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Abstract

Language and vision interact in non-trivial ways. Linguistically, spatial utterances are often asymmetrical as they relate
more stable objects (reference objects) to less stable objects (located objects). Researchers have claimed that such linguistic
asymmetry should also be reflected in the allocation of visual attention when people process a depicted spatial relation described
by spatial language. More specifically, it was assumed that people move their attention from the reference object to the located
object. However, recent theoretical and empirical findings challenge the directionality of this attentional shift. In this article,
we present the results of an empirical study based on predictions generated by computational cognitive models implementing
different directionalities of attention. Moreover, we thoroughly analyze the computational models. While our results do not
favor any of the implemented directionalities of attention, we found that two unknown sources of geometric information
affect spatial language understanding. We provide modifications to the computational models that substantially improve their
performance on empirical data.
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1. Introduction

Speaking about things in our environment requires the
integration of many different processes and representations
(perceptual and cognitive) in a matter of seconds. During such
interaction, visual processes affect linguistic processes and
linguistic processes affect visual processes (Anderson, Chiu,
Huette, & Spivey, 2011). Spatial language processing offers
a flourishing field to investigate this reciprocal interaction
(e.g., Carlson-Radvansky & Irwin, 1993; Crawford, Regier, &
Huttenlocher, 2000; Hayward & Tarr, 1995; Landau & Jack-
endoff, 1993). In particular, focused visual attention appears
necessary for evaluating linguistic descriptions of given visual
spatial relations (e.g., Carlson & Logan, 2005; Logan, 1995;
Logan & Sadler, 1996). In this article, we focus on the role of
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visual attention but also object distance and geometric object
properties for the processing of spatial language.

1.1. Spatial Language Processing
Consider a scene with a spatial relation between two objects,

say, a bike and a house (cf. Talmy, 2000, p. 183) and a related
sentence (1).

(1) The bike is in front of the house.
(2) The house is behind the bike.

Cognitive linguists have claimed that spatial utterances
such as in (1) are asymmetric (e.g., Landau & Jackendoff,
1993), i.e., the roles of the bike and the house are not easily
interchangeable: Saying (2) is formally correct but rarely
heard in everyday communication. The roles of the linguis-
tic entities in spatial utterances are the ‘reference object’ (or
ground, landmark, reference, relatum; the house in example
(1)) versus the ‘located object’ (or figure, trajector, target, lo-
catum; the bike in example (1)). The reference object (RO) is
assumed to be less movable and larger than the located object
(LO; e.g., Landau & Jackendoff, 1993; Talmy, 2000) and most
spatial language researchers have focused on investigating
the properties of the RO (e.g., Carlson-Radvansky & Logan,
1997; O’Keefe, 2003; Regier & Carlson, 2001; but see Burigo
& Sacchi, 2013). However, a spatial utterance should help
the hearer to find the LO such that she can attend to it. This
motivated the claim that “the viewer’s attention should move
from the reference object to the located object” (p. 499, Lo-
gan & Sadler, 1996, emphasis in the original; see also Logan,
1995, p. 115, and Logan & Zbrodoff, 1999, p. 72).
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Since focused visual attention appears necessary for relating
spatial descriptions to depicted spatial relations (see Carlson
& Logan, 2005, for a review), this claim has influenced the
research on spatial language. One example of this tacit ac-
knowledgment of the theorized directionality of attention is
the Attentional Vector Sum (AVS) model by Regier and Carl-
son (2001). The input for the AVS model is a 2-dimensional
spatial configuration of a RO and a LO (e.g., a point above a
rectangle) as well as a spatial preposition (e.g., above). The
output of the AVS model is an acceptability score, i.e., how
well the spatial preposition describes the spatial configuration.

The prime motivation of Regier and Carlson (2001) was
to investigate “[. . . ] what perceptual or cognitive structures
are reflected in these linguistic judgments [spatial language
evaluation]? Does spatial perception shape spatial language
in this instance, and if so, how?” (p. 274). Regier and Carlson
(2001) successfully identified a mechanism that accounted
considerably better for human spatial language acceptability
scores than alternative mechanisms: an attentional vector
sum. Regier and Carlson (2001) motivated the attentional
vector sum with two observations. First, processing of spatial
relations requires focal attention (i.e., spatial relations do not
“pop-out” in a visual search task; Logan, 1994, 1995). Second,
the representation of direction (i) in monkeys’ motor cortex
during arm movements (Georgopoulos, Schwartz, & Kettner,
1986), (ii) for saccadic eye movements (Lee, Rohrer, & Sparks,
1988), and (iii) in motion perception (Wilson & Kim, 1994)
is best described by a weighted vector sum across popula-
tions of neurons. Indeed, the combination of a vector sum
weighted with an attentional distribution in the AVS model
outperformed several competing models. Although Regier
and Carlson (2001) did not focus on the directionality of atten-
tion, their AVS model implicitly incorporates a directionality
of attention from the RO to the LO via the direction of the
vectors in the model (i.e., a movement of attention from the
house to the bike in “The bike is in front of the house.”).

Lipinski, Schneegans, Sandamirskaya, Spencer, and
Schöner (2012) presented a comparatively more fine-grained
model that is compatible with both neuronal mechanisms and
the mechanisms assumed by the AVS model (see Richter, Lins,
Schneegans, Sandamirskaya, & Schöner, 2014; Richter, Lins,
& Schöner, 2016, 2017, for extensions to the model). In their
model, the representation of the RO is activated prior to the
representation of the LO suggesting that the directionality
of attention goes from the RO to the LO (see in particular
Richter et al., 2016, 2017).1

In related empirical work, the AVS model is also interpreted
as implementing an “[...] attention allocation from a RO to
a LO” (Coventry et al., 2010, p. 211). However, the same
study found that for superior prepositions (over/above) peo-
ple mostly fixated first the LO and next the RO, indicating
a reversed directionality of overt attention. Since Coventry

1Note however that Lipinski et al. (2012); Richter et al. (2014, 2016, 2017)
did not focus on this directionality of attention (which might be reversable
in their models) but on capturing spatial language behavior with neuronally
plausible mechanisms.

et al. (2010) recorded eye movements after listeners heard
the spatial utterance, we cannot directly time-lock these at-
tentional patterns to the unfolding interpretation or to the
processing of individual words. Nevertheless, the patterns are
compatible with findings that people inspect objects in the
order they are mentioned. When the LO is mentioned before
the RO, people first fixate the LO more than the RO followed
by more looks to the RO compared with the LO (Burigo &
Knoeferle, 2015).

Computational models developed to enable robots to inter-
pret spatial language also follow this order (first attending to
the LO then attending to the RO, Roy & Mukherjee, 2005).
This fits with early results from Huttenlocher and Strauss
(1968) and a related study summarized in Landau and Jack-
endoff (1993, p. 225): Both children and adults responded
faster to instructions when they mentioned LO-like objects
first (e.g., movable blocks) than RO-like objects (e.g., non-
movable blocks). Perhaps sentences are more readily turned
into action if the LO is mentioned first.

Recently, Franconeri, Scimeca, Roth, Helseth, and Kahn
(2012) proposed that people must shift their attention in
order to encode spatial relations and that the direction of that
shift matters for the processing of spatial relations. Based on
this “shift account”, Roth and Franconeri (2012) found that
participants were quicker to judge a spatial language question
when the LO appeared slightly before the RO on the screen,
forcing them to shift their attention from the LO to the RO.
Interestingly, the direction of this shift is not intuitive: After
hearing “circle above rectangle”, participants’ attention shifted
from the top object (the LO) to the bottom object (the RO), i.e.,
in the opposite direction of the spatial preposition (“This flip is
counterintuitive, but certainly not computationally difficult.”,
Roth & Franconeri, 2012, p. 7, see also Franconeri et al., 2012;
Holcombe, Linares, & Vaziri-Pashkam, 2011; Yuan, Uttal, &
Franconeri, 2016; see also Conder et al., 2017, who found
neuronal activity in the superior parietal lobule during spatial
language processing that was linked to shifts of attention by
Molenberghs, Mesulam, Peeters, & Vandenberghe, 2007; but
see also Hayworth, Lescroart, & Biederman, 2011 who argue
against a serial interpretation of spatial relation processing).

In addition, spatial language processing research has fo-
cused on further aspects of spatial language processing (e.g.,
how functional and geometrical aspects of spatially related
objects affect spatial language use, Carlson, Regier, Lopez, &
Corrigan, 2006; Coventry et al., 2010; Coventry, Prat Sala,
& Richards, 2001; Hörberg, 2008; Kluth & Schultheis, 2014;
Landau, 2017). This appears of interest since the geometric
properties of objects might themselves interact with mech-
anisms of spatial language processing and be relevant for
related computational modeling.

In this article – following the demand of more “computa-
tional simulations” by Anderson et al. (2011, p. 188) – we
are investigating the implications of this reversed shift (i.e.,
from the LO to the RO) for the AVS model. We do this by
discussing a recently proposed model with a reversed vec-
tor sum (the rAVS model, Kluth, Burigo, & Knoeferle, 2017),
empirically testing predictions arising from simulations of
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the rAVS model and assessing both models (AVS and rAVS)
with state-of-the-art methods for model comparison (Navarro,
Pitt, & Myung, 2004; Pitt, Kim, Navarro, & Myung, 2006;
Schultheis, Singhaniya, & Chaplot, 2013; Veksler, Myers, &
Gluck, 2015). Furthermore, we relate the implementations
of attention in the cognitive models to the relevant literature
in order to further “explicate the various theoretical claims”
(Anderson et al., 2011, p. 188). We also consider the role
that geometric properties of objects play for these models
and in human behavior. The results of both – computational
and empirical studies – provide insight into the role of (i)
the directionality of attention and (ii) geometric properties
of objects for spatial language processing and as such shed
further light on the interaction between linguistic and visual
processes.

1.2. Overview of This Article

We structured our work of contrasting directionalities of
attention in the following way. In Section 2.1, we start by
introducing the AVS model (Regier & Carlson, 2001) as well
as the reversed AVS model (Kluth, Burigo, & Knoeferle, 2017,
a recent modification of the AVS model that reverses the di-
rection of the vector sum). This is followed by a discussion
about the role of the directed vector sum in terms of atten-
tional shifts (Section 2.2) and the implications of using a
directed vector sum to implement contrasting directionali-
ties of attention (Section 2.3). Specifically, we identified two
types of geometric shapes for which the two models predict
somewhat different outcomes: rectangular ROs with different
heights (testing the influence of ‘relative distance’, a geomet-
ric property assumed in the rAVS model) and asymmetrical
ROs (testing different representations of the geometry of the
RO in the two models). In Section 3, we present an empirical
study investigating these specific model predictions. Using
the collected empirical data and state-of-the-art methods for
model comparison in Section 4, we aim to distinguish the
two cognitive models – AVS and rAVS – and, in doing so, the
assumptions about the directionality of attention they realize.

2. Models and Predictions

2.1. Models

Both, the Attentional Vector Sum (AVS) model (Regier &
Carlson, 2001) and the reversed AVS (rAVS) model (Kluth,
Burigo, & Knoeferle, 2017), have the same in- and output:
Given the location and shape of an RO, the location of an LO,
and a spatial preposition they compute an acceptability score
for the sentence “The [LO] is [preposition] the [RO].”. Both
models also share the assumption that the relative location of
the RO and the LO (as expressed by an angular deviation to a
reference direction, canonical upright for above) contributes
fundamentally to acceptability scores of projective spatial
prepositions.

LO

RO

F

attentional
distribution

vector sum

δ

(a). Schema of the AVS model
developed by Regier and Carlson
(2001). F : attentional focus.

LO

RO

F

CoM

δ

(b). Schema of the rAVS model
developed by Kluth, Burigo, and
Knoeferle (2017). CoM : center-
of-mass.

Fig. 1. Schematized steps of (a) the AVS model and (b) the rAVS model. RO:
reference object, LO: located object, δ: angular deviation from reference
direction (dashed line).

2.1.1. AVS
To compute an acceptability score, the AVS model performs

the following steps (see Figure 1a; for formulas see Regier &
Carlson, 2001): First, it defines the location of an attentional
focus F on the top of the RO (for above; F lies on correspond-
ing parts of the RO for different prepositions, e.g., on the
bottom of the RO for below). The attentional focus F lies
at that point on top of the RO that is vertically aligned with
the LO or closest to being so (see Figure 1a). Next, a distri-
bution of attention is defined. The amount of attention is
highest at the attentional focus F and decays exponentially
(in Figure 1a a darker shading visualizes a higher amount
of attention). Apart from the free model parameter λ, the
strength of this decay is controlled by the distance of the LO
to the RO. A close LO results in a narrow attentional distribu-
tion (attention drops off quickly within a small region around
the attentional focus) whereas a distant LO results in a wide
attentional distribution (attention drops off less quickly).

Next, a population of vectors is defined on the RO. Every
vector points to the LO and is weighted by the amount of
attention that was previously defined at this point. This gives
vectors close to the focal point F a greater length (and hence
importance) than vectors that are rooted farther away. All
vectors are summed up to obtain a final direction. One of
the two components that control the final outcome of the
AVS model is then a linear mapping of the angular deviation
δ of this final direction (compared to a reference direction,
canonical upright for above) to an acceptability score: A high
deviation leads to a low acceptability score whereas a low de-
viation leads to a high acceptability score. The slope and the
intercept of the linear mapping function, are two additional
free model parameters.

Acceptability scores are not, however, solely determined
by the angular deviation. A second component of the AVS
model (not depicted in Figure 1a) ranges from 0 to 1 and is
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multiplicatively combined with the outcome of the angular
component. This other component uses the fourth free model
parameter highgain. It identifies the vertical location of the
LO relative to the RO, whereby the score from the angular
component remains unchanged (the LO is well above the top
of the RO), lowered slightly (the LO is close to the top of the
RO), considerably (the LO is below the top of the RO), or
drastically (the LO is below all points of the RO).

2.1.2. rAVS
The AVS model implements vector directionality (inter-

pretable as attention direction, see Logan, 1995; Logan &
Sadler, 1996) from the RO to the LO. But recent empirical
findings about the real-time processing of spatial language
(Burigo & Knoeferle, 2015) and the processing of spatial re-
lations (Franconeri et al., 2012; Roth & Franconeri, 2012),
suggest a reverse directionality, motivating the reversed AVS
(rAVS) model Kluth, Burigo, & Knoeferle, 2017. The rAVS
model implements an attentional shift from the LO to the RO
(i.e., in reverse to the directionality in the AVS model).

The main computation steps in the rAVS model are similar
to the AVS model. The rAVS model computes an angular devi-
ation δ to a reference direction and maps it to an acceptability
score. This score is adapted according to the vertical location
of the LO. The computation of the angular deviation, however,
was modified by changing the direction of the vectors. Instead
of an attentional vector sum across the RO, the rAVS model
defines an attentional vector sum on the LO (see Figure 1b
for a visualization and Kluth, Burigo, & Knoeferle, 2017, for
formulas). Due to the simplification of the LO as a single point
in the AVS model and the desire to keep the rAVS model as
close as possible to the AVS model, the vector sum in the rAVS
model consists of only one single vector.

The choice of the vector destination is informed by pre-
vious observations. Regier (1996) and Regier and Carlson
(2001) showed that the orientations of two imaginary lines
connecting the LO with two important points of the RO can be
used to predict human acceptability scores. These are (i) the
‘proximal orientation’ of the imaginary line that connects the
LO with the proximal point – the point on the RO where RO
and LO are closest to each other – and (ii) the ‘center-of-mass
orientation’ of the imaginary line that connects the center-
of-mass, CoM , of the RO with the LO (see Figure 1b). The
more these orientations deviate from a reference direction, the
lower people rated the appropriateness of the spatial prepo-
sition for the corresponding LO location (Regier & Carlson,
2001).

In the rAVS model, the vector from the LO to the RO always
points on the line that connects the point F (the same as the
attentional focus F in the AVS model2) with the point CoM

2Note that attentional focus F in the AVS model does not always coinicide
with the proximal point P. For instance, the closest point P for LOs to the
right of an RO is located on the right side of the RO. The point F used in the
AVS model and the rAVS model, however, is always located on the top of the
RO (for above). In the rAVS model the proximal point P is additionally used
for the computation of the relative distance, see eq. 1.

(see Figure 1b). The exact vector destination is controlled by
the distance between the LO and the RO. An LO with large
distance from the RO yields a vector pointing close to the
CoM of the RO. The closer the LO gets, the more the vector
points towards point F . That is, the rAVS model considers the
distance between the LO and the RO to weight the importance
of the proximal and the center-of-mass orientations.

More precisely, the rAVS model uses the relative distance
which is defined as the absolute distance divided by the di-
mension of the RO:

drel.(LO, RO) =
|LO, P|x
ROwid th

+
|LO, P|y
ROheight

(1)

Here, |LO, P|x describes the horizontal component of the
line connecting the LO with the proximal point P (see footnote
2); |LO, P|y describes the respective vertical component. As
an example, consider the two RO-LO configurations shown in
Figure 2a. Both LOs are, say, 5 cm away from the ROs. The
first RO has a height of, say, 5 cm while the second RO has a
height of, say, 30 cm. The relative distance in the first case
would be 1 (5 divided by 5) and reduces in the second case
to 1

6 (5 divided by 30). Below, we present the results of an
empirical test designed to detect whether relative distance
affects human acceptability ratings.

2.2. Vector Sum as an Attentional Mechanism

Let us first clarify the notion of “attention” in the models
(Fernandez-Duque & Johnson, 1999). Regier and Carlson
(2001) motivate their implementation of attention in the AVS
model via a spotlight metaphor by calling the attentional
distribution in the AVS model an “attentional beam” (Regier
& Carlson, 2001, p. 277–278). Moreover, they refer to Logan
(1994, 1995) who developed a theory of the apprehension of
spatial relations and remark “that in several neural subsystems,
overall direction is represented as the vector sum of a set
of constituent directions” (p. 277, emphasis in the original,
relevant references cited: Georgopoulos et al., 1986; Lee et al.,
1988; Wilson & Kim, 1994). The explicit conceptualization
of the vector sum in terms of attention, however, remains
unclear.

We argue that the vector sum in the AVS and the rAVS model
could be viewed as representing a directed movement of atten-
tion different from (but interacting with) the “spotlight-like”
distribution of attention in the models. The attentional distri-
bution selects one of the two objects of a spatial relation; the
directed vector sum is related to where the “attentional spot-
light” should move to next. This view fits well with the theory
of Logan (1994, 1995); Logan and Sadler (1996) in which
processing a spatial relation starts with “spatially indexing the
arguments of the relation” (Logan, 1994, p. 1015, where spa-
tial indices are theorized to be pre-attentive, Pylyshyn, 1989,
2001) and at a later stage “the viewer’s attention should move
from the reference object to the located object” (Logan &
Sadler, 1996, p. 499).

Interpreting the vector sum as an attentional movement
echoes the sequential shift account of Franconeri et al. (2012).
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While Franconeri et al. (2012) mainly focus on how attention
spatially relates two objects, the AVS model was primarily
concerned with the question how attention influences the
processing of geometric properties of a single object of a spa-
tial relation (the RO). For this, Regier and Carlson (2001)
identified the vector sum as an adequate mechanism. The
geometric properties of the RO affect the specific orientation
of AVS’s final vector direction and thus the outcome of the
model. However, they do not affect the directionality of at-
tention (i.e., whether the RO or the LO is selected first or
second).

In putting less emphasis on the attentional distribution, the
rAVS highlights the role of the directed vector sum. Specifi-
cally, the rAVS model still assumes a vector sum but roots it
on the LO instead of on the RO. Doing so requires the rAVS
model to find a different way of representing the geometry
of the RO, as its vector sum now accounts for the geometry
of the LO. Thus, the specific mechanisms of the rAVS model
are implications of selecting the LO first and implementing a
movement of attention from the LO to the RO (see Kluth, in
preparation, for an evaluation of several different mechanisms
that perform worse than the rAVS model).

The explicit use of relative distance is a specific mechanism
that distinguishes the rAVS model from the AVS model. In
particular, the rAVS model assumes that relative distance
weights the influence of the proximal and the center-of-mass
orientations on spatial language acceptability scores. Another
distinguishing feature is the different representation of the
geometry of the RO in the two models.

2.3. Assumptions and Predictions
On the existing data from Regier and Carlson (2001), Kluth,

Burigo, and Knoeferle (2017) showed that both the AVS model
and the rAVS model perform equally well. This is why we
designed two kinds of geometric shapes for which the two
models appear to predict different acceptability ratings. The
first test case concerns RO-LO configurations that differ in
relative distance (Figure 2a) and the second test case concerns
asymmetrical ROs (Figure 2b). We first discuss these two test
cases and corresponding model predictions followed by the
associated empirical study on human participants (Section 3).

2.3.1. Relative Distance
rAVS. The rAVS model explicitly uses the relative distance be-
tween the LO and the RO for its computation. An LO relatively
close to the RO results in a vector closer to the proximal point
which in turn leads to a lower angular deviation and therefore
to a higher acceptability score. An LO that is relatively far
away from the RO, on the other hand, is rated lower by the
rAVS model since the vector points more to the center-of-mass
of the RO and thus a greater angular deviation emerges (i.e., a
small relative distance leads to higher importance of the prox-
imal orientation compared to the center-of-mass orientation
whereas a large relative distance shifts this importance in fa-
vor of the center-of-mass orientation). Using this mechanism
(averaging proximal and center-of-mass orientation using rel-
ative distance), the rAVS model successfully accounts for the

(a). ROs and example LOs used to
test the role of relative distance.

×

(b). RO and example LOs used to
test the influence of asymmetrical
ROs. (×= center-of-mass)

Fig. 2. ROs and example LOs used as input for the PSP analysis.

data from Regier and Carlson (2001). However, whether this
proposed mechanism is reflected in human behavior has not
yet been tested. Thus, a prediction based on this mechanism
serves as a test case for the implemented shift of attention
from the LO to the RO.

The relative distance is computed from two sources: The ab-
solute distance and the dimensions of the RO (see equation 1).
Since there is already evidence for an effect of absolute dis-
tance on acceptability scores (e.g., Regier & Carlson, 2001),
we only changed the dimensions of the RO to obtain stimuli
with different relative distances. Consider the displays shown
in Figure 2a. Here, the rAVS model rates LOs above the tall
rectangle higher compared to LOs above the thin rectangle
because the LOs above the tall rectangle are relatively closer
than the ones above the thin rectangle and less relative dis-
tance leads to higher acceptability ratings (due to the greater
importance of the non-deviating proximal orientation).

AVS. We used the same RO-LO configurations shown in Fig-
ure 2a to investigate the role of relative distance in the AVS
model. The main component of the AVS model is its vector
sum weighted by an attentional distribution. Since it is the
absolute distance (which is the same for both configurations in
Figure 2a) that influences the width of the attentional distribu-
tion, the attentional distribution is equal for both rectangles.
What changes with rectangle height is the number of vectors
in the vector sum. This is because Regier and Carlson (2001,
p. 277) defined one vector “at each point of the landmark
[RO]”. Although this definition does not specify what mea-
sure should be used for a point in the RO (pixel, centimeters,
. . . ), it results in more points and thus more vectors for larger
compared with smaller ROs. Compared to the thin rectangle,
the tall rectangle has a greater area and thus more vectors.
Note that the vector sum computed for the thin rectangle is
completely contained in the vector sum for the tall rectangle
(the upper part of the tall rectangle) such that only the ad-
ditional vectors for the tall rectangle could change the final
direction of the vector sum and its associated acceptability
score.

Since the averaging mechanism in the AVS model is influ-
enced by its free parameters, assessing the influence of these
additional vectors is difficult. Depending on the values of the
free parameters, the AVS model can generate either higher
acceptability scores for the tall vs. the thin rectangle (i.e., like
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the rAVS model) or equal acceptability scores for both. In
order to assess the capability of the AVS model, we applied the
Parameter Space Partitioning (PSP, Pitt et al., 2006) algorithm,
which reports all qualitative predictions that the model is able
to compute. Before presenting the results of the PSP analysis,
let us consider a further test case.

2.3.2. Asymmetrical Reference Objects
rAVS. Our second test case concerns asymmetrical ROs (Fig-
ure 2b). As part of implementing a shift of attention from the
LO to the RO, the rAVS model relies on imaginary lines con-
necting the proximal points with the center-of-mass (symbol
×) of the RO. For the LOs shown in Figure 2b, these two lines
are mirrored versions of each other since we placed the LOs
symmetrically with respect to the center-of-mass. This means
that the two deviations of rAVS’s vectors only differ in their
sign (same deviation either to the left or to the right). Thus,
the rAVS model generates the exact same acceptability scores
for both LOs. This is in line with previous research (Regier,
1996; Regier & Carlson, 2001) predicting equal acceptabil-
ity scores for LOs with equal proximal and center-of-mass
orientations.

AVS. The AVS model uses the center-of-mass orientation only
implicitly in its weighted vector sum. It computes the center-
of-mass orientation if the attentional distribution is of uniform
strength (Regier & Carlson, 2001). For almost3 all other at-
tentional distributions, the final direction of the vector sum is
harder to grasp due to the interplay of a weighted population
of vectors controlled by free parameters. Arguably, however,
the AVS model can be interpreted as predicting a higher ac-
ceptability score for the left LO in Figure 2b compared to the
right LO. This is because the downward oriented “leg” on the
left side of the L-shaped RO is populated by vectors but – due
to the cavity of the RO – no vectors are rooted on the corre-
sponding location on the right side of the RO. This asymmetry
in the vector sum might lead to higher acceptability scores for
the left LO (closer to the edge of the RO and with more mass
directly below it) compared to the right LO.

2.3.3. Parameter Space Partitioning
We applied the method Parameter Space Partitioning (PSP,

Pitt et al., 2006) that quantifies the range of qualitatively
different model predictions (see Appendix B.2 for details).
For the rAVS model, the PSP analysis confirmed our “intu-
itive” model predictions for a large range of different model
parameters: lower ratings for LOs above the thin rectangle
compared to the tall rectangle and equal ratings for the LOs to
either side of the center-of-mass of the asymmetrical RO. The
rAVS model generates only one additional data pattern (with
a small value of its parameter α, equal ratings for different
relative distances).

3The other extreme case of an attentional distribution (i.e., 1 at the focal
point and 0 at all other points) yields the orientation of a line connecting the
LO with the focal point (this is the proximal orientation if focal point F and
proximal point P coincide).

For the AVS model, the PSP analysis show a more diverse
pattern of model predictions. For the asymmetrical RO, the
AVS model does not generate our “intuitive” prediction of a
higher rating for the left LO compared to the right LO (Fig-
ure 2b). Rather, the model predicts either no difference or a
higher rating for the right LO. For relative distance variation,
the PSP analysis revealed that the AVS model predicts either
(i) no different ratings for LOs above the thin versus the tall
rectangle or (ii) lower ratings for LOs above the thin rectangle
compared to the tall rectangle. In summary, the AVS predic-
tions vary more than the rAVS predictions but surprisingly the
predictions of both models are the same for a considerable
range of parameter settings.

3. Empirical Study

We examined to what extent humans follow the PSP pre-
dictions by conducting an empirical acceptability rating study.
Additional (eye-movement) data that are less central to the
main argument are presented in Appendix A.3.

3.1. Materials and Procedure
Materials. We tested all of the geometric shapes used in the
PSP analysis plus five extra ROs to generalize the predictions
and to collect more data4. We placed 28 LOs above and below
each RO. 4 LOs out of these 28 LOs were placed at the same
height as or slightly below/above the top/bottom of the RO.
The remaining 24 LOs were arranged in a grid with 3 rows
and 8 columns (see Figures 4, 5, 6, and 8 for visualizations of
the ROs and the placement grid including row and column
coding). For each of the 28 LOs above each of the 8 ROs
(rows R1–R5), participants had to rate how well the German
sentence “Der Punkt ist über dem Objekt.” (“The dot is above
the object.”) described the depicted layout. For all LOs below
the ROs (rows R6–R10), the accompanying sentence was
“Der Punkt ist unter dem Objekt.” (“The dot is below the
object.”). In order to keep the surface of the RO that faces the
LO constantly flat in all conditions, we horizontally mirrored
the L and mL objects for the 28 LOs below these ROs (see
Figure 8 on page 12).

Participants saw each RO-LO combination exactly once and
only one RO and one LO were present on a single trial. The
center-of-mass of the RO was always centered on-screen. We
placed the LOs relative to the borders of the ROs such that
their absolute distances to the corresponding RO were equal
for all ROs. Taken together, this rating study consisted of 8
ROs × 28 LOs × 2 prepositions = 448 items. Participants sat
in front of a computer monitor (22 inches, 1680×1050 pixel)
at a distance of approximately 80 cm. Their right eye was
tracked with a desktop mounted eye tracking system (EyeLink
1000, SR Research) using a chinrest. We programmed the

4For the relative distance test case, we added a thick rectangle and a
square (see Figure 4 on page 9). For the asymmetrical ROs test case, we
added a C-shaped RO as well as mirrored versions of the C- and the L-shaped
ROs to balance potential left-right biases (named mC and mL, respectively;
see Figure 6 on page 11 and Figure 8 on page 12).
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experiment in “Experiment Builder” (version 1.10.1025, SR
Research). The study was approved by the Bielefeld University
ethics committee (2015-126).

Procedure. We recruited 34 participants (19 females; 18–34
years, M=23.79). Most of the participants were either stu-
dents at the Bielefeld University or the University of Applied
Science Bielefeld. Each participant received 6 € for partici-
pation. The study took approximately 45 minutes. The par-
ticipants answered a general questionnaire and were asked
to rate each picture-sentence pair they would see for how
well the sentence matched the picture (using keys 1–9 above
the letters on a standard keyboard). Here, 1 meant “The sen-
tence does not describe the picture at all.” and 9 meant “The
sentence describes the picture very well.”. Participants were
encouraged to use the entire rating range. After eye tracker
calibration, participants rated four practice trials (with dif-
ferent, non-critical ROs) and then all 448 items in a pseudo-
random order (items were randomized but the same RO did
not appear twice in a row). Participants were presented with
the sentence “Der Punkt ist über/unter dem Objekt” (“The
dot is above/below the object”; only one preposition shown
in one trial) and pressed the space bar once they had read
it. Then, one RO and one LO appeared on the screen, until
participants gave their rating. RT was measured from the
onset of the picture until the rating response.

3.2. Results

Method. All following data analyses were conducted using the
Bayesian framework. There is growing consensus that the clas-
sical Null Hypothesis Significance Testing (NHST) framework
focusing on the significance of an effect given a corresponding
p < 0.05 has severe flaws (e.g., Dienes, 2011; Gigerenzer,
2004; Kruschke, 2013; Lindley, 1993; Wagenmakers, 2007;
Wagenmakers et al., 2018). Bayesian data analysis overcomes
most of the problems of the NHST (e.g., Etz, Gronau, Dablan-
der, Edelsbrunner, & Baribault, 2018).

In the Bayesian framework, we used multilevel regression
models to describe our data. Since our study has a repeated
measurement design, we included subjects as a group-level
term to account for intersubject variability. For the analysis
of the acceptability ratings, we applied ordinal regressions
(as the predicted variable rating is ordered and discrete) col-
lapsing across über (above) and unter (below; see Appendix
A.1 for additional analyses). This type of regression uses a
metric variable underlying the ratings. The slope coefficient
of an ordinal regression gives us information about how the
latent metric variable changes with respect to the values of
the predictor(s). The larger the absolute value of slope, the
higher the change in ratings. However, one cannot directly
interpret the value of the slope on the scale of ratings.

We report the estimated values of the regression parame-
ters of interest (means of the corresponding posterior distri-
butions) together with their 95% credible intervals (CI) that
contain 95% of the probability density of the posterior distri-
butions (and thus are a measure of the uncertainty of the esti-
mation). We ran all following analyses using R (R Core Team,

2016) with the R package brms (Bürkner, 2017). If not spec-
ified otherwise, we used the default prior distributions (de-
signed to be non-informative) provided by the brms package.
Regression models with manually specified prior distributions
resulted in the same qualitative output (existence and direc-
tion of effects) as the same regression models with brms’s
default priors.

We sampled from the posterior distributions with four
chains (with each providing 1000 warmup samples and 3000
post-warmup posterior samples; in total 12000 post-warmup
samples) and verified that all models had a sufficient number
of effective samples. We checked that all chains converged us-
ing the potential scale reduction statistic R̂ (Gelman & Rubin,
1992). Moreover, we performed visual posterior predictive
checks with the help of the R package bayesplot (Gabry,
2017). Where applicable, we compared different regression
models using the leave-one-out cross-validation method (LOO,
Gelman, Hwang, & Vehtari, 2014; Vehtari, Gelman, & Gabry,
2017) and the widely applicable information criterion (or
Watanabe-Akaike information criterion, WAIC, Vehtari et al.,
2017; Watanabe, 2010; both the LOO and the WAIC are
goodness-of-fit measures that are adjusted for over-fitting
by considering the effective number of model parameters,
Gelman et al., 2014; Vehtari et al., 2017).

We used the software “Data Viewer” (version 1.11.900,
SR Research) to generate (i) a trial report containing the ac-
ceptability ratings and (ii) a fixation report used to analyze
participant’s eye movements (for the analysis of the eye move-
ment data see Appendix A.3). All empirical data files, the fits
of the Bayesian models as R data files, and R source code files
to reproduce the fits of the Bayesian models are available in
the data publication that also includes an implementation of
the cognitive models ([dataset]Kluth, 2018).

3.2.1. Acceptability Ratings
Figures 4, 5, 6, and 8 present visualizations of the empirical

ratings: Each rhombus represents one individual rating (the
darker the color, the higher the rating). The figures also
include row and column numbers which will be used in the
analysis to refer to subsets of LOs. Note that for Figure 6 über
and unter (above and below) ratings are depicted in the same
image although participants did not rate über and unter for
every LO (see Appendix A.1 for further details).

Relative Distance. In the PSP analysis, the AVS and the rAVS
model both predicted higher ratings for LOs above the tall
rectangle compared to LOs above the thin rectangle. To an-
alyze whether our participants followed this prediction, we
specified an ordinal regression that predicted rating by the
type of rectangle (thin, thick, square, tall). As priors for each
of the slope parameters of the regression model we chose
Gaussian distributions with µ = 0.5 and a large standard devi-
ation σ = 1.5. The standard deviation assign relatively large
probabilities for values ≤ 0.0, i.e., they allow for a null effect
and also for a negative effect (higher rectangle leads to lower
ratings). The positive mean µ = 0.5 of the prior distributions
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Fig. 3. Posterior predictive check for the regression model that predicted
rating as a function of rectangular RO. Computed with 100 samples from the
posterior distribution.

reflects our “trust” in the positive predicted effect of the AVS
and rAVS models.

In contrast to the AVS and rAVS prediction, our analysis
provides no evidence for different rating patterns across rect-
angular ROs with different heights (see Figure 3). Although
all mean estimates of the regression slopes (comparing ratings
for LOs above the thin rectangle vs. the three taller rectan-
gles) were positive, their 95% credible intervals include 0.0
(βthick = 0.01, 95% CI [−0.11, 0.12]; βsquare = 0.02, 95% CI
[−0.09,0.14]; βtal l = 0.04, 95% CI [−0.08, 0.15]).

The rAVS model uses relative distance to weight the im-
portance of the proximal and the center-of-mass orientation.
From the shorter to the taller rectangles, relative distance re-
duces – so the rAVS model assumes that (i) the importance of
the proximal orientation increases while (ii) the importance
of the center-of-mass orientation decreases with increasing
height of the rectangles. We accordingly predicted the ratings
via relative distance, center-of-mass orientation and proximal
orientation, allowing full interactions between these three
predictors in an ordinal regression (see Appendix A.1.1 for
details). In that analysis, relative distance modulated the
influence of proximal orientation but different from the rAVS
prediction: Higher relative distance strengthened the influence
of proximal orientation (see different slopes in Figure A.10a
on page 20). It further amplified a reversed effect of the
center-of-mass orientation for high values of proximal orienta-
tion (i.e., higher center-of-mass orientation resulted in higher
instead of lower ratings, see right subplot of Figure A.10b).
These findings go against the specific mechanism implemented
in the rAVS model.

Although the AVS model does not explicitly formulate the
influence of relative distance on center-of-mass orientation
and proximal orientation, its vector sum mechanism resembles
the mechanism of the rAVS model (close LOs result in small

attentional widths which in turn approximate the proximal
orientation in contrast to the center-of-mass orientation). This
suggests that the AVS model – just like the rAVS model –
cannot fully accommodate the rating data.

Asymmetrical Objects. For the asymmetrical objects, both the
AVS and the rAVS model predict equal ratings for LOs that
have the same center-of-mass orientation (e.g., LOs in column
C3 compared to LOs in column C4 for the C or the L, see
Figures 6 or 8) and different ratings when center-of-mass
orientation differs. The PSP analysis further revealed that
the AVS model predicts higher ratings for LOs above (vs. not
above) the cavity of an asymmetrical RO (see Section 2.3.3 or
Appendix B.2). This calls the claimed effect of the center-of-
mass orientation (Regier, 1996; Regier & Carlson, 2001) into
question (the center-of-mass orientations are equal for the
two sets of LOs we compared, one would not expect different
ratings).

An ordinal regression model predicted ratings based on the
subsets used for the PSP analysis (“mass” subset: ratings for
LOs in columns C2 and C3 for the L and the C and columns C6
and C7 for the mL and the mC; “cavity” subset: ratings for the
LOs in columns C4 and C5 for all ROs, see Figures 6 and 8).
Based on the effect of the center-of-mass orientation (which
is equal for both subsets) and constant proximal orientation
for all LOs, we used a prior that reflects our expectation of
finding no difference in ratings (Gaussian distribution with
µ= 0.0 and σ = 0.1 as prior on the slope coefficient).

The posterior distribution of the slope coefficient, however,
was credibly different from 0.0 with a mean estimate of 0.84
and a 95% credible interval from 0.71 to 0.97. This provides
evidence that – despite equal center-of-mass orientations –
ratings were higher for LOs in the “cavity” subset compared
to the “mass” subset (8.8% more probability for the rating 9
if the LO is in the “cavity” versus “mass” subset). A second
model, using the default, non-informative prior from the brms
package replicated these results (14.7% higher probability for
rating 9 if LO is in subset “cavity” vs. “mass”; slope coefficient:
1.46, 95% CI: [1.29, 1.63]). This second model fitted the
data better than the model with the prior that emphasized our
null-effect expectation (LOO for model with restrictive prior:
5680.88; for model with default prior: 5631.44; lower LOO is
better, see Vehtari et al., 2017). Figure 7 plots the predictions
of the regression model with the default prior alongside with
the empirical data.

Overall, the model predicts the empirical data well but
the LOs in the two subsets were rated differently. Figure 7
illustrates that LOs in the “cavity” subset received considerable
more 9s in contrast to LOs in the “mass” subset (lower values).
These results conflict with (r)AVS prediction of equal ratings
for LOs with same center-of-mass orientation. However, they
confirm the PSP-prediction from the AVS model (higher ratings
for LOs in the “cavity” vs. “mass” subset).5

5 Note, however, that the strength of this prediction from the AVS – as
measured in terms of covered volume in the parameter space – is considerably

8



Fig. 4. Visualization of individual über (above) acceptability ratings for LOs above the thin, the thick, the square, and the tall rectangle. LOs (not depicted)
were black circles with a 10-pixel diameter and placed at the intersection of the grid lines. Individual acceptability ratings are color-coded (the darker the color,
the higher the rating) and plotted near the location of the corresponding LO (to avoid overplotting). Only one RO and one LO was visible at a time.

The LOs that were rated higher in the previous compar-
ison are all more central above the center-of-object of the
RO6 (compared to the lower-rated LOs). Using (post-hoc) the
center-of-object orientation instead of the center-of-mass ori-

larger if the difference threshold for equality of model-generated ratings is
te = 0.1 (more than 65%) compared with when it is te = 0.5 (less than 4%;
see Figure B.13 on page 26 in the Appendix). Accordingly, the AVS model
predicted that the difference of ratings for the two subsets should be rather
small (less than te = 0.1). This suggests that the empirical results reflect
a clearer difference in ratings for the LOs in the “cavity” versus the “mass”
subset than predicted by the AVS model.

6We define the center-of-object as the point that lies in the center of the
bounding box of the RO (the smallest rectangle containing all points of the
RO, see dashed lines in Figures 6 and 8). More formally, this corresponds

to the point CoO(x , y) =
�

ROx0 +
ROwid th

2 , ROy0 +
ROheight

2

�

, where ROx0 is
the leftmost point of the RO and ROy0 is the point of the RO with the lowest
y-coordinate (y-axis growing from bottom to top). For the rectangular ROs,

entation to explain human acceptability ratings can account
for the pattern of results that we found (see Appendix A.2).
This is in contrast with the idea that humans use the center-
of-mass of the RO as a base for their acceptability ratings (as
proposed by Regier, 1996; Regier & Carlson, 2001).7

To contrast the explanatory power of the two predictors

this point is the same as the center-of-mass; for the asymmetrical ROs, the
center-of-object is different from the center-of-mass. Figures 6 and 8 mark
the location of the center-of-mass with the symbol × and the location of the
center-of-object with the symbol ◦.

7Note that this conflicts with the results from experiment 4 conducted by
Regier and Carlson (2001). However, in their experiment only 8 LOs above
2 different ROs were tested and the advantage of the center-of-mass over
the center-of-object was quite small (but significant). A related model by
Lovett and Forbus (2009) also failed to replicate the effect in this particular
experiment. We speculate that whether the side of the RO that faces the
LO is flat (or not) qualifies the different influences of the center-of-mass
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Fig. 5. Visualization of individual unter (below) acceptability ratings for LOs below the thin, the thick, the square, and the tall rectangle. LOs (not depicted)
were black circles with a 10-pixel diameter and placed at the intersection of the grid lines. Individual acceptability ratings are color-coded (the darker the color,
the higher the rating) and plotted near the location of the corresponding LO (to avoid overplotting). Only one RO and one LO was visible at a time.

center-of-mass orientation and center-of-object orientation
we finally ran two ordinal regressions using only one of the
two predictors (in radian notation and with default, non-
informative priors). Both of these models resulted in a credi-
ble effect of the corresponding predictor (βCoM = −4.58, 95%
CI [−4.73,−4.42]; βCoO = −7.24, 95% CI [−7.46,−7.02]).
The center-of-object orientation, however, had a greater ef-
fect on the ratings than the center-of-mass orientation as re-
vealed by the magnitude of the regression coefficients. More-
over, the model that used the center-of-object orientation as
predictor also fitted the data better according to the LOO
method (center-of-mass model LOO: 23 235.51, center-of-
object model LOO: 21 175.10).

or the center-of-object orientation (compare also Regier & Carlson, 2001,
experiment 5 with our L shaped ROs). Since we only used ROs with a flat
top/bottom, more studies are needed to provide additional evidence.

3.3. Discussion
In summary, the analyses of the ratings revealed an effect

of relative distance but different from what the models had
predicted. Both the AVS and the rAVS model – despite dif-
ferent directionalities of attention – predicted higher ratings
for LOs above taller rectangles compared to ratings for LOs
above shorter rectangles. This is what one would also ex-
pect when reasoning only with the center-of-mass orientation.
The AVS model is also capable of computing no difference in
ratings, which is the null-effect that we found. We showed
in our analysis that the higher the relative distance is, the
higher the influence of the proximal orientation becomes. In
addition, for high values of proximal orientation, higher rel-
ative distance correlated with a stronger reversed effect of
center-of-mass orientation (i.e., higher center-of-mass orien-
tation resulted in higher ratings) than lower relative distance.
Thus, our empirical results provide some evidence against the
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Fig. 6. Visualization of individual über (above) and unter (below) acceptability ratings for LOs around the asymmetrical C and mC ROs. LOs (not depicted)
were black circles with a 10-pixel diameter and placed at the intersection of the grid lines. Individual acceptability ratings are color-coded (the darker the color,
the higher the rating) and plotted near the location of the corresponding LO (to avoid overplotting). LOs in rows R1–R5 were presented with über (above),
LOs in rows R6–R10 were presented with unter (below). Only one RO and one LO was visible at a time. For each RO: Dashed line is the bounding box, × is the
center-of-mass, ◦ is the center-of-object. Neither of the centers nor the bounding box were visible to the participants.
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Fig. 7. Posterior predictive check for the regression model that predicted
rating from the location of the LO (either in the “‘cavity” or “mass” subset).
Computed with 100 samples from the posterior distribution.

rAVS use of relative distance to modulate influences of the
center-of-mass and proximal orientations.

Our findings for the asymmetrical ROs deepen the knowl-
edge of effects of geometry on spatial language acceptability
scores. In line with previous research highlighting the impor-
tance of the center-of-mass orientation (Regier, 1996; Regier
& Carlson, 2001), both the AVS and the rAVS model predicted
equal ratings for two LOs placed with an equal center-of-mass
orientation. Despite this, our participants reliably rated these
two LOs differently. The LOs that were more central with

respect to the center-of-object seemed to match a more pro-
totypical use of über (above; and unter, below) suggesting
that people use the center-of-object orientation instead of the
center-of-mass orientation.

4. Model Simulations

Based on the empirical results, we introduce two modi-
fied versions of the cognitive models AVS and rAVS (Sec-
tion 4.1). These integrate the unexpected finding of the
seemingly greater importance of the center-of-object com-
pared to the center-of-mass by using the center-of-object.8 We
applied several model comparison techniques that provide
different perspectives on the implications of the implemented
attentional shifts for the performance of all cognitive mod-
els. Specifically, we fitted the models to the empirical data

8 Although the analysis of the effect of relative distance also revealed
findings that neither the AVS nor the rAVS model can explain, we do not
propose modifications based on this effect. The main reason for this is that
we would need to adapt the mechanism of the interaction of proximal and
center-of-mass orientation (because our empirical findings revealed that it is
modulated by relative distance). However, this mechanism is central to both
implemented directionalities of attention and, in addition, an adaption is not
as straight-forward as changing the center-of-mass to the center-of-object.
Moreover, since we would need to change a core part of the models, we
would obtain substantially different models. This would complicate model
comparison and further entail the evaluation of alternative mechanisms, a
step that goes beyond the scope of the present article.
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Fig. 8. Visualization of individual über (above) and unter (below) acceptability ratings for LOs around the asymmetrical L and mL ROs. LOs (not depicted)
were black circles with a 10-pixel diameter and placed at the intersection of the grid lines. Individual acceptability ratings are color-coded (the darker the color,
the higher the rating) and plotted near the location of the corresponding LO (to avoid overplotting). LOs in rows R1–R5 were presented with über (above),
LOs in rows R6–R10 were presented with unter (below). Only one RO and one LO was visible at a time. For each RO: Dashed line is the bounding box, × is the
center-of-mass, ◦ is the center-of-object. Neither of the centers nor the bounding box were visible to the participants.

(Section 4.2), investigated their flexibility (Section 4.3), and
analyzed the informativeness of the empirical data for distin-
guishing between the model assumptions about the direction-
ality of the attentional shift (Section 4.4).

4.1. Implementing the Center-of-Object
AVS-BB. As noted by Regier and Carlson (2001), the AVS
model computes the center-of-mass orientation for a uniform
attentional distribution because all points of the RO are then
equally weighted in the vector sum. Since the center-of-object
is the center of the bounding box, we extended the vector
sum to all points inside the bounding box to obtain the ‘AVS
bounding box’ model (henceforth AVS-BB model).9

9 Having defined the AVS-BB model in such way, we note that an asym-
metrical RO with an x × y sized bounding box will be treated exactly the

rAVS-CoO. In the rAVS model, the vector pointing from the
LO to the RO points on a line that connects the center-of-mass
with the point on top of the RO that is vertically aligned with
the LO (see Figure 1b). In the here proposed ‘rAVS center-of-
object’ – rAVS-CoO – model, this line connects the center-of-
object (instead of the center-of-mass) with the point on top
of the RO. All other steps in the rAVS-CoO model remain the
same as in the rAVS model.

same as an x × y rectangle, which might be a problematic assumption for
asymmetrical ROs with non-flat tops (e.g., used in exp. 5 by Regier & Carlson,
2001).
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4.2. Fitting the Models to the Data
4.2.1. Goodness-of-Fit
Method. As is common in the assessment of cognitive models
on empirical data, we evaluate the goodness-of-fit (GOF) by
minimizing the difference of model output to empirical data.
A common measure of GOF is the Root Mean Square Error
(RMSE). We additionally normalized the RMSE by dividing
the RMSE with the rating range (obtaining the nRMSE: nor-
malized RMSE) to be able to compare model fits across studies
with different rating ranges (see Appendix B.1 for more de-
tails). We computed the GOF for our complete data set, data
from the rectangular ROs only, data from the asymmetrical
ROs only, and the complete data set from Regier and Carlson
(2001)10. We computed the GOF for the AVS, the rAVS, the
AVS-BB, and the rAVS-CoO model.

We implemented all models and the GOF computation (as
well as all other model evaluation techniques presented later)
in C++ using the CGAL library (The CGAL Project, 2015) and
the GNU scientific library (GSL, Galassi et al., 2009). The
documented source code is available under an open source
license in [dataset]Kluth (2018).

Results. The GOF values for all models and subsets are shown
as textured bars in Figure 9. These GOFs provide evidence for
good model performance on all data sets (all nRMSE values
< 0.1, worst possible nRMSE is 1.0). The AVS model had
lower GOFs than the rAVS model for our complete data set
(Figure 9a), as well as for the two subsets (Figure 9b and 9c).
This difference was most pronounced for data from the rect-
angular ROs and less clear for data from the asymmetrical
ROs. The GOFs for the complete data set were intermediate
compared to the subsets.

Interestingly, the AVS-BB model and the rAVS-CoO model
obtain considerably better GOF values for the rating data from
the asymmetrical ROs11 compared to the unmodified models
(Figure 9c). This supports our suggestion that people rather
use the center-of-object orientation instead of the center-of-
mass orientation. If we compare the GOF of the AVS-BB
model with the GOF of the rAVS-CoO model we see very little
advantage for the AVS-BB model for the asymmetrical ROs
(Figure 9c) but a pronounced advantage for the complete data
set (Figure 9a). Apparently, the difficulties of the rAVS(-CoO)
model to fit the data for the rectangular ROs (Figure 9b) is
more strongly reflected in the GOF for the whole data set as
is the better GOF of the rAVS-CoO for the asymmetrical ROs.
On the data from Regier and Carlson (2001, Figure 9d), the
AVS-BB and the rAVS-CoO model perform as well as the AVS
and the rAVS model.

A good fit to empirical data is a necessary condition for a
cognitive model to be considered an appropriate model of
cognitive processes and representations. The models consid-
ered here all fulfill this condition. Complementary model

10We thank Terry Regier and Laura Carlson for sharing these data.
11For the rectangular ROs, the new modified models are the same models

as the unmodified models (because the center-of-mass coincides with center-
of-object for rectangles).
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(a). GOF and SHO results for our whole data set.
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(b). GOF and SHO results for data from the rectangular ROs only.
For these ROs, the rAVS-CoO model is the same as the rAVS model
and the AVS-BB model is the same as the AVS model.
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(c). GOF and SHO results for data from the asymmetrical ROs only.
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(d). GOF and SHO results for the whole data set from Regier and
Carlson (2001)

Fig. 9. Goodness-of-fit (GOF) and Simple Hold-Out (SHO) results for (a)–(c)
our data (collapsing across über, above, and unter, below) and (d) data from
Regier and Carlson (2001). Error bars show bootstrapped 95% confidence
intervals of the SHO median.
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assessment techniques account for the generalizability of the
models’ output (Pitt & Myung, 2002), for instance by consid-
ering potential over-fitting of the models (better GOFs due
to better fitting noise in the data). Schultheis et al. (2013)
showed that the simple hold-out (SHO) method successfully
controls for over-fitting which is why we applied it to our data
and models.

4.2.2. Simple Hold-Out
Method. The SHO method is a cross-fitting method that com-
putes a so-called prediction error. To do so, it randomly splits
the data set into a training-set and a test-set. We used 70%
of the data as training-set and 30% as test-set. The model’s
parameters are estimated on the training-set (i.e., the model
is fitted to the data) and used to compute an nRMSE on the
test-set. This nRMSE is called prediction error, because the
data in the test-set is new to the model (but not new in an
empirical sense). This process is done several times with the
median of all prediction errors reported as the final outcome
of the SHO method. We used 101 iterations to obtain a clearly
defined median and also computed the 95% confidence inter-
vals of this median using R with the boot package (Canty &
Ripley, 2016).

Results. We plotted the results of the SHO method as white
bars with 95% confidence intervals next to the GOFs in Fig-
ure 9. All SHO medians are close to the corresponding GOFs
indicating a neglectable influence of over-fitting in the GOFs
for any model. Thus, the SHO method confirms the general
trend already discussed for the GOFs.

Taken together, the GOF and SHO results favor (a) the AVS
model over the rAVS model (for our data, for the data from
Regier & Carlson, 2001, both models perform equal as already
shown in Kluth, Burigo, & Knoeferle, 2017) and (b) the modi-
fied models that incorporate the center-of-object orientation
instead of the center-of-mass orientation over the unmodified
models for the relevant ratings from the asymmetrical ROs.

4.3. Model Flexibility

GOF and SHO values report the performance of a model
given a particular data set. While this is a valuable and im-
portant measurement to judge the quality of a model, it is
not sufficient for a thorough model evaluation (e.g., Roberts
& Pashler, 2000). Regardless of an empirical data set, it is
of interest what a model can and what it cannot compute,
as this gives information about how the model – here, the
implemented assumption about the directionality of attention
– constrains future empirical data. Among other methods,
this model property can be measured with the PSP method
that provides a list of all qualitative data patterns a model
can generate (given a set of stimuli). We already applied the
PSP method for the AVS and the rAVS model to generate the
predictions – implications of implementing different direction-
alities of attention – for our empirical study (Section 2.3.3).
However, given that the AVS-BB and the rAVS-CoO model bet-
ter accounted for the empirical data – while still implementing

contrasting shifts of attention –, we were also interested in
analyzing their output possibilities using the PSP algorithm.

Our PSP analysis confirmed that the newly proposed mod-
els successfully accounted for the rating pattern found for
the asymmetrical ROs while more work is needed to fully
understand the role of relative distance for spatial language
acceptability scores. In terms of the number of generated data
patterns, the PSP analysis showed that the AVS-BB model gen-
erates 4 out of 32 = 9 data patterns rendering it slightly more
flexible than the rAVS-CoO model that only generates 3 pat-
terns (for a more in-depth discussion of the PSP results see
Appendix B.2.2). An additional Model Flexibility Analysis
(MFA, Veksler et al., 2015, see Appendix B.3) that provides
quantitative model flexibilities (instead of qualitative rank-
ings like the PSP) revealed that (i) the AVS-BB model is less
flexible than the AVS model and (ii) the rAVS-CoO model is
less flexible than the rAVS model.

In summary, compared to the AVS and the rAVS model, the
AVS-BB and the rAVS-CoO model (i) fit the empirical data
better (GOF and SHO), (ii) generate data patterns that are
closer to the empirical patterns (PSP) while (iii) being less
flexible (MFA). This suggests superior performance of the two
newly proposed models.

While the data from the asymmetrical ROs helped in distin-
guishing the AVS from the rAVS model, these data are possibly
not informative enough to differentiate the more appropriate
models (i.e., the AVS-BB and the rAVS-CoO model). This is
why we applied a further “global” model analysis (the land-
scaping method, Navarro, Myung, Pitt, & Kim, 2003; Navarro
et al., 2004) trying to distinguish between the AVS-BB and
the rAVS-CoO model.

4.4. Landscaping
Method. The prime motivation for the development of the
landscaping method was to provide a measure that helps to
“assess [the] potential distinguishability [of competing mod-
els] and the informativeness of a data set in deciding between
them” (Navarro et al., 2004, p. 48). Landscaping provides a
measure of what is called model mimicry by Wagenmakers,
Ratcliff, Gomez, and Iverson (2004): The ability of a model
to account for data generated by another model. Each model
should fit self-generated data quite well – without added noise
this fit should be almost perfect. If, however, one model is
also able to closely fit the data generated by another model,
this model mimics the other model, i.e., this model is able to
behave like the other model.

If the AVS-BB and the rAVS-CoO model are mimicking each
other on our asymmetrical ROs, this means that despite their
different assumptions and implementations regarding the di-
rectionality of attention, they are generating similar data for
these stimuli – which could explain why we cannot distin-
guish between them (and their corresponding claims about
attention). Alternatively, the models do not mimic each other,
suggesting that perhaps the different implementations of the
directionality of attention produce different model predic-
tions. In the following, we present a condensed version of the
landscaping results (see Appendix B.4 for more details).
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Results and Discussion. The main outcome of the landscaping
analysis that contrasted the rAVS-CoO model with the AVS-BB
model on our asymmetrical ROs (see Figure B.15 on page
29) is that the two models do not fully mimic each other on
our asymmetrical ROs but that they still are able to closely
fit the not self-generated data. However, the AVS-BB model
shows a higher degree of model mimicry compared to the
rAVS-CoO. That is, the AVS-BB model fits the data generated
by the rAVS-CoO model almost as well as the rAVS-CoO model
itself while the rAVS-CoO model shows a worse (but still good)
performance for the data generated by the AVS-BB model.

Notice the general lower magnitude of the fits of the rAVS-
CoO and the AVS-BB model compared to landscaping analyses
that contrasted the rAVS with the rAVS-CoO model (compare
Figures B.15 and B.16 with Figures B.17 and B.18 in the Ap-
pendix; pages 29f.). This reflects a higher degree of model
mimicry for the AVS-BB and the rAVS-CoO model compared to
the rAVS and the rAVS-CoO model. This is particular interest-
ing because – in terms of assumptions and mechanisms about
the attentional shift – the rAVS and the rAVS-CoO model are
closer to each other than the AVS-BB model is to the rAVS-CoO
model. Nevertheless, the AVS-BB model and the rAVS-CoO
model are acting more similar to each other than the rAVS
and the rAVS-CoO model. Apparently, what is implemented
in the models (center-of-object orientation for AVS-BB and
rAVS-CoO) is more important than how it is implemented
(AVS-BB has a population of vectors, rAVS-CoO’s vector sum
consists of only one vector pointing in the opposite direction –
in contrast, the rAVS and the rAVS-CoO model only differ in
their definition of the central point).

4.5. Discussion of Model Simulations
Several model simulations contrasted the different imple-

mentations of attentional shifts. We fitted the models to our
empirical data including a control for over-fitting (GOF, SHO).
Here, the AVS model performed better than the rAVS model
and the two models that favor the center-of-object over the
center-of-mass (AVS-BB and rAVS-CoO) performed even bet-
ter than their respective original models. The low flexibilities
of the modified models (MFA) increase trust in their overall
goodness: Despite the lower flexibility of the AVS-BB and the
rAVS-CoO model, they provide tighter fits to the empirical
data than either the AVS and the rAVS model. Most probably,
this is because the two newly proposed models generate data
patterns closer to the empirically observed pattern (as the PSP
analysis revealed) – in particular for the asymmetrical ROs.

Using the landscaping method, we assessed whether the
AVS-BB model mimics the rAVS-CoO model (or vice versa)
on the asymmetrical ROs. Although both models fit the data
generated by the other model, they did not fully mimic each
other. Thus, in principle, our experiment was sensitive enough
to distinguish between the two implemented directionalities
of attention. However, since we could not do this (similar
GOF and SHO performance on the asymmetrical ROs), we
think that either (i) the empirical data are reliably different
from all data generated by the models or (ii) the models are
mimicking each other too well in the region of the empirical

data. While the latter point could be addressed by designing
a new empirical study or by using different empirical data
(e.g., eye movements or reaction times), the first point casts
doubt on the overall appropriateness of the models.

This should not be understood in the sense that the models
do not fit the data well in general. The GOF results showed
that all models can closely account for the empirical data. Fur-
ther evidence comes from the fact that the best model fits on
our whole data set have high correlations with the empirical
data (R2 > 0.89 for all models). Rather, the landscaping anal-
yses point to small but reliable systematic variations in the
empirical data that no model yet accounts for. The reason for
this might be not properly capturing the influence of relative
distance that affects central mechanisms of all current model
implementations (which is why a detailed model refinement
was beyond the scope of this work).

5. General Discussion

We investigated the role of shifts of (visual) attention for
processing spatial language by testing predictions from models
implementing contrasting directionalities of attention. Tra-
ditionally, the directionality of attention is assumed to go
from the RO to the LO (Carlson, 2003; Carlson & Van Deman,
2004; Logan, 1995; Logan & Sadler, 1996; Logan & Zbrodoff,
1999). This claim, however, conflicts with recent empirical
and theoretical work (Burigo & Knoeferle, 2015; Franconeri et
al., 2012; Roth & Franconeri, 2012) suggesting that attention
could also move from the LO to the RO. Kluth, Burigo, and
Knoeferle (2017) integrated this reversed shift in a modified
version of the AVS model (the reversed AVS, rAVS, model, a
cognitive model rooted in the tradition of spatial language re-
search, Regier & Carlson, 2001). However, in terms of model
performance the rAVS model could not be distinguished from
the AVS model using existing data. In the current article, we
assessed the model performance against new human data
and modified the models to capture geometric object prop-
erties that appear to matter in predicting the human spatial
language acceptability ratings.

5.1. Summary of Results

We first estimated the predictions of the two models – the
implications of the implemented assumptions – and conducted
an empirical study to test them. This study revealed two as-yet-
unknown sources of geometrical information that affect the
evaluation of spatial language: relative distance and center-of-
object orientation. The importance of the center-of-object ori-
entation informed two modifications of the cognitive models:
While the AVS and the rAVS model rely on the center-of-mass
orientation in their computation, the new modifications (AVS-
BB and rAVS-CoO) integrate the center-of-object orientation
instead. These new modifications outperformed both the AVS
and the rAVS model in terms of quantitative (GOF, SHO) and
qualitative (PSP) model fits as well as model flexibility (MFA).

Comparing the AVS-BB model with the rAVS-CoO model
on our rectangular ROs, slightly favors the AVS-BB model
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due to better fits and lower flexibility. However, neither the
AVS-BB nor the rAVS-CoO model accounts for all qualitative
patterns we observed in the empirical data. While results
of the analyses confirmed with high probability rAVS-CoO’s
general prediction that relative distance affects the influence
of both proximal and center-of-mass orientation, they also
provided some evidence disconfirming its specific mechanism.
Future model refinements should address the relative distance
mechanism.

For the models at hand, the choice of using either the center-
of-object or the center-of-mass is more important than the
implemented directionality. This is reflected in substantial
differences in model performances when comparing the AVS
model with the AVS-BB model or the rAVS with the rAVS-CoO
model. By contrast, model performances were virtually indis-
tinguishable when comparing the AVS model with the rAVS
model or the AVS-BB model with the rAVS-CoO model. The
geometry of the RO is also what drove the looking behavior
of our participants (see Appendix A.3 for analyses of the eye
movements).

Using our results to answer the research question whether
people prefer to direct their attention from the RO to the LO
or from the LO to the RO, we are left in a position in which
we cannot distinguish between these two possibilities. It
seems that both directionalities may lead to equal acceptability
scores. This means that we could not find evidence for the
claim from Logan and Sadler (1996, p. 499) that “the viewer’s
attention should move from the reference object to the located
object” (emphasis in the original) – but also no evidence for
an opposite attentional movement.

Arguably, however, assuming an opposite movement of
attention is a fundamental change to the models that should
yield differing model performances. Why is it then that we
could not distinguish the models and how could we still use
our results to learn something about the role of attentional
shifts for spatial language evaluation?

5.2. Reasons for Non-Distinguishable Model Performances

We identified at least three possible reasons for the non-
difference in model performance. First, humans might deploy
both directionalities of attention – dependent on the situation
(see also discussion below). If so, the collected empirical data
reflect both directionalities and neither of our models has the
power to account for both directionalities (without substantial
model modification). Accordingly, our suggestion for future
research is to implement a model with both directionalities
(and identify how either directionality is triggered).

Second, it could be that the implications of using different
directionalities of attention cannot be teased apart by only
looking at acceptability scores of spatial language (the direc-
tion of the attentional movement might not be reflected in
these scores). Our landscaping analyses showed that the mod-
els generate different data but also that these differences are
very small. Fruitful next steps would be to increase the level
of detail with which the models are assessed on empirical
data and perhaps model visual attention shifts more directly.

One, technical, proposal for achieving this would be by
refining the output of the models, e.g., by assessing individual
participants’ data instead of aggregated data or by computing
probability distributions across the rating range instead of just
a single mean rating. The latter would allow to investigate
the models’ parameter spaces with the full toolkit available
from the Bayesian framework (see Kluth & Schultheis, 2018,
for first steps in this direction). Another idea for increasing
the level of detail would be to relate the assumptions of the
models about the allocation of attention on the pixel-level to
fixations obtained during real-time language comprehension
(i.e., to conduct a visual world paradigm study like Burigo &
Knoeferle, 2015, but using stimuli more similar to the ones
we have used in this article). Finally, Schultheis and Carlson
(2018) showed that the computation of acceptability scores as
implemented in AVS-like models interacts with the selection
of a reference frame, a process currently not considered in
AVS-like models. In Section 5.4, we sketch how to possibly
integrate reference frames and AVS-like models .

Third, the use of LOs simplified as single points reduces the
space of possible model predictions. This is because for the
rAVS(-CoO) model, a single-point LO implies that the vector
sum – representing the directionality of attention – de facto
consists of a single vector only. This decreases the expressive
power of rAVS(-CoO)’s vector sum: Holding the RO constant,
the vector sum on geometrically more complex LOs differs
more substantially from the RO’s vector sum than does the
vector sum on single-point LOs. Thus, using LOs with a mass
should yield model predictions that are mutually exclusive.
However, the AVS(-BB) model would need to be extended to
process LOs with a mass.

5.3. Does Directionality of Attention Matter?

Our results are compatible with the account by Franconeri
et al. (2012) who proposed that sequential shifts of attention
are needed to process spatial relations. We showed that a
weighted vector sum pointing from one object to the other
– regardless of its directionality – successfully accounts for
linguistic judgments of spatial relations. The weighted vector
sum mechanism is closely related to weighted spatial pooling,
a mechanism proposed to underlie the computation of sac-
cadic endpoints (Cohen, Schnitzer, Gersch, Singh, & Kowler,
2007; Vishwanath & Kowler, 2004). Our modeling work is
consistent with these low-level averaging mechanisms and
suggests that such mechanisms also underlie high-level lin-
guistic judgments.

However, different from Roth and Franconeri (2012) and
Yuan et al. (2016), we could not find evidence for the claim
that the linguistic asymmetry (i.e., distinguishing between
the RO and the LO) is mirrored by the directionality of the
attentional shift. At least in terms of linguistic acceptability
judgments, both directionalities of attention accommodate
a wide range of geometric effects. This does not necessarily
mean that both shifts of attention are equally likely to hap-
pen in real-world scenarios. There is evidence that people
shift their attention from the LO to the RO during real-time
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language processing (Burigo & Knoeferle, 2015). That di-
rectionality of shift also enhances reaction time performance
(compared to shifting from the RO to the LO, Roth & Fran-
coneri, 2012). In contrast, in related research by Gibson and
colleagues, participants’ attention shifted from the RO to the
LO (e.g., Gibson & Kingstone, 2006; Gibson, Thompson, Davis,
& Biggs, 2011, for review see Gibson & Sztybel, 2014).

Combining this evidence with our results (directionality
seems to be irrelevant for linguistic acceptability judgments),
we conclude that while an attentional shift is necessary for
spatial language processing, the directionality of this shift
seems to be flexible. Future research should clarify to what
extent this flexibility is related to the task and to individual
preferences.

The idea that for the processing of spatial relations the
existence of asymmetries might be more important than their
directionalities is consistent with studies of language develop-
ment by Dessalegn and Landau (2008, 2013). In their studies,
4-year-old children had to remember visual spatial relations
(the location of two colors in a square) for one second. Af-
terwards they had to choose the same visual relation from
a set of alternatives. Compared to cueing with symmetric
predicates, children’s performance increased with asymmetric
spatial (e.g., “the black is to the left of the white”) and non-
spatial terms (e.g., “the black is prettier than the white”). In
particular for the non-spatial terms, the direction of the asym-
metry (i.e., which color is prettier than the other) is irrelevant.
Thus, marking one component of a spatial relation as different
from the other component helped children to maintain their
representation of the spatial relation.

5.4. Outlook: Model Refinements
For deciding in which direction attention moves, we think

that other components of spatial language processing play an
important role, in particular the spatial reference frame (Lo-
gan, 1995; Logan & Sadler, 1996). Spatial reference frames
are a widely used representation of direction in spatial cogni-
tion in general (e.g, Pederson, 2003) and spatial language use
in particular (e.g., Levinson, 2003; Majid, Bowerman, Kita,
Haun, & Levinson, 2004; Schultheis & Carlson, 2017). Based
on Logan and Sadler (1996), who consider reference frames
to be attentional representations, Gibson and Sztybel (2014)
use reference frames in their theoretical account to explain
effects of linguistic cues on attentional deployment. Despite
this importance for the interaction of spatial language and
attention, the role of spatial reference frames in AVS-like mod-
els remains unclear. According to Logan and Sadler (1996),
reference frames are three-dimensional coordinate systems
that consist of four components: origin (anchor point of ref-
erence frame), scale (length of axes), orientation (rotation
of axes around origin), and direction (definition of axes’ end
points, e.g., above vs. below). The first two components might
integrate straightforwardly into AVS-like models: the models’
attentional focus could be interpreted as origin and the width
of the models’ attentional distribution as scale.

Orientation and direction, however, require more thought.
Currently, they seem to be intertwined in the models’ reference

direction to which the directed vector sum is compared. How-
ever, direction and orientation of both the RO (e.g., Carlson-
Radvansky & Logan, 1997) and the LO (Burigo, Coventry,
Cangelosi, & Lynott, 2016; Burigo & Sacchi, 2013; Burigo &
Schultheis, 2018) affect spatial language acceptability judg-
ments. Specifically, Burigo and Schultheis (2018) contrasted
direction and orientation and found that the direction of the
LO affects spatial language evaluation while its orientation
seems to be irrelevant. This supports relating the direction-
ality of attention in AVS-like models more to the direction
component of the reference frame than to the orientation
component. Future research could clarify this and investigate
the interaction of spatial reference frames and directionalities
of attentional shifts.

Another crucial limitation of all AVS-like models is the lack
of a temporal component – in particular, since movements
of attention are inherently temporal. Because no AVS-like
model – regardless of the implemented directionality of at-
tention – makes any claims about temporal aspects, we used
geometrical test cases to contrast the models. Integrating a
temporal component would further contrast the implications
of modeling different directionalities of attention. In addi-
tion, it would better connect the models to existing temporal
data like overt attentional shifts during real-time language
comprehension (e.g., Burigo & Knoeferle, 2015; Chambers,
Tanenhaus, Eberhard, Filip, & Carlson, 2002) or reaction time
data (by predicting reaction times with enhanced models;
e.g., Gibson & Sztybel, 2014; Logan, 1994; Roth & Franconeri,
2012).

5.5. Conclusion

In summary, we could not settle the debate on whether peo-
ple move their attention from the RO to the LO or from the
LO to the RO when evaluating a spatial sentence. Implement-
ing either directionality of attention in computational models
generated predictions that we tested empirically. Based on
the empirical results and further model simulations, both
directionalities of attention were equally successful in ac-
commodating the data. However, testing the predictions we
found two new sources of geometric information that affect
acceptability scores of spatial prepositions: relative distance
and center-of-object orientation. Implementing the center-of-
object orientation instead of the center-of-mass orientation,
we proposed two modifications to the computational models
that substantially improved their performance.
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Appendix A. Analyses of the Empirical Data

Appendix A.1. Acceptability Ratings

Table A.1 and A.2 contain the mean über (above, R1–
R5) and unter (below, R6–R10) ratings of all stimuli (see
Figs. 4, 5, 6, and 8 on pages 9, 10, 11, and 12 for visualiza-
tions of individual ratings, RO shapes, and row and column
codings). Note that computing mean ratings assumes that
the raw ratings can be interpreted on a metric scale which is
strictly speaking an incorrect assumption (Liddell & Kruschke,
2018). Given that the cognitive models are fitted to mean
ratings, we nevertheless provide the numbers here (but see
Kluth & Schultheis, 2018, for a model extension).

Appendix A.1.1. Relative Distance: Regression Analysis
Regier (1996) and Regier and Carlson (2001) showed an

effect of the center-of-mass orientation: The higher the de-
viation of the center-of-mass orientation (the imaginary line
connecting the LO with the center-of-mass of the RO) from
a reference direction, the lower the rating. Given this es-
tablished effect, we expected different ratings for the four
rectangles – even without considering the relative distance.
This is because the taller the rectangle, the more the center-of-
mass of the rectangles is moving downwards. Due to this, the

Table A.1. Mean ratings for rectangular ROs (R1–R5: über [above] ratings;
R6–R10: unter [below] ratings). Cells with dashes were occupied by the RO.
Note that this type of data summary assumes that the raw ratings can be in-
terpreted on a metric scale which is strictly speaking an incorrect assumption.
Given that the cognitive models are fitted to mean ratings, we nevertheless
provide the numbers here (but see Kluth & Schultheis, 2018, for a model
extension).

C1 C2 C3 C4 C5 C6 C7 C8

thin rectangle

R1 5.12 7.50 7.79 8.38 8.56 7.97 7.59 5.59
R2 4.59 7.56 7.76 8.21 8.29 7.94 7.68 4.74
R3 3.94 7.50 7.79 8.24 8.50 7.79 7.62 3.79
R4 2.71 — — — — — — 2.88
R5 1.47 — — — — — — 1.38
R6 1.35 — — — — — — 1.74
R7 2.38 — — — — — — 2.12
R8 3.85 7.35 7.71 8.38 8.26 7.76 7.26 3.74
R9 4.62 7.44 7.74 8.21 8.18 7.88 7.47 4.59
R10 5.26 7.18 7.85 8.65 8.24 7.91 7.47 4.79

thick rectangle

R1 5.29 7.50 8.03 8.50 8.59 8.15 7.47 5.47
R2 4.91 7.41 7.79 8.35 8.29 8.15 7.56 5.09
R3 3.71 7.62 7.88 8.32 8.38 8.06 7.68 3.76
R4 2.97 — — — — — — 2.62
R5 1.38 — — — — — — 1.59
R6 1.41 — — — — — — 1.41
R7 2.06 — — — — — — 2.41
R8 3.62 7.32 7.88 8.03 8.21 7.65 7.53 3.41
R9 4.32 7.71 7.94 8.24 8.26 8.00 7.26 4.56
R10 4.82 7.32 7.97 8.41 8.35 7.74 7.56 5.12

square rectangle

R1 5.82 7.50 7.82 8.41 8.38 8.15 7.44 5.47
R2 5.00 7.50 8.12 8.09 8.26 7.82 7.56 5.06
R3 3.97 7.53 7.91 8.03 8.24 7.79 7.56 4.00
R4 2.59 — — — — — — 2.47
R5 1.44 — — — — — — 1.53
R6 1.56 — — — — — — 1.38
R7 2.47 — — — — — — 2.32
R8 3.62 7.38 7.68 8.21 8.44 7.85 7.24 3.74
R9 4.62 7.53 7.71 8.09 8.38 8.06 7.62 4.44
R10 5.12 7.65 7.76 8.44 8.29 7.82 7.74 4.94

tall rectangle

R1 5.62 7.82 8.15 8.50 8.41 8.12 7.41 5.35
R2 4.91 7.38 7.91 8.50 8.44 7.97 7.44 5.03
R3 4.21 7.53 7.91 8.24 8.32 7.91 7.44 3.85
R4 2.65 — — — — — — 2.91
R5 1.41 — — — — — — 1.71
R6 1.53 — — — — — — 1.53
R7 2.26 — — — — — — 2.24
R8 3.62 7.41 7.82 8.21 8.38 7.62 7.41 3.38
R9 4.59 7.41 7.82 8.32 8.41 7.91 7.56 4.79
R10 5.38 7.62 7.82 8.59 8.47 7.88 7.59 4.94
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Table A.2. Mean ratings for asymmetrical ROs (R1–R5: über [above] ratings;
R6–R10: unter [below] ratings). Cells with dashes were occupied by the RO
or its bounding box. Note that this type of data summary assumes that the
raw ratings can be interpreted on a metric scale which is strictly speaking
an incorrect assumption. Given that the cognitive models are fitted to mean
ratings, we nevertheless provide the numbers here (but see Kluth & Schultheis,
2018, for a model extension).

C1 C2 C3 C4 C5 C6 C7 C8

C RO

R1 5.71 7.68 7.91 8.41 8.65 8.18 7.56 5.47
R2 4.88 7.76 7.85 8.47 8.24 7.94 7.53 5.12
R3 3.97 7.62 7.91 8.21 8.12 7.68 7.50 3.79
R4 2.82 — — — — — — 2.38
R5 1.41 — — — — — — 1.41
R6 1.53 — — — — — — 1.50
R7 2.41 — — — — — — 2.32
R8 4.06 7.50 7.76 8.35 8.18 7.56 7.47 4.06
R9 5.06 7.68 7.68 8.29 8.41 7.79 7.50 5.03
R10 5.06 7.56 8.03 8.56 8.56 7.94 7.53 5.38

mC RO

R1 5.35 7.50 7.82 8.32 8.62 8.09 7.71 5.29
R2 5.00 7.56 7.82 8.21 8.50 8.00 7.71 5.26
R3 3.82 7.65 7.50 8.00 8.47 7.79 7.56 4.00
R4 2.91 — — — — — — 2.59
R5 1.50 — — — — — — 1.62
R6 1.53 — — — — — — 1.38
R7 2.24 — — — — — — 2.53
R8 3.65 7.50 7.56 7.91 8.41 7.94 7.71 3.74
R9 5.00 7.26 7.71 8.06 8.41 7.91 7.62 5.12
R10 4.94 7.44 7.62 8.38 8.53 8.12 7.74 5.21

L RO

R1 5.44 7.62 8.18 8.06 8.00 8.06 7.41 5.26
R2 4.76 7.38 7.88 8.18 8.18 7.79 7.82 4.59
R3 3.59 7.59 7.91 8.24 8.21 7.91 7.53 4.00
R4 2.44 — — — — — — 2.41
R5 1.41 — — — — — — 1.50
R6 1.71 — — — — — — 1.18
R7 2.29 — — — — — — 2.53
R8 3.79 7.76 8.03 8.38 8.29 7.76 7.29 3.35
R9 4.06 7.44 8.00 8.15 8.24 7.76 7.53 4.68
R10 5.06 7.47 7.97 8.29 8.38 8.09 7.50 4.97

mL RO

R1 5.38 7.41 7.68 8.18 8.47 7.91 7.62 5.21
R2 4.79 7.56 8.00 8.03 8.38 7.74 7.56 4.94
R3 4.24 7.26 7.56 8.03 8.35 7.59 7.50 3.65
R4 2.71 — — — — — — 2.50
R5 1.47 — — — — — — 1.62
R6 1.44 — — — — — — 1.50
R7 2.21 — — — — — — 2.24
R8 3.71 7.44 7.68 8.12 8.35 7.94 7.68 3.62
R9 4.68 7.35 7.59 8.12 8.32 7.74 7.74 4.47
R10 4.85 7.32 7.68 8.53 8.47 8.12 7.79 5.21

center-of-mass orientations of the LOs above the rectangles
reduce with the height of the RO. Since a lower center-of-mass
orientation should lead to a higher rating, we would expect
to find higher ratings for the taller rectangles compared to
the shorter rectangles. However, we did not find such an
effect (see Figure 3) suggesting that the relative distance in-
fluences the extent to which the center-of-mass orientation
affects acceptability ratings.

To investigate whether the assumption about the role of the
relative distance from the rAVS model are reflected in our em-
pirical data, we used the metric predictor relative distance in
an ordinal regression to predict the ratings. We used equation
1 from the rAVS model to compute the relative distance as the
AVS model provides no explicit definition of relative distance.
Furthermore, the regression model includes the predictors
center-of-mass orientation and proximal orientation (in ra-
dian notation to facilitate model convergence) and allowed
full interactions between all three predictors. We compared
all possible alternative models using these predictors (e.g., not
allowing interactions or removing certain predictors) with the
LOO method to ensure that this most complex model is doing
considerably better on the data than simpler models without
over-fitting. Furthermore, we fitted the same most complex
model to a data subset consisting only of LOs on the “correct”
side of the grazing line (i.e., excluding rows R4–R7). While
the different data sets resulted in different estimated regres-
sion slopes, the qualitative results of both models remained
equal. Therefore, we present the model fitted to our whole
data set for the rectangular ROs. We centered all predictors
around their mean.

The results of the full interaction model can be best un-
derstood by depicting the effects of all three predictors on
the outcome variable as estimated by the regression model.
Figure A.10 plots such visualizations of the same regression
model from different perspectives. Since all predictors are
metric, we needed to keep some predictors constant at dis-
crete levels in order to plot the estimations of the regression
model. In Figure A.10a, we kept the predictor center-of-mass
orientation constant on two levels (cf. colored lines): The
mean center-of-mass orientation for all LOs above/below the
thin (comparably large center-of-mass orientation) and the
tall rectangle (comparably small center-of-mass orientation).
In Figure A.10b, the proximal orientation is held constant on
two levels (cf. subplots in Figure A.10b): the mean proximal
orientation for LOs directly above/below the RO (where the
proximal orientation does not deviate from the reference di-
rection; columns C2–C7, see Figures 4 and 5) and the mean
proximal orientation of LOs in columns C1 and C8 (where the
proximal orientation does deviate from the reference direc-
tion). For all plots, we kept the value of the predictor relative
distance constant on four levels (cf. subplots in Figure A.10a
and colored lines in Figure A.10b): the mean relative distance
for all LOs above/below one of the four rectangles (with lower
relative distance for taller rectangles). All y-axes denote the
predicted variable acceptability rating.12

12A caveat: In the plots, ratings are considered to be continuous, which is
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(a). Center-of-mass orientation is kept constant at its mean values for the
thin and the tall rectangle (black or yellow lines). Proximal orientation does
not change with the type of rectangle.

(b). Proximal orientation is kept constant at two levels: mean proximal
orientation for LOs in columns C2–C7 (left subplot) and mean for LOs in
columns C1 & C8 (right subplot).

Fig. A.10. Effects (and interactions) of relative distance, center-of-mass
orientation, and proximal orientation on rating as estimated by an ordinal
regression model using the data from the rectangular ROs. Panel (a) keeps
the center-of-mass orientation constant at two levels, panel (b) keeps the
proximal orientation constant at two levels. For both panels, relative distance
is held constant at four levels (its mean value for each of the four rectangular
ROs). Black bars at the bottom of each plot depict the values of the corre-
sponding predictor tested in the experiment (in the given condition). Shaded
areas denote 95% credible intervals of the estimate. For convenience, these
plots assume the outcome (rating) to be metric which is not how they are
treated by the regression model. Hence, these plots should only be used to
intuitively grasp the effects and interactions of the different predictors on
the outcome.

Our main interest was in whether the relative distance
affected the strength of the center-of-mass or proximal ori-
entation. Across all four subplots in Figure A.10a, higher
proximal orientation correlates with lower ratings (cf. neg-
ative slopes). However, this (expected) effect of proximal
orientation reduces with decreasing relative distance as re-
vealed by steeper slopes for high relative distance (thinner
rectangles; e.g., top left subplot) compared to low relative
distance (taller rectangles; e.g., bottom right subplot). This
is to say that the smaller the relative distance, the lower the

not a valid assumption for the underlying ordinal regression. Nevertheless,
the plots illustrate the impact of the predictors on the magnitude of the rating.

influence of proximal orientation on ratings.
In all subplots of Figure A.10a, the two colored lines of

center-of-mass orientation cross each other due to their dif-
ferent slopes (the yellow line is steeper than the black line).
This means that for small center-of-mass orientations (tall
rectangle, yellow line), the proximal orientation has a greater
influence than it has for large center-of-mass orientations
(thin rectangle, black line). This effect on the influence of
proximal orientation is less pronounced than the effect of
relative distance while it goes in the opposite direction: While
lower relative distance (i.e., taller rectangles) co-occurs with
lower influence of proximal orientation (less steep slopes com-
pared to higher relative distance, cf. subplots in Figure A.10a),
lower center-of-mass orientations (again for taller rectangles)
strengthen the impact of proximal orientation (steeper slopes
than for higher center-of-mass orientations, cf. colored lines
in Figure A.10a).

Figure A.10b keeps the proximal orientation constant
and allows to analyze the effect of center-of-mass orienta-
tion on acceptability rating more closely. For LOs directly
above/below the rectangles (columns C2–C7, see left subplot
of Figure A.10b), the proximal orientation does not deviate
from the reference direction. For these LOs, participants gen-
erally gave high ratings and the center-of-mass orientation
shows the expected effect: Higher center-of-mass orienta-
tion correlates with lower ratings (negative slope). Different
relative distances do not change this influence of the center-
of-mass orientation (all four colored lines overlap). For LOs
placed in columns C1 or C8, this picture changes drastically
(right subplot of Figure A.10b). For these LOs, the proximal
orientation does deviate from the reference direction and
overall our participants rated these LOs considerably lower
than LOs in columns C2–C7. More interestingly, however, is
that for these LOs the effect of the center-of-mass orientation
is reversed: The larger the center-of-mass orientation, the
higher the rating (positive slopes in the right subplot of Fig-
ure A.10b). Moreover, relative distance affects the reversed
influence of the center-of-mass orientation: The larger the
relative distance (i.e., the thinner the rectangle), the lower
are the ratings for high center-of-mass orientations (in the
right subplot of Figure A.10b: steeper slopes and lower values
for large relative distances, i.e., thinner rectangles, compared
to small relative distances, i.e., taller rectangles).

Appendix A.2. Asymmetrical ROs: Center-of-Object Orientation

As another test of our suggestion that people rely on the
center-of-object orientation we compared ratings for LOs that
share the same center-of-object orientation on average. For
this comparison, we split the ratings for the asymmetrical ROs
in two subsets: ratings for LOs to the left of the center-of-
object (columns C1–C4) and ratings for LOs to the right of
the center-of-object (columns C5–C8). Then, we predicted
the rating based on the location of the LO (left or right). If
people use the center-of-object orientation, we should find
equal ratings for these subsets. Using the default prior for
the slope coefficient, the posterior distribution of the model
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confirms that there is no difference in ratings for LOs on the
left or on the right side (βri ght = 0.05, 95% CI [−0.03, 0.13]).

However, since we balanced the side of the cavity in our
asymmetrical ROs to control for a possible left-right bias, the
previous analysis collapsed across the influence of the location
of the “mass” side of the RO. So, our next analysis predicted
rating based on whether the LO was on the side of the center-
of-mass (i.e., columns C1–C4 for ROs L and C and columns
C5–C8 for ROs mC and mL). Here, we found a credible but
small influence of the distribution of mass. LOs on the same
side as the center-of-mass received higher ratings than LOs
on the opposite side (βCoMSide = 0.10, 95% CI [0.02,0.18],
default priors). More precisely, the regression model assigns
a 2% higher probability for ratings 8 and 9 if the LOs were on
the side of the center-of-mass than for LOs on the other side.
This is to say that the distribution of mass has an effect on the
ratings but it is certainly not as high as would be expected if
people rely only on the center-of-mass orientation.

Appendix A.2.1. Replication: Über Versus Unter
Researchers reported lower acceptability ratings for infe-

rior prepositions (below, under) compared to superior prepo-
sitions (above, over; e.g., Burigo & Coventry, 2005; Burigo et
al., 2016; Carlson & Logan, 2001). These studies presented
data from English native speakers, whereas our study was
conducted with German native speakers. We were interested
to what extent the reported effect generalizes to the corre-
sponding German prepositions über and unter.

Burigo et al. (2016) used acceptability rating studies with
the same rating scale as in our study. Their main interest
concerned other aspects of spatial language processing but
they also found significantly lower ratings for the prepositions
below/under compared to ratings for above/over. We used
their data to estimate µ = −0.11 for the prior distribution
of the slope parameter in the regression on our data. Since
we used a Gaussian distribution as prior distribution, we also
needed to specify a standard deviation. The studies that
informed our prior were conducted in English but our study
was done in German, so we specified a rather large standard
deviation of 0.2. This gives considerable amount of probability
for values of the slope being 0.0 or even positive (denoting a
reversed effect) which reflects our uncertainty whether the
effect found for English is also present for German.

Running this model, we obtained a 95% credible interval
of the posterior distribution for the preposition slope ranging
from −0.115 to −0.001 with a mean of −0.058. That is, the
slope is with 95% probability below zero, which means that
participants in our study gave lower ratings for unter than for
über. The regression model can be used to further quantify
this statement by reporting the probabilities of each rating
dependent on the preposition: The rating 9 was chosen with
1% more probability if the preposition was über compared to
unter. This is a very small effect (as could be already seen in
the small magnitude of the slope) but roughly in the same mag-
nitude as that reported in previous literature. Taking a more
conservative standpoint, we ran the same model again with
the default prior as implemented in the brms package. This

default prior is meant to be non-informative. The 95% cred-
ible interval of this model ranges from [−0.1162,−0.0002]
with a mean of −0.0574. Note that the upper boundary of
the credible interval is closer to zero compared to the first
model due to the non-informative prior. Still, the interval
does not contain 0.0, suggesting lower ratings for unter than
for über. Again, the probability of rating 9 is 1% higher for
über compared to unter. Accordingly, our study generalizes
the effect that superior prepositions are rated higher than
inferior prepositions from English prepositions to German
prepositions.

Appendix A.2.2. Replication: Grazing Line Effect
Regier and Carlson (2001) reported that LOs above the

grazing line are rated significantly higher than points below
or on the grazing line (for above; vice versa for below). The
grazing line is the imaginary line that touches the top (or
bottom for below) of the RO. For über (above), we compared
the ratings for the four LOs below or on the grazing line (rows
R4 and R5) with the ratings for the four LOs above the grazing
line (rows R2 and R3, columns C1 and C8) across all ROs (see
Figures 4, 5, 6, and 8). For unter (below), we compared the
ratings for the four LOs above or on the grazing line (rows R6
and R7) with the ratings for the four LOs below the grazing
line (rows R8 and R9, columns C1 and C8) across all ROs. We
predicted rating as a function of being on the corresponding
side of the grazing line (i.e., above the line for über, above;
below the line for unter, below) or on the non-corresponding
side (below or on the line for über, above; above or on the
line for unter, below). Based on the summary statistics of
the grazing line effects in exp. 5 and 6 reported in Regier
and Carlson (2001), we specified a Gaussian distribution with
µ = 3.7 and σ = 3.0 as an informed prior distribution for the
slope parameter of the model. This prior distribution reflects
our knowledge about the grazing line effect while having a
fairly high σ value due to the methodological difficulties of
using mean differences of ratings as a prior for an ordinal
regression. The posterior distribution of the slope, however,
is quite peaky and narrow around its mean of 3.49 with a
95% credible interval ranging from 3.34 to 3.65. For LOs on
the non-corresponding side of the grazing line (rows R4–R7),
rating 1 has a 41% higher probability than it has for LOs on
the corresponding side of the grazing line. Clearly, people
more often used rating 1 for LOs on the non-corresponding
side compared to LOs on the corresponding side. Running
the same model using the default non-informative priors only
slightly changes the estimates but not the general qualitative
outcome. This replicates the effect reported by Regier and
Carlson (2001).

Appendix A.3. Eye Movements

Eye movement data are in particular interesting, as they
add another empirical measure (apart from ratings) that could
be used to benchmark the AVS and the rAVS model. Eyes were
only tracked during the picture display but not during the
display of the sentence. Since we recorded eye movements
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Fig. A.11. Heatmaps of relative fixations in the bounding boxes of all ROs grouped by column of the presented LO and preposition. A relative location of 0.0
corresponds to the left side (x coordinate) or the bottom (y coordinate) of each RO, a 1.0 to the right side (x coordinate) or the top (y coordinate). Darker
color means more fixations (see legend). We included only fixations starting later than 150 ms after display onset.

after the participants read the sentence, we cannot directly
link the fixations to the processing of the spatial prepositions
in terms of movements of attention during spatial language
understanding. However, we can investigate how people in-
spect a scene in order to verify whether it matches the spatial
utterance. More precisely, we were interested in whether peo-
ple fixate one specific point more than other points of the RO:
the attentional focus as defined in the AVS model. The rAVS
model also bases its computation on this point. We are only
aware of Carlson et al. (2006) who also explicitly link assump-
tions about attentional allocation in AVS-like models to overt
attentional behavior. Our second analysis contrasted fixations
to the center-of-mass or center-of-object of the asymmetrical
ROs.

Data Set. Since many of the fixations before 150 ms landed
close to the center-of-mass of the RO (a region we were es-
pecially interested in) and the planning of a saccade takes
approximately 200 ms (Matin, Shao, & Boff, 1993, cited in
Tanenhaus, Spivey Knowlton, Eberhard, & Sedivy, 1995), we
analyzed only fixations that started 150 ms after the presen-
tation of the RO.

This leaves us with 53 718 fixations (per subject M =
1579.94, SD = 688.76; per trial and subject M = 3.53,
SD = 2.82). Out of these 53 718 fixations, ca. 46% landed
close to the current LO (i.e., within a ca. 1.82 degrees of visual
angle or 90 pixel wide square centered at the LO) and ca. 21%

landed inside the bounding box of the RO.13 Since our LOs
were rather small we cannot investigate any differences in
fixations inside the LO. Our ROs, however, were considerably
larger, allowing us to explore the looking behavior over their
surface. In the following, we focus on the fixations inside the
bounding boxes of the ROs.

Attentional Focus from the AVS Model. The AVS model defines
the attentional focus to be the point at the top of the RO that is
vertically aligned with the LO (for above; for below, the focus
lies on the corresponding point at the bottom of the RO). Due
to our experimental design, however, we cannot analyze the
vertical component of the assumed attentional focus. This is
because we placed no LO below the RO for über (above; and
no LO above the RO for unter, below). The worst example
for every preposition was just below (or above) the top (or
bottom) of the RO (rows R5–R8). These LOs, however, were
still quite close to the top (or bottom) of the RO. Although we
found a strong preference to look at the top of the RO for über
(above; and at the bottom for unter, below), we cannot reliably
tell if this difference in fixation locations actually originates
from the used preposition or from the location of the LO.

13Note that the LOs in the rows R3–R8 were only ca. 0.3 degrees of visual
angle (15 pixels) away from the RO and the precision of the eye tracker is of
similar magnitude. Thus, some fixations for these trials were counted twice
for the proportions: close to the LO and inside the bounding box of an RO.
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Fig. A.12. Horizontal component of relative locations of fixations in the
bounding boxes of the ROs plotted by column of the LO. A relative location
of 0.0 corresponds to the left side of the RO, a 1.0 to the right side. The
wider the distribution, the more fixations. The line is a regression lines for
predicting the relative location of fixation based on the horizontal location
of the LO (R2 = 0.67). We included only fixations starting later than 150 ms
after display onset.

Accordingly, we just present an analysis of the horizontal
component of the assumed attentional focus: a point on the
RO that is vertically aligned with the location of the LO. In
Figure A.11 we plotted heatmaps of all fixations inside the
bounding boxes of all ROs – grouped by preposition and by the
column of the LO. Fixations are coded relative to the bounding
box of the RO: 0.0 means the left (or bottom) of the bounding
box, 1.0 means the right (or top). The heatmaps show that
the horizontal location of the fixations corresponds to the
horizontal location of the LO. Figure A.12 shows only the
horizontal component of all fixations grouped by the column
of the LO that was shown during that trial. The wider the
distribution for each group in Figure A.12, the more fixations
were counted at that location. To investigate whether our
participants fixated close to a vertically aligned point, we ran
a linear regression asking whether the horizontal location
of the LO (i.e., the column of the LO) predicts the relative
x-coordinate of the fixations in the bounding box of the RO.
We plotted the regression line with an R2 = 0.67 on top of the
data in Figure A.12. It can be seen that the horizontal location
of the LO is a good predictor of the horizontal location of the
fixations in the RO. This means that if the LO was shown on
the left side of the screen, our participants fixated the left side
of the RO more often than the right side. If the LO was shown
on the right side of the screen, however, they fixated more on
the right side of the RO (and respectively for the middle of
the screen).

Using the x-coordinate of the LO as (centered and scaled)
metric predictor instead of the categorical predictor LO-
column, we specified a Bayesian regression model to pre-
dict the horizontal component of the relative fixation. The
posterior distribution of this regression model supports our
previous observation: The x-coordinate of the LO did reliably
affect the horizontal fixation location (βLOx

= 0.241, 95%
CI [0.237,0.245]). To exclude the possibility that fixations
to LOs close to the RO were falsely classified as fixations on

the RO, we ran a second regression model that excluded fix-
ations from trials with such LOs (i.e., we excluded all trials
with LOs in rows R3–R8). This regression model resulted in
a slightly lower estimate for the regression coefficient while
replicating the general observation (βLOx

= 0.203, 95% CI
[0.196,0.210]).

Taken together, we found that our participants fixated loca-
tions on the RO that were vertically aligned with the LO. Such
a location corresponds to the horizontal component of the
attentional focus defined in the AVS that also plays a crucial
role in the rAVS model. This provides empirical support for
assumptions of attentional allocation made in both models.

Center-of-Mass Versus Center-of-Object. Considering the un-
expected finding in the analysis of the acceptability ratings
suggesting that our participants relied more on the center-of-
object orientation instead of on the center-of-mass orientation,
we were interested whether we can see a similar preference
for any of the two centers in the fixation data.

To contrast the number of fixations to either the center-of-
mass or the center-of-object for the asymmetrical ROs, we de-
fined ca. 1.01 degrees of visual angle (50 pixel) wide squared
areas of interest, one around each of the two centers. That
is, we counted the number of fixations that were not farther
away than ca. 0.51 degrees of visual angle (25 pixels) in ei-
ther direction from either center. The number of fixations
that landed close to one of the two centers can be found in
Table A.3, collapsed over the used preposition.

First of all, we note that not many fixations landed in the
two areas. Out of 6 193 fixations inside the bounding box of
the asymmetrical ROs in total, only 200 (∼ 3%) were close
to one of the two centers. For the two L-shaped ROs there is
a clear bias towards the center-of-mass (more than 85% of
the fixations close to any of the two centers landed near the
center-of-mass). This bias can be explained by the fact that
for the L-shaped ROs the center-of-mass lies closer to the top
or bottom of the RO than the center-of-object (see Figure 8,
page 12). We already established that people fixate the top
or bottom of the RO more than other parts of the RO, so it
is no surprise that people also fixate a region closer to this
attractor more.

The locations of the two centers for the C-shaped ROs,
however, share the same y-coordinate. This means that both
centers have the same distance to both the top and the bottom
of the RO and the number of fixations close to the centers
should not be influenced by the fact that people mostly fixate
the top or bottom of the RO. Indeed, the number of fixations
at the C-shaped ROs show a different picture (see Table A.3).
Despite the fact that the center-of-mass is inside the RO and
the center-of-object is outside the RO (but inside the bounding
box of the RO), we see more fixations close to the center-of-
object than to the center-of-mass.

To overcome the problem with the different vertical loca-
tions of the two centers for the L-shaped ROs and in order to
draw on a greater subset of fixations, we analyzed whether
our participants had a general bias to look more on the left or
on the right side of the RO. To do this, we compared the num-
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Table A.3. Absolute and relative number of fixations in a ca. 1.01 degrees
of visual angle (50 pixel) wide square centered at the center-of-object or
center-of-mass of the RO.

C mC L mL

center-of-mass 15 27 53 34
34.1% 47.4% 86.9% 89.5%

center-of-object 29 30 8 4
65.9% 52.6% 13.1% 10.5%

Table A.4. Absolute and relative number of fixations inside the bounding
boxes of the ROs split by left or right landing positions.

left right

thin 508 51.9% 471 48.1%
thick 618 51.7% 577 48.3%
square 699 49.8% 705 50.2%
tall 785 50.3% 777 49.7%

C 810 48.0% 879 52.0%
mC 814 48.9% 851 51.1%
L 876 60.2% 579 39.8%
mL 573 41.4 % 810 58.6%

ber of fixations that landed on the left side of the RO (relative
x-coordinate smaller than 0.5) with the number of fixations
that landed on the right side of the RO (relative x-coordinate
greater than 0.5). We ignored fixations that were directly in
the middle of the RO (relative x-coordinate of fixations equals
0.5, this affected only 3 fixations).

The upper part of Table A.4 shows the number of fixations
for the rectangular ROs. Fixations to these ROs provide a
baseline, as they are not asymmetric. Accordingly, we ex-
pected no bias to look at either side of the RO (apart from a
potential general left-right bias in looking behavior). Indeed,
our participants did not prefer either side of the rectangu-
lar ROs. The lower part of Table A.4 shows the number of
fixations on either the left or the right side for the four asym-
metrical ROs. Here, the data seem to provide no evidence
for a left-right bias for the C-shaped ROs. Both sides of the
C RO and the mC RO are fixated to an equal amount – de-
spite the asymmetrical distribution of mass in the C-shaped
ROs. In particular, this means that fixations are not biased
to the location of the center-of-mass. People seem to look
differently at the L-shaped ROs, though. For the L RO, the
proportions of fixations suggest a preference to the left side
and for the mL RO, a preference to the right side of the RO. On
both preferred sides the center-of-mass of the RO is located.
That is, our participants preferred to look in the direction
of the center-of-mass compared to the center-of-object for
the L-shaped ROs. Apparently, the more open shape of the
L-shaped ROs leads to a different pattern of fixations.

To statistically support these observations, we ran a
Bayesian regression model that predicted the relative x-
coordinate of fixations as a function of the RO. This regression

model supports our interpretation of the proportions shown
in Table A.4. The predicted average horizontal fixation lo-
cation for the thin rectangle (the intercept of the regression
model) is not credibly different from 0.5 (βthin = 0.49, 95%
CI [0.47, 0.51]) indicating no preference for either side of this
RO. None of the regression coefficients for the other rectan-
gular ROs (coding for different fixation locations compared
to the thin rectangle) is credibly different from zero mean-
ing no preferred side of fixations for any of the rectangular
ROs (βthick = −0.01, 95% CI [−0.04,0.01], βsquare = 0.01,
95% CI [−0.02,0.03], βtal l = 0.00, 95% CI [−0.02,0.03]).
More interestingly, the regression coefficients for the C and
mC ROs do also not differ credibly from zero (βC = 0.01,
95% CI [−0.01,0.04], βmC = 0.01, 95% CI [−0.01,0.03]).
This indicates that our participants looked at these C-shaped
ROs like they were rectangles, i.e., like they had no cavi-
ties. By contrast, both regression coefficients for the L-shaped
ROs were credibly different from zero (βL = −0.05, 95% CI
[−0.07,−0.02], βmL = 0.06, 95% CI [0.03,0.08]). The sign
of these regression coefficients corresponds to the location
of the “leg” of the L-shaped ROs. That is, for the L-shaped
ROs, our participants looked more on the side of the RO with
a greater amount of mass (the side where the center-of-mass
is located).

Appendix A.3.1. Discussion: Eye Movements

We found that the horizontal component of participant’s
fixations matched the horizontal component of the assumed
point F of maximal attention (as defined in the AVS model
and as used in the rAVS model). This supports the assump-
tions about allocation of attention in both models and thus
strengthens the linking hypothesis of attention as used in the
model and overt attention as measured by an eye-tracker. Fi-
nally, we found different looking behaviors when comparing
the C-shaped ROs with the L-shaped ROs. Our participants
fixated the C-shaped ROs as if they were rectangles, while
they fixated the “legs” of the L-shaped ROs more than the cav-
ities, i.e., the asymmetry of the L-shaped ROs was reflected
in the fixations. The fixation pattern for the L-shaped ROs
(reflecting the asymmetrical distribution of mass) is in line
with the prominent role of the center-of-mass for perceptual
and saccadic localization (e.g., Desanghere & Marotta, 2015;
Melcher & Kowler, 1999; Nuthmann & Henderson, 2010;
Vishwanath & Kowler, 2003; note that Melcher & Kowler,
1999, found that the center-of-mass of the abstract shape was
preferred even if the visible density of points making up the
shapes was manipulated). In contrast, the fixation pattern for
the C-shaped ROs (ignoring the asymmetrical distribution of
mass) highlights the influence of the particular task on looking
behavior (cf. discussion in Vishwanath & Kowler, 2003, who
speculate about the role of reference frames and spatial pool-
ing processes similar to the vector sum; see also discussion
in Melcher & Kowler, 1999). Future research should more
precisely identify how linguistic tasks affect preferred fixation
locations.
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Appendix A.4. Reaction Times

All regression models that we used to analyze reaction
times used an exponentially modified Gaussian distribution
as response distribution – a common choice for modeling
reaction times (Dawson, 1988; Van Zandt, 2000). Note that
our task was self-paced and we did not ask participants to
respond as quickly as possible. Thus, we did not expect large
differences in reaction times.

Replication: Über Versus Unter. Researchers have reported
shorter reaction times for above compared to below (e.g., Carl-
son & Logan, 2001, note 1). We were interested, whether
this effect generalizes to German (quicker responses for über
compared to unter). To analyze this, we specified a regression
model that predicted reaction time from preposition. Our
participants responded slightly more quickly to über trials
(mean = 1857.73 ms) than to unter trials (mean = 1873.34
ms) as revealed by the regression coefficient for preposition
that is credibly different from 0 (βunter = 17.40, 95% CI
[4.76,29.61]). These results generalize the effect that peo-
ple respond faster to superior prepositions than to inferior
prepositions from English to German.

Rows. A second analysis predicted reaction time as a function
of the row of the LO. Compared to reaction times for LOs in
row R1 (the top row; mean = 1821.72 ms), we found credibly
longer reaction times for LOs in rows R4–R7 (βR4 = 192.28,
95% CI [149.25,234.71], MR4 = 2360.34 ms;βR5 = 57.42,
95% CI [16.65, 98.44], MR5 = 2100.58 ms;βR6 = 48.55, 95%
CI [6.65,89.32], MR6 = 1953.16 ms;βR7 = 158.88, 95%
CI [115.89,200.74], MR7 = 2325.54 ms) as well as slightly
shorter reaction times for row R2 (βR2 = −24.59, 95% CI
[−48.91,−0.06], MR2 = 1800.72 ms). In particular the longer
reaction times for row R4–R7 can be readily explained by the
location of the LOs: All LOs in these rows are either on the
grazing line (see Appendix A.2.2) or on the side of the graz-
ing line that does not correspond with the preposition people
should rate.

Columns. With the next regression model, we predicted
reaction time as a function of the column of the LO. Compared
to LOs in column C1 (mean= 2260.64 ms), people responded
faster to the LOs in columns C2–C7 (βC2 = −220.85, 95%
CI [−247.56,−194.37], MC2 = 1762.72 ms;βC3 = −242.25,
95% CI [−269.58,−215.79], MC3 = 1646.78 ms;βC4 =
−283.33, 95% CI [−309.96,−257.15], MC4 =
1559.70 ms;βC5 = −286.06, 95% CI
[−313.23,−259.60], MC5 = 1547.57 ms;βC6 = −261.47,
95% CI [−288.38,−234.76], MC6 = 1653.74 ms;βC7 =
−202.07, 95% CI [−228.11,−175.59], MC7 = 1759.41 ms)
but not to LOs in column C8 (βC8 = −4.09, 95% CI
[−26.52,18.21], MC8 = 2228.42 ms). That is, our partici-
pants were quicker to rate LOs with non-deviating proximal
orientation (columns C2–C7) compared to LOs with a
proximal orientation greater than 0 (columns C1 & C8).

Appendix B. Model Simulations

Appendix B.1. Fitting Algorithm and Parameter Ranges

The Root Mean Square Error (RMSE) is defined as follows

RMSE =

√

√

√1
n

n
∑

i

(datai −modelOutput i)2 (B.1)

The upper limit of the RMSE depends on the range of the
underlying data. Due to the rating scale we used in our exper-
iment (from 1–9), the worst value of an RMSE for our data
would be 8.0 (e.g., if all participants rated everything with a 9
but the model computes only 1s). Other studies used different
rating scales and therefore also the worst value of the RMSE
shifts. Regier and Carlson (2001) for instance used a rating
scale from 0 to 9 which results in the worst possible RMSE
value of 9.0. To be able to compare RMSE values through-
out different rating studies we applied the normalized RMSE
(nRMSE), defined as:

nRMSE =
RMSE

ratingmax − rat ingmin
(B.2)

The nRMSE always produces a value between 0.0 and 1.0
(with 0.0 being the best and 1.0 being the worst value). In
order to find the lowest nRMSEs, we applied a parameter es-
timation technique known as simulated annealing, a variant
of the Metropolis algorithm (Metropolis, Rosenbluth, Rosen-
bluth, Teller, & Teller, 1953).

Model Parameters. The AVS model has four free model param-
eters: λ (controls the width of the attentional distribution),
slope and intercept (qualifying the linear mapping of angular
deviation to acceptability score), and highgain (modifying
the angular component as a function of vertical LO-to-RO
position).

The rAVS model has four free parameters of which three are
the same as in the AVS model (slope, intercept, highgain).
However, the rAVS model does not use the λ parameter (Kluth,
Burigo, & Knoeferle, 2017, p. 290). Instead it qualifies the
strength of the effect of the relative distance on the vector
direction with its parameter α. We used the following ranges
for the model parameters:

−1
45
≤ slope ≤ 0 (B.3)

0.7≤ intercept ≤ 1.3 (B.4)

0≤ highgain≤ 10 (B.5)

0.001≤ λ≤ 5 (B.6)

0.001≤ α≤ 5 (B.7)

Appendix B.2. Parameter Space Partitioning (PSP)

Method. To quantify the range of qualitatively different model
predictions, we simulated the models using the Parameter
Space Partitioning (PSP) algorithm developed by Pitt et al.
(2006). The main idea of the PSP is the following: Given the
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stimuli under consideration (see Figure 2), enumerate all pos-
sible model tokens (a model with a fixed set of parameters, cf.
Wagenmakers et al., 2004), simulate all these model tokens
and categorize the different outputs of the model into qual-
itatively different output patterns (i.e., model predictions).
The PSP algorithm estimates the volumes that these model
predictions cover in the parameter space. Internally, the PSP
algorithm is a Markov Chain Monte Carlo (MCMC) approach
(which makes it faster than a naïve complete enumeration of
the parameter space; for more details about the algorithm see
Kim, Navarro, Pitt, & Myung, 2004 and Pitt et al., 2006).

We slightly changed the MATLAB implementation made
available by Pitt et al. (2006) under http://faculty
.psy.ohio-state.edu/myung/personal/psp.html in
order to be able to use it with GNU octave (Eaton et al.,
2015). As input for the models, we used the stimuli in Fig-
ure 2. To increase the reliability of the measurement, we
added more LOs above each RO (28 LOs for the rectangular
ROs, 12 LOs for the asymmetrical RO) and contrasted mean
ratings. If the mean rating for the thin rectangle was lower
than for the tall rectangle, we coded this as “-”. If LOs above
the thin rectangle were rated higher than LOs above the tall
rectangle, we coded this as “+”. If LOs above both rectangles
got the same ratings, we coded this as “0”. For the test case
with the asymmetrical ROs, we compared the mean ratings for
6 LOs placed to the left of center-of-mass of the L-shaped RO
with 6 LOs placed to the right of the center-of-mass. We used
the same coding for this comparison with “-” meaning lower
ratings for LOs on the left side compared to the right side, “+”
meaning higher ratings for left LOs and “0” meaning equal
ratings. Since we have two test cases for predictions (rela-
tive distance case and asymmetrical ROs case), we obtained
a two-digit code. The first digit codes the relative distance
test case and the second digit codes the test case with the
asymmetrical ROs. We defined two thresholds te for equality
of ratings (informed by significant mean differences in spatial
language acceptability ratings reported by Burigo et al., 2016;
Carlson-Radvansky, Covey, & Lattanzi, 1999; Hörberg, 2008;
Regier & Carlson, 2001). If two mean ratings differ by less
than te = {0.1, 0.5} they are considered to be equal. In these
simulations, the rating scale used by the models ranged from
1.0 to 9.0 (matching the rating scale applied in our empirical
study).

Appendix B.2.1. PSP Results: AVS and rAVS Models
We ran the PSP algorithm three times for every thresh-

old te and report the mean estimates of relative volume that
every generated pattern covers in the parameter space in Fig-
ure B.13. Let us focus on the results for the rAVS model first.
Remember that the rAVS model “intuitively” predicts lower
ratings for the thin rectangle compared to the tall rectangle
(this would be coded as “-”) and no differences in ratings for
LOs to the left or to the right of the center-of-mass for the
asymmetrical RO (coded as a “0”). This predicted pattern
“-0” is produced in almost 80% of the cases for the equality
threshold te = 0.5 (see Figure B.13b) and in almost 95% of
the cases for te = 0.1 (see Figure B.13a). The rAVS model gen-
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(a). PSP results for equality of rating te = 0.1.
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(b). PSP results for equality of rating te = 0.5.

Fig. B.13. Results of the PSP analysis: Relative volume estimates of qualita-
tively different rating patterns in the parameter space. The first digit codes
the difference in ratings for LOs above the thin rectangle compared to LOs
above the tall rectangle, the second digit codes for differences in ratings for
LOs to the left of the center-of-mass of the L-shaped RO compared to LOs
to the right of the center-of-mass (see Figure 2). Two mean ratings were
considered equal if they differed less than (a) te = 0.1 or (b) te = 0.5. The
means of three PSP runs are plotted.

erates only one other pattern, the pattern “00”. This second
pattern means that the rAVS model is also able to compute
equal ratings for the relative distance condition. This equality
can be explained by the role of the rAVS’s α parameter: The
smaller the value of α, the smaller the influence of the relative
distance. A small α leads to equal ratings, if the influence
of the relative distance is smaller than the chosen equality
threshold te. Accordingly, the volume of this pattern increases
with an increasing threshold of equality te which is reasonable
as ratings that are considered different for a lower threshold
are considered equal for a higher threshold.

Our previous discussion about the intuitive predictions gen-
erated by the AVS model can be summarized in the code “?+”:
an unclear prediction for the relative distance test case and
higher ratings for LOs that are on the side of the center-of-
mass where more mass is located (the left side for the RO in
Figure 2b). Interestingly, the PSP algorithm does not reveal
any parameter set that enables the AVS model to generate
a pattern of ratings that we had expected (no “+” as second
digit). In contrast, the AVS model is able to compute the op-
posite rating pattern for the asymmetrical RO: a higher rating
for the LO that is on the side of the center-of-mass where
the cavity is located (i.e., to the right for our stimulus). This
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pattern (a “-” as second digit, i.e., patterns “- -” and “0-”)
emerges for more than 65% of the parameter sets for the lower
threshold te = 0.1 (see Figure B.13a). However, it almost
disappears for te = 0.5 (less than 4%; see Figure B.13b). This
suggests that the AVS predicts only a slightly higher rating
(less than 0.1) for the right LO (above the cavity of the RO)
compared to the left LO.

Due to the flexibility of the vector sum in the AVS model,
it was unclear what the “intuitive” prediction for the relative
distance test case was. The results of the PSP analysis provide
evidence for a prediction that overlaps with the prediction
from the rAVS model: lower ratings for LOs above the thin
rectangle compared to LOs above the tall rectangle (patterns
“--” and “-0”). In contrast to the rAVS model, parameter
sets that predict no difference for the two test cases (pattern
“00”) occupy more volume in the parameter space of the AVS
model.

Taken together, the AVS model is more flexible than the
rAVS model because it generates a larger number of distinct
patterns (four against two generated patterns out of 32 = 9
theoretically possible patterns for te = 0.1 and te = 0.5).
Moreover, the rAVS model explicitly uses relative distance in
its formulation which makes it easier to reason with the model
in an intuitive way. The AVS model, on the other hand, makes
the same predictions (to some extent) without explicitly using
relative distance. One explanation could be that the vector
sum implicitly incorporates the use of relative distance.

Appendix B.2.2. PSP Results: AVS-BB and rAVS-CoO Models
We conducted a second PSP analysis with the same settings

as before (see Appendix B.2) for our newly proposed models
AVS-BB and rAVS-CoO. Since we designed these new models to
consider the center-of-object orientation instead of the center-
of-mass orientation, we expected them to rate the LOs that
are more central with respect to the center-of-object of the L-
shaped RO (columns C4–C5, see Figure 8 on page 12) higher
than the LOs that are less central but that have equal center-
of-mass orientations (columns C2–C3). This corresponds to a
negative second digit in the two-digit code that we introduced
in the earlier PSP analysis. Looking at the PSP results for
the AVS-BB and the rAVS-CoO models shown in Figure B.13,
we find this expectation confirmed. For the rating equality
threshold te = 0.1 (Figure B.13a), both models generate such
rating patterns (“--” and “0-”) for more than 80% of their
parameter spaces. For te = 0.5 (Figure B.13b), the volumes
of these patterns decrease but still cover more than 60% of
their parameter spaces.

Next, we note that the AVS-BB model is slightly more flex-
ible than the rAVS-CoO model in terms of the number of
generated data patterns: Out of 32 = 9 possible data patterns,
the AVS-BB model generates four while the rAVS-CoO model
only generates three patterns. However, the additional data
pattern generated by the AVS-BB model (“0-”) is the empiri-
cal rating pattern (no difference in ratings across rectangular
ROs and higher ratings for more central LOs compared to
less central LOs above asymmetrical ROs). While this favors
the AVS-BB model over the rAVS-CoO model (which does

not generate the empirical pattern at all), we note that (i)
the AVS-BB model generates the empirical pattern not as a
main prediction (it is generated with comparably few param-
eter sets only: ca. 6% of the parameter space for te = 0.1
and ca. 15% for te = 0.5) and (ii) the mechanisms of the
AVS-BB model cannot explain all details of our empirical find-
ings regarding the influence of the relative distance. On the
other hand, the rAVS-CoO model clearly does not capture the
influence of relative distance appropriately due to the prior
misconception of this effect in the rAVS model (and we did not
aim to refine any model to account for the empirical findings).
This explains why the rAVS-CoO model does not generate the
empirical pattern “0-”.

Appendix B.3. Model Flexibility Analysis
The MFA computes an intuitively graspable ratio φ of the

number of model predictions to the number of thinkable data
patterns: φ = number of different model outputs

number of all possible data patterns . A model with a
high MFA ratio can be used to predict almost every observable
data. Such a model is hard to falsify and useless in terms of
explaining cognition (e.g., it might predict more implausible
than plausible data). A model with a low ratio, on the other
hand, tightly constrains the space of predicted data. Such a
model makes strong claims about the task as it cannot produce
a wide range of data that is theoretically possible.

Method. The MFA computes the ratio φ by enumerating the
whole parameter space of a model, i.e., all possible param-
eter settings. Having computed all possible model outputs,
the MFA determines the area of the space covered by these
predictions with respect to all possible data patterns. To do
so, every dimension of the data space is split into intervals.
Veksler et al. (2015) suggest to use n

p

j4 intervals where n is
the dimension of one data pattern (448 for our whole stimuli
set) and j the number of intervals per parameter (we chose
j = 50). If two model predictions fall into the same interval
across all dimensions of the data patterns, they are considered
equal. The number of unequal model predictions is counted
and divided by the number of all intervals (which equals the
number of all computed predictions

�

np504
�n
= 504).

The suggestion by Veksler et al. (2015) to split every dimen-
sion of the data space into np504 leads to approximately 1.04
intervals (for our whole stimuli set). Remember that every
dimension of the data space ranges from 1 to 9 (the rating
scale). Splitting one dimension into 1.04 intervals means that
all ratings from 1 to 8.64 are considered equal (they fall into
the first interval) and all ratings greater than 8.64 are consid-
ered different (they fall into the second interval). Arguably,
this number of intervals is not reasonable because it implies
that most ratings are considered to be equal. To address this
problem, we did not follow the n

p

j4 suggestion by Veksler et
al. (2015) but set the number of intervals to a domain-specific
value (in our case: the range of the rating scale). However,
note that by doing so we define more intervals than we have
model predictions. This means that a φ ratio of 1.0 can never
occur. In order to account for this, we report below the nor-
malized φn =

φ
φmax

by dividing with the highest possible φ
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value (that depends on the dimensions of the stimuli set):
φmax = 504/rat ingRangedataSpaceDimension.

For the parameters, we used the same range as for the other
simulation methods (see equations B.3–B.7). Considering
a recent critique that reported invariances of the MFA for
different parameter ranges (Evans, Howard, Heathcote, &
Brown, 2017), we computed all MFA results a second time
using smaller but still plausible parameter ranges for some
parameters. With one exception, we found higher flexibilities
for these smaller parameter ranges compared to the MFA
results for the greater parameter range. Accordingly, the
absolute φ value should not be interpreted because seemingly
unrelated changes in its computation end up in large absolute
differences. However, the relative rankings of the models
did only change in one case. This is why we think it is still
legitimate to discuss the relative differences in flexibilities as
estimated by the MFA – despite the critique from Evans et al.
(2017). Nevertheless, the MFA results should be interpreted
with caution and related with the outcomes of other methods
that provide different perspectives on model flexibility (e.g.,
PSP or landscaping).

The flexibility of a model varies on the stimuli used as input.
This is why we computed all MFA φs for each model on four
different subsets: our whole stimuli set, only the rectangular
ROs, only the asymmetrical ROs, and the whole stimuli set
from Regier and Carlson (2001).

Results. Figure B.14 plots the MFA φn values. The AVS model
is the most flexible model across almost all stimuli sets (except
for the subset of our stimuli that consists of the rectangular
ROs). The second most flexible model is the rAVS model. This
is consistent with the PSP results reported earlier, where the
AVS model generated more patterns than the rAVS model. A
potential reason for the higher flexibility of the AVS model
compared to the rAVS model is the use of a population of
vectors. Conceptually, the rAVS model also uses a population
of vectors, however, de facto, the rAVS model needs to com-
pute only a single vector for all considered stimuli. This is
because the LO on which the vector sum is rooted in the rAVS
model consists of only one single point (see Kluth, Burigo,
& Knoeferle, 2017, for a more elaborated discussion on this
difference between the AVS model and the rAVS model). How-
ever, since (i) our recomputation of the MFA results using a
smaller parameter range changed the relative ordering of the
AVS and the rAVS model for our whole stimuli set14, (ii) the
rAVS model is also more flexible for the rectangular ROs and
(iii) one should exercise caution in interpreting MFA results
(Evans et al., 2017), our MFA results cannot reliably distin-
guish the AVS and the rAVS model in terms of their flexibility.

Of greater interest in light of our surprising empirical find-
ing that the center-of-object seems to be of greater importance
for spatial language evaluation compared to the center-of-
mass is the fact that both models implementing this finding

14In general, the rAVS model showed a greater increase in flexibility than
the AVS model in these recomputations. A very likely reason for this is
that the α parameter in the rAVS model has a stronger influence on model
flexibility than the λ parameter in the AVS model.
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Fig. B.14. Normalized results of the Model Flexibility Analysis (MFA) com-
puted with 504 model predictions and as many intervals for every dimension
of the data space as there were rating intervals (i.e., 9 for our stimuli, 10 for
stimuli from Regier & Carlson, 2001).

(AVS-BB and rAVS-CoO) are less flexible than their corre-
sponding origins (AVS and rAVS). While this advantage is less
pronounced for the stimuli from Regier and Carlson (2001), it
is stronger for our whole stimuli set and strongest for the sub-
set with the asymmetrical ROs – the data set which motivated
the development of the AVS-BB model and the rAVS-CoO
model in the first place.15

How do the rAVS-CoO model and the AVS-BB model com-
pare to each other with respect to their flexibility? The AVS-BB
model is less flexible for our whole stimuli set but slightly more
flexible for the asymmetrical ROs and the stimuli from Regier
and Carlson (2001). Due to these conflicting differences (that
are also small in the magnitude) and the caution one should
use in interpreting MFA results (Evans et al., 2017), our MFA
simulation results do favor neither the AVS-BB nor the rAVS-
CoO model.

The modified models (AVS-BB and rAVS-CoO) are less flex-
ible than the models they originated from (AVS and rAVS).
Together with the better GOF and SHO results for the AVS-BB
and the rAVS-CoO model (compared to the AVS and rAVS
model), this lower flexibility further supports the overall su-
perior performance of the newly proposed models. However,
we cannot reliably distinguish the models that incorporate a
directionality of attention from the RO to the LO (i.e., AVS
and AVS-BB) from the models that incorporate the reversed
directionality from the LO to the RO (i.e., rAVS and rAVS-CoO)
in terms of their model flexibility.

Appendix B.4. Landscaping

Method. The main idea of landscaping is the following: Given
model input (i.e., ROs and LOs in our case), each model is
used to generate sets of artificial data (i.e., ratings in our case)

15For the rectangular ROs, the two new models have the exact same flexi-
bility as the AVS and the rAVS model. This is because for the rectangular ROs
the center-of-object coincides with the center-of-mass of the RO and hence
the AVS-BB model equals the AVS model and the rAVS-CoO model equals
the rAVS model.
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(b). Model fits to artificial data generated by
the rAVS-CoO model.
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(c). Model fits to artificial data generated by
the AVS-BB model.

Fig. B.15. Landscaping results contrasting the rAVS-CoO model with the AVS-BB model on the asymmetrical ROs (collapsing across über, above, and unter,
below). The asterisks in (b) and (c) depict the fit to the empirical data (cf. GOFs in Figure 9c).

and then both models fit these data. The data-uninformed ver-
sion of the parametric bootstrap cross-fitting method (PBCM,
Wagenmakers et al., 2004) is the same as the landscaping
method except for the fact that in the PBCM no noise is added
to the generated data and the results are plotted in a differ-
ent way. We plot the results of the landscaping analysis in
both ways (histograms for PBCM, landscaping plots for land-
scaping) but follow the landscaping procedure described in
Navarro et al. (2004) which we will briefly explain in the
following paragraph.

To generate artificial data, model parameters are randomly
chosen and the output of each model with these parameters
for the given input is computed. We sampled each parameter
from a uniform distribution over the corresponding entire
parameter range (see equations B.3–B.7). Next, noise is added
to the generated data before both models fit the data. We
added Gaussian noise with a standard deviation of 0.3 to
each generated rating. The magnitude of this noise stems
from the size of the standard error of the mean for our whole
data set. This procedure is repeated several times with both
models acting as the data generating model. We generated
1000 sets of artificial data from each model. Applying the
landscaping method, we contrasted the following model pairs:
(i) the two best models (AVS-BB and rAVS-CoO) using our
asymmetrical ROs and the stimuli from Regier and Carlson
(2001) as input, (ii) the rAVS model and the rAVS-CoO model
using our asymmetrical ROs and our whole stimuli set and
(iii) the rAVS model and the AVS model on the stimuli from
Regier and Carlson (2001).

Appendix B.4.1. Landscaping Results
AVS-BB Versus rAVS-CoO: Asymmetrical ROs. The landscaping
results are shown in Figure B.15. Looking at the landscape
plots (Figure B.15b and B.15c) reveals that the data generat-
ing model mostly fitted the data better than the other model as
is evident by the location of the model fits on only one side of
the dashed diagonal line of equal fit. The landscape plots also
contain the fits to the empirical data (asterisks) which were
already shown in Figure 9c (the GOF bars for AVS-BB and
rAVS-CoO). These fits are of equal magnitude compared to

the fits of the model that did not generate the data suggesting
that in general the models produce data close to the empirical
data.16 The fits to empirical data are, however, slightly worse
than the fits of the data generating model to the artificial data.
This could indicate that either (i) the empirical data contain
more noise than we added to the artificial data or (ii) that the
artificial data are reliably different from the empirical data
(although this difference is small, see magnitude of fits). Both
reasons would explain why we could not yet distinguish the
models on the empirical data.

Although the fits to artificial data in Figure B.15b and Fig-
ure B.15c are plotted with transparency so that areas with
higher density appear darker, the density distribution is hardly
visible due to the large number of fits. Therefore, Figure B.15a
combines both landscape plots and depicts histograms of dif-
ferences in GOF (the proposed plot for the PBCM, Wagenmak-
ers et al., 2004). Negative values code better GOFs (lower
nRMSEs) for rAVS-CoO compared to AVS-BB; positive val-
ues code better GOFs for AVS-BB compared to rAVS-CoO.
The filled bars originate from fits to data generated by the
rAVS-CoO model (corresponding to Figure B.15b), the empty
bars depict ∆ GOFs for data generated by the AVS-BB model
(corresponding to Figure B.15c).

The histograms in Figure B.15a peak around 0.0. This
means that a considerable number of model fits are practi-
cally equivalent (i.e., they lie very close by the line of equal
fit in the landscape plots). Equal fits can be interpreted as
a symptom of model mimicry: Although model A generated
the data, model B is able to closely reproduce it by mimicking
model A. Two models mimicking each other would result in
fits along the line of equal fit in the landscape plot and a his-
togram peaking sharply around 0.0. However, the tails of each
histogram only go in one direction, reflecting a considerable
amount of data that is better fitted by the data-generating
model. This is supported by the shape of the landscape plots:
Although the fits are somewhat attached to the line of equal

16Note, however, that the comparison of empirical to “typical” model data is
only done by comparing the fits of the models to these data sets. In principle,
one could think of two completely different data sets that can be fitted equally
well by the same model.
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Fig. B.16. Landscaping results contrasting the rAVS-CoO model with the AVS-BB model on the stimuli from Regier and Carlson (2001). The asterisks in (b)
and (c) depict the fit to the empirical data (cf. GOFs in Figure 9d).

fit in Figures B.15b and B.15c, they do not completely fol-
low it. This is to say that the two models do not fully mimic
each other on our asymmetrical ROs but that they still are
able to closely fit the not self-generated data (see overall low
magnitude of model fits).

However, the AVS-BB model shows a higher degree of model
mimicry than the rAVS-CoO, as can be seen by comparing the
shape of the landscape for the data generated by the rAVS-
CoO model (Figure B.15b) with the landscape shape for the
data generated by the AVS-BB model (Figure B.15c). The
former is more attached to the line of equal fit than the latter.
Figure B.15a shows the same trend with a smaller filled than
empty tail. That is, the AVS-BB model fits the data generated
by the rAVS-CoO model almost as well as the rAVS-CoO model
itself while the rAVS-CoO model shows a worse (but still good)
performance for the data generated by the AVS-BB model.
This trend exists to a lesser extent also for the stimuli from
Regier and Carlson (2001, see Figure B.16).

AVS-BB Versus rAVS-CoO: Stimuli from Regier and Carlson
(2001). Compared to the landcaping analysis of the AVS-
BB and the rAVS-CoO model for the asymmetrical ROs, the
degree of model mimicry is lower for the stimuli from Regier
and Carlson (2001). This is reflected in only a decent peak
around 0.0 in the histogram (Figure B.16a) and the shapes
of the landscapes (Figures B.16b and B.16c) that are more
orthogonal to the axis plotting the fit of the data generating
model (compared to Figure B.15). Even though, there is a
small hint that the AVS-BB model mimics the rAVS-CoO model
more than vice versa: The AVS-BB model obtains slightly bet-
ter fits to the data generated by the rAVS-CoO model than the
rAVS-CoO model does on the data generated by the AVS-BB
model. This is reflected in a longer tail of the histogram with
the empty bars compared to the histogram with the filled bars
(Figure B.16a) and in the longer landscape in Figure B.16c
than in Figure B.16b.

rAVS Versus rAVS-CoO: Whole Stimuli Set and Asymmetrical
ROs. We applied the landscaping analysis for the rAVS and the
rAVS-CoO model to investigate the indistinguishable model
fitting performance of the rAVS and the rAVS-CoO model

on our whole data set (see Figure 9a); by contrast, for the
rating data for the asymmetrical ROs, the rAVS-CoO model
outperformed the rAVS model (see Figure 9c). One reason
for this contrasting outcome might be that the parameter sets
that work well on the asymmetrical ROs for the rAVS-CoO
model are not a good choice for the whole data set.

The results of the landscaping analysis are shown in Figures
B.17 and B.18. Looking at the landscape plots (panels (b) and
(c)) reveals that the data generating model mostly fitted the
data better than the other model as is evident by the location
of the model fits on only one side of the dashed diagonal line
of equal fit. Since the spread of the model fits is orthogonally
aligned with the axis denoting the fit of the data generating
model and the histograms have long, flat tails, the two models
do not mimic each other.

However, the rAVS model produces overall slightly bet-
ter fits to not-self-generated data compared to the rAVS-CoO
model as is evident in the landscape plots by the smaller hor-
izontal spread of model fits in panels (c) compared to the
vertical spread of model fits in panels (b). The same effect is
visible in the histograms by smaller tails for the empty bars
compared to the filled bars. This effect is more pronounced if
only the asymmetrical ROs are used as stimuli (Figure B.18)
compared to using all ROs (Figure B.17). Apparently, fitting
certain rating patterns from the rAVS model is more prob-
lematic for the rAVS-CoO model than fitting rating patterns
generated by the rAVS-CoO model is for the rAVS model. This
makes the rAVS model slightly more flexible than the rAVS-
CoO model – in line with the results from the MFA.

To sum up the comparison of the rAVS and the rAVS-CoO
model on the two data sets, one can say that the equal per-
formance on the whole data set is not due to model mimicry.
In contrast, the rAVS-CoO model could not fit the whole data
set as well as the asymmetrical ROs data set possibly because
it is not flexible enough for these parts of the data space. A
potential reason for this missing flexibility is the failure to
properly account for the effects of relative distance.

rAVS Versus AVS: Stimuli from Regier and Carlson (2001). We
analyzed the similar performance of the rAVS and the AVS
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(b). Model fits to artificial data generated by
the rAVS model.
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Fig. B.17. Landscaping results contrasting the rAVS model with the rAVS-CoO model on our whole stimuli set (collapsing across über, above, and unter, below).
The asterisks in (b) and (c) depict the fit to the empirical data (cf. GOFs in Figure 9a).
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Fig. B.18. Landscaping results contrasting the rAVS model with the rAVS-CoO model on the asymmetrical ROs only (collapsing across über, above, and unter,
below). The asterisks in (b) and (c) depict the fit to the empirical data (cf. GOFs in Figure 9c).

model on the data from Regier and Carlson (2001) using
the landscaping method. On these data, the AVS model is
more flexible than the rAVS model, as shown with the Model
Flexibility Analysis (see Kluth, Burigo, & Knoeferle, 2017, or
Section Appendix B.3). Here, we examine whether this differ-
ence in model flexibility is also reflected in the landscaping
method. The landscaping results are plotted in Figure B.19.

These results do look very similar to the results from the
landscaping analysis that contrasted the rAVS-CoO model
with the AVS-BB model on the stimuli from Regier & Carlson,
2001 (discussed above and shown in Figure B.16). The fits
with the unmodified models (AVS and rAVS), however, are
slightly better than those for the modified models (rAVS-CoO
and AVS-BB). Also, the AVS and the rAVS model have an
even lower degree of model mimicry (comparing the peaks
of histograms).

The higher flexibility of the AVS model is visible in Fig-
ure B.19 in (i) the histogram plot (larger tail for the empty
bars compared to the filled bars) and (ii) in the landscape
plots (larger horizontal spread for data generated by the AVS
model, panel (c), than vertical spread for data generated by
the rAVS model, panel (b)). Note that the degree of this dif-
ference in model flexibility is very small corresponding to the
small MFA values on this data set reported in Kluth, Burigo,

and Knoeferle (2017) and shown in Figure B.14.
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