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A NOTE ON A NEW EXISTENCE RESULT FOR REFLECTED

BSDES WITH INTERCONNECTED OBSTACLES

TIZIANO DE ANGELIS, GIORGIO FERRARI, AND SAÏD HAMADÈNE

Abstract. In this note we prove existence of a solution to a system of Markovian
BSDEs with interconnected obstacles. A key feature of our system, and the main
novelty of this paper, is that we allow for the driver fi of the i-th component of the
Y -process to depend on all components of the Z-process. This extends the existing
theory on reflected BSDEs, which only addresses problems where fi depends on Zi.

1. Introduction

In this note we study existence of a solution of a system of reflected backward stochas-
tic differential equations (BSDEs) with inter-connected obstacles. Letting T > 0 and t ∈
[0, T ], the problem is to find m trebles of (Fs)s∈[t,T ]-adapted processes (Y i, Zi,Ki)i∈Γ,

where Γ := {1, . . . ,m}, Y i, Ki ∈ R and Zi ∈ Rd, d ≥ 1, such that for any i ∈ Γ we
have: ∀s ∈ [t, T ],

(1.1)


Y i
s = hi(X

t,x
T ) +

∫ T
s fi(r,X

t,x
r , (Y k

r )k∈Γ, (Z
k
r )k∈Γ)dr +Ki

T −Ki
s −

∫ T
s ZirdBr

Y i
s ≥ max

j 6=i
{Y j

s − gij(s,Xt,x
s )}∫ T

t (Y i
s −max

j 6=i
{Y j

s − gij(s,Xt,x
s )})dKi

s = 0

where:

i) B is a d-dimensional Brownian motion and we denote Zi = (Zi1, Zi2 . . . Zid)

and ZidB :=
∑d

j=1 Z
ijdBj ;

ii) for any i, j ∈ Γ, the functions hi, fi and gij are deterministic;

iii) for any (t, x) ∈ [0, T ]× Rk, the process Xt,x is solution of the following SDE:

Xt,x
s = x+

∫ s

t
b(r,Xt,x

r )dr +

∫ s

t
σ(r,Xt,x

r )dBr, t ≤ s ≤ T.

Since randomness in (1.1) stems from the Markov process Xt,x, we say that the system
(1.1) is Markovian.

If for i = 1, ...,m, fi does not depend on (yi)i=1,m and (zi)i=1,m, the solution of (1.1)
is linked to an optimal switching problem. The latter is a problem in which a decision
maker (or controller) controls a (stochastic) system which may operate in different
modes (e.g., a power plant). The aim of the controller is to maximise some performance
criterion by optimally choosing controls of the form δ := (τn, ζn)n≥0. Here (τn)n≥0

denotes an increasing sequence of (stopping) times at which the controller switches the
system across different operating modes. Moreover, (ζn)n≥0 is a sequence of random
variables taking their values in {1, ...,m}. Each ζn represents the system’s new operating
mode after a switch has occurred at time τn.
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In this setting it is well known (see e.g. [6, 9, 13, 14], etc.) that Y i
t is the value of an

optimal switching strategy, i.e., given τ0 = t and ζ0 = i, it holds

(1.2) Y i
t = ess sup

δ:=(τn,ζn)n≥0

E
[ ∫ T

t
fas(s,X

t,x
s )ds−AδT + haT (Xt,x

T )
∣∣∣Ft]

where the process a := (as)s≤T is indicating the mode of the system at time s, AδT stands

for the total switching cost when the strategy δ is implemented and, finally, haT (Xt,x
T )

is the terminal payoff. It is also known that the solution of (1.1) enables to construct
an optimal strategy as well.

It is important to remark that a characterization as in (1.2) also holds in non-
Markovian frameworks and we mention that switching problems often arise in eco-
nomics, finance and power system management, amongst many other applied fields (see
e.g. [2, 3, 4, 5, 7, 8, 10, 18, 19, 21, 22] and the references therein).

Problems like (1.1) have been studied at a theoretical level in the case when, for any
i = 1, ...,m, the function fi depends only on the state variable zi and possibly on (yi)i∈Γ

(see, e.g., [6, 13]). In that setting existence (and uniqueness) results were provided (also
for the non-Markovian case) by using comparison principles for solutions of BSDEs.
Such comparisons do not hold in our framework since fi depends on (zi)i∈Γ, hence we
must rely on different methods.

The main objective of this paper is indeed to consider systems in which, for i =
1, ...,m, functions fi not only depend on the state variable zi ∈ Rd but on all components
of the state variable z := (zi)i∈Γ. In particular we show that if σσ> is bounded and
uniformly elliptic, then (1.1) has a solution, provided that the switching costs (gij)i,j∈Γ

are sufficiently regular. We adopt a usual penalization scheme (see (3.1) below) to handle
the reflection constraints and rely deeply on essentially three facts: i) the representation
of solutions of BSDEs as deterministic functions of t and X; ii) smoothness of gij , which
enables fundamental bounds in the penalisation scheme; iii) existence of a transition

density of Xt,x
s for any s > t, which satisfies a so-called domination condition.

Our work is a first step towards the solution of (1.1) in general non-Markovian setup.
The paper is organized as follows. In Section 2 we set out the notations and make
standing assumptions that hold throughout the paper. In Section 3, we prove our exis-
tence result in a number of steps. First we introduce the penalization scheme associated
with (1.1) and study its properties (in particular we show in Proposition 3.1 that the
time derivative of the penalizing term is uniformly bounded). Then we use an argument
based on weak convergence and the aforementioned domination condition (see also [12])
to obtain a convergent subsequence of solutions to the penalized problems. We finally
show that the limit of such subsequence solves (1.1) and provide a representation of
(Y i, Zi)i∈Γ as deterministic functions of (t,X). We leave for future investigation ques-
tions of uniqueness of the solution and its links to optimal switching problems. The
latter will inevitably feature a more general structure than (1.2).

2. Setting and problem formulation

2.1. Setting. Let T be a fixed positive real constant, and let (Ω,F ,P) be a probability
space on which we define a d-dimensional standard Brownian motion B := (Bt)t∈[0,T ].
For t ≤ T , we set F◦t := σ{Bs, s ≤ t}, the σ-algebra generated by B up to time t, and
we denote by (Ft)t≤T the completion of (F◦t )t≤T with the P-null sets of F . For arbitrary
integer numbers d ≥ 1 and m ≥ 1, we denote by | · |d and | · |m×d the Euclidean norms in
Rd and Rm×d, respectively. Occasionally, when no confusion may arise, we will simplify
our notation using | · | for either | · |d or | · |m×d. Next, we introduce the following sets:
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(i) P is the σ-algebra of Ft-progressively measurable sets of Ω× [0, T ];
(ii) B(Rd) is the Borel σ-algebra on Rd, d ≥ 1;
(iii) H2

T (Rd) := {ζ := (ζt)t≤T is a Rd-valued, P-measurable process such that

E
[ ∫ T

0 |ζt|
2dt
]
<∞};

(iv) S2
T (R) := {ξ := (ξt)t≤T is a R-valued, P-measurable, continuous process such

that E
[

sup0≤t≤T |ξt|
2] <∞};

(v) A2
T is the subspace of S2

T of non-decreasing processes which are null at t = 0.
(vi) C1,2([0, T ] × Rd) (or simply C1,2) is the set of real-valued functions defined on

[0, T ]×Rd which are once continuously differentiable in t and twice continuously
differentiable in x.

Let X := (Xs)s≤T be an (Ft)t≤T -Markov process, valued in Rk, k ≥ 1. For (t, x) ∈
[0, T ]× Rk fixed, we denote by Xt,x the process (Xs)s∈[t,T ] such that P(Xt,x

t = x) = 1,

and by µ(t, x; s, dy) the law of Xt,x
s (for s ≥ t), i.e., P(Xt,x

s ∈ A) = µ(t, x; s,A) for any
A ∈ B(Rk). We now introduce the following condition on the Markov process X.

(A0) [L2-domination condition]. We say that the process X satisfies the L2-domination
condition if the family of laws {µ(t, x; s, dy), s ∈ [t, T ], t ∈ [0, T ], x ∈ Rk} verifies the
following condition: There exists x0 ∈ Rk such that, for any t ∈ [0, T ] and x ∈ Rk and
any δ > 0 (such that δ + t ≤ T ) there exists an application φδt,x,x0 : [t, T ] × Rk 7→ R+

with the following properties:

(a) µ(t, x; s, dy)ds = φδt,x,x0(s, y)µ(0, x0; s, dy)ds for all (s, y) ∈ [t+ δ, T ]× Rk;
(b) ∀N ≥ 1, φδt,x,x0 ∈ L

2([t+ δ, T ]× [−N,N ]k; µ(0, x0; s, dy)ds).

Example. A Markov process fulfilling the L2-domination condition is given by the
solution of the stochastic differential equation

(2.1) Xt,x
s = x+

∫ s

t
b(r,Xt,x

r )dr +

∫ s

t
σ(r,Xt,x

r )dBr, s ∈ [t, T ],

with (t, x) ∈ [0, T ]× Rk, under the conditions detailed below:

(E1) We take k = d (recall thatB is d-dimensional), and the functions b : [0, T ]×Rd 7→
Rd and σ : [0, T ] × Rd 7→ Rd×d are jointly continuous in (t, x). Moreover they
are Lipschitz continuous in x, uniformly with respect to t, i.e. there exists a
non-negative constant C1 such that for any (t, x, x′) ∈ [0, T ]× Rd+d we have

|σ(t, x)− σ(t, x′)|d×d + |b(t, x)− b(t, x′)|d ≤ C1|x− x′|d.(2.2)

The above property, together with the joint continuity, imply that b and σ have
sub-linear growth in x, i.e. there is C2 > 0 such that

|b(t, x)|d + |σ(t, x)|d×d ≤ C2(1 + |x|d).(2.3)

(E2) We assume further that σσ> is uniformly elliptic, i.e., that there exists a constant
θ > 0 such that for any (t, x) ∈ [0, T ]×Rd (denoting by 〈·, ·〉d the scalar product
in Rd) it holds

θ−1|ζ|2d ≤ 〈σ(t, x)σ(t, x)>ζ, ζ〉d ≤ θ|ζ|2d, ζ ∈ Rd.

Condition (E1) guarantees that the solution of (2.1) exists and it is unique (see,
e.g., Chapter 5 of [16] for more details). Moreover (E2) implies that σ is bounded and
invertible, with bounded inverse σ−1. Uniform ellipticity of σ also implies (cf. [1]) that
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for any (t, x) ∈ [0, T ]×Rd the law µ(t, x; s, dy) of Xt,x
s has a density function p(t, x; s, y)

such that for every s > t and y ∈ Rd

(2.4) m(s− t)−
d
2 exp

{
−

Λ|y − x|2d
s− t

}
≤ p(t, x; s, y) ≤M(s− t)−

d
2 exp

{
−
λ|y − x|2d
s− t

}
.

Here m, M , λ and Λ are positive constants such that m ≤ M and λ ≤ Λ. It is then
easily verified that the family {µ(t, x; s, dy), s ∈ [t, T ], t ∈ [0, T ], x ∈ Rk} satisfies the
L2-domination condition (A0).

For future reference we also recall that (E1) above implies that

(2.5) E
[

sup
t≤s≤T

|Xt,x
s |

γ
d

]
≤ C(1 + |x|γd),

for any γ ≥ 1 and with C = C(T, γ, C2) > 0, independent of x. Moreover, the infinites-
imal generator of Xt,x, denoted by LX , reads

(
LXψ

)
(x) =

1

2

d∑
i,j=1

((σσ>)ij∂
2
xixjψ)(x) +

d∑
i=1

(bi∂xiψ)(x),(2.6)

for ψ ∈ C2(Rd) and for any x ∈ Rd.
At this point it is worth noticing that the results of this paper hold for a general

Markov process X provided that X is a semi-martingale, it satisfies the L2-domination
condition and (2.5), and the increments of the bounded variation part of the processes
(gij(t,Xt))t∈[0,T ] are non-positive (see Assumption (A2)-(b) below). However, in order
to avoid technicalities and to improve readability of the paper, from now on we make
the following standing assumption

Assumption 2.1. We assume that k = d and that Xt,x is the solution of (2.1) under
conditions (E1) and (E2) above, hence satisfying the L2-domination condition (A0).

2.2. A system of reflected BSDEs with interconnected obstacles. Here we for-
mulate the problem object of our study, i.e. a system of reflected BSDEs with inter-
connected obstacles. We begin by introducing Γ := {1, 2, ...,m} and functions (fi)i∈Γ,
(hi)i∈Γ and (gij)i,j∈Γ which satisfy the requirements below.

(A1) For any i ∈ Γ, the function

fi : (t, x, (yk)k∈Γ, (zk)k∈Γ) ∈ [0, T ]× Rd+m+m×d 7−→ fi(t, x, (yk)k∈Γ, (zk)k∈Γ) ∈ R

(a) is Lipschitz continuous in the variables (~y, ~z) := ((yk)k∈Γ, (zk)k∈Γ), uniformly
with respect to (t, x); that is, there is C > 0 such that

(2.7) |fi(t, x, ~y1, z1)− fi(t, x, ~y2, ~z2)| ≤ C(|~y1 − ~y2|m + |~z1 − ~z2|m×d),

for any (t, x) ∈ [0, T ]× Rd, (~y1, ~y2) ∈ (Rm)2 and (~z1, ~z2) ∈ (Rm×d)2;
(b) has sub-polynomial growth in x, uniformly with respect to (t, ~y, ~z); that is, there

are C > 0 and q ≥ 1 such that

(2.8) |fi(t, x, ~y, ~z)| ≤ C(1 + |x|qd), for all (t, x, ~y, ~z) ∈ [0, T ]× Rd+m+m×d.

(A2) For (i, j) ∈ Γ× Γ, the functions

gij : (t, x) ∈ [0, T ]× Rd 7−→ gij(t, x) ∈ R+

have the following properties:

(a) let i, j, ` ∈ Γ with card{i, j, `} = 3, then gij(t, x) < gi`(t, x) + g`j(t, x), for any

(t, x) ∈ [0, T ]× Rd. Moreover, gii(t, x) = 0;
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(b) for any i, j ∈ Γ, gij belongs to C1,2([0, T ]× Rd) and

ρij(t, x) := (∂t gij + LXgij)(t, x) ≤ 0, for all (t, x) ∈ [0, T ]× Rd.

Remark 2.2.

(1) Notice that condition (A2)-(a) implies the so-called non-free loop property which
is considered in several papers including [13, 15], among others. Indeed, take a
loop of Γ, i.e., a sequence {i1, ....., i`} of Γ such that ` ≥ 3, card{i1, ....., i`} = `−1
and i` = i1. Then, under (A2)-(a) we have that for any (t, x) ∈ [0, T ]× Rd

gi1i2(t, x) + gi2i3(t, x) + . . .+ gi`−1i`(t, x)

> gi1i3(t, x) + gi3i4(t, x) + . . .+ gi`−1i`(t, x) > . . . > gi1i1(t, x) = 0.

(2) Conditions (A2) are satisfied if we take, for example, gij independent of x and
of the form gij(t, x) = Φ(t)|i − j|, with Φ continuously differentiable on [0, T ],
non-increasing and positive.

(A3) For any i ∈ Γ the functions

hi : x ∈ Rd 7−→ hi(x) ∈ R

are such that for every x ∈ Rd

(a) |hi(x)| ≤ C(1 + |x|pd), for some non-negative constant p;
(b) hi(x) ≥ maxj 6=i(hj(x)− gij(T, x)).

Condition (A3)-(b) is usually referred to as a “consistency condition”. This is needed
in order for the process Y in (2.9) below to be continuous on [0, T ] (provided that a
solutions to (2.9) exists).

Assuming that conditions (A0)-(A3) hold, we now consider a system of reflected
BSDEs with interconnected obstacles associated with ((fi)i∈Γ,(hi)i∈Γ,(gij)i,j∈Γ). More
precisely we aim at finding a m-tuple of (Ft)t≤T -adapted processes (Y i, Zi,Ki)i∈Γ which
solves P-a.s. the following system: For any i ∈ Γ, any (t, x) ∈ [0, T ]×Rd, and all s ∈ [t, T ]
it holds

Y i ∈ S2
T (R), Zi ∈ H2

T (Rd) and Ki ∈ A2
T (R);

Y i
s = hi(X

t,x
T )+

∫ T

s
fi(r,X

t,x
r , (Y k

r )k∈Γ, (Z
k
r )k∈Γ)dr+Ki

T −Ki
s −
∫ T

s
ZirdBr;

Y i
s ≥ max

j 6=i
{Y j

s − gij(s,Xt,x
s )};∫ T

t

(
Y i
s −max

j 6=i
{Y j

s − gij(s,Xt,x
s )}

)
dKi

s = 0;

(2.9)

where we recall that ZidB :=
∑d

j=1 Z
ijdBj with Zi := (Zi1, . . . Zid).

The rest of the paper is devoted to proving existence of a solution to (2.9).

3. The main result

In this section we perform an approximation of (2.9) via a sequence of penalized
problems indexed by n ∈ N. Each penalized problem admits a solution and we are able
to show that, in the limit as n→∞, we obtain a solution for (2.9).
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Given (t, x) ∈ [0, T ]×Rd and n ≥ 1 we introduce a system of BSDEs whose solution
is a m-tuple of (Ft)t≤T -adapted processes (Y i,n;t,x, Zi,n;t,x)i∈Γ such that for any i ∈ Γ:

Y i,n;t,x ∈ S2
T (R) and Zi,n;t,x ∈ H2

T (Rd);

Y i,n;t,x
s = hi(X

t,x
T ) +

∫ T

s

[
fi(r,X

t,x
r , (Y k,n;t,x

r )k∈Γ, (Z
k,n;t,x
r )k∈Γ)

+n
∑
j 6=i

(
Y i,n;t,x
r − Y j,n;t,x

r + gij(r,X
t,x
r )
)−]

dr −
∫ T

s
Zi,n;t,x
r dBr,

for every s ∈ [t, T ].

(3.1)

First we notice that (3.1) admits a unique solution (Y i,n;t,x, Zi,n;t,x)i∈Γ thanks to

Pardoux-Peng’s result [17]. More precisely: for any i ∈ Γ, the random variable hi(X
t,x
T )

is square integrable due to (A3) and (2.5); moreover, the functions

f
(n)
i (t, x, y, z) := fi(t, x, y, z) + n

∑
j 6=i

(
yi − yj + gij(t, x)

)−
are uniformly Lipschitz in (~y, ~z) by (A1). Next the Markovian nature of our setting also
implies that there exist measurable deterministic functions (ui,n)i∈Γ and (vi,n)i∈Γ, with
ui,n : [0, T ]× Rd → R and vi,n : [0, T ]× Rd → Rd, such that for any (t, x) ∈ [0, T ]× Rd
and s ∈ [t, T ],

(3.2) Y i,n;t,x
s = ui,n(s,Xt,x

s ) and Zi,n;t,x
s = vi,n(s,Xt,x

s ).

One can refer to [11] (Theorem 4.1, p. 46) for more details. Finally, the following
representation holds: for any i ∈ Γ and (t, x) ∈ [0, T ]× Rd one has

ui,n(t, x) =E

[
hi(X

t,x
T ) +

∫ T

t

{
fi(r,X

t,x
r , (Y k,n;t,x

r )k∈Γ, (Z
k,n;t,x
r )k∈Γ)(3.3)

+ n
∑
j 6=i

(
Y i,n;t,x
r − Y j,n;t,x

r + gij(r,X
t,x
r )
)−}

dr

]
.

In order to simplify notation, from now and when no confusion may arise, we will drop
the (t, x)-dependence of (Y i,n;t,x, Zi,n;t,x)i∈Γ, and we will simply write (Y i,n, Zi,n)i∈Γ.

Moreover, we will simply denote fi(r,X
t,x
r , Y n

r , Z
n
r ) with the convention that Y n :=

(Y k,n)k∈Γ and Zn := (Zk,n)k∈Γ . The next proposition provides a bound for the penal-
izing term in the driver of (3.1), which is uniform with respect to n.

Proposition 3.1. Let (t, x) ∈ [0, T ] × Rd be given and fixed. Then, for q ≥ 1 as in
Assumption (A1)-(b), there exists C = C(q, T ) > 0 such that, for any i ∈ Γ and n ≥ 1,
one has

(3.4) n
∑
j 6=i

(
Y i,n
s − Y j,n

s + gij(s,X
t,x
s )
)−
≤ C

(
1 + |Xt,x

s |q
)
, t ≤ s ≤ T.

Proof. Fix (t, x) ∈ [0, T ]× Rd, and for given i, j ∈ Γ and n ≥ 1, set

(3.5) ξij,ns := Y i,n
s − Y j,n

s + gij(s,X
t,x
s ), s ∈ [t, T ].

By an application of Itô-Tanaka’s formula (cf. [16], Chapter 3.7, Theorem 7.1), for every
s ∈ [t, T ] we obtain

e−n(T−s)(ξij,nT )− =
(
ξij,ns )− −

∫ T

s
1{ξij,nu <0}e

−n(u−s)dξij,nu −
∫ T

s
ne−n(u−s)(ξij,nu

)−
du

+
1

2

∫ T

s
e−n(u−s)dL0

u(ξij,n),(3.6)
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where L0(ξij,n) denotes the local-time at zero of the semimartingale ξij,n. Noticing that
the integral with respect to the local-time is nonnegative, we obtain from (3.6) that for
every s ∈ [t, T ](

ξij,ns

)− ≤ e−n(T−s)(ξij,nT )−(3.7)

+

∫ T

s
1{ξij,nu <0}e

−n(u−s)dξij,nu +

∫ T

s
n e−n(u−s)(ξij,nu

)−
du.

We now want to find a convenient expression for dξij,nu . In the definition of ξij,n (cf.
(3.5)) we may express Y i,n and Y j,n in terms of their associated BSDEs (3.1). This
gives, for any u ∈ [t, T ]

ξij,nu =gij(u,X
t,x
u ) + (hi − hj)(Xt,x

T ) +

∫ T

u
(fi − fj)(r,Xt,x

r , Y n
r , Z

n
r )dr

+ n
∑
k 6=i

∫ T

u

(
ξik,nr

)−
dr − n

∑
k 6=j

∫ T

u

(
ξjk,nr

)−
dr −

∫ T

u
(Zi,nr − Zj,nr )dBr.(3.8)

Then taking the differential with respect to the time variable u, and recalling ρij from
(A2)-(b), gives

dξij,nu =
d∑

k=1

∂gij
∂xk

(u,Xt,x
u )σk(u,X

t,x
u )dBu + (Zi,nu − Zj,nu )dBu

+ ρij(u,X
t,x
u )du− (fi − fj)(u,Xt,x

u , Y n
u , Z

n
u )du(3.9)

− n
∑
k 6=i

(
ξik,nu

)−
du+ n

∑
k 6=j

(
ξjk,nu

)−
du.

where we have also set σk(u,Xu)dBu :=
∑

` σk`(u,Xu)dB`
u to simplify the notation. We

multiply (3.9) by 1{ξij,nu <0}e
−n(u−s) and integrate over [s, T ]. Then adding∫ T

s
ne−n(u−s)(ξij,nu

)−
du

we obtain∫ T

s
1{ξij,nu <0}e

−n(u−s)dξij,nu +

∫ T

s
ne−n(u−s)(ξij,nu

)−
du

=

∫ T

s
1{ξij,nu <0}e

−n(u−s)
[
ρij(u,X

t,x
u )− (fi − fj)(u,Xt,x

u , Y n
u , Z

n
u )
]
du

− n
∑
k 6=i

∫ T

s
1{ξij,nu <0}e

−n(u−s)(ξik,nu

)−
du+ n

∑
k 6=j

∫ T

s
1{ξij,nu <0}e

−n(u−s)(ξjk,nu

)−
du(3.10)

+

∫ T

s
n e−n(u−s)(ξij,nu

)−
du+M ij,n

s,T ,

where we have defined
(3.11)

M ij,n
s,T :=

∫ T

s
1{ξij,nu <0}e

−n(u−s)
[ d∑
k=1

∂gij
∂xk

(u,Xt,x
u )σk(u,X

t,x
u )dBu + (Zi,nu − Zj,nu )dBu

]
.

Notice in particular that (M ij,n
t,s )s∈[t,T ] is indeed a martingale.
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Next we provide upper bounds for some of the terms in (3.10). First we notice that
for u ∈ [t, T ] it holds

1{ξij,nu <0}

((
ξjk,nu

)− − (ξik,nu

)−) ≤ 1{ξij,nu <0}

(
ξjk,nu − ξik,nu

)−
= 1{Y j,n

u >Y i,n
u +gij(u,Xt,x

u )}

(
Y j,n
u + gjk(u,X

t,x
u )− Y i,n

u − gik(u,Xt,x
u )
)−

(3.12)

≤ 1{Y j,n
u >Y i,n

u +gij(u,Xt,x
u )}

(
gij(u,X

t,x
u ) + gjk(u,X

t,x
u )− gik(u,Xt,x

u )
)−

= 0

by Assumption (A2)-(a). Also we notice that

1{ξij,nu <0}
(
ξji,nu

)−
=1{Y j,n

u >Y i,n
u +gij(u,Xt,x

u )}

(
Y j,n
u − Y i,n

u + gji(u,X
t,x
u )
)−

≤1{Y j,n
u >Y i,n

u +gij(u,Xt,x
u )}

(
gij(u,X

t,x
u ) + gji(u,X

t,x
u )
)−

= 0(3.13)

because switching costs are non-negative.
Now, simple algebra and (3.12)-(3.13) give

∑
k 6=j

∫ T

s
1{ξij,nu <0}e

−n(u−s)(ξjk,nu

)−
du

−
∑
k 6=i

∫ T

s
1{ξij,nu <0}e

−n(u−s)(ξik,nu

)−
du+

∫ T

s
e−n(u−s)(ξij,nu

)−
du(3.14)

=
∑
k 6=i,j

∫ T

s
1{ξij,nu <0}e

−n(u−s)
((
ξjk,nu

)− − (ξik,nu

)−)
du

+

∫ T

s
1{ξij,nu <0}e

−n(u−s)(ξji,nu

)−
du ≤ 0.

By feeding (3.14) back into (3.10) we obtain∫ T

s
1{ξij,nu <0}e

−n(u−s)dξij,nu +

∫ T

s
n e−n(u−s)(ξij,nu

)−
du

≤M ij,n
s,T +

∫ T

s
1{ξij,nu <0}e

−n(u−s)
[
ρij(u,X

t,x
u )− (fi − fj)(u,Xt,x

u , Y n
u , Z

n
u )
]
du.

The latter may be plugged in (3.7) to yield(
ξij,ns )− ≤e−n(T−s)

(
hi(X

t,x
T )− hj(Xt,x

T ) + gij(T,X
t,x
T )
)−

+M ij,n
s,T

+

∫ T

s
1{ξij,nu <0}e

−n(u−s)
[
ρij(u,X

t,x
u )− (fi − fj)(u,Xt,x

u , Y n
u , Z

n
u )
]
du,(3.15)

for every s ∈ [t, T ].

By Assumption (A3)-(b) we have that
(
hi(X

t,x
T ) − hj(Xt,x

T ) + gij(T,X
t,x
T )
)−

= 0.

Moreover, our assumptions on the switching costs gij (cf. Asssumption (A2)) and on

the volatility σ (cf. Assumption 2.1), imply that E
[
M ij,n
s,T

∣∣Fs] = 0 (see (3.11)) and

ρij(u,Xu) ≤ 0. Then, taking conditional expectations with respect to Fs in (3.15),
using the sub-polynomial growth of fi and fj (cf. Assumption (A1)-(b)) and (2.5), we
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obtain that(
ξij,ns )− ≤E

[ ∫ T

s
1{ξij,nu <0}e

−n(u−s)(fj − fi)(u,Xt,x
u , Y n

u , Z
n
u )du

∣∣∣Fs]
≤
∫ T

s
e−n(u−s)c

(
1 + E

[
sup
s≤r≤u

|Xr|q|Fs
])
du ≤ c

n

(
1 + |Xs|q

)
,(3.16)

for every s ∈ [t, T ], with q ≥ 1 and for a constant c = c(T, q) > 0 changing from line to
line and independent of n.

Recalling (3.5) we then conclude that for any (i, j) ∈ Γ× Γ and n ≥ 1

n
(
Y i,n
s − Y j,n

s + gij(s,X
t,x
s )
)−
≤ c

(
1 + |Xt,x

s |q
)
, t ≤ s ≤ T.

Taking the summations over all j 6= i and setting C := (m− 1)c, we finally obtain

n
∑
j 6=i

(
Y i,n
s − Y j,n

s + gij(s,X
t,x
s )
)−
≤ C

(
1 + |Xt,x

s |q
)
, t ≤ s ≤ T.

�

From now on we denote

(3.17) Ki,n
s := n

∑
j 6=i

∫ s

t

(
Y i,n
r − Y j,n

r + gij(r,X
t,x
r )
)−
dr, s ∈ [t, T ].

Thanks to Proposition 3.1 we are able prove the next uniform estimate on the solution
of the penalized problem.

Proposition 3.2. Let (t, x) ∈ [0, T ]× Rd be arbitrary. For any i ∈ Γ and n ≥ 1 there
exist constants C > 0 and ρ ≥ 1 independent of n such that

(3.18) E

[
sup
t≤s≤T

|Y i,n
s |2 +

∫ T

t
|Zi,ns |2ds+ |Ki,n

T |
2

]
≤ C(1 + |x|ρ).

Proof. Applying Itô’s formula and recalling (3.1) we obtain that for every s ∈ [t, T ]

|Y i,n
s |2 +

∫ T

s
|Zi,nr |2dr =|hi(Xt,x

T )|2 + 2

∫ T

s
Y i,n
r fi(r,X

t,x
r , Y n

r , Z
n
r )dr(3.19)

− 2

∫ T

s
Y i,n
r Zi,nr dBr + 2

∫ T

s
Y i,n
r dKi,n

r .

Taking expectations and using the sub-polynomial growth of hi and fi (cf. Assumptions
(A1)-(b) and (A3)-(a)) we get

E

[
|Y i,n
s |2 +

∫ T

s
|Zi,nr |2dr

]
≤c1

(
1 + E

[
|Xt,x

T |
2p
])

+ 2c2E

[ ∫ T

s
|Y i,n
r |
(

1 + |Xt,x
r |q

)
dr

]
+ 2E

[ ∫ T

s
|Y i,n
r |n

∑
j 6=i

(
Y i,n
r − Y j,n

r + gij(r,X
t,x
r )
)−
dr

]
(3.20)

for suitable positive constants c1 and c2. We now use the classical inequality 2|ab| ≤
ε|a|2 + 1

ε |b|
2, for any a, b ∈ R and ε > 0, the bound (3.4) (notice that q therein is the

same as the one in (3.20)) and (2.5) to obtain

E

[
|Y i,n
s |2 +

∫ T

s
|Zi,nr |2dr

]
≤C
(

1 + E
[
|Xt,x

T |
2p
]

+ E

[ ∫ T

s
|Y i,n
r |2dr +

∫ T

s
|Xt,x

r |2qdr
])

≤C
(

1 + |x|ρ + E

[ ∫ T

s
|Y i,n
r |2dr

])
,(3.21)
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where ρ = 2(p∨q) and C = C(T, p, q, ε) > 0 varies from line to line and it is independent
of n.

From (3.21) and Gronwall’s inequality we find ∀s ∈ [t, T ]

(3.22) E
[
|Y i,n
s |2

]
≤ C

(
1 + |x|ρ

)
,

for all n ≥ 1. Letting now c > 0 be a constant varying from line to line but independent
of n, using (3.21), (3.22) and Proposition 3.1, we also get

(3.23) E

[ ∫ T

t
|Zi,nr |2ds+ |Ki,n

T |
2

]
≤ c
(
1 + |x|ρ

)
.

The latter and (3.22) then yield: for any s ∈ [t, T ]× Rd,

(3.24) E

[
|Y i,n
s |2 +

∫ T

t
|Zi,nr |2dr + |Ki,n

T |
2

]
≤ c
(
1 + |x|ρ

)
.

In order to take the supremum of the process Y i,n inside the expectation we need a

further bound for supt≤s≤T |Y
i,n
s |2. This can be obtained by using the expression (3.1)

for Y i,n together with the sub-polynomial growth of fi and (3.4), that is

sup
t≤s≤T

|Y i,n
s |2 ≤4

(
|hi(Xt,x

T )|2 +

∫ T

t
|fi(r,Xt,x

r , Y n
r , Z

n
r )|2ds

+ |Ki,n
T |

2 + sup
t≤s≤T

∣∣∣ ∫ T

s
Zi,nr dBr

∣∣∣2)
≤C
(

1 + sup
t≤s≤T

|Xt,x
s |ρ + sup

t≤s≤T

∣∣∣ ∫ T

s
Zi,nr dBr

∣∣∣2).(3.25)

Taking the expected value, applying Burkholder-Davis-Gundy’s inequality and (2.5) we
finally obtain (3.18). �

Recall that for each n ≥ 0 we have Y i,n;t,x
s = ui,n(s,Xt,x

s ) (see (3.2) and (3.3)). Next
we show that the sequences (ui,n)n≥0 with i ∈ Γ admit a converging subsequence.

Proposition 3.3. There exists a subsequence (nj)j≥0 with nj → ∞ as j → ∞, and

measurable functions ui : [0, T ]× Rd → R, i ∈ Γ, such that

lim
j→∞

ui,nj (t, x) = ui(t, x) for all i ∈ Γ and (t, x) ∈ [0, T ]× Rd.(3.26)

Moreover there exist two constants C > 0 and ρ ≥ 1 (independent of nj) such that for
any i ∈ Γ and j ≥ 0

|ui,nj (t, x)| ≤ C(1 + |x|ρ), ∀(t, x) ∈ [0, T ]× Rd(3.27)

and therefore

|ui(t, x)| ≤ C(1 + |x|ρ), ∀(t, x) ∈ [0, T ]× Rd.(3.28)

Proof. The proof is given in two steps.

Step 1. Let x0 ∈ Rd be given and fixed as in (A0). Consider the solution of (3.1) for
(t, x) = (0, x0). By the sub-polynomial growth of fi (see (2.8)), by (2.5) and (3.18), we
can find C = C(x0) > 0 (independent of n and i ∈ Γ) such that

E

[ ∫ T

0

∣∣∣ fi(r,X0,x0
r , Y n;0,x0

r , Zn;0,x0
r )

+ n
∑
6̀=i

(
Y i,n;0,x0
r − Y `,n;0,x0

r + gi`(r,X
0,x0
r )

)−∣∣∣2dr] ≤ C.
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Using the representations (3.2) for Y i,n;0,x0 and Zi,n;0,x0 , the above bound reads

E

[ ∫ T

0

∣∣∣ fi(r,X0,x0
r , (uk,n(r,X0,x0

r ))k∈Γ, (v
k,n(r,X0,x0

r ))k∈Γ)(3.29)

+ n
∑
6̀=i

(
ui,n(r,X0,x0

r )− u`,n(r,X0,x0
r ) + gi`(r,X

0,x0
r )

)−∣∣∣2dr] ≤ C.
For simplicity we again set un( · ) := (uk,n( · ))k∈Γ and vn( · ) := (vk,n( · ))k∈Γ inside the
functions fi, when no confusion may arise.

We can express the expectation in (3.29) as an integral with respect to the law of

X0,x0
r , r ≤ T . This gives∫ T

0

∫
Rd

∣∣∣ fi(r, y, un(r, y), vn(r, y))

+ n
∑
6̀=i

(
ui,n(r, y)− u`,n(r, y) + gi`(r, y)

)−∣∣∣2µ(0, x0; r, dy)dr ≤ C.

If we now set

F in(r, y) := fi(r, y, u
n(r, y), vn(r, y)) + n

∑
`6=i

(
ui,n(r, y)− u`,n(r, y) + gi`(r, y)

)−
we have that the map Fn := (F in)i∈Γ, Fn : [0, T ] × Rd → Rm has all its components
bounded in L2([0, T ] × Rd, µ(0, x0; r, dy)dr) uniformly with respect to n. Therefore,
the sequence (Fn)n≥0 admits a subsequence (Fnj )j≥0 such that F inj

→ Fi weakly in

L2([0, T ]× Rd, µ(0, x0; r, dy)dr) as j →∞, for each i ∈ Γ. Notice that the subsequence
may depend on x0.

Step 2. Here we want to prove that (3.26) holds along the subsequence (nj)j≥0

found above. In particular, given (t, x) ∈ [0, T ] × Rd we will prove that the sequence
(ui,nj (t, x))j≥0 is of Cauchy type.

Let δ > 0 and N > 0 be two constants (which will be taken small and large, respec-
tively), and notice that by (3.3) we have, for any non-negative j, k

ui,nj (t, x)− ui,nk(t, x) =E

[ ∫ t+δ

t
(F inj

(r,Xt,x
r )− F ink

(r,Xt,x
r ))dr

]
(3.30)

+ E

[ ∫ T

t+δ
(F inj

(r,Xt,x
r )− F ink

(r,Xt,x
r ))1{|Xt,x

r |≤N}dr

]
+ E

[ ∫ T

t+δ
(F inj

(r,Xt,x
r )− F ink

(r,Xt,x
r ))1{|Xt,x

r |>N}dr

]
=: Θjk

1 + Θjk
2 + Θjk

3 .

In what follows we let C = C(t, x) > 0 be a suitable constant (i.e. sufficiently large for

our purposes) independent of δ and N . Due to (2.8) and (3.4) we easily get |Θjk
1 | ≤ C ·δ.

Moreover, the bounds in (2.8) and (3.4), together with Cauchy-Schwarz and Markov

inequalities yield |Θjk
3 | ≤ C/N . Now we use the law of Xt,x to rewrite Θjk

2 as

Θjk
2 =E

[ ∫ T

t+δ
(F inj

(r,Xt,x
r )− F ink

(r,Xt,x
r ))1{|Xt,x

r |≤N}dr

]
=

∫ T

t+δ

∫
Rd

(F inj
(r, y)− F ink

(r, y))1{|y|≤N}µ(t, x; r, dy)dr.
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The L2-domination condition (A0) implies

Θjk
2 =

∫ T

t+δ

∫
Rd

(F inj
(r, y)− F ink

(r, y))1{|y|≤N}φ
δ
t,x,x0(r, y)µ(0, x0; r, dy)dr.(3.31)

By assumption φδt,x,x0 ∈ L
2([t+ δ, T ]× [−N,N ]d; µ(0, x0; r, dy)dr), hence weak conver-

gence of the sequence (F inj
)j≥0 implies lim supj,k→∞ |Θ

jk
2 | = 0.

Collecting the estimates for Θjk
1 , Θjk

2 and Θjk
3 we obtain

lim sup
j,k→∞

|ui,nj (t, x)− ui,nk(t, x)| ≤ C(δ +N−1)

and, letting δ → 0 and N → ∞, we complete the proof of (3.26). Finally, estimates
(3.27) and (3.28) follow by using the representation formula (3.2) in (3.22), with s = t,
and thanks to (3.26). �

As a byproduct of the previous result we have the following.

Corollary 3.4. For any i ∈ Γ one has

(3.32) lim
j,k→∞

E

[ ∫ T

t
|Y i,nj
s − Y i,nk

s |2ds+

∫ T

t
|Zi,nj
s − Zi,nk

s |2ds
]

= 0.

Proof. Convergence of the first term in (3.32) follows from the convergence result (3.26)
and by using the dominated convergence theorem, which is enabled by (3.27) and (2.5).
Convergence of the second term in (3.32) is obtained in a classical way. By Itô’s formula
and using the same estimates as in the proof of Proposition 3.2 (and Lipschitz continuity
of fi) we get

E

[∫ T

t
|Zi,nj
s − Zi,nk

s |2
]

≤2c εE

[∫ T

t

(
Y
i,nj
s − Y i,nk

s

)2
ds

]
+

2c

ε

∑
α∈Γ

E

[∫ T

t

(
|Y α,nj
s − Y α,nk

s |2 + |Zα,nj
s − Zα,nk

s |2
)
ds

]

+ 2cE

[∫ T

t
|Y i,nj
s − Y i,nk

s |(1 + |Xt,x
s |q)ds

]
,

for a suitable constant c > 0 and arbitrary ε > 0. Taking the summation over i ∈ Γ
and picking ε sufficiently large we may conclude that∑

α∈Γ

E

[∫ T

t
|Zα,nj
s − Zα,nk

s |2
]

≤cε
∑
α∈Γ

E

[∫ T

t
|Y α,nj
s − Y α,nk

s |2ds+

∫ T

t
|Y α,nj
s − Y α,nk

s |(1 + |Xt,x
s |q)ds

]
where cε > 0 depends on ε but is independent of j, k. Hence taking limits as j, k →∞
and using the above result we finally obtain (3.32). �

We can now prove the main result of this paper, which establishes the existence of
a solution to system (2.9). In what follows the subsequence (nj)j≥0 is the same as the
one in Proposition 3.3.

Theorem 3.5. There exists a solution (Y i, Zi,Ki)i∈Γ to (2.9). Moreover, for any i ∈ Γ
and t ∈ [0, T ] it holds

(3.33) lim
j→∞

E

[
sup
t≤s≤T

|Y i,nj
s − Y i

s |2 +

∫ T

t
|Zi,nj
s − Zis|2ds+ sup

t≤s≤T
|Ki,nj

s −Ki
s|2
]

= 0.
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Proof. The proof is given in two steps. We first prove, in step 1, that there exists
(Y i, Zi,Ki)i∈Γ satisfying the first equation in (2.9) and such that (3.33) holds. Then
we prove, in step 2, that (Y i, Zi,Ki)i∈Γ fulfils the second and third conditions in (2.9)
as well.

Step 1. Let (t, x) ∈ [0, T ]× Rd be fixed. For any i ∈ Γ let us set:

i) Y i
s = ui(s,Xt,x

s ), s ∈ [t, T ], with ui as in (3.26);

ii) (Zis)s∈[t,T ] the limit in H2
T (Rd) of (Z

i,nj
s )s∈[t,T ] which exists thanks to (3.32).

It is clear that

Y i
s = ui(s,Xt,x

s ) = lim
j→∞

ui,nj (s,Xt,x
s ) = lim

j→∞
Y
i,nj
s P-a.s. ∀s ∈ [t, T ]

Let us now show that for any i ∈ Γ, the sequence (Y i,nj )j≥0 is Cauchy in S2
T (R) so that

it converges to Y i in S2
T (R). By using Itô’s formula, Lipschitz property of fi and the

bound in Proposition 3.1, we can argue in a similar way to the proof of Proposition 3.2
and obtain for all u ∈ [t, T ]

sup
t≤u≤T

|Y i,nj
u − Y i,nk

u |2 +

∫ T

t
|Zi,nj
s − Zi,nk

s |2

≤2c ε

∫ T

t

(
Y
i,nj
s − Y i,nk

s

)2
ds

+
2c

ε

∑
α∈Γ

∫ T

t

(
|Y α,nj
s − Y α,nk

s |2 + |Zα,nj
s − Zα,nk

s |2
)
ds

+ 2c

∫ T

t
|Y i,nj
s − Y i,nk

s |(1 + |Xt,x
s |q)ds(3.34)

+ sup
t≤u≤T

∣∣∣∣ ∫ T

u
(Y

i,nj
s − Y i,nk

s )(Z
i,nj
s − Zi,nk

s )dBs

∣∣∣∣,
where c > 0 is a suitable constant independent of j, k and ε > 0 is also arbitrary. Notice
that by Burkholder-Davis-Gundy’s inequality and |ab| ≤ ε|a|2 + ε−1|b|2 we have

E

[
sup
t≤u≤T

∣∣∣∣ ∫ T

u
(Y

i,nj
s − Y i,nk

s )(Z
i,nj
s − Zi,nk

s )dBs

∣∣∣∣
]

≤CE

[(∫ T

t
(Y

i,nj
s − Y i,nk

s )2(Z
i,nj
s − Zi,nk

s )2ds

) 1
2

]
(3.35)

≤CE

[
sup
t≤u≤T

|Y i,nj
u − Y i,nk

u |
(∫ T

t
(Z

i,nj
s − Zi,nk

s )2ds

) 1
2

]

≤CεE

[
sup
t≤u≤T

|Y i,nj
u − Y i,nk

u |2
]

+
C

ε
E

[∫ T

t
(Z

i,nj
s − Zi,nk

s )2ds

]
,

for a suitable C > 0 independent of j, k and any ε > 0. Taking expectations in (3.34)
and using (3.35) (with ε < 1/C), after rearranging terms we then obtain

E

[
sup
t≤u≤T

|Y i,nj
u − Y i,nk

u |2
]
≤ cεE

[∑
α∈Γ

∫ T

t

(
|Y α,nj
s − Y α,nk

s |2 + |Zα,nj
s − Zα,nk

s |2
)
ds

]

+ 2cE

[ ∫ T

t
|Y i,nj
s − Y i,nk

s |(1 + |Xt,x
s |q)ds

]
,(3.36)
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where cε > 0 may depend on ε > 0 but is independent of j, k. Letting now j, k →∞ and
using Corollary 3.4 we obtain that Y i,nj forms a Cauchy sequence in S2

T (R) as claimed.

Let us now define Ki, i ∈ Γ, as:

Ki
s := Y i

t − Y i
s −

∫ s

t
fi(u,X

t,x
u , (Y k

u )k∈Γ, (Z
k
u)k∈Γ)du+

∫ s

t
ZiudBu, s ∈ [t, T ].(3.37)

Since Y i,nj converges in S2
T (R), and upon recalling Lipschitz property of fi and (3.32),

it is easy to verify that Ki is the limit in S2
T (R) of the sequence (Ki,nj )j≥0 defined by

(see (3.17) and (3.1))

K
i,nj
s = Y

i,nj

t −Y i,nj
s −

∫ s

t
fi(u,X

t,x
u , (Y

k,nj
u )k∈Γ, (Z

k,nj
u )k∈Γ)du+

∫ s

t
Z
i,nj
u dBu, s ∈ [t, T ].

Hence (3.33) holds and, by (3.37), (Y i, Zi,Ki)i∈Γ verify the first equation of (2.9).

Step 2. It only remains to show that the second and third conditions in (2.9) are satisfied
by (Y i, Zi,Ki)i∈Γ. Proposition 3.1 implies that there exists C > 0 for which

(3.38) E

[ ∫ T

t

∑
j 6=i

(
Y i,n
s − Y j,n

s + gij(s,X
t,x
s )
)−
ds

]
≤ C

n
.

Using (3.32) and letting n ↑ ∞ (along the subsequence used in (3.32)) we immediately
obtain

(3.39) E

[ ∫ T

t

∑
j 6=i

(
Y i
s − Y j

s + gij(s,X
t,x
s )
)−
ds

]
= 0.

Hence, for all i, j ∈ Γ, Y i
s ≥ Y j

s + gij(s,X
t,x
s ), P-a.s. for every s ∈ [t, T ] (recall that

s 7→ Y k
s , k ∈ Γ is indeed continuous as uniform limit of continuous processes). In

particular

(3.40) Y i
s ≥ max

j 6=i

(
Y j
s − gij(s,Xt,x

s )
)
, P− a.s. ∀s ∈ [t, T ].

Thanks to (3.33), by Tchebyshev’s inequality we have that for any i ∈ Γ,

lim
j→∞

P

(
sup
t≤s≤T

(
|Y i,nj
s − Y i

s |+ |K
i,nj
s −Ki

s|
)
≥ ε

)
= 0(3.41)

for any ε > 0. Moreover, for a.e. ω ∈ Ω and for each j ≥ 0 the map s 7→ K
i,nj
s (ω) is

increasing and continuous, hence it is a (random) continuous measure on [t, T ]. The
same holds for the limit process Ki. The uniform convergence in (3.41) implies that
(up to selecting a subsequence) Ki,nj (ω)→ Ki(ω) as j →∞ in general in the sense of
measures (see [20, Ch. 3]). Therefore, for P-a.e. ω ∈ Ω, it holds dKi,nj (ω) → dKi(ω)
weakly as j →∞ (see [20, Thm. 1, Ch. 3]) and

lim
j→∞

∫ T

t

[
Y
i,nj
s −max

k 6=i

(
Y
k,nj
s − gik(s,Xt,x

s )
)]
dK

i,nj
s

=

∫ T

t

[
Y i
s −max

k 6=i

(
Y k
s − gik(s,Xt,x

s )
)]
dKi

s, P− a.s.(3.42)

We now notice that the left-hand side of (3.42) is non-positive due to (3.17) and the
fact that for any ` 6= i and all s ∈ [t, T ](
Y
i,nj
s −max

k 6=i

(
Y
k,nj
s − gik(s,Xt,x

s )
))(

Y
i,nj
s − Y `,nj

s + gi`(s,X
t,x
s )
)−
≤ 0, P− a.s.
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However, the right-hand side of (3.42) is non-negative due to (3.40) and the fact that
Ki is increasing. Hence we get∫ T

t

[
Y i
s −max

k 6=i

(
Y k
s − gik(s,Xt,x

s )
)]
dKi

s = 0, P− a.s.,

which completes the proof. �

We now provide a corollary of Proposition 3.3 and Theorem 3.5.

Corollary 3.6. There exist measurable deterministic functions (ui)i∈Γ and (vi)i∈Γ with
ui : [0, T ]× Rd → R and vi : [0, T ]× Rd → Rd such that for any (t, x) ∈ [0, T ]× Rd

Y i;t,x
s = ui(s,Xt,x

s ) and Zi;t,xs = vi(s,Xt,x
s ), P− a.s. for a.e. s ∈ [t, T ].(3.43)

Proof. It only remains to show the existence of vi. Recall vi,n from (3.2) and set
vi := lim supj→∞ v

i,nj , where the limit is taken along the subsequence introduced in

Proposition 3.3. Then, using that Z
i,nj
s → Zis, P-a.s. for a.e. s ∈ [t, T ], and choosing

(s, ω) such that the convergence indeed holds we find

vi(s,Xs(ω)) = lim sup
j→∞

vi,nj (s,Xs(ω)) = lim sup
j→∞

Z
i,nj
s (ω) = Zis(ω).

�
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