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and Marie-Claire Quenez�

Bielefeld University ∗, Humboldt University-Berlin †,

Université Cadi Ayyad ‡, and Université Paris-Diderot �

Abstract We consider the optimal stopping problem with non-

linear f -expectation (induced by a BSDE) without making any reg-

ularity assumptions on the reward process ξ. We show that the value

family can be aggregated by an optional process Y . We character-

ize the process Y as the Ef -Snell envelope of ξ. We also establish

an in�nitesimal characterization of the value process Y in terms of a

Re�ected BSDE with ξ as the obstacle. To do this, we �rst establish a

comparison theorem for irregular RBSDEs. We give an application to

the pricing of American options with irregular pay-o� in an imperfect

market model.

1. Introduction. The classical optimal stopping probem with linear expectations has been

largely studied. General results on the topic can be found in El Karoui (1981) ([11]) where no

regularity assumptions on the reward process ξ are made.

In this paper, we are interested in a generalization of the classical optimal stopping problem

where the linear expectation is replaced by a possibly non-linear functional, the so-called f -

expectation (f -evaluation), induced by a BSDE with Lipschitz driver f . For a stopping time S

such that 0 ≤ S ≤ T a.s. (where T > 0 is a �xed terminal horizon), we de�ne

(1.1) V (S) := ess sup
τ∈TS,T

EfS,τ (ξτ ),

where TS,T denotes the set of stopping times valued a.s. in [S, T ] and EfS,τ (·) denotes the condi-
tional f -expectation/evaluation at time S when the terminal time is τ .

The above non-linear problem has been introduced in [13] in the case of a Brownian �ltration

and a continuous �nancial position/pay-o� process ξ and applied to the (non-linear) pricing of

American options. It has then attracted considerable interest, in particular, due to its links with

dynamic risk measurement (cf., e.g., [3]). In the case of a �nancial position/payo� process ξ,

only supposed to be right-continuous, this non-linear optimal stopping problem has been studied

in [36] (the case of Brownian-Poisson �ltration), and in [1] where the non-linear expectation

is supposed to be convex. To the best of our knowledge, [16] is the �rst paper addressing the

stopping problem (1.1) in the case of a non-right-continuous process ξ; in [16] the assumption of

right-continuity of ξ is replaced by the weaker assumption of right- uppersemicontinuity (r.u.s.c.).

In the present paper, we study problem (1.1) without making any regularity assumptions on ξ.

Keywords and phrases: backward stochastic di�erential equation, optimal stopping, f -expectation, non-linear

expectation, aggregation, dynamic risk measure, American option, strong Ef -supermartingale, Snell envelope,

re�ected backward stochastic di�erential equation, comparison theorem, Tanaka-type formula
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2 M. GRIGOROVA ET AL.

The complete lack of regularity of ξ allows for more �exibility in the modelling (compared to

"the more regular cases").

The usual approach to address the classical optimal stopping problem (i.e., the case f ≡ 0

in (1.1)) is a a direct approach, based on a direct study of the value family (V (S))S∈T0,T . An

important step in this approach is the aggregation of the value family by an optional process.

The approach used in the literature to address the non-linear case (where f is not necessarily

equal to 0) is an RBSDE-approach, based on the study of a related Re�ected BSDE and on

linking directly the solution of the Re�ected BSDE with the value family (V (S), S ∈ T0,T ) (and

thus avoiding, in particular, more technical aggregation questions). This approach requires at

least the uppersemicontinuity of the reward process ξ (cf., e.g., [16], [36]) which we do not have

here (cf. also Remark 6.9).

Neither of the two approaches is applicable in the general framework of the present paper

and we adopt a new approach which combines some aspects of both the approaches. Our com-

bined approach is the following: First, with the help of some results from the general theory of

processes, we show that the value family (V (S), S ∈ T0,T ) can be aggregated by a unique right-

uppersemicontinuous optional process (Vt)t∈[0,T ]. We characterize the value process (Vt)t∈[0,T ]

as the Ef -Snell envelope of ξ, that is, the smallest strong Ef -supermartingale greater than or

equal to ξ. Then, we turn to establishing an in�nitesimal characterization of the value process

(Vt)t∈[0,T ] in terms of a Re�ected BSDE where the pay-o� process ξ from (1.1) plays the role of

a lower obstacle. We emphasize that this RBSDE-part of our approach is far from mimicking the

one from the r.u.s.c. case; we have to rely to very di�erent arguments here due to the complete

irregularity of the process ξ.

Let us recall that Re�ected BSDEs have been introduced by El Karoui et al. in the seminal

paper [12] in the case of a Brownian �ltration and a continuous obstacle, and then generalized

to the case of a right-continuous obstacle and/or a larger stochastic basis than the Brownian one

in [20], [5], [21], [14], [22], [36]. In [16], we have formulated a notion of Re�ected BSDE in the

case where the obstacle is only right-uppersemicontinuous (but possibly not right-continuous)

and have shown existence and uniqueness of the solution. In the present paper, we show that

the existence and uniqueness result from [16] still holds in the more general case, without any

regularity assumptions on the obstacle. In the recent preprint [25], existence and uniqueness

of the solution (in the Brownian framework) is shown by using a di�erent approach, namely a

penalization method.

We also establish a comparison result for RBSDEs with irregular obstacles. Due to the complete

irregularity of the obstacles and the presence of jumps in the �ltration, we are led to using an

approach which di�ers from those existing in the literature on comparison of RBSDEs (cf. also

Remark 5.8); in particular, we �rst prove a generalization of Gal'chouk-Lenglart's formula (cf.

[15] and [29]) to the case of convex functions, which we then astutely apply in our framework.

The comparison result together with the Ef -Mertens decomposition for strong (r.u.s.c.) Ef -
supermartingales (cf. [16] or [4]), helps in the study of the non-linear operator Reff which maps

a given (completely irregular) obstacle to the solution of the RBSDE with driver f . By using

the properties of the operator Reff , we show that Reff [ξ], that is, the (�rst component of the)

solution to the Re�ected BSDE with irregular obstacle ξ and driver f , is equal to the Ef -Snell
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envelope of ξ, from which we derive that it coincides with the value process (Vt)t∈[0,T ] of problem

(1.1).

Finally, we give a �nancial application to the problem of pricing of American options with

irregular pay-o� in an imperfect market model. In particular, we show that the superhedging

price of the American option with irregular pay-o� ξ is characterized as the solution of an

associated RBSDE (where ξ is the lower obstacle). Some examples of digital American options

are given as particular cases.

The rest of the paper is organized as follows: In Section 2 we give some preliminary de�nitions

and some notation. In Section 3 we revisit the classical optimal stopping problem with irregular

pay-o� process ξ. We �rst give some general results such as aggregation, Mertens decomposition

of the value process, Skorokhod conditions satis�ed by the associated non decreasing processes;

then, we characterize the value process of the classical problem in terms of the solution of a

Re�ected BSDE with irregular obstacle and driver f which does not depend on the solution.

Section 4 is devoted to the �rst part of the study of the non-linear optimal stopping problem

(1.1); in particular, we present the aggregation result and the Snell characterization. Section 5

is devoted to the study of the related Re�ected BSDE with irregular obstacle; in particular, we

prove existence and uniqueness of the solution for general Lipschitz driver f (Subsection 5.1),

provide a comparison theorem (Subsection 5.3), and establish some useful properties of the non-

linear operator Reff (Subsection 5.4). In Section 6 we present the in�nitesimal characterization

of the value of the non-linear optimal stopping problem (1.1) in terms of the solution of the

RBSDE from Section 5. In Section 7 we give a �nancial application to the pricing of American

options with irregular pay-o� in an imperfect market model with jumps; we also give a useful

corollary of the in�nitesimal characterization, namely, a priori estimates with universal constants

for RBSDEs with irregular obstacles.

2. Preliminaries. Let T > 0 be a �xed positive real number. Let E = Rn \ {0},E =

B(Rn \ {0}), which we equip with a σ-�nite positive measure ν. Let (Ω,F , P ) be a probability

space equipped with a one-dimensional Brownian motion W and with an independent Poisson

random measure N(dt, de) with compensator dt ⊗ ν(de). We denote by Ñ(dt, de) the compen-

sated process, i.e. Ñ(dt, de) := N(dt, de)−dt⊗ν(de). Let IF = {Ft : t ∈ [0, T ]} be the (complete)

natural �ltration associated with W and N . We denote by P (resp. O) the predictable (resp.

optional) σ-algebra on Ω× [0, T ]. The notation L2(FT ) stands for the space of random variables

which are FT -measurable and square-integrable. For t ∈ [0, T ], we denote by Tt,T the set of stop-

ping times τ such that P (t ≤ τ ≤ T ) = 1. More generally, for a given stopping time ν ∈ T0,T , we

denote by Tν,T the set of stopping times τ such that P (ν ≤ τ ≤ T ) = 1.

We use also the following notation:

• L2
ν is the set of (E ,B(R))-measurable functions ` : E → R such that ‖`‖2ν :=

∫
E |`(e)|

2ν(de) <

∞. For ` ∈ L2
ν , k ∈ L2

ν , we de�ne 〈`, k 〉ν :=
∫
E `(e)k (e)ν(de).

• IH2 is the set of R-valued predictable processes φ with ‖φ‖2IH2 := E
[∫ T

0 |φt|
2dt
]
<∞.

• IH2
ν is the set of R-valued processes l : (ω, t, e) ∈ (Ω × [0, T ] × E) 7→ lt(ω, e) which are

predictable, that is (P⊗E ,B(R))-measurable, and such that ‖l‖2IH2
ν

:= E
[∫ T

0 ‖lt‖
2
ν dt
]
<∞.
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As in [16], we denote by S2 the vector space of R-valued optional (not necessarily cadlag) pro-

cesses φ such that |||φ|||2S2 := E[ess supτ∈T0 |φτ |
2] < ∞. By Proposition 2.1 in [16], the mapping

|||·|||S2 is a norm on the space S2, and S2 endowed with this norm is a Banach space.

De�nition 2.1 (Driver, Lipschitz driver) A function f is said to be a driver if

• f : Ω× [0, T ]×R2 × L2
ν → R

(ω, t, y, z, k ) 7→ f(ω, t, y, z, k ) is P ⊗ B(R2)⊗ B(L2
ν)− measurable,

• E[
∫ T

0 f(t, 0, 0, 0)2dt] < +∞.

A driver f is called a Lipschitz driver if moreover there exists a constant K ≥ 0 such that

dP ⊗ dt-a.e. , for each (y1, z1, k1) ∈ R2 × L2
ν , (y2, z2, k2) ∈ R2 × L2

ν ,

|f(ω, t, y1, z1, k1)− f(ω, t, y2, z2, k2)| ≤ K(|y1 − y2|+ |z1 − z2|+ ‖k1 − k2‖ν).

De�nition 2.2 (BSDE, conditional f-expectation) We recall (cf. [2]) that, if f is a Lips-

chitz driver and if ξ is a square-integrable FT -measurable random variable, then there exists a

unique solution (X,π, l) ∈ S2 × IH2 × IH2
ν to the following BSDE

Xt = ξ +

∫ T

t
f(s,Xs, πs, ls)ds−

∫ T

t
πsdWs −

∫ T

t

∫
E
ls(e)Ñ(ds, de) for all t ∈ [0, T ] a.s.

For t ∈ [0, T ], the (non-linear) operator Eft,T (·) : L2(FT )→ L2(Ft) which maps a given terminal

condition ξ ∈ L2(FT ) to the position Xt (at time t) of the �rst component of the solution of the

above BSDE is called conditional f -expectation at time t. It is also well-known that this notion

can be extended to the case where the (deterministic) terminal time T is replaced by a (more

general) stopping time τ ∈ T0,T , t is replaced by a stopping time S such that S ≤ τ a.s. and the

domain L2(FT ) of the operator is replaced by L2(Fτ ).

We now pass to the notion of Re�ected BSDE. Let T > 0 be a �xed terminal time. Let f be a

driver. Let ξ = (ξt)t∈[0,T ] be a left-limited process in S2.

Remark 2.1 Let us note that in the following de�nitions and results we can relax the assumption

of existence of left limits for the obstacle ξ. All the results still hold true provided we replace the

process (ξt−)t∈]0,T ] by the process (ξ
t
)t∈]0,T ] de�ned by ξ

t
:= lim sups↑t,s<t ξs, for all t ∈]0, T ]. We

recall that ξ is a predictable process (cf. [7, Thm. 90, page 225]). We call the process ξ the left

upper-semicontinuous envelope of ξ.

De�nition 2.3 (Re�ected BSDE) A process (Y,Z, k,A,C) is said to be a solution to the

re�ected BSDE with parameters (f, ξ), where f is a driver and ξ is a left-limited process in S2,
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if

(Y, Z, k,A,C) ∈ S2 × IH2 × IH2
ν × S2 × S2and a.s. for all t ∈ [0, T ]

Yt = ξT +

∫ T

t
f(s, Ys, Zs, ks)ds−

∫ T

t
ZsdWs −

∫ T

t

∫
E
ks(e)Ñ(ds, de) +AT −At + CT− − Ct−,

(2.2)

Yt ≥ ξt for all t ∈ [0, T ] a.s.,

A is a nondecreasing right-continuous predictable process with A0 = 0 and such that

∫ T

0
1{Yt−>ξt−}dA

c
t = 0 a.s. and (Yτ− − ξτ−)(Adτ −Adτ−) = 0 a.s. for all predictable τ ∈ T0,T ,

(2.3)

C is a nondecreasing right-continuous adapted purely discontinuous process with C0− = 0

and such that (Yτ − ξτ )(Cτ − Cτ−) = 0 a.s. for all τ ∈ T0,T .

(2.4)

Here Ac denotes the continuous part of the process A and Ad its discontinuous part.

Equations (2.3) and (2.4) are referred to as minimality conditions or Skorokhod conditions.

For real-valued random variables X and Xn, n ∈ IN , the notation "Xn ↑ X" will stand for

"the sequence (Xn) is nondecreasing and converges to X a.s.".

For a ladlag process φ, we denote by φt+ and φt− the right-hand and left-hand limit of φ at t.

We denote by ∆+φt := φt+ − φt the size of the right jump of φ at t, and by ∆φt := φt − φt− the

size of the left jump of φ at t.

Remark 2.2 If (Y, Z, k,A,C) is a solution to the RBSDE de�ned above, by (2.2), we have

∆Ct = Yt − Yt+, which implies that Yt ≥ Yt+, for all t ∈ [0, T ). Hence, Y is r.u.s.c. Moreover,

from Cτ − Cτ− = −(Yτ+ − Yτ ), combined with the Skorokhod condition (2.4), we derive (Yτ −
ξτ )(Yτ+ − Yτ ) = 0, a.s. for all τ ∈ T0,T . This, together with Yτ ≥ ξτ and Yτ ≥ Yτ+ a.s., leads to

Yτ = Yτ+ ∨ ξτ a.s. for all τ ∈ T0,T .

De�nition 2.4 Let τ ∈ T0. An optional process (φt) is said to be right upper-semicontinuous

(r.u.s.c.) along stopping times if for all stopping time τ ∈ T0 and for all nonincreasing sequence

of stopping times (τn) such that τn ↓ τ a.s. , φτ ≥ lim supn→∞ φτn a.s..

3. The classical optimal stopping problem. Let (ξt)t∈[0,T ] be a left-limited process

belonging to S2, called the reward process. Let f = (ft)t∈[0,T ] be a predictable process with

E[
∫ T

0 f2
t dt] < +∞, called the instantaneous reward process. For each S ∈ T0,T , we de�ne the

value function Y (S) at time S by

Y (S) := ess sup
τ∈TS,T

E[ξτ +

∫ τ

S
fudu | FS ].(3.5)

3.1. General results.

Lemma 3.1 (i) There exists a ladlag optional process (Yt)t∈[0,T ] which aggregates the family

(Y (S))S∈T0,T (i.e. YS = Y (S) a.s. for all S ∈ T0,T ).
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Moreover, the process (Yt +
∫ t

0 fudu)t∈[0,T ] is the smallest strong supermartingale greater

than or equal to (ξt +
∫ t

0 fudu)t∈[0,T ].

(ii) We have YS = ξS ∨ YS+ a.s. for all S.

(iii) For each S ∈ T0,T and for each λ ∈]0, 1[, we set

τλS := inf{t ≥ S , λYt(ω) ≤ ξt}.

The process (Yt +
∫ t

0 fudu)t∈[0,T ] is a martingale on [S, τλS ].

Proof. These results follow from results of classical optimal stopping theory. For a sketch of

the proof of the �rst two assertions, the reader is referred to the proof of Proposition A.5 in the

Appendix of [16] (which still holds for a general process ξ ∈ S2). The last assertion corresponds

to a result of optimal stopping theory (cf. [30], [11] or Lemma 2.7 in [26]). Its proof is based on a

penalization method (used in convex analysis), introduced by Maingueneau (1978) (cf. the proof

of Theorem 2 in [30]), which does not require any regularity assumption on the reward process

ξ. �

Remark 3.3 It follows from (ii) in the above lemma that ∆+YS = 1{YS=ξS}∆+YS a.s.

Remark 3.4 Let us note for further reference that Maingueneau's penalization approach for

showing the martingale property on [S, τλS ] (property (iii) in the above lemma) relies heavily on

the convexity of the problem.

Lemma 3.2 (i) The value process Y of Lemma 3.1 belongs to S2 and admits the following

(Mertens) decomposition:

(3.6) Yt = −
∫ t

0
fudu+Mt −At − Ct− for all t ∈ [0, T ] a.s.,

whereM is a square integrable martingale, A is a nondecreasing right-continuous predictable

process such that A0 = 0, E(A2
T ) <∞, and C is a nondecreasing right-continuous adapted

purely discontinuous process such that C0− = 0, E(C2
T ) <∞.

(ii) For each τ ∈ T0,T , we have ∆Cτ = 1{Yτ=ξτ}∆Cτ a.s.

(iii) For each predictable τ ∈ T0,T , we have ∆Aτ = 1{Yτ−= ξτ−}∆Aτ a.s.

Proof. By Lemma 3.1 (i), the process (Yt+
∫ t

0 fudu)t∈[0,T ] is a strong supermartingale. Moreover,

by using martingale inequalities, it can be shown that

(3.7) E[ess sup
S∈T0,T

|YS |2] ≤ cE[X2] ≤ cT‖f‖2IH2 + c|||ξ|||2S2 .

Hence, the process (Yt +
∫ t

0 fudu)t∈[0,T ] is in S2 (a fortiori, of class (D)). Applying Mertens de-

composition for strong supermartingales of class (D) (cf., e.g., [8, Appendix 1, Thm.20, equalities

(20.2)])gives the decomposition (3.6), where M is a cadlag uniformly integrable martingale, A

is a nondecreasing right-continuous predictable process such that A0 = 0, E(AT ) < ∞, and

C is a nondecreasing right-continuous adapted purely discontinuous process such that C0− = 0,

E(CT ) <∞. Based on some results of Dellacherie-Meyer [8] (cf., e.g., Theorem A.2 and Corollary

A.1 in [16]), we derive that A ∈ S2 and C ∈ S2, which gives the assertion (i).
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Let τ ∈ T0,T . By Remark 3.3 together with Mertens decomposition (3.6), we get ∆Cτ =

−∆+Yτ a.s. It follows that ∆Cτ = 1{Yτ=ξτ}∆Cτ a.s. , which corresponds to (ii).

From Lemma 3.1 (iii) together with Mertens decomposition (3.6), it follows that, for each

S ∈ T0,T and for each λ ∈]0, 1[, we have

(3.8) AS = AτλS
a.s.

Assertion (iii) (concerning the jumps of A) is due to El Karoui ([11, Proposition 2.34]). Its

proof is based on the equality (3.8). �

The following minimality property is well-known from the literature in the "more regular"

cases (cf., e.g., [27] for the right-uppersemicontinuous case). In the case of completely irregular

ξ, this minimality property was not explicitly available. Only recently, it was proved by [25]

(cf. Proposition 3.7) in the Brownian framework. Here, we generalize the result of [25] by using

di�erent analytic arguments.

Lemma 3.3 The continuous part Ac of A satis�es the equality
∫ T

0 1{Yt−>ξt−}dA
c
t = 0 a.s.

Proof. As for the discontinuous part of A, the proof is based on Lemma 3.1 (iii) , and also

on some analytic arguments similar to those used in the proof of Theorem D13 in Karatzas and

Shreve (1998) ([24]).

We have to show that
∫ T

0 (Yt− − ξt−)dAct = 0 a.s.

Lemma 3.1 (iii) yields that for each S ∈ T0,T and for each λ ∈]0, 1[, we have AS = AτλS
a.s.

Without loss of generality, we can assume that for each ω, the map t 7→ Act(ω) is continuous, that

the maps t 7→ Yt(ω) and t 7→ ξt(ω) are left-limited, and that, for all λ ∈]0, 1[∩Q and t ∈ [0, T [∩Q,
we have At(ω) = Aτλt

(ω).

Let us denote by J (ω) the set on which the nondecreasing function t 7→ Act(ω) is ��at�:

J (ω) := {t ∈]0, T [ , ∃δ > 0 with Act−δ(ω) = Act+δ(ω)}

The set J (ω) is clearly open and hence can be written as a countable union of disjoint intervals:

J (ω) = ∪i]αi(ω), βi(ω)[. We consider

(3.9) Ĵ (ω) := ∪i]αi(ω), βi(ω)] = {t ∈]0, T ] , ∃δ > 0 with Act−δ(ω) = Act(ω)}.

We have
∫ T

0 1Ĵ (ω)dA
c
t(ω) =

∑
i(A

c
βi(ω)(ω) − Acαi(ω)(ω)) = 0. Hence, the nondecreasing function

t 7→ Act(ω) is ��at� on Ĵ (ω). We now introduce

K(ω) := {t ∈]0, T ] s.t. Yt−(ω) > ξt−(ω)}

We next show that for almost every ω, K(ω) ⊂ Ĵ (ω), which clearly provides the desired result.

Let t ∈ K(ω). Let us prove that t ∈ Ĵ (ω). By (3.9), we thus have to show that there exists δ > 0

such that Act−δ(ω) = Act(ω). Since t ∈ K(ω), we have Yt−(ω) > ξt−(ω). Hence, there exists δ > 0

and λ ∈]0, 1[∩Q such that t − δ ∈ [0, T [∩Q and for each r ∈ [t − δ, t[, λYr(ω) > ξr(ω). By

de�nition of τλt−δ(ω), it follows that τλt−δ(ω) ≥ t. Now, we have Ac
τλt−δ

(ω) = Act−δ(ω). Since the

map s 7→ Acs(ω) is nondecreasing, we derive that Act(ω) = Act−δ(ω), which implies that t ∈ Ĵ (ω).

We thus have K(ω) ⊂ Ĵ (ω), which completes the proof. �
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Remark 3.5 We see from the above proofs that Lemmas 3.2 and 3.3 also hold true in the case

of a general �ltration assumed to satisfy the usual hypotheses. We note also that the martingale

property from assertion (iii) of Lemma 3.1 is crucial for the proof of the minimality conditions

for the process A (namely, for the proofs of Lemma 3.2 assertion (iii), and for Lemma 3.3).

3.2. Characterization of the value function as the solution of an RBSDE. Using Lemmas

3.2 and 3.3, we show that the value process Y of the optimal stopping problem (3.5) solves

the RBSDE from De�nition 2.3 with parameters the driver process (ft) and the obstacle (ξt),

and that, moreover, Y is the unique solution of the RBSDE. We thus have an "in�nitesimal

characterization" of the value process Y .

Theorem 3.1 Let Y be the value process of the optimal stopping problem (3.5). Let A and C be

the non decreasing processes associated with the Mertens decomposition (3.6) of Y . There exists

a unique pair (Z, k) ∈ IH2× IH2
ν such that the process (Y,Z, k,A,C) is a solution of the RBSDE

from De�nition 2.3 associated with the driver process f(ω, t, y, z, k ) = ft(ω) and the obstacle (ξt).

Moreover, the solution of this RBSDE is unique.

Proof. The proof relies on the above lemmas and also on the a priori estimates from Lemma

8.1 of the Appendix.

By Lemma 3.1 (ii), the value process Y corresponding to the optimal stopping problem (3.5)

satis�es YT = Y (T ) = ξT a.s. and Yt ≥ ξt, 0 ≤ t ≤ T , a.s. By Lemma 3.2 (ii), the process C

of the Mertens decomposition of Y (3.6) satis�es the minimality condition (2.4). Moreover, by

Lemma 3.2 (iii) and Lemma 3.3, the process A satis�es the minimality condition (2.3). By the

martingale representation theorem (cf., e.g., Lemma 2.3 in [39]) there exists a unique predictable

process Z ∈ IH2 and a unique predictable k ∈ IH2
ν such that dMt = ZtdWt +

∫
E kt(e)Ñ(dt, de).

The process (Y, Z, k,A,C) is thus a solution of the RBSDE (2.3) associated with the driver

process (ft) and with the obstacle ξ.

It remains to show the uniqueness of the solution. Using the a priori estimates from Lemma

8.1 of the Appendix, together with classical arguments of the theory of BSDEs, we obtain the

desired result (for details, see step 5 of the proof of Lemma 3.3 in [16]). �

4. Optimal stopping with non-linear f-expectation and irregular pay-o� . Let

(ξt)t∈[0,T ] be a left-limited process in S2. Let f be a Lipschitz driver satisfying Assumption 4.1.

For each S ∈ T0,T , we consider the random variable

(4.10) V (S) := ess sup
τ∈TS,T

EfS,τ (ξτ ).

As mentioned in the introduction, the above optimal stopping problem has been largely stud-

ied: in [13], and in [3], in the case of a continuous pay-o� process ξ; in [36] and [1] in the case of a

right-continuous pay-o�; and recently in [16] in the case of a right-uppersemicontinuous pay-o�

process ξ. In this section, we do not make any regularity assumptions on ξ (cf. also Remark 2.1).

We make the following assumption on the driver (cf., e.g., Theorem 4.2 in [35]).
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Assumption 4.1 Assume that dP ⊗ dt-a.e. for each (y, z, k1, k2) ∈ R2 × (L2
ν)2,

f(t, y, z, k1)− f(t, y, z, k2) ≥ 〈θy,z,k1,k2t , k1 − k2〉ν ,

with

θ : [0, T ]× Ω× R2 × (L2
ν)2 → L2

ν ; (ω, t, y, z, k1, k2) 7→ θy,z,k1,k2t (ω, ·)

P⊗B(R2)⊗B((L2
ν)2)-measurable, satisfying ‖θy,z,k1,k2t (·)‖ν ≤ K for all (y, z, k1, k2) ∈ R2×(L2

ν)2,

dP ⊗ dt-a.e. , where K is a positive constant, and such that

(4.11) θy,z,k1,k2t (e) ≥ −1,

for all (y, z, k1, k2) ∈ R2 × (L2
ν)2, dP ⊗ dt⊗ dν(e)− a.e.

The above assumption is satis�ed if, for example, f is of class C1 with respect to k such that

∇kf is bounded (in L2
ν) and ∇kf ≥ −1 (cf. Proposition A.2. in [9]).

We recall that under Assumption 4.1 on the driver f , the functional EfS,τ (·) is nondecreasing

(cf. [35, Thm. 4.2]).

If we interpret ξ as a �nancial position process and −Ef (·) as a dynamic risk measure (cf.,e.g.,

[33], [37]), then (up to a minus sign) V (S) can be seen as the minimal risk at time S. As

also mentioned in the introduction, the absence of regularity allows for more �exibility in the

modelling. If, for instance, we consider a situation where the jump times of the Poisson random

measure model times of default (which, being totally inaccessible, cannot be foreseen), then, the

complete lack of regularity allows to take into account an immediate non-smooth, positive or

negative, impact on ξ after the default occurs.

If we interpret ξ as a payo� process, and Ef (·) as a non linear pricing rule, then the optimal

stopping problem (4.10) is related to the (non linear) pricing problem of the American option

with payo� ξ. The absence of regularity allows us to deal with the case of American options with

irregular payo�s, such as American digital options (cf. Section 7.1 for details).

4.1. Preliminary results on the value family. Let us �rst introduce the de�nition of an ad-

missible family of random variables indexed by stopping times in T0,T (or T0,T -system in the

vocabulary of Dellacherie and Lenglart [6]).

De�nition 4.5 We say that a family U = (U(τ), τ ∈ T0,T ) is admissible if it satis�es the

following conditions

1. for all τ ∈ T0,T , U(τ) is a real-valued Fτ -measurable random variable.

2. for all τ, τ ′ ∈ T0,T , U(τ) = U(τ ′) a.s. on {τ = τ ′}.
Moreover, we say that an admissible family U is square-integrable if for all τ ∈ T0,T , U(τ) is

square-integrable.

Lemma 4.4 (Admissibility of the family V ) The family V = (V (S), S ∈ T0,T ) de�ned in

(4.10) is a square-integrable admissible family.

The proof uses arguments similar to those used in the "classical" case of linear expectations

(cf., e.g., [28]), combined with some properties of f -expectations.
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Proof: For each S ∈ T0,T , V(S) is an FS-measurable square-integrable random variable, due to

the de�nitions of the conditional f -expectation and of the essential supremum (cf. [31]). Let us

prove Property 2 of the de�nition of admissibility. Let S and S′ be two stopping times in T0,T .

We set A := {S = S′} and we show that V (S) = V (S′), P -a.s. on A. For each τ ∈ TS,T , we set
τA := τ1A + T1Ac . We have τA ≥ S′ a.s. By using the fact that S = S′ a.s. on A, the fact that

τA = τ a.s. on A, and a standard property of conditional f -expectations (cf., e.g., Proposition

A.3 in [18]), we obtain

1AEfS,τ [ξτ ] = 1AEfS′,τ [ξτ ] = Ef
τ1A

S′,T [ξτ1A] = Ef
τA1A

S′,T [ξτA1A] = 1AEfS′,τA [ξτA ] ≤ 1AV (S′),

where f τ (t, y, z, k ) := f(t, y, z, k )1{t≤τ}. By taking the ess sup over TS,T on both sides, we get

1AV (S) ≤ 1AV (S′). We obtain the converse inequality by interchanging the roles of S and S′.

�

Lemma 4.5 (Optimizing sequence) For each S ∈ T0,T , there exists a sequence (τn)n∈N of

stopping times in TS,T such that the sequence (EfS,τn(ξτn))n∈N is nondecreasing and

V (S) = lim
n→∞

↑ EfS,τn(ξτn) a.s.

Proof: Due to a classical result on essential suprema (cf. [31]), it is su�cient to show that,

for each S ∈ T0,T , the family (ES,τ (ξτ ), τ ∈ TS,T ) is stable under pairwise maximization. Let

us �x S ∈ T0,T . Let τ ∈ TS,T and τ ′ ∈ TS,T . We de�ne A := { EfS,τ ′(ξτ ′) ≤ E
f
S,τ (ξτ ) }. The

set A is in FS . We de�ne ν := τ1A + τ ′1Ac . We have ν ∈ TS,T . We compute 1AEfS,ν(ξν) =

Ef
ν1A

S,T (ξν1A) = Ef
τ1A

S,T (ξτ1A) = 1AEfS,τ (ξτ ) a.s. Similarly, we show 1AcEfS,ν(ξν) = 1AcEfS,τ ′(ξτ ′).
It follows that EfS,ν(ξν) = EfS,τ (ξτ )1A + EfS,τ ′(ξτ ′)1Ac = EfS,τ (ξτ )∨ EfS,τ ′(ξτ ′), which shows the

stability under pairwise maximization and concludes the proof. �

We need two more de�nitions.

De�nition 4.6 (Ef -supermartingale family) An admissible square-integrable family U :=

(U(S), S ∈ T0,T ) is said to be a strong Ef -supermartingale family if for all S, S
′ ∈ T0,T such

that S ≤ S′ a.s.,

EfS,S′(U(S′)) ≤ U(S) a.s.

De�nition 4.7 (Right-uppersemicontinuous family) An admissible family U := (U(S), S ∈
T0,T ) is said to be a right-uppersemicontinuous (along stopping times) family if, for all (τn) non-

increasing sequence in T0,T , U(τ) ≥ lim supn→∞ U(τn) a.s. on {τ = lim ↓ τn}.

The following lemma gives a link between the previous two notions.

Lemma 4.6 Let U := (U(S), S ∈ T0,T ) be a strong Ef -supermartingale family. Then, (U(S), S ∈
T0,T ) is a right-uppersemicontinuous (along stopping times) family in the sense of De�nition 4.7.
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Proof: Let τ ∈ T0,T and let (τn) ∈ T IN0,T be a nonincreasing sequence of stopping times such that

limn→+∞ τn = τ a.s. and for all n ∈ IN , τn > τ a.s. on {τ < T}, and such that limn→+∞ U(τn)

exists a.s. As U is an Ef -supermartingale family and as the sequence (τn) is nonincreasing,

we have Efτ,τn(U(τn)) ≤ Efτ,τn+1(U(τn+1)) ≤ U(τ) a.s. Hence, the sequence (Efτ,τn(U(τn)))n is

nondecreasing and U(τ) ≥ lim ↑ Efτ,τn(U(τn)). This inequality, combined with the property of

continuity of BSDEs with respect to terminal time and terminal condition (cf. [35, Prop. A.6])

gives

U(τ) ≥ lim
n→+∞

Efτ,τn(U(τn)) = Efτ,τ ( lim
n→+∞

U(τn)) = lim
n→+∞

U(τn) a.s.

By Lemma 5 of Dellacherie and Lenglart [6] 1, the family (U(S)) is thus right-uppersemicontinuous

(along stopping times).

�

Theorem 4.2 The value family V = (V (S), S ∈ T0,T ) de�ned in (4.10) is a strong Ef -
supermartingale family. In particular, V = (V (S), S ∈ T0,T ) is a right-uppersemicontinuous

(along stopping times) family in the sense of De�nition 4.7.

Proof: We know from Lemma 4.4 that V = (V (S), S ∈ T0,T ) is a square-integrable admissible

family. Let S ∈ T0,T and S′ ∈ TS,T . We will show that EfS,S′(V (S′)) ≤ V (S) a.s., which will prove

that V is a strong Ef -supermartingale family. By Lemma 4.5, there exists a sequence (τn)n∈N
of stopping times such that τn ≥ S′ a.s. and V (S′) = limn→∞ ↑ EfS′,τn(ξτn) a.s. By using this

equality, the property of continuity of BSDEs, and the consistency of conditional f -expectation,

we get

EfS,S′(V (S′)) = EfS,S′( lim
n→∞

↑ EfS′,τn(ξτn)) = lim
n→∞

EfS,S′(E
f
S′,τn

(ξτn)) = lim
n→∞

EfS,τn(ξτn) ≤ V (S).

We conclude that V is a strong Ef -supermartingale family. This property, together with Lemma

4.6, gives the property of right-uppersemicontinuity (along stopping times) of the family V . The

proof is thus completed. �

4.2. Aggregation and Snell characterization. We now show the following result, which gen-

eralizes some results of classical optimal stopping theory (more precisely, the assertion (i) from

Lemma 3.1) to the case of an optimal stopping problem with f -expectation.

Theorem 4.3 (Aggregation and Snell characterization) There exists a unique right- up-

persemicontinuous optional process, denoted by (Vt)t∈[0,T ], which aggregates the value family

V = (V (S), S ∈ T0,T ). Moreover, (Vt)t∈[0,T ] is the Ef -Snell envelope of the pay-o� process

ξ, that is, the smallest strong Ef -supermartingale greater than or equal to ξ.

The proof of this theorem relies on the preliminary resuts on the value family V = (V (S), S ∈
T0,T ) presented in the previous subsection.

1The chronology Θ (in the vocabulary and notation of [6]) which we work with here is the chronology of all

stopping times, that is, Θ = T0,T ; hence [Θ] = Θ = T0,T .
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Proof: By Theorem 4.2, the value family V = (V (S), S ∈ T0,T ) is a right-uppersemicontinuous

family (or a right-uppersemicontinuous T0,T -system in the vocabulary of Dellacherie-Lenglart

[6]). Applying Theorem 4 of Dellacherie-Lenglart ([6]), gives the existence of a unique (up to

indistinguishability) right-uppersemicontinuous optional process (Vt)t∈[0,T ] which aggregates the

value family (V (S), S ∈ T0,T ). From this aggregation property, namely the property VS = V (S)

a.s. for each S ∈ T0,T , and from Theorem 4.2, we deduce that the process (Vt)t∈[0,T ] is a strong

Ef -supermartingale. Moreover, Vt ≥ ξt, for all t ∈ [0, T ], a.s. Indeed, due to the de�nition of the

family (V (S), S ∈ T0,T ) and to the aggregation result, we have VS ≥ ξS a.s. for each S ∈ T0,T .

We deduce that Vt ≥ ξt, for all t ∈ [0, T ], a.s., by applying a well-known result from the general

theory of processes (cf. ([7, Theorem IV.84])

Let us now prove that the process (Vt)t∈[0,T ] is the smallest strong Ef -supermartingale greater

than or equal to ξ. Let (V ′t )t∈[0,T ] be a strong Ef -supermartingale such that V ′t ≥ ξt, for all

t ∈ [0, T ], a.s. Let S ∈ T0,T . We have V ′τ ≥ ξτ a.s. for all τ ∈ TS,T . Hence, EfS,τ (V ′τ ) ≥ EfS,τ (ξτ )

a.s., where we have used the monotonicity of the conditional f -expectation. On the other hand,

by using the Ef -supermartingale property of the process (V ′t )t∈[0,T ], we have V
′
S ≥ E

f
S,τ (V ′τ ) a.s.

for all τ ∈ TS,T . Hence, V ′S ≥ E
f
S,τ (ξτ ) a.s. for all τ ∈ TS,T . By taking the essential supremum

over τ ∈ TS,T in the inequality, we get V ′S ≥ ess supτ∈TS,T E
f
S,τ (ξτ ) = VS a.s. Note that the last

equality in the above computation is due to the de�nition of V (S) and to the aggregation result.

We have thus obtained V ′S ≥ VS a.s., which (as S is arbitrary in T0,T ) leads to V
′
t ≥ Vt, for all

t ∈ [0, T ], a.s., due to the same well-known result from the general theory of processes as above.

�

5. Non-linear Re�ected BSDE with complete irregular obstacle. Comparison the-

orem. Our aim now is to establish an in�nitesimal characterization for the non-linear problem

(4.10) in terms of the solution of a non-linear RBSDE (thus generalizing Theorem 3.1 from the

classical linear case to the non-linear case). In order to do so, we need to establish �rst some

results on non-linear RBSDEs with completely irregular obstacles, in particular, a comparison

result for such RBSDEs. This section is devoted to these results. This extends and completes

our work from [16], where an assumption of right-uppersemicontinuity on the obstacle is made.

Let us note that the proof of the comparison theorem from [16] cannot be adapted to the com-

pletely irregular framework considered here; instead, we rely on a Tanaka-type formula for strong

(irregular) semimartingales which we establish.

Remark 5.6 One might wonder whether the in�nitesimal characterization for the non-linear op-

timal stopping problem (4.10) can be obtained by a direct study of the value process (Vt) of problem

(4.10), similarly to what was done in the classical linear case in Section 3. In the classical case,

we applied Mertens decomposition for (Vt); then, we showed directly the minimality properties for

the processes Ad and Ac (cf. Lemmas 3.2 and 3.3) by using the martingale property on the inter-

val [S, τλS ] from Lemma 3.1(iii), which itself relies on Maingueneau's penalization approach (cf.

also Remarks 3.5 and 3.4). In the non-linear case, Mertens decomposition is generalized by the

Ef -Mertens decomposition (cf. Proposition 8.2 in the Appendix). However, the analogue in the

non-linear case of the martingale property of Lemma 3.1[(iii)] (namely, the Ef -martingale prop-

erty) cannot be obtained via Maingueneau's approach due to the non-convexity of the functional
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Ef .

5.1. Existence and uniqueness of the solution of the RBSDE. In Theorem 3.1, we have shown

that, in the case where the driver does not depend on y, z, and k , the RBSDE from De�nition

2.3 admits a unique solution. Using this theorem and the same arguments as in [16], we derive

the following existence and uniqueness result in the case of a general Lipschitz driver f . We note

that Assumption 4.1 is not required for this result.

Theorem 5.4 (Existence and uniqueness) Let ξ be a left-limited 2 process in S2 and let f

be a Lipschitz driver. The RBSDE with parameters (f, ξ) from De�nition 2.3 admits a unique

solution (Y, Z, k,A,C) ∈ S2 × IH2 × IH2
ν × S2 × S2.

Proof. The proof relies on the existence and uniqueness result for RBSDEs with a driver which

does not depend on the solution (Theorem 3.1), the a priori estimates from Lemma 8.1 of the

Appendix, and a �xed point theorem. For details, the reader is referred to the proof of Theorem

3.4 in [16]. �

Remark 5.7 In [25] the above existence and uniqueness result is shown (in a Brownian frame-

work) by using a penalization method. Our approach provides an alternative proof of this result.

5.2. Tanaka-type formula. The following lemma will be used in the proof of the comparison

theorem for RBSDEs with irregular obstacles. The lemma can be seen as an extension of Theorem

66 of [34, Chapter IV] from the case of right-continuous semimartingales to the more general case

of strong optional semimartingales.

Lemma 5.7 (Tanaka-type formula) Let X be a (real-valued) strong optional semimartingale

with decomposition X = X0 +M +A+B, where M is a local (cadlag) martingale, A is a right-

continuous adapted process of �nite variation such that A0 = 0, B is a left-continuous adapted

purely discontinuous process of �nite variation such that B0 = 0. Let f : R −→ R be a convex

function. Then, f(X) is a strong optional semimartingale. Moreover, denoting by f ′ the left-hand

derivative of the convex function f , we have

f(Xt) = f(X0) +

∫
]0,t]

f ′(Xs−)d(As +Ms) +

∫
[0,t[

f ′(Xs)dBs+ +Kt,

where K is a nondecreasing adapted process such that

∆Kt = f(Xt)− f(Xt−)− f ′(Xt−)∆Xt and ∆+Kt = f(Xt+)− f(Xt)− f ′(Xt)∆+Xt.

Note that the process K in the above lemma is in general neither left-continuous nor right-

continuous.

Proof: Our proof follows the proof of Theorem 66 of [34, Chapter IV] with suitable changes.

2By Remark 2.1, this result still holds for a completely irregular payo� (not necessarily left-limited).
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Step 1. We assume that X is bounded; more precisely, we assume that there exists N ∈ IN

such that |X| ≤ N . We know (cf. [34]) that there exists a sequence (fn) of twice continuously

di�erentiable convex functions such that (fn) converges to f , and (f ′n) converges to f ′ from

below. By applying Gal'chouk-Lenglart's formula (cf., e.g., Theorem A.3 in [16]) to fn(Xt), we

obtain for all τ ∈ T0,T

(5.12) fn(Xτ ) = fn(X0) +

∫
]0,τ ]

f ′n(Xs−)d(As +Ms) +

∫
[0,τ [

f ′n(Xs)dBs+ +Kn
τ , a.s., where

(5.13)

Kn
τ :=

∑
0<s≤τ

[
fn(Xs)− fn(Xs−)− f ′n(Xs−)∆Xs

]
+
∑

0≤s<τ

[
fn(Xs+)− fn(Xs)− f ′n(Xs)∆+Xs

]
+

1

2

∫
]0,τ ]

f ′′n(Xs−)d〈M c,M c〉s a.s.

We show that (Kn
τ ) is a convergent sequence by showing that the other terms in Equation (5.12)

converge. The convergence
∫

]0,τ ] f
′
n(Xs−)d(As + Ms) −→

n→∞

∫
]0,τ ] f

′(Xs−)d(As + Ms) is shown by

using the same arguments as in the proof of [34, Thorem 66, Ch. IV]. The convergence of the

term
∫

[0,τ [ f
′
n(Xs)dBs+, which is speci�c to the non-right-continuous case, is shown by using

dominated convergence. We conclude that (Kn
τ ) converges and we set Kτ := limn→∞K

n
τ . The

process (Kt) is adapted as the limit of adapted processes. Moreover, we have from Eq. (5.13)

and from the convexity of fn that, for each n, Kn
t is nondecreasing in t. Hence, the limit Kt is

nondecreasing.

Step 2. We treat the general case where X is not necessarily bounded by using a localization

argument similar to that used in [34, Th. 66, Ch. IV].

�

5.3. Comparison theorem.

Theorem 5.5 (Comparison) Let ξ ∈ S2, ξ′ ∈ S2 be two left-limited 3 processes. Let f and

f ′ be Lipschitz drivers satisfying Assumption 4.1. Let (Y,Z, k,A,C) (resp. (Y ′, Z ′, k′, A′, C ′)) be

the solution of the RBSDE associated with obstacle ξ (resp. ξ′) and with driver f (resp. f ′). If

ξt ≤ ξ′t, 0 ≤ t ≤ T a.s. and f(t, Y ′t , Z
′
t, k
′
t) ≤ f ′(t, Y ′t , Z

′
t, k
′
t), 0 ≤ t ≤ T dP ⊗ dt-a.s., then,

Yt ≤ Y ′t , 0 ≤ t ≤ T a.s.

Proof: We set Ȳt = Yt − Y ′t , Z̄t = Zt − Z ′t, k̄t = kt − k′t, Āt = At − A′t, C̄t = Ct − C ′t and
f̄t = f(t, Yt−, Zt, kt)− f ′(t, Y ′t−, Z ′t, k′t). Then,

−dȲt = f̄tdt+ dĀt + dC̄t− − Z̄tdWt −
∫
E
k̄t(e)Ñ(dt, de), ȲT = 0.

3By Remark 2.1, this result still holds for a completely irregular payo� (not necessarily left-limited).
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Applying Lemma 5.7 to the positive part of Ȳt, we obtain

(5.14)

Ȳ +
t =−

∫
]t,T ]

1{Ȳs−>0}Z̄sdWs −
∫

]t,T ]

∫
E
1{Ȳs−>0}k̄s(e)Ñ(ds, de) +

∫
]t,T ]

1{Ȳs−>0}f̄sds

+

∫
]t,T ]

1{Ȳs−>0}dĀs +

∫
[t,T [

1{Ȳs>0}dC̄s + (Kt −KT ).

We set δt :=
f(t,Yt−,Zt,kt)−f(t,Y ′t−,Zt,kt)

Yt−−Y ′t−
1{Ȳt− 6=0} and βt :=

f(t,Y ′t−,Zt,kt)−f(t,Y ′t−,Z
′
t,kt)

Zt−Z′t
1{Z̄t 6=0}. Due

to the Lipschitz-continuity of f , the processes δ and β are bounded. We note that f̄t = δtȲt +

βtZ̄t + f(Y ′t−, Z
′
t, kt)− f(Y ′t−, Z

′
t, k
′
t) +ϕt, where ϕt := f(Y ′t−, Z

′
t, k
′
t)− f ′(Y ′t−, Z ′t, k′t). Using this,

together with Assumption 4.1, we obtain

(5.15) f̄t ≤ δtȲt + βtZ̄t + 〈γt , k̄t〉ν ,+ϕt 0 ≤ t ≤ T, dP ⊗ dt− a.e.,

where we have set γt := θ
Y ′t−,Z

′
t,k
′
t,kt

t .

For τ ∈ T0,T , let Γτ,· be the unique solution of the following forward SDE

(5.16) dΓτ,s = Γτ,s−

[
δsds+ βsdWs +

∫
E
γs(e)Ñ(ds, de)

]
; Γτ,τ = 1.

To simplify the notation, we denote Γτ,s by Γs for s ≥ τ .
By applying Gal'chouk-Lenglart's formula to the product (ΓtȲ

+
t ) we get

(5.17)

Γτ Ȳ
+
τ = −

∫ θ

τ
Γs−(1{Ȳs−>0}Z̄s + Ȳ +

s−βs)dWs −
∫ θ

τ
Γs(Ȳ

+
s−δs + Z̄s1{Ȳs−>0}βs − f̄s1{Ȳs−>0})ds

+

∫ θ

τ
Γs−1{Ȳs−>0}dĀ

c
s +

∑
τ≤s≤θ

Γs−1{Ȳs−>0}∆Ās −
∫ θ

τ
Γs−dK

c
s −

∫ θ

τ
Γs−dK

d,−
s

+

∫ θ

τ
Γs1{Ȳs>0}dC̄s −

∫ θ

τ
ΓsdK

d,+
s −

∫ θ

τ

∫
E

Γs−(k̄s(e)1{Ȳs−>0} + Ȳ +
s−γs(e))Ñ(ds, de)

−
∑
τ≤s≤θ

∆Γs∆Ȳ
+
s .

Note that by (5.16), Γτ = 1, which gives that Γτ Ȳ
+
τ = Ȳ +

τ . Moreover, we have
∫ θ
τ Γs1{Ȳs>0}dC̄s =∫ θ

τ Γs1{Ȳs>0}dCs −
∫ θ
τ Γs1{Ȳs>0}dC

′
s. For the �rst term, it holds

∫ θ
τ Γs1{Ȳs>0}dCs = 0. Indeed,

{Ȳs > 0} = {Ys > Y ′s} ⊂ {Ys > ξs} (as Y ′s ≥ ξ′s ≥ ξs). This, together with the Skorokhod

condition for C gives the equality. For the second term, it holds −
∫ θ
τ Γs1{Ȳs>0}dC

′
s ≤ 0, as

Γ ≥ 0 and dC ′ is a nonnegative measure. Hence,
∫ θ
τ Γs1{Ȳs>0}dC̄s ≤ 0. Similarly, we obtain∫ θ

τ Γs−1{Ȳs−>0}dĀ
c
s ≤ 0. We also have −

∫ θ
τ Γs−dK

c
s ≤ 0 and −

∫ θ
τ ΓsdK

d,+
s ≤ 0. Hence,

(5.18)

Ȳ +
τ ≤ −

∫ θ

τ
Γs−(1{Ȳs−>0}Z̄s + Ȳ +

s−βs)dWs −
∫ θ

τ
Γs(Ȳ

+
s−δs + Z̄s1{Ȳs−>0}βs − f̄s1{Ȳs−>0})ds

+
∑
τ≤s≤θ

Γs−1{Ȳs−>0}∆Ās −
∫ θ

τ
Γs−dK

d,−
s −

∫ θ

τ

∫
E

Γs−(k̄s(e)1{Ȳs−>0} + Ȳ +
s−γs(e))Ñ(ds, de)

−
∑
τ≤s≤θ

∆Γs∆Ȳ
+
s .
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We compute the last term
∑

τ≤s≤θ ∆Γs∆Ȳ
+
s .

Let (ps) be the point process associated with the Poisson random measure N (cf. [8, VIII Sec-

tion 2. 67], or [23, Section III �d]). We have ∆Γs = Γs−γs(ps) and ∆Ȳ +
s = 1{Ȳs−>0}k̄s(ps) −

1{Ȳs−>0}∆Ās + ∆Kd,−
s . Hence,

(5.19)∑
τ≤s≤θ

∆Γs∆Ȳ
+
s =

∑
τ≤s≤θ

Γs−1{Ȳs−>0}γs(ps)k̄s(ps)−
∑
τ≤s≤θ

Γs−γs(ps)(1{Ȳs−>0}∆Ās −∆Kd,−
s )

=

∫ θ

τ

∫
E

Γs−1{Ȳs−>0}γs(e)k̄s(e)N(ds, de)−
∑
τ≤s≤θ

Γs−γs(ps)(1{Ȳs−>0}∆Ās −∆Kd,−
s )

=

∫ θ

τ

∫
E

Γs−1{Ȳs−>0}γs(e)k̄s(e)Ñ(ds, de) +

∫ θ

τ
Γs−1{Ȳs−>0}〈γs, k̄s〉νds

−
∑
τ≤s≤θ

Γs−1{Ȳs−>0}γs(ps)∆Ās +
∑
τ≤s≤θ

Γs−γs(ps)∆K
d,−
s .

By plugging this expression in equation (5.18) and by putting together the terms in ”ds”, the

terms in ”dKd,−
s ”, and the terms in ”∆Ās”, we get

(5.20)

Ȳ +
τ ≤−

∫ θ

τ
Γs−(1{Ȳs−>0}Z̄s + Ȳ +

s−βs)dWs

−
∫ θ

τ
Γs−(Ȳ +

s−δs + Z̄s1{Ȳs−>0}βs + 1{Ȳs−>0}〈γs, k̄s〉ν − f̄s1{Ȳs−>0})ds

+
∑
τ≤s≤θ

Γs−1{Ȳs−>0}(1 + γs(ps))∆Ās −
∑
τ≤s≤θ

Γs−(1 + γs(ps))∆K
d,−
s

−
∫ θ

τ

∫
E

Γs−(k̄s(e)1{Ȳs−>0} + Ȳ +
s−γs(e) + 1{Ȳs−>0}γs(e)k̄s(e))Ñ(ds, de).

We have−
∫ θ
τ Γs−(Ȳ +

s−1{Ȳs−>0}δs+Z̄s1{Ȳs−>0}βs+1{Ȳs−>0}〈γs, k̄s〉ν−f̄s1{Ȳs−>0})ds ≤
∫ θ
τ Γs−1{Ȳs−>0}ϕsds,

due to the inequality (5.15). The term −
∑

τ≤s≤θ Γs−(1+γs(ps))∆K
d,−
s is nonpositive, as 1+γs ≥

0 by Assumption 4.1. The term
∑

τ≤s≤θ Γs−1{Ȳs−>0}(1 + γs(ps))∆Ās is nonpositive, due to

1 + γs ≥ 0, to the Skorokhod condition for ∆As and to ∆A′s ≥ 0 (the details are similar to

those for dC̄ in the reasoning above). By classical arguments (using Burkholder-Davis-Gundy

inequalities), the stochastic integrals "with respect to dWs" and "with respect to Ñ(ds, de)"

are equal to zero in expectation. Moreover, the term
∫ θ
τ Γs−1{Ȳs−>0}ϕsds is nonpositive, as

ϕs = f(Y ′s , Z
′
s, k
′
s) − f ′(Y ′s , Z

′
s, k
′
s) ≤ 0 dP ⊗ ds-a.s. by the assumptions of the theorem. We

conclude that E[Ȳ +
τ ] ≤ 0, which implies Ȳ +

τ = 0 a.s. The proof is thus complete. �

Remark 5.8 Note that due to the irregularity of the obstacles, together with the presence of

jumps, we cannot adopt the approaches used up to now in the literature (see e.g. [12], [5], [36]

and [16]) to show the comparison theorem for our RBSDE.

5.4. Non-linear operator induced by an RBSDE with irregular obstacle. We introduce the

non-linear operator Reff (associated with a given non-linear driver f) and provide some use-

ful properties. In particular, we show that this non-linear operator coincides with the Ef -Snell
envelope operator (cf. Theorem 5.6).
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De�nition 5.8 (Non-linear operator Reff) Let f be a Lipschitz driver. For a process (ξt) ∈
S2, we denote by Reff [ξ] the �rst component of the solution to the Re�ected BSDE with (lower)

barrier ξ and with Lipschitz driver f .

The operator Reff [·] is well-de�ned due to Theorem 5.4 and to Remark 2.1. Moreover, Reff [·]
is valued in S2,rusc, where S2,rusc := {φ ∈ S2 : φ is r.u.s.c.} (cf. Remark 2.2). In the following

proposition we give some properties of the operatorReff . Note that equalities (resp. inequalities)
between processes are to be understood in the "up to indistinguishability"-sense.

We recall the notion of a strong Ef -supermartingale.

De�nition 5.9 Let φ be a process in S2. Let f be a Lipschitz driver. The process φ is said

to be a strong Ef -supermartingale (resp. a strong Ef -martingale) , if Ef
σ,τ

(φτ ) ≤ φσ a.s. (resp.

Ef
σ,τ

(φτ ) = φσ a.s.) on σ ≤ τ , for all σ, τ ∈ T0,T .

Using the above comparison theorem and the Ef -Mertens decomposition for strong (r.u.s.c.)

Ef -supermartingales (cf. Proposition 8.2 in the Appendix), we show that the operator Reff

satis�es the following properties.

Proposition 5.1 (Properties of the operator Reff) Let f be a Lipschitz driver satisfying

Assumption 4.1. The operator Reff : S2 → S2,rusc, de�ned in De�nition 5.8, has the following

properties:

1. The operator Reff is nondecreasing, that is, for ξ, ξ′ ∈ S2 such that ξ ≤ ξ′ we have

Reff [ξ] ≤ Reff [ξ′].

2. If ξ ∈ S2 is a (r.u.s.c.) strong Ef -supermartingale, then Reff [ξ] = ξ.

3. For each ξ ∈ S2, Reff [ξ] is a strong Ef -supermartingale and satis�es Reff [ξ] ≥ ξ.

Proof: The �rst assertion follows from our comparison theorem for re�ected BSDEs with irreg-

ular obstacles (Theorem 5.5).

Let us prove the second assertion. Let ξ be a (r.u.s.c.) strong Ef -supermartingale in S2. By de�ni-

tion of Reff , we have to show that ξ is the solution of the re�ected BSDE associated with driver

f and obstacle ξ. By the Ef -Mertens decomposition for strong (r.u.s.c.) Ef -supermartingales

shown in [16] (cf. Proposition 8.2 in the Appendix of the present paper), together with the mar-

tingale representation theorem, there exists (Z, k,A,C) ∈ IH2× IH2
ν ×S2×S2 such that a.s. for

all t ∈ [0, T ],

ξt = ξT +

∫ T

t
f(s, ξs, Zs, ks)ds−

∫ T

t
ZsdWs −

∫ T

t

∫
E
ks(e)Ñ(ds, de) +AT −At + CT− − Ct−,

where A is predictable right-continuous nondecreasing with A0 = 0, and C is adapted right-

continuous nondecreasing and purely discontinuous, with C0− = 0. Moreover, the Skorokhod

conditions (for RBSDEs) are here trivially satis�ed. Hence, ξ = Reff [ξ], which is the desired

conclusion.

It remains to show the third assertion. By de�nition, the process Reff [ξ] is equal to Y , where

(Y, Z,K,A,C) is the solution our re�ected BSDE. Hence,Reff [ξ] = Y admits the decomposition

(8.33), which, by Proposition 8.2, implies that Reff [ξ] = Y is a strong Ef -supermartingale.

Moreover, by de�nition, Reff [ξ] = Y is greater than or equal to the obstacle ξ. �
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In the following theorem, we characterize Reff [ξ], that is, the �rst component of the solution

of the RBSDE with irregular obstacle ξ, in terms of the smallest strong Ef -supermartingale

greater than or equal to ξ.

Theorem 5.6 (The operator Reff and the Ef - Snell envelope operator) Let (ξt, 0 ≤ t ≤
T ) be a left-limited 4 process in S2 and let f be a Lipschitz driver satisfying Assumption 4.1.

The �rst component Y = Reff [ξ] of the solution to the re�ected BSDE with parameters (ξ, f)

coincides with the Ef -Snell envelope of ξ, that is, the smallest strong Ef -supermartingale greater

than or equal to ξ.

Proof: The proof relies on the properties of the operator Reff from the above Proposition 5.1.

By the third assertion of Proposition 5.1, the process Y = Reff [ξ] is a strong Ef -supermartingale

satisfying Y ≥ ξ. It remains to show the minimality property. Let Y ′ be a strong Ef -supermartingale

such that Y ′ ≥ ξ. We have Reff [Y ′] ≥ Reff [ξ], due to the nondecreasingness of the operator

Reff (cf. Proposition 5.1, 1st assertion). On the other hand, Reff [Y ′] = Y ′ (due to Proposition

5.1, 2nd assertion) and Reff [ξ] = Y . Hence, Y ′ ≥ Y , which is the desired conclusion. �

In the case of a right-continuous obstacle ξ the above characterization has been established in

[36]; it has been generalized to the case of a right-upper-semicontinuous obstacle in [16, Prop.

4.4]. Let us note however that the arguments of the proofs given in [36] and in [16] cannot be

adapted to our general framework.

6. In�nitesimal characterization in terms of an RBSDE. The following theorem is a

direct consequence of Theorem 5.6 and Theorem 4.3. It gives "an in�nitesimal characterization"

of the value process (Vt)t∈[0,T ] of the non-linear problem (4.10).

Theorem 6.7 (Characterization in terms of an RBSDE) Let (ξt, 0 ≤ t ≤ T ) be a left-

limited 5 process in S2 and let f be a Lipschitz driver satisfying Assumption 4.1. The value

process (Vt)t∈[0,T ] aggregating the family V = (V (S), S ∈ T0,T ) de�ned by (4.10) coincides (up to

indistinguishability) with the �rst component (Yt)t∈[0,T ] of the solution of our RBSDE with driver

f and obstacle ξ. In other words, we have, for all S ∈ T0,T ,

(6.21) YS = VS = ess sup
τ∈TS,T

EfS,τ (ξτ ) a.s.

By using this theorem, we derive the following corollary, which generalizes some results of

classical optimal stopping theory (more precisely, the assertions (ii) and (iii) from Lemma 3.1)

to the case of an optimal stopping problem with (non-linear) f -expectation.

Corollary 6.1 The value process of our optimal stopping problem (6.21), which is equal to the

�rst component (Yt) of the solution of our RBSDE, satis�es the following properties:

(i) For each S ∈ T0,T , we have:

YS = ξS ∨ YS+ a.s.

4By Remark 2.1, this result still holds for a completely irregular payo� (not necessarily left-limited).
5By Remark 2.1, this result still holds for a completely irregular payo� (not necessarily left-limited).
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(ii) For each S ∈ T0,T and for each λ ∈ (0, 1), we set

(6.22) τλS := inf{t ≥ S , λYt ≤ ξt}.

The value process (Yt) is an Ef -martingale on [S, τλS ].

Proof: By Theorem 6.7, the value process V is equal to Y , where (Y, Z, k,A,C) is the solution

or our RBSDE.

The �rst assertion follows from Remark 2.2. Let us show the second assertion. We note that

(Y,Z, k,A,C) is also the solution of the RBSDE from De�nition 2.3 associated with the obstacle

(ξt) and the driver process gt(ω) := f(t, ω, Yt(ω), Zt(ω), kt(ω)). By Theorem 3.1, we derive that

(Yt) is equal to the value process of the classical optimal stopping problem (3.5) associated with

the instantaneous reward process (gt). By applying the assertion (iii) from Lemma 3.1, the process

(Yt+
∫ t

0 gudu)t∈[0,T ] is thus a martingale on [S, τλS ]. Since A and C are equal to the non decreasing

processes of the Mertens decomposition of the strong supermartingale (Yt +
∫ t

0 gudu)t∈[0,T ], we

derive that AS = AτλS
a.s. and CS− = C(τλS )− a.s. Hence, Y is the solution on [S, τλS ] of the BSDE

associated with driver f , terminal time τλS and terminal condition YτλS
. The process (Yt) is thus

an Ef -martingale on [S, τλS ], which completes the proof. �

Corollary 6.2 We assume that the process (ξt) is right-uppersemicontinuous (r.u.s.c.). The

value process of the optimal stopping problem (6.21), which is equal to the solution (Yt) of our

RBSDE, satis�es the following property: for each S ∈ T0,T and for each λ ∈]0, 1[,

(6.23) λYτλS
≤ ξτλS

a.s. ,

where τλS is de�ned by (6.22). Moreover, the stopping time τλS satis�es

(6.24) YS ≤ EfS,τλS
(ξτλS

) + εS(λ) a.s. ,

where limλ→1 εS(λ) = 0 a.s. In other words, τλS is an εS(λ)-optimal stopping time for problem

(6.21).

Proof: By Theorem 6.7, the value process V is equal to Y , where (Y,Z, k,A,C) be the so-

lution or our RBSDE. The proof of the inequality (6.23) is similar to that of [16, Lemma

4.1(i)]. We give again the arguments here in order to emphasize the important role of the right-

uppersemicontinuity assumption in this result. By way of contradiction, we suppose P (λYτλS
>

ξτλS
) > 0. By the Skorokhod condition for C, we have ∆CτλS

= CτλS
− C(τλS )− = 0 on the set

{λYτλS > ξτλS
}. On the other hand, due to Remark 2.2, ∆CτλS

= YτλS
−Y(τλS )+. Thus, YτλS

= Y(τλS )+

on the set {λYτλS > ξτλS
}. Hence,

(6.25) λY(τλS )+ > ξτλS
on the set {λYτλS > ξτλS

}.

We will obtain a contradiction with this statement. Let us �x ω ∈ Ω. By de�nition of τλS (ω),

there exists a non-increasing sequence (tn) = (tn(ω)) ↓ τλS (ω) such that λYtn(ω) ≤ ξtn(ω),
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for all n ∈ IN . Hence, λ lim supn→∞ Ytn(ω) ≤ lim supn→∞ ξtn(ω). As the process ξ is right-

uppersemicontinuous , we have lim supn→∞ ξtn(ω) ≤ ξτλS
(ω). On the other hand, as (tn(ω)) ↓

τλS (ω), we have lim supn→∞ Ytn(ω) = Y(τλS )+(ω). Thus, λY(τλS )+(ω) ≤ ξτλS
(ω), which is in contra-

diction with (6.25). We conclude that λYτλS
≤ ξτλS a.s.

Let us now show the inequality (6.24). The arguments are classical. Since by Corollary 6.1 (ii),

the value process (Yt) is an Ef -martingale on [S, τλS ], we get YS = Ef
S,τλS

(YτλS
) a.s. By the in-

equality (6.23), together with the monoticity property of the conditional f -expectation and the

a priori estimates for BSDEs (cf. [35]), we derive that

YS = Ef
S,τλS

(YτλS
) ≤ Ef

S,τλS
(
ξτλS
λ

) ≤ Ef
S,τλS

(ξτλS
) + (

1

λ
− 1)αS a.s. ,

with αS := CE[ess supτ∈TS,T ξ
2
τ | FS ]

1
2 , where C is a positive constant which depends only on T

and the Lipschitz constant K of the driver f . We thus obtain the desired result with εS(λ) :=

( 1
λ − 1)αS , which ends the proof. �

Remark 6.9 In the general case where the process (ξt) is not r.u.s.c. , the inequality λYτλS
≤

ξτλS
(i.e. inequality (6.23)) does not necessarily hold (not even in the simplest case of linear

expectations; cf., e.g., [11]). Let us emphasize that this fact leads to some important technical

di�culties in the treatment of the completely irregular case with respect to the "more regular"

cases. In particular, this prevents us from adopting here the approach used in [16] (in the r.u.s.c.

case) to prove the in�nitesimal characterization of the value process of the non-linear optimal

stopping problem in terms of the solution of an RBSDE. Thus, in the general framework of

the present paper, we proceed di�erently: First, we apply a direct approach to the non-linear

optimal stopping problem (4.10) which consists in showing that the value family (V (S))S∈T0,T
can be aggregated by an optional process (Vt)t∈[0,T ] and, then, in characterizing (Vt) as the Ef -
Snell envelope of the (completely irregular) pay-o� process (ξt). On the other hand, we apply an

RBSDE-approach which consists in establishing some results on RBSDEs with irregular obstacles,

in particular a comparison theorem and some properties of the operator Reff 6, and then in

using these properties to show that the solution (Yt) of the RBSDE is the Ef -Snell envelope of

the obstacle. We deduce from those two approaches that (Yt) and (Vt) coincide, which gives an

in�nitesimal characterization for the value process (Vt).

Note that, in the r.u.s.c. case (cf. [16]), this characterization is shown by using only an RBSDE

approach. More precisely, it is shown that the solution Y of the RBSDE satis�es the property (ii)

of Corollary 6.1 as well as the inequality (6.23) (which is true due to the assumption of r.u.s.c.

on ξ), from which we directly derive the characterization (cf. Th. 4.2 in [16]). 7

Finally, let us brie�y summarize some of the results for the non-linear optimal stopping problem

(4.10):

i) For any left-limited (without loss of generality due to Remark 2.1) reward process ξ ∈ S2,

we have the in�nitesimal characterization Vt = Yt = Refft [ξ], for all t, a.s. (Theorem 6.7).

6We underline that the proof of these properties (cf. Proposition 5.1) relies on the Ef -Mertens decomposition

for strong (r.u.s.c.) Ef -supermartingales (cf. Proposition 8.2).
7Note that in the r.u.s.c. case, the comparison theorem is deduced as an almost immediate corollary of this

characterization (cf. Th. 5.3 in [16]).
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ii) If, moreover, ξ is right-uppersemicontinuous, then, for any S ∈ T0,T , for any λ ∈ (0, 1),

there exists an εS(λ)− optimal stopping time for the problem at time S (Corollary 6.2, Eq.

(6.24)).

iii) If, moreover, ξ is also left-uppersemicontinuous along stopping times, then, for any S ∈ T0,T ,

there exists an optimal stopping time for the problem at time S (cf. [16, Proposition 4.3]).

7. Applications of Theorem 6.7.

7.1. Application to American options with a completely irregular payo�. In the following

example, we set E := R, ν(de) := λδ1(de), where λ is a positive constant, and where δ1 denotes

the Dirac measure at 1. The processNt := N([0, t]×{1}) is then a Poisson process with parameter

λ, and we have Ñt := Ñ([0, t]× {1}) = Nt − λt.
We consider a �nancial market which consists of one risk-free asset, whose price process S0

satis�es dS0
t = S0

t rtdt, and two risky assets with price processes S1, S2 satisfying the following

dynamics:

dS1
t = S1

t− [µ1
tdt+ σ1

t dWt + β1
t dÑt]; dS2

t = S2
t− [µ2

tdt+ σ2
t dWt + β2

t dÑt].

We suppose that the processes σ1, σ2, β1, β2, r, µ1, µ2 are predictable and bounded, with βit > −1

for i = 1, 2. Let µt := (µ1, µ2)′ and let Σt := (σt, βt) be the 2 × 2-matrix with �rst column

σt := (σ1
t , σ

2
t )
′ and second column βt := (β1

t , β
2
t )′. We suppose that Σt is invertible and that the

coe�cients of Σ−1
t are bounded.

We consider an agent who can invest his/her initial wealth x ∈ R in the three assets.

For i = 1, 2, we denote by ϕit the amount invested in the ith risky asset. A process ϕ = (ϕ1, ϕ2)′

belonging to H2 ×H2
ν will be called a portfolio strategy.

The value of the associated portfolio (or wealth) at time t is denoted by Xx,ϕ
t (or simply by

Xt). In the case of a perfect market, we have

dXt = (rtXt + ϕ1
t (µ

1
t − rt) + ϕ2

t (µ
2
t − rt))dt+ (ϕ1

tσ
1
t + ϕ2

tσ
2
t )dWt + (ϕ1

tβ
1
t + ϕ2

tβ
2
t )dÑt

= (rtXt + ϕ′t(µt − rt1))dt+ ϕ′tσtdWt + ϕ′tβtdÑt,

where 1 = (1, 1)′. More generally, we will suppose that there may be some imperfections in the

market, taken into account via the nonlinearity of the dynamics of the wealth and encoded in a

Lipschitz driver f satisfying Assumption 4.1 (cf. [13] or [10] for some examples). More precisely,

we suppose that the wealth process Xx,ϕ
t (also Xt) satis�es the forward di�erential equation:

(7.26) −dXt = f(t,Xt, ϕt
′σt, ϕt

′βt)dt− ϕt′σtdWt − ϕt′βtdÑt, ; X0 = x,

or, equivalently, setting Zt = ϕt
′σt and kt = ϕt

′βt,

(7.27) −dXt = f(t,Xt, Zt, kt)dt− ZtdWt − ktdÑt; X0 = x.

Note that (Zt, kt) = ϕt
′Σt, which is equivalent to ϕt

′ = (Zt, kt) Σ−1
t .

This model includes the case of a perfect market, for which f is given by

f(t, y, z, k) = −rty − (z, k) Σ−1
t (µt − rt1),

supposed to satisfy ∂kf ≥ −λ (which corresponds to Assumption 4.1 in this case).
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Remark 7.10 Note that the wealth process Xx,ϕ is an Ef -martingale, since Xx,ϕ is the solution

of the BSDE with driver f , terminal time T and terminal condition Xx,ϕ
T .

Let us consider an American option associated with terminal time T and payo� given by a

process (ξt) ∈ S2. As is usual in the literature, the option's superhedging price at time 0, denoted

by u0, is de�ned as the minimal initial wealth enabling the seller to invest in a portfolio whose

value is greater than or equal to the payo� of the option at all times. More precisely, for each

initial wealth x, we denote by A(x) the set of all portfolio strategies ϕ ∈ H2 × H2
ν such that

Xx,ϕ
t ≥ ξt, for all t ∈ [0, T ] a.s. The superhedging price of the American option is thus de�ned by

(7.28) u0 := inf{x ∈ R, ∃ϕ ∈ A(x)}.8

Using the in�nitesimal characterization of the value function (4.10) (cf. Theorem 6.7), we

show the following characterizations of the superhedging price u0, as well as the existence of a

superhedging strategy.

Proposition 7.2 Let (ξt) be an irregular left-limited process belonging to S2.

(i) The superhedging price u0 of the American option with payo� (ξt) is equal to the value

function V (0) of our optimal stopping problem (1.1) at time 0, that is

(7.29) u0 = sup
τ∈T0,T

Ef0,τ (ξτ ).

(ii) We have u0 = Y0, where (Y,Z, k,A,C) is the solution of the re�ected BSDE (2.2).

(iii) The portfolio strategy ϕ̂, de�ned by ϕ̂t
′ = (Zt, kt) Σ−1

t , is a superhedging strategy, that is,

belongs to A(u0).

(iv) If (ξt) is right-uppersemicontinuous, then for each λ ∈ (0, 1), the stopping time τλ := inf{t ≥
0 , λYt ≤ ξt} is an ε(λ)-optimal stopping time for (7.29).

(v) If, moreover, (ξt) is also left-upper-semicontinuous along stopping times, then the stopping

time τ∗ := inf{t ≥ 0, Yt = ξt} is an optimal exercise time for the American option, in the sense

that it attains the supremum in (7.29).

Remark 7.11 By Remark 2.1, this result still holds for a completely irregular payo� (not nec-

essarily left-limited).

Remark 7.12 In the case of a perfect market (f ≡ 0) and a regular pay-o�, the above result (in

particular assertion (ii)) reduces to a well-known result form the literature (cf., e.g., [19]). Even

in the case of a perfect market, our result for completely irregular pay-o� is new.

Proof: The proof of the three �rst assertions rely on Theorem 6.7 and similar arguments to

those in [10] (in the case of game options with RCLL payo�s and default).

Note that, by Theorem 6.7, we have supτ∈T0,T E
f
0,τ (ξτ ) = Y0. In order to prove the three �rst

assertions of the above theorem, it is thus su�cient to show that u0 = Y0 and ϕ̂ ∈ A(Y0).

We �rst show that ϕ̂ ∈ A(Y0). By (7.27), the value XY0,ϕ̂ of the portfolio associated with

initial wealth Y0 and strategy ϕ̂ satis�es:

XY0,ϕ̂
t = Y0 −

∫ t

0
f(s,XY0,ϕ̂

s , Zs, ks)ds+ ht, 0 ≤ t ≤ T,

8As shown in assertion (iii) of Proposition 7.2, the in�mum in (7.28) is always attained.
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where ht :=
∫ t

0 ZsdWs +
∫ t

0 ksdÑs. Moreover, since Y is the solution of the re�ected BSDE (2.2),

we have

Yt = Y0 −
∫ t

0
f(s, Ys, Zs, ks)ds+ ht −At − Ct− , 0 ≤ t ≤ T a.s.

Applying the comparison result for forward di�erential equations, we derive that XY0,ϕ̂
t ≥ Yt,

for all t ∈ [0, T ] a.s. Since Yt ≥ ξt, we thus get XY0,ϕ̂
t ≥ ξt for all t ∈ [0, T ] a.s. It follows that

ϕ̂ ∈ A(Y0).

We now show that Y0 = u0. Since ϕ̂ ∈ A(Y0), by de�nition of u0 (cf. (7.28)), we derive that

Y0 ≥ u0. Let us now show that u0 ≥ Y0. Let x ∈ R be such that there exists a strategy ϕ ∈ A(x).

We show that x ≥ Y0. Since ϕ ∈ A(x), we have Xx,ϕ
t ≥ ξt, for all t ∈ [0, T ] a.s. For each τ ∈ T

we thus get the inequality Xx,ϕ
τ ≥ ξτ a.s. By the non decreasing property of Ef together with

the Ef -martingale property of Xx,ϕ (cf. Remark 7.10), we thus get x = Ef0,τ (Xx,ϕ
τ ) ≥ Ef0,τ (ξτ ).

By taking the supremum over τ ∈ T0,T , we derive that x ≥ supτ∈T0,T E
f
0,τ (ξτ ) = Y0, where the

equality holds by Theorem 6.7. By de�nition of u0 as an in�mum (cf (7.28)), we get u0 ≥ Y0,

which, since Y0 ≥ u0, yields the equality u0 = Y0. We have thus shown the three �rst assertions

of the proposition. The fourth assertion follows from Corollary 6.2. The last assertion follows

from [16, Proposition 4.3]. The proof is thus complete. �

We now give some examples of American options with completely irregular pay-o�.

Example 7.1 We consider a pay-o� process (ξt) of the form ξt := h(S1
t ), for t ∈ [0, T ], where

h : R → R is a (possibly irregular) Borel function such that (h(S1
t )) ∈ S2. In general, the

pay-o� (ξt) is a completely irregular process. By the �rst two statements of Proposition 7.2, the

superhedging price of the American option is equal to the value function of the optimal stopping

problem (7.29), and is also characterized as the solution of the re�ected BSDE (2.2) with obstacle

ξt = h(S1
t ).

If h is an uppersemicontinuous function on R, then the process (ξt) is right-u.s.c. and also left-

u.s.c. along stopping times. The right-uppersemicontinuity of (ξt) follows from the fact that the

process S1 is right-continuous; the left-uppersemicontinuity along stopping times of (ξt) follows

from the fact that S1 jumps only at totally inaccessible stopping times. In virtue of Proposition

7.2, last statement, there exists in this case an optimal exercise time for the American option

with payo� ξt = h(S1
t ).

The particular case where ξt := 1B(S1
t ), for t ∈ [0, T ], with B a Borel set in R corresponds

to the pay-o� of an American digital option, which is a completely irregular process in general.

For example, if B = [K,+∞[ (American digital call option) then the function 1B is u.s.c. on R.

The corresponding payo� process ξt := 1S1
t≥K is thus r.u.s.c and left-u.s.c. along stopping times

in this case, which implies the existence of an optimal exercise time. If B =]−∞,K[ (American

digital put option), the corresponding payo� ξt := 1S1
t<K

is not r.u.s.c. We note that the pay-o�

of the American digital call and put options is in general neither left-limited nor right-limited.

There are also more "sophisticated" types of digital American options, such as an American

digital call option with lower barrier L, for which the payo� is of the form: ξt := 1S1
t≥K1inf0≤s≤t S1

s>L
.

Note that in this case, the payo� process (ξt) is not right u.s.c.
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7.2. An application to RBSDEs. The characterization (Theorem 6.7) is also useful in the

theory of RBSDEs in itself: it allows us to obtain a priori estimates with universal constants for

RBSDEs with completely irregular obstacles.

Proposition 7.3 (A priori estimates with universal constants) Let ξ and ξ′ be two left-

limited 9 processes in S2. Let f and f ′ be two Lipschitz drivers satisfying Assumption 4.1 with

common Lipschitz constant K > 0. Let (Y,Z, k) (resp. (Y ′, Z ′, k′)) be the three �rst components

of the solution of the re�ected BSDE associated with driver f (resp. f ′) and obstacle ξ (resp. ξ′).

Let Y := Y − Y ′, ξ := ξ − ξ′.
Let δfs := f ′(s, Y ′s , Z

′
s, k
′
s) − f(s, Y ′s , Z

′
s, k
′
s). Let η, β > 0 with β ≥ 3

η
+ 2K and η ≤ 1

K2
. For

each S ∈ T0,T , we have

(7.30) YS
2 ≤ eβ(T−S)E[ess sup

τ∈TS,T
ξτ

2|FS ] + ηE[

∫ T

S
eβ(s−S)(δfs)

2ds|FS ] a.s.

Proof: The proof is divided into two steps.

Step 1: For each τ ∈ T0,T , let (Xτ , πτ , lτ ) (resp. (X
′τ , π

′τ , l
′τ )) be the solution of the BSDE

associated with driver f (resp. f ′), terminal time τ and terminal condition ξτ (resp. ξ′τ ). Set

X
τ

:= Xτ −X ′τ . By an estimate on BSDEs (cf. Proposition A.4 in [35]), we have

(X
τ
S)2 ≤ eβ(T−S)E[ξ

2 | FS ] + ηE[

∫ T

S
eβ(s−S)[(f − f ′)(s,X ′τs , π

′τ
s , l

′τ
s )]2ds | FS ] a.s.

from which we derive

(7.31) (X
τ
S)2 ≤ eβ(T−S)E[ess sup

τ∈TS,T
ξτ

2|FS ] + ηE[

∫ T

S
eβ(s−S)(f s)

2ds|FS ] a.s.,

where fs := supy,z,k |f(s, y, z, k)− f ′(s, y, z, k)|. Now, by Theorem 6.7, we have

YS = ess supτ∈TS,T X
τ
S a.s. and Y ′S = ess supτ∈TS,T X

′τ
S a.s. We thus get

|Y S | ≤ ess supτ∈TS,T |X
τ
S | a.s. By the inequality (7.31), we derive

YS
2 ≤ eβ(T−S)E[ess sup

τ∈TS,T
ξτ

2|FS ] + ηE[

∫ T

S
eβ(s−S)(fs)

2ds|FS ] a.s.

Step 2: Note that (Y ′, Z ′, k′) is the solution the RBSDE associated with obstacle ξ′ and driver

f(t, y, z, k) + δft. By applying the result of Step 1 to the driver f(t, y, z, k) and the driver

f(t, y, z, k) + δft (instead of f ′), we get the desired result. �

Remark 7.13 The previous proposition illustrates the relevance of the characterization of the

solution of the non-linear RBSDE with irregular obstacle as the value of the non-linear optimal

stopping problem (4.10), as established in Theorem 6.7.

9without loss of generality.
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8. Appendix. We give a priori estimates for RBSDEs with completely irregular obstacles.

Lemma 8.1 (A priori estimates) Let (Y 1, Z1, k1, A1, C1) ∈ S2 × IH2 × IH2
ν ×S2 ×S2 (resp.

(Y 2, Z2, k2, A2, C2) ∈ S2 × IH2 × IH2
ν × S2 × S2) be a solution to the RBSDE associated with

driver f1(ω, t) (resp. f2(ω, t)) and with obstacle ξ ∈ S2. There exists c > 0 such that for all

ε > 0, for all β ≥ 1
ε2

we have

‖k1 − k2‖2ν,β ≤ ε2‖f1 − f2‖2β ; ‖Z1 − Z2‖2β ≤ ε2‖f1 − f2‖2β ;

|||Y 1 − Y 2|||2β ≤ 4ε2(1 + 6c2)‖f1 − f2‖2β.(8.32)

Proof: The result was proved in [16, Lemma 3.2] in the case of an r.u.s.c. obstacle ξ. The proof

of [16] still holds in our framework and is therefore omitted. �

We recall the Ef -Mertens decomposition of (r.u.s.c.) strong Ef -supermartingales provided in

[16], which is a crucial result used in the present paper.

Proposition 8.2 (Ef -Mertens decomposition) Let (Yt) be a process in S2. Let f be a pre-

dictable Lipschitz driver satisfying Assumption 4.1. The process (Yt) is a strong Ef -supermartingale

if and only if there exists a nondecreasing right-continuous predictable process A in S2 with A0 = 0

and a nondecreasing right-continuous adapted purely discontinuous process C in S2 with C0− = 0,

as well as two processes Z ∈ IH2 and k ∈ H2
ν , such that a.s. for all t ∈ [0, T ],

(8.33)

Yt = YT +

∫ T

t
f(s, Ys, Zs, ks)ds+AT −At + CT− − Ct− −

∫ T

t
ZsdWs −

∫ T

t

∫
E
ks(e)Ñ(ds, de).

This decomposition is unique.

Remark 8.14 From this property, it follows that a strong Ef -supermartingale in S2 is necessarily

r.u.s.c.

Recall that this result is shown in [16] (cf. Theorem 5.2 in [16]) by using the characterization (cf.

Theorem 4.2 in [16]) of the solution of the RBSDE with an r.u.s.c. obstacle as the value function

of the non-linear optimal stopping problem (4.10).

The above Ef -Mertens decomposition was also shown in [4] (at the same time as in [16]) in a

Brownian framework by using a di�erent approach.
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