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Abstract

The α–maxmin model is a prominent example of preferences under
Knightian uncertainty as it allows to distinguish ambiguity and ambiguity
attitude. These preferences are dynamically inconsistent for nontrivial
versions of α. In this paper, we derive a recursive, dynamically consistent
version of the α–maxmin model. In the continuous–time limit, the re-
sulting dynamic utility function can be represented as a convex mixture
between worst and best case, but now at the local, infinitesimal level.

We study the properties of the utility function and provide an Arrow–
Pratt approximation of the static and dynamic certainty equivalent. We
derive a consumption–based capital asset pricing formula and study the
implications for derivative valuation under indifference pricing.
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1 Introduction

In an effort to differentiate conceptually ambiguity from ambiguity attitude,
Ghirardato, Maccheroni, and Marinacci (2004) introduce the α–maxmin model
of preferences under Knightian uncertainty. These preferences can be repre-
sented by a utility function of the form

U(X) = αmin
P∈P

EP [u(X)] + (1− α) max
P∈P

EP [u(X)] (1)

for a Bernoulli utility function u, a class of priors P , and an index of ambiguity
attitude α ∈ [0, 1]. Such preferences generalize the well–known α–maxmin rule
of Hurwicz to settings of Knightian uncertainty where the subjective perception
of ambiguity can be described by a set of probability measures and the attitude
towards ambiguity by a parameter α which describes the relative weight put on
pessimism versus optimism1.

In this paper, we discuss α–maxmin utility in a dynamic framework. For
the purely pessimistic case (α = 1), Epstein and Schneider (2003) have shown
that the multiple priors model of Gilboa and Schmeidler (1989) is dynamically
consistent if and only if the set of priors is rectangular, i.e. stable under pasting
marginal and conditional distributions.

Our starting point is the following fact: Even if the set of priors is rectangu-
lar, α–maxmin utility is not time–consistent for non–trivial values of ambiguity
attitude α.

We thus set out to define a recursive version of α–maxmin utility where we
apply the logic of α–maxmin utility conditionally upon the available information
in every discrete time step. Such a recursive construction leads to a time–
consistent overall utility function.

In discrete time, tractable representations of the resulting utility function are
usually not available. The continuous–time limit of our recursive construction,
however, admits a nice representation. The dynamic utility form satisfies the
backward stochastic differential equation

dUt(X) = −
(
αmin
θ∈Θ

θσt + (1− α) max
θ∈Θ

θσt

)
dt+ σtdBt

where now the set Θ describes the perceived ambiguity. We thus obtain again
an α–maxmin representation, but now locally, at the infinitesimal (one–step
ahead) level2.

The representation of the utility functional as backward stochastic differen-
tial equation allows a more detailed study of its properties and the economic

1The neo–additive capacities of Chateauneuf, Eichberger, and Grant (2007) are another
instance of such preferences.

2This representation generalizes the representation for time–consistent pessimistic multiple
prior preferences of Chen and Epstein (2002).
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consequences for agents with such preferences. We discuss the properties of the
utility functional and derive a representation for the certainty equivalent.

As an application, we show the implications for consumption–based asset
pricing models. Ambiguity leads to an additional premium for uncertain assets,
similar to Chen and Epstein (2002). The ambiguity premium is reduced by
optimism. The short interest rate increases usually with pessimism.

The paper is set up as follows. The next section shows that the naive
version of α–maxmin utility is not dynamically consistent. Section 3 derives the
recursive, dynamically consistent version and its continuous–time limit. Section
4 discusses the properties of the resulting preferences. Section 5 discusses the
implications for equilibrium asset prices in the framework of the consumption–
based capital asset pricing model and the implications for derivative valuation
if one uses the method of indifference pricing.

2 Dynamic Inconsistency of α–maxmin Utility

Gilboa–Schmeidler utility functions are dynamically consistent if (and only if)
the set of priors is rectangular (Epstein and Schneider (2003)). This result
carries over to optimistic, ambiguity–loving agents (α = 0). For intermediate
values of α, rectangularity is not sufficient for dynamic consistency as we show
in this section with the help of two examples, in discrete and continuous time.

Consider the two period binomial tree of Figure 1. The transition probabil-
ities of moving up in the tree are given by p, q, r ∈ [1

4
, 3

4
]. By construction, the

resulting set of priors

P =

{(
pq, p(1− q), (1− p)r, (1− p)(1− r)

)
∈ ∆(Ω) : r, p, q ∈

[1

4
,
3

4

]}
is rectangular. We write p = q = r = 1

4
and p = q = r = 3

4
.

Consider the two payoffs X and Y depicted in the figure. Note that Y has
a payoff which is known at time 1 but uncertain at time 0. For simplicity3, we
take u(x) = x and α = 1/2.

We first show that Y is uniformly preferred to X at time 1. Indeed, in the
upper node, the utility of X is

U1[X] =
1

2
min
q∈[ 1

4
, 3
4

]
q · 0 + (1− q) · 8 +

1

2
max
q∈[ 1

4
, 3
4

]
q · 0 + (1− q) · 8 = 4 ,

which is strictly smaller than the utility of Y which is 4.1 (recall that Y is known
at time 1). Similarly, in the lower node we obtain U1(X) = 2 < U1(Y ) = 2.2.

3The result carries over easily to arbitrary isotone u and values of α ∈ (0, 1).
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Figure 1: Two period binomial model and rectangular set of priors. For α = 1/2,
the agent prefers X to Y ex ante and reverses the ranking in all nodes at time 1.

Now we show that the ranking is reversed at time 0. We compute

U0[X] =
1

2
min
P∈P

EP [X] +
1

2
max
P∈P

EP [X]

=
1

2

(
8p(1− q) + 4(1− p)r

)
+

1

2

(
8p(1− q) + 4(1− p)r

)
=

1

2

(
1

16
· 8 +

3

16
· 4
)

+
1

2

(
9

16
· 8 +

3

16
· 4
)

= 3
1

4

and U0[Y ] = 1
2

(
1
4
· 4.1 + 3

4
· 2.2

)
+ 1

2

(
3
4
· 4.1 + 1

4
· 2.2

)
= 3.15. At time t = 0, X

is preferred to Y .
Dynamic consistency is closely related to recursivity, or the dynamic pro-

gramming principle. The iterated α-maxmin expected utility is U0

[
U1[X]

]
. We

plug U1[X] = (4, 2) into U0 and get

U0

[
U1[X]

]
=

1

2

[(1

4
· 4 +

3

4
· 2
)

+
(3

4
· 4 +

1

4
· 2
)]

= 3 6= U0[X].

The inequality U0[U1[X]] 6= U0[X] shows that recursivity fails.
For our continuous–time example, we choose the drift ambiguity model of

Chen and Epstein (2002). Fix a finite time interval [0, T ]. Let B be a Brownian
motion on a probability space (Ω,F ,P) and (Ft)t∈[0,T ] the filtration generated
by B, and completed by null sets. The set of priors consists of all probability
measures P θ such that B has drift θ under P θ. More specifically, we denote
by Θ the set of all adapted processes θ = (θt)t∈[0,T ] with values in the interval
[−1, 0]. The martingale

dP θ

dP

∣∣∣
Ft

= exp
(
− 1

2

∫ t

0

|θ2
s |ds+

∫ t

0

θsdBs

)
(2)
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then defines a measure P θ under which B has drift θ by Girsanov’s theorem.
Now let us consider the three dates t = 0, t = 1 and T = 2. Again, we take

α = 1
2
. Consider the payoffs X = eBT and Y = 1

2
(C + ε)eBt for C = e

1
2 + e−

1
2

and ε > 0 sufficiently small.
As we deal with drift ambiguity, and X is a monotone function of BT , the

worst–case prior P assigns drift −1 and the best case prior drift 0, i.e. the
reference measure P is the best prior.

At time t = 1, we thus get

U1[eBT ] =
1

2

(
EP
t [eBT ] + EP

t [eBT ]
)

=
1

2

(
e

1
2
TEP

t [eBT−
1
2
T ] + eBt+

1
2
tEP

t [e−BT−
1
2
T+BT ]

)
=

1

2
eBt
(
e

1
2

(T−t) + e−
1
2

(T−t)
)

=
1

2
CeBt .

Note that this is strictly smaller than U1(Y ) = Y .
At time 0, we have

U0[eBT ] =
1

2

(
EP[eBT ] + EP [eBT ]

)
=

1

2

(
e1 + EP[e−BT−1/2T+BT ]

)
≈ 1.54 ,

whereas the utility of Y is

U0[Y ] =
1

2
(C + ε)

(
1

2
EPeBt +

1

2
EP eBt

)
≈ C2

4
≈ 1.27.

Again, the ranking is reversed at time 0.

3 Recursive α–maxmin utility and its

Continuous–Time Limit

This section introduces a dynamically consistent version of α-maxmin utility.
We start with a recursive formulation in discrete time. Then we introduce the
counterpart in continuous time. We show (Theorem 2) that the discrete–time
version converges to the continuous–time version.

3.1 General Setup in Continuous Time

Fix a finite time interval [0, T ]. Let B be a Brownian motion on a probability
space (Ω,F ,P). Let (Ft)t∈[0,T ] be the filtration generated by B, completed by
P-null sets. Set Lt = L2(Ω,Ft,P), for every t ∈ [0, T ], the space of square
integrable and Ft–measurable random variables.

Let Θ : Ω × [0, T ] ⇒ R be an adapted set-valued process and assume for
every (ω, t) the set Θt(ω) is a convex and closed subset of some compact set
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K ⊂ R. For a real–valued process θ = (θt) with θt ∈ Θt we define the density
process

zθt ≡ exp
(
− 1

2

∫ t

0

|θ2
s |ds+

∫ t

0

θsdBs

)
.

By the Girsanov theorem, zθ determines a probability measure P θ. Given Θ,
we thus obtain a corresponding set of priors:

P =
{
P θ : θ ∈ Θ, P θ is defined by (2)

}
. (3)

The induced set of priors P is weakly compact, convex and rectangular (see
Chen and Epstein (2002)).

3.2 Recursive α-maxmin utility in discrete time

On the probability space (Ω,F ,P) with set of priors P introduced in (3), we
construct a recursive α-maxmin utility in discrete time. For an integer N , we
let ∆ = T

N
. The collection of all adapted processes (at) taking values in the unit

interval [0, 1] is denoted by |[0, 1]|.
We define the (naive and time inconsistent) nonlinear expectation, for X ∈

LT and t ∈ [0, T ].

It[X] = at min
P∈P

EP
t [X] + (1− at) max

P∈P
EP
t [X].

Let u be a concave and increasing function. We construct a recursive utility in
discrete time as follows. For the terminal time t = T , we define

UN
T [X] = IT [u(X)] = u(X).

For t ∈ [i∆, (i+ 1)∆), where i = 0, 1, . . . , N − 1, we define

UN
t [X] = It

[
UN

(i+1)∆[X]
]
. (4)

By construction the family (Ui∆)i=0,...,N is a family of recursive utilities.

Theorem 1 The family (UN
i∆)i=0,...,N is dynamically consistent in the following

sense: for all X, Y ∈ LT and all i < j, if UN
j∆(X) ≥ UN

j∆(Y ), a.s., then
UN
i∆(X) ≥ UN

i∆(Y ), a.s.

3.3 Continuous-Time Limit of α-maxmin utility

The continuous–time setup allows to describe the recursive relation of nonlinear
conditional expectations in differential terms. This differential formulation in
(5) is the continuous-time counterpart of (4).
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For every a ∈ |[0, 1]| and every X ∈ LT , there exists a unique solution
(Et[X], σt) of the backward stochastic differential equation (BSDE)

dEt[X] = at max
θ∈Θ

θtσt + (1− at) min
θ∈Θ

θtσt︸ ︷︷ ︸
=e(t,σt)

dt+ σtdBt, (5)

with4 ET [X] = X.

Example 1 1. If Θ = {θ} is a singleton, then at is irrelevant and we obtain
the usual linear expectation Et[X] = EP θ

t [X], where the subjective prior
P θ is again given by (2).

2. If a ≡ 1, i.e., a form of maximal pessimism in beliefs, then
E t[X] = minP∈P E

P
t [X] reduces to the continuous–time analog of Gilboa–

Schmeidler preferences of Chen and Epstein (2002). The case of an ex-
tremely optimistic expectation E t[X] is obtained5 with a ≡ 0.

Definition 1 Let a ∈ |[0, 1]|. For every X ∈ LT , the α-maxmin conditional
expectation (Et[X])t∈[0,T ] is the unique solution of (5).

The BSDE formulation of Et implies a dynamic stability of the functional form.
In the notation of Example 1, the comparison principle for BSDEs yields Et[X] ∈[
E t[X], E t[X]

]
for any X and time t. Consequently, there is a process (αXt ) ∈

|[0, 1]|, depending on (at) and X, that allows for a global representation

Et[X] = αXt E t[X] + (1− αXt )E t[X]. (6)

The dynamically inconsistent expectation of Section 2 employed a constant
weight α ≡ αXt . A stochastic and X-dependent αXt provides the dynamic
consistency of Et. For perspective, Proposition 5 in Appendix B collects a list
of further properties.

The following theorem establishes the announced connection between the
discrete- and continuous-time formulation.

Theorem 2 Let u be concave and increasing. For every X ∈ LT and every t,
UN
t [X] from (4) converges to Et[u(X)], in the norm of LT :

lim
N→∞

∥∥∥UN
t [X]− Et[u(X)]

∥∥∥ = 0.

4 Equation (5) is a special BSDE. For more details, see Appendix A and Peng (1997).
5Note that the operators max and min are interchanged in the differential formulation;

the maximum corresponds to the pessimistic part.
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4 Properties of Recursive α–maxmin Expected

Utility and the Certainty Equivalent

In this section, we study the properties of the continuous-time α–maxmin utility
function as given by

U(X) = E [u(X)]

for the time 0 utility and
Ut(X) = Et[u(X)]

for the dynamic utility process. We start with the basic continuity properties
and dynamic consistency.

Proposition 1 Let u be continuous and strictly increasing. Then the nonlinear
expected-utility functional U : LT → R is

(i) norm continuous: if Xn → X in LT , then lim
n→∞

U(Xn) = U(X).

(ii) order continuous: if Xn↘X, P-a.s., then U(Xn)↘U(X).

(iii) (strictly) monotone: if X ≥ Y then Ut(X) ≥ Ut(Y ), for all t ∈ [0, T ]. If
also P(X > Y ) > 0 and u is strictly increasing, then U(X) > U(Y ).

(iv) dynamically consistent: let t ≥ s, if Ut(X) ≥ Ut(Y ) then Us(X) ≥ Us(Y ).

Let us now come to risk aversion. As the utility functional U is not concave,
one might wonder if U displays risk aversion. We will show that for a natural
extension of the concept of risk aversion to Knightian uncertainty, risk aversion
is still equivalent to the concavity of the Bernoulli utility function u.

Definition 2 An agent is conditionally E-risk averse on LT if

Ut(X) ≤ u (Et[X]) , for all X ∈ LT , t ∈ [0, T ].

Proposition 2 Let u ∈ C2(R) be increasing. The agent is conditionally E-risk
averse if and only if u is concave.

We continue with a discussion of the certainty equivalent and extend the Arrow-
Pratt analysis.

Definition 3 CX ∈ R is called certainty equivalent of X ∈ LT if

u(CX) = E [u(X)]

holds true.
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For derivation of the second-order approximation of the certainty equivalent
consider a given wealth w ∈ R and denote the absolute risk aversion by
A(x) = −u′′(x)

u′(x)
. For a Taylor expansion, we need some further terminology:

The expression var(X) = E [(X − E [X])2] denotes the variance under E and
co(X, Y ) = E [X − Y ] − E [X] + E [Y ] refers to the so-called coexpectation and
quantifies the compensation for the nonlinearity of E .6 The case a = 0 in
Example 1, yields a sub–linear expectation, hence co(·, ·) ≥ 0.

Theorem 3 Let u be concave and twice differentiable and E be an α-maxmin
conditional expectation. Then,

Cw+X − w ≈ 1

2
A(w)var(X) + co

(
X,

1

2
A(w)X2

)
, (7)

where X with E [X] = 0 denotes a centered distortion.

For perspective, we state two examples in a static setup, that investigate the
role of the coexpectation and the resulting uncertainty premium.

Example 2 Let the normally distributed distortion X be ambiguous in the
volatility parameter, i.e. LawPσ(X) = N(0, σ). With P = {Pσ : σ ∈ [σ, σ]},
each σ ∈ [σ, σ] induces a law Pσ for X. Let u be of CARA type such that
A(w) = 2. To calculate the co-part in (7) for arbitrary α ∈ [0, 1], we begin with

Eα[X −X2] = α min
σ∈[σ,σ]

EPσ [X −X2] + (1− α) max
σ∈[σ,σ]

EPσ [X −X2]

= ασ + (1− α)σ

and similarly Eα[X2] = ασ + (1− α)σ. Since Eα[X] = 0, we have

co

(
X,

1

2
A(w)X2

)
= (1− 2α)

(
σ − σ

)
.

Every α ≤ 1
2

yields a positive coexpectation.

The following example discusses the quantitative differences of risk premia when
comparing with the standard expected utility model.

Example 3 Let there be two states of the world Ω = {good, bad}. The nonlin-
ear expectation given by P = {P = (p, 1−p) ∈ ∆(Ω) : p ∈ [2

5
, 3

5
]} and α = (1

3
, 2

3
).

We compare the quantitative effect with a linear expectation P = (1
2
, 1

2
) ∈ ∆(Ω).

6In comparison to the approximation of the (second order) smooth ambiguity certainty
equivalent in Maccheroni, Marinacci, and Ruffino (2013), the present certainty equivalent
reveals the nonlinear structure of the expectation. In our approximation this is exposed by
the coexpectation.
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For expected utilities, take u(x) =
√
x as the utility index. Consider the gamble

X = (1, 4). A direct calculation yields

E [X] =
1

3
min
P∈P

EP [X] +
2

3
max
P∈P

EP [X] ≈ 2.53 > 2.5 = EP [X]

and similarly for the expected utilities we derive E(
√
X) ≈ 1.53 > 1.5 =

EP [
√
X]. Since the inverse of

√
x is x2, we then have for the certainty equiva-

lents CX ≈ 2.34 > 2.25 = CX . In contrast to the risk premium R(X) under P ,
the uncertainty premium R(X) = CX − E [X] contains a nonlinear component.
The second term in the decomposition R(X) + (R(X) − R(X)) results in an
ambiguity premium.

For a small distortion, the example points out that under a nonlinear expec-
tation the uncertainty premium may vary considerably in comparison to the
linear case. This is consistent with the derivations in (7), where the coexpec-
tation co : LT × LT → R controls this issue. The possibly negative ambiguity
premium, caused by preferences for ambiguity, is manifested in the nonlinear
behavior of the risk premium R(X).

We extend the concept of certainty equivalent now to the dynamic case
and begin with the complete description of the conditional certainty equivalent
CXt = u−1 (Ut(X)).

Proposition 3 Let u ∈ C2(R) be strictly increasing and concave and X ∈ LT .
The conditional certainty equivalent CXt satisfies the following:

1. CXt ≤ Et[X].

2. Let (Ut(X), σut ) be the unique solution of dUt(X) = e(t, σut )dt + σut dBt,
UT (X) = u(X), where e (t, σut ) = at maxθ∈Θ θtσ

u
t + (1 − at) minθ∈Θ θtσ

u
t

and denote σCt =
σut

u′(CXt )
. Then, the pair (CXt , σCt ) solves

dCXt =

(
1

2
A(CXt )σCt · σCt +

e (t, σut )

σut
σCt

)
dt+ σCt dBt, CXT = X. (8)

Since σCt · σCt is the derivative of the quadratic variation 〈CX〉 of CX , the vari-
ance multiplier of (7) appears again in the conditional version (8). From this
perspective, (8) describes the local decomposition of the conditional certainty

equivalent. The residual compensation
e(t,σut )

σut
σCt stems from the nonlinearity of

the expectation and corresponds to the coexpectation in the static approxima-
tion of Theorem 3.

So far, we have fixed the time T of the payoff. To discuss aspects about
time consistency of the certainty equivalent, we need to vary the terminal time.
For fixed 0 ≤ t <∞, define as in (5):

dEs,t[u(X)] = e(s, σs)ds+ σsdBs, s ∈ [0, t], Et,t[u(X)] = u(X). (9)
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For given X ∈ Lt, (9) has a unique solution by the same arguments as before.
The two time parameters in (9) corresponds to (5) via Et,T = Et.

Definition 4 Let u ∈ C2(R) be strictly increasing and concave and X ∈ Lt.
The dynamic certainty equivalent Cs,t : Lt → Ls at X, with s ∈ [0, t], is defined
by

u(Cs,t(X)) = Es,t[u(X)],

where (Es,t[u(X)], σs)s≤t is the unique solution of (9).

The conditional certainty equivalent of Proposition 3 considers a fixed t = T .
The dynamic certainty equivalent has the following properties.

Proposition 4 For 0 ≤ r ≤ s ≤ t < ∞, A ∈ Fs and X, Y ∈ Lt, the following
properties hold:

(i) Constant-preserving: Ct,t(X) = X.

(ii) Recursivity: Cr,t(X) = Cr,s
(
Cs,t(X)

)
.

(iii) Dynamic consistency: Cr,t(X) ≤ Cr,t(Y ), if Cs,t(X) ≤ Cs,t(Y ).

(iv) Monotonicity: If X ≤ Y , then Cr,t(X) ≤ Cr,t(Y ).

(v) Zero-one law: Cs,t(X1A) = Cs,t(X)1A and

Cs,t(X1A + Y 1Ac) = Cs,t(X)1A + Cs,t(Y )1Ac .

(vi) Dominance: Cr,t(X) ≤ Er,s[Cs,t(X)]. In particular, Cr,t(X) ≤ Er,t[X].

The type of recursivity for the dynamic certainty equivalent is illustrated
in Figure 2. The certainty equivalent of X on [r, t] can be obtained directly.

Figure 2: Time consistency of dynamic certainty equivalent

Another way determines Cs,t for X in a first step and then evaluate Cs,t(X)
under the dynamic certainty equivalent on [r, s].
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5 Applications to Dynamic Asset Pricing

5.1 A Consumption-Based CAPM with Mild Optimism

Consider a single agent economy with aggregate endowment det = µetdt+σetdBt

and cumulative dividend process dDt = µDt dt+σDt dBt of a long-lived asset with
initial conditions e0, D0 ∈ R++ and adapted integrable processes µet , µ

D
t and

σet , σ
D
t . Assume a variant of the martingale generator condition (see Section 10

D in Duffie (1996) for a detailed account): σDt > 0 almost everywhere.
At time t, the α-maxmin expected utility of the representative agent is

Ut(e) = Et
[∫ T

t

u(es)ds

]
,

where u is a concave and three-times differentiable. If at is sufficiently close to
1, as discussed in Example 4 below, σ 7→ e(t, σ) is sub-linear, the generator of
Et in (5). Then, Et[X] = minP∈PΘ EP

t [X] results in a super-linear expectation.

Example 4 Consider only a constant weighting process at = a ∈ [0, 1] and the
case of κ-ignorance, i.e., Θt = [−κ, κ] and κ ∈ R+. The generator e of the
α-maximin expectation in (5) simplifies considerably:

e(t, σt) = (1− a) min
θ∈[−κ,κ]

θtσt + a max
θ∈[−κ,κ]

θtσt = (2a− 1)κ · |σt|. (10)

If a > 1
2
, e is sub-linear and yields a super-linear expectation given by

Et[X] = min
P∈PΘ

EP
t X, where Θt = [−θt, θt] = (2a− 1) · [−κ, κ].

Consequently, optimism appears as a shrinkage of the size of ambiguity in Et.

Departing from Example 4, we restrict the subsequent analysis to a weight
process at that is sufficiently close to 1 in a way the nonlinear expectation
remains super-linear. In view of Example 4, the residual ambiguity is denoted
by Θt = [−θt, θt]. The resulting concavity of c 7→ U0(c) allows to follow Section
2.4 of Beißner (2015) for the single-agent case and parts of Section 5 in Chen
and Epstein (2002).

By the assumptions on Θ and the linearity of P 7→ EPX, there is a mini-
mizing density process θ∗ ∈ Θ such that7

Ut(e) = min
P∈PΘ

EP
t

[∫ T

t

u(es)ds

]
= EP θ

∗

t

[∫ T

t

u(es)ds

]
,

7There is a prior in P that is a minimizer of the super-linear expectation. By construction,
there is an associated drift process θ∗, such that (2) yields the density zθ

∗
.
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for every t ∈ [0, T ]. Under P θ∗ ∈ P , the state-price density at time t is given
by ψt = u′(et).

8 Assuming a complete market, standard arguments yield a
description of the risky asset by a stochastic Euler equation

St =
1

zθ
∗
t · u′(et)

EP
t

[∫ T

t

zθ
∗

s u
′(es)dDs

]
, t ∈ [0, T ). (11)

The process zθ
∗
t = dP θ

∗

dP |Ft is given by (2) and, by virtue of (10), solves
dzθ

∗
t = zθ

∗
t θ
∗
t dBt with θ∗t = (2at − 1)θt · sgn(σUt ).9 The process σUt is the second

component in the BSDE formulation of Ut(e)

dUt(e) = (2at − 1)θt · |σUt |+ u(et)dt+ σUt dBt, UT (e) = 0. (12)

With the Euler equation in (11) we follow the arguments in Section 10 H of
Duffie (1996) to derive a consumption-based CAPM relation. Furthermore, the
asset price can be rewritten as the cumulative return dSt

St
= dRt = µRt dt+σRt dBt,

for details see Section 6D in Duffie (1996). P (x) = u′′′(x)
u′′(x)

denotes the degree of
absolute prudence. The measure of abolute risk aversion is again denoted by
A(x).

Theorem 4 (CCAPM) Assume that drift ambiguity is symmetric, i.e., Θt =
[−θt, θt], with θt > 0, and suppose optimism is mild, i.e., at ∈ [1

2
, 1].

Then there exists a security spot market in which, at any time t, the excess
return of the security satisfies

µRt − rt = A(et) · σRt σet + (2at − 1)θt · sgn(σUt ) · σRt . (13)

The equilibrium interest rate satisfies

rt = A(et)

[
µet + σet (2at − 1)θt · sgn(σUt )− 1

2
σetσ

e
tP (et)

]
. (14)

The second term of the right hand side of (13) refers to the ambiguity premium
under mild optimism and yields a refined explanation of the equity premium.
Specifically, the ambiguity premium becomes a function of at. The comparative
statics are as follows: an increase in optimism, that is a decrease of at, yields
a smaller ambiguity premium. This functional dependency has an intuitive
appeal, as preferences for ambiguity, encoded in Et and given by at, directly
quantifies the size of the ambiguity premium via the optimism factor (2at− 1).

The boundary case at = 1
2

let the ambiguity premium vanish. In the case of
no optimism, at = 1, we get the CCAPM formula of Chen and Epstein (2002).

In several cases, the process σUt in (13) can be written explicitly. This is
to some extend of importance, as the sign of σUt determines the form of the
ambiguity premium.

8For details on the necessary and sufficient first order conditions of the resulting equilib-
rium we refer to Duffie (1996).

9Here, sgn(x) = 1 if x > 0, = −1 for −x and = 0 for x = 0. The form of θ∗ follows from
x · sgn(x) = |x|. If σU > 0, (12) is a linear BSDE. Example 5 relies on this aspect.
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Example 5 Suppose the aggregate endowment follows a geometric Brownian
motion det = et

(
µedt + σedBt

)
starting in e0 = 1. The degree of ambiguity is

given by Θ ≡ [−κ, κ]. Consider u(x) = (xβ − 1)/β, with β ∈ (−∞, 1] \ {0}
and let a ∈ [1

2
, 1]. These additional assumptions on the primitives allows for an

explicit formulation10 of

σUt =
1− exp(ρ(a)(t− T ))

ρ(a)
eβt σ

e,

where ρ(a) = −β
(
µe − 1−β

2
(σe)2 − (1− 2a)κ|σe|

)
is linear and decreasing in a.

Following ? about the stylized facts on aggregate consumption, set σe =
µe = 2%. A moderate relative risk aversion of 2 with β = −1 yields a positive
ρ(a) ≈ κ

25
a and consequently sgn(σUt ) = 1 almost everywhere. The ambiguity

premium in (13) takes now the simple form (2a− 1)κσRt .

5.2 Application to Indifference Pricing

The dynamic certainty equivalent studied in Section 4 enables us to price con-
tingent claims also via indifference pricing. This yields an alternative time
consistent pricing principle. The novelty of the present modeling rests on the
non-concave utility specification X 7→ E [u(X)].

Hodges and Neuberger (1989) first use certainty equivalents to price claims
in a static setting, i.e., from the seller point of view the indifference price is the
smallest amount money π ∈ R that the seller would willingly sell the claims X:

u(π) = EP [u(X)].

Indifference pricing under EP can be extended to our dynamically consistent
version of α-maxmin expected utility. Let the utility index be twice differen-
tiable, strictly increasing and concave. From Definition 4, for fixed τ > s, the
dynamic certainty equivalent of a claim X ∈ Lτ at time s, πs(X) ∈ Ls, satisfies
u
(
πs(X)

)
= Es,τ [u(X)]. (Es,τ [u(X)], σs)s≤τ is the unique solution of (9), with

terminal condition Eτ,τ [u(X)] = u(X). Thus we define the pricing rule as the
certainty equivalent:

πs(X) = u−1
(
Es,τ [u(X)]

)
.

πs(X) is the amount of money that the decision maker would pay at time s for
the claim X with maturity at time τ . By virtue of Proposition 4, the indifference
pricing rule πs : Lτ → Ls is time-consistent, monotone increasing and satisfies
the zero-one law. Furthermore, by the Jensen inequality (see Appendix B) for
Es,τ with fixed τ the price of X satisfies πs(X) ≤ Es,τ [X].

We now consider the special case of extreme pessimism. In view of Example
1, we set a = 1. This particular case captures a form of robust utility indifference
pricing by incorporating risk aversion and model uncertainty.

10 The volatility of the utility σUt is the second part in the solution of the BSDE (12). Since
at is constant the argument follows the same line as Section 2.4 of ?.
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Example 6 For fixed t > 0, let (Us)s∈[0,τ ] be a dynamic worst case expected
utility defined by

Us(X) = min
P∈P

EP
s [u(X)], s ∈ [0, τ ].

For s < τ , we define the dynamic certainty equivalent of a X ∈ Lt as above.
The pricing rule becomes

πs(X) = u−1

(
min
P∈P

EP
s [u(X)]

)
.

From this expression, it is apparent that preferences for risk and ambiguity are
again disentangled. As argued above, πs : Lτ → Ls is time-consistent, monotone
and satisfies the zero-one law. Moreover, the price of X defined by the certainty
equivalent is less than minP∈P E

P
s [X].

6 Conclusion

We have derived a dynamically consistent extension of the α–maxmin model.
In continuous time, the time–consistent version retains the α–maxmin structure
and thus allows to distinguish ambiguity and ambiguity attitude, as the static
model does.

We characterize risk aversion through the concavity of Bernoulli utility func-
tions. The Arrow-Pratt approximation of the certainty equivalent contains an
additional ambiguity premium that depends on the nonlinearity of the expec-
tation and therefore on local ambiguity attitudes.

We present a consumption–based CAPM formula that allows to explain how
the interplay of optimism and pessimism affects the excess return in terms of
an ambiguity premium. Optimism can decrease the ambiguity premium.

We finally characterize the dynamic certainty equivalent and use it to discuss
the consequences for indifference pricing.

A Backward stochastic differential equations

For the convenience of the reader, we gather some results on backward stochastic
differential equations (BSDE) here. Pardoux and Peng (1990) introduced the
following equation:

dyt = f(t, yt, σt)dt+ σtdBt, t ∈ [0, T ], yT = X, (15)

where the terminal condition X ∈ LT and f : Ω× [0, T ]× R× R→ R, so that
the generator f(·, y, z) of the BSDE is an adapted process for every y, z ∈ R.

A pair of adapted real-valued processes (y, σ) is called a solution of the

above BSDE, if EP[supt |yt|2] <∞, EP[
∫ T

0
|σt|2dt] <∞ and (y, σ) satisfies (15).

Pardoux and Peng (1990) obtained the following existence and uniqueness of
the solution of (15).
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Lemma 1 If EP[
∫ T

0
|f(t, 0, 0)|2dt] <∞ and f(t, ·, ·) is Lipschitz continuous on

R× R , then the above BSDE has a unique adapted solution (y, σ).

B Properties of Equation (5)

In view of (15), the BSDE in (5) considers the following generator

f(t, yt, σt) = at max
θ∈Θ

θtσt + (1− at) min
θ∈Θ

θtσt,

where Θ captures the multiple prior uncertainty P .

Proposition 5 Let a ∈ |[0, 1]| and P be an arbitrary specification of an α-
maxmin conditional expectation Et. For every X ∈ LT , there exists a unique
solution (Et[X], σt) of equation (5). Moreover, the following properties hold true
for every s, t ∈ [0, T ], X, Y ∈ LT :

(i) (strict) Monotonicity: If X ≥ Y , then Et[X] ≥ Et[Y ].

If also P(X > Y ) > 0, then E0[X] > E0[Y ].

(ii) Constant-preserving: Et[η] = η, if η ∈ Lt and Et[c] = c, for all c ∈ R.

(iii) Tower property: Es[X] = Es[Et[X]], for all s ≤ t.

(iv) Conditional linearity: Et[X + η] = Et[X] + η, for every η ∈ Lt.
(v) Zero-one law: For any A ∈ Ft, we have Et[X1A] = Et[X]1A.

(vi) Positive homogeneity: Et[ηX] = ηEt[X], for all η ≥ 0.

(vii) Jensen inequality: If u ∈ C2(R) is increasing and concave, then

Et[u(X)] ≤ u (Et[X]) .

By 1A, for some A ∈ F , we denote the usual indicator function, being 1 on A
and 0 on Ac = Ω \ A.
Proof: We start with the uniqueness and existence of the solution of the
BSDE. For all x, y ∈ R, we have

|e(t, x)− e(t, y)|

= |at max
θ∈Θ

θtx+ (1− at) min
θ∈Θ

θtx− at max
θ∈Θ

θty − (1− at) min
θ∈Θ

θty|

≤ at|max
θ∈Θ

θtx−max
θ∈Θ

θty|+ (1− at)|min
θ∈Θ

θtx−min
θ∈Θ

θty|

≤ max
θ∈Θ
|θt(x− y)|+ max

θ∈Θ
|θt(x− y)|.

Since Θ is compact, then there exists a positive constant C such that

|e(t, x)− e(t, y)| ≤ C|x− y|.
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Therefore, e(t, ·) is uniformly Lipschitz and e(t, 0) = 0, then from Lemma 1 in
Appendix A, equation (5) has a unique solution,

Properties (i) to (v) directly follow from from Lemma 36.6 and Theorem
37.3 in Peng (1997).

To show (vi), note that for all x ∈ R, β > 0, we have positive homogeneity
of e(t, x)

e(t, βx) = at max
θ∈Θ

θt(βx) + (1− at) min
θ∈Θ

θt(βx)

= βe(t, x),

Application of Lemma 36.9 (see also Example 10 therein) in Peng (1997) gives
us (vi).

Since u ∈ C2(R) is increasing and concave, we can get (vii) from Theorem
1 in Jia and Peng (2010). 2

C Proofs

Proof of Theorem 1 In order to prove that the family (Ui∆)i=0,...,N is
dynamically–consistent, we only need to show that for i = 0, 1, · · · , N − 1, and
X, Y ∈ LT , if UN

(i+1)∆[X] ≥ UN
(i+1)∆[Y ] then UN

i∆[X] ≥ UN
i∆[Y ]. From the defini-

tion of It[X], t ∈ [0, T ], we know that It[X] is increasing in X. Therefore,

UN
i∆[X] = Ii∆

[
UN

(i+1)∆[X]
]
≥ Ii∆

[
UN

(i+1)∆[Y ]
]

= UN
i∆[Y ],

from which we complete the proof.

Proof of Theorem 2 For t ∈ [tNN−1, t
N
N) := [(N − 1)∆, N∆), we have

UN
t [X] = It[U

N
tNN

[X][X]] = It[X].

Let (E t[u(X)], σt) and (E t[u(X)], σt) be the solutions of the following BSDEs,
respectively,

dE t[u(X)] = min
θ∈Θ

θtσtdt+ σtdBt, ET [u(X)] = u(X), (16)

and

dE t[u(X)] = max
θ∈Θ

θtσtdt+ σtdBt, ET [u(X)] = u(X). (17)

This implies

E t[u(X)] = min
P∈P

EP
t [u(X)], and E t[u(X)] = max

P∈P
EP
t [u(X)].

17



Let (Et[u(X)], σt) be the solutions of the following BSDEs.

dEt[u(X)] = = e(t, σt)dt+ σtdBt, ET [u(X)] = u(X). (18)

Then, using the standard estimates of BSDEs (16) and (18), there exists a
constant C (C is independent of ∆ and can be different from line to line) such
that

EP[ sup
s∈[t,T ]

|E t[u(X)]− Et[u(X)]|2] ≤ CEP[

∫ T

t

|e(r, σr)−max
θ∈Θ

θrσr|dr]2

≤ CEP[

∫ T

t

|max
θ∈Θ

θrσr −min
θ∈Θ

θrσr|dr]2

≤ C(T − t)EP[

∫ T

t

|σr|2dr]

≤ C∆EP[

∫ T

0

|σr|2dr] = C∆.

In a similar way, we have the following estimate of BSDEs (17) and (18)

EP[ sup
s∈[t,T ]

|E t[u(X)]− Et[u(X)]|2] ≤ C∆.

Therefore,

EP[|UN
t [X]− Et[u(X)]|2]

≤ 2EP[|E t[u(X)]− Et[u(X)]|2] + 2EP[|E t[u(X)]− Et[u(X)]|2]

≤ C∆. (19)

For t ∈ [tNN−2, t
N
N−1), we have

UN
t [X] = It[U

N
tNN−1

[X]].

Let (E ′t[X], σ′t) and (E ′t[X], σ′t) be the solutions of the following BSDEs, re-
spectively,

dE ′t[X] = min
θ∈Θ

θtσ
′
tdt+ σtdBt, E tNN−1

[X] = UN
tNN−1

[X], (20)

and

dE ′t[X] = max
θ∈Θ

θtσ
′
tdt+ σ′tdBt, E tNN−1

[X] = UN
tNN−1

[X]. (21)

Then

E ′t[X] = min
P∈P

EP
t [UN

tNN−1
[X]], E ′t[X] = max

P∈P
EP
t [UN

tNN−1
[X]].
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Therefore, using the standard estimates of BSDEs (18) and (21), there exists a
constant C (C is independent of ∆ and can be different from line to line) such
that

EP[ sup
s∈[t,T ]

|E ′t[X]− Et[u(X)]|2]

≤ CEP[

∫ tNN−1

t

|e(r, σr)−max
θ∈Θ

θrσr|dr]2 + EP[|UN
tNN−1

[X]− EtNN−1
[u(X)]|2]

≤ CEP[

∫ tNN−1

t

|max
θ∈Θ

θrσr −min
θ∈Θ

θrσr|dr]2 + EP[|UN
tNN−1

[X]− EtNN−1
[u(X)]|2]

≤ C(T − t)EP[

∫ tNN−1

t

|σr|2dr] + EP[|UN
tNN−1

[X]− EtNN−1
[u(X)]|2]

≤ C∆EP[

∫ T

0

|σr|2dr] + EP[|UN
tNN−1

[X]− EtNN−1
[u(X)]|2].

From (19) it follows that

EP[ sup
s∈[t,T ]

|E ′t[X]− Et[u(X)]|2] ≤ C∆.

In a similar way, we have the following estimate of BSDEs (5) and (20)

EP[ sup
s∈[t,T ]

|E ′t[X]− Et[u(X)]|2] ≤ C∆.

Therefore,

EP[|UN
t [X]− Et[u(X)]|2] ≤ 2EP[|E ′t[X]− Et[u(X)]|2] + 2EP[|E ′t[X]− Et[u(X)]|2]

≤ C∆.

Using the above approach, we can prove that, for all t ∈ [tNi , t
N
i+1), i =

0, 1, . . . , N − 2,

EP[UN
t [X]− Et[u(X)]|2] ≤ C∆,

and the result follows by letting N →∞.

Proof of Proposition 1 (i) The continuity follows from the presence of a
dominating subliner expectation, which implies norm-continuity.

(ii) We just give the proof when {Xn}n≥1 is decreasing. From the mono-
tonicity of the nonlinear expectation E, we know that {U(Xn)}n≥1 is decreasing.

Since {Xn}n≥1 is decreasing and lim
n→∞

Xn = X, P-a.s., we get that |u(Xn)−
u(X)| ≤ |u(Xn)| + |u(X)| ∈ LT , and lim

n→∞
|u(Xn)− u(X)| = 0, P-a.s. Then by
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virtue of the dominated convergence theorem we have, lim
n→∞

EP|u(Xn)−u(X)|2 =

0. From (vii) in Proposition 5 we know that, there is a constant C > 0 such
that,

|U(Xn)− U(X)|2 ≤ CEP [|u(Xn)− u(X)|2
]
,

from which we can get lim
n→∞

U(Xn) = U(X).

(iii) Since X ≥ Y , P-a.s., and u is increasing, we have u(X) ≥ u(Y ), P-a.s.
From (i) in Proposition 5 it follows that

Ut(X) = Et[u(X)] ≥ Et[u(X)] = Ut(Y ).

Moreover, if P(X > Y ) > 0 and u is strictly increasing, then P(u(X) > u(Y )) >
0. Using (i) in Proposition 5 again

U(X) = E [u(X)] > E [u(Y )] = U(Y ).

(iv) By (i) and (iii) in Proposition 5, it is easily to get this.

Proof of Proposition 2 Since e(t, σ) is a convex combination of an inf and
sup operation, e(t, σ) is positive homogeneous in σ. By an application of The-
orem 3.2 in Jia and Peng (2010) to e(t, σ), which is independent of Et[X],
the conditional E-concavity, i.e., u(Et[X]) ≥ Et[u(X)], can be characterized as
follow

1

2
u′′(x)|σ|2 + e(t, u′(x)σ)− u′(x)e(t, σ) ≤ 0

By the positive homogeneity of e(t, ·) this is equivalent to u′′(x) ≤ 0, being
equivalent to concavity.

Proof of Theorem 3 We consider the second-order Taylor expansion around
w for u(w)

E [u(X + w)] ≈ u(w) + E
[
u′(w)X +

1

2
u′′(w)X2

]
= u(w) + u′(w)E

[
X − 1

2
A(w)X2

]
= u(w) + u′(w)

(
1

2
A(w)E

[
X2
]

+ co(X,
1

2
A(w)X2)

)
,

where we applied the concavity of u via u′ ≥ 0, u′′ ≤ 0 and Proposition 5 (iv)
and (iv). Using the first-order Taylor expansion for u(Cw+X) around w:

u(Cw+X) ≈ u(w) + u′(w)(Cw+X − w).

Combining both approximations establishes the desired result.
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Proof of Proposition 3 1. From Proposition 5 (vii) we know that

Et[u(X)] ≤ u (Et[X]) .

Since u is strictly increasing, we have Ct(X) = u−1 (Et[u(X)]) ≤ Et[X].

2. Let (Et[u(X)], σut )t∈[0,T ] be the unique solution of the following equation:

dEt[u(X)] = e(t, σut )dt+ σut dBt, t ∈ [0, T ],

ET [u(X)] = u(X).

Then from Itô Lemma with respect to u−1 (Et[u(X)]) it follows that

dCt(X) =

(
e(t, σXt )

u′(Ct(X))
− 1

2

u′′(Ct(X))

u′(Ct(X))3
(σut )2

)
dt+

σut
u′(Ct(X))

dBt.

We denote σCt =
σut

u′(Ct(X))
, then

dCt(X) =

(
σCt
σut

e(t, σXt )− 1

2

u′′(Ct(X))

u′(Ct(X))
(σCt )2

)
dt+ σCt dBt

=
σCt
σut

e
(
t, σUt

)
+

1

2

(
σCt
)2
A(CXt )dt+ σCt dBt.

Proof of Proposition 4 (i) By (vi) in Proposition 5 and the definition of the
dynamic certainty equivalent, we have

Ct(X) = u−1(Et,t[u(X)]) = u−1(u(X)) = X.

(ii) By (iv) in Proposition 5 and the definition of the dynamic certainty
equivalent, we have

Cr,t(X) = u−1(Er,t[u(X)])

= u−1(Er,s[Es,t[u(X)]])

= u−1(Er,s[u(Cs,t(X))])

= u−1(u(Cr,s(Cs,t(X))))

= Cr,s(Cs,t(X)).

(iii) From (ii) it follows that

Cr,t(X) = Cr,s(Cs,t(X)) ≤ Cr,s(Cs,t(Y )) = Cr,t(Y ).

(iv) We take v = t in (iii) and from (i) it follows that, if X ≤ Y , then
Cr,t(X) ≤ Cr,t(Y ).
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(v) Since

u(X1A + Y 1Ac) = u(X1A + Y 1Ac)1A + u(X1A + Y 1Ac)1Ac

= u(X)1A + u(Y )1Ac ,

we have

Cs,t(X1A + Y 1Ac) = u−1(Es,t[u(X1A + Y 1Ac)])

= u−1(Es,t[u(X)1A + u(Y )1Ac ]). (22)

Let us consider the following two BSDEs

dEs,t[u(X)] = ê(σ1
s)ds+ σ1

sdBs, Et,t[u(X)] = u(X), (23)

and

dEs,t[u(Y )] = ê(σ2
s)ds+ σ2

sdBs, Et,t[u(Y )] = u(Y ). (24)

Then (23)× 1A + (24)× 1Ac yields

d(Es,t[u(X)]1A + Es,t[u(Y )]1Ac)

= [ê(σ1
s)1A + ê(σ2

s)1Ac ]ds+ (σ1
s1A + σ2

s1Ac)dBs

= ê(σ1
s1A + σ2

s1Ac)ds+ (σ1
s1A + σ2

s1Ac)dBs,

with the terminal condition

Et,t[u(X)]1A + Et,t[u(Y )]1Ac = u(X)1A + u(Y )1Ac .

Recall the following BSDE

dEs,t[u(X)1A + u(Y )1Ac ] = ê(σs)ds+ σsdBs,

Et,t[u(X)1A + u(Y )1Ac ] = u(X)1A + u(Y )1Ac .

From the uniqueness of the solution of the above equations, we have

Es,t[u(X)]1A + Es,t[u(Y )]1Ac) = Es,t[u(X)]1A + Es,t[u(Y )]1Ac .

Therefore, from (22) we have

Cs,t(X1A + Y 1Ac) = u−1(Es,t[u(X)]1A + Es,t[u(Y )]1Ac)

= u−1(Es,t[u(X)])1A + u−1(Es,t[u(Y )])1Ac

= Cs,t(X)1A + Cs,t(Y )1Ac .

Let Y = 0, then by Es,t[0] = 0 we have Cs,t(X1A) = Cs,t(X)1A.
(vi) From (ii) we have

Cr,t(X) = Cr,s(Cs,t(X)) = u−1(Er,s[u(Cs,t(X))]).
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Therefore, by Jensen inequality in Proposition 5 we get

Er,s[u(Cs,t(X))] ≤ u(Er,s[Cs,t(X)]).

From the above inequalities it follows that

Cr,t(X) ≤ Er,s[Cs,t(X)].

In particular, by using (i) we get Cr,t(X) ≤ Er,t[X].

Proof of Theorem 4 A usual application of Itô’s formula to u′(et) and ψt =
u′(et) · zθ

∗
t (under P) allows to formulate the dynamics of the state-price density

as

dψt
zθ
∗
t

=
(
u′′(et)µ

e
t + σet θ

∗
t +

1

2
σetσ

e
tu
′′′(et)

)
dt+ u′′(et)σ

e
t − u′(et)θ∗t dBt. (25)

The equilibrium–short rate must satisfy rt = −µψt
ψt

, where µψt denotes the drift

part in (25). By virtue of (25), the excess return turns out to be

µRt − rt = −σ
ψ
t

ψt
· σRt

= A(et) · σRt σet + (2at − 1)θt · sgn(σUt ) · σRt ,

where σψt = zθ
∗
t ·
(
u′′(et)σ

e
t−u′(et)θ∗t

)
is the volatility part in (25). As in Theorem

3, A(et) denotes the Arrow–Pratt measure of absolute risk aversion at et.
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