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Science, my lad, has been built upon many errors;
but they are errors which it was good to fall into,

for they led to the truth.

— Jules Verne (1864)





A B S T R A C T

About 30 zettabytes (30 · 10
21 bytes) of data are generated worldwide

every second — so much that over 90 % of the data in the world today
has been created in the last two years alone. Science as well is flooded
by an ever increasing amount of data. However, accessing the infor-
mation hidden in this massive amount of data is a challenging task
and in science often presents a hindrance to knowledge discovery.
One way to overcome this is a good visualization, which can greatly
support people and scientists in exploring, understanding, and enjoy-
ing data. In this thesis, I present three examples for a task oriented
visualization in some of the most data-rich disciplines in science: bio-
chemistry, healthcare, and biology.

The first example is situated in the field of biochemistry. Since the
1980s, natural sciences challenged educational institutions and media
to keep the society on an appropriate level of knowledge and un-
derstanding. By investigating the potential of infographics, graphical
design, and game motivation, I present a mnemonic card game based
on creative design to aid the learning of a special group of biomol-
ecules, the amino acids. Each amino acid is composed of a number
of features. The latter are intuitively encoded into shapes, colors, and
textures to assist our abilities in interpreting visual stimuli. Thus, it
facilitates recognizing such features, grouping them, noting relation-
ships, and ultimately memorizing the structural formulas. The cards
translate complex molecular structures into visual formats that are
both easier to assess and to understand. The result is a unique teach-
ing tool that is not only subject-oriented, fun, and engaging, but also
helps students retain relevant information such as properties and for-
mulas through perceptual memory.

The second example tackles a problem from the field of healthcare.
Oral cancer has a major impact worldwide, accounting for 274 000

new cases and 145 000 deaths each year, making it the sixth most
common cancer. Developing methods for the detection of cancer in its
earliest stages can greatly increase the chances for a successful treat-
ment. Many cancers (including oral cancer) are known to develop-
ment through multiple steps, which are caused by certain mutations
to the genome. A recently published protocol by Hughesman et al.
(2016) describes means for high-throughput detection of these mu-
tations using droplet digital PCR. However, methods for automated
analysis and visualization of this data are unavailable. In this the-
sis, I present ddPCRclust, an R package for automated analysis of
droplet digital PCR data. It can automatically analyze and visualize
data from droplet digital PCR experiments with up to four targets per



reaction in a non-orthogonal layout. Results are on a par with manual
analysis, but only take minutes to compute instead of hours. The ac-
companying Shiny application ddPCRvis provides easy access to the
functionalities of ddPCRclust through a web-browser based graphical
user interface, enabling the user to interactively filter data and change
parameters, as well as view and modify results.

The third example involves some of the most data-rich disciplines
in biology - transcriptomics, proteomics, and metabolomics. Omics
Fusion is a web based platform for the integrative analysis of omics
data. It provides a collection of new and established tools and visual-
ization methods to support researchers in exploring omics data, vali-
dating results, or understanding how to adjust experiments in order
to make new discoveries. It is easily extendible and new visualization
methods are added continuously. I present an example for a task-
oriented visualization of functional annotated omics data based on
the established Clusters of Orthologous Groups (COG) database and
gene ontology (GO) terms.

Z U S A M M E N FA S S U N G

Rund 30 Zettabyte (30 · 10
21 Byte) an Daten werden tagtäglich in der

Welt generiert — so viel, dass mehr als 90 % der Daten heutzutage al-
lein in den letzten zwei Jahren erzeugt wurden. Dieser Trend macht
auch vor den Naturwissenschaften nicht halt. Die Informationen zu
extrahieren, die in dieser Datenflut versteckt sind, stellt eine große
Herausforderung dar und verlangsamt häufig die Forschungsarbeit.
Eine Möglichkeit Abhilfe zu schaffen ist eine gute Visualisierung, wel-
che Menschen und Wissenschaftler darin unterstützt, ihre Daten zu
sondieren, zu verstehen und zu analysieren. In dieser Dissertation
präsentiere ich drei Beispiele für Visualisierungen in besonders da-
tenreichen Wissenschaften: Biochemie, Medizin und Biologie.

Das erste Beispiel ist im Bereich der Biochemie angesiedelt. Seit
den 1980er Jahren stellen die Fortschritte in den Naturwissenschaften
sowohl die Bildungseinrichtungen, als auch die Gesellschaft im All-
gemeinen vor die Herausforderung, mit ihnen Schritt zu halten. Ich
untersuche das Potential von Infografiken, grafischem Design und
Spielmotivation anhand eines mnemonischen Kartenspiels über Ami-
nosäuren. Das Kartenspiel basiert auf dem Prinzip eines klassichen
Quartett-Spiels und soll das lernen der Aminosäuren und einiger ih-
rer grundlegenden biochemischen Eigenschaften unterstützen. Jede
Karte besteht aus einer Reihe von Merkmalen, welche in Formen, Far-
ben und Strukturen kodiert sind, um die angeborenen Fähigkeiten
der Menschen im Bezug auf visuelle Stimuli zu nutzen. Die Karten
übersetzen komplexe biochemische Sturkturformeln in ein visuelles
Format, was einfacher zu erkennen und zu verstehen ist. Das Resultat



ist ein einzigartiges Lerninsturment, was eine anwendungsorientierte
Visualisierung mit dem Spaß einen Kartenspiels verbindet und so das
Lernen der Informationen vereinfacht.

Das zweite Beispiel befasst sich mit einem Problem aus dem Be-
reich der Medizin. Mundhöhlenkarzinoma sind die sechsthäufigste
Form von Kebs auf der Welt, verantwortlich für 274 000 Neuerkran-
kungen und 145 000 Tode jährlich. Methoden für die Früherkennung
von Krebs können die Chancen für eine erfolgreiche Bahndlung signi-
fikant erhöhen. Es ist bekannt, dass sich viele Krebsarten (einschließ-
lich Mundhöhlenkarzinoma) durch einen mehrstufigen Prozess ent-
wickeln, welche durch bestimmte Mutationen im Genom ausgelöst
werden. Das Manuskript von Hughesman u. a. (2016) beschreibt ein
Verfahren zum Screening nach diesen Mutationen mit Hilfe von dro-
plet digital PCR. Automatische Verfahren zur Analyse von diesen
Daten sind jedoch nicht verfügbar. Ich präsentiere ddPCRclust, ein
R Paket für die automatische Analyse droplet digital PCR Daten. Es
kann Daten mit bis zu vier Biomarkern pro Reaktion automatisch
analysieren und visualisieren. Die Ergebnisse der automatischen Ana-
lyse sind vergleichbar mit der manuellen Analyse durch Experten,
sie ist jedoch innerhalb von wenigen Minuten abgeschlossen anstatt
mehrerer Stunden. Darüber hinaus gibt es eine begleitende Shiny
Anwendung ddPCRvis, welche eine grafische Benutzeroberfläche für
ddPCRclust im Webbrowser bereitstellt. Nutzer können so ihre Daten
interaktiv filtern, Parameter anpassen und die Resultate sowohl be-
trachten, als auch modifizieren.

Das dritte Beispiel umfasst einige Bereiche der Biologie, in denen
mit die größten Datenmengen generiert werden — Transriptomics,
Proteomics, und Metabolomics. Omics Fusion ist eine webbasierte Plat-
form für die integrative Analyse von omics-Daten. Es bietet eine Rei-
he von neuen und etablierten Werkzeugen und Visualisierungen, um
Wissenschaftler in ihrer Arbeit zu unterstützen. Das Hauptaugen-
merk liegt dabei auf der Datenanalyse, z.B. dem Validieren von Hypo-
thesen oder dem Entdecken von unerwarteten Mustern. Dabei wird
Omics Fusion fortlaufend durch neue Methoden zur Visualisierung
oder Analyse erweitert. Ich stelle ein Beispiel für eine solche anwen-
dungsorientierte Visualisierung in Omics Fusion anhand von funktio-
nal annotierten omics Daten basierend auf der etablierten Clusters of
Orthologous Groups (COG) Datenbank und den gene ontology (GO)
terms vor.
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Part I

D ATA M I N I N G A N D V I S U A L I Z AT I O N

The first part of this thesis contains three chapters and
introduces the concepts of data, data mining, and visual-
ization. It starts off with a brief history of data and visu-
alization, before going into detail on what types of visual-
izations exist, why they are useful and how to use them
effectively. The second chapter motivates this thesis based
on the previously introduced concepts and outlines the
structure of this thesis. The third chapter presents an ex-
ample for a task oriented visualization in form of a card
game.





1
I N T R O D U C T I O N

In this chapter, I introduce the concept of data and its visual abstrac-
tion, motivated by a brief glance into history. I present what com-
prises data visualization, why data abstraction is necessary, and how
to create a good visualization.

1.1 a brief history of data and visualization

The scientific revolution in Europe between the 16th and 18th cen-
tury marked the birth of modern science as we know it today. It rev-
olutionized the fundamental process of thinking for many people in
the western world, inspiring free thought and what we now call the
Age of Enlightenment. In its wake a need for something arose, which
was until then often neglected: data. Hypotheses needed to be tested
and validated, which required evidence — reproducible observations
of the real world, which were no longer based on religious beliefs
or traditional practice. The term data in general describes facts and
statistics collected together for reference or analysis. Thus, data is a
set of qualitative or quantitative variables.

As the name suggests, quantitative data contains information about
quantities, i. e. information that can be measured and written down
with numbers. An example of quantitative data would be tempera-
ture measurements of a weather station. Qualitative data on the other
hand is information that can not actually be measured, for example
the historic accounts of a contemporary witness.

While the latter is usually easy to understand and interpret by hu-
mans, the former might not. Several steps could be necessary for any
information hidden within the data to become obvious. Raw data, de-
fined as a collection of information before it has been curated or trans-
formed by researchers, needs to be examined and/or corrected. This
could involve the removal of outliers, instrument errors, or data entry
errors; the translation of the data into a different format, or statistical
operations like normalization. The result of these operations is called
processed data and often helps in various data related tasks (e. g. data
comparison). Such a result can be further analyzed using statistics or
— with the support of computers — databases, machine learning al-
gorithms, etc. In turn, this processed data is employed to create data
abstractions (that are independent of the initial domain knowledge)
so as to be visually encoded and visualized, which can highlight dif-
ferent aspects of the data and thereby foster knowledge discovery.
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Figure 1.1: England’s trade-balance with Denmark and Norway from 1700

to 1780 in a time-series chart, published by William Playfair in
1786.

The whole process from raw data to knowledge discovery is defined
as data mining.

With data becoming more widespread, data mining became essen-
tial. The numbers needed to be understood, interpreted, and shared.
One of the early pioneers in this area of research was William Play-
fair, who is often cited as the founder of graphical methods of statis-
tics. He is attributed with inventing several types of diagrams, rang-
ing from line, area, and bar charts to pie charts and circle graphs to
show part-whole relations. An example of his early work is given in
Figure 1.1 (Playfair, 1801).

Data visualizations are not limited to economics or statistics. The
right visual representation can foster the discovery of hidden pat-
terns in the data. One of the earliest examples for this goes back to
1854. London was hit by the third severe outbreak of cholera in 22

years. The widely accepted theory at the time was that cholera was
caused by so called ‘bad air’, but physician John Snow was skeptical
about it. During the Soho epidemic in 1854 he created the famous dot
map (Figure 1.2) to illustrate the cluster of cholera cases around a cer-
tain water pump. Snow’s efforts to connect the incidence of cholera
with potential geographic sources was based on creating what is now
known as a Voronoi diagram. He mapped the locations of individual
water pumps and generated cells, which represented all the points
on his map which were closest to each available water source. The
section of Snow’s map being closest to the Broad Street pump was
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Figure 1.2: Original map by John Snow showing the clusters of cholera cases
(indicated by stacked rectangles) in the London epidemic of 1854.
The water pump with contaminated water is located at the inter-
section of Broad Street and Cambridge Street, running into Little
Windmill Street.

linked to the highest incidence of cholera cases. Moreover, he used
statistics to compare fatalities among the customers of London’s dif-
ferent water suppliers, and to illustrate the connection between the
quality of the source of water and the number of cholera cases. This
convinced the local authorities to disable the pump by removing its
handle, effectively ending the outbreak.

We have certainly come a long way, yet the amount of data that sur-
rounds us in today’s digital world makes effective data mining and
visualization more important than ever. About 30 zettabytes (30 · 10

21

bytes) of data are generated worldwide every second — so much that
over 90 % of the data in the world today has been created in the last
two years alone (The World’s Data). This includes data from all areas,
such as weather sensors, social media posts, or Google queries. Data
has been described as the new oil of the digital economy (Toonders,
2014).
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1.2 designing a visualization

In the context of this thesis, I will focus on mining and visualizing
scientific data — specifically biological, biochemical and medical data.
Visualization is viewed by many disciplines as a modern equivalent
of visual communication. At the start of every visualization project, it
is helpful to answer some basic questions:

• What is to be visualized?

• Why visualize it?

• How to visualize it?

1.2.1 What is to be visualized

The most important step at the start of a visualization project is to
understand what kind of data is available. This defines what informa-
tion can be extracted from it, and what questions can be answered or
what problems can be solved with that information. There are four
basic types of datasets: tables, networks, fields and geometry. Addi-
tional types might be clusters, sets, or lists. Each dataset type in turn
consists of different data types. Certain data types can be categorical
or ordered, sequential or cyclic. An overview of the different possible
data types is given in Figure 1.3.

In this thesis, we will mostly deal with tables and clusters. Each
cell in a table is fully defined by the combination of row and column
and contains a value for that pair. For example, in Part II of the thesis
I present a specific use case of data mining and visualization in the
medical field, i. e. the study and treatment of tumors. The available
raw data for this project are tables, where each row represents an
item of data and each column an categorical attribute of the dataset.
I process the data, filter out certain items, and add another attribute
specifying the cluster-membership of each item. Clusters are a spe-
cial data type, where items within one cluster are more similar to
each other than to ones in another cluster. The processed data can be
further analyzed and visualized according to the questions at hand.
Using these terms, it is possible to abstract data and discuss it, with-
out knowing specifically what a dataset is about.

However, semantics certainly matter. Knowing what each data item
represents dictates what kind of questions can be answered later. In
Table 1.1 the well-known mtcars example table from the R program-
ming language is shown. It might be possible to understand that this
table contains data about cars, but without additional information, it
is hard to grasp what these values mean and what kind of actions
can be performed on such a dataset. A more detailed overview over
these actions will be presented in Section 1.2.2.
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Figure 1.3: What can be visualized: data, datasets, and attributes. The four
basic dataset types are tables, networks, fields and geometry;
other possible collections of items include clusters, sets, and lists.
These datasets are made up of different combinations of the five
data types: items, attributes, links, positions, and grids. For any
of these dataset types, the full dataset could be available imme-
diately in the form of a static file, or it might be dynamic data
processed gradually in the form of a stream. The type of an at-
tribute can be categorical or ordered, with a further split into
ordinal and quantitative. The ordering direction of attributes can
be sequential, diverging, or cyclic. (Reproduced from Munzner,
2014)
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Table 1.1: Excerpt from the mtcars example table in R

mpg cyl disp hp drat wt qsec vs am gear carb

21 6 160 110 3.9 2.62 16.46 0 1 4 4

21 6 160 110 3.9 2.875 17.02 0 1 4 4

22.8 4 108 93 3.85 2.32 18.61 1 1 4 1

21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

1.2.2 Why visualize it

In general, visualizations provide visual representations of datasets
designed to help users carry out tasks more efficiently. The primary
goal of any data visualization is to communicate information clearly
and efficiently. To solve a particular analytical task, such as under-
standing causality or making comparisons, the design principle of
the graphic must follow the task. This means explicitly designing the
visualization with the task abstraction already in mind. In order to
achieve that, it is important to understand the nature of the task at
hand. Figure 1.4 gives an overview of the different reasons for using
a visualization in terms of actions and targets.

Actions are defined as user goals. The users can use a visualiza-
tion: to analyze (i. e. consume existing or produce additional data), to
search, or to query. The target defines the aspect that is of interest to
the users. Targets are nouns, whereas actions are verbs. For instance,
in Part II of this thesis I want to present the results of a certain anal-
ysis to the users. The target is the whole dataset and the users will
consume this presentation. In Part III of the thesis on the other hand,
I want to enable the users to explore their data. They need to be able
to search, query, and analyze both all data, as well as parts of it. Thus,
each visualization needs to have its own actions and targets.

To come back to the example in Table 1.1, the information that is
missing in order to create meaningful tasks is presented in Table 1.2.
Together with the information that each row is linked to a certain
car model (not shown), it becomes possible to define actions, such as
discovering which car has the best miles/gallon ratio, filter out all

Table 1.2: Additional information for the mtcars example

mpg Miles/(US) gallon qsec 1/4 mile time

cyl Number of cylinders vs 0 = V engine, 1 = straight

disp Displacement (cu.in.) am 0 = automatic, 1 = manual

hp Gross horsepower gear Number of forward gears

drat Rear axle ratio carb Number of carburetors

wt Weight (1000 lbs)
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cars that have manual transmission, search for a specific model and
display its values, etc. For each scenario, different task abstractions
need to be defined, in order to create a fitting data abstraction for the
best visualization. The means how to do so once the data and task
abstractions are defined, are presented in Section 1.2.3.
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Figure 1.4: Why people are using visualization in terms of actions and tar-
gets. The highest-level actions are to use visualizations to con-
sume or produce information. The cases for consuming are to
present, to discover, and to enjoy; discovery may involve generat-
ing or verifying a hypothesis. At the middle level, search can be
classified according to whether the identity and location of the
target is known or not: both are known with lookup, the target
is known but its location not for locate, the location is known
but the target is not for browse, and neither the target nor the
location is known for explore. At the low level, queries can have
three scopes: identify one target, compare some targets, and sum-
marize all targets. Targets for all kinds of data are finding trends
and outliers. For one attribute, the target can be one value, the ex-
tremes of minimum and maximum values, or the distribution of
all values across the entire attribute. For multiple attributes, the
target can be dependencies, correlations, or similarities between
them. The target with network data can be topology in general or
paths in particular, and with spatial data the target can be shape.
(Reproduced from Munzner, 2014)
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1.2.3 How to visualize it

We can use certain visual encodings of data in order to make it easier
for the human brain to acquire the information we want to commu-
nicate. A good visualization enables users to process the information
much faster. When they are also able to interact with it, as it is possi-
ble with a computer based visualization, the users can explore data,
gain new insights, and make discoveries that might not have been
possible otherwise. I define one distinct approach to create and ma-
nipulate a visual representation as a visual idiom. The design space
of visual idioms is huge. It ranges from static idioms that have a long
history, as presented in Section 1.1, to more complicated idioms that
interactively link different visual representations using the means of
modern, computer based visualizations. For example, moving the cur-
sor over a dot in a scatterplot could highlight the respective element
in a different plot, e. g. a bar in a bar chart.

Assigning a property such as color, size, shape, or motion to a data
attribute is called mapping. However, visual representation can also
be overwhelming and therefore it has to be chosen carefully, which
mapping is appropriate for which type of information.

The human eye and the corresponding part in the brain responsible
for processing visual information have evolved over millions of years.
During that time, certain visual cues have proven to be more impor-
tant than others. Following the laws of natural selection, whatever
quality ensured the survival of an individual was passed on to the
next generation (Darwin, 1859). Therefore, movement has to be con-
sidered the most prominent aspect of any visual idiom. If one item
moves and the rest does not, the human brain immediately notices
this, since it could be prey — or a predator. Spotting a predator or
prey earlier can be a matter of life and death, which means the pres-
sure of natural selection is especially high in this regard. But humans
and their relatives evolved even further, not only detecting shape
and movement like most mammals, but also color. Being omnivorous
hunter-gatherers, detecting colors is an advantage when looking for
fruits and other edible things. This is why birds have an even better
color vision than humans, being able to detect four or more dimen-
sions of color, while us humans are limited to three. We can distin-
guish short wavelengths (blue), middle wavelengths (green), or long
wavelength (red), as well as luminance. Neural networks add and
subtract the signals when passing the information on to the brain.
This causes the formation of three distinct color-opponent-channels:
red-green, yellow-blue, and black-white. Ware (2010) details this as
the opponent process theory, but the original idea can be traced back to
Hering, 1878.
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Figure 1.5: How to design visual idioms: encode, manipulate, facet, and re-
duce. The family of how to encode data within a view has five
choices for how to arrange data spatially: express values; sepa-
rate, order, and align regions; and use given spatial data. This
family also includes how to map data with all of the nonspa-
tial visual channels including color, size, angle, shape, and many
more. The manipulate family has the choices of change any as-
pect of the view, select elements from within the view, and nav-
igate to change the viewpoint within the view — an aspect of
change with a rich enough set of choices to merit its own cate-
gory. The family of how to facet data between views has choices
for how to juxtapose and coordinate multiple views, how to par-
tition data between views, and how to superimpose layers on top
of each other. The family of how to reduce the data shown has
the options of filter data away, aggregate many data elements to-
gether, and embed focus and context information together within
a single view. (Reproduced from Munzner, 2014)
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T H E S I S O V E RV I E W

In this chapter, I clarify the motivation behind this thesis based on
the introduction presented in Chapter 1. Furthermore, I outline the
overall structure of the thesis.

2.1 motivation of the thesis

In Chapter 1 I introduced the concept of visualization and one of its
pioneers, William Playfair. He wrote in his book “The Commercial
and Political Atlas”:

Men in general are very slow to enter into what is reck-
oned a new thing; and there seems to be a very universal
as well as great reluctance to undergo the drudgery of
acquiring information that seems not to be absolutely nec-
essary (Playfair, 1801).

While he did not yet understand or go into detail as to why this is
case, his observations are valid. It has been studied intensively that
finding and acquiring information from texts, tables, or other uni-
form sources is difficult and much less effective than using visual
cues (Card, Mackinlay, and Shneiderman, 1999; Tufte, 1990; Ware,
2010). The reason for this is that humans are visual beings. Almost
half of our brain is dedicated to the visual sense, highly capable of
detecting and interpreting any kind of graphical pattern. In fact, our
visual brain is so powerful that even the fastest computers using the
most advanced algorithms cannot rival a single human brain in terms
of image recognition. Millions of years of evolution have yielded vi-
sual supercomputers. This becomes evident almost anywhere in na-
ture. Camouflage exists in a wide variety in the animal kingdoms
— and the better the camouflage, the better the vision needs to be.
Naturally, this does not only include the eyes, but encompasses the
corresponding visual cortex in the brain as well, where the visual
information needs to processed.

Even though humans today are no longer dependent on hunting
or gathering their food, while avoiding other, potentially dangerous
predators, these aspects nonetheless shaped the world we live in to-
day. Artificial light makes sure that we can use our primary sense
day and night. Crucial information is communicated using shape and
color, for instance whether or not it is safe to cross a traffic light. Ad-
vertisement makes use of polished images rather than descriptive text,
and basic symbols like exit or men’s/women’s washroom are known
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around the world. This is all summarized by the common saying:
A picture is worth a thousand words.

In a world increasingly flooded with data (see Chapter 1), access-
ing the visual processing power of the brain is important. Computers
can support this by preprocessing data and/or finding predefined
patterns. However, knowledge discovery often requires experts in
the loop, who can apply their domain knowledge. This is especially
true in the field of natural sciences. Creating a powerful visualization,
which enables scientists to explore and interpret the data in their own
ways, can make all the difference. In the age of computer based visu-
alizations, interactivity is a key aspect in this endeavor (Figure 2.1). It
gives the users the power to adjust a visualization towards their need,
because in most cases it is simply impossible to display all the infor-
mation at once. The Visual Information-Seeking Mantra by Shneider-
man (1996) summarizes this as follows:

Overview first, zoom and filter, then details-on-demand.

However, using interactivity is not always useful or possible. In this
thesis, I investigate the visual approach and different levels of inter-
activity in some of most data-rich disciplines, the fields of biology,
biochemistry, and healthcare (Raghupathi, 2016).

Figure 2.1: Interactivity is an important aspect of data visualization. Data
processing (e. g. filtering or clustering), mapping (e. g. color or
shape), and the actual visualization should be dynamic.

2.2 structure of the thesis

Based on the background presented in Chapter 1 and the motivation
highlighted in Chapter 2, Chapter 3 will start with the least interac-
tive visualization — a design for a physical card game. I propose a
mnemonic card game based on creative design, which features visual
abstractions of amino acids in order to aid in learning and memoriz-
ing them. It was presented and exhibited at the Information+ Confer-
ence 2016 (Hattab, Brink, and Nattkemper, 2016).

Part II describes a specific medical problem, namely the presymp-
tomatic discovery of oral cancer, which can be solved with the help of
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tailored algorithms (Brink, Meskas, and Brinkman, 2018). I present
the biological background of this problem in Chapter 4, the algorith-
mic part of the solution in Chapter 5 and Chapter 6, and the visualiza-
tion part of the solution in Chapter 7. Combined, it enables scientists
and physicians to understand the steps involved in the algorithmic
solution and explore the results visually, in turn supporting them in
making a diagnosis. As a computer based approach, it already has
a higher level of interactivity as a card game, but is limited by the
specific biomedical question and by the technology used to answer
it. I evaluate the results of the algorithm in Chapter 6 and discuss
the benefits and limitations of such a targeted approach Chapter 7.
Furthermore, I raise the question whether a more open, exploratory
approach, which can be applied on a variety of data without a specific
problem at hand, can overcome those.

In Part III, I present Omics Fusion, a new web-based platform for
integrative analysis of omics data (Brink et al., 2016). Omics is an
umbrella term for different fields of biological research, which are
introduced in detail in Chapter 8. An approach to visualize functional
annotated omics data is presented in Chapter 9. I discuss the benefits
and limitations of an open, exploratory approach of analyzing and
visualizing biological data and compare it to the previous, targeted
approach. Finally, I conclude the thesis in Chapter 10.
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A M N E M O N I C C A R D G A M E F O R Y O U R A M I N O
A C I D S

Data visualizations do not necessarily need to be about knowledge
discovery. They can also be about memorizing existing knowledge,
fun, or simply being artistic. In this chapter, I present a static, non
interactive visualization of amino acids in the form of a physical card
game, in order to facilitate memorizing the amino acids and some of
their important physicochemical properties. Part of this chapter have
been published under Hattab, Brink, and Nattkemper (2016). The
complete set of cards, rules and possible scenarios are available under
https://github.com/ghattab/amino-acids-card-game/.

3.1 background

Since the 1980s the progression in natural sciences challenged the ed-
ucational institutions and media to keep the society on an appropri-
ate level of knowledge and understanding. Two very prominent early
developments were Public Understanding of Sciences (PUS) based on
a report by Bodmer (1986) and Public Engagement of Science and
Technology (PEST) by Irwin and Wynne (2003). In 2005, Wynne ar-
gued PEST is a more viable solution where public engagement occurs
through a dialog among scientists and the public. With efforts from
both sides, many areas remain ambiguous or demanding. A very chal-
lenging one is molecular biology/biochemistry.

Biomolecules represent a huge collection of objects with individ-
ual structural, geometrical, qualitative and quantitative features. Al-
though the feature representations are standardized to some extent
— depending on the used structural formula (e. g. skeletal formula,
Fischer projection, etc.) — learning to navigate in this knowledge
domain using the graphical standards of the chemical nomenclature
takes years (Brecher, 2006). In this project, I investigate the potential
of infographics, graphical design, and game motivation for learning
the features of a special group of biomolecules, the amino acids.

3.2 related work

Many attempts have been made in scientific vulgarization to educate
the public through card games. From the crowdsourced “Phylo” trad-
ing card game that makes use of the wonderful and inspiring things
that inform the notion of biodiversity (mammals, bacteria, etc.) (Ng

and Tan, 2010) to the chemistry card game “Molecules”, which turns

https://github.com/ghattab/amino-acids-card-game/
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Figure 3.1: Current specialist representational forms and their shortcom-
ings for less expert target audiences. Two amino acids were con-
sidered: glycine and phenylalanine. These representations were
taken from Wikimedia Creative Commons and Compound Inter-
est. The representations range from the Fischer representation
(left) to the cyclohexane conformation (right). The differences be-
tween the molecules are easy to spot for the trained eye of a
specialist. Yet, the first representation on the left is the clearest
for less target audiences. This is due to simply highlighting dif-
ferences (i. e. the side chain) and leaving the redundant part (i. e.
common skeleton) in the background. All the other different rep-
resentations are correct yet provide no means for easy recollec-
tion or guide the reader’s eye and retain their attention.

learning atomic bonds into a competitive and fun task by building
various compounds such as water or carbon dioxide (Dulek, 2015).
In 2014, compound interest created a guide to the twenty common
amino acids. This chart presents each molecule in a circle using a
chart key which corresponds to each of the biomolecule categories
(essential, acidic, etc.) with a minimal visual encoding. Most of the
works did include the chemical formulas with no regard to empha-
sis on common and/or individual features (Figure 3.1). As a proof of
concept, I propose a mnemonic card game based on creative design to
aid memory retain amino acids. They have different features, which
are often shared among more than one amino acid. An intuitive sys-
tem to code these features into shapes, colors, and textures was de-
veloped. This will assist our abilities in interpreting visual stimuli,
recognizing such features, grouping them, noting relationships, and
ultimately memorizing the structural formulas (Bitterman, 1965).
This approach could serve as a teaching tool for subject-oriented card
game designs so to retain relevant information by using perceptual
memory and fun.
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3.3 methodology

The collection of the data was performed through a formal research
effort, i. e. looking up valid data from trustworthy sources. The data
comprises: the amino acid names and properties, the different groups
they can be put in based on their physical and chemical properties,
and the structural formulas (Römpp’s Chemistry Lexicon). The amino
acids properties are: (a) molar mass [g/mol]: the given mass of a
compound divided by its amount, (b) isoelectric point [no unit]: pH
at which a molecule is neutral or does not migrate in an electric field,
(c) solubility in water at 20

◦C [g/L]: ability of a solute in g to be
dissolved in a liter of solvent, and (d) frequency in proteins (%): as re-
ported for vertebrates in the Protein Data Bank (Berman et al., 2000).
Those properties were chosen as attributes since they best reflect the
chemistry of an amino acid and help determine its state given a cer-
tain environment. The unspecified stereochemistry was selected as an
appropriate representation for each amino acid. The representations
of the amino acids were documented and validated from previous
biochemistry knowledge (Nelson, Lehninger, and Cox, 2008). The
designs “molecule” logo (on the back of each card) and “play” sym-
bol (on the rules card) are courtesy of Ed Harrison (The Noun Project).

3.4 the problem

As aforementioned, the basic problem is to render complex infor-
mation easily accessible to the public and to ease its memorization.
In this project, the information is the chemical structure of amino
acids and their physicochemical properties. The major constraints af-
fecting the design and development of the project were: clarifying
pre-existing chemical formulas without altering the core information,
finding ways to reinforce learning through visual encoding, creating
a static (i. e. non-interactive) but concise visualization while working
with the limited amount of card space.

3.5 the solution

The main purpose of this project was to create a teaching tool to better
retain relevant information by using perceptual memory and fun. The
targeted subject was a special kind of biomolecules, the amino acids.
The design process could be applied to design other subject-oriented
card games. The target audience comprises students, laboratory per-
sonnel, or any person in the public showing interest or desiring to
know more about amino acids.

The proposed solution employs redundant visual encoding, styl-
ized differences between the molecules, and interaction through game-
play to better learn the card’s properties and categories. To memo-
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(a) Sketches of the major iterations for the adopted representation

(b) Sketches of the histidine (H) amino acid

Figure 3.2: Sketches for the design process of the main molecule representa-
tion and an example amino acid (histidine) as a particular exam-
ple. The redundant part of the molecule (i. e. common skeleton)
is shared between the amino acids. (a) showcases these iterations.
The squared R group is for the side chain. (1) represents the pos-
itively charged parts of the common skeleton (i. e. amino and
carboxyl groups). (2) depicts the simplification and the adoption
of the snake-like shapes using the unspecified stereochemistry
representation. (3) portrays the process of finding a correct rep-
resentation. (4) represents the final designs that were adopted:
the snake-like shapes are in a correct position, symmetrical as
is the Y-shape of the common skeleton. In (b), the example of
the histidine molecule is depicted. The two nitrogen atoms are
intrinsically symmetrical to the axis of the first carbon bond in
the side chain (axis is depicted as a the dotted line). This permits
to use that key feature and create a salient object to represent the
side chain as a whole.

rize the structural formulas, the molecular features are encoded into
shapes, colors, and textures. While researching the possible struc-
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tural formula representations, I came across multiple solutions. These
ranged from, but are not limited to, the molecular surface of the side
chain, representations of the covalent radii of its atoms (Heyrovska,
2008), to the unspecified stereochemistry representation. Next, an ap-
propriate design to help perceive differences among the amino acids
was found. Then, the gameplay rules were articulated in a simple way.
Lastly, the whole game was printed and tested, and its content was
made openly available for download.

3.5.1 Process for developing the solution

The solution was shaped through a series of iterations, from sketch-
ing possible representations to the finally adopted design. Major iter-
ations are reported in Figure 3.2. Using the example of the histidine
side chain, I showcase how emphasis is brought to the side chain and
de-emphasis is introduced to the common part of the molecule (see
Figure 3.3). The finished design is present in Figure 3.5(a).

3.5.2 Visual encoding

First, I detail the encoding of the amino acids, as reported in Fig-
ure 3.3:

(1) Amino acids groups. Three main classifications exist: one that
targets whether an amino acid is essential and two others that
depend on the side chain structure (i. e. where differences oc-
cur). There exists multiple ways to group amino acids based
on the side-chain. To adopt a compact grouping and support
gameplay mechanics, four categories were selected: acidic, ba-
sic, polar and non-polar. The groups were visually represented
by nominal colors and glyphs: blue — circle with minus sign,
red — circle with plus sign, purple — empty circle and green
— full circle, respectively. Saturated hues of these colors were
chosen for a more vibrant card set (Categorical Colours). Each
group has a corresponding category card which explains the
main physicochemical properties of the grouped amino acids
(see Figure 3.5).

(2) Amino acids name encoding. They were reported at the top of
each card: the full name, the three letters code and the 1 letter
code (example of lysine, Lys, K) (Dayhoff, 1965).

(3) Stylized differences: emphasis and de-emphasis. The former is
given to changing parts of the molecule (in the foreground).
On the contrary, the latter is employed for the common part
of the molecule in the background (Figure 3.3). De-emphasis
was brought by layering wave-like lines on top of the common
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part. It created the effect of a texture. Only one among twenty
amino acids (proline) is exempt of the common part and hence
only emphasis is used. In the case of emphasis, the visual encod-
ing is more elaborate. Emphasis itself is split into two: The first
tackled the abstract gray shapes that help memorize the side
chains based on the amount of carbon bonds. The use of light
and dark gray helps perceive differences by using the gestalt
principles of similarity and proximity (e.g. axial/central sym-
metry in Figure 3.4) (Arnheim, 1949, 1956; Chang, Nesbitt,
and Wilkins, 2007). Change in luminance reflects an asymme-
try. The second addressed the presence of peculiar atoms (i. e. as
sulfur — S and nitrogen — N) by using color coding and shape
(Figure 3.3). They are highlighted using a yellow circle and teal
blue rectangles, respectively (Figure 3.4 and Figure 3.3).

(4) Amino acid properties. The attributes: molar mass, isoelectric
point, solubility, and frequency are represented by symbols: a
scale, an electric sign, a container (i. e. erlenmeyer flask), and a
pie chart, respectively.
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Figure 3.3: The major four steps to visually encode each amino acid card.
Color and glyph category encoding, the name encoding, the styl-
ized differences encoded (emphasis and de-emphasis), and the
attributes.
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Figure 3.4: Stylized differences explained for a subset of amino acids per-

taining to the non-polar group. De-emphasized common skele-
ton in the background using wave-like lines. Emphasized dif-
ferences in the foreground are depicted in luminance (i. e. two
different grays, light and dark). This emphasis depends on the
amount of carbon bonds. Whereas light and dark grays are cho-
sen to perceive symmetries (i. e. axial symmetry: dotted red line),
asymmetries (denoted in a red polygon) and special atoms (e.g.
zoomed-in and encircled sulfur (S) atom).
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○
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� Frequency in proteins [%]

(d) Rules card

Figure 3.5: Example playing cards included in the cards game. (a) showcases
the histidine (H) amino acid with its respective formula, the cat-
egory color and symbol (left and top left of card) which is in
this case the basic category (or positively charged). The lower
part of the card presents four numerical values. The molar moss
(g/mol), the isolectric point or pI, the solubility in water (g/L),
and the frequency in vertebrates (%) are represented as the sym-
bol of a scale, a lightning, a flask, and a pie chart, respectively.
(b) is a category card, it explicates the amino acids properties per-
taining to this category. (c) depicts the back design for each card.
Logo adapted with the colors of the four categories, courtesy of
Ed Harrison (CC). (d) briefly lists the important rules.



3.6 results 25

Secondly, the cards that aid the gameplay also required their own
design. The four category cards were designed using the same tem-
plate of each amino acid card. The attributes of each card were re-
placed by an explanation of the category (Figure 3.5.b). The last card
is the rules card, making the game a total of 25 cards. It depicts a
brief explanation of the attributes and how to play. It is presented in
Figure 3.5.

For two players the rules can be formulated in a simple manner:
One player defines a challenge scope as either all the opponent’s
cards, one category, or one amino acid. For a chosen challenge scope,
one player challenges his or her opponent on an attribute of a card
from the cards the challenged player holds. The person with the high-
est attribute requests the card of the opposing player. This card is
required to be the highest in hand. To win the game, a player must
bank at least 9 cards by category (or color). In the case of 2 players,
banking 10 cards is a requirement.

3.5.3 Key milestones

All of the aforementioned sections and development steps were real-
ized. Main decisions ranged from but were not limited to: preserving
the initial chemical formula without losing too much information,
rendering the game as user friendly as possible, and making all the
content openly available to the public.

3.6 results

The solution in addressing the initial problem using playing cards as
material proved to be successful. The game was made openly avail-
able to the public for download, distribution, and printing (i. e. full
card set and gameplay rules).

An informal qualitative assessment and usability test was carried
out on a group of 10 students. In most cases, the players had a vague
memory of the amino acids structures and the card game worked out
well in helping them remember the main features and properties. The
card attributes helped them place the molecules in their minds as be-
ing more or less identical. Coupled with the desire to win, players
knew why they lost a challenge and which card is better. By using
the actual molecule properties as card attributes, players better navi-
gated in the space of values. The standard card size and chosen paper
thickness (0.8 mm) were reported as favorable.

3.7 discussion

In the broader category of developed card games, this is the first at-
tempt to go one step further in the design phase and abstract shapes



26 a mnemonic card game for your amino acids

from chemical structures. These shapes aided perceptual memory to
retain relevant features and structures that are intrinsic to amino
acids. The most important lessons were: 1. redundancy and consis-
tency in visual encoding helps to better learn the relevant categories
and molecular features, 2. the interaction through gameplay helps to
memorize the actual properties and navigate the values, and 3. the
fun factor is important to enjoy and learn.

This project provides a viable solution for non-interactive, task-
oriented visualization, yet faces a couple of limitations. Firstly, if the
intent is to solely memorize the formulas without playing, the cog-
nitive load or mental effort in learners could be consequent. Com-
pared to the classical approach, where only formula representations
are used, the card game solution provided a reduced mental effort
for memorizing 20 amino acids. Secondly, if the card game is indeed
used as intended, early learners might face difficulties such as re-
membering the different features. This suggests for further research,
where “eye candy” could be used to undermine cognitive load, to at-
tract and entertain learners. Additionally, a large-scale evaluation of
the card game could prove useful.

In the context of this thesis, this project proves that for certain use-
cases a non-interactive visualization can be preferable. Card games
have a long tradition and their public familiarity lowers the learn-
ing curve for this visualization. The fun factor aids both the process
of memorizing as well as overcoming the initial reluctance to start
learning the something new. Furthermore, the physical print version
of the cards makes it possible to take them anywhere and use them
anytime, in contrast to a computer based visualization. Admittedly,
amino acids are a comparably simple type of data and only the most
important physicochemical properties were selected for the task. Of-
ten, both data and task are much more complicated, rendering the use
of a computer based interface mandatory, which will be the topics of
part II and III of this thesis.



Part II

P R E S Y M P T O M AT I C D I A G N O S I S O F O R A L
C A N C E R

The second part of this thesis discusses a specific use case
of data mining and visualization in the medical field, i. e.
the study of tumor development. The fourth chapter de-
tails the biological and medical background for this project
and introduces the data at hand. The fifth chapter de-
fines the problem statement and presents ddPCRclust, an
R package for the automated analysis of multiplexed, non-
orthogonal droplet digital PCR data. The sixth chapter
follows with an accompanying visual interface ddPCRvis,
which provides access to the algorithm through a web
browser, enabling the user to interactively filter data and
adjust parameters, as well as view and modify results.
The seventh chapter compares the automated clustering
approach to manual annotation by experts and discusses
the results.





4
B I O L O G I C A L B A C K G R O U N D

As the name suggests, a task oriented visualization focuses on a spe-
cific task at hand. In this chapter, I introduce the biological back-
ground of this task: the microbiology of cancer. I explain, how the
data in this project is produced and why it is necessary to develop
a specific algorithm to analyze it. I limit my scope to cells with a
distinct nucleus, i. e. eukaryotes.

4.1 diversity and dynamics of cancer

Cancer is undoubtedly a global public health problem and, despite
the efforts made, continues to affect and kill a huge number of peo-
ple without distinction. In 2012, about 14 million new cases of cancer
occurred globally, accounting for about 8 million or 14.6 % of human
deaths. One of the main reasons why cancer is difficult to treat is
its diversity. The term cancer actually encompasses a huge group of
diseases, which all involve abnormal cell growth with the potential
to invade or spread to other parts of the body, but can have very dif-
ferent causes. For humans, there are over 100 known types of cancer
(Stewart and Wild, 2014).

This number still appears small compared to the fact that the adult
human is composed of approximately 10

15 cells, many of which are
required to divide and differentiate in order to form organs and tis-
sues. There is a sensitive balance between the generation of new cells,
called proliferation, and the natural death of cells, called apoptosis. In
case of cancer, this balance shifts towards uncontrolled proliferation,
causing new and abnormal growth of tissue. This behavior is gener-
ally defined as a neoplasm, with cancer falling into the category of
malignant neoplastic diseases (Bertram, 2000).

What causes cells to grow and spread abnormally, harming their
own body in the process? The answer lies in the genome, the in-
structions facilitating growth, development, functioning, and repro-
duction of all known living organisms. This information is stored in
macromolecules known as deoxyribonucleic acid (DNA), which con-
sist of four nitrogen-containing nucleobases — cytosine (C), guanine
(G), adenine (A), and thymine (T) — plus a backbone out of deoxyri-
bose and phosphate. Adenine and thymine, as well as guanine and
cytosine form a hydrogen bond, and are hence called base pairs. To-
gether with the sugar-phosphate backbone they form nucleotides, the
building blocks of DNA. Many of them in a row create a double helix
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Figure 4.1: The difference between RNA and DNA. RNA is a single stranded
molecule consisting of the nucleobases cytosine (C), guanine (G),
adenine (A), and uracil (U). DNA is a double stranded molecule
consisting of the nucleobases cytosine (C), guanine (G), adenine
(A), and thymine (T).
Reproduced from: https://commons.wikimedia.org/wiki/File:
Difference_DNA_RNA-EN.svg.

structure, as seen in Figure 4.1, which gives the long DNA molecules
their stability.

Whenever genetic information needs to be accessed, DNA is tran-
scribed into ribonucleic acid (RNA). RNA molecules are similar to DNA,
except the complementary base to adenine is uracil (U), which is
an unmethylated form of thymine, the backbone contains ribose in-
stead of deoxyribose, and, most importantly, RNA is usually a single-
stranded molecule (Figure 4.1).

DNA molecules within a eukaryotic cell are organized in chromo-
somes, which are further enclosed by a membrane, forming the nu-
cleus. Humans have 46 chromosomes, consisting of 23 pairs — one
from each parent — whilst some animals can have up to 268 chromo-
somes (Agrodiaetus shahrami). Each chromosome is duplicated during
a cell division, except for gametogenesis, where each gamete only
receives a single copy of each chromosome. During the duplication,
the DNA molecules may undergo several recombination events. This
is favorable for genetic diversity in gametogenesis, but incorrect re-
combination may lead to chromosomal abnormalities. Mistakes dur-
ing gametogenesis can lead to developmental diseases (e. g. Down
syndrome, Huntington’s disease) or increased risk factors for other
diseases (e. g. diabetes, cancer). However, mistakes during cell divi-

https://commons.wikimedia.org/wiki/File:Difference_DNA_RNA-EN.svg
https://commons.wikimedia.org/wiki/File:Difference_DNA_RNA-EN.svg
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Figure 4.2: The structure of a eukaryotic protein-coding gene. Regulatory se-
quence controls when and where expression occurs for the pro-
tein coding region (red). Promoter and enhancer regions (yellow)
regulate the transcription of the gene into a pre-mRNA which is
modified to add a 5’ cap and poly-A tail (grey) and remove in-
trons. The mRNA 5’ and 3’ untranslated regions (blue) regulate
translation into the final protein product. Vertical: Three steps
from DNA (blue) to protein (red).
Reproduced from: https://commons.wikimedia.org/wiki/File:
Gene_structure_eukaryote_2_annotated.svg

sion are not limited to gametogenesis and can happen anywhere in
the body with severe consequences, such as the death of the cell or
genetic diseases like cancer (see Section 4.1.1).

Certain regions within the chromosomes are known as genes. The
definition for a gene has changed a lot throughout the history of
molecular biology and is now simplified to “a molecular unit of
heredity” (Slack, 2014). It typically consists of an open reading frame
(ORF), as well as all corresponding regulatory elements, as shown in
Figure 4.2. The ORF is first transcribed into a messenger RNA (mRNA),
which can subsequently undergo post-transcriptional modifications
such as splicing, before finally being translated into a protein.

Transcription is happening in a cell’s nucleus, where the chromo-
somes are located, but translation is performed by ribosomes outside
the nucleus. During the translation, the RNA sequence is decoded into
a sequence of amino acids, which in turn form a protein. The key for
decoding RNA sequence is the genetic code. Each amino acid is en-
coded by a triplet of nucleotides called codon. The number of possible
combinations for four different nucleotides is 4

3 = 64, however most
eukaryotes only use 20 proteinogenic amino acids. Even adding the
three stop codons, which terminate the transcription, the number is
still a lot smaller. Thus, many amino acids have more than one triplet
coding for them. This way not every change in the DNA sequence is
passed along to the protein.

https://commons.wikimedia.org/wiki/File:Gene_structure_eukaryote_2_annotated.svg
https://commons.wikimedia.org/wiki/File:Gene_structure_eukaryote_2_annotated.svg
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Proteins are large molecules consisting of one or more long chains
of amino acids. Their function is determined by their three-dimen-
sional structure, which is dictated by the sequence of amino acids.
Many proteins fold into their native state unassisted once the trans-
lation is complete, simply through the chemical properties of their
amino acids. Others require the aid of other proteins to fold cor-
rectly. This is one example of a vast array of functions that proteins
perform within organisms, including catalyzing metabolic reactions,
DNA replication, responding to stimuli, and transporting molecules
from one location to another.

This transport of information from DNA to protein is the very foun-
dation of life and involves many regulatory elements. Most of them
can be found in the regions of the DNA that do not belong to ORFs and
are thus not translated to proteins, although they are often in close
proximity. The perception of these regions has also changed over time,
from being called “junk DNA” (Ohno, 1972) to the more neutral term
non-coding DNA, which is now known to not only contain many reg-
ulatory elements, but also scaffold attachment regions, origins of DNA

replication, centromeres and telomeres, and more. If any alterations
occur in the DNA molecule, whether inside an ORF or not, they can be
passed along this chain of information. These alterations are called
mutations and they can be both beneficial or harmful to an organism.

4.1.1 Mutations

All neoplastic diseases are caused by mutations to the cell’s genome.
A mutation is defined as a permanent alteration to the DNA of an or-
ganism. This damage can be the result of endogenous processes such
as errors in replication of DNA, the intrinsic chemical instability of
certain DNA bases, or from “attack” by free radicals generated dur-
ing metabolism. DNA damage can also result from interactions with
exogenous agents such as ionizing radiation, UV radiation, and chem-
ical agents. Three different types of mutations can be distinguished:

• The smallest possible alteration is a simple substitution, where
one nucleotide is exchanged for another. Such a point mutation
can be silent, the changed base triplet codes for the same or a
sufficiently similar amino acid. However, it may also code for a
different amino acid or a stop codon, which can truncate the re-
sulting protein, altering it’s shape or function, or completely in-
activating it. In the context of comparing two or more genomic
sequences, this category of mutations is also defined as single-
nucleotide polymorphism (SNP).

• Insertions of extra nucleotides into the DNA or deletions of one
or more nucleotides from the DNA are typically grouped to-
gether under the term indel, since they have similar effects. If
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their length is not a multiple of three, they will produce a frame-
shift, i. e. shifting the reading frame for all following nucleotide
triplets, significantly altering the gene product.

• Large scale chromosomal mutations include duplications or de-
letions of large regions or an entire chromosome, as well as
translocations (interchange of genetic parts between chromo-
somes) or inversions (reversing the orientation of a chromoso-
mal segment).

A cell has a collection of processes to identify and correct any dam-
age to its DNA molecules (Sancar et al., 2004). However, the more
mutations occur, the more severe those mutations are, the more dif-
ficult it becomes to repair them. Any mutations that occur in genes
responsible for maintaining genomic integrity also facilitate the acqui-
sition of additional mutations. Thus, mutagenic substances like some
parts of tobacco smoke increase the rate at which mutations occur
significantly, in turn increasing the chance to suffer from neoplastic
diseases. Hence these mutagenic substances are also called carcino-
gens.

4.1.2 Copy number aberrations

Any indel or large scale chromosomal mutation can lead to the loss or
gain of certain regions. Naturally, any genes or regulatory elements
located in these regions will be lost or gained as well. In general,
this concept is called copy number variation (CNV), however in the
context of somatic CNVs, these are often referred to as copy number
aberration (CNA). CNAs are extremely common in neoplastic diseases
and play an important role in their progression (Hanahan and Wein-
berg, 2011). In cancer, we can typically distinguish two types of CNAs:
Those which increase the activity of genes that facilitate cell prolifer-
ation — this class of genes are called oncogenes. And those which in-
activate gene function in the case of genes responsible for regulating
proliferation and inducing apoptosis — this class of genes is called tu-
mor suppressor genes. Discovering oncogenes and tumor suppressor
genes is crucial in understanding the underlying mechanics of the cel-
lular defects that cause cancer and suggesting potential therapeutic
strategies (Beroukhim et al., 2010).

4.1.3 Allelic imbalance

Most mammals, including humans, are diploid, meaning their cells
contain two complete sets of chromosomes — one from each parent.
Accordingly, each gene should be present exactly twice in each cell,
with each variant being defined as one allele. If both alleles of a gene
are the same, they and the organism are homozygous with respect
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to that gene. If the alleles are different, they and the organism are
heterozygous with respect to that gene. CNVs can occur on one of the
chromosomes, leading to two alleles of a given gene being expressed
at different levels in a given cell. This is defined as allelic imbalance
(AI). If one of the alleles is completely lost, it is referred to as loss of
heterozygosity (LOH).

Advances in the molecular-genetic analysis of cancer cell genomes
have provided evidence of ongoing genomic instability during tumor
progression. AIs have been found in many cancers, for example in
breast cancer (Cleton-Jansen et al., 1994), prostate cancer (Cher

et al., 1994), colorectal cancer (Halling et al., 1999), or oral cancer
(Partridge et al., 1998). However, some chromosomal loci seem to
be more commonly affected by AIs than others. This indicates that
such sites are likely to harbor genes whose alteration favors neoplastic
progression, making them especially interesting as targets for detec-
tion of early stages or precursors of cancer (Hanahan and Weinberg,
2011).

4.1.4 Cancer precursors

By their very nature, neoplastic diseases evolve rapidly over time.
The genetic instability during tumor progression provides the cancer
with the genetic diversity required for natural selection and enables
the extensive phenotypic diversity that is frequently observed among
patients. It also causes the formation of subpopulations as the tu-
mor progresses, making targeted treatment extremely difficult. Hence
undirected chemotherapy with cytotoxic agents remains a standard
treatment for a vast majority of cancer patients.

Many forms of cancer are known to form from precursor states,
before evolving into a tumor. Identification of these precursors, or
precancers, is important to elucidate critical early steps in cancer de-
velopment, to determine targets for chemopreventive agents, and to
identify easier treatable precancers destined to progress to an inva-
sive disease. It has been shown that AIs play a crucial role in progres-
sion from precancerous stages to tumors (Hanahan and Weinberg,
2011; Larson et al., 2002), thus presented an interesting target for the
detection of precancers.

4.1.5 Oral cancer

Oral cancer has a major impact worldwide, accounting for 274 000

new cases and 145 000 deaths each year, making it sixth most com-
mon cancer (Ferlay et al., 2015). The 5-year survival rates, which
range from 30–60 %, are among the worst of all cancer types. In most
cases, oral cancer is treated surgically, while radiation therapy and
chemotherapy serve as adjuvant treatments. Even when successful,
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the results are often diminished quality of life, impaired function and
disfigurement.

There are several types of oral cancers, but around 90 % are squa-
mous cell carcinomas (SCCs). SCCs are known to develop from cancer
precursor stages, so called oral premalignant lesions (OPLs). These le-
sions have a high prevalence amongst smokers and alcoholics, but
can also occur due to poor oral hygiene, irritation caused by ill-fitting
dentures and other rough surfaces on the teeth, poor nutrition, and
some chronic infections caused by fungi, bacteria or viruses (Srini-
vasprasad et al., 2015).

In early stages, oral cancer might go unnoticed. Lesions are often
without pain and only slight physical changes. Later stages involve
symptoms like bleeding sores; lumps or thickening of the skin; pain
in tongue, jaw, or throat; airway obstruction or loose teeth. Advanced
oral cancer is also known to metastasize (i. e. spread) through the
lymphatic system into lymph nodes, liver, and kidneys (Myers, 2009).

4.2 detecting allelic imbalances

Biopsies can be performed on any equivocal tissue in order to detect
the cancer at its earliest stage. However, since OPLs and very early
stages of oral cancer show little symptoms, many people will not con-
sult a physician at that point. Even if they do, it has been shown that
biopsies of OPLs are often not reliable (Holmstrup et al., 2007). Thus,
a more sensitive and reliable approach based directly on genetic in-
formation instead of optical observations of the tissue needed to be
sought. Zhang et al. (2012) identified and validated AIs, such as LOHs,
as risk predictors for progression from OPLs to oral cancer. Discover-
ing these AIs in an early stage can significantly increase the chances
of successful treatment and avoid relapses.

4.2.1 Amplifying DNA

In order to detect AIs, DNA of equivocal cells needs to be analyzed or
sequenced. To do so, most technologies first require an amplification
step to obtain a sufficiently high number of copies of the sequence
of interest. The de facto standard for amplifying DNA molecules is
polymerase chain reaction (PCR). The general procedure for a PCR

reaction is as follows.

1. The DNA molecule needs to be denatured, i.e. the two strands
are being separated by heating the sample to 94–98 °C.

2. The temperature is lowered to a value that allows the primers
of this reaction to bind to the DNA template. Primers are specif-
ically designed oligonucleotides, typically ranging from 18 to
30 base pairs, which are complementary to the 5’- or 3’-end of
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the DNA sequence of interest, respectively. This step is called
annealing and lasts about 20–40 seconds.

3. A DNA polymerase synthesizes a new DNA strand complemen-
tary to the DNA template strand by adding free deoxynucleotide
triphosphates from the reaction mixture that are complemen-
tary to the template in the 5’-to-3’ direction, starting at the re-
spective primers. The temperature at this elongation step de-
pends on the DNA polymerase used and the duration on the
length of the template.

The processes of denaturation, annealing and elongation constitute a
single cycle. This cycle is repeated, until the desired amplification has
been achieved. Each cycle the number of copies of the DNA template is
doubled, so after n steps the number of copies theoretically equals 2

n.
Practically, experimental variance and amplification bias will affect
this result, making PCR reactions difficult to compare (Acinas et al.,
2005).

4.2.2 Digital PCR

Detection and quantification of specific nucleic acid sequences us-
ing PCR has a long history in molecular biology (Southern, 1975;
Thomas, 1980). Soon after its presentation by Heid et al. (1996), real-
time PCR became the standard for quantification of nucleic acids. The
quantitative information is obtained from the cycle threshold (CT), a
point on the analogue fluorescence curve where the signal increases
above background. With the knowledge that the template is approxi-
mately doubled each cycle, it is possible to estimate its concentration.
However, external calibrators or normalization to endogenous con-
trols are required and imperfect amplification efficiencies affect CT
values, which in-turn limit the accuracy of this technique for absolute
quantification. In digital PCR, the target DNA is distributed across a
large number of partitions and the reaction is carried out in each par-
tition individually. Due to this dilution, some partitions will have no
template and others will have one or more template copies present.
The PCR reaction is then carried out until its plateau phase, eliminat-
ing amplification efficiency bias (see Section 4.2.1). Partitions contain-
ing one or more templates yield positive end-points, whereas those
without template remain negative. Using Poisson’s law of small num-
bers, the actual number of template DNA molecules present can be
derived from the fraction of positive end-point reactions, according
to Equation 4.1,

λ = −ln(1− p) (4.1)

where λ is the average number of template DNA molecules per repli-
cate reaction and p is the fraction of positive end-point reactions.
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From λ, together with the volume of each replicate PCR and the to-
tal number of replicates analyzed, an estimate of the absolute target
DNA concentration can be calculated.

4.2.3 Droplet digital PCR

In the beginning, digital PCR arrays only offered hundreds of parti-
tions, limiting the dynamic range of quantification (Dube, Qin, and
Ramakrishnan, 2008). However, a more recent protocol by Hindson

et al. (2011) describes a variant called droplet digital PCR (ddPCR),
which significantly increases the number of partitions while lower-
ing the experimental costs, providing a boost to the technology (Fig-
ure 4.3).

ddPCR is an emerging technology for detection and quantification
of nucleic acids. In contrast to other digital PCR approaches, it uti-
lizes a water-oil emulsion droplet system to partition the template
DNA molecules. Each droplet serves as a compartment for a PCR reac-
tion, just as individual test tubes or wells in a plate, but on a smaller
scale. This system enables the partitioning into up to 20 000 nanoliter-
sized droplets, significantly increasing the dynamic range for detect-
ing changes in DNA quantity such as AIs.

A typical ddPCR workflow is presented in Figure 4.4: (a) Samples
and droplet generation oil are loaded into an eight-channel droplet
generator cartridge. (b) A vacuum is applied to the droplet well,
which draws sample and oil through a flow-focusing nozzle where
monodisperse 1 nL droplets are formed. In under 2 minutes, eight

Figure 4.3: Sample partitioning is the key to droplet digital PCR. In tradi-
tional PCR, a single sample offers only a single measurement
(A), but in droplet digital PCR, the sample is partitioned into
20 000 nanoliter-sized droplets (C). This partitioning enables the
measurement of thousands of independent amplification events
within a single sample.



38 biological background

(a) Load samples and oil into disposable
     droplet generator cartridge

(b) Generate droplets

(c) Transfer droplets to 96-well PCR plate

(d) Thermal cycle to end-point

(e) Read droplet flourescence

(f) Apply amplitude thresholds and
     calculate conctentrations

Figure 4.4: Overview over a typical droplet digital PCR workflow. (a) the
sample is loaded, (b) the sample is partitioned into droplets, (c)–
(d) sample is amplified using PCR, (e) fluorescence is measured
for each droplet, (f) results need to be analyzed. (Adapted from
Hindson et al., 2011).

samples are converted into eight sets of 20 000 droplets. (c) The sur-
factant-stabilized droplets are pipet transferred to a 96-well PCR plate.
(d) Droplet PCR amplification to end-point (35–45 cycles) is performed
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in a conventional thermal cycler. (e) The plate is loaded onto a reader
which sips droplets from each well and streams them single-file past
a two-color detector at the rate of ∼1000 droplets per second. (f) The
droplets are assigned as positive or negative based on their fluores-
cence amplitude. The number of positive and negative droplets in
each channel is used to calculate the concentration of the target and
reference DNA sequences (see Equation 4.1) and their Poisson based
95 % confidence intervals (Hindson et al., 2011).

4.3 detecting cnas with ddpcr

As aforementioned, during a ddPCR run, each genetic target is fluo-
rescently labeled with a combination of two fluorophores (typically
HEX and FAM), giving it a unique footprint in a two-dimensional
space represented by the intensities per color channel. The position
of each droplet within this space reveals how many and, more impor-
tantly, which genetic targets it contains. Thus, droplets that contain
the same targets cluster together (see Figure 4.5). The number of pos-
itive droplets for each target determines its abundance, which can be
used to detect CNAs in clinical samples.

Although the specifics of genome alteration vary dramatically be-
tween different tumor types, CNAs within the human genome are
known to correlate with the development and progression of cancer
(see Section 4.1.2). Quantifying CNAs has therefore become a funda-
mental part of oncology and inspired numerous research in this di-
rection. However, their accurate detection by ddPCR presents a unique
and considerably greater challenge. It requires the quantification of
subtle changes in the abundances of genetic regions by comparing
the corresponding abundances of specific biomarkers relative to the
average ploidy of the tissue. If that tissue section is formalin-fixed
paraffin-embedded (FFPE) and of a small size such that only a limited
amount of DNA can be extracted, as is often the case with clinical sam-
ples, application of ddPCR to CNA determination becomes even more
difficult.

The reason for this is that, in addition to the low quantity and qual-
ity of the DNA generally obtained, damage in the form of sequence
alterations can further reduce the amplification efficiency. This results
in droplets with their respective signal lying along a vector connect-
ing two clusters in the ddPCR output, which can contain up to half of
the droplets intrinsically belonging to the higher order cluster in case
of profound sample degradation. This phenomenon is called rain, re-
ferring to the cloudy shapes of the clusters.

Another drawback is the limited throughput of ddPCR, since cur-
rent generation ddPCR hardware only supports detection of two color
channels, hence originally only providing means for a duplex reac-
tion. A lot of effort has been made to improve the throughput by mul-
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Figure 4.5: Examples for ddPCR data. In (a) and (c) all 16 clusters are present.
In (b) and (d) the sample was partially degraded, causing for-
mation of rain and disappearance of the higher order clusters.
Non-orthogonal layout avoids overlap of clusters and rain.

tiplexing the reactions, i. e. running more than two targets at once.
McDermott et al. (2013) have introduced a way to combine the two
fluorophores to analyze a third target. Dobnik et al. (2016) proposed
combining the two available colors to run four DNA templates at the
same time, by doubling the amount of fluorophore used for the other
two targets (see Figure 4.5 (a)).

Yet simply doubling the amount of fluorophore results in an or-
thogonal cluster layout. In clinical FFPE samples, rain is overlapping
with other cluster centers, hence making it impossible to distinguish
which droplet belongs to which cluster (see Figure 4.5 (b)). A recently
published protocol by Hughesman et al. (2016) has further refined
the multiplexed ddPCR methodology to be able to analyze four tar-
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gets and use a non-orthogonal layout in order to avoid overlapping
of clusters and rain (Figure 4.5 (c) & (d)).

However, dedicated software for the automated analysis of mul-
tiplexed ddPCR reactions aimed at detecting three or more targets
is not yet available. The commercial QuantaSoftTM software, which
handles the raw data from ddPCR reactions, does not support the
detection of rain or non-orthogonal cluster layouts. In order to an-
alyze a reaction, users have to manually draw boarders around each
cluster (see Figure 4.6). Analyzing the data this way takes multiple
hours to complete, hence presenting a major bottleneck. Furthermore,
manual analysis has the usual disadvantages of subjectivity and non-
reproducibility. In order to determine whether signs of cancerous pro-
gressions are apparent on a clinical scale, efficient algorithms need to
be sought.

Figure 4.6: Manual analysis of ddPCR data. Using the commercial
QuantaSoftTM software, manual analysis is only possible by man-
ually drawing boarders around the clusters and labeling them by
hand.





5
T H E D D P C R C L U S T PA C K A G E

As presented in Chapter 4, data from ddPCR consists of a number of
different clusters c1, . . . , ck, which each contain droplets representing
one or more genetic targets t1, . . . , tl. The commercial QuantaSoftTM

Software requires an orthogonal layout, rendering it unusable for clin-
ical samples. Manual annotation is time consuming and hinders the
analysis of ddPCR data. It presents a major bottleneck for the technol-
ogy, which I address in this chapter, by presenting an an R pack-
age and associated interface (ddPCRvis) for automated analysis of
multiplexed ddPCR samples. I first present related work in this field,
then I introduce the problem statement and the methodology be-
hind ddPCRclust. Parts of this chapter have been submitted as Brink,
Meskas, and Brinkman (2018). The package is available under https:
//github.com/bgbrink/ddPCRclust.

5.1 related work

To address the challenges presented by manual analysis of ddPCR

data, several automated methods have been developed. ddpcRquant
proposes estimating a threshold for gating by modeling the extreme
values (Trypsteen et al., 2015). Two other R packages, ddPCR (Attali

et al., 2016) and twoddpcr (Chiu et al., 2017), include graphical user
interfaces (GUIs) built upon Shiny (Chang et al., 2017), a web applica-
tion framework for R (R Core Team, 2017), providing easy access to
their respective algorithms and allowing for manual correction of the
analysis. However, analysis of multiplexed ddPCR reactions (i. e. reac-
tions with more than two targets) is not supported by most tools, as
presented in Table 5.1. Thus, I developed ddPCRclust, which supports
both manual and automated analysis of non-orthogonal, multiplexed
ddPCR reactions.

Table 5.1: Comparison of available tools for analysis of ddPCR data.

ddpcRquant ddpcr twoddpcr QuantaSoft ddPCRclust

Manual gating no yes yes yes yes

Automatic gating yes yes yes yes yes

Targets supported 2 2 2 4 4

Rain supported no yes yes no yes

Freely available yes yes yes no yes

https://github.com/bgbrink/ddPCRclust
https://github.com/bgbrink/ddPCRclust
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5.2 problem statement

During a ddPCR run, each genetic target is fluorescently labeled with
a combination of two fluorophores (typically HEX and FAM), giving
it a unique footprint in a two-dimensional space represented by the
intensities per color channel. The position of each droplet within this
space reveals, how many and, more importantly, which genetic tar-
gets it contains. Thus, droplets that contain the same targets cluster
together (see Section 4.2.3).

Since one droplet can contain more than one target, the number
of possible clusters depends on the number of targets. Following the
laws of combinatorics, the number of ways to choose a subset of k
elements, disregarding their order, from a set of n elements, is defined
as the binomial coefficient

(
n
k

)
. Thus, summing up all the possible

combinations to choose k elements out of t targets yields Equation 5.1,

t∑
k=0

(
t

k

)
= 2t (5.1)

with t being the number of targets in this reaction and k the possible
number of targets per individual droplet.

However, the correct combination of targets for each droplet is only
given implicitly by its fluorescence footprint. Let x be a single droplet
signal. Each x consists of two features x = (x1, x2). These features
represent the fluorescence intensities measured by the ddPCR machine
and I define the tuple as the fluorescence footprint of x.

Let X = {x1, . . . , xn} be the set of all droplets (i. e. one data file)
and therefore xi = (xi,1, xi,2), with i ∈ {1, . . . ,n}. Let L = {l1, . . . , ln}
be the set of all labels for X, with li ∈ {1, . . . , 2t} according to Equa-
tion 5.1. Thus, the clustering problem can be defined as finding a
function ρ that assigns each x to a label l, as presented in Equation 5.2.

ρ : X→ L, x 7→ l (5.2)

Let T = t1, . . . , tl be the set of all targets. Each target tj also has
a specific fluorescence footprint fj = (fj,1, fj,2) and tj 7→ fj. This
implies that in theory, the fluorescence footprint for each x can be
defined as the sum of the fluorescence intensities of all its positive
targets according to Equation 5.3.

x =

l∑
j=1

fj

fj =

(fj,1, fj,2), if target tj positive

0, else

(5.3)
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However, in practice this is not accurate due to experimental vari-
ances, sample degradation, etc. In order to accurately quantify the
targets, it is not sufficient to correctly solve Equation 5.2. Each cluster
label l must also be assigned correctly to the respective targets T , as
presented in Equation 5.4. This defines, which genetic targets each
cluster represents.

σ : L→ T , l 7→ t (5.4)

Identifying and assigning clusters to targets is not trivial, since the
only source of information is the fluorescence footprint of the droplets.
Furthermore, the precise number of clusters that are present in each
dataset is unknown, due to variations in DNA concentration and am-
plification. The maximal number of clusters for a 4-plex ddPCR reac-
tion is 16 (see Equation 5.1), but it could be less.

The next problem is detection and correct assignment of rain (see
Section 4.2.3). Rain occurs between clusters that share at least one
target (see Figure 5.1). Thus, the number of vectors connecting the
clusters, which have to be considered for the detection of rain, follows
from Equation 5.1 by adding the number of possible combinations for
each cluster, resulting in Equation 5.5.

t∑
k=0

(
t

k

)
k = 2t−1t (5.5)
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(a) Raw data (b) Vectors containing rain

Figure 5.1: Graphical representation of the formation of rain along vectors.
(a) showcases an example of raw data that suffers from sample
degradation, causing the formation of rain. (b) highlights the
vectors connecting clusters that contain the same targets along
which rain can occur.
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Once all droplets are correctly assigned, copies per droplet (CPDs) for
each target can be calculated according to Hughesman et al. (2016),
as presented in Equation 5.6 and Equation 5.7,

CPDi = −ln(1−
Ci

CT
) (5.6)

where Ci is the total number of positive droplets for target i and CT

the total droplet count. The ratio for each target of interest i versus a
stable reference control r then follows as

ln(Ri/r) = ln(
CPDi ·CT

CPDr ·CT
) = ln(

CPDi

CPDr
) (5.7)

To summarize, I define the following steps that need be addressed
in this chapter:

1. Solve ρ and assign a label l to each droplet x.

2. Solve σ and assign one or multiple targets t to each cluster c.

3. Allocate the rain for each cluster c.

4. Determine the number of positive droplets for each target t and
calculate the CPDs.

5.3 methods

In this section, I present the methods used in the ddPCRclust package
as a solution to the problem statement. I follow the aforementioned
four steps and simplify them as: clustering, cluster labeling, rain allo-
cation, and CPDs calculation.

5.3.1 Input data

The input data for the analysis are one or multiple comma-separated
values (CSV) files containing the raw data from ddPCR experiments.
Each file represents a data frame with two dimension, one for each
color channel. Each row within the data frame represents a single
droplet, each column the respective intensities per color channel.

Following Chapter 1, the appropriate data abstraction can be for-
mulated as follows: The available dataset type is tables, where each
row represents an item of data and each column an categorical at-
tribute of the dataset. The attributes are quantitative and the dataset
is available in form of a static file. The required action is to derive
a new dataset type (i. e. clusters), targeting the similarity of the at-
tributes (i. e. the fluorescence intensity).
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5.3.2 Step 1: Clustering

In manual analysis, the clustering is done by gating each individual
cluster using the commercial QuantaSoftTM software (see Section 4.3).
This process is tedious and time consuming and is somewhat similar
to the manual gating process employed in the field of flow cytometry
(Sutherland et al., 1996). Thus, I compared 30 state of the art cluster-
ing methods for flow cytometry data for their respective applicability
to ddPCR data (Aghaeepour et al., 2013). Three algorithms proved to
be capable of handling ddPCR data without extensive modifications:
flowDensity, SamSPECTRAL, and flowPeaks. I use these algorithms to
perform the initial clustering and detect all potential cluster centers.

5.3.2.1 flowDensity

The first approach is based on the flowDensity algorithm published by
Malek et al. (2015). Originally designed for gating of flow cytometry
data, flowDensity identifies cell populations in a dataset using char-
acteristics of the density distribution (i. e. the number, height, and
width of peaks and the slope of the distribution curve). Parameters
can be adjusted on a population-specific basis. I use the density func-
tion to find local peaks above a threshold, which represent the centers
of clusters. Let x = (x1, x2) be a data point in the 2-dimensional color
space of this experiment. The method comprises the following steps:

1. Remove all x where (x1, x2) < 0.125 ·max(x1, x2). The bottom
12.5 % of the data space is known to contain the negative popu-
lation, i. e. the droplets without any of the targets of interest.

2. Find the highest density peaks with max(x1) and max(x2), re-
spectively. I define these as the two outer primary clusters y and
z, since the primary clusters empirically contain the majority of
the non-negative events.

3. Rotate the data with θ = |atan(y2−z2
y1−z1

)|.

4. Cut the rotated data above the two outer clusters in a staircase
manner and find all density peaks (see Figure 5.2).

5. Take the previously removed data and repeat steps 2 and 4,
until all clusters are found.

If too few events remain after cutting the data in step 4, the density
function is rendered useless. Instead, Equation 5.3 is used to estimate
the fluorescence footprint of the remaining cluster centers.
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Figure 5.2: Example for the density distribution of four primary clusters, af-
ter the data has been rotated and filtered. The individual data
points can be seen on the left, the corresponding local density on
the right. A gray dot marks the cluster centers, identified accord-
ing to the density peaks.

5.3.2.2 SamSPECTRAL

The second approach is built upon the clustering algorithm SamSPEC-
TRAL, a version of spectral clustering adapted to flow cytometry data.
It was published by Zare et al. (2010) and is available as an R pack-
age.

Since spectral clustering is computationally expensive (O(n3) time
and O(n2) space), SamSPECTRAL uses density based pre-processing
to reduce the number of edges in the graph. To do so, a faithful sam-
pling algorithm buildsm communities, which are then connected to a
graph where the edges represent the similarity between correspond-
ing communities. The spectrum of this graph is subsequently ana-
lyzed using classical spectral clustering to find the clusters. Finally,
the clusters are combined based on their similarity in the community
graph and a cluster number for each event in the original data is re-
turned. I use this implementation of spectral clustering and choose m
encompassing 5 % of the data, which has empirically proven to be a
good compromise between accuracy and speed. However, users can
choose a different value if necessary.

5.3.2.3 flowPeaks

The third approach uses the flowPeaksPeaks package for R, devel-
oped by Ge and Sealfon (2012). The flowPeaks algorithm first uses
a two step k-means clustering with a large k, in order to partition the
dataset into many compact clusters. The result is then used to gen-
erate a smoothed density function. All local peaks are exhaustively
found by exploring the density function and the clusters are merged
according to their local peaks.
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5.3.3 Step 2: Cluster labeling

After the clustering is done, targets need to be assigned to each clus-
ter. Clusters that contain no target are defined as the empty popula-
tion. Clusters that contain only a single target are defined as primary
clusters. Subsequently, clusters that contain two targets are defined
as secondary clusters, clusters that contain three targets are defined
as tertiary clusters, and the cluster that contains all four targets is
defined as quaternary cluster, as presented in Figure 5.3.

Because the flowDensity approach already employs rotation to find
the density peaks, labeling of the clusters can be performed at each
step of the clustering method (see Figure 5.2).

For the flowPeaks and SamSPECTRAL approaches, this needs to be
resolved based on the relative position of each cluster. Due to the par-
ticular layout of the data, the angle between the population of empty
droplets and the respective first order clusters seems the straightfor-
ward and most efficient way to label the first order clusters (see Fig-
ure 5.4).

I can estimate for the position of every cluster once the location
of the primary clusters is known based on Equation 5.3. I use this
estimate to create a distance matrix m, containing the distances be-
tween the estimated cluster positions d and all cluster centers c found
by the density of the peaks. The optimal assignment for each clus-
ter can then be calculated by solving the so called Linear Sum As-
signment Problem using the Hungarian Method (Papadimitriou and
Steiglitz, 1982).

(a) 4-plex reaction (b) 3-plex reaction

Figure 5.3: Graphical description of the different cluster categories: (0)
empty population, (I) primary clusters, (II) secondary clusters.
(III) tertiary clusters, (IV) quaternary cluster. A 4-plex reaction (a)
contains all categories, a 3-plex reaction (b) only contains empty
to tertiary clusters.
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Figure 5.4: The angles between the droplets on the bottom left, which re-
tain no target, and the first order clusters are highlighted. Based
on the relative position of the respective cluster centers, I deter-
mine which targets these represent. In case of genomic deletions
or purposely missing clusters, it is possible to determine which
cluster is missing. In case (b), a genomic deletion of target 2 has
occurred.

5.3.4 Step 3: Rain allocation

As presented in Section 4.3, ddPCR experiments with DNA obtained
from clinical FFPE samples involve rain, which can contain up to half
of the droplets intrinsically belonging to the higher order cluster in
case of profound sample degradation. Hence, accurate allocation of
rain is a crucial part of the ddPCRclust algorithm. To do so, we have
to find the minimal distance between each droplet and each cluster,
as well as between each droplet and the respective vectors connect-
ing the clusters (see Figure 5.1). The naive solution is an all-vs-all
comparison:

1. Go through the whole clustering result and for each row, calcu-
late the distance to all cluster centers and all vectors.

2. If the nearest element is a vector, compare the two minimal dis-
tances for the data point. If their fraction is > 95 %, the row will
be not be assigned to any cluster, but removed from the final
result.

3. Assigned the point to the nearest cluster or the cluster, to which
the nearest vector belongs.

However, this function has significant impact on the runtime of the
algorithm. The number of comparisons necessary in this step can be
estimated by combining Equation 5.1 and Equation 5.5, multiplied
with the size of the dataset (n), which yields O(2t−1(t+ 2)n). For an
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average experiment with t = 4 and n = 15 000, this leads to 720 000

operations per file. However, this number can be reduced by prepro-
cessing the data. Filtering out points that are obviously not rain, can
greatly demagnify n, speeding up the algorithm significantly in the
process. The obvious choice are points that are sufficiently close to
the cluster centers.

To estimate the distance of a point to a cluster center, I use the Ma-
halanobis distance (Mahalanobis, 1936). The reason for using the
Mahalanobis distance instead of the standard deviation is that it does
not require the clusters to be spherical. Furthermore, only taking clus-
ters and vectors in the vicinity of the data point into account will
lower the number of operations even further. The whole function is
comprised of the following steps:

1. For each cluster center c, calculate the Mahalanobis distance dM
to each point based on the covariance matrix of the dataset.

2. Remove all points where dM < 0.2. Those points are around the
respective cluster centers and hence do not have to be consid-
ered as rain.

3. For each cluster center c, remove all points that are not in be-
tween c and the respective higher order clusters.

4. For all remaining points, calculate the minimal distance in an
all-vs-all comparison as described earlier.

The intermediary result are three arrays of unique identifiers, which
represent the cluster membership for each row of the data frame.
Each array is the result from one of the three independent cluster-
ing approaches. Next, these results need to be combined.

5.3.5 Step 4: CPDs calculation

Until this point, all three approaches were computed independently.
To compute the final result, I create a cluster ensemble. A cluster ensem-
ble, sometimes also referred to as consensus clustering or aggregation
of clustering, is a collection of individual solutions to a given cluster-
ing problem. For ddPCRclust, this provides a number of benefits. If
one approach performs poorly, it will be compensated by the other
two approaches. Furthermore, it provides means to display a measure
of confidence, by calculating the agreement of the three approaches.
If the agreement is high, the final result is likely to be correct.

The cluster ensemble is calculated using the clue package for R
(Hornik, 2005). The results of the previous clusterings are first con-
verted into partitions, before the mediod of the cluster ensemble is
computed, i. e. the element of the ensemble minimizing the sum of
dissimilarities to all other elements. As a measure of confidence, the
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agreement of the cluster ensemble is calculated using the adjusted
Rand index (Hubert and Arabie, 1985; see Equation 6.2).

Once all droplets are assigned, the CPDs for each target can be calcu-
lated according to Equation 5.6. In order to compare individual wells
(or files) with each other, a constant reference control is required. This
target should be a genetic region that is usually not affected by any
variations and present in every file. If the name of this marker is pro-
vided, all CPDs will be normalized against that control.



6
D D P C R C L U S T R E S U LT S

In the previous chapter, I presented ddPCRclust, and R package for
automated analysis of multiplexed ddPCR samples. In this chapter, I
present clustering results on real datasets, comparing the ddPCRclust
algorithm to manual annotation. I also discuss these results and give
an outlook on possible applications. All automatic results have been
computes an a MacBook Air with Intel(R) Core(TM) i7-4650U CPU @
1.70GHz and 8 GB RAM. Manual droplet counts have been obtained
by experts using the commercial QuantaSoftTM software.

6.1 results

I compared four datasets (D1–D4) comprised of a total of 360 individ-
ual reactions. However, the manual annotation method described in
Section 4.3 only provides the number of positive droplets per target
and does not provide a cluster label for each event. Therefore, I have
to use a custom metric. For each reaction r, I calculate the difference
dr according to Equation 6.1,

dr =

∑t
i=1 |autoi −mani|

totalr
· 100 (6.1)

where t is the number of targets in this reaction, autoi the number of
positive droplets for target i according to the ddPCRclust algorithm,
mani the number of positive droplets for target i according to man-
ual annotation and totalr the total number of droplets in this reac-
tion. Based on this, I calculated the percentage of differently assigned
droplets in each dataset. I compare both the full algorithm with all
three clustering approaches, as well as the fast mode, which only uses
the flowDensity based approach (see Chapter 5). The results can be
seen in Figure 6.1. The run time of the algorithm has been computed
as well for each dataset and is shown in Table 6.1.

Table 6.1: Run time of ddPCRclust for selected datasets.

D1 D2 D3 D4

Number of reactions 72 96 96 96

Fast mode run time 67 s 17 s 13 s 18 s

Full mode run time 333 s 309 s 360 s 144 s

Along with the R package, a set of eight representative files of
ddPCR data is provided. For these eight files, each row (i. e. each
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Figure 6.1: The difference between automatic and manual analysis for se-
lected datasets. In (a) the results for the full algorithm are shown,
while (b) presents the results for the fast mode. Dataset D1 com-
prises 72 reactions, the others comprise 96 reactions each.

droplet) has been assigned manually to its respective cluster by ex-
perts. Thus, it is possible to compare the clustering results of ddPCR-
clust to manual analysis using the adjusted Rand index (Hubert and
Arabie, 1985). The adjusted Rand index (ARI) is the corrected-for-
chance version of the Rand index, a measure of similarity between
two data clusterings, and is defined as follows.

Given a set S of n elements, and two clusterings of these points,
namely X = {X1,X2, . . . ,Xr} and Y = {Y1, Y2, . . . , Ys}, the overlap be-
tween X and Y can be summarized in a contingency table

[
nij

]
where

each entry nij denotes the number of objects in common between Xi

and Yj : nij = |Xi ∩ Yj|.

[
nij

]
=

X\Y Y1 Y2 . . . Ys Sums
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The result for those eight reactions is presented in Table 6.2. Fur-
thermore, a visual comparison between the results is presented in
Figure 6.2, where the differences between the clusterings are high-
lighted.
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Due to pending patents, it is not possible to present real biomarkers
and evaluate ddPCRclust in terms of its performance to actually detect
relevant changes in biomarkers that are from cancerous samples.
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(c) Example file 2 (automatic)
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(d) Example file 2 (manual)

2500

5000

7500

10000

12500

5000 10000 15000

HEX Amplitude

F
A

M
 A

m
p

lit
u

d
e

(e) Example file 3 (automatic)
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(f) Example file 3 (manual)
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(g) Example file 4 (automatic)
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(h) Example file 4 (manual)
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(i) Example file 5 (automatic)
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(l) Example file 6 (manual)



6.1 results 57

2500

5000

7500

10000

5000 10000

HEX Amplitude

F
A

M
 A

m
p

lit
u

d
e

(m) Example file 7 (automatic)
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(n) Example file 7 (manual)
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Figure 6.2: Comparison between automatic and manual annotation for the
eight example files included in the package. Each point rep-
resents one droplet and its respective intensities per fluores-
cence channel. The color represents cluster membership (see Fig-
ure 7.8). Differences are highlighted with a rectangle.

Table 6.2: Run time and accuracy compared to manual annotation by experts
for eight exemplary reactions provided alongside the R package.
Each entry comprises the mean and the standard deviation, the
latter being in brackets.

Total number of droplets Adjusted Rand index Run time in seconds

14590 (1295) 0.997 (0.003) 7.18 (1.98)
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6.2 discussion

While the advantages of digital PCR in terms of sensitivity and ac-
curacy have already been established, the technology has long been
held back by its low throughput compared to other techniques. The
advancements of using thousands of nanoliter droplets instead of
physical wells paired with new protocols for multiplexed ddPCR re-
action will provide a massive boost to the field of digital PCR. These
new types of data require new computational methods to be devised
in order to avoid a bottleneck on the analysis end of the technology.
Automatic analysis of non-orthogonal reactions using the commer-
cial QuantaSoftTM Software is impossible and manual analysis takes
many hours to complete, while suffering the usual disadvantages of
subjectivity and non-reproducibility.

I developed ddPCRclust, an R package which can automatically cal-
culate CPDs for multiplexed ddPCR reactions with up to four targets
in a non-orthogonal layout. I showed that the results of ddPCRclust
are on a par with manual annotation by experts, while the computa-
tion only takes a few minutes per 96-well experiment. Three indepen-
dent clustering approaches provide robustness, which is especially
important in a medical context. This is an important first step in sup-
porting this new technology, and I am certain once it becomes more
widespread, faster and more efficient methods will be developed.

As presented in Figure 6.1, the mean difference over all 360 reac-
tion between ddPCRclust and manual analysis is ∼ 0.21 %, being as
low as ∼ 0.10 % for D3, while performing worst for D4 with a mean
difference of ∼ 0.37 %. It becomes evident that the accuracy of the algo-
rithm depends on the quality of the data. Profound sample degrada-
tion, mostly happening in formalin-fixed paraffin-embedded clinical
samples, causes the formation of rain. Furthermore, it has a negative
impact on the compactness of the clusters. This fact becomes espe-
cially clear for the fast mode, where the cleaner datasets D1 and D3

provide much better results than D2 and D4. The run time underlines
the fact that D4 suffered from a low amplification efficiency, being
more than twice as fast as the other datasets.

The comparison of the eight example files presented in Table 6.2
and Figure 6.2 highlights the strengths and weaknesses of the ddPCR-
clust algorithm. In the cases of files 3 and 5, the automatic solution
proves to be superior to the manual annotation. It has been estab-
lished that in the case of rain, 20 % of droplets shall be accounted
for the lower cluster and 80 % for the higher cluster. This is difficult
to estimate precisely when annotating the data manually, where the
uneven scaling of the axes provides an additional hindrance. The au-
tomatic solution has an advantage here, because it can calculate the
distance precisely for each droplet. Thus, the droplets close to the neg-
ative cluster in the bottom left are assigned correctly in the automatic
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case, but wrong in the manual case. Example file 8 however proves
that intensive rain can be difficult for both automatic and manual
annotation. There are many differences visible between the primary
and secondary clusters. In this case, the manual annotation is prob-
ably closer to the truth and the option to manually correct some of
the automatic results would be beneficial. Moreover, a manual correc-
tion of critical wells by experts would still be faster than annotating
everything by hand and provide the same accuracy. That’s part of
the reason why I developed a the GUI ddPCRvis based on the Shiny
technology, which will be presented in the next chapter.

6.3 outlook

Detecting cancer in its earliest stages can drastically increase chances
for a successful treatment and recovery. Today, technology such as
ddPCR is providing means for detecting even subtle changes to the
DNA. Discovering CNAs is part of promising research in these direc-
tions. Taking a sample from equivocal tissue can lead to detection of
somatic mutations, even before an actual tumor forms.

Furthermore, it has been shown that neoplastic diseases cause an
increase of cell-free nucleic acids circulating in the blood of patients
(Schwarzenbach, Hoon, and Pantel, 2011). This is believed to be
caused by the apoptosis and necrosis of cancer cells in the tumor
due to acquisition of lethal mutations and by the immune response
of the patient. It has been shown for different cancers (e. g. breast
cancer (Beaver et al., 2014), lung cancer (Oxnard et al., 2014), oral
cancer (Hughesman et al., 2016)) that is possible to detect cell-free
tumor DNA in the blood with the help of ddPCR. If more cancer related
biomarkers are discovered and the technology for detecting CNAs and
other mutation is further refined, it could be possible to detect many
cancers in their earliest stage simply by analyzing a blood sample.
This could revolutionize cancer check-up procedures, since taking a
patient’s blood sample on a regular bases would suffice.
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T H E V I S U A L I N T E R FA C E D D P C RV I S

I presented in Chapter 2 that an interactive visual interface is cru-
cial for the users to get a mental model of their data and make the
tool accessible. I therefore developed a GUI, which provides access to
the functionality of the ddPCRclust package directly through a web
browser. It is build upon Shiny, a web application framework for R.
I call the GUI ddPCRvis and it is available under https://bibiserv.

cebitec.uni-bielefeld.de/ddPCRvis/.

7.1 implementation

The shiny package for R enables developers to create a web applica-
tion using the R programming language (Chang et al., 2017). The re-
quired Hypertext Markup Language (HTML), Cascading Style Sheets
(CSS) and JavaScript elements are generated directly from R code.
Shiny applications have two components: a user-interface definition
and a server script. The user interface is defined in a source file named
ui.R, the server side of the application is defined in a source file
named server.R.

7.1.1 Structure of a Shiny application

As presented in Chapter 2, interactivity is a crucial aspect of any mod-
ern, computer based visualization. In the context of a Shiny applica-
tion, interactivity means that the input values can change at any time,
and the output values need to be updated immediately to reflect those
changes. To achieve this, Shiny applications use a concept called re-
active programming, where inputs and outputs are connected together
“live” and changes are propagated immediately.

7.1.2 Reactive programming

Reactive programming is a coding style, which revolves around three
important aspects: reactive sources, reactive conductors, and reactive
endpoints (Figure 7.1). Reactive sources are values that change over
time, or in response to the user. Reactive conductors are expressions
that access reactive sources and execute other reactive conductors. Re-
active endpoints can access reactive sources and reactive conductors,
but they don’t return a value.

From an implementation point of view, these aspects are repre-
sented by reactive values, reactive expressions, and observers. The im-

https://bibiserv.cebitec.uni-bielefeld.de/ddPCRvis/
https://bibiserv.cebitec.uni-bielefeld.de/ddPCRvis/
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Figure 7.1: Objects in reactive programming: reactive sources, which are im-
plementes by reactive values; reactive conductors, which are im-
plementes by reactive expression; and reactive endpoints, which
are implemented by observers.

portant thing about reactive expressions is that they are self-updating
features that keep track of changes. They automatically keep track
of what reactive values they read and what reactive expressions they
invoked. If a dependency becomes out of date, they know that their
own return value has also become out of date. Because of this depen-
dency tracking, changing a reactive value will automatically instruct
all reactive expressions and observers that directly or indirectly de-
pended on that value to re-execute.

In a Shiny application, the source typically is user input through a
browser interface. For example, when the user selects an item, types
input, or clicks on a button, these actions will set values that are re-
active sources. A reactive endpoint is usually something that appears
in the user’s browser window, such as a plot or a table of values. This
relationship can be formulated as a graph. A simple example for this
is given in Figure 7.2.

Figure 7.2: Simple example for a graph of the reactive structure. One reac-
tive source (value) is connected with one reactive endpoint (ob-
server).

It is also possible to put reactive components in between the sources
and endpoints. These components are called reactive conductors. A
conductor can both be a dependent and have dependents. In other
words, it can be both a parent and child in a graph of the reactive
structure. Sources can only be parents (they can have dependents),
and endpoints can only be children (they can be dependents) in the
reactive graph. Reactive conductors can be useful for encapsulating
slow or computationally expensive operations, for instance calculat-
ing the nth element of the Fibonacci series.

In the case of ddPCRvis, I use conductors for example to paral-
lelize the computation of the ddPCRclust algorithm. Each clustering
approach is launched multiple times, depending on the number of
CPU cores, such that multiple files are being evaluated at once (Fig-
ure 7.3). Another example would be the editing of individual results,
where the user interacts with one plot and a second plot is updated
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live according to these changes (see Section 7.2.3). A conductor con-
nects these two endpoints and the underlying data items (Shiny - Re-
activity - An overview).

Figure 7.3: A reactive conductor can link reactive sources and endpoints.
In ddPCRvis, I use it to run each clustering approach from the
ddPCRclust package multiple times in parallel.

7.2 the web interface

The website is divided into six pages: Upload Files, Clustering, Edit
Clustering, Counts, CPDs, and Results Figure 7.4. Each page can be
accessed using the navigation bar on the top. I will present each view
and explain the design principle based on the questions presented in
Chapter 1:

• What is to be visualized?

• Why visualize it?

• How to visualize it?

Figure 7.4: Navigation bar of the ddPCRvis application. The website is di-
vided into six views: Upload Files, Clustering, Edit Clustering,
Counts, CPDs, and Results. The green button on the right starts
the dynamic help system for the current view.

7.2.1 Upload files

Uploading the raw data is the first step, if any kind of analysis shall be
performed on it. Hence, the first view the users see when they launch
ddPCRvis is the Upload Files view. A control panel on the left side is
present in every view and gives the users access to all the functions
available to them on the current page. Here, it enables uploading
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both the raw data and a template file, which specifies the setup of
the ddPCR reactions for this experiment (Figure 7.5a). Once some files
have been selected, a progress bar underneath the input field gives
the users direct feedback on his actions (Figure 7.5b).

(a) Before file upload (b) During file upload

Figure 7.5: Example for a control panel on ddPCRvis. Here, the users can
upload their template and raw data. Progress bars give direct
feedback.

Table 7.1: Example for a run template for both ddPCRvis or ddPCRclust.

> Experiment_name, channel1=HEX, channel2=FAM, annotations(date, etc.)

Well Sample type No of markers Marker 1 Marker 2 Marker 3 Marker 4

B01 Blood 4 a b c d

G01 FFPE 4 a b c d

F02 Blood 3 a c d

D03 FFPE 3 a c d

A04 FFPE 4 a b c d

G07 Cell line 3 a c d

G08 Cell line 3 a c d

E09 FFPE 2 c d

The available raw data for this project are tables, where each row
represents an item of data and each column an categorical attribute
of the dataset (see Section 1.2.1). The same is true for the template,
which is to be uploaded or designed directly within ddPCRvis, in or-
der to specify the details of this experiments. Since one experiment
most likely consists of many different files, naming them appropri-
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ately is important in order to keep things organized. I chose to use a
unique identifier in each filename of the form:

"^[[:upper:]][[:digit:]][[:digit:]]$"

(A01, A02, A03, B01, B02, ...), which is usually included automatically
by the ddPCR device. These identifiers are then referred to in the tem-
plate, which should follow the layout presented in Table 7.1. Thus,
the visualization must give the users an overview over this setup (see
Section 1.2.2), which is realized using a simple, interactive table view
(Figure 7.6). The users can spot and edit any mistakes in the setup
and select, which files are about to be analyzed. Finally, the analy-
sis can then be started, by clicking the respective button as seen in
Figure 7.5.

Figure 7.6: Interactive table view of a template in ddPCRvis. Cells can be
edited and files selected or deselected for analysis.

7.2.2 Clustering

After the clustering algorithm has finished, the users are automati-
cally redirected to the next page Clustering. The main view on this
page is comprised of three columns. On the left side a gray on white
image of the raw data is be displayed. Next to it, a colored image is
shown, where each color represents cluster membership for the re-
spective droplet. On the right side, a percentage between 0 and 100 is
shown. This represents the agreement between the different underly-
ing clustering algorithms and serves as a measure of confidence (see
Figure 7.7).

Following the aforementioned design principles, the data types to
visualize here are clusters. The users want to get an overview over the
results and identify outliers or poor clustering results. I encode the
data in a scatter plot and highlight cluster membership using color. To
visualize 16 clusters, I designed a custom color palette, which is pre-
sented in Figure 7.8. Green and yellow have been combined to one
category, due to yellow being poorly visible on white background.
Furthermore, shades of green are known to have the widest range of
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Figure 7.7: Main view of the clustering results. On the left side a gray on
white image of the raw data is be displayed. Next to it, a colored
image is shown, where each color represents cluster member-
ship for the respective droplet. On the right side, a percentage
between 0 and 100 is shown. This represents the agreement be-
tween the different underlying clustering algorithms and serves
as a measure of confidence (see Section 5.3.5).

perception for the human eye (Ware, 2010). Thus, I use the combi-
nation of the green and yellow spectrum for the category with the
highest number of clusters: the secondary clusters. According to the
opponent process theory (see Section 1.2.3), I chose shades of red and
shades of blue for four primary and tertiary clusters, respectively. The
empty population is represented by a gray color and the quaternary
cluster has red-brown shade, which is again opposing the blue shades
of the neighboring tertiary clusters.

Figure 7.8: The color pallete for visualizing the clustering results. The clus-
ters can be divided in 5 sub-categories: Empty population, pri-
mary clusters, secondary clusters, tertiary clusters, and quater-
nary cluster. Each sub-category is represented by shades of a
color family.

The agreement between the algorithms is also emphasized with
color, using a common palette from green over yellow and orange to
red. The encoding is defined as follows:
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• > 98 % agreement→ green

• > 95 % agreement→ yellow

• > 90 % agreement→ orange

• else → red

7.2.3 Edit clustering

As presented in Section 5.2, a crucial aspect of the algorithm is correct
assignment of droplets to their respective clusters. Means for detect-
ing errors have been presented in Figure 7.7, but the users also need to
be able to correct them. I therefore implemented an interface, where
users can interact with the visualization and manually reassign any
number of droplets to any of the clusters. The data types and task ab-
straction are the same as in Section 7.2.2, but I add another interface,
with which the users can interact and select droplets that they want
to reassign.

Figure 7.9: Main view of the Edit Clustering page in ddPCRvis. On the left
side, a gray on white representation of the raw data is displayed.
Users can select any area by clicking with your mouse and hold-
ing the button to draw a rectangle. These droplets will be re-
assigned to the cluster you selected in the menu on the left. The
colored plot to the right is updated live, so users can check if
their changes are correct. In this example, part of cluster “1+3”
has been manually assigned to cluster “3”.

7.2.4 Counts

The next page presents the raw counts for this experiments. The data
type in this visualization is again a table, where each row represents
one file that has been uploaded and each column one cluster or the
total number of droplets, respectively. The table view was chosen as
an appropriate presentation, including means to search and sort it
(see Figure 7.10).

The control panel on the left side enables the users to download
the counts as CSV files and select a stable reference control, which is
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Figure 7.10: Main view of the Counts page in ddPCRvis. Each row represents
one file that has been uploaded and each column one cluster
or the total number of droplets, respectively. The table can be
searched and sorted according to each column. Users can select
how many rows should be displayed at once.

used to normalize the data (see Section 5.3.5). A click on “Calculate
CPDs” brings users to the next page.

7.2.5 CPDs

This page is similar to the page Counts, except now each row repre-
sents one genetic target (or marker), as presented in Figure 7.11.

Figure 7.11: Main view of the CPDs page in ddPCRvis. Each row represents
one target (or marker) that has been specified in the template.
The columns represent the name of the file, the sample name,
the marker name, raw droplet count, and CPDs. The table can be
searched and sorted according to each column. Users can select
how many rows should be displayed at once.

7.2.6 Result

The Result page offers two different visualizations depending on the
task at hand. Initially, CPDs for each target are displayed as a box-
and-whisker plot, a graphical method of displaying variation in a
dataset (McGill, Tukey, and Larsen, 1978; see Section 9.3 for de-
tails). Each box represents the CPDs for one target. The size of the box
represent the lower and upper quartile, and the whiskers represent
the extremes. To enhance visibility, the individual boxes are also sep-
arated by color. This gives users a first overview over the variability
in their data.

Based on this, they can select a number of constant controls us-
ing the navigation bar to the left. Constant controls are genes, which
have been selected as targets because they are known to show little
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Figure 7.12: Main view of the results page displaying CPDs as a box-and-
whisker plot. Each box represents the CPDs for one target.

variety even under increased genomic instability during a tumor (see
Chapter 4). Once a set of controls has been selected, the visualization
changes to a bar plot, because the new task abstraction is to compare
targets with the selected controls. The bars represent the mean dif-
ference in expression for each target compared to the mean of the
selected controls.

Figure 7.13: Main view of the results page displaying the difference of tar-
gets and selected controls. Each bar represents the difference in
percent. If multiple replicates were provided, error bars show
the variance.

7.2.7 Dynamic help system

Giving users feedback on their current action is an important aspect
of making an intuitive visualization and GUI. However, it is always
possible that a user is lost along the way, so an additional help system
will provide extra support. The JavaScript library introJS offers means
for a step-by-step guide by highlighting elements on a web page. I use
this library to draw boxes around important aspects of the current
view. The help text and the respective element of the GUI, where the
text is referring to, are displayed in normal color, while graying out
everything else. This way, emphasis is put on the the two elements
and it is easy for the user to grasp the connection. Furthermore, this
is combined with an annotation layer and a navigation system to click
through the different steps, which can be performed on this page.
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7.3 discussion

A well designed GUI can greatly improve the reach of a tool and the
performance of its users (Shneiderman, 2010). I presented ddPCRvis,
a web based GUI for the ddPCRclust package built on R Shiny.

Each step of the algorithm requires its own visualization, with dif-
ferent visual idioms. I defined the tasks for each visualization based
on the questions presented in Chapter 1. Direct feedback to any ac-
tions enhances user experience. The clustering results are visualized
using a custom color palette, which has been optimized for the data
at hand. Interactivity is used when modifying the clustering results,
giving the user access to the previous steps of the algorithm and mod-
ify the results where necessary (see Figure 2.1).

ddPCRvis does not only provides easy access to the algorithm, but it
also enables the user to check the results and manually correct them if
necessary. Furthermore, in a medical context supervision of each step
of the algorithm by a licensed physician is mandatory by law, if the
application shall support the decision making process of a diagnosis.

However, the visualizations are restricted by the layout of the web
page and the Shiny technology. While Shiny is convenient for build-
ing web applications based on R scripts, it is not build for creating
powerful visualizations. For the task at hand, i. e. presenting the re-
sults of the ddPCRclust algorithm and allowing the user to view, mod-
ify, and export them, a lot of effort was necessary to customize and
extend the base functionalities of the shiny library — even though
there is only a single algorithm with clearly defined tasks. The pre-
sented solution proofs to be sufficient, but for a more comprehensive
platform that works with various types of data and allows for differ-
ent types of analyses with more powerful visualizations, a different
technology is necessary. In the next part of this thesis I present Omics
Fusion, a web based platform build specifically with these goals in
mind.

7.4 outlook

Since the main use of ddPCR at the moment is in the medical field,
the GUI could be extended to enrich the results of the ddPCrclust algo-
rithms with data from other databases, such as the cancer genome at-
las (TCGA) (Weinstein et al., 2013). Differently expressed biomarkers
could be highlighted and their risk factor evaluated directly within
the ddPCRvis software, giving the physician all the information pro-
vided within the TCGA.

In addition to that, the genomic location of the biomarkers could
be interactively highlighted on a stylized chromosome, enabling re-
searchers for instance to spot regions that behave similarly or areas
with especially high mutation frequencies.



Part III

O M I C S F U S I O N — A P L AT F O R M F O R
I N T E G R AT I V E A N A LY S I S O F O M I C S D ATA

The third part of this thesis presents Omics Fusion, a com-
prehensive software for the integrative analysis and visu-
alization of certain types of biological data. The eighth
chapter introduces the motivation and the data, and gives
an overview over the software. The ninth chapter presents
an example for a task-oriented visualization of functional
annotated omics data based on the established Clusters
of Orthologous Groups (COG) database and gene ontol-
ogy (GO) terms. Lastly, the tenth chapter concludes this
thesis.





8
I N T R O D U C I N G O M I C S F U S I O N

In this chapter, I will introduce Omics Fusion, a platform for the in-
tegrative analysis of omics data. I will first present the motivation
behind this project, before explaining the necessary biological and
technical background, e. g. the definition of the term omics. Further-
more, I will briefly introduce some implementation details and give
an overview over the functionalities. Parts of this chapter have been
published under Brink et al. (2016).

8.1 motivation

With the advance of technology, generating data is no longer the lim-
iting factor in biology. High-throughput experimental technologies
transformed biological research from a relatively data-poor discipline
to one that is data-rich. A key aspect of understanding and analyzing
data is visualization (see Chapter 1). Analytical tools are very useful
to solve a specific computational problem, whereas a powerful visu-
alization can enable researchers to gain a mental model for their data
and apply their biological knowledge.

Typically, molecular biology strives to understand and potentially
optimize metabolic processes within a biological system such as a cell.
Cells are living systems full of various functional molecules, which
eventually determine the phenotype of the cells. Such molecules in-
clude mRNA transcribed from DNA, proteins translated from mRNA,
and various metabolites generated by various enzymatic activities.
Therefore, only analyzing the DNA sequences of genomes is not suf-
ficient to obtain crucial information regarding the regulatory mecha-
nisms involved in a cell’s metabolism, e. g. responses to environmen-
tal factors and other stresses, or the production of metabolites. To
understand the cell as one system, data from more than one omics
discipline is needed (Zhang, Li, and Nie, 2010).

8.2 omics techniques

To fully understand a biological metabolism and its responses to en-
vironmental factors, it is necessary to include functional character-
ization and accurate quantification of all levels — gene products,
proteins, and metabolites; as well as their interaction. In the past
decades, significant advancements in improving analytical technolo-
gies pertaining to measuring mRNA, proteins, and metabolites have
been made. These advancements have led to the generation of new
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research fields called omics: genomics, transcriptomics, proteomics,
metabolomics, interactomics, and even more advanced fields like flux-
omics (determining the rates of metabolic reactions within a biolog-
ical entity) or localizomics (discovering information about the local-
ization of proteins and metabolites). In general, all experimental ap-
proaches that share the following three major features in contrast to
traditional procedures can be called omics:

1. Approaches that are high-throughput, data-driven, holistic and
top-down methodologies.

2. The attempt to understand the cell metabolism as one integrated
system rather than as mere collections of different parts by us-
ing information of the relationships between many measured
molecular species.

3. The generation of large amounts of data and the analysis of
these data often requires significant statistical and computa-
tional efforts.

The four major fields in omics, genomics, transcriptomics, proteomics
and metabolomics are briefly described below.

8.2.1 Genomics

With the completion and publication of the Haemophilus influenzae
genome sequence in 1995 (Fleischmann et al., 1995) or at the latest
after the publication of the Pyrosequencing technology in 2001 (Ron-
aghi, 2001), DNA sequencing has become the most data-rich field in
modern biology and hence genomics was the first of the omics fields.
Going back to 1977, when Frederick Sanger published his method
for “DNA sequencing with chain-terminating inhibitors” (Sanger,
Nicklen, and Coulson, 1977), DNA sequencing has developed from
manually sequencing hundreds of basepairs per week to sequenc-
ing billions of basepairs in a matter of days (Goodwin, McPherson,
and McCombie, 2016). Concurrently, the costs for sequencing have
plummeted and the famous “1 000 dollar genome”, i. e. the possibil-
ity to sequence a human genome for less than a thousand US dol-
lars first anticipated by Mardis (2006), has basically become reality
(Figure 8.1). State of the art technologies involve single-molecule real-
time sequencing (Pacific Biosciences), ion semiconductor (Ion Torrent
sequencing), or sequencing by synthesis (Illumina). However, a se-
quenced genome doesn’t provide any information about the actual
gene expression and is more like a set of tools without any informa-
tion of its actual use. Therefore, a new field called transcriptomics
was necessary.
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Figure 8.1: The sequencing cost per genome from mid 2001 until mid 2017.
The y-axis shows the costs in US dollars on a logarithmic scale.
The assumed genome size was 3 000 megabases (i. e. the size of
a human genome). The assumed sequence coverage needed de-
pends on the average sequence read length of the sequencing
platform; Sanger-based sequencing (average read length = 500–
600 bases): 6-fold coverage, Pyrosequencing (average read length
= 300–400 bases): 10-fold coverage, Illumina and SOLiD sequenc-
ing (average read length = 75–150 bases): 30-fold coverage (Wet-
terstrand, 2017).

8.2.2 Transcriptomics

Transcriptomics is the analysis of gene expression and attempts to
measure the whole set of all RNA molecules produced in one cell
or a population of cells (see Chapter 4). The abundance of these so
called transcripts defines the expression level of their corresponding
region in the genome, e. g. genes. Studies on individual transcripts
have been performed as early as 1979 (Sim et al., 1979). In the 1980s,
low-throughput Sanger sequencing began to be used to sequence ran-
dom individual transcripts from these libraries, called expressed se-
quence tags (Putney, Herlihy, and Schimmel, 1983; Sutcliffe et al.,
1982). However, this approach could only evaluate a limited number
of genes at a time. In 1995, serial analysis of gene expression was the first
technology to analyze thousands of transcripts at a time (Velculescu

et al., 1995). In the same year, the first paper using a DNA microarray
was published (Schena et al., 1995). With the help of these technolo-
gies, in the mid-to-late 1990s countless genome-wide studies have
examined the dynamics of gene expression in many model systems
and environments, which can be seen as the birth of transcriptomics.

Microarrays became the dominant methodology for almost 10 years,
until Nagalakshmi et al. (2008) published the transcriptional land-
scape of the yeast genome by using a new technology called RNA

sequencing. It is based on the same technologies that are used for ge-
nomics studies, except the RNA is converted to its DNA complement
first. Due to the aforementioned increase in throughput and decrease



76 introducing omics fusion

0

500

1000

1500

2000

2500

1986 1991 1996 2001 2006 2011 2016
Year

P
ub

lic
at

io
ns

Figure 8.2: The use of transcriptomics methods in the last 30 years. Pub-
lished papers on PubMed referring to RNA-seq (black), RNA mi-
croarray (red), expressed sequence tag (blue) and serial analysis
of gene expression (green) since 1986 (Medline trend).

in cost when sequencing DNA, RNA sequencing has become the de
facto standard for transcriptomics studies today (see Figure 8.2).

Furthermore, this data is quantitative, which means the dynamic
expression of mRNA molecules and their variation between different
states becomes traceable on a genome scale. The resulting data can be
easily integrated with genomics data, as both represent the same level
- the genes. However, the various possibilities of post-translational
modifications are not captured by these analysis and so the integra-
tion with proteomics and metabolomics data is more challenging.

8.2.3 Proteomics

Proteins are vital parts of living organisms, as they are the major
components for building the cellular structure, serve as catalytic en-
zymes in metabolic pathways, and as signal transduction proteins
in regulatory pathways of cells. The term proteomics was coined to
make an analogy with genomics and transcriptomics as a tool for the
large-scale study of proteins, particularly their functions and struc-
tures. However, proteomics is the most difficult of the omics fields
and even advanced technologies like 2D-PAGE or LC/MS-MS usu-
ally cover only 20–40 % of the proteins. Furthermore, all experimental
approaches struggle with high error rates and quantitative data on a
large scale is not available.

Thus integrating proteomics data with data from other omics ap-
proaches proves to be very difficult, however additional data from
transcriptomics experiments can help to verify proteomics data and
reduce the error rates (Zhang, Li, and Nie, 2010).
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8.2.4 Metabolomics

Metabolites are small molecules that are chemically transformed dur-
ing metabolism and, as such, they provide a functional readout of
cellular state. Unlike genes and proteins, the functions of which are
subject to epigenetic regulation and post-translational modifications,
respectively, metabolites serve as direct signatures of biochemical ac-
tivity and are therefore easier to correlate with the phenotype. In
this context, metabolite profiling, or metabolomics, is typically per-
formed by employing gas chromatography time-of-flight mass spec-
trometry, high-performance liquid chromatography-mass spectrome-
try or capillary electrophoresis-mass spectrometry instruments, nu-
clear magnetic resonance spectroscopy, and more recently vibrational
spectroscopy - or a combination of the above.

The integration with transcriptomics data can be very powerful,
since both approaches provide quantitative data and can build the
relationship between information elements (genes/transcripts) and
functional elements (metabolites). However, special attention is re-
quired by the fact that transcriptomics data only provides a relative
quantification, whereas metabolomics data includes absolute quantifi-
cation (Patti, Yanes, and Siuzdak, 2012).

8.3 related work

Many attempts have been made to create software for omics data.
Due to the variety and scale of the data, there is no all-in-one solution
suitable for every purpose. Here, I present the most notable examples
of software in the omics fields and their respective strengths.

celldesigner CellDesigner is a Java application for Windows,
Mac, and Linux developed by Funahashi et al. (2008). It enables
users to model gene-regulatory and biochemical networks using the
GUI. Networks can be created from scratch or loaded from Systems Bi-
ology Markup Language (SBML) files. A layout algorithm creates the
initial representation, which can then be edited. This is supported by
a number of different annotations for biochemical molecules and their
interactions. Networks can be exported to SBML files or converted into
Scalable Vector Graphics (SVGs).

cytoscape Cytoscape is an open source software platform for
visualizing molecular interaction networks and biological pathways
and integrating these networks with annotations, gene expression
profiles and other state data (Shannon et al., 2003). Although Cy-
toscape was originally designed for biological research, now it is a
general platform for complex network analysis and visualization. The
central object in Cytoscape is the network graph, where attributes like
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genes, proteins, or other entities are displayed as nodes, while edges
represent interactions between those entities. Nodes and edges can
be manipulated freely within the GUI. Color, size, and shape of each
element can be altered and the network can be searched and filtered
according to the current needs. Furthermore, Cytoscape supports the
use of plugins (now called Apps), which extend the base features and
offer customized solutions for many problems.

omix Omix is a commercial tool for creating and editing biochem-
ical networks (Droste et al., 2011). The main application field is the
interactive mapping of multi-omics data, i. e. the fields of transcrip-
tomics, metabolomics, and fluxomics, onto the network drawing. To
achieve this, Omix uses a proprietary scripting language called Omix
Visualization Language. The visual properties of nodes and edges com-
posing the network can be accessed and modified with these script,
allowing users to tailor a visualization to their needs. Data can be im-
ported from and exported to a variety of databases and file formats,
including SBML, spreadsheets, bitmap and vector graphic formats, or
animations (SWF Flash) and movie files.

3omics 3Omics is a web tool for visualizing and integrating mul-
tiple inter- or intra-transcriptomic, proteomic, and metabolomic hu-
man data (Kuo, Tian, and Tseng, 2013). It covers five commonly
used analyses including correlation networks that display the degree
of association between variables over multiple time series, clustering
of co-expression profiles of different omics data visualized by heat
maps, phenotype mapping that uses transcriptomic and proteomic
data provided by the user, metabolic pathway enrichment analysis
which interprets user provided metabolite data sharing common bio-
logical pathways, and GO functional profiling that provides informa-
tion of cellular components, biological processes and the molecular
function of transcriptomic data supplied by the user.

prometra ProMeTra, developed by Neuweger et al. (2009), is an
open source framework that provides visualization methods for pro-
teomics, metabolomics, and transcriptomics datasets and uses mostly
static SVG graphics to generate pathway maps. Additional informa-
tion about the different omics experiments is added using heatmaps
or other color codes. It offers connections to other tools from the Bioin-
formatics Resource Facility in Bielefeld like MeltDB (metabolomics)
(Kessler, Neuweger, and Goesmann, 2013), Qupe (proteomics) (Al-
baum et al., 2009), and EMMA (transcriptomics) (Dondrup et al.,
2009). Users can upload their own pathways in the form of SVG files,
annotate them with additional information for instance from spread-
sheets, and download the annotated pathways again as SVGs.
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8.4 implementation

Omics Fusion is a web based platform built on the Spring Web MVC

framework for Java. The framework provides model-view-controller
(MVC) architecture and ready components that can be used to develop
flexible and loosely coupled web applications. The MVC pattern sepa-
rates three different aspects of the application:

• The model is the central component of the pattern. It directly
manages the data, logic and rules of the application.

• The view is responsible for rendering the model data and in
general it generates HTML output that the web browser can in-
terpret.

• The Controller is responsible for processing user requests and
updating the model and the view appropriately.

The decoupling of these major components allows for efficient code
reuse and parallel development.

Omics Fusion was developed as the successor to ProMeTra, an open
source framework that provides visualization methods for polyomics
datasets and uses static SVG graphics to generate pathway maps. In
contrast, Omics Fusion focuses on interactivity. By using modern Java-
Script techniques, new means for creating powerful visualizations are
available, for example allowing users to click on objects, mark certain
areas, zoom in or out, etc. This enables them to explore data without
prior knowledge about it. Users can apply different filters, evaluate
different clustering methods, search for patterns of co-regulated or
differentially expressed transcripts, proteins and metabolites, or dis-
cover pathways that are affected by a certain condition.

To achieve this high level of interactivity and simplify the imple-
mentation, the various visualizations are generated using the power-
ful D3 library for Javascript. D3.js (or just D3 for Data-Driven Docu-
ments) is a JavaScript library created by Bostock, Ogievetsky, and
Heer (2011) that uses digital data to drive the creation and control of
dynamic and interactive graphical forms which run in web browsers.
Embedded within an HTML webpage, the JavaScript D3.js library uses
pre-built JavaScript functions to select elements, create SVG objects,
style them, or add transitions, dynamic effects or tooltips to them.
Large datasets can be easily bound to SVG objects using simple D3
functions to generate rich text/graphic charts and diagrams. This
makes it easy for developers to extend the platform and add new
visualizations in the future. It is also possible to call external scripts
(Python, R, etc.), providing even more ways to customize a workflow.

Data management and manipulation are implemented with Java
Servlets. Servlets are Java programming language classes used to ex-
tend the capabilities of a server, in contrast to applets, which run lo-
cally in web browsers. Therefore, tasks that require lots of computing
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power, such as clustering algorithms, can be executed on the server
side, and make use of the computational power of the Bioinformatics
Resource Facility in Bielefeld.

8.5 functionality

Omics Fusion is a platform for results of all kinds of data-rich high-
throughput experiments, focusing on three classical fields of omics
studies: transcriptomics, proteomics and metabolomics. It offers con-
venient data management, such as automated import of spreadsheets,
along with connections to other platforms like EMMA (Dondrup et
al., 2009), a system for the collaborative analysis and integration of mi-
croarray data, MeltDB (Kessler, Neuweger, and Goesmann, 2013),
a software platform for the analysis and integration of metabolomics
experiment data, or QuPE (Albaum et al., 2009), a rich internet appli-
cation for the analysis of mass spectrometry-based quantitative pro-
teomics experiments. Here, I present the core functionalities of Omics
Fusion below in the order of a typical workflow.

8.5.1 Data manipulation

There are multiple tools available to manipulate data, ranging from
simple but crucial normalization and filtering steps to transformation
and missing value replacement. Data can also be enriched by query-
ing other databases like KEGG, UniprotKb or NCBI/Entrez (see Fig-
ure 8.3).

Figure 8.3: This figure shows an example screenshot from Omics Fusion for
a data management screen.
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Figure 8.4: This figure shows an example for cluster profiles. Data points
with a similar expression signature are clustered together.

8.5.2 Data analysis

Omics Fusion offers tools for descriptive statistics and distribution
analysis to get an overview over the data, but also analysis of variance
(ANOVA) for robust statistical testing. Besides other classical methods
like principial component analysis (PCA), Omics Fusion offers a hier-
archical cluster analysis with automatic calculation of optimal clus-
ter size and cluster grouping. This hierarchical clustering can be per-
formed on data from multiple omics fields, grouping transcriptomic,
proteomic, and metabolomic data points with a similar signature.
This facilitates the discovery of similar expression patterns through-
out experiments from different omics fields (see Figure 8.4).

Figure 8.5: This figure shows an example for parallel coordinates. Each
axis could correspond to a time point, experimental condition,
or strain, each vertical line corresponds to a gene, protein, or
metabolite. The users can select an area of interest on each axis
to filter the data, as shown here for values between -5 and 0 on
the third axis.



82 introducing omics fusion

Figure 8.6: This figure shows an example for visual profiling. The bottom
shows the desired expression profiles over five time points for
transcripts and proteins. The top shows the corresponding data
that matches the selected profile.

8.5.3 Visualization methods

Omics Fusion offers an increasing number of ways to explore and visu-
alize omics data. A few examples are box plots, scatter plots, parallel
coordinates (see Figure 8.5) or parallel sets. Beyond that, users can
choose from a number of custom visualizations that introduce new
ways to look at data from different omics disciplines. An example
for that is a method termed “visual profiling", which allows users to
manually draw an arbitrary abundance profile and find all transcripts,
proteins, or metabolites matching that prototype (see Figure 8.6).

8.5.4 Pathway map

The pathway viewer component implemented within Omics Fusion
enables the mapping of complete omics datasets on metabolic path-
way images. Customized pathway maps can be easily imported as
SVG-files and the interactive visualization provides different levels
of highlighting important aspects of the data, e. g. stylized icons for
different expression patterns or a heatmap representation. The color
mapping can be changed to aid color blind people. Individual parts
of the visualization such as the names of enzymes or metabolites can
be hidden, in order to enhance visibility of the expression patterns.
The background can also be changed to black, to further enhance the
contrast (see Figure 8.7).
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Figure 8.7: This figure shows an example for a pathway map, presenting
two different visual representations of the same pathway.
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V I S U A L I Z AT I O N O F F U N C T I O N A L A N N O TAT I O N
D ATA

In this chapter, I will present a task-oriented visualization approach
of functional annotated omics data based on the established Clusters
of Orthologous Groups (COG) database and gene ontology (GO) terms.

9.1 functional annotation

In the context of this thesis, functional annotation refers to attaching
information regarding a biological function to a gene, gene product,
or protein. Subsequent, I present two approaches for this.

9.1.1 Gene Ontology

In computer science and information science, an ontology is a formal
naming and definition of the types, properties, and interrelationships
of the entities that really exist in a particular domain of discourse.
Thus, it is a practical application of philosophical ontology, with a tax-
onomy. In bioinformatics, the gene ontology initiative aims to estab-
lish a unified ontology for genes and gene product attributes across
all species (Ashburner et al., 2000). Each GO term has a unique id
and can have one or multiple parent terms. In the following example,
the term GO:0000100 has the parents GO:0072349 and GO:1901682.

[Term]

id: GO:0000100

name: S-methylmethionine transmembrane transporter activity

namespace: molecular_function

alt_id: GO:0015178

def: "Enables the transfer of S-methylmethionine from one side

of a membrane to the other." [GOC:ai]

subset: gosubset_prok

synonym: "S-methylmethionine permease activity" EXACT []

synonym: "S-methylmethionine transporter activity" BROAD []

is_a: GO:0072349 ! modified amino acid transmembrane transporter activity

is_a: GO:1901682 ! sulfur compound transmembrane transporter activity

9.1.2 Clusters of Orthologous Groups

In biology, the term homology is defined as biological structures that
descended from a common ancestor. With the advance of genome
sequencing, it became possible to compare genomes and extend this
definition to DNA sequences. Orthologous sequences are defined as
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homologous sequences that were separated by a speciation event. Or-
thologs typically have the same function, allowing scientists to in-
fer the function of potentially unknown genes or proteins. Tatusov,
Koonin, and Lipman (1997) proposed a system to categorize DNA se-
quence similarities into Clusters of Orthologous Groups (COG). Today,
the COG database contains 4 631 COGs for prokaryotes subdivided into
26 functional categories (Galperin et al., 2014). The growing num-
ber of eukaryotic genomes being sequenced has derived a similar
database for eukaryotes under the name of eukaryotic orthologous
groupss (KOGs) (Tatusov et al., 2003).

9.2 semantic reasoner

A semantic reasoner can be used to model Description Logic ontolo-
gies, such as GO. The difficulties in constructing such models primar-
ily arise from two sources. First, there are often a great number of dif-
ferent possible constructions and second, the models built by tableau
reasoners can be extremely large, even for relatively small ontologies.
The HermiT reasoner by Glimm et al. (2014) provides an efficient im-
plementation of semantic reasoning based on a novel hypertableau
calculus (Motik, Shearer, and Horrocks, 2009). In Omics Fusion, I
use HermiT to construct the GO ontology, query it for GO terms, find
parent and child nodes, etc.

9.3 the visualization

According to Chapter 1, the following questions have been answered
in the design process of the visualization. First, the data type needed
to be defined. Here, the available data type is tables, containing ex-
pression values for genes or proteins, which are further categorized
in different sets based on their functional annotation. Second, the task
needs to be defined, which in this case is discovery, e. g. discovering
which set has the highest/lowest variance or looking for outliers. The
target can be the whole data or a subset. Third, a visual idiom needs
to be designed. As an appropriate encoding I choose to map the data
to box-and-whisker plots.

9.3.1 Box-and-whisker plots

Box-and-whisker plots, or simply box plots, are a visual encoding for
numerical values using shape and size. It is based on the quartiles of
the data, i. e. the three points that divide the data set into four equal
groups, each group comprising a quarter of the data. The quartiles
are encoded into boxes, where the lower and the upper quartile de-
fine the borders. The median is usually marked with a line inside the
box. The whiskers can be encoded in different ways. In this visualiza-
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Figure 9.1: Boxplot with an interquartile range and a probability density
function of a Normal N(0,σ2) Population.
Adapted from: https://commons.wikimedia.org/wiki/File:

Boxplot_vs_PDF.svg

tion, I follow the description by McGill, Tukey, and Larsen (1978),
sometimes also called Tukey boxplot. They define the end points of
the whiskers as the lowest and highest data point still within 1.5
interquartile range (IQR) from the lower and upper quartile, respec-
tively (see Figure 9.1). Data points outside this range can be added as
individual points to show outliers.

Box plots are useful to quickly grasp the behavior of groups or sets
of values graphically. They take little space and highlight both the
median and the variance of the data, which makes it easy to compare
groups or sets of values or discover outliers.

9.3.2 COG/GO box plots

In Omics Fusion, box plots can be generated for functional annotated
transcriptomic or proteomic data. The data comprises the relative ex-
pression of genes or proteins versus a control (e. g. the first time point
or a standard condition).

Each visualization in Omics Fusion can be configured with a control
panel on the top of the page. The control panel for this visualization is
shown in Figure 9.2. The users can select, how many of the datasets
that are saved in the database for this experiment they want to in-
clude in the visualization. Each dataset corresponds to a time point,
experimental condition, or strain. They also have to select if they want
to visualize transcript or proteins, and whether they want to create
the visualization based COG or GO terms.

https://commons.wikimedia.org/wiki/File:Boxplot_vs_PDF.svg
https://commons.wikimedia.org/wiki/File:Boxplot_vs_PDF.svg


88 visualization of functional annotation data

Figure 9.2: Screenshot of a configuration panel for a COG/GO box plot. The
users can select, how many datasets they want to include in
the visualization, which dataset they want to visualize (i. e. tran-
scripts or proteins), and whether they want to create the visual-
ization based COG or GO terms.

The resulting plot is shown in Figure 9.3. Each box plot represents
a functional COG category. The color of the box reminds the users,
which data type they selected. Green corresponds to transcriptomics,
blue to proteomics, and orange to metabolomics data. This encoding
is consistent throughout Omics Fusion. The users can move the mouse
over a box to get more details about the category, e. g. category “N”
refers to “cell motility” as seen in Figure 9.3. If the users select GO

terms instead of COGs, they can also click on a box and the visualiza-
tion will change to show the children of the selected GO term. This
way, users can filter the data and narrow down the most (or least)
differently expressed genes. Furthermore, each visualization can be
exported as a svg, png, or jpg file.

Figure 9.3: Screenshot of a COG box plot based on transcriptomics data ob-
tained from Caulobacter crescentus. The y-axis represents the gene
expression, the x-axis shows the COG categories. On mouse over,
details for these categories are shown, as demonstrated here with
category “N”.
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9.4 discussion

Omics Fusion is an extendible, web-based platform for the integrative
analysis of omics data. It provides powerful analysis tools, including
established methods for analyzing and visualizing single omics data,
as well as new features for an integrative analysis of data from multi-
ple omics disciplines, which can potentially provide new insights into
biology, or at least simplify gathering of information and analyzing
data from experiments with more than one omics approach.

Compared to other tools that offer a similar level of interactivity,
Fusion does not solely focus on networks and pathways (e. g. CellDe-
signer, Omix, or Cytoscape), nor is it limited to a specific organism
(e. g. 3Omics). Instead, Omics Fusion puts an emphasis on visualiza-
tion and data exploration.

The presented example of a visualization of functional annotated
data based on the established Clusters of Orthologous Groups (COG)
database and gene ontology (GO) terms shows how an interactive vi-
sualization can facilitate knowledge discovery. Adding the functional
annotation layer to the visualization creates a connection between the
data and its biological meaning. The users can visualize their expres-
sion data based on COGs, in order to get an overview over what is hap-
pening in a cell or organism at the selected condition or time point.
Categories that are differentially expressed can be spotted easily, such
as the “cell motility” category in Figure 9.3. This transcriptomics data
was obtained from Caulobacter crescentus. This bacteria is a model or-
ganism for studying the regulation of the cell cycle. It can have two
different forms — a swarmer cell, which that has a single flagellum
at one cell pole that provides swimming motility for chemotaxis; or a
stalked cell that has a tubular stalk structure with an adhesive hold-
fast material on its end, with which the stalked cell can adhere to
surfaces. Hence, genes belonging to the “cell motility” category are
of high interest in this experiment.

The additional functionality of navigating through the GO terms,
this way only looking at subsets of the data and finding the most (or
least) differently expressed genes can potentially lead to unexpected
discoveries that might have gone unnoticed otherwise.

In contrast to the previous examples, the visualizations in Omics
Fusion need to be designed so they work with a variety of data and
tasks. This presents a challenge to the design process. In part II of
the thesis, the problem was clearly defined as identifying CNAs in
order to predict cancer progression. Here, the tasks are abstract and
visualizations need to be designed on that basis. In the case of the
COG/GO box plot, the visualization is only useful if the users are
looking for the overall variance in gene or protein expression. If they
want to compare multiple time points or conditions, the visualization
is rendered useless. Hence, Omics Fusion offers a broad selection of
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tools and visualizations in order to be able fulfill the users needs. This
requires much more time and effort, with over 13 people contributing
to the software over time, compared to only one person in the case of
ddPCRvis (see Chapter 7).

9.5 outlook

Omics Fusion has the potential to develop into a widely accepted plat-
form for integrative analysis of omics data. New tools and visualiza-
tions are added continuously. An extensive study with a comprehen-
sive dataset as a use case could show the benefits of such a platform
to the community and potentially have a big impact.

For the existing tools such as the COG/GO box plot, a usability study
would give insights into how well they are designed and where the
design could be enhanced. Further improvements such as reducing
the required time for the platform to create the visualization could be
desirable.



10
C O N C L U S I O N

In this thesis, I explored different aspects of analysis and visualization
of scientific data, particularly data from biology and biochemistry. Af-
ter introducing the general concepts of data mining and visualization,
I presented a static, non interactive visualization of amino acids in the
form of a physical card game, in order to facilitate memorizing the
amino acids and some of their important physicochemical properties.
The card game provides a viable solution as a learning aid and has
been received favorably. Card games have a long tradition and their
public familiarity lowers the learning curve for this visualization. The
fun factor aids both the process of memorizing as well as overcoming
the initial reluctance to start learning the new thing. Furthermore,
the physical print version of the cards makes it possible to take them
anywhere and use them anytime, in contrast to a computer based
visualization.

In Part II of the thesis, I tackled a problem from the field of cancer
diagnostics. First, I explained the biological background of the prob-
lem. Then, I presented an R package (ddPCRclust) and accompanying
shiny interface (ddPCRvis). I showed that the results of ddPCRclust
are on par with manual annotation by experts, while the computation
only takes a few minutes per 96-well experiment. Three independent
clustering approaches provide robustness, which is especially impor-
tant in a medical context. The web based GUI ddPCRvis does not only
provides easy access to the algorithm, but it also enables the user
to check the results and manually correct them if necessary. Further-
more, in a medical context supervision of each step of the algorithm
by a licensed physician is mandatory by law, if the application shall
support the decision making process of a diagnosis. However, the vi-
sualizations are restricted by the layout of the web page and the shiny
technology.

Part III of the thesis is situated in the field of biology. I presented
Omics Fusion, a comprehensive software for the integrative analysis
and visualization of omics data. I described the background and the
motivation behind the project and compared it to other state of the
art tools. I detailed the implementation and functionalities of Omics
Fusion, before presenting an example of a visualization based on func-
tional annotated expression data. The visualization is based on COGs

or GO terms and can be used in order to get an overview over what
is happening in a cell or organism at the selected condition or time
point. Categories that are differentially expressed can be spotted eas-
ily. In contrast to the previous examples, the visualizations in Omics
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Fusion needed to be designed so they work with a variety of data and
tasks. This required much more time and effort, with over 13 people
contributing to the software over time, compared to only one person
in the case of ddPCRvis.

To summarize, I could show that data mining and visualization are
disciplines of great significance. They have become a part of many as-
pects today’s life, including scientific research. I presented examples
from teaching, cancer research, and molecular biology, each requiring
its own, task oriented approach. The solutions appear very different
(e. g. a card game and a web software), but the design process was
similar and can serve as a guideline for future visualizations.



We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth, 1974
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