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Abstract: In this paper, we present a model of finitely repeated games in which

players can strategically make use of objective ambiguity. In each round of a finite rep-

etition of a finite stage-game, in addition to the classic pure and mixed actions, players

can employ objectively ambiguous actions by using imprecise probabilistic devices such

as Ellsberg urns to conceal their intentions. We find that adding an infinitesimal level

of ambiguity can be enough to approximate collusive payoffs via subgame perfect equi-

librium strategies of the finitely repeated game. Our main theorem states that if each

player has many continuation equilibrium payoffs in ambiguous actions, any feasible pay-

off vector of the original stage-game that dominates the mixed strategy maxmin payoff

vector is (ex-ante and ex-post) approachable by means of subgame perfect equilibrium

strategies of the finitely repeated game with discounting. Our condition is also necessary.

Key words: Objective Ambiguity, Ambiguity Aversion, Finitely Repeated Games,

Subgame Perfect Equilibrium, Ellsberg Urns, Ellsberg Strategies.

JEL classification: C72, C73, D81

1 Introduction

Contrary to the predictions of early models of repeated games with complete informa-

tion and perfect monitoring which state that any finite repetition of a stage-game with a

unique Nash equilibrium admits a unique subgame perfect Nash equilibrium payoff (see

Benoit and Krishna (1984), Gossner (1995), Smith (1995)), the experimental evidence

suggests at least a partial level of cooperation (see Kruse et al. (1994) and Sibly and

Tisdell (2017)). This paper presents a new model of finitely repeated games with com-

plete information and perfect monitoring that allows for an explanation of the birth of

cooperation in a larger class of normal form games. This class includes some stage-games
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with a unique Nash equilibrium.

The inconsistency of the predictions of the classic model of finitely repeated games

with complete information and perfect monitoring with empirical evidence is subject to

an extensive discussion and has led game theorists to relax their assumptions on the

information structure available to players (see Kreps et al. (1982) and Kreps and Wilson

(1982)), the perfection of the monitoring technology (see Abreu et al. (1990), Aumann

et al. (1995)) and players’ rationality (see Neyman (1985), Aumann and Sorin (1989)).

However, the type of actions available to players also matters.

How well do pure and mixed actions capture the intentions of players involved in a

dynamic game?

Greenberg (2000) argues that in a dynamic game, a player might want to exercise

her right to remain silent. In the rock-paper-scissors game, a player might want to play

”rock” with probability 0. These intentions are not captured by a pure or a mixed action,

but rather by a set of lotteries over the set of the player’s actions.

The strategies used in the proofs of the folk theorems to sustain equilibrium pay-

offs involve some punishment phases in which potential deviators are punished. In such

phases, the player being punished responds to the punishment scheme settled by her

fellow players, which is usually a minimax profile. In daily life, it is not always clear how

precise a player would be when specifying what she intends to do in the event that her

fellow player deviates from an agreement. An illustration of this situation can be found

in incomplete contracts in which participants agree on the collusive paths to follow but

are silent (totally ambiguous) about the enforcing mechanisms. In such cases, players

might think that the deviator herself might be immune to the punishment scheme if she

is aware of it in advance. Such behavior is not well-captured by pure or mixed strategies

of the classic models of repeated games.

This paper presents a model of finitely repeated games with complete information

and perfect monitoring in which players are allowed to use objectively ambiguous ac-

tions. In each period of the repeated game, in addition to the classic pure and mixed

actions, players can employ objectively ambiguous actions by concealing their intentions

in imprecise probabilistic devices, such as Ellsberg urns. I follow the work of Riedel

and Sass (2014) and Riedel (2017) in referring to such imprecise action as an Ellsberg

action. An Ellsberg action of a player can be thought of as a compact and convex set

of probability distributions over the set of pure actions of that player. As in the related
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literature on ambiguity in games (see Riedel and Sass (2014), Riedel (2017), Greenberg

(2000), Gilboa and Schmeidler (1989) and Ellsberg (1961)), I assume that players are

ambiguity-averse and aim to maximize the worst payoff they expect to receive.

The main finding of this paper is that our model of finitely repeated games can explain

the birth of cooperation where the classic model with pure and mixed strategies fails to

do so. We provide an example game to illustrate the idea that adding an infinitesimal

level of ambiguity can be enough to approximate collusive payoffs via subgame perfect

equilibrium strategies of the finitely repeated game. The main theorem states that if

each player has many continuation equilibrium payoffs in Ellsberg actions, any feasi-

ble payoff vector that dominates the mixed strategy effective maxmin payoff vector is

(ex-ante and ex-post) approachable by means of subgame perfect equilibrium strategies

of the finitely repeated game with discounting. The existence of multiple continuation

equilibrium payoffs in Ellsberg actions for each player is also a necessary condition for

cooperation to arise in the finite horizon.

Earlier models of finitely repeated games assumed that players could employ only

pure or mixed actions. Benoit and Krishna (1984), Benoit and Krishna (1987), and

Smith (1995) provided conditions on the stage game that ensures that the set of equi-

librium payoffs of the finitely repeated game includes any feasible payoff that dominates

the minimax payoff vector. Gossner (1995) analyzed finitely repeated games in which

players are allowed to use mixed actions, but do randomize privately.

Kreps et al. (1982) analyzed finite repetitions of the prisoners’ dilemma and showed

that the incompleteness of the information on players’ options could generate a signif-

icant level of cooperation, and Kreps and Wilson (1982) showed that adding a small

amount of incomplete information about players’ payoffs could give rise to a reputation

effect and therefore allow the monopolist to earn a relatively high payoff in finite repe-

titions of the Selten’s chain-store game.

Neyman (1985) proved that in presence of complete information and perfect monitor-

ing, utility-maximizing players can achieve cooperative payoffs in finite repetitions of the

prisoners’ dilemma given that there is a bound on the complexity of strategies available

to them. Aumann and Sorin (1989) studied two-person games with common interests

and demonstrated that if each player ascribes a positive probability to the event that

her fellow player has a bounded recall, cooperative outcomes can be approximated by

pure strategy equilibria.

page 3



Ghislain-Herman DEMEZE-JOUATSA Bielefeld University

Mailath et al. (2002) studied examples of finitely repeated games with imperfect

public monitoring and illustrated that less informative signals about players’ actions can

allow for approximate Pareto superior payoffs by means of perfect equilibria of the re-

peated game, even if the stage game has a unique Nash equilibrium payoff. Sekiguchi

(2002) studied the imperfect private monitoring case and provided a characterization of

the stage-game whose finite repetitions admit non-trivial equilibrium outcomes.

The remainder of this paper is organized as follows: Section 2 presents an example of a

game in which the classic model of finitely repeated games with pure and mixed strategies

can not explain the birth of cooperation while the introduction of an infinitesimal level of

ambiguity in the model allows for sustaining cooperation. Section 3 presents the model

as well as some preliminary results. The main theorem of the paper is presented and

discussed in Section 4. Section 5 provides the proofs.

2 The benefit of the ambiguity

Allowing players to play Ellsberg actions make the set of stage-game action profiles larger

and less tractable. However, this can allow to explain the birth of cooperation when the

classic model of finitely repeated games with pure and mixed actions fails to do so. In

this section, we use a three-player normal form game to illustrate that adding an in-

finitesimal level of ambiguity to the model of finitely repeated game can allow to explain

the birth of cooperation in finite time horizon.

Consider the three-player normal form game G whose payoff matrix is given by table

1 in which player 1 chooses the columns (L1, RH1 or RT1), player 2 chooses the rows (H2

or T2) and player 3 chooses the matrix (L3 or R3). In this game, the strategy L1 of player

1 is strictly dominated and therefore player 1 will play L1 with probability 0 at any Nash

equilibrium. Given that player 1 plays L1 with probability 0, player 3 will find it strictly

dominant to play R3 with probability 1. The resulting restricted game is the well known

2× 2 matching pennies game played by players 1 and 2, game that has a unique mixed

strategy Nash equilibrium profile where player 1 plays RH1 and RT1 each with probabil-

ity 1
2

and player 2 plays H2 and T2 each with probability 1
2
. Consequently, the game G

has a unique Nash equilibrium profile s∗ =
(
{1

2
RH1 ⊕ 1

2
RT1}, {1

2
H2 ⊕ 1

2
T2}, {R3}

)
where

player 1 plays L1 with probability 0 and plays RH1 and RT1 with the same probability
1
2
, player 2 plays H2 and T2 with the same probability 1

2
and player 3 plays R3 with

probability 1.
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L1 RH1 RT1

H2 -2 -2 4 6 6 0 6 6 0
T2 -2 -2 4 6 6 0 6 6 0

L1 RH1 RT1

H2 -2 -2 4 -1 1 1 1 -1 1
T2 -2 -2 4 1 -1 2 -1 1 2

L3 R3

Table 1: Payoff matrix of the stage-game G.

As the game G has a unique Nash equilibrium in mixed strategy, any finite repetition

of G in which players are allowed to employ only pure and mixed actions admits a

unique subgame perfect equilibrium payoff which is u(s∗) = (0, 0, 3
2
) (see Benoit and

Krishna (1984)). Now assume that players are ambiguity averse and are allowed to use

sophisticated devices as Ellsberg urns to conceal their intentions. For all ε1, ε2 ∈ [0, 1
2
],

let

s(ε1, ε2) =
(
{1

2
RH1 ⊕ 1

2
RT1}, {pH2 ⊕ (1− p)T2,

1
2
− ε1 ≤ p ≤ 1

2
+ ε2}, {R3}

)
be the profile in which player 1 plays L1 with probability 0 and RH1 and RT1 with the

same probability 1
2
, player 3 plays R3 with probability 1 while player 2 issues her action

from a device whose unique known property is that the probability to issue H2 is be-

tween 1
2
− ε1 and 1

2
+ ε2. At any profile p =

(
{1

2
RH1 ⊕ 1

2
RT1}, {pH2 ⊕ (1− p)T2}, {R3}

)
of probability distribution where 1

2
− ε1 ≤ p ≤ 1

2
+ ε2, player 1 and player 2 receive

each 0 while player 3 receives 2 − p. At the profile s(ε1, ε2), as player 3 is ambiguity

averse and does not know the value of p, she ex-ante receives her worst expected payoff,

that is 3
2
− ε2. The ex-ante payoff to the profile s(ε1, ε2) is therefore (0, 0, 3

2
− ε2). Note

that at the profile s(ε1, ε2), no ambiguity averse player can profitably deviate. Indeed,

if player 1 plays L1 with probability 0, then R3 is a strictly dominant action of player

3. The expected payoff of player 2 is independent of her chosen action (possibly mixed)

if player 1 plays RH1 and RH2 with the same probability 1
2

and player 3 plays R3 with

probability 1. Furthermore, if player 3 plays R3 with probability 1 and player 2 plays

{pH2⊕ (1− p)T2,
1
2
− ε1 ≤ p ≤ 1

2
+ ε2}, the worst expected payoff of player 1 is maximal

if she plays RH1 and RT1 with the same probability 1
2
.

At the equilibrium profile s(ε1, ε2), player 3 receives a payoff that is strictly less than

her mixed Nash equilibrium payoff. Therefore, in the repeated game, she is willing to

conform to a play of the pure action profile (RH1, H2, L3) if it is followed by sufficiently

many plays of the unique stage-game mixed Nash equilibrium s∗ and deviations by player

3 are punished by switching each s∗ to s(ε1, ε2). As players 1 and 2 play best responses

at the profile (RH1, H2, L3), the above described path and the associated mechanism
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constitute a subgame perfect equilibrium of the finitely repeated game. At that equilib-

rium, player 1 (as well as player 2) receives an average payoff that is strictly greater than

her expected payoff at s∗. Thus, the behavior of players 1 and 2 can also credibly be

leveraged near the end of the finitely repeated game. This allows to approximate collu-

sive payoffs via subgame perfect equilibrium strategies of the finitely repeated game. For

instance the Pareto superior payoff vector (2, 2, 2) can be approximated by the following

subgame perfect equilibrium strategy of the finitely repeated game.

1. For any t ∈ {0, . . . T1}, play s1 = (LH1, H2, L3) at time 2t and play s2 = (RL1, L2, L3)

at time 2t+ 1.

2. For any t ∈ {2T1 + 2, . . . , 2T1 + 3 + d 2
ε1
e}, play s∗.

3. If any player deviates, play s(ε1, ε2) till the end of the game.

As we observe in this example, when the classic model of finitely repeated games where

players are allowed to employ only pure and mixed actions fail to explain the birth of co-

operation, allowing players to be objectively imprecise about the probability distribution

they intend to used to issue their actions in each round of the finitely repeated game can

allow to sustain cooperation. This observation still holds if players are allowed to used a

relatively small level of ambiguity(that is if the upper bound of the level of imprecision of

each player approaches zero). This is counter-intuitive as the set of stage-game actions

with zero noises equals the set of mixed actions and, as in our example, the classic models

of finitely repeated game with mixed actions predict no cooperation at all.

3 The Model

3.1 The stage-game

3.1.1 The initial stage-game

I represent a finite normal form game G by (N,S, u) where for all i ∈ N , Si is the set of

pure actions of player i. Both the set of players N = {1, ..., n} and the set S = ×i∈NSi
of actions are finite. The utility of player i given s = (s1, ..., sn) ∈ S is measured by

ui(s). A mixed strategy of player i ∈ N is a probability distribution pi over the set

Si. Let ∆Si be the set of mixed strategies of player i. We will abusively denote by

∆S = ∆S1× ...×∆Sn the set of profiles of mixed strategies. At the profile p = (p1, .., pn)

∈ ∆S, player i receives the expected payoff ui(p) =
∑

s∈S p(s)ui(s) where for all s ∈ S,
p(s) =

∏
i∈N pi(si), pi(si) being the probability that player i assigns to the action si

according to the distribution pi. For any p = (p1, ..., pn) ∈ ∆S, i ∈ N and p′i ∈ ∆Si,
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(p′i, p−i) denotes the strategy profile in which all players except i behave the same as in

p and the choice of i is p′i. A profile of mixed strategy p ∈ ∆S is a Nash equilibrium

of G (p ∈ Nash(G)) if for all i ∈ N and p′i ∈ ∆Si, ui(p
′
i, p−i) ≤ ui(p).

The payoff vector x = (x1, ..., xn) is a feasible vector of the game G if it belongs

to the convex hull of the set of payoff vectors of the game G. That is, if there exists

a sequence (λl)1≤l≤L of positive real numbers and a sequence (al)1≤l≤L of pure actions’

profile such that ΣL
l=1λl = 1 and x = ΣL

l=1λlu(al). For all players i, j ∈ N , player i

is equivalent to player j if there exists two real numbers βij and αij > 0 such that

ui(s) = αijuj(s) +βij for all s ∈ S. Denote by J (i) the set of players that are equivalent

to player i. Let

µi = minp∈∆S maxj∈J (i) maxp′j∈∆Sj
ui(p−j, p

′
j) = ui(m

i)

be the mixed strategy effective minimax payoff3 of player i and µ = (µ1, ..., µn) be

the effective minimax payoff vector of the game G. Let

νi = maxj∈J (i) maxpj∈∆Sj
minp−j∈×k 6=j∆Sk

ui(p−j, pj)

be the mixed strategy effective maxmin payoff of player i and ν = (ν1, ..., νn) be

the effective maxmin payoff vector of the game G. Let V ∗ be the set of feasible payoff

vectors that strictly dominates the effective maxmin payoff vector ν.

3.1.2 The Ellsberg game

To ease the presentation of our results, we consider a very simple model of Ellsberg

game and where players employ only reduced strategies. Riedel and Sass (2014) and

Riedel (2017) provide a general model.

Let G = (N,S, u) be a finite normal form game. An Ellsberg strategy Pi of player

i is a compact set of probability distributions over the set Si. Let Pi = {Pi ⊆ ∆Si |
Pi is compact} be the set of Ellsberg strategies of player i and P be the set of Ellsberg

strategy profiles. Given a profile P = (P1, ..., Pn) ∈ P , the utility of player i is given by

ui(P ) = minp∈P ui(p). The 3-tuple (N,P , u) is the Ellsberg extension of the game G.

For any P ∈ P , i ∈ N and P ′i ∈ Pi, (P ′i , P−i) denotes the Ellsberg strategy profile in

which all players except i behave the same as in P and the choice of i is P ′i . A profile of

Ellsberg strategy P ∈ P is an Ellsberg equilibrium of G (P ∈ E(G)) if for all player

i ∈ N and Ellsberg strategy P ′i ∈ Pi of player i, ui(P
′
i , P−i) ≤ ui(P ).

3The effective minimax has been introduced by Wen (1994). The effective minimax payoff of a player
is her reservation value in the stage-game and equals her minimax payoff if she is not equivalent to any
other player.
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3.1.3 Priliminary results on the Ellsberg game

In the Ellsberg game, players have richer set of strategies and can even exercise their

right to remain silent (totally ambiguous). Remaining silent can be more severe than

employing a mixed strategy minimax profile. More importantly, remaining silent is an

optimal punishment strategy profile in the Ellsberg game. We have the following lemma.

Lemma 1 In the Ellsberg game, remaining silent is an optimal punishment strategy.

Proof. of Lemma 1. Let j ∈ N and P−j ∈ P−j, be an Ellsberg profile of players of the

block −j. We have P−j ⊆ ×k 6=j∆Sk and therefore

ui(×k 6=j∆Sk, Pj) ≤ ui(P−j, Pj).

This means that, in the Ellsberg game, to punish an ambiguity averse players, it is op-

timal for her opponents to remain silent.

Intuitively, if on a punishment path all punishers exercise their right to remain silent,

then, the target player, if she is ambiguity averse, will play a prudent strategy and will

ex-ante receive at most her mixed strategy maxmin payoff. To illustrate how severe

such punishment scheme can be, in comparison to the classic mixed strategy minimax,

consider the three-player game whose payoff matrix is given by Table 2.

c d
a 0 0 0 1 −1 1

b −1 1 1 0 0 −1

c d
1 1 −1 −1 1 1
1 −1 0 0 0 0

e f

Table 2: Payoff matrix of a three-player game where the use of Ellsberg strategies allow
for severe punishment schemes.

In this game, player 1 chooses the rows (a or b), player 2 chooses the columns (c or

d), and player 3 chooses the matrices (e or f). If only mixed strategies are allowed, each

player can ensure herself the payoff 0. This is not possible under ambiguity. Indeed,

under ambiguity, no player can ensure herself a payoff strictly greater than −1
2
.

Suppose that player 2 plays c, and that player 3 plays e. Player 1 best responds

playing a and receives a payoff equals 0. Moreover, given any mixed strategy profile of

players 2 and 3, player 1 receives positive payoff if she plays a mixed strategy best re-

sponse. Therefore, the mixed strategy minimax payoff of player 1 equals 0. Now suppose

that player 2 and player 3 remain silent. Then, player 1, if she is ambiguity averse, will
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play a prudent strategy. She will mix a and b with equal probability and will ex-ante

receive her mixed strategy maxmin payoff, −1
2
. Using similar argument (this game is

some how symmetric), the reader can check that the mixed strategy minimax payoff of

both players 2 and 3 equal 0 and that the mixed strategy maxmin payoff of both play-

ers 2 and 3 equals −1
2
. Thus, employing Ellsberg strategy allows to settle punishment

schemes that are more severe than classic minimax strategies.

Let

µEi = minP∈P maxj∈J (i) maxP ′j∈Pj
ui(P−j, P

′
j)

be the pure effective minimax payoff of player i ∈ N in the Ellsberg game. We have the

following lemma.

Lemma 2 Let G be a finite normal form game. The pure strategy effective minimax

payoff of a player in the Ellsberg game equals her mixed strategy effective maxmin payoff

in the original game G.

Proof. of Lemma 2. From Lemma 1, we have µEi = maxj∈J (i) maxPj∈Pj
ui(×k 6=j∆Sk, Pj).

Let j ∈ J (i) and pj ∈ ∆Sj. We have

ui(×k 6=j∆Sk, {pj}) ≤ maxPj∈Pj
ui(×k 6=j∆Sk, Pj)

and therefore

minp−j∈×k 6=j∆Sk
ui(p−j, pj) ≤ µEi .

It follows that

νi ≤ µEi .

That is, the mixed strategy effective maxmin payoff of player i in the Ellsberg game

is less than or equal to her effective minimax payoff in the Ellsberg game. The effective

minimax payoff of player i in the Ellsberg game is less than or equal her mixed strategy

effective maxmin payoff as well. Indeed,

µEi = maxj∈J (i) maxPj∈Pj
ui(×k 6=j∆Sk, Pj)

= maxPj∗∈Pj∗ ui(×k 6=j∗∆Sk, Pj∗)
= ui(×k 6=j∗∆Sk, P ∗j∗)

for some j∗ ∈ J (i) and P ∗j∗ ∈ Pj∗ . We have
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µEi = minp−j∗∈×k 6=j∗∆Sk,pj∗∈P ∗j∗ ui(p−j∗ , pj∗)

= minp−j∗∈×k 6=j∗∆Sk ui(p−j∗ , p
∗
j∗)

for some p∗j∗ ∈ P ∗j∗ . As p∗j∗ ∈ P ∗j∗ ⊆ ∆Sj∗ , we have

µEi ≤ maxpj∗∈∆Sj∗ minp−j∗∈×k 6=j∗∆Sk
ui(p−j∗ , pj∗).

So,

µEi ≤ maxj∈J (i) maxpj∈∆Sj
minp−j∈×k 6=j∆Sk

ui(p−j, pj).

We conclude that µEi = νi. So, the reservation value of a player in the Ellsberg game

equals her mixed strategy effective maxmin payoff.

3.1.4 Further notations

Let G = (N,S, u) be a finite normal form game and let γ be a number that is strictly

greater than any payoff a player might receive in the game G. Let τ(G) = (N,S, u′) be

the normal form game where the payoff function u′i of player i ∈ N is equals γ if i has

distinct Ellsberg equilibrium payoff in the game G. In the case player i has a unique

Ellsberg equilibrium payoff in the game G, u′i(s) = ui(s) for all s ∈ S. For all l > 0, let

Nl be the set of players who have their payoff function equal to the constant γ in the

game τ (l)(G), where τ (l) is the l th compound of τ . Let h be minimal such that Nh is a

maximal element of the sequence {Nl}∞l=1.

Definition 1 The sequence N0 = ∅ ⊆ N1 ⊆ ... ⊆ Nh is the Ellsberg decomposition of

the game G.

Definition 2 The Ellsberg decomposition N0 = ∅ ⊆ N1 ⊆ ... ⊆ Nh is complete if

Nh = N .

3.2 The finitely repeated game

Let G be a finite normal form game which I will refer to as the stage game. Given T > 1

and δ < 1, let G(δ, T ) be the game obtained by repeating the stage game T times and

where players’ discount factor is δ. In the game G(δ, T ), in every round, each player

observes the properties of the profile of Ellberg strategies chosen (or equivalently the

properties of the randomization devices chosen by players) as well as the realized action

profile, receives her payoff as in the stage game and chooses her Ellsberg strategy for the

next period. A player may therefore condition her behavior on the history of Ellsberg

profiles used in the previous periods. Formally, a strategy of player i in the repeated
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game G(δ, T ) is a map σi : ∪Tt=1P t−1 → Pi where P0 is the empty set. Given a history

ht = (h1, .., ht−1) ∈ P t−1 = P × ... × P , the strategy σi of player i recommends to play

the Ellsberg strategy σi(h
t) at period t, 1 ≤ t ≤ T . In the repeated game G(δ, T ), the

discounted average payoff of a player given a play path (s1, ..., sT ) ∈ ST is

uδi (s
1, ..., sT ) = 1−δ

1−δT ΣT
t=1δ

t−1ui(s
t).

The strategy profile σ = (σ1, ..., σn) induces a set of probability distributions P (σ)

over the set ST of play paths of length T . Players are ambiguity averse and aim to

maximize the minimal expected payoff that they could get from the set P (σ). That is,

given σ−i, player i chooses σi in order to maximize

uδi (σ−i, σi) = minp∈P (σ−i,σi)

∑
h∈ST p(h)uδi (h)

where p(h) is the probability with which the history h is observed according to the

probability distribution p. The strategy profile σ is an Ellsberg equilibrium of G(δ, T ) if

for all player i, and given σ−i, the strategy σi maximizes the minimal expected payoff of

player i. The strategy profile σ is a subgame perfect equilibrium of G(δ, T ) if for all

t < T and history ht ∈ St−1, the restriction σ|ht of the strategy profile σ to the observed

history ht is an Ellsberg equilibrium of the game G(δ, T − t+ 1).

Any ex-ante payoff vector to a subgame perfect equilibrium strategy of the finitely

repeated game with discounting dominates the mixed strategy effective maxmin payoff

vector of the game G.

Lemma 3 Let G be a finite normal form game, δ < 1, T > 0, σ be a subgame perfect

equilibrium of G(δ, T ) and ν be the mixed strategy effective maxmin payoff vector of the

game G. Then, uδi (σ) ≥ νi for all i ∈ N .

Indeed, playing a prudent strategy in each period of the finitely repeated game, at

least one player of a given equivalence class can guarantee to herself (and therefore to

the whole class) her effective maxmin payoff.

Lemma 4 Let G be a finite normal form game. Any payoff vector that is ex-post ap-

proachable by means of subgame perfect equilibrium strategies of the finitely repeated game

with discounting dominates the mixed strategy effective maxmin payoff vector of the game

G.
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This lemma says that, if players are allowed to strategically make use of objective

ambiguity, then, a necessary condition for a payoff vector to be ex-post approachable

by means of subgame perfect equilibria of the finitely repeated game is that, the latter

payoff vector dominates the mixed strategy effective maxmin payoff vector of the stage

game G. Indeed, if a payoff vector is ex-post approachable by subgame perfect equilibria

of the finitely repeated game, then, it is ex-ante approachable by subgame perfect equi-

libria and thus dominates the mixed strategy maxmin payoff vector.

4 Main result and discussion

In this section I present the main finding of this paper. It is convenient to introduce 2

definitions.

Definition 3 Let G be a finite normal form game and σ be a strategy profile of the

finitely repeated game with discounting G(δ, T ). The support of P (σ) is the set of histories

h ∈ ST such that there exists a probability distribution in P (σ) that assigns a strictly

positive probability to the history h.

Definition 4 The support of a strategy profile of the finitely repeated game is the set of

possible play paths.

Definition 5 Let G be a normal form game and x a payoff vector. The payoff vector

x is ex-post approachable by means of subgame perfect equilibria of the finitely repeated

with discounting if for any ε > 0, there exists δ < 1 and T such that, for all δ ≥ δ,

T ≥ T , G(δ, T ) has a subgame perfect equilibrium profile σ such that
∥∥uδ(h)− x

∥∥
∞ < ε

for all play path h ∈ ST in the support of P (σ).4

A payoff vector is ex-post approachable by mean of subgame perfect equilibria of the

finitely repeated game if it can approached by subgame perfect equilibria that have the

following property. the discounted payoff to any play path within the support of the

strategy is closed enough to the given payoff vector.

4.1 Statement of the main result

Theorem 1 Let G be a finite normal form game such that V ∗ 6= ∅. The following are

equivalent.

1. G has a complete Ellsberg decomposition.

4For all payoff vector x = (x1, ..., xn), ‖x‖∞ = max1≤i≤n|xi|
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2. Any point of V ∗ is ex-post approachable by means of subgame perfect equilibria of

the finitely repeated game with discounting.

3. The set of points of V that are approachable by means of subgame perfect equilibria

of the finitely repeated with discounting has a relative interior point.

The most laborious part of the proof of Theorem 1 is to show that, under the state-

ment 1) of Theorem 1, it is possible to ex-post approach any feasible payoff vector of the

game G that dominates the mixed strategy effective maxmin payoff vector by means of

subgame perfect equilibrium strategies of the finitely repeated game. The role of State-

ment 1) here is to leverage the behavior of players in the End-game, phase of equilibrium

strategies of the finitely repeated game where essentially (recursive) equilibrium profiles

of the stage game are played, see Lemma 6 and Lemma 7. As we do not assume that the

dimension of the set of feasible payoff vectors equals the number of players, the block

J (i) might contains more than one player. It is therefore not immediate to make use

of the payoff asymmetry lemma of Abreu et al. (1994) to construct a suitable reward

phase. Lemma 7 allows to independently reward players and motivate them to be effec-

tive punisher during a punishment phase.

Moreover, as the time horizon is finite, the powerful payoff continuation lemma of Fu-

denberg and Maskin (1991) does not apply. We obtain a version of the latter lemma for

finitely repeated games with discounting which says that, for any positive ε, there exists

uniform k > 0 and δ such that, any feasible payoff is within ε of the discounted average

of a deterministic path of length k for any discount factor greater than or equal to δ, see

Lemma 5. Basically, the payoff continuation lemma for finitely repeated games provides

an uniform integer k such that, any feasible payoff vector x can be approximated by a

deterministic path of the same length k. Appending finitely many such deterministic

paths, we obtain a deterministic path π whose discounted average is closed enough to

the payoff vector x and, at any (sufficiently) early point of time, the continuation payoff

of the path π is closed enough to the payoff vector x.

In Section 6.1, given a feasible payoff vector of G that dominates the mixed strategies

effective maxmin payoff vector, I construct a sequence of subgame perfect equilibrium

strategies of the finitely repeated game such that, ex-post, all the possible corresponding

sequences of discounted payoff vectors converge to that target payoff vector.
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4.2 Discussion

While both necessary and sufficient, Statement 1) of Theorem 1 is weaker than Smith’s

(1995) necessary and sufficient condition. Indeed, as mixed Nash equilibria of the stage-

game are also Ellsberg equilibria, a complete Nash decomposition (see Smith (1995) for

a formal definition of Nash decomposition) induces a complete Ellsberg decomposition.

However, a complete Ellsberg decomposition does not necessarily induce a complete Nash

decomposition. The three-player game whose payoff matrix is provided in Table 1 serves

as an illustration. In that game, each player has a unique mixed Nash equilibrium payoff

but many continuation equilibrium payoffs in Ellsberg actions (see Section 2 for details).

For the game in Table 1, the classic models of finitely repeated games in which players

can employ only pure and mixed actions predict no cooperation at all. Our model pre-

dicts that any feasible payoff vector that dominates the mixed strategy effective maxmin

payoff vector is approachable by means of subgame perfect equilibria of the finitely re-

peated game with discounting. Moreover, we are able to approximate the cooperative

and Pareto superior payoff vector (2, 2, 2) by means of a simple subgame perfect equilib-

rium of the finitely repeated game. Thus, the use of imprecise probabilistic devices in the

finitely repeated game model can allow for an explanation of the birth of cooperation in

finite repetitions of a non-cooperative game where the classic models of finitely repeated

games with pure and mixed strategies fail to do so.

As the Ellsberg extension of a finite normal form game is still a normal form game, it

might appear logical to apply an existing limit perfect folk theorem [see, e.g., Benoit and

Krishna (1984)] to the Ellsberg game and obtain the set of payoff vectors that are ex-

ante approachable by means of the subgame perfect equilibrium strategies of the finitely

repeated game. The previsions of Theorem 1 and Lemma 4 of this paper are different

in the sense that they provide (under a weak condition) a characterization of the set of

payoff vectors that are ex-post (and thus ex-ante) approachable by means of subgame

perfect equilibrium strategies of the finitely repeated game. The difference between the

former and the latter sets of payoff vectors can be clearly observed in the three-player

game G, whose payoff matrix is given by Table 3.

In the Ellsberg extension Γ of the game G, each player has distinct Nash equilib-

rium payoffs and no two players have equivalent utility functions. The limit perfect

folk theorem of Benoit and Krishna (1984) states that any payoff vector that lies in

the convex hull of the set of payoff vectors of the game Γ and which dominates the pure

minimax payoff vector (−1
2
,−1

2
,−1

2
) of the game Γ is approachable by means of subgame

perfect Nash equilibrium strategies of finite repetitions of the game Γ [which is equiva-

page 14



Ghislain-Herman DEMEZE-JOUATSA Bielefeld University

c d
a 0 0 0 1 −1 1

b −1 1 1 0 0 −1

c d
1 1 −1 −1 1 1
1 −1 0 0 0 0

e f

Table 3: Some Ellsberg payoff vectors are non feasible and an ex-ante approximation is
vague.

lent to being ex-ante approachable by means of subgame perfect (Ellsberg) equilibrium

strategies of finite repetitions of G]. The payoff vector (−1
3
,−1

3
,−1

3
) is therefore ex-ante

approachable by means of subgame perfect equilibrium strategies of finite repetitions of

the Ellsberg game. Note that, ex-post, in each period of finite repetitions of the game

Γ, players receive payoffs as in the game G and it is not possible to implement/approach

the payoff vector (−1
3
,−1

3
,−1

3
) in the repeated game as the ex-post sum of payoffs of

players 1 and 2 is always greater than or equal 0. More importantly, the payoff vector

(−1
3
,−1

3
,−1

3
) does not belong to the set of feasible payoff vectors of the game G. In

addition, applying the existing limit perfect folk theorems to the Ellsberg game does

not guarantee that any feasible payoff vector of the game G which dominates the mixed

strategy effective maxmin payoff vector of the game G can be approached by subgame

perfect Nash equilibrium strategy of finite repetitions of the Ellsberg game and whose

ex-post payoff vector is closed enough to the target payoff vector.

5 Conclusion

This paper presented a model of finitely repeated games with complete information and

perfect monitoring in which players can strategically make use of objective ambiguity.

In addition to the classic pure and mixed actions, Ellsberg urns are available to players.

An Ellsberg urn captures the quantity of information a player might want to know and

share about her intentions. The main theorem provides a weak condition under which

any feasible payoff vector that dominates the maxmin payoff vector of the stage-game is

achievable via subgame perfect equilibria of the finitely repeated game with discounting.

This new model explains how players can sustain collusive payoff vectors for some cases

in which the classic models of finitely repeated games with pure and mixed actions fail

to explain the birth of cooperation.
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6 Appendix 4: Proofs

6.1 Sketch of the proof of Theorem 1

In this section, Given a feasible payoff vector that dominates the mixed strategy effective

maxmin payoff vector, I explain how to construct a subgame perfect equilibrium strat-

egy σ of the finitely repeated game with discounting and whose ex-post payoff vectors is

closed enough to the target payoff vector.

Let y ∈ V ∗. The construction of σ involves few ingredients. The most important

are the target path and the end-game-strategy. The target path is a finite sequence of

pure action profiles of the stage game. It is obtained by applying our Lemma 5 (payoff

continuation lemma for finitely repeated games) to the payoff vector y. The end-game-

strategy corresponds to the very last phase of the game. It is a family of subgame perfect

equilibria of the finitely repeated game. It allows to independently leverage the behavior

of players in the finitely repeated game, regardless of whether some players are equivalent

or not.

The strategy profile σ involves 5 phases. The first phase consists in some conjunction

of the target path. If a player unilaterally deviates early during this phase, the strategy

σ prescribes to start the second phase and thereafter to go to the third phase.

The second phase is a punishment phase where a potential deviator i is punished.

There is no specific requirement for players of the block N\J (i) while players of the block

J (i) have to remain silent, that is completely ambiguous. At the end of this phase, we

record in a boolean vector α, the set of players who were silent during the punishment

phase. We prove that for large discount factor, an ambiguity averse player of the block

N\J (i) will find it strictly dominant to remain silent during the punishment phase.

The third phase serves as a compensation. Indeed, it might be the case that the pun-

ishment phase is more severe than required and players of the block J (i) may receive a

negative ex-ante payoff in each period of the punishment phase. The fourth phase serves

as a transition. In the fifth phase, players are credibly rewarded.

Note that, if no deviation from σ occurs in the repeated game, players will follow

some loops of the target path and then move to the end-game-strategy. In Section 6.4 I

show that for sufficiently long time horizon and large discount factor, the strategy profile

σ is a subgame perfect equilibrium of the finitely repeated game and that the determin-
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istic part of the resulting discounted average payoff will be close enough to y and the

ambiguous part will goes to 0.

Now I proceed to the detailed proof of Theorem 1. To ease this proof, I introduce

three lemmata.

6.2 The payoff continuation lemma for finitely repeated games

Lemma 5 For any ε > 0, there exists k > 0 and δ < 1 such that for all x ∈ V , there

exists a deterministic sequence of stage game actions {sτ}kτ=1 whose discounted average

payoff is within ε of x for all discount factor δ ≥ δ.

Lemma 5 establishes that for any positive ε, one can construct uniform k > 0 and δ

such that, any feasible payoff is within ε of the discounted average of a deterministic path

of length k for any discount factor greater or equal δ. This lemma allow to approach any

feasible payoff vector by deterministic paths of the finitely repeated game in presence of

discount factor.

Proof. of Lemma 5. Let ε > 0 and y =
∑m

l=1 α
lu(al) ∈ V be a feasible payoff, where

al ∈ S for l = 1, ...,m. Assume that there exists m integers q1, q2, ..., qm such that for all

l = 1, ...,m, αl = ql
Q

where Q =
∑m

l=1 ql. Consider the sequences {by,p}Qp=1 and {cy,τ}∞τ=1

defined as follows.

by,p = al if and only if
∑

l′<l ql′ < p ≤
∑

l′≤l ql′

cy,τ = by,p if and only if τ − p ≡ 0[Q].

To have a clear view of the construction of the sequences {by,p}Qp=1 and {cy,τ}∞τ=1,

consider this simple example where m = 3, q1 = 2, q2 = 1, q3 = 4, Q = 7, and therefore

y = 2
7
u(a1) + 1

7
u(a2) + 4

7
u(a2). Table 4 provides the value of by,p for p = 1, ..., 7 while

Table 5 provides the value of cy,τ , τ ≥ 1.

by,p by,1 by,2 by,3 by,4 by,5 by,6 by,7

al a1 a1 a2 a3 a3 a3 a3

Table 4: Values of by,τ , τ ≥ 1

cy,τ cy,1 cy,2 cy,3 cy,4 cy,5 cy,6 cy,7 cy,8 cy,9 cy,10 cy,11 cy,12 cy,13 cy,14 ...
by,p by,1 by,2 by,3 by,4 by,5 by,6 by,7 by,1 by,2 by,3 by,4 by,5 by,6 by,7 ...
al a1 a1 a2 a3 a3 a3 a3 a1 a1 a2 a3 a3 a3 a3 ...

Table 5: Values of cy,τ , τ ≥ 1
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We can observe that the undiscounted average payoff of the sequence {cy,τ}∞τ=1 is

equal to 2
7
u(a1) + 1

7
u(a2) + 4

7
u(a2).

Going back to the general case, let l ∈ {1, ...,m}, Θ = AQ + B where A > 0 and

0 ≤ B < Q and consider

N(l, cy,Θ) = {τ | cy,τ = al}

and

β(l, cy,Θ) = 1−δ
1−δΘ

∑
τ∈N(l,cy ,Θ) δ

τ−1.

We have

1−δ
1−δΘ

∑
τ≤Θ δ

τ−1u(cy,τ ) =
∑m

l=1 β(l, cy,Θ)u(al)

and

β(1, cy,Θ) = 1−δ
1−δΘ

[
1−δp1

1−δ
1−δAQ

1−δQ + δAQ 1−δp
′
1

1−δ

]
where p′1 = min{B, p1};

β(2, cy,Θ) = 1−δ
1−δΘ

[
δp1 1−δp2

1−δ
1−δAQ

1−δQ + δAQ+p1 1−δp
′
2

1−δ

]
where p′2 = min{max{0, B − p1}, p2};
.

.

.

β(m, cy,Θ) = 1−δ
1−δΘ

[
δp1+...+pm−1 1−δpm

1−δ
1−δAQ

1−δQ + δAQ+p1+...+pm−1 1−δp′m
1−δ

]
where p′m = min{max{0, B − p1 − ...− pm−1}, pm}.
As

limδ→1 β(l, cy,Θ) = pl
AQ+B

AQ
Q

= pl
Q+B

A

and

limA→+∞
pl

Q+B
A

= pl
Q

,

there exists Ay > 0 such that, for all A ≥ Ay, there exists δy,A < 1 such that for all

δ > δy,A, ∥∥ 1−δ
1−δΘ

∑
τ≤Θ δ

τ−1u(cy,τ )− y
∥∥ < ε

2
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for all B, 0 ≤ B < Q. Let {B̃(y, ε
2
), y ∈ Y }5 be a finite open covering of the compact

set V where Y is the set of convex sum of stage game payoff vectors with rational

coefficients. Pose A = max{Ay, y ∈ Y }, k = Q(A+ 1) and δ = max{δy,A+1, y ∈ Y }. Let

x ∈ V and y ∈ Y such that x ∈ B̃(y, ε
2
). Take sτ = cy,τ for τ = 1, ..., k.

The next two lemmata explain how to leverage the behavior of players in the very

last phase of the game where essentially only stage game (recursive) equilibrium profile

are played.

6.3 The end-game-strategy

Lemma 6 Assume that the Ellsberg decomposition ∅ ⊆ N1 ⊆ ... ⊆ Nh of the game G is

complete. Then there exists φe > 0, T > 0, δ ∈ (0, 1) and for all i ∈ N , there exists σi,1

and σi,2 two strategy profiles of the T−fold repeated game such that

1. σi,1 and σi,2 are subgame perfect equilibria of the finitely repeated game G(δ, T ) for

all δ ∈ (δ, 1);

2. uδi (σ
i,1) > φe + uδi (σ

i,2).

Lemma 7 Suppose that the stage-game G has a complete Ellsberg decomposition. Then

there exists φ > 0 such that for all p ≥ 0, there exists rp > 0, δ ∈ (0, 1) and a family

{θp(γ) | γ ∈ {0, 1}n ∪ {(−1, · · · ,−1)}} of strategy profiles of the rp−fold repeated game

such that for all δ ∈ (δ, 1) and γ ∈ {0, 1}n ∪ {(−1, · · · ,−1)}, θp(γ) is a subgame perfect

equilibrium of the finitely repeated game G(δ, rp). Furthermore, for all δ ∈ (δ, 1) i ∈ N
and γ, γ′ ∈ {0, 1}n we have

uδi [θ
p(1, γ−i)]− uδi [θp(0, γ−i)] ≥ φ (1)

uδi [θ
p(γ)]− uδi [θp(−1, · · · ,−1)] ≥ φ (2)

|uδi [θp(γ)]− uδi [θp(γJ (i)
, γ′
J\J (i)

)]| < 1

2p
. (3)

The proofs of Lemmata 6 and 7 are provided in a more general case in a parallel working

paper. We therefore omit them.

5B̃(y, ε2 ) = {z ∈ V | ‖z − y‖∞ < ε
2}
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6.4 Proof of the Theorem 1

Proof of Theorem 1. Let G be a finite normal form game such that V ∗ 6= ∅. Let’s

shift the utility function of the game G to have the effective maxmin payoff of each player

equal to 0 and so that within the same equivalence class, players, if many, have the same

payoff function. This does not change the strategic behavior of players.

Part 1. (1⇒2). Assume that the Ellsberg decomposition of the game is complete.

Let ε > 0 and y ∈ V ∗. I wish to construct δ < 1 and T > 0, and for all δ ≥ δ and T ≥ T , a

subgame perfect equilibrium strategy profile σT of G(δ, T ) such that
∥∥uδ(h)− y

∥∥
∞ < 3ε

for all history h in the support of P (σT ).

Apply the payoff continuation lemma (see Lemma 5) to ε and obtain k > 0, δ0 < 1,

and a deterministic path

πy = (s1, ..., sk)

such that

d(y, uδ(πy)) < ε

for all δ ∈ (δ0, 1). For all δ ∈ (δ0, 1), let

y = limδ→1 u
δ(πy).

Obtain φ, r1 and θ1 with p = 1 from the Lemma 7 and let

u1,r1 [θ1(1, · · · , 1)] = lim
δ→1

uδ[θ1(1, · · · , 1)].

Let q1 > 0 and q2 > 0 such that

0 < q1kui(∆S) + q2r1ku
1,r1
i [θ1(1, · · · , 1)] <

q1k + q2r1k

2
yi for all i ∈ N

and

−2kρ+
q1k

2
yi > 0 for all i ∈ N

where

ρ = maxa∈A ‖u(a)‖∞.

Given q1, q2 and r1, choose r such that

−2(q1k + q2r1k)ρ+ rφ > 0.
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Given q1 q2, r1 and r, choose p > 0 such that

q2r1k

2
yi −

r

2p
> yi −

r

2p
> 0 for all i ∈ N.

Apply the Lemma 7 to p and obtain rp and θp. Update q1 ← rpq1; q2 ← rpq2; r ← rpr.

The parameters φ, θ1, q1, q2, r, r1 and θp are such that

−2q1kρ+ rφ > 0; (4)

yi −
r

2p
> 0; (5)

2kρ+ q1kui(∆S) + q2r1ku
1,r1
i [θ1(1, · · · , 1)] +

r

2p
− (q1k + q2r1k − k)yi < 0 (6)

and

−2(q1k + q2r1k)ρ+ rφ > 0 for all i ∈ N. (7)

Let

π = ( πy, ..., πy︸ ︷︷ ︸
C+q1+q2r1 times

)

Set α = (1, · · · , 1).

From now on, a deviation by a player from an ongoing path is called “early deviation”

if it occurs during the first Ck periods of the game. In the other case, the deviation is

called “late deviation”. Consider the strategy profile σ of the finitely repeated game

described by the following 5 phases.

P0 (Main path): At any time t, play the t th action profile of the path π. [If player i

deviates early, start the Phase Pi; if player i deviates late, start LD. Ignore any

simultaneous deviation.] Go to Phase EG.

Pi (Punish player i): Reorder the profile of actions in each upcoming cycle of length k

of the main path according to player i′s preferences, starting from her best profile.

This phase last for q1k periods and each player of the block J (i) has to remain

silent (completely ambiguous). Each player of the block N\J (i) can play whatever

Ellsberg action she wants. [If any player j ∈ J (i) deviates early, start Pj; if player

j ∈ J (i) deviates late, start LD.]

At the end of this phase, for all j /∈ J (i), set αj = 0 if there is at least one period

of the punishment phase where player j was not silent (completely ambiguous) and

set αj = 1 otherwise. Go to Phase SPE.
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SPE Follow q2k times the subgame perfect equilibrium θ1(1, · · · , 1). Go to Phase P0.

LD Each player can play whatever action she wants till period (C + q1 + q2r1)k. At

period (C + q1 + q2r1)k, set α = (−1, · · · ,−1) and go to Phase EG.

EG Follow r
rp

times the subgame perfect equilibrium θp(α).

Now, I show that given any history, there is no profitable unilateral and single shot

deviation if the discount factor is high enough.

c-1) It is strictly dominant for any player j /∈ J (i) to remain silent during

a punishment phase Pi.

As players are ambiguity averse and aim to maximize their worst expected utility,

they will individually find it strictly dominant to remain silent during any punishment

phase. Indeed, if during a punishment phase (say Pi) player j /∈ J (i) is silent, she

receives at least

1. −1−δq1k

1−δ ρ during the punishment phase;

2. δq1k 1−δq2r1k

1−δ uδj(θ
1(1, · · · , 1)) during the SPE phase;

3. some payoff Uj(δ) up to the period (C + q1 + q2r1)k;

4. an ex-ante payoff δc+(q1+q2r1)k 1−δr
1−δ u

δ
j [θ

p(1, αj)] in the Phase EG.

In total, she gets

−1− δq1k

1− δ
ρ+ δq1k

1− δq2r1k

1− δ
uδj(θ

1(1, · · · , 1)) + Uj(δ) + δc+(q1+q2r1)k 1− δr

1− δ
uδj [θ

p(1, αj)]

If player j is not silent during the Phase Pi, she receives at most

1. 1−δq1k

1−δ ρ during the punishment phase;

2. δq1k 1−δq2r1k

1−δ uδj(θ
1(1, · · · , 1)) during the SPE phase;

3. the same payoff Uj(δ) till period (C + q1 + q2r1)k;

4. an ex-ante payoff δc+(q1+q2r1)k 1−δr
1−δ

[
uδj [θ

p(1, αj)]− φ
]

in the Phase EG, see Lemma

7.

page 22



Ghislain-Herman DEMEZE-JOUATSA Bielefeld University

In total, she gets

1− δq1k

1− δ
ρ+ δq1k

1− δq2r1k

1− δ
uδj(θ

1(1, · · · , 1)) +Uj(δ) + δc+(q1+q2r1)k 1− δr

1− δ
[
uδj [θ

p(1, αj)]− φ
]

Thus, player j will find it strictly dominant to remain silent if

−2
1− δq1k

1− δ
ρ+ δc+(q1+q2r1)k 1− δr

1− δ
φ > 0 (8)

As δ goes to 1, the left hand of the latter inequality goes to −2q1kρ+rφ which is strictly

positive, see Equation (4). Therefore, there exists δ1 ∈ (δ0, 1) such that the Inequality

(8) holds for all δ ∈ (δ1, 1).

Now assume that δ ∈ (δ1, 1) so that, it is strictly dominant for any player j /∈ J (i)

to be silent on punishment phases. We wish to prove that, for sufficiently large discount

factor, σ is a subgame perfect equilibrium strategy of the finitely repeated game.

c-2) No early deviation from Phase Pi by a player j ∈ J (i) is profitable.

If after l1k + l2 rounds in the Phase Pi player j ∈ J (i) deviates, she receives:

1. at most 0 from the beginning of the Phase Pi till the deviation period;

2. an ex-ante payoff δl1k+l2+1U1
j (δ) during the Phases Pj and the new SPE phase;

3. some payoff U2
j (δ) till the period (C + q1 + q2r1)k;

4. an ex-ante payoff δc+(q1+q2r1)k 1−δr
1−δ u

δ
j [θ

p(α)] in the Phase EG.

If player j does not deviates, she receives at least:

1. the ex-ante payoff U1
j (δ) + δq1k+q2r1k 1−δl1k+l2+1

1−δ uδi (π
y) till the end of the new SPE

phase;

2. the payoff Ũ2
i (δ) till period (C + q1 + q2r1)k;6

3. the ex-ante payoff δc+(q1+q2r1)k 1−δr
1−δ

[
uδj [θ

p(α)]− 1
2p

]
in the Phase EG, see Lemma

7.

As yi − r
2p
> 0 [see Equation (5)], there exists δ2 ∈ (δ1, 1) such that for all δ ∈ (δ2, 1),

no early deviation from Phase Pi is profitable.

6Recall that U2
i (δ) is the discounted sum of a deterministic sequence of payoffs and Ũ2

i (δ) is the
discounted sum over a permutation of the same deterministic sequence of payoffs. Therefore, as δ goes
to 1, both sums converge to the same limit.
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c-3) No early deviation from Phase P0 is profitable.

If during Phase P0, a player let’s say i deviates early, the strategy profile σ prescribes

to start the punishment phase Pi followed by the Phase SPE, to update the boolean

vector α and to go back to the Phase P0. For sufficiently high discount factor, such

a deviation is not profitable. Indeed, if player i deviates early during Phase P0, she

receives at most

1. ρ in the deviation period;

2. δ 1−δq1k

1−δ ui(∆S) + δq1k+1 1−δq2r1k

1−δ uδi [θ
1(1, · · · , 1)] in the punishment phase;7

3. some payoff U2
i (δ) till the period (C + q1 + q2r1)k;

4. an ex-ante payoff δc+(q1+q2r1)k 1−δr
1−δ u

δ
j [θ

p(α)] in the Phase EG.

If player i does not deviate during the Phase P0, she receives at least

1. −1−δl
1−δ ρ till the end of the ongoing k−cycle (for some l ≤ k);

2. δl 1−δ
q1k+q2r1k−k

1−δ uδi (π
y) − δl+q1k+q2r1k−k 1−δ1+k−l

1−δ ρ corresponding to the Phase Pi and

the Phase SPE;

3. the payoff Ũ2
i (δ) till the period (C + q1 + q2r1)k;8

4. the ex-ante payoff δc+(q1+q2r1)k 1−δr
1−δ u

δ
j [θ

p(αJ (i), α
′
−J (i))] in the Phase EG. From Lemma

7, the latter ex-ante payoff is greater than or equal to δc+(q1+q2r1)k 1−δr
1−δ

(
uδj [θ

p(α)]− 1
2p

)
.

Therefore, as δ goes to 1, the limit of the profit from deviating is above bounded by

2kρ+ q1kui(∆S) + q2r1ku
1,r1
i [θ1(1, · · · , 1)] +

r

2p
− (q1k + q2r1k − k)yi

which is strictly negative, see Equation (6).

Therefore, there exists δ3 ∈ (δ2, 1) such that for all δ ∈ (δ3, 1), no early deviation

from Phase P0 is profitable.

c-4) No late deviation is profitable.

If from an ongoing phase (P0 or Pi) a player let’s say j ∈ N deviates late, she receives

at most

7Recall that all players will be effective punishers.
8Note that limδ→1 Ũ

2
i (δ) = limδ→1 U

2
i (δ).
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1. 1−δq1k+q2r1k

1−δ ρ till the beginning of the phase EG;

2. the ex-ante payoff δq1k+q2r1k 1−δr
1−δ u

δ
j [θ

p(−1, · · · ,−1)] in the Phase EG.

If player j does not deviates, she receives at least

1. −1−δq1k+q2r1k

1−δ ρ till the beginning of the phase EG;

2. the ex-ante payoff δq1k+q2r1k 1−δr
1−δ u

δ
j [θ

p(α)] in the Phase EG, where α ∈ {0.1}n.

From Lemma 7, the latter ex-ante payoff is strictly greater than

δq1k+q2r1k 1−δr
1−δ

(
uδj [θ

p(−1, · · · ,−1)] + φ
)
.

As −2(q1k + q2r1k)ρ + rφ > 0 [see Equation (7)], there exists δ4 ∈ (δ3, 1) such that for

all δ ∈ (δ4, 1), no late deviation is profitable.

Therefore, for all δ ∈ (δ4, 1) and given any history h of the repeated game, no player

has any incentive to deviate from σ|h. That is σ is a subgame perfect equilibrium for all

C > 0. Choose C high enough and δ ∈ (δ4, 1) such that

1−δk
1−δ(C+q1+q2r1)k+r ρ+ δ(C+q1+q2r1)k 1−δr

1−δ(C+q1+q2r1)k+r ρ < ε

For all T ≥ T and δ ∈ (δ, 1), let σT be the restriction of σ to the last T periods of the

finitely repeated game G(δ, T ). Let h be an history in the support of P (σT ). We have∥∥uδ(h)− uδ(π)
∥∥
∞ < 2ε

and therefore ∥∥uδ(h)− y
∥∥
∞ < 3ε

for all T ≥ T and δ ≥ δ.

Part 2. (2⇒3). Assume that any point of V ∗ is approachable by means of subgame

perfect Ellsberg equilibrium of the finitely repeated game. As V ∗ is non empty, V ∗ has

non empty relative interior and statement 3) of Theorem 1 holds.

Part 3. (3⇒1). Assume that the Ellsberg decomposition of the game G is incomplete.

By induction on the time horizon, players of the block N\Nn receive their unique stage

game Ellsberg equilibrium payoff in each period of the finitely repeated game. That is,

any player of the block N\Nn has a unique subgame perfect equilibrium payoff in the

finitely repeated game. This contradicts the statement 3) of Theorem 1.
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