing a route

giving description, a robot should be able to navigate itself. In other words, a multimodal sys-

tem is usually composed of two pipelines: a natural language processing pipeline and a gesture

processing pipeline. A fusion engine takes the outputs from the two pipelines and form a joint

interpretation of multimodal input (Oviatt and Cohen, 2000; Oviatt, 2003; Dumas et al., 2009;

Turk, 2014).

Since the seminal work of Bolt (1998), prominent progresses have been made on advancing

machines’ ability to understand multimodal communication from humans. Most of the early

works are on concept demonstration level without building computational models. For exam-

ple, Koons et al. (1993b) describes two prototype systems that accept simultaneous speech,

gestural and eye movement input. The task of the systems was to resolve objects in a map

by processing the three modes to a common frame-based encoding (representation) and inter-

preting the encoding. Similar to Bolt (1998), as the two systems are only prototypes, natural

language processing and gesture processing methods were not described. Koons et al. (1993a)

discussed the integration of information from speech, gestures, and gaze at computer interfaces.

Two prototype systems were proposed, where speech, gestures and eye gaze are processed to

a common frame-based encoding and interpreted together to resolve references to objects in

a map. Cohen et al. (1997) describes an agent-based, collaborative multimodal system - the

Quick system. Quick enables a user to create and position entities on a map or virtual terrain

with speech, pen-based gestures, and/or direction manipulation. Cassell et al. (1999) intro-

duced an embodied conversational agent that is able to interpret multimodal input and generate

multimodal output. Although the input gestures are limited to “giving turn”. Chai et al. (2002)

presents a semantics-based multimodal interpretation framework - Multimodal Interpretation

for Natural Dialog (MIND). The system can take graphics, speech and video inputs for simple

conversations with humans.

Recent years have seen fast development of high resolution cameras that are widely de-

ployed to record audio and video data and infrared devices used for tracking body movements

such as Kinect and Leap sensor. These advancements enable research on human-computer

interfaces that can understand multimodal human communication. As a result, multimodal

systems started to go beyond prototypes and concept demonstrations. For example, Zhu et al.

(2002) proposed a real-time multimodal system to spot, represent and recognise hand ges-

tures from a video stream. Johnston et al. (2002) describes MATCH, a multimodal applica-
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tion architecture that combines finite-state multimodal language processing, a speech-act based

multimodal dialogue manager, dynamic multimodal output generation, and user-tailored text

planning to enable rapid prototyping of multimodal interfaces with flexible input and adaptive

output. A gesture and handwriting recogniser provides possible classifications of 285 words

and a set of 10 basic gestures such as lines, arrows and areas. Nickel and Stiefelhagen (2003)

presented a system capable of visually detecting pointing gestures and estimating the 3D point-

ing direction in real-time.

Hoste et al. (2011) introduced Mura, an integrated multimodal interaction framework. The

framework supports the integrated processing of low-level data streams as well as high-level

semantic inferences to fully exploit the power of multimodal interactions. However, it didn’t

address the interpretation and semantic representation of iconic gestures, but merely a con-

cept demonstration. Lucignano et al. (2013) presented a POMDP-based dialogue system for

multimodal human-robot interaction. The system is able to recognise 9 gestures with possible

meanings, each of which is with a specified interpretation, e.g., a hand’s palm stop gesture

for “stop, stop down”. Matuszek et al. (2014) demonstrate that combining unscripted deictic

gestures and verbal utterances more effectively captures user intent of referring to objects in

human-robot interactions. Whitney et al. (2016) defined a multimodal Bayes filter to interpret

a person’s referential expressions to objects. The approach incorporated learned contextual

dependencies composed of words and pointing gestures. Hui and Meng (2014) describes an

approach in semantic interpretation of speech and pen input using latent semantic analysis

(LSA) in the navigation domain. The pen inputs can be categorised as point (indicate a single

location), circle (small one indicate a single location; larger one indicate multiple locations)

and stroke (indicate either a single location or start and end points of a route).

McGuire et al. (2002) reported progress in building a hybrid architecture that combines

statistical methods, neural networks, and finite state machines into an integrated system for in-

structing grasping tasks by man-machine interaction. The system combines the GRAVIS-robot

for visual attention and gestural instruction with an intelligent interface for speech recognition

and linguistic interpretation, and a modality fusion module to allow multi-modal task-oriented

man-machine communication with respect to dextrous robot manipulation of objects with 3-D

pointing projection.

To summarise, existing multimodal systems are designed to take pointing gestures, sym-

bolic gestures and a set of gestures/pen input commands as input. Although these systems have

various system architecture, some of them designed to take various types of input modality,

unfortunately these systems are only able to interpret pre-specified gesture inputs, a subset of

gestures/pen input of natural communication. To interact with such systems, a user have to

remember the patterns and meanings of the gesture commands (e.g., a circle for ”selecting”).
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Thus the interaction between systems and users is far from natural communication.

Moreover, previous works on multimodal systems rarely considers speech and gestures

communication as time sequence inputs. The processing of multimodal inputs were on gesture-

speech unit level. In other words, only at the end of a gesture-speech input, the processing of

the input starts. An important issue with this method is that the temporal relations between

speech and gestures are ignored.

There is some disagreement among researchers about the role of gesture in comprehension;

whether it is ignored, processed separately from speech, used only when speakers are having

difficulty, or immediately integrated with the content of the cooccurring speech. Campana

et al. (2005) presented an experiment that provides evidence in support of immediate integra-

tion. In the experiment, participants watched videos of a woman describing simple shapes on

a display in which the video was surrounded by four potential referents: the target, a speech

competitor, a gesture competitor, and an unrelated foil. The task was to “click on the shape that

the speaker was describing”. In half of the videos the speaker used a natural combination of

speech and gesture. In the other half, the speaker’s hands remained in her lap. Reaction time

and eye-movement data from this experiment provide a strong demonstration that as an utter-

ance unfolds, listeners immediately integrate information from naturally cooccurring speech

and gesture.

In this dissertation, I consider incremental processing for speech and gesture inputs and

deploy the temporal relations between speech and gestures to enable a multimodal system

achieve earlier correct decisions (Han et al., 2018) (see Chapter 5 for details).

After having an overview of previous work on multimodal systems, in the rest of this sec-

tion, I will discuss individual modules that compose multimodal systems, namely, natural lan-

guage processing module, gesture recognition and interpretation module, multimodal fusion

module and the multimodal representation module.

2.4.1 Natural language processing

The natural language processing pipeline in a multimodal system takes verbal utterances as

input, and provides the fusion module with certain representations of the verbal content to be

fused with other modalities.

As noted by Roy and Reiter (2005), language is never used in isolation; the meanings

of words are learned based on how they are used in contexts–for the spatial description task

of this dissertation, visual contexts–where visually-perceivable scenes are described (albeit

scenes that are later visually perceived). This approach to semantics is known as grounding;

previous works such as (Gorniak and Roy, 2004, 2005; Reckman et al., 2010) discussed how

word meanings such as colour, shape, and spatial terms were learned by resolving referring
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expressions. (Harnad, 1990; Steels and Kaplan, 1999) observed that symbolic approaches to

semantic meaning (e.g., first-order logic) do not model such perceptual word meanings well;

Harnad (1990) and Larsson (2013) reconcile grounded semantics and symbolic approaches. In

this dissertation, I extend earlier work in this area (Larsson, 2013; Kennington et al., 2015) by

learning and applying these mappings in a spatial description and scene retrieval task.

Navigation tasks provide a natural environment for the development and application of

such a model of grounded semantics, which have been the subject of a fair amount of recent

research: In (Levit and Roy, 2007), later extended in (Kollar et al., 2010), the meaning of words

related to map-navigation such as “toward” and “between” were learned from interaction data.

Vogel and Jurafsky (2010) applied reinforcement learning to the task of learning the map-

ping between words in direction descriptions and routes. Also, Artzi and Zettlemoyer (2013)

learned a semantic abstraction from the interaction map-task data in the form of a combinatory

categorical grammar. Though interesting in their own right, these tasks made some important

simplifying assumptions that we go beyond in this paper: first, gestural information was never

used to convey scene descriptions; second, the scene that is being described (from a bird’s-eye

view; here, scenes are perceived from a first-person perspective) was visually-present at the

time the descriptions are being made; third, only the grounded semantics of a selected subset

of words were being learned. In this dissertation, gestures are considered, a description is heard

and later applied to scene retrieval tasks, and all the word groundings are learned from data.

Kintsch and van Dijk (1978) suggested that listeners first represent exact words of a descrip-

tion (i.e., surface form), then interpret information (i.e., a gist of the description) and integrate

that with their world knowledge (e.g., the knowledge about what red things look like, if the

word “red” was used in the description). Moreover, Brunyé and Taylor (2008) (as well as some

work cited there) note that readers construct cohesive mental models of what a text describes,

integrating time, space, causality, intention, and person- and object-related information. That

is, readers progress beyond the text itself to represent the described situation; detailed informa-

tion from an instruction or description is distorted in memory (Moar and Bower, 1983), thus,

incremental processing is essential in processing such descriptions.

2.4.2 Gesture recognition and interpretation

As aforementioned, current multimodal systems mainly concern gestures/pen input of certain

patterns, each of which with specified meanings. In these systems, a gesture classifier recog-

nises input gestures as one of the gestures in the pre-defined gesture set; a gesture interpretation

module maps input gestures to actions/decisions the system should make according to the pre-

defined gesture-action/decision map. For example, when a “thumb up” gesture is detected,

an interactive system may consider it as a confirmation signal from a user, and consequently
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end the current interaction session. Next, we first given an overview on gesture recognition

methods, then discuss state-of-the-art gesture interpretation modules in multimodal systems.

Gesture recognition Depending on the data types a multimodal system receives from its

sensors, gesture recognition methods can be categorised as video-based gesture recognition

(Wu and Huang, 1999; Murthy and Jadon, 2009; Rautaray and Agrawal, 2015) or motion-based

gesture recognition (Bayazit et al., 2009; Wu et al., 2013; Marin et al., 2014; Pitsikalis et al.,

2017). Approaches from the two categories differ in the way they extract features from the raw

data. Motion data often provides rich skeleton details of hands or limbs such as joint positions

in each data frame of a gesture, making it easier to extract high level features to represent

gestures. In comparison, video-based gesture recognition methods often have to re-construct

the motion information from videos (a difficult task on its own), making the recognition task

more challenging than motion-based recognitions.

Depending on the characteristics of the gestures, gesture recognition methods can be cate-

gorised into static gesture recognition (Hasan and Abdul-Kareem, 2014) and dynamic gesture

recognition (Joslin et al., 2005). While the former one is for static gestures such as “OK”

(Freeman and Roth, 1995; Hasan and Abdul-Kareem, 2014), the latter approach is for ges-

tures composed of a series of movements such as circling and iconic gestures (e.g., drawing

the contour of a vase), where temporal scale of gestures should be considered. For example,

Sadeghipour and Kopp (2014) proposed the framework of FSCFG, which combines feature-

based representation with syntactical rule-based organisation to learn a grammar of natural

iconic gestures.

Recurrent neural networks (RNN) (Gers et al., 1999) have also become popular for gesture

recognition tasks as it considers temporal relations among series data via a memory mechanism

(Molchanov et al., 2015; Wu et al., 2016). Although deep neural networks have achieved im-

pressive performances on gesture recognition tasks, training such models require large amount

of data which might be unavailable. In this dissertation, I introduce a gesture recogniser to

detect abstract deictics that adopts a long-short-memory network (LSTM) Han et al. (2018)

(See Chapter 5 for more details).

Gesture interpretation Gesture interpretation modules inform the system what decision

should be made when a gesture is detected. For gestures with pre-defined meanings, the inter-

pretation module simply maps the gesture to corresponding decisions defined in the system or

produces probabilities over all decisions which indicate how likely a gesture is meant for each

decision. As this strategy relies on a pre-defined map between gestures and system decisions,

the systems are only able to handle a limited set of gesture input.
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As the meaning of representational gestures/sketches relate to the accompanying speech,

the interpretation of representational gestures is more complex. For example, the interpretation

of iconic gestures should represent the encoded iconic information. Deep neural networks have

been effective at encoding visual features such as real-life photos (Simonyan and Zisserman,

2015). Recently, DNNs have been applied to image classification and sketch-based image

retrieval tasks by encoding images as feature vectors. The feature vectors encoded by the

neural networks have shown good performance on other tasks for representing images (Koch

et al., 2015; Collell Talleda and Moens, 2016).

In this dissertation, due to the lack of data, I only consider interpreting and representing

sketches as vectors with the GoogLe network, which was originally introduce in (Sangkloy

et al., 2016), leaving the interpretation of iconic gestures as future work (see Chapter 6 for

details).

2.4.3 Multimodal fusion

A key step of modelling the interpretation of multimodal communication is to combine infor-

mation from individual modalities to form a complete understanding of the content. This step

is often referred as multimodal fusion or multimodal integration (in the rest of the dissertation,

I will use the term multimodal fusion).

Existing multimodal fusion approaches can be categorised as non-temporal models such

as early fusion, late fusion, and hybrid fusion that combines early fusion and later fusion ap-

proaches, or spatial-temporal neural network models that consider temporal relations between

individual modalities (Atrey et al., 2010). Table 2.1 shows a summarisation of multimodal

fusion approaches and respective characteristics. Next, I give an overview of these fusion ap-

proaches and discuss the features and application scenarios of each approach.

• Early fusion: The early fusion approach fuses individual modalities at the feature level,

thus it is also referred as feature fusion. It assumes all modalities are tightly synchronised

on the temporal level. Therefore, the features of different modalities at the same time

point are concatenated for the classification task. Early fusion suits for classification

tasks that involve temporally synchronised modalities, such as speech and lip movements

for speech recognition tasks and acoustic features and linguistic features for emotion

recognition tasks (Schuller et al., 2005).

• Late fusion: Late fusion approach combines different modalities on the semantic level or

decision level, requiring a recogniser or processing module for each modality. Therefore,

it is most suitable for modalities that are only loosely synchronised on the temporal level

such as speech and hand gestures.
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Approach fusion

Early fusion feature level / data level

Late fusion decision level

Hybrid fusion feature level + decision level

Attention models feature level+temporal relations

Table 2.1: Overview of multimodal fusion approaches and respective characteristics.

For example, Johnston et al. (1997) proposed a unification-based approach of multi-

modal fusion. Integration of spoken and gestural input is driven by unification of typed

feature structures representing the semantic contributions of the different modes. Wu

et al. (1999) presented a statistical approach to integrate information in modalities. The

approach fuses the posterior probabilities of parallel input signals involved in the multi-

modal system, in which the posterior probabilities were determined by the recognisers of

each modality. Lucignano et al. (2013) adopted a late fusion approach to combine ver-

bal commands with gesture actions in a multimodal human-robot interaction dialogue

system. Each modality recogniser (i.e., speech and gesture recognisers) provides the fu-

sion engine with a N-best list of possible interpretations, so that the engine can form a

joint representation and consequently provides the dialogue manager with a N-best list

possible interpretations.

• Hybrid fusion: The hybrid fusion approach aims to take the advantage of early fusion

and late fusion approaches. Therefore, it is often adopted in cases where multiple modal-

ities are involved for a classification task (Bendjebbour et al., 2001; Xu and Chua, 2006).

When multiple modalities are involved while only some of them are with close temporal

relations, using either early fusion or late fusion might result in suboptimal classification

results for some of the modalities. For example, Snoek et al. (2005) considered both

early fusion and late fusion for the task of semantic analysis of multimodal video for

20 semantic concepts. The results showed that the late fusion approach tends to give

slightly better performance for most concepts. But, for those concepts where early fu-

sion performs better, the difference is more significant. Thus, a hybrid fusion approach

might lead to better classification results.

• Spatial and attention based neural network models for multimodal fusion: Recently,

deep neural network with spatial and temporal attention models haven also been de-
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ployed to perform the fusion task, mainly for sentiment analysis tasks (Chen et al., 2017;

Neverova et al., 2016). For example, Zadeh et al. (2018) presents a neural architec-

ture for understanding human communication called the Multi-attention Recurrent Net-

work (MARN). The main strength of the model comes from discovering interactions

between modalities through time using a neural component called the Multi-attention

Block (MAB) and storing them in the hybrid memory of a recurrent component called

the Long-short Term Hybrid Memory (LSTHM). Baltrušaitis et al. (2018) provides an

overview of multimodal machine learning which aims to build models that can process

and relate information from multiple modalities using neural networks, aiming to go

beyond the typical early and late fusion categorisation and identify broader challenges

faced by multimodal machine learning, and enable researchers to better understand the

state of the field and identify directions for future research.

Fusion engines in multimodal systems should also consider user-adaptive mechanisms to

take into account of users’ preferences to certain modalities, e.g., gestures/pen input might be

less reliable than speech. Epps et al. (2004) analysed data collected from a speech and manual

gesture-based digital photo management application scenario, and found for that application,

about 37% of tasks were completed using unimodal rather than multimodal input. Hence, the

fusion engine should adapt its mechanism according to the input modalities. Chai et al. (2002)

used context information to enhance the fusion module to handle inaccurate human inputs.

In this dissertation, I aim to model the interpretation of multimodal spatial descriptions,

where abstract deictics and natural language temporally correlate to each other but not tightly

synchronised, therefore a late fusion approach is adopted to combine verbal descriptions with

gestures/sketches (see Chapter 5 for details).

2.5 Representation of multimodal content

The ultimate goal of building multimodal interfaces is to understand multimodal communica-

tion from humans, extract useful information on the semantic level: what has been described?

What properties the described object has? As information in multimodal communication often

spread across all modalities, a knowledge representation model is required to properly repre-

sent the integrated knowledge, which can later be applied to generate system replies or perform

tasks (Niekrasz and Purver, 2006).

One of the representation approach of multimodal utterances is the Imagistic Description

Theory model (IDT), which was developed based on an empirical study to capture the imagistic

content of shape-related gestures in a gesture interpretation system (Sowa and Wachsmuth,
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2005; Sowa, 2006). It was designed to capture all meaningful visuo-spatial features in shape-

depicting iconic gesture. Each node in an IDT contains an Imagistic Description which holds an

object schema representing the shape of an object or object part, respectively (Sowa and Kopp,

2003). Bergmann and Kopp (2008a,b) employ such a hierarchical model of IDT model to

represent multimodal chunks for speech and gesture production. Sowa and Wachsmuth (2009)

also proposed a unified shape representation for multimodal descriptions involving speech and

ionic gestures, which used an Image Description Tree (IDT) to conceptualise the concepts in

multimodal signals. Each object in the tree system is represented with a set of properties.

Rieser and Poesio (2009) discussed how PTT, a dialogue theory (Poesio and Traum, 1997),

can be extended to provide an incremental modelling of speech plus gesture in interactive dia-

logues where grounding between dialogue participants was obtained through gesture. However,

the representation was on the discourse level, but not utterance level.

Lascarides and Stone (2009) provided a formal semantic analysis of co-verbal iconic and

deictic gestures. The content of language and gestures was proposed to be represented jointly

in the same logical language, where rhetorical relations connect the content of iconic gesture

to that of its synchronous speech, and language and gestures are interpreted jointly within an

integrated architecture for linking utterance form and meaning. The model exploited discourse

structure and dynamic semantics to account for co-reference across speech and gesture and

across sequences of gestures.

As for the modelling of spatial descriptions in this dissertation, the spatial descriptions are

composed of short multimodal descriptions that include only one to three object descriptions.

Such simple descriptions don’t include tree structures of object properties which can benefit

from the IDT representation method. Due to the short durations of the descriptions, they also

don’t contain complex discourse phenomenons. Hence, instead of using the above mentioned

models for discourse representations, we adopted a simple representation structure inspired

by the discourse representation theory (DRT) (Kamp and Reyle, 2013; Asher and Lascarides,

2003) is as follows (Han et al., 2015):
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(1)

o1, g1, o2, g2

o1: transl(red circle)

g1 : (x1, y1)

pos(o1, φ(g1))

slightly above(o1, o2)

o2: transl(blue L)

g2 : (x2, y2)

pos(o2, φ(g2))

where transl(·) and φ(·) indicate functions that translate input utterances and gestures into

representations of symbols with values derived from the input signal. Hence, ultimately, we

represent each referential object in the descriptions with a set of symbols. These symbols can

be words in natural language, visual properties such as colour, shape and size, or even a set

of automatically learned symbols without manual specification. In Chapter 4, we explored the

three representation variants.

Representing spatial descriptions with symbols also enable us to adopt the “words-as-

classifiers” (WAC) model when applying the representations to image retrieval tasks (Kenning-

ton and Schlangen, 2015; Schlangen et al., 2016) (See chapter 4 for more details).

2.6 Existing multimodal datasets

Multimodal datasets are essential for building and evaluating computational models of inter-

preting multimodal communication. With the development of easily available video and audio

recording devices such as high resolution cameras, as well as portable motion tracking devices

such as Kinect1 and Leap sensor2, the collection of conversational/discourse level datasets has

also been facilitated in recent years.

Multimodal corpora of natural multimodal human-human conversations composed of rich

natural behaviours are ideal materials for building computational models of HCIs. For ex-

ample, the Bielefeld Speech and Gesture Alignment Corpus (SAGA) introduced a multimodal

corpus of 25 route giving and following conversations (Lücking et al., 2010). Besides audio

and video recordings of the dialogues, the corpus also provides detailed annotations of hand

1https://developer.microsoft.com/en-us/windows/kinect
2http://www.leapmotion.com

https://developer.microsoft.com/en-us/windows/kinect
http://www.leapmotion.com


42 CHAPTER 2. RELATED WORK

gesture features (e.g., palm direction, hand movement), gesture semantics as well as the coordi-

nations between hand gestures and accompanied verbal utterances. The SAGA corpus provides

good materials for building and evaluating computational models of construction multimodal

semantics with verbal utterances and hand gesture features, which will be described in Chap-

ter 7.

Blache et al. (2009) presented an annotated multimodal corpus of the ToMA project, pro-

viding a general framework for building and annotating multimodal corpora that considers

phonetics, morphology, syntax, discourse and gestures. While these datasets provide good

materials for conversational/discourse level analysis of multimodal communication, it is not

publicly available for further research work.

To date, publicly available multimodal corpora are mainly for modelling multimodal human-

machine interactions. Hence, these corpora often include multimodal commands, rather than

multimodal human-human conversations. For example, Schiel et al. (2002) presented a cor-

pus of human-machine communication combining acoustic, visual and tactile input and output

modalities. 90 session recordings of 45 users (100 volumes, DVD-5 format) were distributed

with the basic distribution costs of 255 Euro per volume. Fotinea et al. (2016) presented the

MOBOT dataset, a dataset of multimodal commands which includes speech and motion data of

human limb movements. Kousidis et al. (2013a) presented the TAKE corpus which includes

gaze, pointing gestures and verbal utterances. The data was elicited with a Wizard-of-Oz sce-

nario where participants instructed a “system” to choose pentomino pieces from a screen. The

data includes 20 gestural commands such as Stop sign. Although these corpora contain natural

multimodal communication behaviours, the gestures in these corpora are either emblem ges-

tures with conventional meanings or pointing gestures, whose interpretations are not relatable

to accompanied speech.

Besides multimodal corpora of video/audio recordings, there are publicly available large

scale 3-D gesture datasets, such as (Tompson et al., 2014; Marin et al., 2014; Liu and Shao,

2013; Sadeghipour and Morency, 2011) and datasets mentioned in Cheng et al. (2016), the ges-

tures in these corpora are often emblems rather than gesticulations. Moreover, most of these

existing datasets are collected for gesture classification tasks without accompanied speech/ver-

bal utterances.

To bridge the gap, I collected a corpus of multimodal spatial scene descriptions, including

abstract deictic gestures and verbal descriptions of simple scenes. The data was elicited with

a simple task in which multimodal descriptions were jointly used to give scene descriptions.

Video and audio recordings as well as natural hand motion data were recorded. I will introduce

the corpus in Chapter 3.

To model the interpretation of multimodal descriptions involving natural language and
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iconic information from pen inputs, I augmented an existing dataset - the Sketchy dataset-

with verbal descriptions Sangkloy et al. (2016). The Sketchy dataset provides hand-drawn

sketches of objects in real-life photos, which signifies the iconic aspects of real-life objects.

For each of the photo-sketch pairs, I collected verbal descriptions that describe visual attributes

of objects such as colour, orientation, materials and so on. Therefore, the verbal utterances and

the sketches jointly forms multimodal descriptions of real-life objects. Detailed description of

the corpus will be provided in Chapter 3.

2.7 Summary

In this chapter, I overviewed and discussed previous work on multimodal communication re-

lated to co-verbal hand gestures. The discussion was organised into: hand gestures in natural

human communication and the taxonomy of co-verbal gestures; the semantic and temporal

relations between verbal and hand gesture content. I also discussed how to compute multi-

modal semantics, mostly focusing on computational models. Finally, I provide an overview of

multimodal interfaces which are designed to understand speech and co-verbal hand gestures in

human communication.



3
Multimodal corpora

In this chapter, I introduce three multimodal corpora that are related to studies in subsequent

chapters of this dissertation. I start by introducing the Multimodal Spatial Scene Descrip-

tion Corpus, in which natural language and abstract deictic gestures are deployed to describe

spatial scene images, then describe the Multimodal Object Description Corpus, where natural

language and hand-drawn sketches jointly describe objects in real-life photographs. Finally, I

briefly describe the Bielefeld Speech and Gesture Alignment Corpus (SAGA), which was origi-

nally introduced in Lücking et al. (2010).

3.1 Multimodal spatial scene description corpus

Route description, a common task in our daily life, is typically performed with speech and hand

gestures (Emmorey et al., 2000a). When describing routes that are not visible in the shared

environment, humans often anchor the target place to surrounded landmarks by specifying

their relative positions to each other. Visual attributes of these landmarks such as colour, entity

name are often described verbally, while the contour of landmarks and trajectories of the routes

can be conveniently demonstrated with hand gestures (Alibali, 2005; Cassell et al., 2007). For

example, when helping a person to locate a hotel not in current view, the route giver might

think of a few landmarks around the hotel as shown in Figure 3.1, and describe the route as

44
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Figure 3.1: Spatial layout of landmarks in Example (1).

follows:

(1) You take the subway and get off at the Market Street station. Here[deictic] is the station.

Here[deictic] is a fountain. If you walk [iconic]around it, you will see the hotel [deictic]here.

While verbal descriptions specify the names of the landmarks and actions (i.e., station, a

bit left and walk around), the deictic gestures demonstrate the spatial layout of the landmarks

with hand positions; the iconic gesture visually signifies the trajectory of the route. Only by

combining the verbal descriptions and the hand gestures, it’s possible to form a complete and

accurate interpretation of the description. To form such a complete interpretation and later

navigate itself, the listener must pay attention to verbal descriptions and hand gestures at the

same time, interpret the verbal descriptions and hand gestures in parallel while the description

unfolding, fuse information from both modalities and represent the the interpretation in his/her

mind, making it a challenging task even for humans (Schneider and Taylor, 1999). The route

giving and following task forms a good test case of situated dialogue understanding, as the

the accuracy and applicability of a constructed multimodal description representation can be

directly tested by applying to a route following task.

I collected a spatial scene description corpus where hand gestures and natural language

are jointly used to describe spatial scenes. To focus on the multimodal and natural nature of

scene descriptions, the data collection experiment was designed in a somewhat idealised setup,

replacing real-life landmarks with simple geometric objects such as “circle” and “square”.

This is to constrain the complexity of verbal descriptions and make the data more amenable to

computational analysis (see below for details).

The corpus is composed of data from two experiments: the spatial description experi-

ment (3.1.1) and the scene description corpus (3.1.2). While the former experiment focused

on collecting intuitive multimodal descriptions, the latter one aimed to elicit multimodal data
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(a) Sample scene. (b) Providing a scene description.

Figure 3.2: Providing a description in the Scene Description Experiment.

amenable to computational analysis and modelling.

In the rest of this section, I provide details on data collection and data analysis of each

experiment.

3.1.1 The scene description experiment

Task design

To elicit intuitive scene descriptions, we designed a simple scene description task. Similar to

previous works on spatial description tasks (Roy, 2002), instead of describing real-life land-

marks, participants were asked to describe simple scenes composed of geometric objects and

an arrow that indicates the movement of one of the objects, as shown in Figure 3.2a. While this

setup retains the nature of multimodal descriptions, it effectively constrains the complexity on

the language part, making it possible to model the descriptions using computational methods.

50 scenes were generated for the description task. Each scene is composed of 3 or 4 ge-

ometric objects (as shown in Figure 3.2a). The objects were in simple colours and were ran-

domly placed in the scene. An arrow originates from one of the objects and points to another

place in the scene. The shape of the arrow was not regular, hence it’s difficult to describe the

orientation and shape with natural language such as round or 90◦ to the left. Therefore, iconic

gestures are needed to accurately describe the trajectory of the movement.

In route giving tasks, humans often give such descriptions from memory as the routes are

often not in situated environment. To elicit natural behaviours in such descriptions, the scenes

were shown on a computer screen for 10 seconds, then disappear before participants started to

describe. To investigate whether and how humans combine gestures with language, participants

were only asked to describe the objects, the spatial configuration and the movement indicated

by the arrow. Gestures were not required. To encourage accurate descriptions, participants
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Figure 3.3: Leap sensor.

were told that another human will watch the video later and try to reproduce the described

scenes. Describing the scenes as accurate as possible will make the reproduction task easier.

In the experiment, participants were seated in front of a table. A camera was placed in front

of the participant to record audio and video data. A Leap sensor was placed on the table, right

in front of the participant. The participant was told that the Leap sensor is a device to track their

hand movements. The participant was allowed to play with the sensor and shown the effective

tracking range of the Leap sensor. However, gestures were not mentioned in the instructions.

On the right side of the table, there was a screen which displays scenes to be described. An

experimenter sat next to the participant to control the display of the scenes. Each scene was

shown for 10 seconds. After 10 seconds, the screen turned to black and the scene disappeared.

Then participants started to describe as shown in Figure 3.2b.

Recording setup

I recorded the audio and video data with a HD camera. The hand motion was tracked with

a Leap sensor, a portable device composed of two monochromatic cameras and three LED

infrared sensors.1 The hand motion data was recorded using the MINT toolkit (Kousidis et al.,

2013b).

Both video and hand motion data were timestamped to align hand motion data and natural

language descriptions in the data processing procedure. The hand motion data was automati-

cally timestamped by the MINT toolkit. To add timestamps in video recordings, we placed a

monitor that displayed timestamps in front of the camera (behind the participant). Hence, the

timestamps were recorded in the video.

Following hand features were recorded in the hand motion data (as provided by the Leap

SDK):

• FrameID: integer, a unique ID assigned to this data frame.
1www.leapmotion.com

www.leapmotion.com


48 CHAPTER 3. MULTIMODAL CORPORA

• hand number: integer, the number of tracked hands.

• hand confidence: float, ranging from 0 to 1. It indicates how well the internal hand

model fits with the observed data.

• hand direction: 3 dimension vector. The direction from the palm position toward the

fingers.

• hand sphere centre: 3 dimension vector. The centre of a sphere fits to the curvature of

this hand.

• sphere radius: float, the radius of a sphere fits to the curvature of this hand.

• palm width: float, the average width of the hand (not including fingers or thumb).

• palm position: 3 dimension vector, the centre position of the palm in millimetres from

the Leap Motion Controller origin.

• palm direction: 3 dimension vector. The direction from the palm position toward the

fingers.

• palm velocity: 3 dimension vector, the rate of change of the palm position in millime-

tres/second.

• grab strength: float, the strength of a grab hand pose as a value in the range [0..1], 0

when the hand is closed.

• pinch strength: float, the strength of a pinch pose between the thumb and the closest

finger tip as a value in the range [0..1].

• finger type: integer, the integer code representing the finger name. 0 for thumb, 1 for

index, 2 for middle, 3 for ring, 4 for pinky.

• finger length: float, the apparent length of a finger.

• finger width: float, the average width of a finger.

• joint direction: 3 dimension vector, the current pointing direction vector.

In the experiments, we found, some participants took it as a memory task and tried to de-

scribe with great details. For example, they used the distance (in cm) between objects and the

image border to indicate object positions, which are common in natural scene descriptions.

Some of them described with fewer details and rarely used gestures (or used gestures that are

out of the effective tracking area), resulting inaccurate descriptions. We have also consid-

ered incorporating a confederate in the experiment. Although such face-to-face interactions

would lead to spontaneous descriptions, that would also lead to clarification requests, imme-

diate feedbacks and so on, which are not the focus of the study. Hence, we didn’t incorporate

confederates in our experiments.
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In total, 14 participants took part in the experiment. All of them are native German speak-

ers. On average, each of them finished 29 scene descriptions (SD = 9.60). 311.63 minutes of

video and motion capture data were recorded. 179.51 minutes out of all the recorded video

contain speech (57.6%). Next I describe the data processing and data statistics.

Data processing

A sampled scene description is shown as follows:

(2) a) Hier[deixis] ist ein graues Dreieck und hier[deixis] ist ein grüner Kreis hier[deixis] ist

noch ein grüner Kreis und hier[deixis] ist noch ein graues Dreieck und von[iconic] dem

oberen gurrenden Kreis geht rechts neben dem anderen grünen Kreis zwischen den

beiden Dreiecken nach links ein Pfeil.

b) Here[deixis] is a grey triangle and here[deixis] is a green circle here[deixis] is another

green circle and here is another grey triangle and from[iconic] the upper green circle

goes right next to the another green circle between the two triangles to the left of the

arrow.

Transcription The audio recordings were manually transcribed by native German speakers.

We then aligned the transcriptions with corresponding video recordings with a forced alignment

approach (Baumann and Schlangen, 2012). The video and audio recordings were segmented

into individual scene descriptions and annotated with a scene ID (e.g., scene 1). Each scene

description was further segmented into object descriptions. We annotated each object descrip-

tion with an object ID. For instance, the object description in Example (2), Hier[deixis] ist ein

graues Dreieck was annotated as object 1, indicating that the described object is with ID 1 in

the scene.

Gesture annotation Deictic gestures are conventionally divided into following gesture phases:

pre-stroke, stroke, stroke hold and retraction (Kendon, 1980a). We manually annotated the

stroke hold phase of each deictic gesture with ELAN2, by watching the hand movements in

the video recordings. Similar to the object description annotations, we annotated each deictic

gesture with an object ID, such as object 1. The gestures and object descriptions with the same

annotated IDs refer to the same objects in a scene description.

With the timestamps in the recorded videos and hand motion data, we aligned hand mo-

tion data with video recordings. Accordingly, the hand frames aligned with the stroke hold

2https://tla.mpi.nl/tools/tla-tools/elan/

https://tla.mpi.nl/tools/tla-tools/elan/
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annotations were labeled as stroke hold frames. The labels were used for training stroke hold

detectors which will be elaborated in Chapter 5.

Data statistics

With the processed data, we conducted a preliminary data analysis in terms of: 1) Gesture

space; 2) Episode length; 3) Scene matching error; 4) Re-reference precision; 5) Word number

and description accuracy.

Varied gesture spaces I calculated the maximal gesture area that each participant’s hands

spanned during all their descriptions as their gesture space. As shown in Figure 3.4a, there are

differences both within and between participants, making it a challenging task to detecting and

interpreting deictic gestures with computational models.

Dialogue time I calculated the duration of each scene description episode (in second). As

shown in Figure 3.4b, similar to the size of gesture space, there are differences of episode

length both within and between participants. An episode can span as long as more than 60

seconds, while in some cases as short as less than 10 seconds. Hence, we also analysed the

relationship between the word number and corresponding gesture accuracy in each episode, as

shown in Figure 3.4e. The results show that the more words spoken in an episode, the accurate

the gestures are.

Matching error To investigate how accurately the deictic gestures represent the described

the spatial layout of objects in the scenes, we adopted a shape matching method to compare the

spatial layout of deictic gestures and corresponding objects. Figure 3.4f shows the histogram

of the matching errors. The longer the verbal descriptions are, the accurate they references are.

Re-referential accuracy I also investigated the re-reference accuracy in terms of the distance

between re-reference spots and originally referred spots. In other words, how close when

participants refer to a spot that has been referred to before? As shown in Figure 3.4c and 3.4d,

among 185 re-reference points, 161 of them are with re-reference distance less than 150 mm,

where gesture space is 900 ∗ 671mm.

3.1.2 The spatial description experiment

The data statistics in scene description experiment show that abstract deictics do accurately

represent spatial layouts of objects in verbal descriptions. However, the largely variable gesture
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Figure 3.4: Data statistics of the Scene Description experiment.
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(a) Providing a description. (b) A sample scene of the task.

Figure 3.5: Providing a multimodal spatial scene description.

space makes it difficult to track all hand motions, which consequently makes it difficult to

computationally modelling the interpretation task due to a lack of hand motion data. Therefore,

we designed a spatial description experiment to collect multimodal description data which is

more amenable to computational methods.

I designed the spatial description experiment with a similar task with the scene description

experiment, but with human-computer oriented task instructions and simplified scenes, which

will be elaborated below.

Task design

I designed a simple task (shown in Figure 3.5a) to elicit human-computer interaction oriented

speech and gestures. I first generated 100 such scenes, each composed of two circles and

one square. Figure 3.5b shows an example from the corpus. The size, shape and colour of

each object were randomly selected when the scenes were generated. Object sizes are evenly

distributed between 0.05 to 0.5 (as ratio to the image size). There are 6 colours and 2 shapes.

Each of them had equal chance to be assigned to an object. The object positions were randomly

generated and adjusted until none of them overlap with each other.

In the experiments, the scenes were shown in the same order to all participants. For each

description episode, a scene was displayed on a computer screen. Participants were told that

they were talking to an automated system. Encoding object properties like colour, shape, size,

positions of objects, and demonstrate the relative positions with deictic gestures will make it

easier for the computer to understand the descriptions. After each description, there was a score

on the screen, ostensibly reflecting how well the system understands the description. In reality,

the score was given by a confederate who had the instruction to rate the description based on

the number of mentioned attribute types. Participants were asked to describe as accurately as

possible and try to get a hight score so that the computer (in reality, the Wizard) can understand
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the description.

Recording setup

In the experiment, hand motion was also tracked by a Leap sensor3 as in the scene description

experiment. However, in this experiment, a new Leap SDK (SDK v2.3.1) was used. It not only

gives hand number in the tracking area, but also provides the hand type such as “left hand ” or

“right hand”. With the new SDK, it’s possible to label all hand motion frames of each hand over

time. The same as the scene description experiment, the hand motion data was recorded with

MINT tools (Kousidis et al., 2013b). Audio and Video were recorded by a camera. Timestamps

were recorded in videos and hand motion data.

After introducing the task, participants were seated in front of a desk. A monitor was on

the right of the desk to show the scenes to be described. A Leap sensor was on the desk in

front of participants for tracking hand motion. Due to the small tracing area of the sensor, we

set a monitor in front of participants to display hand movements, so that they can see whether

their hands were tracked while they were gesturing. This helps to track all hand movements.

None of the participants reported unnatural gestures due to limited gesture space. Before the

experiment, participants had several minutes to play with the sensor, so that they know the

boundaries of the tracking area. When they got familiar with the sensor, the experimenter

gave instructions and demonstrated how to describe a scene with speech and gestures. The

experiment started after the participant confirmed that she/he understood the task. Then the

monitor on the right showed a scene. After looking at the scene for a few seconds (they could

look at it as long as they want until they are ready for descriptions), participants started to

describe. Shortly after the description ended (around 1 second), a score was shown on the

screen for 10 seconds, then the wizard advanced to the next scene. There was no time limit for

each scene description.

Data preprocessing

Example (3) shows a sample multimodal description from the corpus:

(3) Hier[deixis] ist ein kleines Quadrat, in rot, hier[deixis] ist ein hellblauer kleiner Kreis und

hier[deixis] ist ein blauer grosser Kreis.

Here[deixis] its a small square, red, here[deixis] is a light blue small circle and here[deixis]

is a blue big circle.

The recordings were manually transcribed by native speakers. The transcriptions were aligned

3www.leapmotion.com

www.leapmotion.com
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with the videos via an automatic forced alignment approach. Utterances for each object were

manually annotated with the referred objects. For example, “hier ist ein kleines Quadrat ”

(here is a small square) in the above example might be annotated as object1 in the scene image.

The deictic gestures were manually annotated based on hand movements in the videos with

ELAN, a software for annotation4. They were also annotated with referred objects in the same

way as the utterance annotation. With the recorded timestamps, hand motion data were aligned

with videos. Aligned hand motion data frames were labeled as stroke hold frames (hand stays

at the targeted position Kendon (1980a)) or non-stroke hold frames (hands in movements or

not refer to any target object).

Data statistics

In total, 15 participants (students from Bielefeld University) took part in the experiment. 14

of them are native German speakers. One participant only described verbally. We excluded

the non-native speaker and the one who didn’t gesture. As a result, 311.75 minutes recordings

with audio and video were collected. 830 scenes were described. Below, I give data statistics

in terms of verbal descriptions, gestural behaviours, temporal and semantic relations between

deictics and accompanied verbal descriptions.

From the recorded data, we found that, when describing an object, participants gestured

either with one hand to denote the location of the object or with two hands to denote the relative

position to another object. In both cases, spatial layout of objects are encoded in gestures. The

frame rate of hand motion data was around 100 frames per second as recorded by the Leap

sensor. Hence, the recorded data are sufficient for real-time and incremental processing.

Variability of verbal descriptions Although participants were instructed to mention colour,

shape, size and relative positions of the objects, they were allowed to formulate the descriptions

in their own way. In other words, the verbal descriptions are, within these constraints, natural

descriptions, and they do indeed vary in how the information was formulated and linearised:

1. Varied object attribute descriptions. The vocabulary size of the corpus is 294, with 16891

tokens. On average, the vocabulary size for each attribute description is over 20. For

instance, participants used different words to describe the same colour and shape. Purple

and cyan objects were also described as lilac and light blue. Circles were also referred

as balls. An object at bottom left was also described as a bit lower to another object.

2. Flexible information sequence. While participants often describe positions (i.e., bottom

left ) first, followed by size, colour and shape information (position, size, colour, shape).

4https://tla.mpi.nl/tools/tla-tools/elan/

https://tla.mpi.nl/tools/tla-tools/elan/
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Some of the descriptions started with colour, shape, with size and position information

described at last (colour, shape, size, position) or in other sequences. On the other hand,

some words occur frequently at the end of object descriptions. For example, the shape

of objects (i.e., circle) usually encloses an object description. Hence, these words are

informative features for the object description segmentation task, which will be described

in more details in Chapter 5.

3. Flexible gesture/speech compositions. Some participants supplement deictic gestures

with position words like “bottom left”, they also describe positions with deictic word

“here”. In the former case, the gesture and speech supplement each other, while in the

latter case, they complement each other. Alternatively, position information was simply

ignored in verbal descriptions.

Spatial descriptions According to the way position information is expressed, the collected

spatial descriptions fall into two categories: absolute position or relative position. For example,

the position of an object can be described according to its absolute position in the scene such as

bottom, alternatively, it can also be described relatively to another object in the scene, such as a

bit lower to the red circle. Presumably, the latter expression should occur only when describing

the second or third object. Moreover, the description “a bit lower” is ambiguous as the exact

spatial layout between two objects are not encoded in the speech. In this case, a deictic gesture

can effectively disambiguate the layout by demonstrating the spatial relation with the positions

of deictic gestures.
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Statistics of deictic gestures There are 2138 deictic gestures out of 2490 object descriptions

in the corpus. Figure 3.6a shows the average gesture durations of each participant. The overall

average duration of a deictic gesture is 5.22 seconds, with a maximum duration 31.9 seconds
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and a minimum duration 0.21 seconds. As shown in the Figure, the durations vary both within

and across participants. Four of the participant gestured for less than 5 seconds, while other

participants gestured longer.

Varied gestural behaviours From the data, we observed that when describing, sometimes

participants use one hand each time to demonstrate the object position in the gesture space,

hence, the listener needs to keep track of previous object positions to form a whole mental

representation. Alternatively, some participants demonstrate with two hands in the gesture

space to show relative positions. Among 830 description episodes, 637 descriptions (76.7%)

involved the use of both hands; 193 (23.3%) with one hand. In both cases, the hand gestures

convey spatial layout of the objects.

Temporal relations of speech and gestures Speech and co-verbal gestures are in parallel,

and bear close temporal relations between each other (Ragsdale and Fry Silvia, 1982). We

analysed the temporal relations of start timings between speech and gestures, as shown in Fig-

ure 3.6b. Among 2074 speech-deictic ensembles, 24.5% deictics precede accompanied verbal

description; 47.3% deictics occur in the first quarter of verbal descriptions. The parallel char-

acteristics could benefit multimodal interpretation tasks on the incremental level (Han et al.,

2018), as we will show in Chapter 5.

Indicating shape/size with deictics Deictic gestures have been extensively studied for po-

sitional information. However, humans often encode more than positional information while

“pointing”. In the collected data, we observed that, beside positional information, participants

also encode shape and size information in gestures. For instance, some participants used dif-

ferent hand shapes when referring to circles and squares. Moreover, when mentioning objects

with larger sizes, they tend to form larger hand spheres. This suggests that in future work,

gesture interpretations should consider various dimensions of the information.

3.2 Multimodal object description corpus

In this section, I introduce the Multimodal Object Description Corpus, a dataset that pairs

objects in real-life photographs with natural language description and hand-drawn sketches, as

shown in Figure 3.7. While the verbal description “facing right, trunk coiled towards mouth”

describes the overall orientation of the elephant and the shape of the trunk symbolically, the

hand drawn-sketches visually signifies the exact shape of the elephant’s nose. In other words,

the sketch enriches the verbal description with visual information.
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(a) Hand-drawn sketch collected in

(Sangkloy et al., 2016).
(b) Photograph of an elephant.

Figure 3.7: Example of a multimodal description: facing right, trunk coiled toward mouth.

The multimodal object description corpus provides symbolic and iconic descriptions of

natural photographs with words and sketches respectively. The corpus is composed of natural

photographs of objects, sketches and verbal descriptions of each object in the photographs.

The photographs and sketches are from an existing corpus – the Sketchy Dataset5, which was

originally introduced in Sangkloy et al. (2016). I started from the Sketchy Dataset and aug-

mented 86% sketches in the dataset with verbal descriptions (see Section 3.2.2 for details). In

the rest of this section, I first describe the selection of photographs, the Sketchy Dataset and

the crowdsourcing experiment conducted to collect the verbal descriptions.

3.2.1 The Sketchy dataset

The Sketchy Dataset (Sangkloy et al., 2016) includes 12500 unique photographs of real world

objects that expand over 125 categories, and 75471 sketches paired with the photographs.

Photographs The photographs in the Sketchy Dataset were selected from ImageNet (Rus-

sakovsky et al., 2015). Each photograph contains exactly one object with an annotated bound-

ing box. These photographs were selected according to following criteria: (1) exhaustive, the

categories should cover a large number of common objects; (2) recognisable, each category

should have recognisable sketch representations, so that the sketches can be distinguished from

sketches in other categories; (3) specific, each object should be sketch-able so that the sketches

of the objects are not uninformative;

To increase visual diversity and the number of “sketch-able” photographs in each category,

some categories in the ImageNet dataset were combined into same categories. The categories

with fewer sketch-able images than 100 were excluded from the corpus. Each photograph is

5http://sketchy.eye.gatech.edu/

http://sketchy.eye.gatech.edu/
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annotated with a subjective “sketch-ability” score which ranges from 1 (very easy to sketch) to

5 (very difficult to score). The 100 images in each category are with a targeted sketch-ability

distribution of 40 very easy, 30 easy, 20 average, 10 hard and 0 very hard.

For more detailed descriptions of the image selection procedure, please refer to the original

paper Sangkloy et al. (2016).

Sketches The sketches were collected by Sangkloy et al. (2016) via Amazon Mechanical

Turk6 (AMT). Workers were shown a random photograph from the photograph database, and

instructed to sketch the named object with a similar pose on a canvas. They were instructed

to only sketch the target object and avoid other areas of the photographs. In each episode,

workers click a button to display a photograph. The photograph was shown on the screen for

2 seconds, then hidden before participants start to sketch. To make sure that the sketches are

drawn from memory, a visual noise mask was displayed after the photograph disappeared, so

that the low level visual representations in the working memory were destroyed (Grill-Spector

and Kanwisher, 2005; Nieuwenstein and Wyble, 2014). This ensures that the sketches are

realistic and diverse. As a result, the sketches implicitly encode salient visual information

of objects, but are different from boundary annotations (Lin et al., 2014; Xiao et al., 2016).

Workers can view the photograph as many times as they want by clicking a button, however,

after each viewing, the canvas was cleared.

Each photograph was paired with several sketches from different workers to capture diver-

sities. The sketches were stored as SVG files, which include high resolution timing details. For

each stroke, the start and end times, along with fine-grained timing along a stroke are included

in the SVG files. The recorded information of stroke length and order enables us to recon-

struct the sketches, render sketch images with different percentage of strokes and investigate

the contribution of reduced sketches (see Chapter 6 for more details).

3.2.2 Augmenting sketches with verbal descriptions

To form sketch-verbal description ensembles for each photograph, we augmented the Sketchy

Dataset with verbal descriptions. Each photograph was paired with a verbal description. The

description can form different ensembles with different sketches for each target photograph.

6https://www.mturk.com

https://www.mturk.com
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Figure 3.8: Discriminative description of the left-most photograph provided by crowdworker: facing

right, trunk coiled toward mouth.

Data collection

I used the Crowdflower service7 to collect object descriptions from English speakers. Since

the category of each photograph has been pre-specified, photographs from different categories

can be distinguished by the category name. Hence, we designed this augmenting experiment

as a within category image selection task. This helps to collect object attributes (for example,

colour, orientation, shape, etc.) that distinguish an image from images in the same category.

While some attributes such as colour are impossible to be encoded in sketches, object orienta-

tions (e.g., facing right) can be both encoded in verbal descriptions and sketches. In the former

case, the verbal description complements sketches with information in symbolic mode; in the

latter case, the verbal description supplements the sketches.

In the experiment, workers were shown 7 images from the same category for each photo-

graph description task. As shown in Figure 3.8, the target image was shown in a larger size.

The distractor images were shown in rows of 3 side-to-side with the target photograph. In

this example, the worker listed two attributes of the elephant in the target photos: facing right

and trunk coiled toward mouth. Note that the distractor image at row 2, column 3 also fits

with description. Thus the description is even confusing for humans. Only when coupling the

description with the sketch of the photograph in Figure 3.7, it’s possible to resolve the target

photograph.

At the beginning of the description task, workers were required to read an instruction of

how to perform the task. They were instructed to list all attributes that might help a human

to distinguish the image from distractor images. Attributes such as colour, shape, size and

7https://www.crowdflower.com

https://www.crowdflower.com
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orientation were suggested, but workers were encouraged to list any attribute that might help.

Workers were asked to separate each attribute with a “,”. They were told that no need to

type the object category name of the target object as all the objects are of the same type, thus

the descriptions are only about object attributes. In following sections of the dissertation, I

will refer to these words as attribute words (+ATT), to distinguish them from object category

names such as “elephant”, which are referred as category words (+CAT).

Since this is a subjective task, no words or attributes were listed, from which workers could

select. To ensure the description quality, we set a minimum vocabulary size of each description

of 5. In other words, workers should use at least 5 different words in each description to

describe the target object.

Data validation To get an idea of whether the collected verbal descriptions are informative to

distinguish the target image from distractor images, we conducted a small scale data validation

experiment.

The target images and corresponding distractor images were shown to workers on the

Crowdflower platform. The images were randomly arranged and shown side-by-side. An

object description was shown on the bottom of the images. Workers were instructed to select

the image that fits best with the description by clicking the check box under the image.

100 descriptions were randomly selected and shown to workers. Among all descriptions,

70% of them were correctly selected with the given verbal description by workers. It shows

that, even for humans, the verbal descriptions can be confusing.

⊠ ✷ ✷ ✷ ✷ ✷ ✷

Please select the image that fits best with following description:

facing right, trunk coiled toward mouth.

Figure 3.9: Example of data validation test.

3.2.3 Data statistics

In total, 10,805 object descriptions were collected. After running a spell checker to correct

typos, there are 100,620 tokens in all descriptions. The vocabulary size is 4,982. The ratio
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between types and tokens hence is 0.5. On average, each photo was annotated with 3 attributes.

Each of the attributes on average spans 4.6 words.

I augmented 10, 805 unique photographs with verbal descriptions. 64 905 sketches were

paired with these photographs in the Sketchy dataset. Consequently, there are 64 905 sketch-

verbal description ensembles.

3.3 The SAGA corpus

The SAGA corpus, originally introduced in Lücking et al. (2010), contains dialogues between

route givers and route followers. It also provides fine-grained annotations for speech and ges-

tures in the dialogues. Based on the annotations, we conducted our experiment in Chapter 7.

The data The corpus consists of 25 dialogues of route and sight descriptions of a virtual

town. In each dialogue, a route giver gave descriptions (e.g., route directions, shape, size and

location of buildings) of the virtual town to a naive route follower with speech (in German)

and gestures. The dialogues were recorded with three synchronised cameras from different

perspectives.

In total, 280 minutes of video and audio data were recorded. The audio was manually

transcribed and aligned with video recordings; the gestures were manually annotated and seg-

mented according to video and audio recordings. We selected 939 speech-gesture ensem-

bles out of 973 annotations Bergmann et al. (2011), omitting 34 without full annotations of

speech/gesture semantic categories and gesture features. The semantic categories were anno-

tated according to the semantic information that speech and gestures contained. In our dataset,

each item is a tuple of 4 elements: (words, gesture features, speech semantic categories, gesture

semantic categories).

There are 5 gesture semantic category labels in the annotations: shape, size, direction,

relative position, amount; the speech semantic labels consist of the above labels and an extra

label of entity (6 labels in total). Since there was only one gesture labeled as direction, we treat

it as a rare instance. From these the multimodal category labels are derived as the union of

those two sets for each ensemble.

Data statistics Bergmann et al. (2011) provides detailed data statistics regarding the relation

of speech and gestures of the corpus. As in this dissertation, I focus on speech and gesture

semantics, I only report statistics only for the 939 speech-gesture ensembles.

On average, each verbal utterance is composed of 3.15 words. 386 gestures (41%) provide

a semantic category on top of the verbal utterance (e.g., speech: {amount, shape}, gesture:
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Figure 3.10: (a) Histogram of semantic labels per utterance/gesture. (b) Histogram of semantic labels.

(Rel Pos indicates relative position.)

{relative position}), 312 (33%) gestures convey the same amount of semantic information as

the verbal utterance (e.g., speech: {amount, shape}, gesture: {amount, shape}), and 241 (26%)

conveys part of the semantics of the verbal utterance (e.g., speech: {amount, shape}, gesture:

{amount}).

As shown in Table 3.10 (a), 56% of verbal utterances and 80% of gestures are annotated

with only a single label. On average, each gesture was annotated with 1.23 semantic labels

and each utterance with 1.51 semantic labels. As shown in Figure 3.10 (b), there are many

more utterances labeled with shape, relative position and entity than the other labels, making

the data unbalanced. Moreover, there are considerably more gestures annotated with labels of

shape and relative position.

Gesture features Since there is no tracked hand motion data in the SAGA corpus, we used

the manual annotations to represent gestures. For instance, the gesture in Figure 7.1 is anno-

tated as: Left hand: [5 bent, PAB/PTR, BAB/BUP, C-LW, D-CE]; right hand: [C small, PTL,

BAB/BUP, LINE, MD, SMALL, C-LW, D-CE] in the order of hand shape, hand palm direc-

tion, back of hand direction, wrist position. (See Lücking et al. (2010) for the details of the

annotation scheme). Other features such as path of palm direction which are not related to this

static gesture were set as 0.

These annotated tokens were treated as “words” that describe gestures. Annotations with

more than 1 token were split into a sequence of tokens (e.g., BAB/BUP to BAB, BUP). There-

fore, gesture feature sequences have variable lengths, in the same sense as utterances have

variable amount of word tokens.
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3.4 Summary

In this chapter, I first described the data collection, data processing and data statistics of two

corpora: the Spatial Scene Description Corpus and the Multimodal Object Description Cor-

pus. While the first corpus provides multimodal descriptions composed of natural language and

deictics, the latter one provides object descriptions composed of natural language and iconic

elements (i.e., hand-drawn sketches). I also briefly introduced the SAGA corpus which pro-

vides multimodal dialogues composed of natural language and hand gestures. In the following

chapters, I will elaborate the computational models that are built based on these datasets.



4
A system of understanding multimodal spatial

descriptions

In this chapter, I present a system of modelling the interpretation of multimodal spatial scene

descriptions composed of abstract deictics and verbal utterances. The system is supposed to

take speech and hand motions of spatial descriptions as input, understand speech and hand

gesture information, represent the knowledge in a format that can be perceptually grounded to

scene images, then apply the knowledge to perform a scene retrieval task. This chapter focuses

on the exploration and evaluation of 3 knowledge representation variants: a) verbatim repre-

sentation; b) representation with pre-specified symbols; c) representation with automatically

learned symbols. I will first provide an overview of the system and introduce individual system

components, then describe the 3 representation variants. This is followed with an evaluation

experiment and discussions of the evaluation results.

4.1 Modelling the interpretation of multimodal spatial descriptions

In the previous chapter, I introduced the Multimodal Spatial Description corpus. Aiming to

computationally modelling the interpretation of multimodal spatial descriptions, this chapter

describes a multimodal system that can interpret and apply multimodal spatial descriptions.

64
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Figure 4.1: Scene example.

As such as system contains several individual modules, in this chapter, I particularly focus on

introducing and discussing 3 representation variants of the multimodal content, with a con-

strained setup.

Figure 4.1 shows an example scene that was used in this task. An example scene description

of the task is shown as follows:

(1) Top left [deixis] is a yellow Z and bottom, in the middle [deixis] a green L, and bottom

right · · ·

With the multimodal scene descriptions such as illustrated by example (1) from a human

speaker, a human listener typically forms a mental image of the described scene, where vi-

sual attributes of the referents (i.e., the objects) are introduced via natural language; positions

of the referents are demonstrated via deictic gestures; the spatial configuration of the objects

are contrasted both via gesture positions and natural language (slightly above), represent the

knowledge of the image in his mind, then later apply the knowledge to recognise the described

scene in real world.

I’m interested in modelling the listener’s task with a computer system. Such a modelling

task forms a good test case of constructing representations of multimodal descriptions. Given

a verbal and deictic scene description as in Example (1) in a real-time manner, the system

constructs a representation of the multimodal description. After building the scene represen-

tation, the system applies the representation to candidate scene images to retrieve the target

scene, which best conforms to the description. The task hence requires to 1) segment perceived

speech and gestures into individual object descriptions; 2) construct the representation based

on object descriptions; 3) apply the representation to a visually perceived context.
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(2)

o1, g1, o2, g2

o1: transl(red circle)

g1 : (x1, y1)

pos(o1, φ(g1))

slightly above(o1, o2)

o2: transl(blue L)

g2 : (x2, y2)

pos(o2, φ(g2))

Inspired by the discourse representation tree model (Lascarides and Stone, 2009), the refer-

ents of objects were represented with a set of symbols. In (2), transl() indicates a function that

translates utterances into logical forms. The co-verbal deictic gestures, which specify positions

of referents are represented as gi, connected to corresponding object referents. In current task,

we assume that deictic gestures only encode positions information on a 2-D plane which can

be represented as (xi, yi). pos(oi, φ(gi)) is a function which transforms a raw hand position to

its logical form.

In particular, we explore three variants of representations of the verbal content, ranging

from verbatim representations, representations with pre-defined property symbols to represen-

tations with a set of automatically learned symbols, which will be described in Section 4.2.2.

The performance of the retrieval task gives a practical measure for the quality of the repre-

sentation. If the representation does indeed capture the relevant content, it should form the basis

for identifying which scene was described from distractor scenes. Therefore, we constructed a

system with a pipeline for processing and representing such multimodal descriptions, applied

and evaluated the representations with a scene retrieval task.

In the rest of this chapter, I first gives an overview of the system, then describe the three

representation variants. This is followed with an experiment that evaluates the system perfor-

mance under different setups.

4.2 System overview

Figure 4.2 shows an overview of the system framework. The system is composed of two

processing pipelines: a language processing pipeline and a gesture processing pipeline.
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Figure 4.2: Overview of the system framework. (Modules in grey boxes are not implemented in this

chapter, but simulated. See the Experiment section for details.)

Language processing pipeline In an ideal setup of the system, the speech is processed by an

ASR which produces output word-by-word. The output then is fed into a segmentation module

that determines the boundary of each object description. In other words, it decides when a new

object is introduced in the discourse. Once a segmentation signal is received, the signal is sent

to the NLU module which initialises its model for the incoming description (i.e., create a new

NLU model for each object description).

Gesture processing pipeline In parallel with the language processing pipeline, a motion

capture sensor records hand motion data and sends the data to a deictic gesture detector (in

the work of this Chapter, we simulated the detector with object positions in scenes, see 4.5 for

details). This detector sends a signal to the Representation module when a deictic gesture is

detected. The representation module represents all the verbal descriptions and deictic gestures

as a scene description until a new scene description starts, then the module creates a new scene

representation for the incoming scene description.

Multimodal fusion & application After the full description of a scene has been perceived,

the representation is used to make a decision in the scene retrieval task. The candidate scenes

are given by a computer vision module, which recognises the objects in the scenes and com-

putes a feature vector for each, containing information about the colour of the object, the num-

ber of edges, its skewness, position, etc; i.e., crucially, the object is not represented by a col-
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lection of symbolic property labels, but by real-valued features. The application module takes

this representation for each candidate scene as input, and computes a score how well the stored

representation of the description content matches the candidate scene. For this, it makes use of

the perceptually-grounded nature of the symbols used in the content representation, which con-

nects these with the object feature vectors. The scene with the highest score finally is chosen

as the one that is retrieved.

We now describe some these processing steps in details.

4.2.1 Utterance segmentation

The task of the utterance segmentation module is to identify the boundaries between object

descriptions. That is, the utterance segmenter segments an object description into individual

utterances of each object description and informs the NLU module when a new object descrip-

tion starts. For example, a description such as “top left is a red L a bit left of it is a yellow

T” is expected to be segmented into two utterances: “top left is a red L” and “a bit left of it is

a yellow T”. In this work of exploring representation methods, we adopted a dataset with key

words that signify utterance segmentations (see Section 4.5 for details), hence the utterance

segmenter is a simple rule-based approach. Chapter 5 presents a learned segmenter model.

4.2.2 Representing scene descriptions

Within the above basic structure of scene descriptions, we explored three variants of scene

representations:

DESCRIPTION REPRESENTATION APPLICATION VISUAL INPUT

A word stems word classifiers

B speech + gesture property labels property classifiers raw visual object and scene features

C cluster labels cluster classifiers

Table 4.1: Overview of representation variants A-C.

• In Variant A, we translate the referring expressions simply into a sequence of lemmata.

This would lead to a representation of “red circle” as red, circle.

• In Variant B, the translation proceeds by specifying a semantic frame, but here by way

of more practically oriented approaches to spoken language understanding for object

descriptions, leading to, for example for “red circle”. This presupposes availability of a

process that can do such a mapping; e.g., a lexicon links lexical items and such frame
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elements, and a pre-specified repertoire of attributes and values for them. In this work,

there are 5 pre-defined properties: colour, shape, orientation, horizontal position and

vertical position.

• In Variant C, finally, we map the referring expression into a sequence of symbols (simi-

lar to Variant B) where however the repertoire of these symbols comes from an automatic

learning process, and thus does not necessarily correspond to pre-theoretic notions of the

meaning of such attributes.

For all the three variants, the represented symbols in the representations are perceptually

grounded to objects in real images. In other words, the representations can be applied to a task

and evaluated with the applicability.

Table 4.1 gives an over view of the three representation variants and corresponding appli-

cations. In following section, I describe the application which we used to apply and evaluate

our representation methods.

speech ASR

Segmentation

deictic gesture

Representation

scene image

CVModule

Oa:  a red L G(xa, ya)
Oa:  transl(a red L)
       pos: x, y

Raw features:

O1: x, y, RGB, HSV, orientation...
O2: x, y, RGB, HSV, orientation...
O3: x, y, RGB, HSV, orientation...

Ob:  a blue T G(xb, yb)

Oc:  a yellow F G(xc, yc)

Ob:  transl(a blue T)
       pos: x, y

Oc:  transl(a yellow F)
       pos: x, y

Application

score2 = 
apply_verbal_repr(Representation)

Oa        O2

Ob        O3

Oc         O1

score1 = 
shape_matching([Oa, Ob, Oc], [O2, O3, O1])

score = 
combine(score1, score2)

score

Mapping:

Figure 4.3: Processing pipeline

4.2.3 Applying gestural information

As described above, the discourse representation includes position information of objects indi-

cated by the deictic gestures. To make use of this information to reconstruct the spatial layout

of the described scene and subsequently apply the representations to retrieve the target scene,

the first step is to compute for each scene the likelihood that it, with the position that objects

are in, gave rise to the observed (and represented) gesture positions.

This is not as trivial as it may sound, as the gesture positions are represented in a coordinate

system given by the motion caption system (i.e., the Leap sensor coordinate system), whereas

the object positions are relative to the image coordinate system. Moreover, the gestures may
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Figure 4.4: Example of a good mapping (top) and bad mapping (bottom), numbered IDs represent the

perceived objects, the letter IDs represent the described objects.

have been performed sloppily, which lead to noisy position information and inaccurate spatial

layout. Finally, on a more technical level, the labels that the segmentation module assigned to

the parts of the description (Oa etc. in Figure ) don’t immediately map to those given to the

objects recognised by the computer vision module (O1 etc.).

To address the question: which description object to compare with which computer vi-

sion object, we simply perform exhaustive mappings - try all permutations of mappings. For

each mapping a score is then computed for how well the gestured configuration under a given

mapping can be transformed into the scene configuration.

The transformation procedure is illustrated in Figure 4.4. First, we project the gesture

positions into the same coordinate system as the scene configuration, then it’s scaled, rotated

and shifted to be as congruent with the scene configuration as possible. In Figure 4.4, where

the top target mapping between description object IDs and scene object IDs is sensible, the

operation leads to a good fit, the bottom mapping is not as good.

Technically, the mapping works as follows. The positions of the three objects in the de-

scription and in the visual scene can be represented as matrices Sd and Sv of the form:

S =







x1 y1

x2 y2

x3 y3






(4.1)

with a set of parameters p
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p = [θ, tx, ty, s] (4.2)

where θ is the rotating angle; tx(ty) stands for the shift value on the x(y) axis; s is the

scaling parameter. We scale, rotate and shift matrix Sv to derive a transformed matrix St:

St(x, y) =

(

tx

ty

)

+ s

(

cos(θ) −sin(θ)

sin(θ) cos(θ)

)(

x

y

)

(4.3)

By minimizing the cost function:

E = min ‖ St − Sd ‖ (4.4)

We compute the optimal value for p. The distance between the resulting optimal St and Sd

gives a metric for the goodness of the mapping, which is the input for a likelihood model that

runs into a probability.

4.3 Learning knowledge from prior experience

We assume that our system brings with it knowledge from previous experience with object

descriptions. This knowledge is used (at least in some variants) for the task of mapping to

logical forms, and in all variants for the perceptual grounding of the symbols in the logical

form. In what follows, I first briefly describe the corpus of interactions from which this prior

knowledge is distilled.

4.3.1 The TAKE corpus

Figure 4.5: Example TAKE scene used for training.
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As a source for learning prior knowledge, we use the TAKE corpus (Kousidis et al., 2013a).

In a Wizard-of-Oz study, participants were presented with a scene of pentomino pieces (as

shown in Figure 4.5) on a computer screen and asked to identify one piece to a “computer

system” by describing and pointing to the piece. The utterances, arm movements, pentomino

scene states and gaze information were recorded as described in (Kousidis et al., 2012). In

total, 1214 episodes were recorded from 8 participants (students from Bielefeld University;

native German speakers). The corpus was further processed to include raw visual features

of each piece tile such as colour, shape, HSV, RGB values and so on. The computer vision

module in our system processes the objects in the scenes in the same manner. It also includes

symbolic properties (e.g., green, X (a shape)) for the intended referent, and the utterance that

the participant used to refer to the target referent.

4.3.2 Learning mappings to logical forms

As described above, the difference between the 3 variants of representations lies in how they

realise the transl() function to encode multimodal descriptions to representations in a computer

system. In all variants, there is a preprocessing step that normalises word forms by stemming

them using the NLTK (Loper and Bird, 2002). This will map all words to its stems. For

example, we mapped all of grün, grüne, grüner, grünes into grun (green). This effectively

reduces the vocabulary size that needs to be mapped.

Variant A

In Variant A, we stem each word, then treat each word stem as a logical form. In other words,

an object description is translated into the sequence of its stemmed words. Hence, this variant

contains the largest amount of logical forms.

Variant B

In Variant B, similar to the model presented in Kennington et al. (2013), we define a set of sym-

bolic property labels. These labels are used to represent each described entity. Then we map

each description from words to these symbolic labels, based on co-occurrence in the training

data. For instance, if a word grün (green) frequently occurs when the described referent has

the property green, we strength the link between the word grün with the symbolic label green.

Given a word (word stem in this case), the model returns a probability distribution over all

properties; we average over the contribution of all words, and chose the most likely property

as the representation for the description. Note that this variant does not require a pre-specified
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lexicon linking words to object properties (e.g., green, red etc. in total 7 colour and 12 shape

properties).

Variant C

In Variant C, we overcome the limitations of Variant A and B by automatically learning a set of

symbolic labels from the data, rather than pre-defining symbolic labels as in Variant B or using

word stems as in Variant A. As will be described below, for Variant A we learn for each word

stem a classifier that links it to perceptual input. These classifiers themselves can be represented

as vectors (the regression weights of the logistic regression). Using the intuition that words

with similar meaning should give rise to similarity behaving behaviours (e.g., the classifier to

“light green” should respond similarly - but not identically - to the classifier for “green”). We

ran a clustering algorithm (K-means clustering using the Scikit-learn package1) on the set of

classifier vectors. The resulting clusters, through their centroids, can then themselves be turned

again into classifiers. This effectively reduces the number of classifiers that need to be kept in

a computer system, just as in Variant B, the set of properties is smaller than the set of words

that are mapped into it. In contrast to Variant B, here the clusters are chose based on the data,

rather than on prior assumptions.

With the above described method, an object description is represented as a sequence of the

labels of those clusters that the words in the description map into, such as {c1, c3, c20, c1}.

After mapping words to logical forms, I now describe how we ground these logical forms

to visual features of objects.

4.3.3 Learning perceptual groundings

Variant A

For Variant A, we learned grounded word stem meanings in a similar way as done in (Kenning-

ton et al., 2015; Schlangen et al., 2016). For each word w occurring in the TAKE corpus of

referring expressions, we train a binary logistic regression classifier (see Equation 4.5 below,

where w if the learned weight vector and σ is the logistic function) that takes a visual feature

representation of a candidate object x and return a probability pw for this object being a good fit

to the word. We present the object that the utterance referred to as a positive training example

for a good fit, and objects that it didn’t refer to as a negative example. (see (Kennington et al.,

2015; Schlangen et al., 2016) for more details for the grounding method).

1http://scikit-learn.org/

http://scikit-learn.org/
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Figure 4.6: Clusters of words according to the co-efficient values of corresponding word classifiers.

See 4.3.2 for detailed descriptions.

pw(x) = σ(w⊺
x+ b) (4.5)

As aforementioned, each classifier is fully specified by its coefficients w and b.

Variant B

The first step in Variant B was to use the words in the object description as evidence for how

to fill the semantic frame, with the frame elements colour and shape. For the possible values

of these elements (e.g., green), we trained the same type of logistic regression classifier, again

using cases where the property was presented for a given object as positive example, and,

as negative examples, those where it wasn’t. This then gives a perceptual grounding for the

property green (whereas in Variant A we trained one for the word green). In a way, this variant

raises the question of where the ontology of properties comes from; if this part is a model of

language acquisition, the claim would be that there is a set of innate labels which just need to

be instantiated.
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Variant C

As described above, Variant C is built on Variant A, reducing the required set of classifiers

through clustering. In the experiment described below, we set the number of clusters to 26,

an experimentally determined optimum. The clustering resulted for example (as shown in

Figure 4.6) in one cluster grouping together “violett” and “lila” (violet and purple), or another

one clustering group “türkis, blau, dunkelblau” (turquoise, blue, dark blue), but also clusters

that are less readily interpreted such as “nochmal, rosa, hmm” (again, pink, erm). What is

important to note here is that in any case, the reduction in the range of what words can map

into in their semantic representation is as strong as with B, but emerges from the data.

“here red T”
  (1, 3)

B 

“here red T”

C

color: red
shape: T

cluster1

cluster5

cluster3

avg(Chere(x1) + Cred(x1) + CT(x1)) * P((1,3)|(1,3)) = 0.4
avg(Chere(x2) + Cred(x2) + CT(x2)) * P((1,3)|(1,3)) = 0.6
avg(Chere(x3) + Cred(x3) + CT(x3)) * P((3,1)|(1,3)) = 0.3

avg(Cred(x1) + CT(x1)) * P((1,3)|(1,3)) = 0.4
avg(Cred(x2) + CT(x2)) * P((1,3)|(1,3)) = 0.62
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avg(cluster1(x3) +cluster5(x3) + cluster3(x3)) * P((3,1)|(1,3)) = 0.45

A

Representation Mapping Perception/SceneDescription

Figure 4.7: Simplified (and constructed) pipeline example. The description “here a red T” with ges-

ture at point (1, 3) is represented and mapped to the perceived scenes. Each variant assigns a higher

probability to the correct scene, represented by X2

4.4 Applying the represented knowledge

With all the represented knowledge, the final score for a given candidate scene is computed as

follows: for each possible mapping of description object IDs to computer vision object IDs, a

gestural score is computed as described in Section 4.2.3 ; the representation of each description

is applied to its corresponding object using the grounding just explained; this is combined into

an average description score, which is weighted by the gesture score to yield the final score of

this mapping for this candidate scene. Figure 4.7 shows a simple example of how each variant

processes for a description of a single object, constructed with a simplified coordinate system

for the gesture. Each variant is applied to the three candidate scenes on the right side of the

figure.
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4.5 Experiment

In this section, I describe how I evaluate the overall system performance and the three repre-

sentation variants.

The evaluation here focuses on the evaluation of the three variants of the representation

methods and constrains the uncertainties caused by other modules of the system (e.g., utter-

ance segmentation and gesture recognition). Hence, instead of evaluating the system with the

Multimodal Spatial Description Corpus described in Chapter 3, we constructed a small spatial

scene description corpus, leaving the more complex modelling and evaluation task to Chapter 5.

The evaluation experiments were conducted under 3 setups: a) language only descriptions,

b) gesture only descriptions, and c) multimodal descriptions. Next, I will first describe the data

collection procedure and the collected data, then provide details on the experiment design and

evaluation results.

4.5.1 A scene description corpus

To elicit natural language descriptions, we generated 25 pentomino scenes as illustrated in Fig-

ure 4.1. Native German speakers (students from Bielefeld University who were not involved

in the project) wrote down verbal descriptions of the scenes. They were asked to start each ob-

ject description with the keyword and, for example, “here is [OBJECT DESCRIPTION], and

[RELATION] is ...”. Consequently, the utterances can be segmented with a rule-based model

and eliminate potential uncertainties of utterance segmentations in the evaluation. As afore-

mentioned, with this data, we simulate the ASR output with the collected verbal descriptions

to focus on the core model for this chapter.

In total, we collected 50 scene descriptions. Example (3) shows a sample description of the

corpus:

(3) a. |NS Hier ist |NObj ein pinkes z-ähnliches Zeichen und schräg rechts unten davon

ist |NObj ein zweites pinkes z-ähnliches Zeichen und schräg rechts unten davon ist

|NObj ein blaues L

b. |NS here is |NObj a pink Z and diagonally to the bottom right of it is |NObj a second

pink Z and diagonally bottom right of it is |NObj a blue L

where |NS indicates the start of a New Scene description, while |NObj indicates the start of

a New Object description.

Similarly, we simulated the gesture detector by taking actual positions of the described

objects in the scenes as gesture positions, then adding normally distributed noises to simulate

uncertainties of the gesture detecter module.
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4.5.2 Evaluation

To evaluate the overall performance of the system and the three representation variants, we

created a set of test scenes for each scene description. Each test set includes the target scene

and 5 other scenes as distractor scenes. The distractor scenes were randomly selected from the

set of 25 scenes. This results in 50 test retrieval tasks for each of the 3 variants.

To evaluate the contribution of each modality as well as their joint performance, we de-

signed 3 experiments:

• In Experiment 1, the distractor scenes were modified so that all the objects have the

same spatial layout. Therefore, in such cases, gestures, which provide spatial layout

information, cannot contribute to the retrieving task.

• In Experiment 2, the spatial layout of objects are kept, but their visual features are mod-

ified to be identical. Therefore, language, which describes visual features, cannot con-

tribute to the retrieving task.

• In Experiment 3, both the spatial layout and visual features are kept to evaluate the joint

performance of deictic gestures and language descriptions.

In each experiment, we first run the pipeline to build the representations of the descriptions

(i.e., 3 sets of representations corresponding the variants A-C), then use the built representa-

tions to retrieve the described scene from the set of candidate scenes. Following the evaluation

convention of scene retrieval tasks, we evaluated our models with following metrics: accuracy,

the ratio of correct retrievals; mean reciprocal rank (MRR), which is computed as follows:

MRR =
1

N

N
∑

i=1

1

rank(i)
(4.6)

in our setup, the MRR ranges from 1/6 (worst) to 1 (ideal case).

4.5.3 Results

Table 4.2 shows the experiment results of each representation variant under 3 different setups.

In Experiment 1, as gestures don’t contribute discriminative information, the system per-

formance reflects the contribution of language descriptions in the scene retrieval task. The

results show that when only language contributes to the retrieval task, the representation vari-

ants can already achieve good performance, with Variant A (verbatim representation/word

classifiers) having a slight edge on Variant C (representation through clustering). Going just

with the gesture information as designed, performs on chance level here.
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Experiment 1 Experiment 2 Experiment 3

ACC MRR ACC MRR ACC MRR

Gesture 0.1 0.37 0.65 0.75 0.67 0.78

Gesture+Speech

A 0.82 0.90 0.70 0.78 0.84 0.91

B 0.68 0.81 0.68 0.76 0.68 0.81

C 0.80 0.89 0.76 0.82 0.84 0.92

Table 4.2: Results of the Experiments. Exp. 1: objects in same spatial configuration in all scenes (per

retrieval task); Exp. 2: objects potentially in different configurations in scenes, but same three objects

in all scenes; Exp. 3: potentially different objects and different locations in all scenes.

In Experiment 2, only gestures contribute to the decision making of the scene retrieval

task. All three variants perform robustly only with gesture information: In many sets, gesture

information alone already identifies the correct scene (top row, “deictic gesture in the top area

of the gesture space”). Language can improve over this in cases where gestures alone compute

the wrong mapping of description IDs and object IDs.

In Experiment 3, both language and gestures contribute to the scene retrieval task. That is,

we evaluated the system performance with the randomly selected test set. Variant A and Vari-

ant C show performances that are much better than Variant B. Note that Variant B suffers

from data sparsity: such as in the training data, the shape U, which is the preferred description

in our test data, leading to the wrong shape property being predicted. Interestingly, “com-

pressing” the information into a small set of clusters (in this case, 26) doesn’t seem to hurt the

performance.

4.6 Summary

In this chapter, I have presented a system that models the task of understanding multimodal

spatial descriptions. The system takes natural language and deictic gestures as input, represents

the input information with symbols that are perceptually grounded to real-life scene images.

The represented knowledge can be applied to discriminative tasks such as scene retrievals.

This chapter depicts three variants of representing the verbal descriptions: from not com-

pressing the description at all (storing sequences of (stemmed) words, as they occurred), over

using pre-specified property symbols to learning a set of “concepts” automatically. In terms of

the overall system performance, the system performs well with verbal descriptions. With ges-

ture information providing a large amount of information, the system performance was further
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improved.



5
Towards real-time understanding of multimodal

spatial descriptions

In the previous chapter, I described a system of understanding multimodal spatial scene de-

scriptions and explored three variants of representing the descriptions. In this chapter, I present

a real-time system that understands spatial descriptions incrementally. While the presented

real-time system shares the same framework with the one described in the previous chapter,

incremental processing models for individual system components are implemented and evalu-

ated in this chapter. Moreover, this chapter introduces the modelling of the spatial description

understanding task with the collected spatial description corpus (described in Chapter 3) from

humans, hence, the modelling and evaluation are conducted in a more realistic setup. This

chapter concludes that abstract deictic gestures not only improve the overall performance of

the system, but also result in earlier final correct system decisions.

5.1 Real-time understanding of spatial scene descriptions

As I have mentioned in Chapter 3, psycholinguistic studies show that humans process speech

and gestures jointly and incrementally (Campana et al., 2005). While the descriptions unfold,

listeners immediately interpret and integrate information from co-occurring speech and ges-

80
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Figure 5.1: Overview of the system.

tures. Moreover, to apply the interpretation later, it’s essential to form a hypothesis in mind,

making it a very demanding cognitive, language-related tasks (Schneider and Taylor, 1999) for

listeners.

To enable a computer system to understand spatial descriptions in the way humans perform

the task, it’s essential that the system can incrementally process the input information. That

is, while a human is talking, the system should be able to understand the description while the

description unfolds, and probably make a decision or a clarification request once the impor-

tant information has been given, rather than reacting only after a full description being given.

Moreover, the parallel nature between speech and gestures could also potentially benefit the

efficiency of the understanding task. As gestures often precede accompanied verbal content,

gestures may benefit the understanding task by providing information earlier than the verbal

content in an incremental processing setup.

This chapter illustrates how to model the task of jointly and incrementally interpreting mul-

timodal spatial descriptions, using a simplified spatial description task as described in Chap-

ter 3. Specifically, I will address following questions: 1) to what degree can deictic gestures

improve the overall interpretation accuracy; 2) how gestures benefit the interpretation of spatial

descriptions on the incremental level.

5.2 System overview

As shown in Figure 5.1, the architecture of the real-time system is the same to the one pre-

sented in previous chapter (Chapter 4), composed of a speech processing pipeline, a gesture

processing pipeline and an application module which applies the interpretations to perform the
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scene retrieval task. However, the individual system components are incremental processing

models.

Language processing pipeline The language processing pipeline is supposed to interpret

natural language descriptions incrementally (i.e., produce understanding results while the de-

scription is going on). An automatic speech recogniser (ASR) transcribes speech to words on

a word-by-word level. A natural language understanding (NLU) module incrementally pro-

cesses the output from the ASR module. It sends the latest interpretations to the multimodal

application module. Currently, we have only evaluated the system in a simulated setup where

manual transcriptions were played back to simulate the ASR to eliminate possible delays and

noisy texts caused by ASRs (see Section 5.3 for details). The multimodal application module

applies the interpretation results from the NLU module to perform a scene retrieval task also in

an incremental manner.

An utterance segmenter takes words from the ASR module, while the words are coming

in, it predicts the end of an object description. Instead of manually labelling the end of object

description as in previous chapter, we implemented an LSTM model for the segmentation task,

which will be described in Subsection 5.2.3.

Gesture processing pipeline In this chapter, I introduce the gesture processing pipeline that

is built in a more realistic way: the pipeline takes hand motion data as input and detects the

hand positions of deictic gestures, rather than simulating gesture positions with object positions

in scenes. In other words, the task of the gesture processing pipeline is to log raw hand motion

features from a sensor, recognise gestures and interpret the gestures incrementally (on a frame-

by-frame level). While in previous chapter, the simulated deictic gestures were interpreted

by comparing its spatial layout with the layout of objects in scenes, the interpretation only

happens at the end of a description (i.e., non-incremental). In this chapter, deictic gestures are

interpreted incrementally. With each detected deictic gesture, the system first computes which

object the gesture is likely to refer to, then compares the spatial layout of detected gestures

with corresponding objects in candidate scenes.

After interpreting the gestures, the gesture interpretation module sends the interpretation

to the multimodal application module. The pipeline contains 3 components. First of all, a

Leap sensor tracks hand movements in the effective tracking area. It sends raw hand motion

features (i.e., hand palm magnitude, hand palm direction, etc.). A gesture recognition (stroke

hold recognition) takes the raw features and sends the recognition result (stroke hold position,

this case) to a gesture interpretation module. The gesture interpretation module processes the

gesture information and sends the interpretation to the application module.
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Multimodal fusion & application The fusion module takes interpretations from the speech

and gesture processing pipelines. Its task is to apply the interpretation, compare the hypoth-

esis with each candidate scene, then select the most likely one as the candidate scene. As

the language and gesture processing pipelines work incrementally, the fusion and application

modules also work incrementally. Hence, the system can make and refine its decisions while

descriptions unfold.

5.2.1 Gesture detection

The task of the gesture detection module is to detect abstract deictic gestures with given hand

motion data frames and informs the gesture interpretation module the hand positions of the

deictic gestures. We frame the task as a binary classification problem which classifies hand

motion frames as stroke hold frame or non-stroke hold frame.

We used labeled hand motion frames to train an LSTM classifier. For each labeled data

frame, we selected a time window of 200 ms before current frame. The data frames in the win-

dow is composed as a sequence input for each classification task of the classifier. To reduce the

input load of the classifier, every other frame in the window was dropped. Following features

for each sampled frame were provided to the classifier (in total, each data frame contains 92

features):

• hand velocity: the speed and movement direction of the palm in millimetres per second

(3 features)

• hand direction: the direction from the palm position toward the fingers (3 features)

• palm normal: a vector perpendicular to the plane formed by the palm of the hand (3

features)

• palm position: the centre position of the palm in millimetres from the Leap Motion

Controller origin (3 features)

• grab strength: strength of a grab hand pose which ranges from 0 to 1(1 feature). Pro-

vided by Leap sensor.

• finger bone directions: the direction of finger bones (60 features)

• finger bone angles: “side-to-side” openness between connected finger bones (15 fea-

tures). Provided by Leap sensor.

• finger angles: the angles between two neighbouring fingers (4 features).

As aforementioned, stroke holds are featured with low hand velocity. Although it might

seem that velocity itself would provide sufficient information for the detection task, we found
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Figure 5.2: Examples of stroke hold detection. We used palm magnitude to show the stroke hold

phase as it is one of the major features which distinguish stroke hold from other hand movements.

that sometimes participants placed their hands in the gesture space without referring to any

object. Using velocity alone for the classification task would cause many false positives. We

observed that when hands are not for gesturing, they are usually in a relaxed state with hand

palms downward and smaller angles between fingers. In addition, when hands are retrieved to

a relaxed state, hands usually switch from gesturing state to relaxed state. In contrast, before

gesturing, hands usually switch from relaxed state to gesturing state. Hence, hand frames

with a low velocity after a retrieving phase are typically non-stroke holds. Considering these

observations, we extracted related the raw features from the hand motion data and trained an

LSTM classifier for the classification task.

Architecture of the LSTM The LSTM network includes two hidden layers and a sigmoid

dense layer to give predictions. The first hidden layer has 68 nodes and produces 38 tanh

nonlinearity. The second layer has 38 nodes and outputs via the dense layer. A dropout layer

is applied to the second layer to enable more effective learning. To avoid overfitting, 50% of

the input units were dropped and set to 0. The loss function of the model is a binary cross

entropy loss function. It was optimised with an rmsprop optimiser. The training was stopped

when validation loss stopped decreasing. Figure 5.2 shows some examples of the stroke hold

detection.

As a stroke hold often contains several frames, we take the average hand position of all
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Figure 5.3: Mapping deictics from gesture space to scene coordinate system. (a) deictic gestures in the

gesture space (Leap sensor coordinate system); (b) gestures are mapped to the target scene; (c) gestures

are mapped to a distractor scene with different spatial configurations.

available frames as the position of the stroke hold. As a result, we can compute and update the

stroke hold position while the stroke hold is still going on.

5.2.2 Gesture interpretation

With the position and timestamp of each stroke hold from the gesture detection module, the

gesture interpretation module resolves the references of deictic gestures and evaluates how

well the spatial configuration of deictic gestures fits with the spatial configuration of a scene

image.

Following McNeill’s model (McNeill, 1992), we view the deictic gestures in our task as

a reflection of the scene that participants saw on the screen. Namely, they stored the spatial

information in their mind as a mental image, then describe the scene with speech and gestures

– mapping the mental image to the gesture space. Hence, the spatial configuration of the deictic

gestures should reflect the spatial configuration with the one they watched (the target scene that

the system should retrieve). For example, a deictic gesture at bottom left of the gesture space

is more likely to refer to an object at the bottom of a scene image.

Although the Leap sensor provides hand positions in the 3D space, for the 2D scene de-

scription task in this work, we only used the position information in the x and y panel. There-

fore, we represented a speaker’s gesture space as {(x, y) ∈ R2 : xmin ≤ x ≤ xmax, ymin ≤

y ≤ ymax}, where xmin, xmax, ymin and ymax are the boundaries of the gesture space which

was estimated from all of a speaker’s gestures.

As aforementioned, the gesture detector sends stroke hold position information from the

Leap sensor to the gesture interpretation module. Hence, the position is computed in the Leap

sensor coordinate system. To resolve references of objects in the scene image and compare

spatial configurations of gestures and objects in the scene, we mapped gesture positions to the
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scene image with a simple method. Given a deictic gesture (x, y), we mapped it to the image

coordinate system {(x, y) ∈ R2 : 0 ≤ x ≤ W, 0 ≤ y ≤ H}, and represented the new

coordinate as:

G =

(

W ∗ (x− xmin)

xmax − xmin

,
H ∗ (y − ymin)

ymax − ymin

)

(5.1)

where W and H indicate the width and height of a scene image; xmin, xmax, yminandymax

indicate the boundaries of the scene coordinate system. Figure 5.3 shows an example of map-

ping deictic gestures to a scene image.

In this spatial description task, humans typically describe the objects in a scene sequen-

tially. Hence, we assume that each deictic gestures is meant to refer to only one object. There-

fore, the closer a deictic gesture to an object, the likely that the object is the reference of the

deictic gesture. With this assumption, we trained a Gaussian kernel density (KDE) estima-

tion model f to turn the distance between a mapped gesture and an object in a scene into a

probability:

p(Oi|G) = f (||G − Oi||) (5.2)

The probability indicates how likely the object is the correct referent of the gesture. Details

of training and evaluation of the model are described in the evaluation section.

While individual gestures provide information for reference resolution, with more than one

gestures, we can compare the spatial configuration of the gestures and objects in a scene, which

provides information on how well the spatial layout of the deictics fits with all the objects in

the whole scene. As shown in Figure 5.3(b) and (c), the better the gestures and objects fit

with each other, the smaller the distance between the two vectors. Given two gestures, we first

estimate the most likely referential object for each gesture with the KDE model, then measure

the fitness of the gestures and objects with the cosine similarity between the gesture and object

vectors. Consequently, with n(n > 2) gestures in a scene description, the probability can be

computed as following:

p(O1, · · · , On|G1, · · · , Gn) =

n
∏

i=2

i−1
∏

j=1

(Gi − Gi−j) · (Oi − Oi−j)

||Gi − Gi−j || ||Oi − Oi−j ||
(5.3)

When there is only one gesture (n = 1), no spatial configuration information is conveyed,

therefore we set the probability to 1. With each new deictic gesture, the probability can be

computed together with all available gestures. In this way, we incrementally applied gesture

information to evaluate how well the gestures fit with a scene.
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5.2.3 Utterance segmentation

The task of the utterance segmenter is to incrementally identify the start of new object descrip-

tions. Example (1) shows a sample of the description which contains 3 object descriptions (in

other words, 3 segments) and corresponding segmentation boundaries (indicated by |SEG).

(1) (a) Hier ist ein blaues Quadrat in rot |SEG hier ist ein gelber kreis |SEG und hier ist ein

klein lila kreis

(b) here is a blue square in red |SEG here is a yellow circle |SEG and here is a small

purple circle

For instance, in Example (1), the utterance segmenter is expected to detect the end of segments

as soon as it receives the words “hier” (here) and “und” (and), and inform the NLU module.

In our corpus, there are 3 segments in each scene description. Words like “links (left)”,

“hier (here)”, and “und” (and) are predictive for segment boundaries as they often occur at the

beginning of a segment. However, due to the variability of natural communication, they could

also occur in the middle or end of a segment. For example, segments like “a red circle here”

and “circle, on the left, red” both occur in the data (see Chapter 3 for details). Therefore, the

classifier must learn over a sequence of words to predict segment boundaries.

Architecture of the LSTM We frame the segmentation problem as a binary classification

task. An LSTM network was trained for the segmentation task (also using Keras Chollet

(2015)). We encoded each word into a one-hot encoding vector (vocabulary size 266) and

fed the vector to the LSTM network. The network is composed of one hidden layer and a sig-

moid dense layer that gives the prediction. There are 100 nodes in the hidden layer. A dropout

layer was applied to it to enable more effective learning. 30% of the output units from the

hidden layer were randomly selected and set to 0 to avoid overfitting. The loss function of the

model was a binary loss entropy loss function. It was optimised with a rmsprop optimiser. The

training was stopped when validation loss stopped decreasing.

5.2.4 Natural language understanding

Given transcribed words from the ASR module, the task of the NLU module is to yield a

probability distribution over all objects in a scene image. We adopted a natural language un-

derstanding model – the Simple Incremental Update Model (SIUM), which was originally

described in Kennington et al. (2013). SIUM learns a grounded mapping between aspects of

language and aspects of visually perceivable (and representable) objects, formalised as follows:
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p(O|U) =
1

p(U)
p(O)

∑

r∈R

p(U |R)p(R|O) (5.4)

p(O|U) is the probability of the referential object O behind the speaker’s (ongoing) de-

scription (a segment as we mentioned in last section) U. This is recovered using the mediating

variable R, which is a set of properties which map between aspects of each object, for example

each object’s colour (out of a et of 6 possible colours), shape (square and circle), size (discre-

tised into small, medium, and big), as well as vertical (top, middle and bottom) and horizontal

(left, centre and right) placements. We opted for SIUM because it can update the hypotheses

incrementally.

The mapping p(U |R) between properties and aspects of U can be learned from data, which

we opted for here, by providing the model with words that were observed as being uttered in

reference to a specific object and that object’s properties. U is represented by ngrams. During

application, p(U |O) can produce a distribution over properties which are marginalised over,

resulting in a distribution over candidate objects in a scene. This occurs at each word increment,

where the distribution from the previous increment is over time. p(R|O) is a simple model of

properties belonging to objects, returning 1 if the object O has that particular property, and 0 if

it does not.

With a distribution over all of the objects for each segment, we then take these distributions

and combine them with gestures, which will now be explained.

5.2.5 Multimodal fusion & application

The task of the multimodal fusion & application module is to fuse speech and gesture interpre-

tations and apply the hypothesis to retrieve the most likely scene from a set of candidate scenes.

The whole fusion procedure includes two steps: first, the probability distributions over objects

from each modality, speech and gesture, were combined, resulting in a final distribution over

objects for each scene, for each segment. Second, combine these various distributions into a

final distribution over scenes and retrieve the one with the highest probability. Figure 5.4 shows

a constructed example of how speech and gestures were fused.

Reference resolution

For each segment U , we combine the speech and gesture probability distributions to get a fused

probability distribution:

p(Oi|U,G) = λ1 ∗ p(Oi|U) + (1− λ1) ∗ p(Oi|G) (5.5)
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p(O1|U2) = 0.7 
p(O2|U2) = 0.2 
p(O3|U2) = 0.1
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p(O3|G2) = 0.1

p(O1,O2|G1,G2) = 0.6

p(O1|U1,G1) = 0.25 
p(O2|U1,G1) = 0.55 
p(O3|U1,G1) = 0.25 

p(O1|U2,G2) = 0.65 
p(O2|U2,G2) = 0.25 
p(O3|U2,G2) = 0.10

p(O1|U1) = 0.2 
p(O2|U1) = 0.6 
p(O3|U1) = 0.3

p(O1|G1) = 0.3 
p(O2|G1) = 0.5 
p(O3|G1) = 0.2

p(O2) = 0.55 
p(O1) = 0.65

Scene description understanding 
p(C) = 0.5*(p(O1)+p(O2)) + 0.5*p(O1,O2|G1,G2)

Reference resolution
NLU

Gesture interpretation

Multimodal fusion & application

O1

O3

O2

C

Figure 5.4: Illustration of multimodal fusion & application, given a candidate scene C and following de-

scription: U1: here G1 is a small red square, U2: here G2 is a yellow circle. (For clarity of descriptions,

the numbers are constructed and not actual computations for this input.)

where λ1 is a weight parameter. We assume speech and gesture equally contribute to the

probability distribution, thus λ1 = 0.5 in the setup. When there are no gestures aligned with

the segment U , p(Oi)|G was set to 0, hence, there is gestural contribution.

For each segment U , we compute a probability over all objects in a scene. Since in our

task, utterances are segmented as descriptions for individual objects, we assume the speaker

is referring to one object with a segment. The object with highest probability is taken as the

estimated referent for the segment U :

O∗
i = argmax

i

p(Oi|U,G) (5.6)

The sum of scores for all objects in a scene is taken as the score for the scene.

Scene description understanding

For each candidate scene C, we combined the spatial configuration score with the score from

previous steps to get a final score:

p(C) = λ2 ∗

n
∑

i=1

p(Oi)
∗ + (1− λ2) ∗ p(O1, · · · , On|G1, · · · , Gn) (5.7)

the weight parameter λ2 determines how much the overall spatial layout contributes to the

final decision. In our setup, n equals 6. In each retrieving task, the candidate scenes include a

target scene and 5 distractor scenes (see 5.3.4 for details).
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5.3 System evaluation

We evaluated our system based on the Multimodal Spatial Description Corpus described in

Chapter 3. The evaluation experiments were conducted with a “hold-one-out” setup. In each

evaluation, data from one participant was left as test data while other data as training data

to prevent the system from learning about possible idiosyncrasies of a speaker on whom it

is tested. In the rest of this section, I will first describe the evaluations of individual system

components, then describe whole system performance evaluations and discuss the results.

5.3.1 Gesture detector evaluation

First of all, we evaluated the gesture detector. Following the convention of gesture classification

evaluations, we used F1-score, precision and recall as the evaluation metrics.

The gesture detector achieves an F1-score of 0.85, precision 0.77, recall 0.94. Each ges-

ture classification task takes around 10 to 20 ms, correlating to the computational ability of

the machine. The reported results here are computed on a MacBook Pro 2015 with following

hardwares: processor 2,9 GHz Intel Core i5, memory 8 GB 1867 MHz DDR3.

Currently, we haven’t evaluated other traditional gesture classifiers for the system, thus we

haven’t compared the LSTM model with other models. Since the focus of the current evaluation

is interpretation and application of the multimodal descriptions, we leave it as future work to

implement other models and compare the performance with the current model.

5.3.2 Gesture interpretation evaluation

We evaluated the kernel density estimation (KDE) model of the gesture interpretation module

by object reference accuracy. Namely, given a deictic gesture position, how often does the

referential object gets the highest score among all candidate objects in a scene?

As aforementioned, we mapped deictic gesture and a candidate scene to the same coordi-

nate system, then computed the distances between the mapped gesture and candidate objects

in the scene. With the computed distances, we fit a Gaussian KDE model (with the bandwidth

setting to 5) using the distances in the training data.

We tested the trained KDE model with computed distances in the test data. The model

achieves an average accuracy of 0.81, which significantly out forms the chance level accuracy

1/3.
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Model F1-score Accuracy Recall STD of accuracy

Baseline 0.84 0.85 0.83 0.23

LSTM 0.89 0.92 0.88 0.1

Table 5.1: Evaluation results of utterance segmenter.

Metrics Speech only Gesture only Speech + gesture

Our system 0.75/ 0.79 0.50/0.50 0.84/0.85

Human eval 0.86/- 0.32/- 0.77/-

Random baseline 0.17/0.41 0.17/0.41 0.17/0.14

Table 5.2: Results of whole system evaluation.

5.3.3 Utterance segmentation evaluation

We evaluated the utterance segmenter performance with F–score, accuracy and recall. As

shown in Table 5.1, the LSTM model outperforms the keyword spotting baseline model. It

achieves a higher precision score and a lower standard deviation (SD) of precision. The lower

SD indicates stable predictions between participants which is important for real-time systems

that are expected to work with users who didn’t contribute to the training data. Although

currently, the LSTM model only marginally outperforms the baseline model, it’s likely that

with more training data and more various descriptions, the LSTM model will perform even

better.

The NLU component was evaluated as part of the whole system, which will be described

now.

5.3.4 Whole system evaluation

To assess the overall performance of our system, we designed “hold-one-out” offline tests with

the collected data. We simulated real-time multimodal spatial descriptions by playing back the

collected multimodal descriptions in real time. The transcriptions of speech were played back,

simulating output of an incremental ASR. Stroke hold positions detected from the motion data

were played back as gesture information (hence, the gesture detection wasn’t performed in real

time, so that currently we don’t have to consider the delays caused by the gesture detection

module). The tests include mono-modal and multimodal setups: speech only, gesture only and

speech+gesture.

The system performance was evaluated with a scene retrieval task. That is, given a mul-

timodal description, the system is supposed to retrieve a scene from a set of candidate scenes
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that fits best with the description. We created a test set for each scene in the corpus. Each test

set includes the target scene and 5 randomly selected distractor scenes. Hence, the chance level

accuracy of the scene retrieving task is 1/6.

The metrics

We evaluated the system performance with mean reciprocal rank (MRR) which is computed

as follows:

MRR =
1

|Q|

|Q|
∑

i=1

1

ranki
(5.8)

where |Q| indicates the set of scene retrieval queries. For each scene retrieval query, we

rank the candidate scenes in ascending order according to the scores from the fusion module

(e.g., the scene with highest score got a rank of 1). As there are 6 candidate scenes in each

retrieval query, the rank ranges from 1/6 (the worst case) to 1 (the ideal case). MRR ranges

from 0.41 (the worst case) to 1 (the ideal case).

Speech only

Test setup: In this test, only speech contributes information. We replayed audio transcriptions

in a real-time pace to simulate the speech only descriptions. The weight parameters λ1 and λ2

in Equation 5.5 and Equation 5.7 were set to 1.0.

As shown in Table 5.2, the average MRR of the tests is 0.79 (accuracy 0.75), which sig-

nificantly outperforms the baseline. Although the evaluation setups are the same for all partic-

ipants, when comparing evaluation score of each participants, we observed individual differ-

ences between participants. The difference could be due to varied language descriptions, such

as referring to the same colour or shape with different words or omitting spatial descriptions

in verbal descriptions (see Chapter 3). The varied language descriptions affect the utterance

segmenter performance as well as the NLU module performance. Hence, they consequently

affect the general system performance.

Gesture only

Test setup: In this test, we only replayed the hand motion data to simulate the gestures. The

weight of gesture information in fusion module (Equation 5.5 and Equation 5.7) were set to 0,

so that only gestures contribute to making the scene retrieving decision.

The average MRR of all tests is 0.50 (accuracy 0.50). It outperforms the chance level

baseline MRR by 0.09, which underperforms the multimodal model and the language only

model. On one hand, gestures are ambiguous, as the spatial layout encoded in gestures is
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approximately mapped to the space from human mind. One the other hand, gestures only

convey positional information of referents and relative spatial configurations of referents, the

similarity between targeted scene and distractors also affect the results.

Speech + gesture

Test setup: In this test, we replayed speech transcriptions and hand motion data in parallel to

simulate real-time multimodal descriptions. λ1 in Equation 5.5 and Equation 5.7 were set to

0.5, hence, speech and gestures contribute equally.

Although as shown in Table 5.2, gestures are less reliable than language descriptions, con-

sidering that abstract deictic gestures can also contribute equally by complementing the lan-

guage when spatial descriptions are omitted, we assumed that speech and gestures contribute

equally in all descriptions. It’s possible that learning optimised parameters which can adjust to

language and gesture descriptions will lead to better performance. We leave it as future work

to include such a component in the system.

The multimodal model achieves the best performance among all test, with an average MRR

of 0.84. It shows that gestures help to improve the performance of the system. Next, I discuss

the evaluation results.

Discussion

The system evaluation results described above show that our gesture interpretation method

can successfully extract spatial information from gestures. While the language description

itself can already achieve a good performance, adding gesture information further improves

the system performance, although only marginally.

Hereby, I discuss the reasons of the limited improvement. One possible reason for the

limited improvement is that object position information is often redundantly encoded in ver-

bal descriptions. The overlap between speech and gestures has been observed, described and

discussed in previous works (Epps et al., 2004). In our case, the data collection may further en-

couraged such overlaps, as participants were instructed to describe object positions (see Chap-

ter 3). In situated communications, it’s less likely that humans would mention all attributes of

referents, in which case, gestures would contribute more prominently.

In terms of real-time systems, the system performance is always affected by all individual

components. Note that current evaluations are only offline tests, using speech transcriptions to

simulate language descriptions. In a realistic setup, the language description should come from

an automatic speech recogniser (ASR), which provides noisier words than manual transcrip-

tions. In this case, the redundancy of gestures will disambiguate the uncertainty resulted from
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Figure 5.5: Average MRR of incremental evaluation.

the ASR. In the future, I will evaluate our system with live spatial descriptions.

5.3.5 Incremental evaluation

A system being able to incrementally process input information would lead to earlier interpre-

tation than systems that only process information after descriptions end, which is important for

real-time systems. Therefore, we evaluated the system performance on the incremental level in

speech only and speech plus gesture setups, using incremental evaluation metrics (Schlangen

and Skantze, 2009) as follows:

• average first correct (fc): how deep into the utterance (as percentage of the whole

utterance duration) does the system makes a correct decision the first time, potentially

changing its mind again later?

• average first final (ff): how deep into the utterance does the system makes a correct

final guess?

• average edit overhead (eo): ratio of necessary edits/all edits, indicating how stable the

decisions of the system are.

As shown in Figure 5.5, incorporating gestures doesn’t lead to an earlier first correct deci-

sion on average. In both language-only and multimodal tests, the average fc is 0.24. It might be

due to the fact that descriptions often start with speech, hence speech contributes earlier than

gestures. Moreover, at the beginning of a scene description, the first deictic gesture simply
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Figure 5.6: Results of incremental evaluation. See text for description of metrics. For all metrics, lower

numbers denote better performance.

indicates an object in the gesture space, without positional information of other objects, the

gesture is not able to differentiate candidate scenes.

When combining speech with gestures, the average eo is slightly higher. It shows that

gestures do contribute information in making the retrieving decision. With the complementary

information of gestures, the system risks more edits to move toward a right decision. The

reward of more edits is an earlier first final correct decision (ff).

As shown in Figure 5.5, when combing gestures with language descriptions, the system

achieves an average ff of 0.65, comparing with a value of 0.67 in speech only situation. For

example, when a description lasts for 30 s, incorporating gestures helps the system to achieve

a first final decision 600ms, which is noticeable, albeit not in a large scale.

Figure 5.5 plots MRR over the course of the utterances (to be able to average, again ex-

pressed as percentage of full utterance). MRR increases continuously, indicating that for this

task, important information can still come late.

Discussion

As shown above, gestures enable the system to achieve earlier first final correct decision, which

will benefit situated communications. It’s promising that in situated dialogues, the system will

understand spatial descriptions without waiting for completed verbal descriptions, making a

computer system more human-like. Moreover, the overhead edits caused by gestures can also

contribute to more interactive system feedbacks. For example, when the system “realises”
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that the system’s decision becomes more ambiguous (in other words, leading to bad retrieving

decisions), the system can request for clarifications so that the route giver can timely change

the description strategy to make the understanding task easier to the system. Such interactions

will lead to more efficient human-system interactions.

5.3.6 Human understanding

To ground our results in human performance, we also evaluated human performances of under-

standing the spatial scene descriptions. We randomly selected 65 scene descriptions (5 scene

descriptions from each participant) and asked workers from the Crowdflower platform to select

the described scenes from 5 distractor scenes, the same as the evaluation setup of the real-time

system.

Similar to the real-time system evaluation setup, we asked workers to select described

scenes with multimodal descriptions, language-only descriptions and gesture-only descrip-

tions. In the language-only setup, the workers beat our system with an accuracy of 0.86. With

the gesture-only descriptions, our system outperforms human workers. The accuracy is 0.18

higher than the human performance. Interestingly, when given multimodal description, the

gestures seem to be distracting to the workers, who performed not only worse than our system,

but also performed worse than when only giving language descriptions. This is presumably

due to the heavy cognitive load of observing the gestures and evaluating the scenes.

The less well human performance with multimodal descriptions suggest that, in real in-

teractions, the delivery of such descriptions would be much more interactive and delivered in

instalments. An instruction giver might adjust her/his descriptions according to the listeners’

interactive feedbacks or clarification requests. To model this interactive instruction giving and

understanding procedure, a system not only needs to interpret the descriptions incrementally,

but also needs to interpret listeners’ feedbacks. We leave it as future work to model interactive

spatial descriptions.

Discussion

On the general performance level, the evaluation results show that our method can success-

fully extract spatial information from the gestures. The “speech-only” condition also achieves

good performance. When combining speech and gestures, the system performance was further

improved, which is consistent with our expectation. However, the improvement is somewhat

limited. One reason for this is that position information is often redundantly encoded in verbal

descriptions. Overlap in content between gestures and speech has been observed in previous

work (Epps et al., 2004); the experimental setting may have further encouraged such redundant
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encoding. In real situations, it may be less likely that speakers indeed mention all attributes,

in which case contributions of modalities may be more complementary. (The system, in any

case, would be ready to handle this.) In a practical system, this redundancy might even be a

useful feature. Here, we allowed the system incremental access to the manual transcription of

the speech. In a live system, this information would come from automatic speech recognition

(ASR), and would be more noisy. We speculate that the redundancy coming from the gestures

will then help locally disambiguate the ASR output. We will test this in future work.

On the incremental level, gestures help to achieve an earlier correct final decision. It’s

promising that in situated dialogues, the system might understand descriptions from humans

without waiting for all verbal descriptions and thus may behave more human-like. Moreover,

gestures result in more overhead edits (Figure 5.5). This signal can be used for clarifications in

situated dialogues. For instance, while a route giver notices that the system’s decision changes

to bad decisions, the route giver might change the description strategy to make the decoding

task easier, or the system can make clarification requests. We believe these signals will lead to

more human-like interactions.

5.4 Summary

In this chapter, I described a multimodal system that builds and applies spatial descriptions to

a scene retrieval task. The evaluation results in uni-modal setups show that both speech and

gestures are informative for the scene retrieval task. Combining speech and gestures further

improves the system performance. Furthermore, the system was evaluated in terms of incre-

mental processing performance. The results show that gestures help to achieve earlier final

correct decisions. Hence, gestures not only contribute information, but also benefit interpre-

tations on the incremental level due to its parallel nature with speech. This will benefit more

dialogical tasks such as triggering immediate clarification request. I leave it as future work to

implement more dialogical systems.
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Investigate symbolic and iconic modes in object

descriptions

The previous two chapters described a real-time system that models the representation and

real-time incremental processing of multimodal spatial descriptions composed of abstract de-

ictics and verbal utterances. In this chapter, I investigate the interplay of semantics between

symbolic (natural language) and iconic (hand-drawn sketches) modes in multimodal object de-

scriptions. Based on the Multimodal Object Description Corpus described in Chapter 3, the

meanings of multimodal object descriptions are modelled; the contributions of natural language

and sketches with an image retrieval task are evaluated. I show that multimodal descriptions

outperform verbal- or sketch-only descriptions. Adding even very reduced iconic information

to a verbal image description improves the image retrieval accuracy.

6.1 Draw and Tell: iconic and symbolic modes in object descrip-

tions

In natural interactions, descriptions are typically multimodal: we describe a rout as “along the

fountain” while gesturing the trajectory of the route into the air or sketch the trajectory on a

piece of paper (Emmorey et al., 2000a; Tversky et al., 2009); we may describe an elephant as

98
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Elephant, trunk coiled towards

mouth, facing right

Figure 6.1: A photograph; a verbal description of its content; and a sketch.

“facing right, trunk coiled towards to mouth” and gesture/sketch how exactly the trunk is coiled,

as shown in Figure 6.1. While natural language conveys symbolic information conveniently

(e.g., describing the category of a landmark or an object with words fountain and elephant or

describe visual attributes as “’facing right’), iconic information encoded in gestures/sketches

convey information visually, indicating visual features that are difficult to encode in language,

such as the exact the shape of a coiled trunk.

Especially, descriptions of visual objects or situations can be supported by the iconic mode

of reference provided by gestures or sketches, that is, reference via similarity rather than sym-

bolic convention (Pierce, 1867; Kendon, 1980b; McNeill, 1992; Beattie and Shovelton, 1999).

However, in previous work, these descriptions are typically ‘mono-modal’, either using purely

verbal descriptions (Schuster et al., 2015; Hu et al., 2016),1 or via hand-drawn sketches (Sangk-

loy et al., 2016; Qian et al., 2016; Yu et al., 2016).

I’m interested in modelling the joint contribution of symbolic (i.e., natural language) and

iconic (i.e., hand-drawn sketches) modes. A direct, but controlled model of this task is the

image retrieval task that retrieves one photograph out of many photographs based on a descrip-

tion of it. With the Multimodal Object Description corpus introduced in Chapter 3, I investigate

the interplay of semantics of symbolic and iconic mode in multimodal object descriptions. In

particular, the rest of this chapter addresses following research questions: a) How well natural

language and hand-drawn sketches perform on their own in an image retrieval task (i.e., mono–

modal models); b) How well the iconic information in sketches can improve the performance

of natural language descriptions in an image retrieval task (i.e., multimodal model); c) In order

to be informative, how many details should be included in a sketch?

In what follows, I first describe how the meanings of multimodal object descriptions are

modelled, then describe and discuss the evaluation experiments.

1As implemented and in commercial use on popular internet search engines.
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6.2 Model the meaning of multimodal object descriptions

Using a model of grounded language semantics and a model of sketch-to-image mapping, we

model the multimodal meaning of object descriptions. We compose a joint meaning represen-

tation out of individual description components, namely, verbal descriptions and hand-drawn

sketches. Then we combine the meanings from both modalities using a late fusion approach

(Atrey et al., 2010).

6.2.1 Grounding verbal descriptions

To provide an objective judgement on how well a verbal description fits with a photograph, we

adopt the “words-as-classifiers” (WAC) model (Kennington and Schlangen, 2015; Schlangen

et al., 2016), grounding a verbal description to visual features of a photo.

The WAC model trains a logistic regression classifier for each word. The classifier takes

the feature vector of a photo as input, and provides a score which reflects the fitness between

the photo and the word (0 the worst and 1 fits perfectly). The feature vectors of photos were

extracted with a convolutional neural network (i.e., the Triplet Network model in this work )

trained on the Sketchy dataset (Schroff et al., 2015; Sangkloy et al., 2016).

Each word classifier was trained with feature vectors of all images that were described with

the word. For example, to train a classifier for the word elephant, we take all the images that

described with the word elephant, using them as positive features, while randomly select the

same amount of images that were not described with elephant, using them as negative features.

As some words are rare in the corpus (e.g., “smiley”), we only trained classifiers for words

which appear more than 10 times.

Given an image description D : wc, wa1 , wa2 , · · · , wai , where wc indicates the category

word of an object and wai indicates an attribute word in the object description, we compute a

combined fitness score between the description D and a candidate photograph P as following:

sD(D|P) = swc(P)×
n
∑

i=1

swai
(P) (6.1)

where sw(·) indicates the classifier score. Attribute scores are additive, while the overall

attribute score and the category score are multiplicative.

For some attribute words that are in the test set but not in the training set, we simply left

out the words in the evaluation process.
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Figure 6.2: The GoogLe network from Sangkloy et al. (2016). The Image network and the sketch

network are both pre-trained with an image/sketch classification task ( with classification losses), then

fine-tuned for an sketch based image retrieval task with an embedding loss. P and S indicate the feature

vectors that represent images and sketches. For detailed descriptions of the network and the training

procedure, please refer to the original paper.

6.2.2 Comparing sketches with images

The original work that introduced the Sketchy dataset provided a “Triplet Network” model that

embeds images and features into the same vector space (Sangkloy et al., 2016). As shown in

Figure 6.2, the network is composed of a sketch net and an image net, encoding sketches and

photos into vectors in a shared vector space.

Hereby, I briefly describe the “triplet network”. For more details, please refer to the original

paper. The “triplet network” is composed of a sketch network and an image network, which

are with the same structure. The whole network was trained with a ranking loss function, with

input tuples of the form (S, I+, I-) corresponding to a sketch, an image that matches the sketch

and an image that is non-matching. By minimising the loss function, sketch and corresponding

photos are mapped into the embedding space as close as possible to each other. We take the

output feature vectors of the final layer in sketch and image networks, and use the feature
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vectors to represent sketch and images.

As all the images and sketches are mapped to a joint embedding vector space, the vector

distances between sketches and images reflect their similarities. A smaller distance indicates

better visual similarity. Hence, we turn the reciprocal of the distance to a score to measure the

fitness between a sketch and an image, as follows:

ssk(P|S) = d(P,S)−1 (6.2)

where S and P correspondingly indicate feature vectors of a sketch and a photograph de-

rived with the sketch network and the image network.

6.2.3 Fusion

We multiplied the scores of sketches and verbal descriptions to derive a final score, making it

a late fusion approach as follows:

ssk+cat+att = ssk(P|S)× sD(D|P) (6.3)

6.3 Experiments

In this section, I provide the details on how we evaluated the proposed models. To inspect the

contribution of language and sketches in image descriptions, we evaluated the performance of

the model with following setups: verbal descriptions, sketch-only and verbal descriptions with

various ratios of sketch details, as shown in Table 6.1. We will first describe the evaluation met-

rics, then give details on and discuss evaluation results of mono-modal models and multimodal

models, as well as evaluations results with reduced sketches.

6.3.1 The image retrieving task

We evaluated the interplay of symbolic and iconic semantics with an image retrieving task with

mono-modal and multimodal setups. Given a verbal description and a sketch of a photograph,

we aim to retrieve the target image from a set of the images.

We conducted the experiments on the Sketchy data Sangkloy et al. (2016). The original

data was split into train-test sets for training and evaluating the sketch-image network. To use

the sketch network, we followed the original train-test setup. In total, there are 1071 images in

the test set. Each image in the test set was paired with around 5 sketches (i.e., 5375 sketches in

total). The chance level accuracy for the image retrieving task is 0.000933.
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6.3.2 Metrics

Following the conventions of evaluating image retrieving tasks, we measured the performance

of the image retrieving models by average Recall@K.

For each retrieving task, if the target image is ranked among the top K candidate images,

the recall @K equals 1, otherwise, recall @K equals 0. We take the average recall over all

retrieving tasks to measure the performance of a model. In Table 6.1, we report the average

recall of @K=1 and @K=10 for each evaluation setup.

6.3.3 Experiment 1: Mono-modal models

First of all, we evaluated the mono-modal models to quantify the performance of each modality.

Namely, verbal only model and sketch only model (sk). For the verbal only evaluation, we

further evaluated the category word only model (cat), the attribute words only model (att),

intended to inspect the contribution of words in terms of distinguishing objects within and

across categories.

Category word only (cat) Category words make objects discriminative among objects from

other categories.

For category word only evaluation, we judged the fitness between an image and a category

word with the WAC model. Among all the candidate images in the test set, the one with highest

score is retrieved. The model achieves an average recall of 0.12 (@K=1) and 0.9 (@K=10),

which is higher than a random chance level recall @K=1 of 0.093%, but much lower than the

ideal score 1.0.

As in the test set, there are 86 images in each category, hence, given the category word, the

chance level recall is 0.12 (@K=1). It shows that the model can efficiently distinguish objects

between categories, but not within categories.

Attribute words only (att) Attribute words describe the colour, shape, orientation and other

visual attributes. Attribute words can be discriminative among objects which are within the

same category and with different visual attributes (e.g., an elephant “facing right” vs. an ele-

phant “facing left” ). However, objects from different categories might share the same at-

tributes, thus attribute words are not discriminative for objects from different categories. For

example, an elephant and a bear can both be described with the attribute “facing right”. Hence,

the visual attribute “facing right” is not discriminative.

In this setup, we take all the attributes of each object description, compute a fitness score

using the WAC model for each attribute word, then take the average fitness score as a final
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fitness judgement. The model achieves an average recall of 0.03 (@K=1) and 0.23 (@K=10).

The results are not surprising. Given that the attribute words such as “facing right” can be

used to describe many images both within and across categories. The attribute words are not

very discriminative on their own.

Category word + attribute words (cat+att) Category words and attribute words jointly de-

lineate an object within and among object categories. Therefore, we combined category words

and attribute words for a full verbal evaluation model.

With this setup, we simply take the average score of category words and attributes for the

fitness judgement. The model achieves an average recall of 0.14 (@K=1) and 0.83 (@K=10).

While the joint model outperforms the the cat- and att-only models in terms of Recall @1

score, it underperforms the cat-only model in terms of Recall @10 score. We conjecture, this

is due to the fact that objects among different categories can be described with similar or the

the same attribute words. Therefore, attribute words may bring in noisy information when

distinguishing object across categories, where category words cat is informative.

Sketch only (sk) We also evaluate the sketch only model with various ratios of sketch details,

ranging from 10% to 100%.

As shown in Table 6.1, the average recall increases with the increase of the ratio of sketch

details. Looking more closely, at the beginning, the average increases more. This shows that

humans often draw most salient parts first, and enrich the sketch with small details later. Given

100% sketch details, the model achieves a Recall @ 1 score of 0.35. While outperforming the

language-only models, it underperforms the multimodal models. The results demonstrate that

while the iconic information encoded in sketches are informative to a certain degree, a joint

retrieving model can benefit from incorporating symbolic information in natural language.

6.3.4 Experiment 2: multimodal models

We evaluated the retrieval performance of the multimodal model, where verbal descriptions and

sketches contribute together. Similar to the mono-modal evaluations, we evaluated multimodal

models in following setups: cat+sketch, att+sketch and cat+att+sketch.

As shown in Figure 6.1, while full sketches achieve 0.35 of Recall @1 (Recall@10 = 0.84),

when combining full sketches with attribute words, the average Recall @1 increases to 0.37

(Recall@10 = 0.87). In comparison, combing category words with full sketches achieves an

average Recall@1 of 0.41 (Recall@10 = 0.96). This indicates that, category words are com-

plementary to sketches (iconic information), while attribute words supplement with sketches

to a larger extent.
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Sketch Detail 10% 30% 50% 70% 90% 100%

Recall @1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10

sk 0.01 0.06 0.07 0.27 0.17 0.55 0.25 0.70 0.31 0.79 0.35 0.84

att 0.03 0.23 0.03 0.23 0.03 0.23 0.03 0.23 0.03 0.23 0.03 0.23

cat 0.12 0.90 0.12 0.90 0.12 0.90 0.12 0.90 0.12 0.90 0.12 0.90

cat+att 0.14 0.83 0.14 0.83 0.14 0.83 0.14 0.83 0.14 0.83 0.14 0.83

sk+att 0.03 0.16 0.09 0.39 0.20 0.64 0.28 0.76 0.33 0.83 0.37 0.87

sk+cat 0.12 0.76 0.20 0.85 0.28 0.92 0.34 0.94 0.38 0.96 0.41 0.96

sk+cat+att 0.15 0.81 0.21 0.87 0.30 0.92 0.35 0.94 0.38 0.95 0.41 0.96

Table 6.1: Average recall at K=1 and10, at different levels of sketch detail. Highest number in column

in bold. Numbers for language-only conditions do not change with level of sketch detail.

When combining full verbal descriptions with full sketches, the model achieves a Recall@1

score of 0.41 (Recall@10 = 0.96), which equals the performance of cat+sk.

6.3.5 Experiment 3: reduced sketch details

While the sketch dataset was collected in an offline setup, in which participants were allowed

to draw full sketches of objects without verbal descriptions in parallel, in situated commu-

nications, humans typically speak and sketch simultaneously. Thus, due to timing pressure,

humans often only sketch part of an object, rather than give full sketch details. For exam-

ple, a speaker may only sketch the trunk of an elephant to make it distinguishable from other

elephants, while describing colour, orientation and other visual attributes verbally. There-

fore, we investigated the performance of the retrieving models with reduced sketch details

at 10%, 30%, 50%, 70%, 90% respectively. By systematically reducing sketches and combing

the reduced sketches with images, we show to what degree verbal descriptions can recover the

information contributed by sketches.

Reduced sketches also simulate situated communications, where humans only draw the

most salient part of an object while complementing the sketch with verbal descriptions. We

leave it as future work to conduct experiments with salient strokes.

As aforementioned in Chapter 3, the sketches were stored as SVG files, an XML-based vec-

tor image format that provides high resolution start and end timing information of each stroke.

This allowed us to systematically reduce the sketch details according to their timestamps. For

each sketch, we take the first n% strokes according to their end time. On one hand, this re-
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flects the sequential aspects of strokes which sheds light on incremental processing of image

retrieving, on the other hand, humans tend to draw salient features first. Hence, we assume that

earlier strokes reflect salient features among all strokes of sketches.

As shown in Figure 6.1, the average Recall@1 of the full model (cat+att+sk) increases

with increased sketch details. 70% sketch with verbal descriptions can achieve the same per-

formance as full sketches. In other words, 30% details of the sketch can be recovered by verbal

descriptions.

cat+att 30% sk+cat+att 30% sk 100% sk

chicken, can

see head only,

head is mainly

red skin

Rank=1 Rank=1 Rank=27 Rank=1

camel, light

brown, laying

down, head on

right, has

blanket to ride on

Rank=3 Rank=1 Rank=29 Rank=1

butterfly,

facing left,

white

Rank=3 Rank=1 Rank=32 Rank=1

Figure 6.3: Retrieval with verbal description only (1st column), verbal description plus 30% sketch

(2nd column), 30% sketch (3rd column) and 100% sketch (4th column).

Figure 6.3 shows three examples of the ranking results. For a chicken image, with 100%

sketch or only the verbal description, the target image ranks at top 1 among 1071 candidate

images. When reducing the sketch details to 30%, the rank decreases to 27. Combining the
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verbal description with 30% sketch ranks the target image at top 1. Similarly, for a camera and

a butterfly image, the verbal descriptions rank the target image at 3, when enhancing the verbal

description with 30% sketches, the target images are ranked at top 1. Therefore, only a limited

amount of sketch details help to improve the retrieval performance.

6.4 Discussion

While we used hand-drawn sketches in this work, the results are also interesting for interpreting

iconic gestures. Sketches are similar to gestures in the sense that both signify iconicity in a

visual way. As we have seen, sketches can be encoded into feature vectors which represent

corresponding iconic information. We believe it’s also possible to encode iconic gestures into

feature vectors to represent iconic information. The challenge lies in collecting large scale

corpora of iconic gestures.

However, gestures are different from sketches in terms of following aspects: 1) Gestures vi-

sualise iconicity in a shared physical space where the trajectory disappears immediately. There-

fore, the interpretation of gestures must proceed in a time-constrained, incremental manner, so

as to not overload a listener’s visual memory. 2) Iconic gestures are usually accompanied and

synchronised to speech. Hence, gestures cannot provide as many details as sketches do, but

only some most salient iconic features of mentioned objects. In other words, they are closer to

our reduced sketches. 3) As gestures encode fewer details, the interpretation of gestures can be

largely dependent on accompanied language. In comparison, sketches can encode as many de-

tails as one intends to, thus the interpretation of sketches are less dependent on verbal content;

4) The person producing the sketch can go back and correct themselves. In contrast, we cannot

look at our gestures and re-gesture. Therefore, iconicity in gestures is more abstract, distorted

than in sketches. The above challenges make the interpretation of gesture related multimodal

communications more challenging than interpreting sketches. We leave it as future work to

investigate how to model the meaning of iconic gestures.

6.5 Summary

In this chapter, I introduce a study that investigates the interplay of semantics between sym-

bolic and iconic modes in object descriptions. Combining a model of grounded word meaning

with an existing model of image/sketch embedding, I show that multimodal object descrip-

tions outperform verbal- or sketch-only descriptions in an image retrieval task. Furthermore,

adding even reduced sketches improves the overall performance of the image retrieving task.

The verbal descriptions can make up to 30% of reduced sketches. This suggests that, interfaces
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allowing iconic gestural input, which also provide reduced iconic information, may also enable

machines to understand humans better than language-alone interfaces.



7
Learning semantic categories of multimodal

descriptions

After introducing works on modelling multimodal descriptions that contain natural language

and abstract deictics/sketches, in this chapter, I present a study conducted with a more realis-

tic dataset - the SAGA corpus, which contains multimodal route descriptions. The results of

the study show that natural language is informative for the interpretation of co-verbal iconic

gestures, which convey meanings by assembling visual similarities to referents. Although var-

ious works in gesture studies have shown that the interpretation of iconic gestures depends

on the accompanied content, for human-computer interfaces, the key question is: how can we

model the interpretation of iconic gesture with computational approaches? In the chapter, I

first describe the task formally, then propose a computational approach to compute multimodal

semantics of utterances. Finally, I describe the experiments which evaluated the approach, and

discuss the results.

7.1 Represent multimodal utterances with semantic concepts

Previously, I have discussed multimodal descriptions composed of natural language and iconic

gestures, as well as the semantic relations between iconic gestures and the accompanying

109
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Figure 7.1: Speech / gesture description of a virtual scene: “. . . sind halt zwei Laternen” (“[there] are

two lanterns”). Gestures indicate the amount (two) and relative placement of the two lanterns, while

speech indicates the entity name and amount. From Lücking et al. (2010).

speech. Yet, it is still unclear how to computationally derive the semantics of iconic ges-

tures and build corresponding multimodal semantics together with the accompanying verbal

content. In this chapter, I address this “how” question and present a computational approach

that predicts speech and gesture semantic categories using speech and gesture input as features.

Speech and gesture information within the same semantic category can then be fused to form a

complete multimodal meaning, where previous methods on representing multimodal semantic

(Bergmann and Kopp, 2008b; Bergmann et al., 2013a; Lascarides and Stone, 2009; Giorgolo,

2010) can be applied. Consequently, this enables HCIs to construct and represent multimodal

semantics of natural communications involving iconic gestures.

The work in this chapter is based on the data from the SAGA corpus (Lücking et al., 2010).

Figure 7.1 shows a multimodal utterance from the SAGA corpus. When describing two lanterns,

a person described “two lanterns” verbally, while showing the relative position with two hands

facing each other. Interestingly, when the same gesture is accompanied by the utterance “a

ball”, the same gesture may indicate shape.

From the SAGA corpus, I take gesture-speech ensembles as well as semantic category

annotations of speech and gestures according to the information they convey. Using words

and annotations of gestures to represent verbal content and gesture information, I conducted

experiments to map language and gesture inputs to semantic categories. The results show that

language is more informative than gestures in terms of predicting iconic gesture semantics and

multimodal semantics.

7.2 Task formulation

I now describe the task formally. Suppose a verbal utterance U is accompanied by an iconic

gesture G (as shown in Figure 7.2), G and U form an ensemble (U,G) that denotes a multi-

modal utterance. Our ultimate goal is to represent the interpretation of the multimodal utterance
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Verbal utterance U “two, lanterns”

Gesture G two hands facing each other

Speech semantics [entity, amount]

Gesture semantics [relative position, amount]

Multi-modal semantics [entity, relative position, amount]

Figure 7.2: Example of a multimodal utterance, and semantic categories.

in a computer system, which can be applied to subsequent tasks such as locating landmarks ac-

cording to the descriptions (i.e., referential resolution). As shown in Figure 7.3, we frame the

task of forming such an interpretation into a procedure composed of two phases: map the input

information of (U,G) to a set of semantic categories according to the information they con-

vey (as shown in Figure 7.3), then compose the multi-modal semantics of the ensemble with

information in the same category across speech and gestures.

We define a function f that computes the semantic types of a speech-gesture ensemble

(U,G). It takes multimodal features of (U,G) as input, and outputs a set of labels ci which in-

dicates semantic categories. Additionally, we assume that each modality has its own mapping

function fg and fu, which takes uni-modal features as input, and outputs the semantic cate-

gories of corresponding modality (i.e., speech or gesture). In this work, we make the intuitive

assumption that the multimodal semantic categories of (U,G) are in fact the union of fu(U)

and fg(G), as follows:

fu(U) = {c1, c2}

fg(G) = {c2, c3}

f(U,G) = {c1, c2, c3}

(7.1)

Figure 7.3 illustrates an example of mapping a multimodal utterance “two lanterns G” to

three semantic categories. While the verbal content “two lanterns” are mapped to amount and

entity, the gesture G is mapped to amount and relative positions. The union of the multimodal

semantics are entity, amount and relative positions. The represented interpretation of the en-

semble (U,G) is composed of the semantic categories and corresponding values.

We derive input features for the mapping task from speech and gestures respectively:

• Language features: The word tokens of each verbal utterance are taken as a bag-of-words

to represent linguistic information.
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f(U, G)

entity

amount

relative 

position

lantern

2

obj1:(x1, y1) 

 obj2:(x2, y2)

Figure 7.3: Mapping a speech-gesture ensemble to semantic categories in blue rectangles (U and G

indicate speech and gesture). Dashed rectangles indicate the value of each semantic category, which are

not included in our current work.

• Gesture features: Hand movements and forms, including hand shape, palm direction,

path of palm direction, palm movement direction, wrist distance, wrist position, path

of wrist, wrist movement direction, back of hand direction and back of hand direction

movement, are derived as gesture features (as there was no hand motion data, these

features were manually annotated, see below for details).

7.3 Modelling the learning of multimodal semantics

We frame the verbal utterance/gesture multimodal semantic category mapping problem as a

multi-label classification task (Tsoumakas and Katakis, 2006), where several labels are pre-

dicted for an input.

Given an input feature vector X , we predict a set of semantic category labels {c1, · · · , ci},

of which the length is variable. The prediction task can be further framed as multiple binary

classification tasks. Technically, we trained a linear support vector machine (SVM) classifier1

for each semantic label ci (6 label classifiers in total). Given an input feature X , we apply

all semantic label classifiers to the feature vector. If a semantic label classifier gives positive

prediction for input X , we assign the semantic label to the input. For example, given feature

vector of the input utterance “two lanterns”, only the amount and entity label classifiers give

positive predictions, thus we assign amount and entity to the input utterance.

The word/gesture utterances are encoded as several-hot feature vectors as input of the clas-

sifiers, which will be explained now.

1penalty: ℓ2, penalty parameter C=1.0, maximum iteration 1000, using an implementation in

http://scikit-learn.org.
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Semantics Features Precision Recall F1-

score

Language

L 0.85 0.75 0.79

G 0.47 0.37 0.38

L+G 0.86 0.69 0.75

Gesture

L 0.80 0.78 0.78

G 0.59 0.63 0.61

L+G 0.82 0.77 0.78

Multimodal

L 0.82 0.80 0.81

G 0.62 0.60 0.58

L+G 0.83 0.80 0.80

Table 7.1: Evaluation results. (L and G indicates language and gesture.)

7.4 Experiments

We randomly selected 70% of the gesture-speech ensembles as a training set, using the rest as a

test set. Three experiments were designed to investigate whether and to what degree language

and gestures inform mono-modal and multimodal semantics. Each experiment was conducted

under 3 different setups, namely, using: a) only gesture features; b) only language features;

c) gesture features and language features, as shown in Table 7.1.

Metrics Following the convention of multi-label classification evaluations, we evaluated our

approach with F1-score, accuracy and recall scores.

Gesture features

Since there is no tracked hand motion data, we used the manual annotations to represent ges-

tures. For instance, the gesture in Figure 7.1 is annotated as: Left hand: [5 bent, PAB/PTR,

BAB/BUP, C-LW, D-CE]; right hand: [C small, PTL, BAB/BUP, LINE, MD, SMALL, C-LW,

D-CE] in the order of hand shape, hand palm direction, back of hand direction, wrist position.

(See Lücking et al. (2010) for the details of the annotation scheme). Other features such as

path of palm direction which are not related to this static gesture were set to 0.

We treated these annotated tokens as “words” that describe gestures. Annotations with

more than 1 token were split into a sequence of tokens (e.g., BAB/BUP to BAB, BUP). There-
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fore, gesture feature sequences have variable lengths, in the same sense as utterances have

variable amount of word tokens.

7.4.1 Language semantics

As shown in Table 7.1, the most informative features of language semantic categories are words

on their own. It achieves an F1-score of 0.79 for each label, well above a chance level baseline

accuracy 0.17. While as expected, gesture features are not very informative for language se-

mantics, the gesture-only still classifier outperforms the chance level baseline with 0.38. The

combination of features in the joint classifier result in slightly worse performance than lan-

guage features alone, suggesting that some of the gestural semantics may be complementary

to, rather than identical to, the language semantics.

7.4.2 Gesture semantics

While language features help predict the semantics of their own modality, the same is not true

of gesture features. The language-only classifier achieves an F1-score of 0.78 when predict-

ing gesture semantics, while the gesture features-only setting only achieves 0.61. Combining

language and gesture features does not improve performance, but results in a slightly higher

precision score (+0.02). This is consistent with previous observations in gesture studies that

iconic gestures are difficult to interpret without speech (Feyereisen and De Lannoy, 1991).

Even humans perform poorly on such a task without verbal content.

In our setup, the abstract gesture features might be one of the reasons of the poor per-

formance. Only 10 manually annotated categories were used to represent gestures, so these

features might not be optimal for a computational model. It is possible that with more accurate

gesture features (e.g. motion features), gestures can be better represented and more informative

for interpreting gesture semantics.

7.4.3 Multimodal semantics

As gestures can add meaningful semantic information not present in concurrent speech, we

trained and evaluated classifiers on multimodal semantic categories. We assume these are the

union of the gesture and language semantics for a given ensemble (as in function f in (7.1)

above). As per the data statistics, there are the same possible 6 atomic categories as the lan-

guage semantics (though they can come from the gesture as well as from the speech). As shown

in Table 7.1, the language-only classifier performs best on this set with an F1-score of 0.81,

marginally outperforming the combined language and gesture features system’s 0.80. Both

significantly outperform the gesture-only classifier. As with the results on gesture semantics,
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this suggests that multimodal meaning and meaning of iconic gesture relies heavily on speech,

in accordance with the finding that the majority of gestures are inherently underspecified se-

mantically by their physical form alone (Rieser, 2015).

Regarding individual semantic categories, we find gesture features are more informative

for shape and relative positions; language is more informative for size, direction and amount

in our dataset. Figure 7.4 shows the gesture and language feature ranking results for classifiers

of entity and relative position accordingly. For relative position label prediction, the most in-

formative language features are the words “rechts” (right) and “links” (left), while hand shape,

such as b bent loose spread (an open palm, thumb applied sideways, but not clearly folded and

with a weak hand tension) and 5 loose (an open palm with a weak hand tension) are the two

most informative gesture features. For size label prediction, the most informative language fea-

tures are words that specify size such as “klein” (small) and “groß” (big); the most informative

gesture feature is back of hand palm direction (btb, back of hand palm facing towards body).

7.5 Summary

Language and co-verbal gestures are widely accepted as an integral process of natural commu-

nication. In this paper, I have shown that natural language is informative for the interpretation

of a particular kind of gesture, iconic gestures. With the task of mapping speech and gesture

information to semantic categories, I show that language is more informative than gesture for

interpreting not only gesture meaning, but also the overall multimodal meaning of speech and

gesture. This work is a step towards HCIs which take language as an important resource for

interpreting iconic gestures in more natural multimodal communication. An interesting direc-

tion for future work is to predict speech/gesture semantics using raw hand motion features and

investigate prediction performance in an online, continuous fashion. This forms part of the

ongoing investigation into the interplay of speech and gesture semantics.
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Conclusion and future work

In this closing chapter, I first give an overview of previous chapters and summarise the works

that have been presented, then I conclude this dissertation and discuss the contributions. This

is followed by a discussion of future work.

8.1 Overview of the dissertation

Since the seminal work of “Put-that-there” (Bolt, 1998), there has been a large amount of work

on multimodal human computer interface, mainly focusing on pointing gestures, symbolic ges-

tures/pen input with pre-defined meanings. These HCIs can only understand a limited set of

pre-defined gestures/pen input which covey meanings on their own. However, natural commu-

nications often involve co-verbal gestures/pen input whose meanings are relatable to the ac-

companying speech. This dissertation aims to work towards a more flexible human-computer

interface that can understand multimodal descriptions, where the meaning of hand gestures/pen

input (i.e., hand-drawn sketches) relates to accompanied the verbal content, rather than being

pre-defined.

I started this dissertation with a look at the background of multimodal communication

(Chapter 2). In particular, I focused on multimodal communication composed of natural lan-

guage and co-verbal hand gestures/sketches, especially on gesture studies of gesture meanings
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and the relation between speech and co-verbal gestures/pen input. I also gave an overview

of works on multimodal human-computer interfaces (HCIs) which model the interpretation of

speech and co-verbal hand gestures. Being well-informed with the knowledge in gesture stud-

ies and HCIs, I discussed the limitations of current HCIs and how the knowledge in gesture

studies can be deployed to build more general HCIs.

After introducing the background, I presented two multimodal corpora: the Spatial Scene

Description Corpus and the Multimodal Object Description Corpus (Chapter 3). The datasets

were collected for works in this dissertation. They are publicly available for researchers in the

community.1. I also briefly introduced the Bielefeld SAGA corpus - a multimodal corpus of

route giving and following dialogues (Lücking et al., 2010), which were used to conduct the

experiments in Chapter 7.

Chapter 4 presented a system that interprets spatial scene descriptions. While natural lan-

guage provides size, colour and shape information, abstract deictic gestures denote the po-

sitional information and spatial layout of objects. Hence, only when being combined with

speech, the abstract deictic gestures get a concrete meaning. After describing the framework

of the system, 3 variants of representations were presented, namely, a verbatim representation,

pre-defined property label representation and automatic clustering representation. The three

representation variants were evaluated with a scene retrieving task. The results show that the

automatically performs best, and it overcomes the limitations of Variant A and Variant B. In

particular, it reduces the number of symbolic labels need to be kept in the system and automat-

ically learns a set of symbolic labels rather than pre-defined labels, making it easy to scale to

larger application domain with more complex objects, such as real-life landmarks.

After exploring the representation methods, I presented a real-time system towards un-

derstanding multimodal descriptions incrementally. Using data from the Spatial Description

Corpus, an utterance segmenter, NLU module, and a deictic gesture detector were trained for

individual system components. The system was evaluated in a real-time manner by replaying

the recorded data. The results show that abstract deictic gestures improve the overall accuracy

of the interpretation task. Moreover, the deictic gestures also lead to an earlier final correct

interpretation decision of the system due to its parallel nature with the verbal content.

While Chapter 4 and 5 focus on abstract deictic gestures, Chapter 6 presented a study

that investigates the interplay of symbolic (natural language) and iconic (hand-drawn sketches)

modes in multimodal object descriptions. The meaning of symbolic and iconic meanings were

modelled with two models originally introduced in previous works and evaluated the contribu-

1A Spatial Scene Description Corpus https://tingh.github.io/resources/scene_

description; Draw and Tell: a Multimodal Object Description Corpus https://tingh.github.

io/resources/object_description

https://tingh.github.io/resources/scene_description
https://tingh.github.io/resources/scene_description
https://tingh.github.io/resources/object_description
https://tingh.github.io/resources/object_description
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tions of natural language and sketches with an image retrieval task. The results show that even

adding limited details of sketches improves the performance of the image retrieving model. I

also discussed how this relates to the modelling of iconic gesture meanings.

The experiment results also show that iconic information in sketches can be effectively

represented with feature vectors. As iconic gestures also convey meaning by resembling visual

similarities, It’s likely that iconic gestures can also be encoded as vectors in a similar way.

Currently, the major challenge lies in a lack of large scale dataset required for training deep

learning networks to encode iconic gestures.

Chapter 7 presented an approach that computes semantics of multimodal route giving de-

scriptions. Inspired by Kopp and Bergmann (2017a); Bergmann et al. (2013b) which deploys

the coordination between speech and co-verbal hand gestures in a multimodal behaviour gen-

eration task, I framed the task of computing semantic categories of iconic gestures as a multi-

label prediction problem with words in verbal utterances and hang gesture features as input.

The results show that natural language is informative for the interpretation of iconic gestures.

Given the experiments and evaluations described above, I conclude that:

• Due to the parallel nature of speech and gestures, deictics can lead to better and earlier

interpretations of multimodal descriptions in an incremental setup, which is essential for

triggering immediate clarification requires in dialogue systems;

• Multimodal object descriptions composed of sketches (iconic elements) and verbal ut-

terances outperforms verbal-only or sketch-only descriptions;

• For co-verbal gestures which only receives coherent interpretation together with accom-

panied verbal content, the verbal content is informative for interpreting such co-verbal

gestures.

8.2 Future work

In this dissertation, I have addressed several research questions related to interpreting and ap-

plying multimodal descriptions. The presented work also opens up several future research

questions that will lead to more general real-time multimodal interfaces. In particular, hereby

I discuss following directions for future work:

• Build large scale multimodal corpora: A key challenge of modelling the interpretation

and application of natural multimodal communication with computational methods (e.g.,

deep learning neural networks) is to collect large scale datasets for training and evalu-

ating the computational models. To date, despite the availability of portable video/au-

dio recording devices and motion tracking devices, there is still a lack of large scale
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multimodal datasets that includes verbal utterances and hand motion data. A potential

research direction for future work is to build large scale multimodal datasets. Recently,

crowdsourcing platforms such as Amazon Mechanical Turk2 and Crowdflower3 have be-

come more and more popular for collecting large scale datasets, though currently these

platforms are most convenient for collecting textual data and sketches. Other approaches

for collecting video/audio recordings include retrieving video recordings from Youtube4,

which provides large amount of data involving real-life conversations. I leave it as future

work to explore the most convenient data collection approach.

• Modelling the interpretation of co-verbal iconic gestures: Due to a lack of data, in this

dissertation, I only investigated the interplay of semantics between symbolic and iconic

modes with hand-drawn sketches. One of the future work directions is to model the

interpretation of co-verbal iconic gestures. It’s an interesting task to investigate whether

it’s possible to represent iconic gestures with feature vectors in the way we encoded

sketch strokes. Encoding iconic gestures into feature vectors will facilitate corresponding

multimodal fusion tasks and application tasks such as image retrieval with multimodal

descriptions composed of verbal utterances and iconic gestures. As iconic gestures are

more abstract and distorted than sketches, it’s also challenging to collect enough amount

of data for training neural networks that can encode iconic gestures.

• Build a general real-time multimodal system: The ultimate goal of learning to inter-

pret and apply multimodal descriptions is to build a general multimodal human-computer

interface that can process what comes natural. While in this dissertation I have made a

first effort to learn the semantics of co-verbal gestures using natural language information

and hand gesture features, due to a lack of data, it was not possible to build computational

models to extract and represent iconic information from raw hand gestures. I leave it as

future work to build a general real-time system that can learn to extract information from

co-verbal gestures, represent the information in the system and apply the represented

knowledge to a real-life task such as image retrieval or navigation tasks.

2https://www.mturk.com/
3http://www.crowdflower.com/
4www.youtube.com/

https://www.mturk.com/
http://www.crowdflower.com/
www.youtube.com/
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