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Abstract— The usage of articulated tools for autonomous
robots is still a challenging task. One of the difficulties is to
automatically estimate the tool’s kinematics model. This model
cannot be obtained from a single passive observation, because
some information, such as a rotation axis (hinge), can only be
detected when the tool is being used. Inspired by a baby using
its hands while playing with an articulated toy, we employ a
dual arm robotic setup and propose an interactive manipulation
strategy based on visual-tactile servoing to estimate the tool’s
kinematics model.

In our proposed method, one hand is holding the tool’s
handle stably, and the other arm equipped with tactile finger
flips the movable part of the articulated tool. An innovative
visuo-tactile servoing controller is introduced to implement
the flipping task by integrating the vision and tactile feed-
back in a compact control loop. In order to deal with the
temporary invisibility of the movable part in camera, a data
fusion method which integrates the visual measurement of the
movable part and the fingertip’s motion trajectory is used to
optimally estimate the orientation of the tool’s movable part.
The important tool’s kinematic parameters are estimated by
geometric calculations while the movable part is flipped by the
finger.

We evaluate our method by flipping a pivoting cleaning
head (flap) of a wiper and estimating the wiper’s kinematic
parameters. We demonstrate that the flap of the wiper is flipped
robustly, even the flap is shortly invisible. The orientation of
the flap is tracked well compared to the ground truth data. The
kinematic parameters of the wiper are estimated correctly.

I. INTRODUCTION

Robots can largely extend their manipulation capability
by using tools, e.g. using a brush to clean a shoe, using
a wiper to clean the car’s window and using a vacuum
cleaner to clean a room. The well established research lines
to using a tool in robotics domain are from two aspects.
(1) Exploring the affordance of the tool. In this direction,
researchers were studying the relation between the tool’s
behaviors and manipulation results [18] [23] [28] [21]. (2)
Integrating the tools with the robot as a new manipulator
such that the robot can control the tool easily. [24] [9] [7]
[19]. In neuroscience, this phenomenon is called the body-
tool assimilation or body schema extension [5].

There are two main approaches to study how to inte-
grate a tool with the robot (1) geometry-based method and
(2) experience-based learning method. For geometry-based
method, the task of the robot is to automatically estimate the
kinematic parameters of the tool [10] [13]. Given predefined
motion patterns to move the grasped tool, the robot will
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use its vision or other modality to observe the relation
between its end-effector and the tool’s coordinate frame
to derive the tool’s kinematic parameters. After the tool’s
kinematics model is developed, it will be integrated with the
robot’s kinematics to form a new kinematic chain, which
can be used to control the tool easily like it is a part of
the robot. The experience-based learning method is a data
driven learning procedure in which the geometry knowledge
of the robot and the tool is not explicitly modeled but learned
by imitation [15] or exploration [25] manipulation. For
imitating to use a tool, the robot is guided to use the tool by
kinesthetic teaching. The arm’s moving trajectory is recorded
and learned, then generalized to implement a similar but not
previously experienced manipulation using DMP (Dynamic
Movement Primitives) or other machine learning method
[15]. For exploration manipulation, the robot will explore
the relation between its joints and the tool’s visual features
by developing a probability graph or neural network model
while the grasped tool is randomly moved in free space [25].

This paper will focus on modeling the tool with the robot
as a new manipulator and employing geometry-based method
to estimate parameters. It is a simple and practical method to
estimate the kinematic model of a grasped tool. The paper
is organized as follows. In Sec.II, we introduce the state
of the art for tool’s usage in robotics domain. In Sec.III-A,
we propose a visuo-tactile servoing controller which can be
used to deliberately generate interact behavior to estimate the
tool’s kinematic parameters using the method in Sec.III-B.
In Sec.IV, a detailed experiment and discussion are given to
evaluate the feasibility of the proposed method. Finally in
Sec.V, we summarize the current results and discuss future
work.

II. STATE OF THE ART

Tool usage is an important skill towards improving the
manipulation capability of a robot. Teaching the robot to
automatically and dexterously use a tool is still a challenging
task. Inspired by Iriki et al.’s neuroscientific findings [16] that
a tool is assimilated to monkey’s body at the neuronal level
of the brain, lots of researchers were using neural networks
to model the tool’s usage as a plastic extension process of
the robot’s body schema. In [19], Nabeshima et al. proposed
a visuo-tactile associative memory network to let the robot
autonomously learn a reach and touch task in 2D space by
randomly moving a grasped stick. After 60 seconds, the
robot is aware of the existence of the tool and learned the
tool’s parameter (length of a stick). Using the Deep learning
method, Takahshi. et al. [27] [26] dealt with a T-shaped tool.



Fig. 1: Experimental setup. One arm with a robotic hand
holds an articulated tool and the other arm equipped with
tactile fingertip flips a flap of the tool. The related coordinate
frame Ok–tool’s internal frame, Ote–tool’s effector frame,
Os fingertip sensor frame, Oe, robot effector frame. The
needed tool’s kinematics chain parameters are k, L1, L2

and θ

The authors did not manually design the robot’s internal
model and the tool’s visual features, but autonomously learn
it from robot’s joints angle and tool’s raw images using a
deep neural network. So the robot and tool’s model were
learned together. It is not necessary to learn the robot’s model
again when a new tool is given to this robot.

The work [19] [27] [26] handles only tools with simple
geometrical shapes. In real world, however, a tool normally
has a complex shape. To this end, Kemp et al. [9] observed
many robotic usable tools and argued that controlling the
tools’ endpoint is the most important factor for many ap-
plications. They proposed an optical-flow based method to
estimate the relative position between the endpoint of an
unknown tool and the robot’s end-effector. The manipulation
of these tools are discussed in [10] by considering the tool’s
endpoint as the new end-effector of the robot. For tools which
can not be simplified and modeled as an endpoint, a tool’s
coordinate frame should be defined in order to combine the
tool as a new link of the robot’s kinematic chain. Using this
strategy, Stückler and Behnke [24] developed many vision-
based applications for everyday tools. Li et al. [13] estimated
the coordinate frame of a tactile tool by tactile-interaction.
Combining the estimated coordinate frame with the robot’s
kinematic model, the robot was able to use the tool for tactile
servoing.

Except for rigid tools, there are lots of articulated tools
which have one or more internal DOF (degree of freedom).
Typically some DOFs (e.g. rotation axes) are hidden and
can not be directly visually observed. Only when the tool is
interacting with the external environment, the rotation axis
can be localized by indirect computation. These tools can be
modeled as a new kinematic chain [8] [25] [17] [2]. Sturm
et al. [25] used a probabilistic graphical model to represent
an articulated object. Their method learned not only the
kinematic parameters, but also the number of object’s DOF.

However, the method required a complete homogeneous
transformation between the object’s parts, which is very
difficult to obtain without attaching markers on the object.

Katz and Brock [8] exploited RGB-D image processing
to estimate an articulated tool’s kinematic parameters. Their
method, however, only works in 2D because a simple sweep
action is used to interact with the object while it is placed
on the table. Martı́n and Brock [17] proposed to use texture
information and probabilistic recursive state estimation to
improve the perception of an articulated object. The authors
claimed that the pose of object’s movable part can be esti-
mated and used in the robot’s control loop. We are working
with a similar scenario – using a robot finger to interact
with a grasped articulated tool (Fig. 1) and use the robot’s
action to improve the robustness of estimation. The kinematic
chain of the tool is represented by Tk

e and T te
k which are the

homogeneous transformations from robot’s end-effector Oe

to the tool’s internal frame Ok and the tool’s end-effector
frame Ote. Both transformations can be computed from the
estimated parameters: rotation axis k, translation vectors L1,
L2 and rotation angle θ.

Our main contributions are:
1) We propose a visuo-tactile servoing controller to ro-

bustly flip the flap of the tool. The kinematic parameters
(k, L1, L2 and θ) of the tool are estimated during the
course of flipping.

2) We propose a data fusion method which fuses the robot
motion and the observed visual motion of the flap to
improve the estimation accuracy of the flap’s pose (θ).
It also can predict the flap’s pose if it is not observable
for the camera.

Compared to the work of Martı́n and Brock [17], this work
(1) includes and exploits the robot’s action to model the
articulated tool and (2) uses depth information instead of
texture of the articulated tool, which is less sensitive to
lighting conditions and (3) tracks the moved flap even it is
not visible by RGB-D camera.

III. INTERACTION-BASED CONTROL AND PERCEPTION

In our experiment, we are using a tool that has a flat
surface, mounted with a hinge to a handle that the robot
holds in the hand. All involved coordinate frames and the
experimental setup are shown in Fig. 1 (subscripts denoting
the world frame (w), the end-effector frame (e), the tactile
sensor frame (s), the tool’s end-effector frame te and the
tool’s internal frame k). The three-fingered Schunk hand
stably grasps the tool’s handle, such that we can assume
that there is no relative motion between the tool’s handle
and the hand. We design a visuo-tactile servoing controller,
detailed in Sec. III-A, to deliberately control the fingertip
to flip the tool’s flap. It is not a trivial task to flip the flap
and simultaneously maintain the contact point. Because L2

is unknown, we can not offline plan the fingertip movement
for the flipping task. This only can be done by exploiting the
vision and tactile feedback to generate the fingertip’s motion
online. In our case, the fingertip is given a feedforward
command in its sensor frame Os, and its translation and
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Fig. 2: Visuo-tactile servoing controller guarantees that the
fingertip remains in contact with the flap through the exce-
cution of the task. t1 is the time to start the flipping. k is
the rotation axis and computed as the intersection line of the
flap’s surface at different times ti. From t3 to t4 the flap is
not visible by the camera.

rotation will be adapted by a visuo-tactile servoing controller
to maintain the contact.

The parameters (L1, L2, k and θ) are estimated during the
course of flipping motion from the observed trajectory. The
flipping procedure is shown in Fig. 2. k is the tool’s rotation
axis. It can be estimated by computing the intersection line
of the flap’s surface at different time instants because the
rotation axis is not changed while the flap is flipped. θ is the
flap’s rotation angle. Given the noisy RGB-D measurement,
the angle value is estimated using a Kalman filter. L2 is a
vector which starts from fingertip’s contact point to a shortest
distance point on rotation axis k and L1 is a vector from the
arm’s end-effector to the this shortest distance point.

A. Visuo-tactile servoing controller

Many applications have been studied to use vision and
tactile feedback, e.g. for door opening [20] [22], grasping
[4], object exploration [12] and in-hand manipulation [6].
All these studies have shown that tactile sensors are very
important in order to successfully implement different ma-
nipulation tasks. Almost all previous work considered planar
tactile sensor arrays, and tactile features were computed
using image processing methods. In this paper, we propose
an innovative method to use a 3D-shaped tactile fingertip [11]
(see Fig. 4) in the visuo-tactile servoing control framework,
which poses some extra challenges compared to our previous
work [14]. The overall controller structure is illustrated in
Fig. 3 and will be explained in the following subsections.
We firstly introduce the new tactile servoing controller in
Sec. III-A.1 and subsequently focus on the visual-servoing
branch in Sec. III-A.2.

1) Fingertip tactile servoing controller: The tactile ser-
voing control cycle (in the bottom part of Fig. 3) aims at
maintaining the desired contact position and contact force on
the fingertip via sliding and rolling motions. If a deviation
from the desired position/force is detected, the fingertip will

reactively move to reduce this deviation. To this end, the
vector ∆f(t) = [∆xs,∆zs,∆fx,∆fy,∆fz,∆α] of tactile-
feature errors (position error of the contact blob centroid,
[∆xs,∆zs], Fig 4; 3D contact force error, [∆fx,∆fy,∆fz];
and angular error, ∆α) is first fed into a PID-type controller
to obtain a control vector u:

u = kPt
·∆f(t)+kIt ·

∫
∆f(t)dt+kDt

·(∆f(t)−∆f(t−1))

As the tactile sensor cells measure normal forces only, we
can estimate the 3D contact force from the force-weighted
surface normals ni at all activated taxel locations:

[fx, fy, fz]t =

m∑
i=1

fini n =
f

‖f‖

where fi is the normal force magnitude measured by the
i-th taxel and ni is the corresponding surface normal.
Each component of the PID-filtered tactile feature error is
subsequently mapped onto an error-reducing motion twist
Vtact

s expressed in the sensor frame utilizing a fixed, task-
independent, inverted sensor Jacobian J−1

s :

Vtact
s = J−1

s · u J−1
s =


1 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
−1 0 0 0 0 0

 (1)

The particular form of J−1
s arises from the contact ge-

ometry: positional deviations are compensated by sliding
motions along the same axes in the tangential (x-z) plane
of the sensor. However, a deviation along the x-axis can also
be compensated by a rotation about the z-axis through the
contact point. The orientation of a contact edge on the sensor
can be adjusted by rotation about the y axis of the sensor
frame. Normal force errors are corrected by a translational
motion along the x, y, z-axis.

This basic scheme is augmented with a task-dependent
projector matrix Ptact that selects task-relevant motion com-
ponents. Usually, Ptact is a simple 6×6 diagonal matrix,
where ones and zeros are used to toggle individual twist com-
ponents on and off. For example, if contact position control is
desired, one will choose Ptact = diag(1, 0, 1, 0, 0, 0). When
additionally force control is required, the second diagonal
entry is also set to one. The 4th and 6th entries will enable
rolling, and the 5th entry will enable twisting.

Finally, the twists from the tactile feedback loop are fed
into the low-level inverse kinematics module of the control
basis framework. To this end, the twist Vs expressed in terms
of the sensor frame Os will be transformed into the world
frame Ow employing the adjoint matrix derived from the
current forward kinematics Tw

s = Tw
e · T e

s = (Rw
s ,p

w
s ):

AdTws =

(
Rw

s p̂w
s R

w
s

0 Rw
s

)
(2)

Comparing with the previously proposed tactile-servoing
control method [14], this new approach exploits the known



PID
1−

sJ
wsTAd

Instant 

Inverse 

Kinematics

Robot 

Interaction
dq

Tactile 

Feature

-

tact

sV

vis

sV

wV

Task-Oriented Visual 

Servo Algorithm 
Visual Servo

Tactile Servo

visP

tactP
ff

sV
q

f
tg

tact

f
tg

vis

f
tact

∆

CBF

[ ]Tzyxss fffzx α

f
ff

Tool’s flap tracker

Task

Planner

[ ]θfn

1
s

Fig. 3: Visuo-tactile servoing controller

Fig. 4: Left: distribution of 12 taxels on the curved fingertip
surface. Right: activation of 4 taxels and estimated contact
position (small red cube) and normal direction (red arrow).

CAD model of the 3D-shaped sensor to estimate 3D forces
and contact locations and thus enable tactile servoing with
curved sensor surface.

2) Visual-servoing controller: While the tactile-servoing
controller allows the fingertip to blindly establish, optimize,
and maintain contact during manipulation, other motion
commands can be superimposed e.g. to start the interaction
task, or to incorporate visual feedback to ensure robust object
interaction. We illustrate this manipulation mode with an
example shown in Fig. 3. In order to flip the flap, the fingertip
will start moving with a feedforward command fff along
the x axis in the Os frame. The desired force is along the
normal direction of the contact point. In order to improve the
robustness of flipping, the fingertip should actively roll such
that the normal direction nf of the flap surface is orthogonal
to the surface normal n at the contact point. To this end, we
are using a flap tracker to estimate the normal direction of the
flap’s surface, and the visual servoing algorithm, illustrated
in Fig. 3, computes the twist motion Vvis

s of the fingertip as

Vvis
s = [vvis

s = 0,wvis
s ], wvis

s = kPv ·Rs
w · (n×nf ) (3)

where kPv
is a diagonal matrix which is used to tune the

rotation rates. Rs
w transforms the rotation vector of the twist

motion from the world frame to the sensor frame.

Fig. 5: The segmentation of the tool’s handle and the pivoting
cleaning head using surface normal histograms of RGB-
D camera point cloud data [30]. left: The surface normal
directions of the point cloud data of the cleaning head and
the handle were not segmented due to normals being similar.
right: A successful segmentation of the cleaning head and
the handle because of the surface normal direction difference
of the tool parts exceeding a threshold

Finally, the obtained contact twist can be masked (again
using a task-specific projector matrix Pvis) and added to the
tactile motion component to yield an overall twist Vs.

B. Flap tracking and kinematic parameter estimation

To estimate the surface normal of the tool’s flap, we
propose a simple surface tracker. Firstly, using ROI and robot
self-filtering [29], the obtained point cloud is reduced to
the tool’s point cloud. Subsequently, we cluster the normal
directions of the remaining point cloud to segment the tool
into two parts (flap and handle) using normal histograms
introduced in [30]. These histograms represent the global
distribution of surface normals by mapping the x- and y-



components of all normals into a 2D histogram composed
of 11×11 bins. If the surfaces of the handle and the flap are
initially parallel, only a single histogram bin will be activated
(Fig. 5 left). However, during the course of flipping, the
activation will split across two bins / blobs as two different
clusters of normal directions will emerge (Fig. 5 right).

This split already emerges for small angles. To segment
the tool’s point cloud, we identify the two distinct clusters
in the histogram and back-project them to the point cloud.
Points whose normals cannot be associated to either of the
clusters will be dropped. The mean normal direction serves
as the resultant normal nf .

As soon as the angle between the flap’s normal and the
camera’s view direction approaches 90 degree, the flap will
become invisible for the RGB-D camera. In order to cope
with this, we also predict the flap’s normal direction from
the performed robot motion using Rodrigues formula:

nf = nf
0cos(θ) + (k×nf

0)sin(θ) +k(k ·nf
0)(1− cos(θ))

where nf is the predicted and nf
0 the initial normal direction.

k is the rotation axis determined via intersection of flap
planes at different time instants [3, p. 305]. Because the
flap’s plane equation is rather sensitive to the noise of the
point cloud, we smoothly filter the rotation axis k over a
specified time window. The rotation angle θ is estimated with
the following Kalman equations:

θ̄(t) = θ̂(t− 1) + θ̇ (4)

θ̂(t) = θ̄(t) + w(θm(t)− θ̄(t)) (5)

where w is a manually tuned gain to update the prediction
θ̄ using the measured value θm from the camera and θ̇ is
the angular velocity of the flap movement which follows
equations:

vcp = L2 × k · θ̇ θ̇ =
|vcp|
|L2|

(6)

Here, |vcp| is the linear velocity of the contact point,
estimated from a smoothly filtered contact position deviation.
The other two kinematic parameters L1 and L2 are easily
computed if k is estimated correctly. Given the fingertip’s
contact point and the arm’s end-effector position, L2 points
from the fingertip’s contact point to the shortest-distance
point on the rotation axis k and L1 is a vector from the
end-effector to this shortest-distance point.

IV. EXPERIMENTAL EVALUATION

A. Experiment Setup

The whole robotic flipping setup is shown in the Fig. 1.
It is composed of two Kuka LWRs, which have mounted a
Schunk dexterous hand on one arm and a tactile fingertip on
the other one. A calibrated Kinect camera is placed in front
of it. The robot’s kinematics is known, which also includes
the position and normals of taxels on the 3D-shaped fingertip.
To obtain ground-truth data for evaluation, we use a marker-
based Vicon tracking system.
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Fig. 6: Contact position error in the sensor frame
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Fig. 7: Dot product between the normal direction of the
flap and the normal direction of contact point. The fingertip
actively rolls in order to decrease this value until 0.

The manipulation process splits into three phases: (1) pre-
contact, (2) establishing and maintaining contact, (3) actual
flipping. In the first phase, the fingertip is manually moved
close to the tool’s flap, such that the second phase can
be easily implemented with a tactile servoing controller,
approaching the flap to establish and maintain the desired
contact force of 0.5N. After having established the contact,
the contact point on the fingertip is controlled to lie at the
center of taxels 0, 3, 8 and 11 (see Fig. 4) using corrective
rolling motions of the tactile controller.

The thirst phase is initiated by providing a feed-forward
command fff to move the fingertip along the x-axis of Os.
During the course of flipping, the tactile servoing controller
will compensate for deviations from the desired contact force
and contact point’s position. After the tool is segmented
into two parts, the flap’s normal direction is determined and
tracked. The visual servoing controller will actively control
fingertip rolling according to Eq. 3. The whole flipping
process is shown in the accompanying video [1]. A quantitive
evaluation is provided in the following two subsections.

B. Actively flip the flap of an articulated tool

First we evaluate the visuo-tactile controller’s ability to
maintain the desired contact position and orientation. Fig. 6
shows the position error of the contact point, which only
exhibits small oscillations (¡ 1mm) during the course of flip-
ping. However, there is a rather fixed deviation of 4mm from
the desired contact point (mainly along the x-axis), which
is intentionally not corrected for because a sliding motion
along the x-axis and a rotation about the sensor’s z-axis are
conflicting with the motion to flip the flap determined by
the visual-servoing controller. Consequently, the projection
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Fig. 9: Estimation of the estimated rotation axis k in com-
parison to its ground truth value kref.

matrix was chosen to be Ptact = diag(0, 0, 1, 1, 0, 0).
Fig. 7 shows the evolution of the dot product between the

estimated flap’s normal direction nf and the surface normal
n at the contact point, which should be zero in order to
successfully flip the flap. Because the flap is initially not
detected, the dot product of the two vectors is rather large in
the beginning. However, after the flap was correctly detected,
the visual servoing controller will move the fingertip (Eq. 3)
and gradually reduce the error within the first 8s of the
motion. From time 50s to 55s, there is a peak caused by
the invisibility of the flap in the camera. Notice, that the
arm moves very slow intentionally.

C. Flap tracking and kinematics estimation

To evaluate correct tracking of the tool’s rotation angle θ,
we employ ground-truth information obtained from a Vicon
tracking system, which provides 1mm positioning accuracy.
Fig. 8 illustrates that the rotation angle is well tracked
also during a phase when the flap becomes invisible to the
camera (time 21s – 30s). During that phase, the Kalman filter
essentially predicts a linear evolution of θ according to the
robot’s motion. There are also some phases of larger errors
(t=16..21s and t=30..31s), which is due to a strongly reduced
number of points in the flap’s point cloud resulting in a larger
error of the estimated normal direction.

The tool’s kinematics parameters are evaluated in Figs. 9
to 11. Fig. 9 shows that the direction of the axis is perfectly
estimated after about 7s of motion, which corresponds to
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Fig. 11: The estimated position error of L2. Only deviation
in x axis is shown because deviations in y and z are zero.

roughly 30◦. To this end, we plotted the scalar product of k
with its ground-truth value kref, which should become equal
to one when both direction coincide.

Comparing with the ground truth, the estimated,
component-wise errors of L1 and L2 are shown in Figs. 10
and 11. The mean errors are about 1-2 cm for both vectors
after convergence. The estimation accuracy of L1 and L2 is
directly determined by the shortest-distance point on k from
the contact location. Hence, they are indirectly affected by
the estimation of the rotation axis, which has two compo-
nents: the rotation axis k and a support point on that axis.
As shown in Fig. 9, the direction vector k is estimated
accurately. Hence, we can conclude that the error of L1 and
L2 mainly originates from an error in the estimation of the
support point.

V. CONCLUSIONS AND FUTURE WORK

We introduced an interaction-based method to estimate
the kinematic parameters of an articulated tool with a flap.
Our method uses a visuo-tactile controller to implement the
interactive manipulation of the tool using a dual arm robotic
setup. One arm, equipped with a robotic hand, grasps the
tool’s handle and the other arm, equipped with a tactile
sensitive fingertip, flips the flap of the tool. During active
interaction, the shape of the tool is changed and the detailed
kinematic parameters of the tool are estimated in an online
fashion using geometrical calculations.

When the tool’s model is unknown to the system, the
interactive manipulation cannot be planned offline. Instead



the motion must be generated online employing the pro-
prioception, vision and tactile feedback. The visuo-tactile
servoing controller is exploiting the advantage of the comple-
mentary modalities to improve the robustness of interaction:
the tactile for maintaining the contact position and the vision
for rolling the fingertip in order to guarantee that the normal
direction of the contact point is orthogonal to the normal
direction of the flap. The controller needs robust feedback of
the flap’s normal direction, which, however, is not available
when the tool’s flap is not visible for the camera. To this end,
a data fusion method (Kalman filter) combining the vision
and the fingertip’s motion trajectory is used to optimize the
estimation of the flap’s normal direction.

The robot experiment demonstrated the robustness of
our proposed method and the kinematic parameters of the
articulated tool are estimated correctly. Plans are afoot to
integrate the parameters of the learned tool with the robot’s
kinematic model to implement manipulation tasks with the
tool, e.g. cleaning a table.
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