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Recent studies into community level dynamics are revealing processes and patterns that underpin the biodiversity and 
complexity of natural ecosystems. Theoretical food webs have suggested that species-rich and highly complex communities 
are inherently unstable, but incorporating certain characteristics of empirical communities, such as allometric body size 
scaling and non-random interaction distributions, have been shown to enhance stability and facilitate species coexistence. 
Incorporating individual level traits and variability into food web theory is seen as a future pathway for this research and our 
growing knowledge of individual behaviours, in the form of temperament (or personality) traits, can inform the direction 
of this research. Temperament traits are consistent differences in behaviour between individuals, which are repeatable across 
time and/or across ecological contexts, such as aggressive or boldness behaviours that commonly differ between individuals 
of the same species. These traits, under the framework of behavioural reaction norms, show both individual consistency 
as well as contextual and phenotypic plasticity. This is likely to contribute significantly to the effects of individual trait 
variability and adaptive trophic behaviour on the structure and dynamics of food webs, which are apparently stabilizing. 
Exploring the role of temperament in the context of community ecology is a unique opportunity for cross-pollination 
between ecological fields, and can provide new insights into community stability and biodiversity.

The biodiversity paradox

Despite almost a century of ecological research, the 
persistence of highly biodiverse communities through time 
remains a paradox. The ‘biodiversity paradox’ revolves around 
the fact that there are many more species present in natural 
communities than are predicted by the principles of niche 
occupancy and competitive exclusion (Clark et al. 2007). 
Simple models of food webs predict many fewer species 
than are in fact observed in nature (McCann 2000). While 
classical ecological theory would suggest that subtle differ-
ences must exist between species to permit their coexistence, 
more recent theory suggests that ‘ecological equivalence’ of 
species can occur (Hubbell 2006). An understanding of pro-
cesses which underpin species coexistence and persistence 
has wide ranging applications in ecology and environmental 
management, from managing invasive species (Baiser et al. 
2010, Ho et al. 2011) to predicting the effects of climate 
change (Binzer et al. 2012).

Food-web analysis measures the flow of energy through 
communities and commonly shows that natural communi-
ties are both biodiverse and characterised by non-random 
structures, such as triangular motifs of one consumer and 
two resources (Milo et al. 2002). There is a stark contrast 
between this and the landmark community modelling work 
of May (1972), which showed a negative relationship between 

community complexity and stability in simple models of  
randomly interacting species. Stability refers to the tendency 
of a system to return to equilibrium following a perturbation, 
and the persistence of large, complex and species-rich com-
munities is paradoxical based on our current understanding 
of ecological processes (Allesina and Tang 2012).

The strength, distribution and diversity of interactions 
(e.g. predator–prey, competitive and mutualistic) across 
communities of organisms are closely related to its stabil-
ity (Gross et al. 2009, Allesina and Tang 2012). Simplistic 
models of food webs assume that a species interacts uniformly 
with its prey and predator species, ignoring that individuals 
or groups of individuals may specialize on certain resources, 
or differ in their susceptibility to predation (Valdovinos 
et al. 2010). Incorporating intraspecific variability in trophic 
roles influences food webs through multiple mechanisms, 
such as altering the strength of interactions between spe-
cies, with intraspecific variability decreasing average inter-
action strength and increasing the average number of links 
between each node/species within the food web (Bolnick 
et al. 2011). These have stabilising effects on the dynam-
ics of food webs (Dunne et al. 2002, Gross et al. 2009). 
Broadly, researchers are now developing a more nuanced 
understanding of which characteristics of organisms, species 
and their interactions may promote and maintain biodiver-
sity. For example, the inclusion of ‘real world’ ecological 
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characteristics, such as allometric body-size scaling (Brose 
et al. 2006, Tang et al. 2014), diversity and heterogeneity of 
interaction types (Akihiko and Michio 2014, Wenfeng and 
Kazuhiro 2014) and adaptive foraging behaviour (Uchida 
et al. 2007, Valdovinos et al. 2010), has improved our 
understanding of the processes which support biodiversity. 
These characteristics are commonly found to have a positive 
effect on stability in complex food webs, often by reducing 
the strength of predator–prey and competitive interactions, 
which are thought to have destabilizing effects (Allesina and 
Tang 2012).

The study of individual differences in animal behaviour, 
via temperament traits, may be a factor that influences the 
dynamics of communities, and in particular their stability. 
Temperament (or personality; Wolf and Weissing 2012) 
traits are consistent differences in behaviour between indi-
viduals of the same species, which are repeatable across 
time and/or across ecological contexts (Réale et al. 2007). 
Researchers are increasingly recognising the importance 
of individual traits and intraspecific variability in ecology, 
from both the community (Thompson et al. 2012b) and 
behavioural ecology perspectives (Sih et al. 2012, Wolf and 
Weissing 2012). For example, trait differences between 
individuals, such as temperament, influence the outcome 
of ecological interactions that make up food webs (Bolnick 
et al. 2011). In addition, there is a complex relationship 
between temperament and adaptive trophic behaviour 
(ATB), i.e. the ability of animals to behaviourally respond 
to changes in their trophic environment to increase fitness, 
which has also been shown to affect community stability 
(Valdovinos et al. 2010). A growing body of experimental 
research is demonstrating that responses to ecological pres-
sures linked to temperament may be common, via ontogenic 
effects on the behavioural type of individuals (McGhee 

and Travis 2011, Niemela et al. 2012, Adamo et al. 2013, 
McDermott et al. 2014) and temperament-biased selection 
(Réale and Festa-Bianchet 2003, Bell and Sih 2007). Here, 
we will describe the growing body of evidence that tem-
perament traits influence trophic interactions, and suggest 
approaches to temperament and community studies that 
will allow greater integration of these currently disparate 
areas of ecology.

Resource segregation within species – the role of 
temperament

A simple mechanism through which variation in tempera-
ment may influence stability is through resource segregation 
at a population level. Variation in temperament is related to 
differences in resource use among individuals (Kobler et al. 
2009, Patrick and Weimerskirch 2014), suggesting tempera-
ment promotes resource segregation. Total niche width, i.e. 
the variance in the niche occupied by a species, is divided 
into within-individual and between-individual components 
(Montiglio et al. 2013). Total niche width being equal, 
populations with high between-individual niche variance 
will have higher degrees of individual resource segregation, 
whereas high within-individual niche variance suggests 
greater overlap of resource use between individuals. The 
portfolio effect is one mechanism in population dynamics 
through which temperament’s effects on resource segregation 
may enhance population stability, where decreased competi-
tion between individuals with high phenotypic differences 
buffers populations against temporal fluctuations (Bolnick 
et al. 2011).

Empirical evidence suggests that resource segregation can 
be a response to increased intraspecific competition (Araujo 
et al. 2011) and specialisation facilitates resource partitioning 

Glossary

Community. All organisms that are present within an ecosystem, which may be defined spatially and temporally, for 
example an aquatic community may be defined to include all aquatic organisms that are found within a lake over a 
year.
Food web. This includes all the organisms within a community and the links/trophic interactions between those species.
Trophic interaction. This refers to the consumer–resource or predator–prey interactions that make up a food web, i.e. one 
organism consuming another both within and between species.
Interaction strength. In a food web context, this is a measure of the degree that one species affects another species’ 
population size, biomass or production, generally in a predator–prey interaction (Thompson et al. 2012a).
Connectance. The proportion of all possible links within a food web that occur, as a measure of how interconnected a 
food web actually is (Thompson et al. 2012a).
Omnivory. Omnivory occurs where a species within a food web feeds across multiple trophic levels, which will 
positively affect connectance (Thompson et al. 2012b).
Stability. Stability of food webs refers to the tendency for the food web to return to its previous structural configuration 
following a perturbation (Allesina and Tang 2012).
Persistence. Persistence in model food webs is measured as the proportion of species remaining following a simulation, to 
measure the likelihood of extinctions arising from certain food-web models (Stouffer and Bascompte 2011).
Robustness. The minimum proportion of species that, if removed from a food web will induce a significant collapse 
(generally  50 % species loss; Dunne et al. 2002).
Temperament. Temperament (or personality; Wolf and Weissing 2012) traits are consistent differences in behaviour 
between individuals of the same species, which are repeatable across time and/or across ecological contexts (Réale et al. 
2007). 
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and lower levels of intraspecific competition (Ravigne et al. 
2009). Svanbäck and Bolnick (2007) showed that populations 
of three-spine sticklebacks Gasterosteus aculeatus in environ-
ments with increased intraspecific competition had higher 
levels of between-individual diet variance. Individuals with 
differing morphological traits specialized on specific prey 
items, demonstrating that competition can drive resource seg-
regation – and that intraspecific trait differences are a mech-
anism through which this can occur within ecological time 
scales.

The links between temperament and resource use suggest 
that behavioural differences positively influence popula-
tion-level persistence. Intraspecific differences in metabolic 
requirements and food intake appear to be associated with 
temperament to a degree (Careau et al. 2008, Bell et al. 
2009). Temperament has been linked to differing prey 
selection in largemouth bass Micropterus salmoides, where 
less exploratory individuals preferentially fed on more novel 
prey types (Nannini et al. 2012). Temperament traits, par-
ticularly boldness differences, have been linked to differ-
ences in where an animal forages. A study of Steller’s jays 
Cyanocitta stelleri showed that bolder individuals fed on a 
wider range of food sources (Rockwell et al. 2012). In black-
browed albatross Thalassarche melanophrys, the boldness of 
individuals was associated with spatial variability in forag-
ing, where shyer individuals would forage further from their 
colony than bold individuals (Patrick and Weimerskirch 
2014). Also, temperament can determine an individual’s role 
within social structures (Bergmüller and Taborsky 2010), 
which can be seen as a mechanism to assist resource alloca-
tion within populations. For example, between-individual 
differences in the behaviour of social spiders Stegodyphus 
spp. are increased by repeated social interactions (Laskowski 
and Pruitt 2014, Modlmeier et al. 2014a). By facilitating 
social structures, variation in temperament may promote 
resource allocation, mitigate intraspecific competition and 
positively influence population-level persistence (Montiglio 
et al. 2013).

Plastic changes in temperament traits in response to 
environmental factors can mitigate the negative effects of 
intense intraspecific competition. For example, aggressive 
behaviours can facilitate the establishment of dominance 
relationships within social structures, allowing allocation 
of resources without conflict (Ang and Manica 2010). 
High aggression can be one potential context-specific plas-
tic response to conflict and increased competitive pressure 
(Wilson et al. 2011), but studies looking at aggression as a 
consistent temperament trait have shown similar patterns. In 
bluefin killifish Lucania goodie, food resource limitation in 
the early life stages produced adult males with more aggres-
sive temperaments (McGhee and Travis 2011), which may 
be linked to social resource allocation in adults. Similarly, in 
great tits Parus major, resource limitation in early life stages 
was shown to increase aggression and exploration traits in 
some individuals (Carere et al. 2005). Resource segrega-
tion may be enabled by the presence of temperament traits 
in populations and by changes in the behavioural type of 
individuals. Furthermore, diet differences have been shown 
to promote the development of intraspecific trait varia-
tion, both morphological and behavioural (Oudman et al. 
2016). As resource segregation can increase the stability and 

potential size of a population, it is a simple mechanism that 
could promote the development of individual behavioural 
differences within populations. This is possible where varia-
tion in temperament facilitates more stable population struc-
tures, giving it a systemic selective advantage (Borrelli et al. 
2015). This further suggests that temperament will influence 
a community’s stability by increasing the persistence of its 
constituent species.

Linking animal temperament and trophic 
interactions

A growing body of experimental research is showing that an 
animal’s temperament is associated with ecological interac-
tions, particularly those relevant to community dynam-
ics (Table 1, Fig. 1). Community dynamics have generally 
been studied using network analysis tools, focusing on 
trophic, competitive and mutualistic interactions (Dunne 
2006, Allesina et al. 2008, Wenfeng and Kazuhiro 2014). 
Trophic interactions (i.e. one organism consuming another) 
have received the majority of attention and are particularly 
important to the complexity–stability relationship in food 
webs (Allesina and Tang 2012). Here, we look at the con-
nection between trophic interactions and temperament from 
both the consumer’s perspective (i.e. feeding and foraging) 
and the prey’s perspective (i.e. predation effects). In addition, 
we consider connections between temperament and com-
petitive interactions, which are interactions that negatively 
influence the complexity–stability relationship in communi-
ties (Allesina and Tang 2012).

Predator–prey interactions: the consumer’s perspective
An animal’s temperament can be linked to its individual 
diet and foraging method, and the collective foraging behav-
iours of a population are also influenced by temperament 
traits (Michelena et al. 2010). In multiple species of birds, 
individual’s behavioural type determined the role (producer 
v scrounger) they took within a foraging group (Kurvers 
et al. 2012b, Jolles et al. 2013). Similarly, the composition 
of behavioural types within a group influences the outcome 
of collective decision making. This can influence a group’s 
choice of where to forage (Michelena et al. 2010), foraging 
methods (Keiser and Pruitt 2014), foraging success (Kurvers 
et al. 2012a, Blight et al. 2016), as well as collective defence 
behaviours (Modlmeier et al. 2014b). Temperament traits in 
predators appear to be a major source of intraspecific vari-
ability influencing predator–prey interactions, and changes 
to the composition of behavioural types in populations is 
a potential mechanism through which group foraging can 
adapt to change.

There is strong evidence that temperament traits are 
associated with between-individual differences in adaptive 
foraging behaviours, i.e. the ability to switch between 
foraging methods and food sources. This is shown in the 
relationship between certain traits and the temporal vari-
ability and predictability of food sources. In guppies Poecilia 
reticulata, individuals raised on an unreliable, temporally 
variable food source show increased boldness levels as adults 
(Chapman et al. 2010). Furthermore, bolder individuals can 
show different foraging preferences based on their reliability, 
with shy individuals preferring more predictable food sources 



EV-4

Ta
bl

e 
1.

 C
on

te
m

po
ra

ry
 e

m
pi

ri
ca

l s
tu

di
es

 li
nk

in
g 

te
m

pe
ra

m
en

t t
o 

fo
od

-w
eb

 in
te

ra
ct

io
ns

. .

Ev
id

en
ce

 o
f a

 s
pe

ci
es

’ t
em

pe
ra

m
en

t 
in

flu
en

ci
ng

 th
ei

r 
in

te
ra

ct
io

ns
 w

ith
:

Su
bj

ec
t

Tr
ai

t(s
)

Pr
ey

Pr
ed

at
or

s
C

om
pe

tit
or

s
Ty

pe
/d

ir
ec

tio
n 

of
 r

es
po

ns
e

R
ef

er
en

ce

B
ir

d,
 z

eb
ra

 fi
nc

h 
 

Ta
en

io
py

gi
a 

gu
tt

at
a

ac
tiv

ity
, b

ol
dn

es
s 

(n
ov

el
 o

bj
ec

t, 
pr

ed
at

or
 r

es
po

ns
e)

, e
xp

lo
ra

-
tio

n

X
B

ol
de

r, 
m

or
e 

ac
tiv

e 
an

d 
ex

pl
or

at
or

y 
in

di
vi

du
al

s 
w

er
e 

qu
ic

ke
r 

to
 fe

ed
. P

er
so

na
lit

y 
an

d 
bo

dy
 c

on
di

tio
n 

ha
d 

a 
co

m
pa

ra
bl

e 
ef

fe
ct

 o
n 

m
ot

iv
at

io
n 

to
 fe

ed
.

D
av

id
 e

t a
l. 

20
12

Fi
sh

, t
hr

ee
-s

pi
ne

 s
tic

kl
eb

ac
k 

G
as

te
ro

st
eu

s 
ac

ul
ea

tu
s

bo
ld

ne
ss

/e
xp

lo
ra

tio
n 

(n
ov

el
 

en
vi

ro
nm

en
t)

X
B

ol
de

r 
in

di
vi

du
al

s 
at

e 
m

or
e 

th
an

 s
hy

 in
di

vi
du

al
s 

fo
llo

w
in

g 
a 

pe
ri

od
 o

f f
oo

d 
de

pr
iv

at
io

n,
 s

ug
ge

st
in

g 
bo

ld
 in

di
vi

du
al

s 
ha

ve
 h

ig
he

r 
fo

od
 r

eq
ui

re
m

en
ts

 a
ss

oc
ia

te
d 

w
ith

 a
 fa

st
er

 
pa

ce
-o

f-
lif

e 
lif

e-
hi

st
or

y 
st

ra
te

gy
.

Jo
lle

s 
et

 a
l. 

20
16

Fi
sh

, l
ar

ge
m

ou
th

 b
as

s 
M

ic
ro

pt
er

us
 s

al
m

oi
de

s
bo

ld
ne

ss
/e

xp
lo

ra
tio

n 
(n

ov
el

 
en

vi
ro

nm
en

t)
X

Ex
pl

or
at

or
y 

in
di

vi
du

al
s 

co
ns

um
ed

 a
 g

re
at

er
 b

io
m

as
s 

of
 p

re
y 

in
 fe

ed
in

g 
tr

ia
ls

 a
nd

 p
re

fe
re

nt
ia

lly
 c

on
su

m
ed

 fa
m

ili
ar

 p
re

y 
ty

pe
s.

 N
on

-e
xp

lo
ra

to
ry

 in
di

vi
du

al
s 

pr
ef

er
en

tia
lly

 c
on

su
m

ed
 

m
or

e 
no

ve
l p

re
y 

ite
m

s.

N
an

ni
ni

 e
t a

l. 
20

12

B
ir

d,
 S

te
lle

r’s
 ja

y 
 

C
ya

no
ci

tta
 s

te
lle

ri
bo

ld
ne

ss
 (n

ov
el

 o
bj

ec
t, 

ri
sk

 
se

ns
iti

ve
 fo

ra
gi

ng
)

X
B

ol
de

r 
in

di
vi

du
al

s 
sa

m
pl

ed
 a

nd
 c

on
su

m
ed

 a
 w

id
er

 r
an

ge
 o

f 
fo

od
 s

ou
rc

es
 in

 a
 fo

ra
gi

ng
 c

ho
ic

e 
ex

pe
ri

m
en

t. 
Pe

rs
on

al
ity

 
an

d 
ag

e 
bo

th
 in

flu
en

ce
d 

fo
ra

gi
ng

 c
ho

ic
es

.

R
oc

kw
el

l e
t a

l. 
20

12

B
ir

d,
 b

la
ck

-b
ro

w
ed

 
al

ba
tr

os
s 

Th
al

as
sa

rc
he

 
m

el
an

op
hr

ys

bo
ld

ne
ss

 (n
ov

el
 o

bj
ec

t)
X

B
ol

de
r 

in
di

vi
du

al
s 

fo
ra

ge
d 

cl
os

er
 to

 th
e 

co
lo

ny
 th

an
 s

hy
 

in
di

vi
du

al
s.

 T
hi

s 
w

as
 li

nk
ed

 to
 in

cr
ea

se
d 

fit
ne

ss
 in

 b
ot

h 
sh

y 
m

al
es

 a
nd

 b
ol

d 
fe

m
al

es
.

Pa
tr

ic
k 

an
d 

W
ei

m
er

sk
ir

ch
 

20
14

Fi
sh

, p
ik

e 
Es

ox
 lu

ci
us

ac
tiv

ity
X

Po
pu

la
tio

ns
 in

cl
ud

ed
 h

ig
h 

ac
tiv

ity
 h

ab
ita

t g
en

er
al

is
ts

 a
nd

 lo
w

 
ac

tiv
ity

 li
tto

ra
l s

pe
ci

al
is

ts
. H

ig
h 

ac
tiv

ity
 in

di
vi

du
al

s 
ap

pe
ar

 
to

 c
om

pe
ns

at
e 

fo
r 

th
ei

r 
gr

ea
te

r 
en

er
gy

 r
eq

ui
re

m
en

ts
 w

ith
 

hi
gh

er
 p

re
y 

co
ns

um
pt

io
n.

Ko
bl

er
 e

t a
l. 

20
09

B
ir

d,
 r

oo
ks

  
C

or
vu

s 
fr

ug
ile

gu
s

bo
ld

ne
ss

 (n
ov

el
 o

bj
ec

t)
X

B
ol

de
r 

in
di

vi
du

al
s 

w
er

e 
m

or
e 

lik
el

y 
to

 a
do

pt
 a

 p
ro

du
ce

r 
ro

le
 

in
 a

 p
ro

du
ce

r–
sc

ro
un

ge
r 

fo
ra

gi
ng

 fl
oc

k.
Jo

lle
s 

et
 a

l. 
20

13

B
ir

d,
 b

ar
na

cl
e 

ge
es

e 
 

B
ra

nt
a 

le
uc

op
si

s
bo

ld
ne

ss
 (n

ov
el

 o
bj

ec
t),

 
so

ci
ab

ili
ty

 (fl
oc

ki
ng

)
X

B
ol

de
r 

in
di

vi
du

al
s 

w
er

e 
m

or
e 

lik
el

y 
to

 a
do

pt
 a

 p
ro

du
ce

r 
ro

le
 

in
 a

 p
ro

du
ce

r–
sc

ro
un

ge
r 

fo
ra

gi
ng

 fl
oc

k.
 C

ol
le

ct
iv

e 
fo

ra
gi

ng
 

be
ha

vi
ou

r 
w

as
 in

flu
en

ce
d 

by
 g

ro
up

 c
om

po
si

tio
n,

 w
he

re
 

bo
ld

er
 fl

oc
ks

 h
ad

 g
re

at
er

 fo
ra

gi
ng

 s
uc

ce
ss

 th
an

 fl
oc

k 
w

ith
 

fe
w

er
 b

ol
d 

in
di

vi
du

al
s.

Ku
rv

er
s 

et
 a

l. 
20

12
b

Sp
id

er
, S

te
go

dy
ph

us
 

du
m

ic
ol

a
bo

ld
ne

ss
 (p

re
da

to
r 

re
sp

on
se

)
X

C
ol

le
ct

iv
e 

fo
ra

gi
ng

 b
eh

av
io

ur
s 

ar
e 

st
ro

ng
ly

 in
flu

en
ce

d 
by

 th
e 

pr
op

or
tio

n 
of

 b
ol

d 
an

im
al

s 
in

 a
 fo

ra
gi

ng
 g

ro
up

. B
ol

de
r 

gr
ou

ps
 a

tta
ck

ed
 p

re
y 

m
or

e 
of

te
n 

an
d 

qu
ic

kl
y.

Ke
is

er
 a

nd
 P

ru
itt

 2
01

4

M
am

m
al

, S
co

tti
sh

 b
la

ck
fa

ce
 

sh
ee

p 
O

vi
s 

ar
ie

s
bo

ld
ne

ss
/e

xp
lo

ra
tio

n 
(n

ov
el

 
en

vi
ro

nm
en

t)
X

C
ol

le
ct

iv
e 

de
ci

si
on

 m
ak

in
g 

in
 a

 g
ro

up
 o

f f
or

ag
in

g 
he

rb
iv

or
es

, 
i.e

., 
pa

tc
h 

ch
oi

ce
 a

nd
 p

at
ch

 d
ur

at
io

n,
 w

as
 in

flu
en

ce
d 

by
 

th
e 

bo
ld

ne
ss

 o
f i

nd
iv

id
ua

ls
 w

ith
in

 th
at

 g
ro

up
.

M
ic

he
le

na
 e

t a
l. 

20
10

Fi
sh

, T
ri

ni
da

di
an

 g
up

py
 

Po
ec

ili
a 

re
tic

ul
at

a
bo

ld
ne

ss
 (p

re
da

to
r 

re
sp

on
se

), 
ex

pl
or

at
io

n,
 s

oc
ia

bi
lit

y 
(s

ho
al

in
g)

X
In

di
vi

du
al

s 
re

ar
ed

 w
ith

 a
 h

ig
hl

y 
va

ri
ab

le
 fo

od
 s

up
pl

y 
in

 th
ei

r 
ea

rl
y 

lif
e 

st
ag

es
 w

er
e 

bo
ld

er
, m

or
e 

ex
pl

or
at

or
y 

an
d 

le
ss

 
so

ci
al

 th
an

 th
os

e 
re

ar
ed

 w
ith

 a
 p

re
di

ca
bl

e 
fo

od
 s

up
pl

y.

C
ha

pm
an

 e
t a

l. 
20

10

Fi
sh

, E
ur

op
ea

n 
se

ab
as

s,
 

D
ic

en
tr

ar
ch

us
 la

br
ax

bo
ld

ne
ss

/e
xp

lo
ra

tio
n 

(n
ov

el
 

en
vi

ro
nm

en
t)

X
Sh

ye
r 

an
d 

le
ss

 e
xp

lo
ra

to
ry

 in
di

vi
du

al
s 

fe
d 

m
or

e 
fr

om
 a

 
se

lf-
fe

ed
er

 d
ev

ic
e 

af
te

r 
be

in
g 

m
ov

ed
 in

to
 a

 la
bo

ra
to

ry
 

en
vi

ro
nm

en
t. 

Su
gg

es
tin

g 
th

at
 th

es
e 

pe
rs

on
al

ity
 ty

pe
s 

fa
vo

ur
 

th
e 

us
e 

of
 p

re
di

ct
ab

le
 a

nd
 r

el
ia

bl
e 

fo
od

 s
ou

rc
es

.

Fe
rr

ar
i e

t a
l. 

20
14

B
ir

d,
 g

re
at

 ti
ts

  
Pa

ru
s 

m
aj

or
ex

pl
or

at
io

n 
(n

ov
el

 e
nv

ir
on

m
en

t)
X

M
or

e 
ex

pl
or

at
or

y 
in

di
vi

du
al

s 
w

er
e 

be
tte

r 
ab

le
 to

 c
op

e 
w

ith
 

th
e 

lo
ss

 o
f a

 fo
od

 s
ou

rc
e 

by
 m

or
e 

ra
pi

dl
y 

sw
itc

hi
ng

 to
 

al
te

rn
at

iv
e 

sp
at

ia
lly

 d
is

ta
nt

 fo
od

 s
ou

rc
es

.

va
n 

O
ve

rv
el

d 
an

d 
 

M
at

th
ys

en
 2

01
0 (C

on
tin

ue
d)



EV-5

Ev
id

en
ce

 o
f a

 s
pe

ci
es

’ t
em

pe
ra

m
en

t 
in

flu
en

ci
ng

 th
ei

r 
in

te
ra

ct
io

ns
 w

ith
:

Su
bj

ec
t

Tr
ai

t(s
)

Pr
ey

Pr
ed

at
or

s
C

om
pe

tit
or

s
Ty

pe
/d

ir
ec

tio
n 

of
 r

es
po

ns
e

R
ef

er
en

ce

Fi
sh

, b
lu

efi
n 

ki
lli

fis
h 

 
Lu

ca
ni

a 
go

od
ie

ag
gr

es
si

on
X

X
M

al
es

 r
ai

se
d 

on
 a

 lo
w

 fo
od

 d
ie

t i
n 

th
ei

r 
ea

rl
y 

lif
e 

st
ag

es
 w

er
e 

m
or

e 
ag

gr
es

si
ve

 to
w

ar
ds

 fe
m

al
es

.
M

cG
he

e 
an

d 
Tr

av
is

 2
01

1

M
am

m
al

, M
er

ri
am

’s 
ka

ng
ar

oo
 r

at
s 

 
D

ip
od

om
ys

 m
er

ria
m

i

ag
gr

es
si

on
, b

ol
dn

es
s 

(p
re

da
to

r 
re

sp
on

se
)

X
H

ig
h 

in
te

rs
pe

ci
fic

 c
om

pe
tit

io
n 

w
as

 r
el

at
ed

 to
 in

cr
ea

se
d 

ag
gr

es
si

on
. A

gg
re

ss
io

n 
w

as
 a

ls
o 

co
rr

el
at

ed
 w

ith
 b

ol
dn

es
s.

D
oc

ht
er

m
an

n 
et

 a
l. 

20
12

B
ir

d,
 e

as
te

rn
 b

lu
eb

ir
ds

  
Si

al
ia

 s
ia

lis
ag

gr
es

si
on

X
H

ig
h 

in
te

rs
pe

ci
fic

 c
om

pe
tit

io
n 

w
as

 r
el

at
ed

 to
 a

gg
re

ss
io

n.
 

Ex
tr

em
el

y 
ag

gr
es

si
ve

 a
nd

 e
xt

re
m

el
y 

no
n-

ag
gr

es
si

ve
 m

at
in

g 
pa

ir
s 

ha
d 

hi
gh

er
 fi

tn
es

s 
re

la
tiv

e 
to

 m
ix

ed
 o

r 
in

te
rm

ed
ia

te
 

pa
ir

s 
in

 a
re

as
 w

ith
 h

ig
h 

in
te

rs
pe

ci
fic

 c
om

pe
tit

io
n.

H
ar

ri
s 

an
d 

Si
ef

fe
rm

an
 2

01
4

B
ir

d,
 z

eb
ra

 fi
nc

h 
 

Ta
en

io
py

gi
a 

gu
tt

at
a

ex
pl

or
at

io
n

X
X

D
iff

er
en

ce
s 

in
 e

xp
lo

ra
to

ry
 te

nd
en

ci
es

 in
flu

en
ce

d 
th

e 
ou

tc
om

e 
of

 fo
od

 r
es

ou
rc

e 
co

m
pe

tit
io

n 
in

 p
ro

du
ce

r-
sc

ro
un

ge
r 

in
te

ra
ct

io
ns

.

D
av

id
 e

t a
l. 

20
11

B
ir

d,
 g

re
at

 ti
ts

  
Pa

ru
s 

m
aj

or
ex

pl
or

at
io

n
X

X
Ex

pl
or

at
or

y 
in

di
vi

du
al

s 
sh

ow
ed

 g
re

at
er

 c
om

pe
tit

iv
e 

su
cc

es
s 

w
he

n 
fo

ra
gi

ng
.

C
ol

e 
an

d 
Q

ui
nn

 2
01

2

In
se

ct
, a

nt
 A

ph
ae

no
ga

st
er

 
se

ni
lis

ag
gr

es
si

on
, b

ol
dn

es
s 

(n
ov

el
 

en
vi

ro
nm

en
t, 

ri
sk

 s
en

si
tiv

e 
fo

ra
gi

ng
)

X
X

B
ol

de
r 

an
d 

m
or

e 
ag

gr
es

si
ve

 c
ol

on
ie

s 
ha

d 
gr

ea
te

r 
co

m
pe

tit
iv

e 
su

cc
es

s 
in

 fo
od

 r
et

ri
ev

al
 tr

ia
ls

 w
ith

 c
on

sp
ec

ifi
cs

, b
ut

 th
ei

r 
hi

gh
er

 r
is

k 
ta

ki
ng

 w
as

 a
ss

oc
ia

te
d 

w
ith

 in
cr

ea
se

d 
m

or
ta

lit
y.

B
lig

ht
 e

t a
l. 

20
16

In
se

ct
, a

nt
s 

Te
m

no
th

or
ax

 
lo

ng
is

pi
no

su
s,

 T
. 

cu
rv

is
pi

no
su

s

ag
gr

es
si

on
, e

xp
lo

ra
tio

n
X

X
Ex

pl
or

at
or

y 
te

nd
en

cy
 in

 c
ol

on
ie

s 
w

as
 p

os
iti

ve
ly

 c
or

re
la

te
d 

w
ith

 c
om

pe
tit

iv
e 

su
cc

es
s 

in
 in

te
rs

pe
ci

fic
 fo

ra
gi

ng
 fo

r 
T.

 
lo

ng
is

pi
no

su
s,

 b
ut

 n
eg

at
iv

el
y 

co
rr

el
at

ed
 fo

r 
T.

 c
ur

vi
sp

in
os

us
.

Li
ch

te
ns

te
in

 e
t a

l. 
20

16

M
am

m
al

, B
el

di
ng

’s 
gr

ou
nd

 
sq

ui
rr

el
s,

 U
ro

ci
te

llu
s 

be
ld

in
gi

bo
ld

ne
ss

 (r
ef

ug
e 

us
e)

X
In

di
vi

du
al

 d
iff

er
en

ce
s 

in
 r

ef
ug

e 
us

e 
re

fle
ct

 in
tr

as
pe

ci
fic

 
va

ri
ab

ili
ty

 in
 a

nt
i-

pr
ed

at
or

 b
eh

av
io

ur
. I

n 
a 

hi
gh

 p
re

da
tio

n 
ri

sk
 e

nv
ir

on
m

en
t t

hi
s 

sh
ow

ed
 p

la
st

ic
 r

es
po

ns
e 

of
 in

cr
ea

se
d 

re
fu

ge
 u

se
.

D
os

m
an

n 
an

d 
M

at
eo

 2
01

4

Fi
sh

, l
em

on
 d

am
se

lfi
sh

 
Po

m
ac

en
tr

us
 m

ol
uc

ce
ns

is
bo

ld
ne

ss
/e

xp
lo

ra
tio

n 
(n

ov
el

 
en

vi
ro

nm
en

t)
X

Ex
pl

or
at

or
y 

te
nd

en
cy

 w
he

n 
pl

ac
ed

 in
to

 a
 n

ov
el

 e
nv

ir
on

m
en

t 
w

as
 p

os
iti

ve
ly

 c
or

re
la

te
d 

w
ith

 s
ur

vi
va

l i
n 

a 
pr

ed
at

io
n 

ex
po

su
re

 tr
ia

l, 
su

gg
es

tin
g 

fit
ne

ss
 c

on
se

qu
en

ce
s 

of
 

be
ha

vi
ou

ra
l t

yp
es

.

W
hi

te
 e

t a
l. 

20
13

In
se

ct
, m

ea
lw

or
m

 b
ee

tle
  

Te
ne

br
io

 m
ol

ito
r

bo
ld

ne
ss

 (p
re

da
to

r 
re

sp
on

se
)

X
B

ol
d 

in
di

vi
du

al
s 

w
er

e 
m

or
e 

su
sc

ep
tib

le
 to

 a
er

ia
l p

re
da

tio
n 

th
an

 s
hy

 in
di

vi
du

al
s 

in
 a

 p
re

da
to

r 
su

rv
iv

al
 e

xp
er

im
en

t.
K

ra
m

s 
et

 a
l. 

20
13

Sp
id

er
, b

la
ck

 w
id

ow
 

La
tr

od
ec

tu
s 

he
sp

er
us

; 
In

se
ct

, fi
el

d 
cr

ic
ke

t 
G

ry
llu

s 
in

te
ge

r

bo
ld

ne
ss

 (r
is

k 
se

ns
iti

ve
 fo

ra
gi

ng
, 

pr
ed

at
or

 r
es

po
ns

e)
X

X
Su

rv
iv

or
sh

ip
 o

f p
re

y 
w

he
n 

ex
po

se
d 

to
 p

re
da

tio
n 

w
as

 
de

te
rm

in
ed

 jo
in

tly
 b

y 
th

e 
fo

ra
gi

ng
 b

ol
dn

es
s 

of
 th

e 
in

di
vi

du
al

 s
pi

de
r 

pr
ed

at
or

s 
an

d 
th

e 
bo

ld
ne

ss
 o

f c
ri

ck
et

 p
re

y 
m

ea
su

re
d 

in
 a

 p
re

da
to

r 
re

sp
on

se
 c

on
te

xt
.

D
iR

ie
nz

o 
et

 a
l. 

20
13

Sp
id

er
, o

ld
 fi

el
d 

ju
m

pi
ng

 
sp

id
er

 P
hi

di
pp

us
 c

la
ru

s
In

se
ct

, h
ou

se
 c

ri
ck

et
  

A
ch

et
a 

do
m

es
tic

us

ac
tiv

ity
X

X
A

 c
om

bi
na

tio
n 

of
 a

ct
iv

ity
 le

ve
ls

 o
f t

he
 p

re
da

to
r 

an
d 

th
e 

pr
ey

 
an

im
al

s 
de

te
rm

in
ed

 th
e 

ou
tc

om
e 

of
 p

re
da

to
r–

pr
ey

 
en

co
un

te
rs

. H
ig

h 
ac

tiv
ity

 p
re

da
to

rs
 p

re
da

te
d 

lo
w

 a
ct

iv
ity

 
pr

ey
 a

t a
 h

ig
he

r 
ra

te
 a

nd
 lo

w
 a

ct
iv

ity
 p

re
da

to
rs

 p
re

da
te

d 
hi

gh
 a

ct
iv

ity
 p

re
y 

at
 a

 h
ig

he
r 

ra
te

.

Sw
ee

ne
y 

et
 a

l. 
20

13

Ec
hi

no
de

rm
, o

ch
er

 s
ea

 s
ta

rs
 

Pi
sa

st
er

 o
ch

ra
ce

us
; 

M
ol

lu
sc

, b
la

ck
 tu

rb
an

 
sn

ai
ls

 C
hl

or
os

to
m

a 
fu

ne
br

al
is

ac
tiv

ity
, b

ol
dn

es
s 

(p
re

da
to

r 
re

sp
on

se
)

X
X

Pr
ed

at
or

 a
vo

id
an

ce
 b

eh
av

io
ur

 in
 p

re
y 

in
flu

en
ce

s 
su

rv
iv

al
 in

 
pr

ed
at

or
-p

re
y 

in
te

ra
ct

io
ns

, b
ut

 th
e 

ou
tc

om
e 

de
pe

nd
s 

on
 

th
e 

pe
rs

on
al

ity
 o

f t
he

 p
re

da
to

r. 
A

ct
iv

e 
pr

ed
at

or
s 

fa
vo

ur
ed

 
pr

ey
 w

ith
 g

re
at

er
 p

re
da

to
r 

av
oi

da
nc

e 
be

ha
vi

ou
rs

 a
nd

 v
is

a 
ve

rs
a.

Pr
ui

tt 
et

 a
l. 

20
12

b

Ta
bl

e 
1.

 (C
on

tin
ue

d)

(C
on

tin
ue

d)



EV-6

Ev
id

en
ce

 o
f a

 s
pe

ci
es

’ t
em

pe
ra

m
en

t 
in

flu
en

ci
ng

 th
ei

r 
in

te
ra

ct
io

ns
 w

ith
:

Su
bj

ec
t

Tr
ai

t(s
)

Pr
ey

Pr
ed

at
or

s
C

om
pe

tit
or

s
Ty

pe
/d

ir
ec

tio
n 

of
 r

es
po

ns
e

R
ef

er
en

ce

Sp
id

er
, w

ol
f s

pi
de

r 
Pa

rd
os

a 
m

ilv
in

a
ac

tiv
ity

X
X

Th
e 

co
m

po
si

tio
n 

of
 s

pi
de

r 
pe

rs
on

al
iti

es
 w

ith
in

 a
 p

op
ul

at
io

n 
al

te
re

d 
th

e 
co

m
po

si
tio

n 
of

 p
re

y 
co

m
m

un
iti

es
 w

ith
in

 a
 

m
es

oc
os

m
, w

he
re

 m
ix

ed
 p

er
so

na
lit

y 
gr

ou
ps

 e
ffe

ct
iv

el
y 

fo
ra

ge
d 

on
 th

e 
br

oa
de

st
 r

an
ge

 o
f p

re
y 

sp
ec

ie
s.

R
oy

au
te

 a
nd

 P
ru

itt
 2

01
5

In
se

ct
, fi

el
d 

cr
ic

ke
t  

G
ry

llu
s 

te
xe

ns
is

bo
ld

ne
ss

/e
xp

lo
ra

tio
n 

(n
ov

el
 

en
vi

ro
nm

en
t)

X
Pr

ed
at

or
 e

xp
os

ur
e 

al
te

re
d 

be
ha

vi
ou

ra
l t

yp
es

, d
efi

ne
d 

as
 

sh
el

te
r-

se
ek

er
s 

an
d 

ex
pl

or
er

s 
in

 a
 n

ov
el

 e
nv

ir
on

m
en

t. 
Pr

ed
at

or
 e

xp
os

ed
 in

di
vi

du
al

s 
ar

e 
m

or
e 

lik
el

y 
to

 s
ee

k 
sh

el
te

r.

A
da

m
o 

et
 a

l. 
20

13

Fi
sh

, t
hr

ee
-s

pi
ne

 s
tic

kl
eb

ac
k 

G
as

te
ro

st
eu

s 
ac

ul
ea

tu
s

bo
ld

ne
ss

 (r
is

k 
se

ns
iti

ve
 fo

ra
gi

ng
)

X
In

di
vi

du
al

s 
ex

po
se

d 
to

 s
im

ul
at

ed
 p

re
da

tio
n 

pr
es

su
re

 in
 a

 
la

bo
ra

to
ry

 e
nv

ir
on

m
en

t b
ec

am
e 

le
ss

 b
ol

d 
ov

er
 ti

m
e,

 
sh

ow
in

g 
a 

fix
ed

 p
la

st
ic

 r
es

po
ns

e 
ac

ro
ss

 in
di

vi
du

al
s.

K
im

 2
01

6

Fi
sh

, P
an

am
an

ia
n 

bi
sh

op
 

B
ra

ch
yr

ha
ph

is
 e

pi
sc

op
i

ac
tiv

ity
, e

xp
lo

ra
tio

n
X

Po
pu

la
tio

ns
 fr

om
 e

co
sy

st
em

s 
w

ith
 h

ig
he

r 
pr

ed
at

io
n 

pr
es

su
re

 
sh

ow
ed

 in
cr

ea
se

d 
le

ve
ls

 o
f a

ct
iv

ity
 a

nd
 e

xp
lo

ra
tiv

e 
te

nd
en

ci
es

 in
 o

pe
n 

fie
ld

 tr
ia

ls
.

A
rc

ha
rd

 a
nd

 B
ra

ith
w

ai
te

 
20

11

Fi
sh

, c
on

vi
ct

 c
ic

hl
id

s 
 

A
m

at
itl

an
ia

 n
ig

ro
fa

sc
ia

ta
ex

pl
or

at
io

n
X

X
Ex

pl
or

at
or

y 
in

di
vi

du
al

s 
w

er
e 

sl
ow

er
 to

 r
ea

ct
 to

 a
 p

re
da

to
r 

st
im

ul
us

, s
ug

ge
st

in
g 

a 
tr

ad
eo

ff 
be

tw
ee

n 
fo

ra
gi

ng
 a

nd
 

an
ti-

pr
ed

at
or

 v
ig

ila
nc

e.

Jo
ne

s 
an

d 
G

od
in

 2
01

0

R
ep

til
e,

 a
ga

m
a 

 
A

ga
m

a 
ac

ul
ea

ta
bo

ld
ne

ss
 (p

re
da

to
r 

re
sp

on
se

)
X

X
B

ol
de

r 
m

al
es

 s
pe

nt
 m

or
e 

tim
e 

ba
sk

in
g 

an
d 

fo
ra

gi
ng

 b
ut

 h
ad

 a
 

hi
gh

er
 r

at
e 

of
 ta

il 
lo

ss
. S

ug
ge

st
in

g 
a 

tr
ad

eo
ff 

be
tw

ee
n 

fo
ra

gi
ng

 a
nd

 p
re

da
to

r 
av

oi
da

nc
e.

C
ar

te
r 

et
 a

l. 
20

10

M
am

m
al

, g
re

y 
m

ou
se

 
le

m
ur

s 
M

ic
ro

ce
bu

s 
m

ur
in

us

bo
ld

ne
ss

 (n
ov

el
 o

bj
ec

t, 
ri

sk
 

se
ns

iti
ve

 fo
ra

gi
ng

)
X

X
A

ni
m

al
s 

w
ith

 h
ig

he
r 

bo
ld

ne
ss

 (n
ov

el
 o

bj
ec

t) 
w

er
e 

w
ill

in
g 

to
 

ex
po

se
 th

em
se

lv
es

 to
 g

re
at

er
 r

is
k 

of
 p

re
da

tio
n 

w
he

n 
fo

ra
gi

ng
, r

ep
re

se
nt

in
g 

in
tr

as
pe

ci
fic

 v
ar

ia
bi

lit
y 

in
 p

re
da

to
r-

pr
ey

 a
nd

 fo
ra

gi
ng

 in
te

ra
ct

io
ns

.

D
am

m
ha

hn
 a

nd
 A

lm
el

in
g 

20
12

M
am

m
al

, b
ru

sh
ta

il 
po

ss
um

 
Tr

ic
ho

su
ru

s 
vu

lp
ec

ul
a

bo
ld

ne
ss

/e
xp

lo
ra

tio
n 

(n
ov

el
 

en
vi

ro
nm

en
t)

X
X

A
ni

m
al

s 
w

ith
 h

ig
he

r 
bo

ld
ne

ss
/ e

xp
lo

ra
tio

n 
in

 n
ov

el
 e

nv
ir

on
-

m
en

t w
er

e 
w

ill
in

g 
to

 e
xp

os
e 

th
em

se
lv

es
 to

 g
re

at
er

 r
is

k 
of

 
pr

ed
at

io
n 

w
he

n 
fo

ra
gi

ng
.

M
el

la
 e

t a
l. 

20
15

C
ru

st
ac

ea
n,

 m
ud

 c
ra

b 
Pa

no
pe

us
 h

er
bs

tii
ac

tiv
ity

, b
ol

dn
es

s 
(r

ef
ug

e 
us

e)
X

X
A

ct
iv

ity
 le

ve
l w

as
 a

ss
oc

ia
te

d 
w

ith
 p

re
da

to
r 

fu
nc

tio
na

l 
re

sp
on

se
, i

.e
. h

ig
h 

ac
tiv

ity
 in

di
vi

du
al

s 
sh

ow
ed

 a
 g

re
at

er
 

in
cr

ea
se

 in
 c

on
su

m
pt

io
n 

ra
te

 w
ith

 in
cr

ea
si

ng
 p

re
y 

de
ns

ity
. 

Th
e 

pr
es

en
ce

 o
f a

 c
ra

b-
ea

tin
g 

pr
ed

at
or

 s
up

pr
es

se
d 

in
di

vi
du

al
’s 

ac
tiv

ity
 le

ve
ls

 a
nd

 in
cr

ea
se

d 
th

ei
r 

re
fu

ge
 u

se
.

To
sc

an
o 

an
d 

G
ri

ffe
n 

20
14

Ta
bl

e 
1.

 (C
on

tin
ue

d)



EV-7

susceptibility to aerial predation (Krams et al. 2013), while 
more exploratory lemon damselfish Pomacentrus moluccensis 
had higher survival rates when exposed to a predator  
(White et al. 2013). In situations where both predator and 
prey have variation in temperament, the outcome of preda-
tor and prey interaction is jointly determined by both behav-
ioural types (DiRienzo et al. 2013, Sweeney et al. 2013). For 
black turban snails Chlorostoma funebralis and their preda-
tor, ocher sea stars Pisaster ochraceus, more active predators 
favoured snails with greater predator avoidance behaviours 
whereas less active predators favoured snails with low preda-
tor avoidance behaviour (Pruitt et al. 2012b). Temperament 
can have fitness consequences for individuals relating to 
predation and is a source of intraspecific variability influ-
encing predator–prey interactions, potentially leading to 
changes in prey foraging behaviour and altering predator–
prey functional responses.

Temperament traits of prey species are also associated 
with phenotypic responses to predation. Sub-lethal interac-
tions with predators may lead to shifts in individual’s behav-
ioural response traits. For example experiments in a field 
cricket Gryllus texensis showed that individuals demonstrated 
increased shelter-seeking behaviour post-exposure (Adamo 
et al. 2013). Similarly in three-spined sticklebacks, individu-
als had behavioural types with reduced aggression following 
predator exposure (Bell and Sih 2007). These changes in 
behavioural responses may represent shifts in phenotype 
in response to environmental factors, e.g. past predator 

(Ferrari et al. 2014). An implication of this is that individu-
als with different temperament traits are more able to adapt 
and change their foraging behaviours than others. This has 
been observed in great tits, where more exploratory individ-
uals were better able to cope with the loss of a food source 
by switching to spatially different sources (van Overveld and 
Matthysen 2010). These examples suggest that adaptive/
non-adaptive foraging is itself an intraspecific behavioural 
axis. How individual and population ATB interact, particu-
larly how the presence of more adaptive individual foragers 
influences the collective ability of populations to adapt to 
change, is an important question for future research.

Predator–prey interactions: the prey’s perspective
An animal’s temperament influences the outcome of indi-
vidual interactions with their predators. Risk-taking tenden-
cies, i.e. boldness traits, are often conflated with predator 
response behaviours, as the risk of being predated is highly 
relevant to an animal’s risk-taking tendencies in a natural 
setting. A common method of testing boldness is through 
predator exposure or fright stimulus assays (Wilson and 
Godin 2009, Chapman et al. 2010), such that individual 
boldness differences within populations can imply that 
there are intraspecific differences that effect predator–prey 
interactions (Dosmann and Mateo 2014). Furthermore, 
studies have shown that temperament traits can predict an 
individual’s susceptibility to predation. For example, in a 
beetle Tenebrio molitor, boldness was associated with greater 

Figure 1. Individual temperament traits within a population and community context.
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atory behaviour was positively correlated with competitive 
success in great tits (Cole and Quinn 2012), but negatively 
correlated in the zebra finch (David et al. 2011). In a mammal, 
Merriam’s kangaroo rat Dipodomys merriami, interspecific 
competition was positively correlated with increased aggres-
sion (Dochtermann et al. 2012). The fitness of eastern 
bluebirds Sialia sialis under high interspecific competition 
favoured highly aggressive or non-aggressive behavioural 
types over intermediate types (Harris and Siefferman 2014). 
Intraspecific behavioural differences potentially reduce the 
strength of interspecific competitive interactions and may 
mitigate the negative effects of competition on community 
stability (Bolnick et al. 2011). Understanding competition 
as a potential driver of intraspecific behavioural differences 
and the nature of individual behavioural responses to com-
petition is crucial to the integration of behavioural and 
community ecology.

Moving to the whole food web

Several characteristics of temperament traits may have 
broad-scale effects on the structural and dynamic features 
of food webs. Temperament traits are characterised by par-
tial consistency, where meta-analysis has shown the mean 
repeatability across behavioural traits to be approximately 
0.37 (where 0  no repeatability, 1  absolute repeatability, 
Bell et al. 2009). The framework of behavioural reaction 
norms characterises behavioural traits according to both 
their repeatable and plastic components, which are both 
potentially subject to ecological pressures (Dingemanse 
et al. 2010). Additionally, behavioural traits may show phe-
notypic plasticity, via changes to the mechanisms under-
lying repeatable behavioural traits due to environmental 
effects (e.g. hormonal responses), such as early life experi-
ence with food limitation or non-lethal exposure with a 
predator (McGhee and Travis 2011, Adamo et al. 2013). 
Considering each of these characteristics of behavioural 
traits, temperament may influence food-web interactions 
through intraspecific variability, but also by affecting adap-
tive responses in populations through temperament-biased 
selection and in individuals through behavioural and phe-
notypic plasticity. Incorporating this is crucial to our under-
standing of the structural and dynamic properties of real 
world food webs and the role of biodiversity within those 
communities (Fig. 2).

Community modelling techniques
Studies of ecological communities often use network analy-
sis approaches to quantify stability at a community level. 
Analytical approaches can be broadly divided into two 
approaches (Thompson et al. 2012b). Firstly, structural 
approaches which describe the topology of networks in 
terms of the species present and the architecture of their 
interactions (Dunne 2006, Allesina et al. 2008). Principle 
inputs into this analysis include the number of species inter-
acting and connectance, i.e. the links between those species 
(Brose et al. 2006). Emergent variables from structural anal-
ysis can infer greater stability, persistence or robustness in a 
food web, such as the distribution of links among species, 
the mean trophic level among consumer species, the mean 
and distribution of interaction strengths and the degree of 

exposure, which is potentially a form of plasticity distinct 
from flexible, context-specific behavioural responses.

Temperament traits of prey populations have been shown 
to be associated with the level of predation pressure, which 
suggests that temperament does not necessarily inhibit 
responses to predation pressure and may mitigate the effects 
of predator interactions (Brydges et al. 2008, Harris et al. 
2010, Archard and Braithwaite 2011). A long term study of 
Eurasian perch Perca fluviatilis showed that, over six years, 
increases in predation pressure were associated with reduced 
boldness levels of juvenile fish (Magnhagen et al. 2012). The 
mechanisms for these population-level responses appear to 
be a combination of differences in selective pressure associ-
ated with behavioural types and plastic personality responses 
to sub-lethal interactions. Bell and Sih’s (2007) predator 
exposure and predation survival experiment on three-spined 
sticklebacks showed that selection and plastic responses 
combined to influence the population’s behavioural charac-
teristics. Non-aggressive and bold individuals had the highest 
rates of mortality, whereas non-lethal predator exposure 
induced a decrease in aggression, but not boldness. This 
suggests that temperament responses to predation poten-
tially have a significant effect on the characteristics of that 
predator–prey interaction.

Studies that have incorporated multiple trophic inter-
actions provide further evidence that temperament is a 
source of intraspecific variability influencing trophic inter-
actions and that this can mitigate the cascading effects of 
predation pressure on communities. An example is the 
relationship between food and fear in meso-predators, 
which experience the dual ecological pressures of forag-
ing and dealing with predation pressure (McArthur et al. 
2014). There is increasing evidence that there may be a 
tradeoff between anti-predator behaviours/predator vigi-
lance and foraging decisions, and temperament plays a 
role in this (Stamps 2007). For example, in the agama 
lizard Agama aculeata, exploratory individuals that spent 
more time foraging had a higher rate of tail loss, suggest-
ing greater susceptibility to predation (Carter et al. 2010). 
Risk-sensitive foraging as a boldness trait, which measures 
an animal’s willingness to forage in areas of high-predation 
risk, explores this tradeoff as it is inherently related to both 
foraging and predator interactions. For example, both 
grey mouse lemurs Microcebus murinus (Dammhahn and 
Almeling 2012) and brushtail possums Trichosurus vul-
pecula (Mella et al. 2015) that are bolder in a novel object 
test were willing to expose themselves to a greater risk of 
predation when feeding. This has been characterised as a 
behavioural mechanism to mitigate the effects of preda-
tion through differences in foraging effort (Elvidge et al. 
2014). Furthermore, this demonstrates how temperament 
traits may influence how perturbations propagate through 
food webs, by dampening the negative impacts of strong 
predator–prey interactions. 

Competition and temperament
Temperament has been shown to drive competitive 
interactions both within and between species (Blight et al. 
2016, Lichtenstein et al. 2016), and may facilitate adaptive 
responses under competition. Aggression and exploration are 
common traits studied in this context. For instance, explor-
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population dynamic equations of the form (Valdovinos et al. 
2010):

dN
d

r N e g N g N
CR

j
j j ij ij j jk k

kit
jj

= + −
∈∈
∑∑

For a general species, j, inputs are their abundance, biomass  
or density (Nj), their intrinsic growth rate (rj), their functional 

omnivory, particularly in top-predator species (Dunne et al. 
2002, Martinez et al. 2006, Gross et al. 2009, Allesina and 
Tang 2012).

The second approach analyses the dynamics of food 
webs to predict the temporal variability in the abundance or 
biomass of constituent species or the likelihood that species 
(or nodes) and the links between nodes will disappear from 
the food web. Generally this approach employs general 

Figure 2. Linking temperament to food web effects.
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interaction strengths (Moya-Larano 2011). These changes 
suggest that intraspecific differences have a positive effect on 
food-web stability and persistence.

Trophic cascades are an example where intraspecific 
variation, particularly in behavioural traits, may act as a 
buffer against changes to food-web structure and function. 
Trophic cascades occur when changes in abundance of one 
species, often a top predator, has alternating positive and 
negative effects moving down food chains, leading to sig-
nificantly altered community structure and function (Frank 
et al. 2005). Within population behavioural differences, as 
a source of intraspecific variability affecting trophic interac-
tions, are likely to alter the magnitude of trophic cascades. 
Harmon et al. (2009) showed that within-population differ-
ences in feeding behaviour of three-spined sticklebacks had 
community-level effects in mesocosms. Treatments showed 
that the structure of prey communities differed between 
systems with generalist-feeding fish versus systems that con-
tained specialized-feeding types (both benthic and limnetic 
feeders). Keiser et al. (2015) similarly used mesocosms to 
show how the composition of behavioural types in spider 
populations influenced the extent of leaf damage in plants 
via indirect effects on their herbivores. These studies suggest 
that behavioural traits should be a key focus as we explore 
the community effects of intraspecific variability, through 
mechanisms including altered predator/prey functional 
responses and mean interaction strengths across food-webs 
(Bolnick et al. 2011).

A significant body of evidence shows that tempera-
ment traits are a source of intraspecific variation in food-
web interactions, including in susceptibility to predation 
(Adamo et al. 2013) and foraging choices/ methods (David 
et al. 2012, Rockwell et al. 2012). There is less known about 
the relative effects of behaviour and other individual-level 
traits, such as metabolic and physiological differences, 
in food-webs (Moya-Larano 2011). Although evidence 
points to temperament altering interactions in a way that 
is likely to enhance stability and persistence in food webs, 
further research is required to establish whether the effects 
of temperament on trophic interactions are sufficiently 
large to induce structural and dynamic differences at the 
community level. 

Temperament’s role in adaptive trophic behaviour
Adaptive trophic behaviour influences both the structural 
and dynamic characteristics of food webs (Valdovinos et al. 
2010). ATB includes both adaptive foraging, i.e. adjusting 
foraging efforts to factors such as changing prey abundance, 
and the ability to respond adaptively to the animals that 
consume them, i.e. predator response. Various approaches 
have been used to incorporate ATB into dynamic food-web 
modelling, generally by altering the functional responses of 
species to prey and predator species to a non-linear adaptive 
response (Valdovinos et al. 2010). This work generally shows 
that the presence of adaptive behaviour alters the commu-
nity responses to environmental perturbations, enhanc-
ing plasticity in the food-web structure and producing 
more permanent, persistent food webs (Uchida et al. 2007, 
Heckmann et al. 2012). The effects of adaptive behaviour 
on food-web structure as predicted by models tend to show 
higher numbers of species and increased trophic levels (Guill 

response (gij) and conversion efficiency (eij) of prey species i, 
and their functional response to a predator species, k (gjk), of 
size Nk. By altering the terms of this equation the theoretical 
effects of ecological characteristics on food-web stability can 
be analysed, such as allometric scaling (Brose et al. 2006) and 
compartmentalisation (Stouffer and Bascompte 2011). These 
approaches allow us to investigate the community character-
istics that influence the stability, persistence and robustness 
of food webs, including structural patterns (Martinez et al. 
2006). For example the effects of adaptive behaviour in prey 
species may be analysed, in part, by modifying the functional 
response factors, gjk, to predator k, which can have stabilising 
effects (Kondoh 2007). As the modelling of the repeatable 
and plastic components of behaviour are rapidly progressing 
(Dingemanse et al. 2010), this is a unique opportunity to 
explore the effects on food webs of adaptive responses stem-
ming from plasticity in behavioural responses and pheno-
types. Where introducing these elements enhances stability 
in larger, more complex communities, systemic selection 
would promote greater biodiversity in ecosystems (Borrelli 
et al. 2015). This is a mechanism through which intraspecific 
behavioural variability may enable complex species-rich food 
webs to persist and is a means to answering the biodiversity 
paradox.

Temperament as a source of intraspecific trait variability
The structure and topography of food webs is altered by 
the presence of intraspecific trait variability. This is because 
interactions between individuals are the interface where food-
web interactions actually occur (Thompson et al. 2012b). 
In addition to the within-population effects outlined above, 
Bolnick et al. (2011) proposes multiple mechanisms through 
which intraspecific trait variability alters the strength and 
distribution of trophic interactions. For example, where 
a trait is non-linearly related to an interaction (Jensen’s 
inequality; Ruel and Ayres 1999), mean interaction strength 
and the functional response to predator/prey species are 
altered. Similarly the presence of trait variation that influ-
ences trophic interactions will tend to decrease the strength 
of interactions but increase node degree, i.e. the number of 
links to a node/species, which are thought to increase sta-
bility and robustness in food webs (Bolnick et al. 2011). 
Pruitt et al. (2012a) manipulated the composition of aggres-
sive temperaments in spider colonies (Anelosimus studiosus), 
where aggressive, docile and mixed colonies each had differ-
ing interactions with their local insect community. This also 
had indirect effects on interspecific interactions throughout 
their community, showing that both the mean and variance 
of temperament traits in one species can have wide ranging 
effects at this level.

Similarly, trait-biased selection can drive rapid popula-
tion level shifts in phenotype where those traits are at least 
partially heritable. Where this occurs under predation for 
example, the selection is likely to alter the species’ functional 
response to that predator (Bell and Sih 2007, Bolnick et al. 
2011). Moya-Larano (2011) has shown how trait variability 
(in terms of growth rates) influences the structural compo-
nents of model food webs by decreasing predator speciali-
sation, resulting in increased connectance, omnivory and 
variation in interaction strengths and an overall decrease in 
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Although there is significant evidence of an interactive 
relationship between an animal’s trophic environment and 
animal temperament, it is unlikely that these responses are 
linear due to the multiplicity of factors that can influence 
temperament traits, e.g. abiotic effects (Frost et al. 2013), 
social effects (Webster and Ward 2011, Jolles et al. 2013) and 
mating behaviours (Magnhagen et al. 2014). Understanding 
and incorporating the non-linear nature of behavioural traits 
into food-web dynamics will be a significant challenge to 
community ecologists in the future. Nonetheless, as we con-
tinue to explore the dynamics of individual behaviour and of 
communities, it is clear that they are mutually relevant and 
their integration is a critical future step.

Future research questions

Animals can show intraspecific differences in their abil-1) 
ity to adapt to changing food sources. How does the 
mean and variance of adaptive behavioural types within a 
population influence their collective adaptive ability?
How do multiple interactions, such as competition and 2) 
predation, combine to influence temperament in popula-
tions? Are their influences non-independent?
How significant are the effects of intraspecific behavioural 3) 
variability on food-web structure and trophic cascades 
relative to other intraspecific traits, such as morphologi-
cal or physiological traits? How do behavioural and mor-
phological/ physiological effects on food webs interact?
How does the combination of plasticity and repeatability 4) 
in temperament traits influence the functional response 
of a species with a predator or prey species, and what are 
the relative influences of plasticity and repeatability on 
predator–prey interactions?
How do the dual effects of temperament in constraining 5) 
and facilitating adaptive responses to ecological pressures 
influence dynamic food-web modelling?
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