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Summary 
 

The social environment of reproducing females can induce changes in behaviour and 

physiology, with consequences for reproductive investment. Changes in reproductive 

investment, in turn, may modify the prenatal environment of the developing offspring and 

can thereby profoundly shape the offspring’s future phenotype. Such prenatal maternal 

effects may drive adaptive transgenerational plasticity, enabling mothers to prepare 

offspring for their future environmental conditions and thereby increasing their chances of 

survival. In the case of such anticipatory maternal effects, offspring that experience 

conditions that match the conditions predicted by the maternal phenotype are expected to 

perform better than offspring experiencing mismatching conditions. The maternal and 

offspring environments are thus expected to have interactive effects on offspring 

phenotypes. We tested for anticipatory maternal effects in a match/mismatch experiment 

by investigating the (interactive) effects of one important aspect of the social environment 

– group size – on maternal and offspring physiology, morphology reproduction and 

behaviour in a precocial avian species, the Japanese quail (Coturnix japonica). 

In the parental (P0) generation (chapter 2), the social environment of adult female 

Japanese quail was manipulated by housing the females in pairs (one female, one male) or 

groups (three females, one male). In previous studies, increased social density or social 

challenges have been linked to higher circulating androgen and glucocorticoid levels. 

Against our predictions, females housed in pairs had significantly higher concentrations of 

circulating androgens and tended to have higher concentrations of circulating 

corticosterone than females housed in groups. Although the female’s baseline hormone 

levels were affected by the social environment, we found no indication for effects on the 

response to endocrinological challenges of the main stress (hypothalamic-pituitary-adrenal) 

and reproductive (hypothalamic-pituitary-gonadal) axis. Furthermore, the social 

environment had no effects on female reproduction, suggesting that the effects on female 

endocrine physiology had little fitness consequences. Counter to our expectations, the 

social environment did not affect yolk testosterone levels, and we did not find a correlation 

between yolk testosterone levels and the females’ response to gonadotrophin releasing 

hormone (GnRH). We propose that our unexpected findings are due to differences in the 

exposure to males in our social treatments. In pairs, the male copulatory behaviour may 

have stimulated female circulating hormone levels more strongly than in groups where 

effects were diluted due to the presence of other females. 

Changes in social density have been shown to affect offspring sex ratio in previous 

studies, and variation in maternal hormone levels around conception have been suggested 

as a proximate mechanism underlying such effects. High maternal androgens have 

repeatedly been linked to increased investment in sons, whereas high glucocorticoid levels 

are usually related to increased investment in daughters. Even though maternal endocrine 

physiology was affected, we found no evidence for effects of the maternal social 

environment or maternal circulating androgen and corticosterone concentrations on 
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offspring sex ratio or sex-specific juvenile survival (chapter 3). The maternal social 

environment did also not affect juvenile offspring growth and circulating androgen and 

corticosterone levels. Our negative results might be explained by the lack of effects on egg 

mass or yolk testosterone levels in the parental generation, since both are important 

mediators of maternal effects. Furthermore, differences between the type of social stimuli 

and the timing of changes in the social environment and hormones with respect to the 

reproductive cycle and meiosis might explain the contrasting results between studies. 

F1 adult females were housed under social conditions that either matched or 

mismatched their maternal social conditions with respect to group size (pairs of two 

females and groups of four females; chapter 4). This experimental setup allowed us to 

investigate the interactive effects of the maternal and adult F1 offspring social 

environments. We found an interaction effect between the maternal and own social 

environment on F1 female mass, in combination with a significant effect of the F1 social 

environment on growth. We initially predicted matched offspring to perform better, 

however, ‘mismatched’ group-housed daughters from pair-housed mothers turned out to 

be heavier overall than females from the other combinations of P0-F1 social environments. 

Our findings thus support the idea that maternal effects may emerge context-dependent, 

though the adaptive value of this match/mismatch effect remains speculative. 

Furthermore, in contrast to our findings in the P0 generation, the social environment of the 

F1 females did not affect their circulating hormone levels, but affected their growth and 

reproductive investment. F1 females housed in groups grew more than pair-housed 

females, which resulted in a maternal effect on egg mass, hatching success and F2 offspring 

mass at hatching (all increased compared to F1 pair-housed females; chapter 4). These 

effects on F2 hatch mass could have important consequences for their subsequent growth 

and survival, which should be further investigated in future studies. 

The effects of social group size on female physiology, reproduction, and the next 

generation differed between the P0 and F1 generations. Differences in the sex ratios of the 

social environments between the P0 and F1 generation could partly explain these effects. 

Taken together, our results indicate that the social environment does affect female 

physiology and reproduction, and may induce maternal effects on the offspring’s 

phenotype in a context-dependent way. However, our results also indicate that different 

types of social stimuli induce different effects on females and their offspring. Furthermore, 

the timing of measurements and manipulations of the social environment or female and 

offspring physiology is likely an important factor explaining why results vary between 

studies. To gain a better understanding of the underlying mechanisms and the function of 

maternal effects of the social environment, it is important to establish which social stimuli 

are most important, and how effects of social stimuli may interact with each other. The 

studies described in this thesis point towards a number of factors that should be further 

investigated, in particular the effects of different adult sex ratios on females and their 

offspring. Moreover, it is important to further investigate what mediates maternal effects 

and at which time they manifest. This includes studying how resources accumulate in the 

yolk, and how environmental factors can influence these processes.  
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1.1. Prenatal maternal effects and phenotypic 

variation 
The behavioural and physiological appearance of an individual is the product of its genetic 

‘blueprint’ and influences of its internal and external environment. Phenotypic changes in 

response to variation in environmental conditions are considered adaptive, allowing an 

individual to cope with environmental perturbations (Fusco and Minelli, 2010; Meyers and 

Bull, 2002; Piersma and Drent, 2003), although maladaptive consequences have also been 

described (Ghalambor et al., 2007). Environmental influences on phenotypic characteristics 

can occur throughout life, from early prenatal stages to late adulthood. Moreover, since 

parents contribute to the prenatal and often early postnatal environment of the developing 

offspring, any phenotypic changes that occur in parents, especially mothers, can affect the 

offspring’s phenotypic development. Such non-genetic maternal effects (hereafter named 

‘maternal effects’) have received considerable attention, as they might have important 

evolutionary consequences, affecting fitness across generations (Mousseau and Fox, 1998).  

A well-known example of a prenatal maternal effect is the transgenerational 

induction of defences in waterfleas (Daphnia cucullata). In this species, the presence of a 

predator induces morphological changes: individuals develop ‘helmets’ which act as a 

defence against predators (Agrawal et al., 1999). The offspring of those mothers also show 

increased helmet development at the neonate stage, even if they have not experienced the 

presence of a predator themselves. Thus, a high predation risk in the maternal environment 

induces adaptive morphological changes in the offspring, ensuring defence against 

predators already shortly after birth. 

There are many pathways through which non-genetic maternal effects can 

establish in the offspring. Examples include the transmission of maternal resources such as 

nutrients and hormones, parental care, the transmission of behavioural aspects through 

learning. On a molecular level, transgenerational effects are most likely mediated via 

epigenetic mechanisms (DNA methylation or histone modification) affecting gene 

expression or the transmission of RNA (Jensen, 2013; Richards, 2006). 

The literature has shown a wide range of environmental stimuli to affect maternal 

phenotypes, with potential consequences for offspring development. Examples include 

effects of photoperiod (Horton and Stetson, 1992; Mousseau and Dingle, 1991), predation 

risk (Agrawal et al., 1999; Giesing et al., 2011; Mommer and Bell, 2014), food availability 

(Giordano et al., 2014; Plaistow et al., 2006), but also the social environment (Guibert et al., 

2010; Kaiser and Sachser, 2009, 2005). 

Despite the growing body of literature, many questions regarding the ultimate and 

proximate causes and consequences of maternal effects remain to be answered and 

findings further evaluated. The aim of this thesis is to investigate transgenerational effects 

of the social environment, and their potential adaptive benefits, in an avian model, the 

Japanese quail (Coturnix japonica). While the social environment encompasses various 

factors that can affect female physiology, reproductive investment and offspring 
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phenotype, which will be expanded upon in this chapter, our studies focus specifically on 

the influence of social group size. 

 

1.2. Maternal effects of the social environment 
The social environment comprises many different stimuli, as individuals can engage in a 

wide range of intra- and intersexual social interactions, including agonistic, socio-positive 

and sexual interactions. The frequency and type of social interactions is strongly influenced 

by factors such as population density or sex ratio, an individual’s social rank or reproductive 

status. The following sections will present an overview of how the social environment may 

affect female physiology and reproductive investment, with a main focus on avian species. 

Furthermore, the importance of the resulting maternal effects for offspring phenotypic 

development is illustrated at the end of this section. 

 

1.2.1. The social environment, female physiology and 

reproduction 
Variation in the frequency and type of social stimuli can profoundly affect an individual’s 

behavioural and physiological phenotype, which can lead to changes in reproductive 

investment. Social density and increased intraspecific competition, for example, may affect 

body mass (Asghar Saki et al., 2012; Keeling et al., 2003; Onbaşılar and Aksoy, 2005), with 

potential consequences for reproduction, as heavier females may be able to invest in more 

or higher quality offspring (Christians, 2002; Drent and Daan, 1980; Lim et al., 2014; Ronget 

et al., 2018; Sockman et al., 2006; Verboven et al., 2003). Furthermore, social encounters 

can induce a range of behavioural responses that are modulated by and interact with 

specific neurological and endocrine systems. 

Neuroendocrine regulation of social behaviour allows for fine-tuning of the 

expression of social behaviour in different contexts, which is of particular importance, as 

the social environment is dynamic and the expression of social behaviour should be 

adjusted to the prevailing social conditions (Adkins-Regan, 2005; Oliveira, 2009). Hormone 

levels can be indicators of an individual’s internal state, and may regulate the expression of 

appropriate behaviours under specific physical conditions (Adkins-Regan, 2005; Oliveira, 

2009). An example of social behaviour that is regulated by endocrine parameters in order 

to be adjusted to an individual’s internal state and social environment is reproductive 

behaviour. Reproductive behaviour should take place during fertile stages, while fertile 

mating partners are present, in order to be effective. During such stages, hormones both 

signal internal state (fertility) and regulate the expression of appropriate social behaviour 

under the right social conditions (mating behaviour towards fertile individuals). 

Gonadal steroids are important mediators of social interactions, especially in a 

reproductive context. They are released from the gonads as part of the hypothalamic-

pituitary-gonadal (HPG) axis: gonadotrophin-releasing-hormone (GnRH) from the 

hypothalamus stimulates the pituitary to release luteinizing hormone and follicle 

stimulating hormone, which in turn stimulate the gonads, leading to the release of 
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androgens and estrogens (Chaiseha and El Halawani, 2015). There appears to be a general 

pattern across species, showing that androgens are involved in the regulation of 

reproduction, competition, aggression and the maintenance of social status in both males 

and females (see Eisenegger et al. 2011 for review). In birds, competition and density have 

both been positively correlated to circulating androgen concentrations (Cain and Ketterson, 

2012; Ketterson et al., 2005; Langmore et al., 2002; Mazuc et al., 2003; Smith et al., 2005); 

but see (Cantarero et al., 2015; DeVries et al., 2015; Elekonich and Wingfield, 2000; Jawor 

et al., 2006b; Schwabl et al., 1988). Furthermore, inter-sexual interactions may affect 

female androgen levels (e.g. male courtship song (Marshall et al., 2005). 

In addition to gonadal steroids, glucocorticoids play an important role in social 

behaviour (Spencer, 2017). Glucocorticoids are released through activation of the 

hypothalamic-pituitary-adrenal (HPA) axis, typically in response to challenges and are 

therefore often called ‘stress hormones’. The brain responds to stressors by stimulating the 

secretion of corticotrophin-releasing from the hypothalamus, which in turn stimulates 

adrenocorticotrophic hormone (ACTH) secretion from the pituitary. ACTH, in turn, 

stimulates the release of glucocorticoids from the adrenals. In a social context, social 

stressors, for example agonistic social interactions, can stimulate the release of 

glucocorticoids (Creel, 2001; DeVries et al., 2003), yet also buffer the physiological response 

to stressors (DeVries et al., 2003; Scheiber et al., 2009). In birds, studies have reported a 

positive correlation between social density and circulating corticosterone concentrations 

(Cunningham et al., 1987; Koelkebeck and Cain, 1984; Nephew and Romero, 2003; 

Onbaşılar and Aksoy, 2005; Raouf et al., 2006). In Japanese quail, direct interaction 

between unfamiliar conspecifics (Rutkowska et al., 2011) as well as unstable social 

environments (causing an increase in agonistic interactions; (Guibert et al., 2010) increase 

plasma corticosterone concentrations. 

When investigating the effects of environmental influences on an individual’s 

androgen or glucocorticoid levels, it is important to not only take into account baseline 

levels, but also investigate their respective endocrine axis at different regulatory stages. For 

example, for glucocorticoids, next to baseline levels, it can be informative to investigate the 

HPA axis response to an acute stressor (for example, restraint; Astheimer et al., 1995), or to 

an injection with ACTH, because baseline and maximum response levels can have different 

effects on behaviour (Creel et al., 2013). Furthermore, the sensitivity of both endocrine axis 

can be changed after frequent stimulation (HPA: Love et al., 2003; Rich and Romero, 2005; 

but see Busch et al., 2008; HPG: Peluc et al., 2012) or in response to social stimuli (e.g. for 

HPA: DeVries et al., 2003; Scheiber et al., 2009; HPG: Lehrman et al., 1961; Stevenson et al., 

2008). 

 

Changes in female endocrine parameters conceivably affect reproduction, but the 

relationships between circulating hormone concentrations and reproduction are highly 

time- and context-dependent and potentially non-linear, with both very low levels and very 

high levels negatively affecting reproduction (Bonier et al., 2009a; Hau and Goymann, 2015; 

Ouyang et al., 2011, 2013). Both androgens and glucocorticoids have important 



 
Chapter 1 

15 
 

physiological functions, regulating for example reproductive physiology (Ketterson et al., 

2005; Rangel et al., 2006) or metabolism and energy use (Sapolsky et al., 2000). Minimal 

levels of both circulating androgens and glucocorticoids are therefore required for survival 

and reproduction, explaining why some studies have reported positive correlations 

(androgens: Cain and Ketterson, 2012; Langmore et al., 2002; Sandell, 2007; 

glucocorticoids: Bonier et al., 2009b; Bortolotti et al., 2008; Burtka et al., 2016; Ouyang et 

al., 2013, 2011. Furthermore, androgens may positively affect reproductive success through 

their involvement in competitive behaviour, affecting mate and nest acquisition (Cain and 

Ketterson, 2012; Langmore et al., 2002; Sandell, 2007). However, increased levels 

circulating androgen or glucocorticoid levels can also negatively affect reproduction 

(androgens: de Jong et al., 2016; López-Rull and Gil, 2009; Rutkowska et al., 2005; 

Rutkowska and Cichoń, 2006; Veiga and Polo, 2008; glucocorticoids: Angelier et al., 2010; 

Bonier et al., 2009b; Ouyang et al., 2013, 2011; Silverin, 1986; Vitousek et al., 2014). These 

contradictory findings regarding the relation between social stimulation and plasma 

androgens and glucocorticoids, and their effects on reproduction, indicate that these 

aspects require further study. 

 

1.2.2. Influences of the social environment on egg 

composition 
Effects of the social environment on female physiology may affect the transmission of 

resources to the offspring. Understanding how female physiology, the offspring’s prenatal 

environment and subsequently offspring phenotype are related is crucial for studying the 

proximate mechanisms underlying prenatal maternal effects. In this respect, oviparous 

species provide an ideal system to study prenatal maternal effects. The fact that the 

embryo develops outside the mothers body, in a closed environment (the egg) allows for 

relatively easy assessment and manipulation of the prenatal environment (Henriksen et al., 

2011b). In mammals, investigating the offspring’s prenatal environment is more 

complicated due to the relative inaccessibility of the foetal environment, and the variability 

of the prenatal environment due to maternal and sibling influences. 

 

In oviparous species, the most straightforward assessment of the offspring’s prenatal 

environment is measuring egg size. Determining egg size can give a measure of maternal 

nutrient provisioning to the offspring, which is an important factor affecting its 

development. In many avian species, egg size is positively correlated to offspring size or 

survival (Bernardo, 1996; Krist, 2011; Williams, 1994) and therefore an important mediator 

of maternal effects. 

Effects of the maternal social environment on egg size have been described in a 

range of avian species. Field experiments in great tits (Parus major), for example, have 

shown a negative correlation between breeding density and egg mass (Perrins and 

McCleery, 1994). Similar findings have been reported in lab studies in chicken (Gallus gallus 

domesticus) or Japanese quail (Coturnix japonica), where keeping females at higher 
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densities resulted in decreased egg production and egg mass (Anderson et al., 2004; Asghar 

Saki et al., 2012; Faitarone et al., 2005). However, increased social stimulation may also 

increase egg mass, as has been shown in lesser black-backed gulls (Larus fuscus; Verboven 

et al., 2005). The direction of effects likely depends on the ecology of the species and type 

of density measure or social manipulation. Other social factors that may influence female 

reproductive investment include mate quality (Alonso-Alvarez et al., 2012; Cunningham and 

Russell, 2000; de Lope and Møller, 1993; Petrie and Williams, 1993; Uller et al., 2005) or 

female dominance rank (Müller et al., 2002). 

 

Next to nutrients, eggs contain various other compounds from maternal origin, including 

antioxidants (e.g. carotenoids: Blount et al., 2000; Surai et al., 2001, or vitamins: Surai et al., 

1998; Surai and Speake, 1998), immune substances (e.g. maternal antibodies: Buxton, 

1952; Hasselquist and Nilsson, 2009, or immunoglobulins: Kowalczyk et al., 1985), and 

hormones (Schwabl, 1993; von Engelhardt and Groothuis, 2011). Especially maternally 

derived yolk hormones have been the focus of many studies on maternal effects in avian 

species. Avian egg yolk contains measurable concentrations of sex steroids from maternal 

origin, amongst which testosterone, androstenedione, dihydrotestosterone, progesterone 

and estradiol (Schwabl, 1993; von Engelhardt and Groothuis, 2011). Moreover, studies have 

detected low levels of corticosterone (Almasi et al., 2012; Rettenbacher et al., 2009). 

Exposure to maternal hormones during development has important organizational and 

activational effects on developing tissues, with considerable phenotypic consequences 

(Groothuis et al., 2005). Furthermore, since maternal circulating hormones fluctuate in 

response to the maternal environment, hormones are an excellent candidate pathway via 

which the maternal environment can influence the development and behaviour of offspring 

(Gil 2003; Groothuis et al. 2005). 

Although it is clear that maternally derived yolk hormones are an important 

mediator of maternal effects, it is still unclear how yolk hormone deposition is regulated. 

Understanding how hormones accumulate in the egg is important for answering the 

questions of whether maternal circulating hormones and yolk hormones are independently 

regulated and whether mothers can control hormone deposition to a certain extent 

(Groothuis and Schwabl, 2008). Independent regulation of circulating and yolk hormones 

would enable mothers to vary their yolk hormone content without affecting their plasma 

hormone levels, the latter potentially affecting behaviour and reproduction, with possible 

fitness costs (as described in section 1.2.1.). Gonadal steroids in both the maternal 

circulation and in yolk are produced by the follicular walls of developing oocytes (Groothuis 

and Schwabl, 2008; Müller et al., 2011). Maternal circulating hormones may therefore 

simply reflect hormone production in developing oocytes, and correlate with yolk hormone 

levels. Alternatively, in the case of independent regulation, follicular hormones may be 

independently distributed to the maternal circulation and to yolk, and circulating and yolk 

hormone levels are not necessarily correlated. For yolk androgens, positive (Badyaev et al., 

2005; Schwabl, 1996a), negative (Mazuc et al., 2003; Navara et al., 2006; Verboven et al., 

2003) or no correlations (Goerlich et al., 2010) with maternal circulating levels have been 
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reported, indicating that independent regulation of circulating and yolk hormones may 

indeed be possible. Furthermore, when injecting female Japanese quail with radioactively 

labelled testosterone, only a small amount (0.1%) reached the yolk of their eggs, indeed 

suggesting that yolk testosterone predominantly originates from the follicular walls 

surrounding developing oocytes (Hackl et al., 2003). 

If yolk testosterone is deposited directly from the follicular walls, stimulating 

follicular hormone production, for example through activation of the HPG axis via GnRH, 

should stimulate yolk testosterone deposition. Thus, the magnitude of the androgen 

response to GnRH may be a better predictor of yolk testosterone concentrations as 

opposed to maternal baseline plasma testosterone levels (Jawor et al., 2007; Müller et al., 

2011; Peluc et al., 2012). 

 

Because the social environment can affect female endocrine physiology, as described in 

section 1.2.1, it may indirectly affect yolk hormone deposition as well. In a range of avian 

species, the social environment during breeding has been shown to affect yolk testosterone 

levels (Bentz et al., 2013; Eising et al., 2008; Hargitai et al., 2009; Mazuc et al., 2003; Pilz 

and Smith, 2004; Schwabl, 1997; Whittingham and Schwabl, 2002). In house sparrows 

(Passer domesticus), for example, breeding density is positively correlated with yolk 

testosterone (Mazuc et al., 2003; Schwabl, 1997), and similar findings have been reported 

for European starlings (Sturnus vulgaris; Eising et al., 2008; Pilz and Smith, 2004) and 

American coots (Fulica americana; Reed and Vleck, 2001). In collared flycatchers (Ficedula 

abicollis), although breeding density did not affect yolk testosterone concentrations, when 

females were exposed to a conspecific same-sex intruder during the nest building period, 

they laid eggs with higher yolk testosterone levels compared to non-exposed females 

(Hargitai et al., 2009). Another example of a social factor affecting yolk hormone deposition 

is the positive relationship between mate quality or attractiveness on yolk testosterone 

deposition that has been found in a range of avian species (Gil et al., 2004, 1999; Kingma et 

al., 2009; Loyau et al., 2007). 

Social stressors, such as increased levels of agonistic social interactions, may also 

affect yolk testosterone deposition (Guibert et al., 2010). However, the relationship 

between maternal stress, plasma corticosterone, and yolk testosterone deposition is still 

unclear, as studies have reported contrasting results between and even within species. In 

Japanese quail, for example, repeated mild stressors increased female plasma 

corticosterone and yolk testosterone concentrations (Guibert et al., 2011), whereas chronic 

stress reduced yolk testosterone concentrations (Okuliarová et al., 2010). In chicken, 

elevating female plasma corticosterone via corticosterone implants reduced yolk 

testosterone levels (Henriksen et al., 2011a). Such contrasting results between studies 

could be the result of differences in the type and duration/frequency of the applied stress 

stimulus. Nevertheless, maternal stress has been shown to induce changes in offspring 

phenotype in many avian species, not only through effects on yolk androgens, but also 

other measures of egg composition such as egg mass, yolk mass or yolk corticosterone 

levels (reviewed in Henriksen et al., 2011b). 
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1.2.3. Evidence for transgenerational effects of the social 

environment on offspring phenotypes 
As described, the social environment of reproducing females can affect their behaviour and 

physiology, and influence the transmission of resources to the developing offspring. Such 

changes in the prenatal environment of the offspring can have consequences for their 

phenotypic development. Transgenerational effects of the social environment have been 

described in a range of species. As mentioned in section 1.2.2, social stimuli can affect egg 

composition, with consequences for offspring development. In barn swallows (Hirundo 

rustica), for example, females mated to an attractive male increased their yolk androgen 

concentrations, which were positively correlated with offspring growth (Gil et al., 2006). 

Examples showing that the maternal social environment can affect offspring phenotypes 

have also been reported in other taxa. In American red squirrels (Tamiasciurus hudsonicus), 

for example, exposing mothers to cues signalling a high population density (playback of 

territorial vocalizations) resulted in faster growing offspring, which may be attributed to 

effects of increased maternal corticosterone (Dantzer et al., 2013). In guinea pigs (Cavia 

aperea), an unstable maternal social environment affected the offspring in a sex-specific 

way (Kaiser and Sachser, 2009, 2005). Daughters were more masculinized in their 

behaviour, and their plasma testosterone concentrations were higher during adolescence. 

Sons, on the other hand, were infantilized in their behaviour and appeared to have slower 

sexual maturation, effects that were likely caused by a decrease in maternal plasma 

androgen concentrations (dehydroepiandrosterone-sulfate and dehydroepiandrosterone) 

under unstable social conditions (Kaiser et al., 2003; Wewers et al., 2005). In least killifish 

(Heterandria formosa), females that were exposed to a higher social density during brood 

development produced larger offspring than females experiencing a lower social density 

(Leips et al., 2009). In desert locusts (Schistocerca gregaria), maternal population density 

affected the behaviour of offspring, with hatchlings from crowded mothers behaving more 

gregariously, whereas hatchlings from isolated mothers behaved more solitariously (Islam 

et al., 1994; Simpson et al., 1999). Taken together, these examples indicate an important 

role of the maternal social environment in offspring phenotypic development. 

In some of the mentioned examples, the maternal social environment affected 

offspring phenotype in a sex-specific way (Kaiser and Sachser, 2009, 2005). Sex-specific 

maternal effects can be the result of sex-specific allocation of maternal substances, e.g. 

hormones (Badyaev et al., 2006; Müller et al., 2002) or resources (Young and Badyaev, 

2004), but can also arise if the sensitivity to maternal signals differs between male and 

female offspring (Benowitz-Fredericks and Hodge, 2013; Schweitzer et al., 2013; Tobler and 

Sandell, 2009; von Engelhardt et al., 2006). Sex-specific maternal investment may lead to 

sex differences in offspring quality and/or a bias in offspring sex ratio (the proportion of 

males to females). 

Previous studies have shown that the social environment can lead to differences in 

sex allocation (Michler et al., 2013; Minias et al., 2014) but there is no consistent pattern in 

the direction of such effects. In great cormorants, for example, social density has been 
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positively correlated with the proportion of male offspring (Phalacorcorax carbo sinensis; 

Minias et al., 2014). In contrast, in great tits (Parus major), increased nesting densities led 

to female-biased broods in the following year, whereas decreased nesting densities led to 

male-biased broods (Michler et al., 2013). The specific effect of the maternal social 

environment on offspring sex ratio likely depends on many different factors, such as the 

ecology or social organisation of the species. 

Sex-specific investment can be adaptive if circumstances are in favour of either one 

of the sexes. For example, it has been suggested that females in good condition will benefit 

from investing in the sex with the highest variability in reproductive output in relation to 

body condition - yielding a high fitness return when in good condition, but a low fitness 

return when in bad condition (Trivers and Willard, 1973). Biases in offspring sex ratio have 

been described in a wide range of species, and although the underlying mechanisms remain 

elusive, many studies have suggested the involvement of maternal condition and circulating 

hormone levels (Alonso-Alvarez, 2006; Cameron, 2004; Goerlich-Jansson et al., 2013; 

James, 2008; Krackow, 1995; Navara, 2013; Pike and Petrie, 2003). In avian species, 

increased levels of maternal androgens usually lead to male-biased offspring sex ratios 

(Goerlich-Jansson et al., 2013; Goerlich et al., 2009; Pike and Petrie, 2005; Rutkowska and 

Cichoń, 2006; Veiga et al., 2004, but see Correa et al., 2011). Increased levels of maternal 

glucocorticoids often result in female-biased offspring sex ratios (Bonier et al., 2007; 

Goerlich-Jansson et al., 2013; Love et al., 2005; Pike and Petrie, 2006, 2005, but see Gam et 

al., 2011; Henriksen et al., 2013). However, maternal androgens have also been related to 

both a female-biased (Correa et al., 2011) as well as an unbiased (Pike and Petrie, 2006) 

offspring sex ratio, and maternal glucocorticoids have been related to a male-biased (Gam 

et al., 2011) as well as an unbiased (Henriksen et al., 2013) offspring sex ratio. These 

contrasting reports indicate that results from experimental and correlational studies are 

still inconclusive, warranting further research. 

 

1.3. The adaptive significance of maternal effects 
Theoretical and experimental studies have proposed different evolutionary implications of 

maternal effects. Some studies have suggested that maternal effects drive adaptive 

transgenerational plasticity, enabling parents to prepare offspring for their future 

environmental conditions and thereby increasing their chances of survival (anticipatory or 

adaptive maternal effects; Badyaev, 2008; English et al., 2015; Marshall and Uller, 2007; 

Mousseau and Fox, 1998; Qvarnström and Price, 2001). The example of the 

transgenerational induction of defences in waterfleas, mentioned at the beginning of this 

chapter, shows that maternal effects can indeed have adaptive benefits for the offspring 

(Agrawal et al., 1999). However, maternal effects can also have detrimental consequences 

for offspring development and survival (Marshall and Uller, 2007). Although maternal 

effects that negatively affect offspring may seem maladaptive at first, adaptive benefits for 

mothers may drive these outcomes (Kuijper and Johnstone, 2018; Marshall and Uller, 

2007). 
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In the case of anticipatory maternal effects, their adaptive value is largely dependent on the 

offspring’s environment and how it matches the environmental conditions ‘predicted’ by 

the maternal phenotype. If there is a match between the offspring’s true environment and 

the anticipated environment, offspring are predicted to perform better, as they are 

optimally prepared for the prevailing environmental conditions (Uller et al., 2013). If the 

actual environment does not match the anticipated environment, offspring are predicted to 

perform worse (Uller et al., 2013). Maternal and offspring environment are therefore 

expected to have interactive effects on offspring performance. 

Studies of adaptive maternal effects should take these factors into account, and 

test the outcome of maternal effects under different environmental conditions in the 

offspring. Ideally, fully-factorial experimental designs should be used, encompassing two 

maternal and two offspring environments/treatments so the offspring can be tested under 

matching and mismatching conditions (Engqvist and Reinhold, 2016; Marshall and Uller, 

2007; Uller et al., 2013). The advantage of such a match/mismatch setup, which was also 

used in chapter 4 of this thesis, is that it allows for investigation of interactive as well as 

independent effects of maternal and offspring environments. A range of fitness-related 

traits should be quantified, because maternal effects may affect different traits 

simultaneously, with different results for offspring fitness (Marshall and Uller, 2007; 

Plaistow and Benton, 2009). 

 

1.4. The Japanese quail as a model for studying 

maternal effects of the social environment 
Japanese quail, Coturnix japonica (Figure 1.1), are migratory, ground living birds that belong 

to the order of Galliformes, in the Phasanidae family. The species has been heavily 

domesticated, probably already since as early as the eleventh century (Cheng et al., 2010). 

Originally, Japanese quail were kept for their song, but since the beginning of the twentieth 

century, quail have been selected for their egg and meat production (Cheng et al., 2010). 

Though frequently used in behavioural and physiological (or pharmacological) research, 

studies on the social organization of wild Japanese quail are scarce, and have reported 

conflicting results. Japanese quail form groups during migration and in winter but may live 

in pairs during the breeding season (Cheng et al., 2010), and domesticated quail have been 

shown to form pair bonds (Le Bot et al., 2014). The species has been described as (serially) 

monogamous, polygynous, and polyandrous and studies have reported a high frequency of 

extra-pair copulations (Cheng et al., 2010; Mills et al., 1997; Nichols, 1991; Schmid and 

Wechsler, 1997). Under laboratory conditions Japanese quail are usually housed in 

polygynous groups. The flexible social organization found in Japanese quail, makes it a 

suitable species to study the effects of variation in the social environment on physiology 

and behaviour (Adkins-Regan, 2015; Cheng et al., 2010; Mills et al., 1997). 

Japanese quail possess several further traits that make them a very suitable species 

to investigate transgenerational effects. First, they have a short generation time: the birds 

reach sexual maturity at about 5-6 weeks of age, and eggs hatch after only 17 days of 
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incubation. Second, the chicks are precocial and can thus be reared in absence of their 

mothers, allowing for better standardization of the postnatal environment, avoiding 

confounding effects of postnatal maternal influences (Henriksen et al., 2011b). 

Given these advantages, Japanese quail have been widely used in the study of 

transgenerational effects (Adkins-Regan et al., 2013; Bertin et al., 2009, 2008; Correa et al., 

2011; Guesdon et al., 2011; Guibert et al., 2013, 2012, 2011; Odeh et al., 2003), including 

maternal effects of the social environment (Guibert et al., 2010). Challenging Japanese quail 

females with frequent changes in group composition increased their plasma corticosterone 

concentrations and affected the development and behaviour of the offspring: offspring of 

mothers kept in unstable social environments developed more slowly during the first weeks 

of life. Furthermore, chicks from unstable mothers appeared less bold in an emergence 

test, where the chicks have to leave a box to enter a novel environment, as they had longer 

latencies to emerge than control chicks. These chicks also reacted more strongly when 

socially isolated in an unfamiliar environment, as they showed more locomotor acts, 

started emitting distress calls sooner and made more high posture observations than 

controls (increased locomotion, distress calls and high posture observations are thought to 

be signs of active searching for conspecifics, and a high motivation to re-establish social 

contact; see (Formanek et al., 2008; Guibert et al., 2010). The effects on offspring 

phenotype appeared to be mediated via changes in yolk testosterone deposition, as 

females in unstable social environments laid eggs with higher testosterone concentrations 

in the yolk, when compared to eggs laid by females kept in stable social environments 

(Guibert et al., 2010). 

 Studies using Japanese quail selection lines have also suggested a connection 

between sociality, plasma hormones and yolk hormone deposition. Lines selected for either 

high or low levels of social reinstatement behaviour (Mills and Faure, 1991) differ in their 

yolk testosterone deposition. Females from high social reinstatement lines produce eggs 

containing higher testosterone concentrations than eggs from females from the low social 

reinstatement line (Gil and Faure, 2007). 

 

 
Figure 1.1. Adult female (left) and male (right) Japanese quail. 
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1.5. Thesis aim and outline 
The studies described above show that the social environment can affect female 

physiology, with consequences for reproductive investment and offspring phenotype. 

However, the social environment entails many different aspects, and their effects are 

numerous. More research is needed to get a better understanding of how different aspects 

of the social environment shape maternal physiology and behaviour, and the consequences 

for fecundity and offspring quality. In addition, the proximate mechanisms underlying 

maternal effects of the social environment are not yet well understood and require further 

study. 

This thesis focuses on the effects of one aspect of the social environment, namely 

social group size. We investigated the effects of pair-housing versus group-housing on 

female physiology, reproductive investment, and subsequently offspring phenotype, also 

taking into account sex-specific effects and interactions with the offspring’s own social 

environment. 

In chapter 2, we first studied the effects of pair-housing (one female, one male) 

versus group-housing (three females, one male) on female physiology and reproductive 

performance. Increased social stimulation is thought to positively affect circulating and yolk 

androgen and corticosterone levels, and yolk androgen deposition, which may positively or 

negatively affect fecundity. We hypothesised that group-housed females would have higher 

plasma androgen (testosterone and 5-α-dihydrotestosterone) and corticosterone levels, as 

well as increased yolk testosterone concentrations and investigated whether group- or pair-

housing had positive or negative consequences for reproduction. In addition, we tested for 

effects of the social environment on the female’s endocrine responses to standardized 

challenges. The female’s response to a restraint stressor (Wingfield et al., 1995) was 

measured to test the sensitivity of their HPA-axis. The sensitivity of the female’s HPG-axis 

was also assessed, by measuring their response to an injection with GnRH (Jawor et al., 

2006a). Finally, we investigated the idea that the magnitude of the response of the HPG 

axis to GnRH can be used as a predictor of yolk testosterone deposition (Jawor et al., 2007; 

Müller et al., 2011; Peluc et al., 2012). 

In chapter 3, we investigated whether differences in the maternal social 

environment causes a sex-bias in offspring investment, which can be a result of differential 

sex allocation, or sex-specific effects on offspring development. Changes in both primary 

and secondary offspring sex ratio are thought to be mediated by maternal plasma steroids 

around conception. In avian species, increased levels of maternal androgens are thought to 

result in male-biased offspring sex ratios whereas increased levels of maternal 

glucocorticoids have been suggested to result in female-biased offspring sex ratios. We 

tested the hypothesis that maternal pair-housing or group-housing, and the resulting 

differences in maternal androgen or corticosterone levels, affects F1 offspring sex ratio, or 

has sex-specific or overall effects on offspring mortality, growth and circulating androgen or 

corticosterone levels. In addition, we tested whether the maternal social environment 

affected the offspring’s HPA response to ACTH, which has been suggested to be affected by 



 
Chapter 1 

23 
 

maternal social influences (Guibert et al., 2010; Kaiser and Sachser, 2001; von Engelhardt et 

al., 2015). 

In chapter 4 we studied the effects of the maternal social environment on the adult 

female offspring, housed under different social conditions: in pairs of two females or in 

groups of four females (Figure 1.2). The adaptive value of maternal effects is thought to 

depend on how well the offspring’s environment matches the environmental conditions 

‘predicted’ by the maternal phenotype. Our setup allowed us to test whether offspring kept 

in an environment that matched the maternal environment with respect to social group 

size (two versus four individuals) perform better than offspring kept under mismatching 

social conditions, that is, grow more and have a higher reproductive success. On the other 

hand, we were able to investigate whether the maternal social environment affects 

offspring phenotype independently of the offspring’s social environment, and vice versa. As 

in chapter 1, we also measured the female’s circulating androgen and corticosterone levels 

and tested the sensitivity of their HPA and HPG axis. 

In chapter 5, the findings of this thesis are discussed, while providing ideas for 

follow-up experiments to further unravel the mechanisms behind, and consequences of, 

maternal effects of the social environment. 

 

 
Figure 1.2. Graphical representation of the used experimental setup. See text for further details. 
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Abstract 
The social environment can have profound effects on an individual’s physiology and 

behaviour and on the transfer of resources to the next generation, with potential 

consequences for fecundity and reproduction. However, few studies investigate all of these 

aspects at once. The present study housed female Japanese quail (Coturnix japonica) in 

pairs or groups to examine the effects on hormone concentrations in plasma and yolk and 

on reproductive performance. Circulating levels of androgens (testosterone and 5-α-

dihydrotestosterone) and corticosterone were measured in baseline samples and after 

standardised challenges to assess the responsiveness of the females’ endocrine axes. 

Effects of the social environment on female fecundity were analysed by measuring egg 

production, egg mass, fertilization rates, and number of hatched offspring. Counter to 

expectation, females housed in pairs had higher plasma androgen concentrations and 

slightly higher corticosterone concentrations than females housed in groups, although the 

latter was not statistically significant. Pair vs. group housing did not affect the females’ 

hormonal response to standardised challenges or yolk testosterone levels. In contrast to 

previous studies, the females’ androgen response to a gonadotropin-releasing hormone 

challenge was not related to yolk testosterone levels. Non-significant trends emerged for 

pair-housed females to have higher egg-laying rates and higher fertility, but no differences 

arose in egg weight or in the number, weight or size of hatchlings. We propose that our 

unexpected findings are due to differences in the adult sex ratio in our social treatments. In 

pairs, the male may stimulate female circulating hormone levels more strongly than in 

groups where effects are diluted due to the presence of several females. Future studies 

should vary both group size and sex composition to disentangle the significance of sexual, 

competitive and affiliative social interactions for circulating and yolk hormone levels, and 

their consequences for subsequent generations. 
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2.1. Introduction 
The social environment of an individual can profoundly affect its behaviour, morphology 

and physiology. In many vertebrates, including birds, the frequency and type of social 

interactions affect circulating androgen and glucocorticoid levels (Adkins-Regan, 2005; 

Creel et al., 2013; Oliveira, 2004). Social interactions influence steroid hormones which, in 

turn, affect social and reproductive behaviour (Lehrman, 1964; Lehrman et al., 1961). 

Hence steroid hormones can act as mediators between the social environment and 

behaviour (Adkins-Regan, 2005; Oliveira, 2009), which ultimately can affect survival and 

reproduction (Dufty et al., 2002; Ketterson and Nolan Jr., 1992). During reproduction, the 

social environment not only affects the individual itself, but also the amount of resources 

and other substances transferred to the next generation, potentially affecting offspring 

fitness (Groothuis et al., 2005; Kaiser and Sachser, 2005). Such socially induced maternal 

effects enable parents to prepare offspring for their future social conditions, potentially 

resulting in adaptive transgenerational plasticity (Badyaev, 2008; English et al., 2015; 

Mousseau and Fox, 1998; Qvarnström and Price, 2001; but see Marshall and Uller, 2007). 

The mechanisms underlying the effects of the social environment on female physiology and 

behaviour and the consequences for fecundity and offspring quality are not yet well 

understood and deserve further research. 

Gonadal steroids, regulated by the hypothalamic-pituitary-gonadal (HPG) axis, are 

important mediators of social interactions, especially in a reproductive context. Androgens, 

in particular testosterone (T), are involved in social interactions such as competition and 

aggression, as well as reproductive behaviour and physiology (Adkins-Regan, 2005; Oliveira, 

2004). In birds, female plasma androgen levels have been found to be positively correlated 

with conspecific competition and breeding density (Cantarero et al., 2015; Langmore et al., 

2002; Mazuc et al., 2003; Smith et al., 2005; Zysling et al., 2006). The link between plasma 

androgen levels and intra-sexual competition has been extensively studied under the 

“challenge hypothesis” (Wingfield et al., 1990), which states that, during reproduction, 

plasma T correlates positively with male-male competition. In females, although there are 

fewer studies than in males, similar hormonal responses to social challenges have been 

observed (Cain and Ketterson, 2012; Ketterson et al., 2005; Langmore et al., 2002; Smith et 

al., 2005), yet studies have also reported no link, or even negative correlations between 

female-female competition and circulating plasma androgen levels (Cantarero et al., 2015; 

DeVries et al., 2015; Elekonich and Wingfield, 2000; Jawor et al., 2006b; Schwabl et al., 

1988). Given these contradictory findings, further research is required to clarify the 

relationship between intra-sexual competition and circulating androgens in females. 

Next to gonadal steroids, glucocorticoids play an important role in social behaviour. 

In avian species, corticosterone (CORT) is typically released under metabolic or otherwise 

challenging conditions, through activation of the hypothalamic-pituitary-adrenal (HPA) axis, 

and is therefore often referred to as a ‘stress hormone’. Socially challenging interactions 

can stimulate the HPA axis and increase circulating glucocorticoid levels, while affiliative 

social interactions can buffer the response to stressors (Creel et al., 2013; Hennessy et al., 

2009). In birds, social density and circulating baseline CORT concentrations frequently are 
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positively correlated (Cunningham et al., 1987; Koelkebeck and Cain, 1984; Onbaşılar and 

Aksoy, 2005; Raouf et al., 2006; but see Davami et al., 1987; Koelkebeck and Cain, 1984; 

Poot et al., 2012). In Japanese quail (Coturnix japonica), females housed in unstable social 

environments have higher plasma CORT concentrations following changes to the social 

environment compared to females kept in stable social environments (Guibert et al., 2010). 

Moreover, social interactions between Japanese quail females and an unfamiliar 

conspecific result in elevated CORT levels (Rutkowska et al., 2011). 

Circulating levels of androgens and CORT can affect female behaviour and 

reproductive investment, thereby influencing reproductive success both positively and 

negatively. Artificially elevated female plasma androgens have been shown to negatively 

affect reproduction (de Jong et al., 2016; López-Rull and Gil, 2009; Rutkowska et al., 2005; 

Rutkowska and Cichoń, 2006; Veiga and Polo, 2008), although the long-term effects on 

lifetime reproductive success may be small (Veiga and Polo, 2008). However, circulating 

androgens may have indirect positive effects on female reproductive success, for example 

by affecting competition, mate and nest acquisition and parental behaviour (Cain and 

Ketterson, 2013, 2012; Langmore et al., 2002; Sandell, 2007; Searcy, 1988). Circulating 

female CORT levels have been found to both negatively (Angelier et al., 2010; Bonier et al., 

2009b; Ouyang et al., 2013, 2011; Silverin, 1986; Vitousek et al., 2014) and positively 

correlate with reproduction (Bonier et al., 2009b; Burtka et al., 2016; Ouyang et al., 2013, 

2011). In Japanese quail, selection lines bred for an exaggerated stress response showed a 

decrease in reproductive success, with an additional negative effect of artificially increasing 

CORT levels in these females (Schmidt et al., 2009). It is still unclear what causes the 

variable effects of androgens and CORT on reproduction. Possible explanations include 

context-dependent effects, time-dependent effects and non-linear effects of increasing 

hormone concentrations (Bonier et al., 2009a; Hau and Goymann, 2015; Ouyang et al., 

2013, 2011). 

In reproducing female birds, not only are plasma levels of steroids affected by the 

social environment, but also the deposition of hormones into yolk of developing eggs (Gil, 

2008; Groothuis et al., 2005; von Engelhardt and Groothuis, 2011). Breeding density and 

female-female competition is positively correlated with yolk androgens in many bird 

species (Bentz et al., 2013; Eising et al., 2008; Hargitai et al., 2009; Mazuc et al., 2003; Pilz 

and Smith, 2004; Schwabl, 1997; Whittingham and Schwabl, 2002). In the Japanese quail, 

yolk androgens are increased by social instability (Guibert et al., 2010) and by selection for 

a high motivation to reinstate social contact (Gil and Faure, 2007). The relationship 

between female plasma androgen levels and yolk androgen levels is still unclear (Groothuis 

and Schwabl, 2008; Moore and Johnston, 2008), but recent studies have suggested that 

variation in yolk hormone levels reflects differences in HPG axis sensitivity. Indeed, the 

increase of circulating androgens in response to gonadotropin-releasing hormone injections 

(GnRH) correlates positively with yolk androgen deposition in some bird species (Jawor et 

al., 2007; Müller et al., 2011), including Japanese quail (Peluc et al., 2012). This suggests a 

link between the social environment, the plasma androgen response to GnRH and yolk 

androgen levels. 
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Steroid hormones in the yolk influence the development and behaviour of offspring and are 

therefore important mediators of prenatal maternal effects. Yolk androgens influence 

fundamental traits such as offspring growth (both pre-and post-natal), timing of hatching, 

offspring immunity and behaviour (Gil, 2003; Groothuis et al., 2005). These factors can have 

consequences for offspring survival thus ultimately affecting the parents’ reproductive 

success (Gil, 2003; Groothuis et al., 2005). 

Given the contradictory findings on the relation between social stimulation, plasma 

androgens, CORT and yolk androgens, and their effects on reproduction, we explored the 

effects of the social environment in captive housed female Japanese quail. We kept the 

birds either in pairs (one male and one female) or in small groups of three females with one 

male to represent variation in the social system during breeding which may be found in the 

wild and in captivity. Japanese quail have been described as (serially) monogamous, 

polygynous, and polyandrous (Cheng et al., 2010; Mills et al., 1997; Nichols, 1991). Studies 

on domesticated Japanese quail have shown that formation of (temporary) pair bonds 

indeed occurs, but the frequency of extra-pair copulations is high, and under laboratory 

conditions this species is usually housed in polygynous groups (Cheng et al., 2010; Mills et 

al., 1997; Nichols, 1991; Schmid and Wechsler, 1997). Overall, this suggests that the mating 

system is flexible in Japanese quail, which makes this a suitable species to study the effects 

of variation in the social environment on physiology and behaviour (Adkins-Regan, 2015; 

Cheng et al., 2010; Mills et al., 1997). 

Compared to pair housing, group living should allow for more social interaction and 

potentially increase competition for resources and the male mating partner. These social 

stimulations are expected to result in changes in plasma and yolk hormone levels. We 

analysed the effect of social housing conditions on female plasma androgen and 

corticosterone levels and yolk T concentrations in their eggs. We refer to plasma androgens 

rather than T because the assay used cross-reacted to 23.3% with 5-α-dihydrotestosterone 

(5-α-DHT; see Methods), a potent androgen present in avian plasma (Balthazart et al., 

1983; Feder et al., 1977; Roy et al., 1998). To investigate the effects of the social 

environment on HPG and HPA axis sensitivity, we tested the females’ physiological 

response to specific challenges. We subjected females to a standardized restraint stress 

protocol (Wingfield et al., 1995), allowing us to measure the CORT response to a stressor 

via activation of the HPA axis. We also performed a GnRH challenge, testing the sensitivity 

of the HPG axis (Jawor et al., 2006a). Finally, we analysed the effects of the social 

environment on female fecundity by measuring egg production and egg mass, fertilization 

rate, and number of offspring hatching in the F1 generation. To analyse potential 

differences between females within groups due to variation in affiliative and sexual 

interactions, we recorded social proximity and female baldness caused by repeated 

copulation with the male (Kovach, 1974; Mills et al., 1997). 

We predicted group housing would result in elevated plasma androgen and CORT 

levels and higher yolk T levels due to the increased amount of social stimulation. We 

expected the change in circulating hormone levels to affect reproductive performance, 
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however, given the variable results reported in the literature, we did not have a clear 

prediction regarding the direction of effects.  

 

2.2. Methods 

2.2.1. Experimental design  
The experiment was conducted using a total of 96 animals. At 29 days of age, when the 

birds had developed their sexually dimorphic plumage but were not yet sexually mature, 

they were placed in the social treatment conditions. Groups consisted of three females and 

one male, while pairs included one female and one male. The birds were allocated as 

follows: 36 females and 12 males to 12 groups, 24 females and 24 males to 24 pairs. 

Siblings and half-siblings were equally distributed over the two social treatments and never 

housed in the same cage, in order to balance out potential genetic effects on endocrinology 

and reproduction. The distribution of the cages within the two experimental rooms was 

balanced for treatment. Measures of the females’ physiology, behaviour and reproduction 

were taken at different time points as described below (for an overview see Figure 2.1). 

Animals were weighed at the start of treatment (day 29), after five weeks into the 

treatment (day 65) and at the end of the experiment (day 87).  

 

 
Figure 2.1. Timeline of experimental procedures, and separations of pairs and groups. 

 

Due to aggression, we had to separate three pairs using a wire mesh which still allowed 

acoustic, visual, olfactory and limited tactile interaction. Two groups also had to 

temporarily be wire separated due to aggression (one animal on one side of the wire, the 

other three animals on the other side). Wire separated animals were included in our 

analyses and excluding these animals from our statistical analyses did not qualitatively 

change the results. Eight groups – including the two groups that had already been wire 

separated - and eleven pairs had to be completely removed from the experiment between 
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day 30 and day 87 because at least one bird in the cage had wounds that were unlikely to 

heal within a few days, constituting a humane endpoint. In addition, in two pairs the male 

died, hence the females were excluded from all analysis of parameters following the death. 

As a consequence, sample size varies for different measures (table 1). However, the 

reduction of sample size over the course of the experiment did not differ between social 

treatments (Kaplan-Meier survival analysis using Breslow test statistics: χ2
1 = 1.06, p = 0.30; 

Figure 2.1). 
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Table 2.1. Measures of pair-housed and group-housed females and their offspring, with sample sizes. 

Measure 

Pair-housed females Group-housed females 

Mean ± 1 

SEM 
n Excluded 

Missing 

sample 

Mean ± 1 

SEM 
n Excluded 

Missing 

sample 

Female weight, day 65 
235.09 g 

17 ♀♀ 7 ♀♀ 
 

230.10 g 33 ♀♀ 3 ♀♀ 

 ± 5.35 ± 2.60 11 groups 1 group 

Female weight, day 87 
243.85 g 

13 ♀♀ 11 ♀♀ 
 

241.67 g 12 ♀♀ 24 ♀♀ 

 ± 6.64 ± 6.41 4 groups 8 groups 

Age at first egg 
45.48 days 

23 ♀♀ 1 ♀  
45.47 days 36 ♀♀ 

  ± 0.74 ± 0.57 12 groups 

Total nr of eggs 

collected 

0.66 

eggs/♀/day 
361 eggs 

1 ♀ 
 

0.60 

eggs/♀/day 
533 eggs 

  
± 0.02 23 ♀♀ ± 0.02 12 groups 

Egg mass 
10.17 g 324 eggs 

1 ♀ 
 

10.33 g 531 eggs 

  ± 0.06 23 ♀♀ ± 0.04 12 groups 

Stress 

protocol 

Baseline 
2.77 ng/ml 

14 ♀♀ 

6 ♀♀ 4 ♀♀ 

2.12 ng/ml 24 ♀♀ 
3 ♀♀ 9 ♀♀ 

± 0.22 ± 0.14 11 groups 

Post-

challenge 

13.05 ng/ml 
14 ♀♀ 

11.05 ng/ml 22 ♀♀ 
1 group 11 ♀♀ 

± 1.66 ± 1.65 11 groups 

Yolk mass 
2.78 g 51 eggs 

6 ♀♀ 
 

2.78 g 73 eggs  6 ♀♀ 

 ± 0.04 18 ♀♀ ± 0.03 10 groups 2 groups 

Yolk T 

Concentration 
5.02 pg/mg 

17 eggs 

6 ♀♀ 1 ♀ 

5.81 pg/mg 
24 eggs 6 ♀♀ 

 

± 0.89 ± 0.86 

Total 
14.07 ng 

17 ♀♀ 
15.86 ng 

10 groups 2 groups 
± 2.55 ± 2.29 

GnRH 

challenge 

Baseline 
0.67 ng/ml 

16 ♀♀ 

7 ♀♀ 1 ♀ 

0.51 ng/ml 22 ♀♀ 
12 ♀♀ 

2 ♀♀ 
± 0.05 ± 0.03 8 groups 

Post-

challenge 

0.72 ng/ml 
16 ♀♀ 

0.56 ng/ml 22 ♀♀ 
4 groups 

± 0.05 ± 0.03 8 groups 

Eggs for 

F1 

Eggs 

collected 

6.89 eggs/♀ 

124 eggs 

5 ♀♀ 1 ♀1 

6.46 

eggs/♀ 

155 eggs 6 ♀♀ 

6 ♀♀1 

± 0.31 ± 0.44 

Eggs fertilized 
6.06 eggs/♀ 

5.08 

eggs/♀ 

± 0.30 

18 ♀♀ 

± 0.55 

8 groups 2 groups 
Eggs hatched 

3.72 eggs/♀ 
2.88 

eggs/♀ 

± 0.46 ± 0.52 

F1 

offspring 

Mass at 

hatching 

7.18 g 
66 chicks 

5 ♀♀ 2 ♀♀1, 2 

7.10 g 
69 chicks 6 ♀♀ 

10 ♀♀1, 2 
± 0.08 ± 0.06 

Tarsus at 

hatching 

12.93 mm 
17 ♀♀ 

12.77 mm 20 ♀♀ 
2 groups 

± 0.06 ± 0.07 8 groups 

1male infertile; 2females without offspring 
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2.2.2. Animal husbandry 
The Japanese quail originated from eggs generously provided by the INRA in Nouzilly, 

France (Experimental unit 1295 (UE PEAT) and UMR 85, Physiologie de la Reproduction et 

des Comportements, INRA-CNRS-IFCE-Université de Tours, Val de Loire Center, Nouzilly, 

France). Eggs were laid by females from a non-selected control line, bred next to quail lines 

selected for low or high social reinstatement (Mills and Faure, 1991). At the INRA, each 

cage housed two females and one male, thus housing conditions were intermediate 

compared to the conditions used in this study. All eggs were incubated at the same time, 

hatched, and birds reared at Bielefeld University, Germany.  

The experiments were performed in two adjacent indoor rooms with artificial 

lighting and no natural daylight. The light-dark cycle was 14:10 h (lights on at 5:00 am, lights 

off at 7:00 pm), and the rooms had ambient temperature with additional heating to 

maintain at least 20˚C. Cages for pairs measured 75 x 80 x 40 cm, group cages 150 x 80 x 40 

cm. None of the cages faced each other to prevent visual contact between birds from 

different cages, but acoustic and olfactory communication was possible. The birds were 

kept on wood shavings, and all cages contained a sand bath and one shelter hut per female. 

Feed (GoldDott Hennenmehl, Derby Spezialfutter GmbH, Münster, Germany) and water 

was provided ad lib. The standard diet was supplemented on a weekly basis with 

mealworms and shell grit. 

 

2.2.3. Ethics statement 
All experimental procedures and humane endpoints for minimizing suffering were 

approved by the North Rhine-Westphalia State Agency for Nature, Environment and 

Consumer Protection (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-

Westfalen), Recklinghausen, Germany (licence number 84-02.04.2013-A127). Animal 

facilities were approved for keeping and breeding Japanese quail for research purposes by 

the local government authority responsible for health, veterinary and food monitoring 

(Gesundheits-, Veterinär- und Lebensmittelüberwachungsamt Bielefeld, Germany). 

 

2.2.4. Egg collection 
All cages were checked for eggs daily from day 39 after hatching, 10 days after birds had 

been placed in the experimental groups and before any egg had been laid. Eggs were 

collected until day 68 and all eggs were weighed to the nearest 0.01 g. Eggs collected until 

day 56 were used to analyse the onset of egg laying in pair-housed vs. group-housed 

females. Since we could not identify which female laid an egg in a group, we recorded the 

day at which we found the first, second and third egg in a group as the age at which the 

first, second and third female had started laying eggs. Eggs collected between day 56 and 

day 63 were artificially incubated to produce the F1 generation (see table 2.1 for sample 

sizes). Eggs from days 66-68 were frozen at -20 directly after collection and later used to 

determine yolk T concentrations (see table 2.1 for sample sizes). Most eggs for yolk T 

measurements were collected in the morning before the stress protocol (n = 31), or the 
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morning of the day after the stress protocol (n = 7). This means that at the time of the 

stress protocol, most eggs for yolk T measurements had already been laid or ovulated, and 

yolk T levels were unlikely to be affected by the stress protocol (in quail, ovulation usually 

takes place in the afternoon, approximately 15-30 minutes after oviposition of the previous 

egg (Bacon and Koontz, 1971; Houdelier et al., 2002; Woodard and Mather, 1964). Only one 

egg was collected in the morning two days after the stress protocol, but here too the yolk 

should have been almost completely formed at the time of the stress protocol. Since 

deposition of yolk T is repeatable within individual females (Okuliarová et al., 2009), we 

expected the yolk T measurements to be representative for all eggs that an individual 

female laid during the course of this study. All females continued laying until the end of the 

experiment (day 87). In total, we collected 361 eggs from pair females and 533 eggs from 

group females (see table 2.1). 

 

2.2.5. Egg incubation and hatching 
Eggs were incubated in complete darkness in a HEKA-Euro-Lux II incubator (HEKA-

Brutgeräte, Rietberg, Germany). Until incubation day 14, the temperature was set at 

37.8°C, humidity to 55% and eggs were turned for 30 minutes every 2 hours. Candling of 

the eggs was done after 9 days of incubation, and infertile eggs were removed. On day 15 

of incubation, eggs were moved to hatching trays, the incubation temperature was set to 

37.5°C, the humidity to 75%, and eggs were no longer turned. On average, chicks hatched 

after 17 days of incubation (range: 16-18 days). Chicks were removed from the incubator 

once their feathers had dried (ca. 2 hours after hatching). Upon removal from the 

incubator, all chicks were weighed to the nearest 0.1 g and tarsus was measured to the 

nearest mm using a digital calliper. Parentage for offspring of group-housed mothers was 

ascertained by genotyping all parents and chicks. A small blood sample (max. 50 µl) was 

taken from the chicks on the day of hatching by pricking the jugular vein with a 27 gauge 

needle and collecting the blood in heparinized capillaries (BRAND GMBH + CO KG, 

Wertheim, Germany). From the parental birds, a small sample of blood from the stress 

protocol or GnRH challenge were used. Blood was diluted 1:2 with phosphate buffer saline 

(10 mM PBS+6 mM EDTA, pH 7.4) and stored at -20°Celsius. 

For genotyping, genomic DNA was obtained by a phenol/chloroform or Chelex 

extraction (Walsh 1991). We genotyped all individuals at 22 microsatellite loci using 

fluorescently labelled primers selected from a previous study (Kayang et al., 2002) in three 

separate multiplexed PCR reactions: mix 1 (GUJ0001, GUJ0011, GUJ0028, GUJ0044, 

GUJ0068, GUJ0085, GUJ0097, GUJ0100; annealing temperature 55° Celsius), mix 2 

(GUJ0021, GUJ0029, GUJ0062, GUJ0065, GUJ0069, GUJ0074, GUJ0083, GUJ0094; annealing 

temperature 60° Celsius), mix 3 (GUJ006, GUJ0054, GUJ0057, GUJ0071, GUJ0077, GUJ0092; 

annealing temperature 55 °Celsius). DNA was amplified using the Type-It Kit (Qiagen) in 10 

µl reactions (1 µl DNA, 1 µl primer-mix, 3.5 µl Type-It mastermix, 4.5 µl water), following 

the manufacturer’s PCR protocol (one cycle of 5 min at 94°C; 28 cycles of 30 s at 94°C, 90 s 

at the annealing temperature and 30 s at 72°C; and one final cycle of 15 min at 72°C). PCR 

products were separated by electrophoresis on a capillary sequencer (ABI 3730xl), fragment 
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sizes were scored automatically using GeneMarker v1.95 and checked manually for errors. 

Paternity was manually assigned by identifying which genotype of the three potential 

mothers in a cage matched the offspring genotype. 

 

2.2.6. Stress protocol 
Female CORT baseline and response values after a stressor were assessed in a standardised 

restraint stress protocol on days 66-67. All birds were tested between 09:15 am - 12:30 pm 

and CORT levels did not change significantly during that period (F(1, 30.89) time of day = 2.83, p = 

0.10). Birds were caught, and a blood sample was taken within 3 minutes to determine 

baseline plasma CORT concentrations. Blood sampling was done by puncturing the ulnar 

vein with a sterile needle and collecting 200-300 µl blood in heparinised capillaries (BRAND 

GMBH + CO KG, Wertheim, Germany). Following the baseline sample, the birds were 

restrained for 10 minutes by placing them in bird holding bags (Ecotone, 25x30 cm), after 

which a second blood sample was taken to determine the CORT response to restraint. 

 

2.2.7. GnRH challenge 
On day 72 we measured the females’ baseline plasma androgen concentrations, and their 

response values following a GnRH injection while females were still laying eggs. To exclude 

effects of the GnRH injection itself on yolk hormone levels or reproduction, the GnRH 

challenge was performed after collecting the eggs for the next generation and for yolk T 

measurements (Peluc et al., 2012). All birds were tested between 10:00 am - 15:30 pm. As 

in the stress protocol, animals were caught, and a blood sample was taken from the ulnar 

vein within 3 minutes to determine baseline plasma androgen concentrations. After the 

baseline sample was taken, the females were injected in the pectoral muscle with 5 µg 

chicken GnRH-I (H-3106, APC number 54-8-23, CAS No: 47922-48-5, Bachem, Bubendorf, 

Switzerland, formerly also sold as Sigma-L0637) dissolved in 50 µl PBS, based on a protocol 

previously used in quail (Peluc et al., 2012), and returned to their home cages. Thirty 

minutes post injection, the birds were caught again, and a second blood sample was taken 

to determine the androgen response to GnRH. 

 

2.2.8. Social proximity and baldness scores 
To assess social proximity, all cages were checked once a day in the morning from day 45 to 

day 63 (except for weekends, resulting in 16 daily checks) to note which individuals were 

sitting together (within the space of one quail body length from each other). We then 

calculated how often a female sat with the male and, in groups, how often a female sat 

with at least one other female.  

As a measure of male copulatory behaviour with the female, we classified females 

as ‘bald’ or ‘not bald’ depending on whether feathers were missing from the back of their 

head or their back at the end of the experiment (on day 87 or on the day of separation for 

separated animals). Male Japanese quail grab the female’s head or neck feathers during 

copulation and then mount her back (Kovach, 1974; Mills et al., 1997). Hence, baldness 
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occurs following frequent copulations. We did not score baldness on a location other than 

the back of the head or the back involving skin damage since this is most likely caused by 

aggressive pecking. 

 

2.2.9. Plasma corticosterone and androgens 
Blood samples from both the stress protocol and the GnRH challenge were kept on ice for a 

maximum of two hours after sampling and then centrifuged for 10 minutes at 2000 x g. 

Following centrifugation, plasma was collected and frozen at -20°C. 

Plasma CORT concentrations were determined using a commercial corticosterone 

radioimmunoassay kit (MP Biomedicals, Orangeburg, USA, cat. no. 07-102102). Cross-

reactivity of the kit antibody, as reported by the manufacturer, was 0.34% for 

desoxycorticosterone, 0.1% for testosterone, and less than 0.1% for other steroids. Samples 

were balanced for treatment across assays. Samples were measured together with quail 

plasma samples from other experiments and all were distributed over 10 assays with an 

average intra-assay coefficient of variation (CV) of 4.78%, and an inter-assay CV of 7.13% 

(based on a chicken plasma pool and 2 kit controls measured in each assay). 

Plasma androgen concentrations were determined using a commercial T enzyme 

immunoassay kit (Demeditec Diagnostics GmbH, Kiel, Germany, cat. no. DES6622). Cross-

reactivity of the kit antibody, as reported by the manufacturer, was 23.3% for 5α-

dihydrotestosterone, 1.6% for androstenedione, and less than 0.1% for other steroids. 

Control plasma pool samples were incorporated in each run. Samples from the third assay 

were significantly higher than samples measured in the first two assays (effect of assay: F(2, 

18.01) = 5.93, p = 0.01). Since eight samples (four each from assay one and two) were re-

measured in assay three, we could correct the values from the third assay using a 

regression of the measures for samples re-measured in assay three on their corresponding 

values from assays one and two. Excluding samples from assay three did not change the 

results qualitatively. After correction, the average intra-assay CV was 5.84% and the inter-

assay CV was 9.77%. 

 

2.2.10. Yolk testosterone 
Yolk preparation and extraction was based on previously established methods (Goerlich et 

al., 2012). In preparation for extraction, the frozen yolk was separated from the albumen 

and egg shell and weighed to the nearest 0.01 g. Yolks were homogenized with 4 ml 

distilled water and then stored at -20°C. 

For T extraction, 100 mg of the yolk-water mix was transferred to a 2 ml Eppendorf 

tube and further diluted with 100 µl distilled water. All samples were then spiked with 4000 

cpm of tritium-labelled T (Perkin Elmer NET553250UC), vortexed and incubated for 30 

minutes in a 37˚C water bath. After incubation, 500 µl 100% ethanol was added, and 

samples were vortexed for 15 minutes. After vortexing, samples were centrifuged for 10 

minutes at 4˚C and 15800 x g. The supernatant was then decanted into a fresh 2 ml 

Eppendorf tube and frozen overnight on dry ice. The next day, samples were centrifuged 
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again for 10 minutes at -9˚C and 15800 x g, and the supernatant was decanted into fresh 

tubes. Samples were then dried in a vacuum concentrator (approximately 2 hours) and the 

pellet was re-dissolved in 500 µl steroid-free human serum (IBL international, RE52999). For 

determination of extraction efficiency, 30 µl of each sample was counted in a beta counter. 

Recoveries were on average 82.5 ± 0.8% (mean ± 1 SEM). 

A commercial radioimmunoassay kit was used to determine yolk T concentrations 

(DIAsource ImmunoAssays S.A., Louvain-la-Neuve, Belgium, cat. no. KIP1709). Cross-

reactivity of the kit antibody, as reported by the manufacturer, was 0.31% for 

dihydrotestosterone, 0.28% for androstenedione and less than 0.1% for other steroids. All 

samples were measured in a single assay, the intra-assay CV was 3.86%. Total yolk T was 

calculated by multiplying the yolk T concentrations with total yolk mass. 

 

2.2.11. Statistical analyses  
Statistical analyses were performed using R 3.2.3 (R Development Core Team 2015). 

General linear mixed models were fitted for plasma hormones, yolk T, growth, onset of egg 

laying, egg mass, yolk mass and F1 mass and tarsus at hatching (calculated using lmer from 

the lme4 package in R, using the package lmertest to extract F values and p values). 

Pearson’s correlation coefficient was used to analyse the correlation between baseline and 

post-challenge androgens and CORT. Generalised linear mixed models (calculated using 

glmer from R’s lme4 package) with a binomial distribution and logit link function were 

calculated for analysis of egg laying, fertilization and hatching success. 

For the analysis of hormonal responses to the GnRH challenge and the stress 

protocol, we used cage and individual identity (ID) nested within cage as random effects 

and social treatment (treatment) and sample number (sample) as fixed predictors, as well 

as the treatment by sample interaction (treatment * sample). 

To analyse potential effects of copulation with the male, or social proximity on 

female baseline plasma hormone concentrations, we fitted models on baseline androgen 

and CORT concentrations, with female baldness (baldness; since there were only three non-

bald pair-housed females, they were excluded from the analysis and we compared three 

categories: bald pair-housed females, and bald and non-bald group-housed females) or 

social proximity (sitting with male or sitting with female) as fixed predictors. Least-

significant-difference post-hoc tests were used to test which categories differed from each 

other. All models included cage as a random effect. 

Yolk T was analysed using cage as a random effect and treatment as a fixed effect, 

and to test the relationship between plasma androgens and yolk T, the models included 

either average baseline androgen concentration (baseline androgens) or average plasma 

androgen increase in response to GnRH (Δ androgens in response to GnRH) from each cage 

as an additional predictor. The average female plasma androgen concentration per cage 

was used since we were unable to assign eggs to individual females in groups. 

Analyses of female mass included cage and individual ID nested within cage as 

random effects, treatment and female age (age) as fixed predictors, and female mass at the 

start of the social treatment (day 29) as a covariate. 
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Models analysing the onset of egg laying (age at first egg) included a random effect of cage, 

and social treatment as a fixed predictor. 

Models for egg laying rate and egg mass included a random effect of cage and a 

fixed effect of social treatment. In addition, the models analysing egg laying rates included 

a linear, quadratic and cubic effect of collection day (collection day + collection day2 + 

collection day3) to model the non-linear relationship between age and egg laying rates. 

Likewise, the models for the analysis of egg mass included a linear, quadratic and cubic 

effect of the days since the onset of laying for each cage (day+day2+day3). Moreover, egg 

laying rate models included a treatment by age interaction effect (treatment *(collection 

day + collection day2 + collection day3)), and egg mass models an effect of the interaction of 

treatment and days since the onset of egg laying (treatment * (day+day 2+day3)). 

Yolk mass was only measured in the subset of eggs collected for yolk hormone 

measurements, and models for the analysis of yolk mass included a random effect of cage 

and a fixed effect of social treatment. 

Fertilization and hatching success were analysed using cage as a random effect and 

treatment as a fixed effect. 

F1 mass and tarsus at hatching included maternal cage and maternal ID nested within 

maternal cage as random effects (we were able to include maternal ID since we had 

assigned chick parentage) and treatment as a fixed effect. 

We started out with the full models including all interactions and then excluded 

stepwise all non-significant predictors/interactions (p > 0.05), except for the main terms of 

interest, i.e. social treatment and sample number (for hormonal responses). Distributions 

of model residuals were tested using Kolmogorov-Smirnoff tests and visually assessed using 

histograms and Q-Q plots. Plasma CORT concentrations were log-transformed, and yolk T 

concentrations were square-root transformed to achieve normality. No transformation was 

used when analysing the correlation between baseline plasma androgens and CORT. 

 

2.3. Results 

2.3.1. Androgens 
Overall, pair-housed females had significantly higher plasma androgen concentrations than 

group-housed females (F(1, 11.40) Treatment = 7.88, p = 0.02; table 2.1, Figure 2.2A). GnRH 

injections resulted in a small, but significant, increase in plasma androgen concentrations 

(F(1, 37) Sample = 6.46, p = 0.02; table 2.1, Figure 2.2A), but the response to GnRH did not differ 

between pair-housed and group-housed females (F(1, 36) Treatment * sample < 0.01, p = 0.98; Figure 

2.2A). 
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Figure 2.2. Plasma hormones. (A) plasma androgen concentration in ng/ml before and 30 minutes after an 

injection with 5 µg GnRH. (B) plasma CORT concentration in ng/ml before and after being restrained for 10 

minutes (backtransformed from Log10). (C) baseline plasma androgen concentration and (D) baseline plasma 

CORT concentrations in ng/ml of bald and non-bald pair-housed females, and bald and non-bald group-housed 

females. Data from bald pair-housed females are indicated by solid circles, but were not used in the statistical 

analyses. Data are shown as means ± 1 SEM. Numbers between brackets indicate sample sizes. ** = p < 0.01; * = 

p < 0.05; # = p < 0.1; ns = not significant. 

 

2.3.2. Corticosterone 
Overall, pair-housed females had slightly higher plasma CORT concentrations than group-

housed females, but the difference did not reach statistical significance (F(1, 28.13) Treatment = 

3.61, p = 0.07; table 2.1, Figure 2.2B). 10 minute restraint significantly increased plasma 

CORT concentrations (F(1, 53.93) Sample = 137.06, p < 0.01; table 2.1, Figure 2.2B), but the 

increase did not differ between social treatments (F(1, 52.90) Treatment * sample = 0.02, p = 0.88; 

Figure 2.2B). Individual baseline plasma CORT concentrations were not significantly 

correlated with baseline plasma androgen concentrations (r(28) = 0.23, p = 0.22; 

Supplementary Figure 2.1A) and post-challenge plasma CORT concentrations did not 

correlate with post-challenge androgen levels (r(27) = 0.21, p = 0.26; Supplementary Figure 

2.1B). 
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2.3.3. Social proximity, baldness and baseline plasma 

hormones 
In both pairs and groups, the proportion of time a female spent sitting with the male did 

not predict baseline plasma androgen or CORT concentrations, nor did the proportion of 

time a female spent sitting with at least one other female in her group (All F-values < 1.32, 

all corresponding p-values > 0.26; Supplementary Figure 2.2A-D). 

Bald pair-housed females, bald group-housed females and non-bald group-housed 

females differed significantly in their baseline plasma androgen and CORT concentrations 

(baseline androgens: F(2, 6.89) baldness = 5.24, p = 0.04; Figure 2.2C; baseline CORT: F(2, 28.55) baldness
 

= 3.48, p = 0.045; Figure 2.2D). Non-bald group-housed females had significantly lower 

baseline plasma androgen concentrations than bald pair-housed females and had 

marginally lower baseline androgen concentrations than bald group-housed females, 

although the latter was not statistically significant (t(7.17) = 3.21, p = 0.02 and t(5.64) = 2.12, p = 

0.08 respectively). In addition, non-bald group-housed females had significantly lower 

baseline plasma CORT concentrations than both bald pair-housed females and bald group-

housed females (t(26.26) = 2.52, p = 0.02 and t(29.13) = 2.07, p = 0.048 respectively). Baseline 

plasma androgen and CORT concentrations did not differ between bald pair-housed and 

bald group-housed females (baseline androgens: t(9.07) = 1.00, p = 0.35; baseline CORT: t(21.04) 

= 0.85, p = 0.40). Since there were only three non-bald pair-housed females that were still 

together with their male at the time of the hormone measurements, we did not include 

them in the statistical analysis. However, their androgen (n = 3) and CORT (n = 2) values 

were higher than most non-bald group-housed females and as high as most of the bald 

females in both social treatments (Figure 2.2C and 2.2D). 

 

2.3.4. Yolk testosterone 
We averaged yolk T values for each cage because eggs could not be assigned to individuals 

for group-housed females. Despite the treatment differences in plasma androgen 

concentrations, yolk T concentrations did not differ between the social treatments (F(1, 21.49) 

Treatment = 0.33, p = 0.57; table 2.1), nor did total yolk T levels (F(1, 22.99) Treatment = 0.22, p = 0.64; 

table 2.1). Neither average baseline plasma androgen concentrations nor the average 

response to GnRH predicted yolk T concentrations (F(1, 18.00) Baseline T = 0.28, p = 0.60; F(1, 18.00) ΔT 

in response to GnRH = 1.23, p = 0.28; Supplementary Figure 2.3A and B). We could directly 

correlate female plasma androgen and yolk T concentrations only in pair-housed females, 

but analysis also showed no relationship between the two (F(1, 13) Baseline androgens = 0.01, p = 

0.92; F(1, 13) Δ androgens in response to GnRH = 0.42, p = 0.53; Supplementary Figure 2.3A and B). 

 

  



 
Chapter 2 

41 
 

2.3.5. Growth and reproductive performance 
Female growth was not affected by the social environment (F(1, 31.16) Age * treatment = 1.05, p = 

0.31; table 2.1, Supplementary Figure 2.4). The first eggs were laid on day 41, and by day 58 

all females were laying, but the onset of egg laying did not differ between the social 

treatments (F(1, 28.27) Treatment < 0.01, p > 0.99; table 2.1). Egg laying rates were higher in pair-

housed females compared to group-housed females, but not significantly so (treatment: 

χ2
(1) = 3.62, p = 0.06, Figure 2.3A). For all females, the number of eggs laid increased over 

time ((collection day + collection day2 + collection day3): χ2
(3) = 529.30, p < 0.01, Figure 

2.3A), and there was no significant difference in this increase between the social 

treatments (treatment*(collection day + collection day2 + collection day3): χ2
(3) = 4.57, p = 

0.21; Figure 2.3A). 

Egg mass was not affected by social treatment (treatment: χ2
(1) = 0.17, p = 0.68; 

table 2.1, Figure 2.3B), but it increased significantly over time ((day+day2+day3): χ2
(3) = 

328.50, p < 0.01; Figure 2.3B). The increase in egg mass did not differ between treatments 

(treatment*(day+day2+day3): χ2
(3) = 3.04, p = 0.39; Figure 2.3B). Treatment did not affect 

yolk mass in the subset of eggs collected for yolk hormone analysis (F(1, 21.82) Treatment = 0.13, p 

= 0.72; table 2.1). 

Pair-housed females on average laid almost one more fertilized egg per female than 

group housed females, but the difference in fertility did not reach statistical significance (z = 

-1.72, p = 0.09; table 2.1, Figure 2.3C). Hatching success (the percentage of all eggs 

collected for the F1 generation that hatched, i.e. including infertile eggs) did not differ 

between treatments (z = -1.16, p = 0.25; table 2.1, Figure 2.3C). Hatchlings did not differ in 

body mass (F(1, 11.45) Treatment = 0.02, p = 0.91; table 2.1) or tarsus length (F(1, 16.02) Treatment = 0.36, 

p = 0.56; table 2.1). 
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Figure 2.3. Measures of reproductive performance. (A) Egg production for both social treatments. Circles show 

the mean number of eggs/female found on a given day. Lines show the model predictions. n = 361 eggs from 23 

pairs and 533 eggs from 12 groups. (B) Egg mass for both social treatments. Circles show the mean egg mass, 

lines the model predictions. n = 324 eggs from 23 pairs and 531 eggs from 12 groups. (C) Average number of 

eggs collected for F1 and the number and percentage of eggs that were fertilized and hatched, per social 

treatment. n = 124 eggs from 18 pairs, 155 eggs from 8 groups. Error bars indicate ± 1 SEM. * = p < 0.05; # = p < 

0.1; ns = not significant. 

 

2.4. Discussion 
In many vertebrates, the social environment affects physiology and behaviour with 

consequences for female reproductive performance and offspring quality, but the 

underlying mechanisms are not well understood. We therefore investigated how the social 

environment - pair or group housing - of Japanese quail females affects their reproductive 

and stress physiology, yolk hormone deposition, and fecundity. Contrary to our 

expectations, female quail housed in pairs had higher plasma androgen concentrations and 

slightly higher CORT concentrations than females housed in groups, although the latter did 

not reach statistical significance. Treatment did not affect the HPG-axis or HPA-axis 

response to standardized challenges, nor were there differences in yolk T levels or 

fecundity. Female body mass, hatchling numbers, weight, and size were not affected by the 

social environment. Because baseline CORT levels were similar to plasma CORT 

concentrations found before in quail (Correa et al., 2011; Hayward et al., 2006; Marasco et 

al., 2012; Rutkowska et al., 2011) and females responded to the stress protocol with a 
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significant increase in CORT, it is unlikely that our birds had experienced chronic stress, 

potentially masking any treatment effects. 

Previous studies found increased plasma androgen and CORT concentrations in 

females exposed to increased social stimulation, higher social density or social instability 

(Eisenegger et al., 2011; Guibert et al., 2010; Langmore et al., 2002; Mazuc et al., 2003; 

Nephew and Romero, 2003). We suggest that we found the opposite because of differences 

in the adult sex ratio between the social treatments, leading to differences in male-female 

interactions. In the present study, the males’ attention in group cages was divided among 

three different females, whereas in pairs there was only one female to interact with. As a 

consequence, the effect of the male’s presence on circulating female androgen and CORT 

concentrations was likely to be stronger in pairs than in groups. Indeed, previous studies 

have shown that the sex composition of groups (Campo and Davila, 2002), male courtship 

song (Marshall et al., 2005) and copulation with a male (Correa et al., 2011) can affect a 

female’s endocrine status, including androgen and CORT levels. Higher male:female ratios 

induced stress in groups of domestic chicken (Campo and Davila, 2002), and male courtship 

song increased female circulating androgen levels in canaries (Marshall et al., 2005). In 

Japanese quail, copulation with a male increased female CORT levels, while the number of 

mounts by the male and male body condition positively correlated with the female’s 

androgen response to copulation (Correa et al., 2011). Japanese quail males often engage 

in forced copulations, which has been suggested as a source of stress for females (Adkins-

Regan, 2015, 1995; Galef Jr., 2008; Rutkowska et al., 2011). Interestingly, in the group 

treatment, bald females, who presumably experienced more copulation attempts by the 

male, had higher baseline androgen and CORT levels than non-bald females and levels that 

were more similar to those of pair-housed females. In addition, there were hardly any non-

bald females in pairs. This supports the idea that the intensity of male-female interactions 

is an important factor affecting female circulating hormone concentrations. However, it 

remains to be investigated whether the results found in the present study were indeed due 

to an effect of copulation with the male or due to other aspects of the treatment. In 

addition, the social environment most likely affects male endocrine status as well, which 

may have important consequences for male-female interactions (Ball and Balthazart, 2008; 

Cheng and Lehrman, 1975; Erickson, 1970) and should be taken into account in future 

studies. 

Effects of the adult sex ratio may not be solely due to an influence of males, but 

also due to the number of females present. Female Japanese quail prefer to associate with 

other females when a male is present, indicating that females may try to avoid unwanted 

sexual attention by the male by grouping together (Persaud and Galef Jr., 2003). In the 

present study, the effects of the male may therefore be alleviated in groups due to social 

buffering, although we did not find a correlation between female-female social proximity 

and baseline hormone levels. 

Although we did not find an effect of social proximity on hormone levels, we cannot 

rule out potential effects of cage size. Since pairs were housed in cages that were 50% 

smaller than cages for groups to ensure a comparable social density between treatments, 
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the differences in cage size may have affected individual movement patterns and use of 

space (Leone and Estevez, 2008) and thereby social interactions and social avoidance 

behaviour in particular. 

Several studies in birds have shown that breeding density, social instability, social 

motivation and female-female competition is positively correlated with yolk androgen 

concentrations, yolk T in particular (Bentz et al., 2013; Eising et al., 2008; Guibert et al., 

2010; Hargitai et al., 2009; Mazuc et al., 2003; Mills and Faure, 1991; Pilz and Smith, 2004; 

Reed and Vleck, 2001; Schwabl, 1997; Whittingham and Schwabl, 2002). In contrast, we did 

not find effects of group size on average yolk T in the present study. Social instability did 

lead to increased yolk androgen levels in a previous study on Japanese quail (Guibert et al., 

2010). We expected a similar effect in group-housed females because we assumed that 

group living would result in a less stable social environment than pair housing since females 

would encounter and interact with multiple individuals. However, groups may have been 

less stable than pairs only at the start of the social treatments when group-housed 

individuals had to familiarize themselves with more conspecifics than pair-housed birds. 

Since the social environment remained stable over time in both treatments and eggs for 

yolk T measurements were collected 37 days after the start of the social treatments, the 

females likely had ample time to familiarize with their group members, and any initial 

differences in yolk T levels might have disappeared over the course of the experiment. 

Finally, variation between females within groups may have masked treatment differences 

in yolk T concentrations, which should be analysed in future studies as we unfortunately 

could not assign eggs to individual females in groups. 

The magnitude of the plasma androgen response to GnRH has been proposed to be 

a better predictor of yolk androgen deposition than baseline plasma androgen 

concentrations (Jawor et al., 2007; Müller et al., 2011). However, this has only been 

investigated by correlating a female’s androgen response to GnRH with yolk androgen 

levels measured in subsequently laid eggs (Jawor et al., 2007; Müller et al., 2011; Peluc et 

al., 2012). In the present study, we assessed the female’s androgen response to GnRH 

during egg laying, but after we had collected eggs for yolk hormone measurement. Neither 

baseline plasma androgens nor the androgen response to GnRH predicted yolk T levels, 

suggesting that yolk T does not reflect the female’s inherent sensitivity to GnRH, but rather 

that stimulation by GnRH may affect yolk T deposition in eggs laid later. Another possibility 

is that the link between the GnRH response and yolk T may be dosage-dependent and 

context-dependent (Jawor et al., 2007). We found a significant increase in plasma androgen 

levels in response to GnRH injections, but the increase was smaller than that found in 

previous studies with Japanese quail using similar dosages of chicken GnRH-I (Peluc et al., 

2012). This might be due to genetic or environmental differences between populations and 

studies, and a low response to GnRH may not be reflected in yolk T levels, as opposed to a 

high GnRH responsiveness. 

Female reproductive performance was largely unaffected by the social treatments, 

indicating that the effects on female’s endocrine physiology had little fitness consequences. 

A possible explanation is that the differences in social treatments had little effect since 
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domesticated Japanese quail have been heavily selected for egg production (Adkins-Regan, 

2015; Cheng et al., 2010; Mills et al., 1997; Nichols, 1991; Schmid and Wechsler, 1997). 

Moreover, since only a subset of eggs was incubated to calculate fertility and number of 

hatchlings, these differences might have been larger had all eggs been incubated. Although 

the difference did not reach statistical significance, it is noteworthy that pair-housed 

females had somewhat higher egg laying rates and fertility compared to group-housed 

females. Egg production and fertility may be slightly higher in pairs because the higher 

male:female ratio may have stimulated female reproduction (Bentley et al., 2000; 

Brockway, 1965; Erickson, 1970), as demonstrated by the fact that most pair-housed 

females were bald and therefore experienced a higher rate of copulation. In addition, pair-

housed quail might have had higher levels of within-pair testosterone covariation which has 

been found to positively predict reproductive output (Hirschenhauser et al., 2010, 1999; 

but see Hirschenhauser, 2012). 

 

2.5. Conclusion 
Contrary to expectations, we found that increased group size did not result in elevated 

plasma androgen or CORT concentrations. Instead, we found higher circulating androgen 

and CORT levels in pair females, possibly due to a stimulating effect of a higher frequency 

and intensity of copulations with the male on female physiology. These treatment effects 

were not reflected in yolk T levels, and in contrast to previous studies the plasma androgen 

response to GnRH was not correlated with yolk T, suggesting independent regulation of 

plasma hormones and yolk hormones. In addition, there were no strong effects on 

reproductive performance. The unexpected finding of higher circulating androgen and 

CORT levels in pair-housed females demonstrate that we need a better understanding of 

how group sex ratios and specific aspects of male-female and female-female relationships 

and their interactions affect female endocrine physiology. 
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Supplementary material 

 
Supplementary Figure 2.1. Correlations between baseline and post challenge concentrations of androgens and 

CORT in female plasma. (A) Individual baseline plasma CORT concentrations plotted against baseline plasma 

androgen concentrations, and (B) individual post-challenge plasma CORT concentrations plotted against post-

challenge androgen levels for both social treatments. Neither baseline nor post-challenge CORT and androgen 

concentrations were correlated with each other. 
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Supplementary Figure 2.2. Social proximity and baseline plasma hormones. The proportion of all scan 

observations that a female was found sitting within a distance of one body-length from the male, plotted 

against the (A) baseline androgen concentration and the (B) baseline CORT concentration in her plasma, for 

both social treatments. The proportion of time a female spent sitting with the male did not predict baseline 

plasma CORT or androgen concentrations (CORT: F(1, 33.60) Sitting with male = 0.02, p = 0.88; androgens: F(1, 33.45) Sitting 

with male = 0.11, p = 0.75), and this was true for both social treatments (CORT: F(1, 32.95) Treatment*sitting with male = 1.32, p 

= 0.26; androgens: F(1, 32.40) Treatment*sitting with male = 0.45, p = 0.51). (C) and (D) show the proportion of scan 

observations that a group-housed female was found sitting close to another female, plotted against (C) her 

baseline plasma androgen concentration and (D) her baseline plasma CORT concentration. The proportion of 

time a female spent sitting with at least one other female did not predict baseline plasma CORT or androgen 

concentrations (CORT: F(1, 20.98) Sitting with female = 0.26, p = 0.62; androgens: F(1, 17.07) Sitting with female = 0.25, p = 0.63). 
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Supplementary Figure 2.3. Correlations between plasma androgens and yolk T. (A) Average baseline plasma 

androgen concentrations per cage and (B) the average androgen response to GnRH per cage plotted against the 

average yolk T concentrations per cage. Note that in pair housed-females, the average concentrations are the 

same as the individual female’s concentrations as there is only one female per cage. For group-housed females, 

hormone values were averaged per cage because eggs could not be assigned to individuals within groups. 

Neither baseline plasma androgen concentrations, nor the response to GnRH predicted yolk T concentrations. 

 

 
Supplementary Figure 2.4. Female growth between day 65 and day 87. Depicted is the average body mass of 

both pair-housed and group-housed females, which did not differ between treatments, on day 19 (n = 24 pair-

housed females and 36 group-housed females from 12 groups), 65 (n = 17 pair-housed females and 33 group-

housed females from 11 groups) and day 87 (n = 13 pair-housed females and 12 group-housed females from 4 

groups). Error bars indicate ± 1 SEM. 

 

Supplementary Data 2.1. Raw data; available at 

https://doi.org/10.1371/journal.pone.0176146.s005 
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Abstract 
The social environment of reproducing females can cause physiological changes, with 

consequences for reproductive investment and offspring development. These prenatal 

maternal effects are often found to be sex-specific and may have evolved as adaptations, 

maximizing fitness of male and female offspring for their future environment. Female 

hormone levels during reproduction are considered a potential mechanism regulating sex 

allocation in vertebrates: high maternal androgens have repeatedly been linked to 

increased investment in sons, whereas high glucocorticoid levels are usually related to 

increased investment in daughters. However, results are not consistent across studies and 

therefore still inconclusive. In Japanese quail (Coturnix japonica), we previously found that 

pair-housed females had higher plasma androgen levels and tended to have higher plasma 

corticosterone levels than group-housed females. In the current study we investigate 

whether these differences in maternal social environment and physiology affect offspring 

sex allocation and physiology. Counter to our expectations, we find no effects of the 

maternal social environment on offspring sex ratio, sex-specific mortality, growth, 

circulating androgen or corticosterone levels. Also, maternal corticosterone or androgen 

levels do not correlate with offspring sex ratio or mortality. The social environment during 

reproduction therefore does not necessarily modify sex allocation and offspring physiology, 

even if it causes differences in maternal physiology. We propose that maternal effects of 

the social environment strongly depend upon the type of social stimuli and the timing of 

changes in the social environment and hormones with respect to the reproductive cycle 

and meiosis.  
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3.1. Introduction 
Variation in the social environment affects female behaviour and physiology with potential 

consequences for reproductive investment. Changes in reproductive investment, in turn, 

modify the prenatal environment of the developing offspring and can thereby profoundly 

shape offspring’s future phenotype (Groothuis et al., 2005; Guibert et al., 2010; Kaiser and 

Sachser, 2009, 2005). Pre- and postnatal maternal effects of the social environment can 

bias offspring sex ratios (Clutton-Brock and Iason, 1986; Michler et al., 2013; Minias et al., 

2014) and affect offspring development and behaviour, often in a sex-specific way (Kaiser 

and Sachser, 2009, 2005). Sex-specific maternal effects are thought to have evolved as 

adaptations, maximizing fitness of male and female offspring for their anticipated 

environment. Maternal steroid hormones provide important candidate signals, transmitting 

effects of the social environment across generations. Hormones, and other compounds, are 

transferred to the ovum and embryo and can profoundly affect offspring behavioural and 

physiological development (Groothuis et al., 2005; Groothuis and Schwabl, 2008; Kaiser and 

Sachser, 2005; Meylan et al., 2012; Radder, 2007; von Engelhardt and Groothuis, 2011). 

Oviparous species, such as reptiles and birds, are especially suitable to explore 

prenatal effects because the maternal and offspring environment can be independently 

manipulated. Previous studies on avian species have shown effects of the social 

environment on sex allocation (Michler et al., 2013; Minias et al., 2014). In the great 

cormorant (Phalacorcorax carbo sinensis), social density positively correlates with the 

proportion of male offspring within broods (Minias et al., 2014). In contrast, female great 

tits (Parus major) bred in areas with experimentally increased nesting densities or who 

experienced areas with high nesting density as juveniles produce female-biased broods in 

the following year, whereas females breeding in areas with decreased nesting densities or 

reared in areas of naturally lower nesting density produce male-biased broods (Michler et 

al., 2013). In many vertebrate species, changes in both primary and secondary offspring sex 

ratio have been linked to variation in maternal plasma steroids around conception 

(reviewed by Alonso-Alvarez, 2006; James, 2008; Krackow, 1995; Navara, 2013a; Pike and 

Petrie, 2003). In avian species, increased levels of maternal androgens usually lead to male-

biased offspring sex ratios (Goerlich-Jansson et al., 2013; Goerlich et al., 2009; Pike and 

Petrie, 2005; Rutkowska and Cichoń, 2006; Veiga et al., 2004, but see Correa et al., 2011), 

whereas increased levels of maternal glucocorticoids often result in female-biased offspring 

sex ratios (Bonier et al., 2007; Goerlich-Jansson et al., 2013; Love et al., 2005; Pike and 

Petrie, 2006, 2005, but see Gam et al., 2011; Henriksen et al., 2013). In Japanese quail 

(Coturnix japonica), naturally increased maternal faecal corticosterone (CORT) metabolite 

concentrations and experimentally elevated maternal plasma CORT concentrations are 

associated with a female-biased primary sex ratio (Pike and Petrie, 2006). In contrast to the 

findings in other species, maternal plasma testosterone levels of Japanese quail have been 

related to both an unbiased (Pike and Petrie, 2006) as well as a female-biased offspring sex 

ratio (Correa et al., 2011). This indicates that results from experimental and correlational 

studies are still inconclusive. 
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In addition to affecting offspring sex ratio, the maternal social environment can affect 

offspring growth and survival, which may be mediated by changes in maternal circulating 

levels of androgens and CORT. For example, in American red squirrels (Tamiasciurus 

hudsonicus), increased offspring growth rates at higher social densities have been 

attributed to the effects of increased maternal CORT (Dantzer et al., 2013). In Japanese 

quail, social instability resulted in an increase in agonistic interactions and reduced 

offspring body mass at the age of 1-3 weeks, compared to stable social groups (Guibert et 

al., 2010). Such effects on growth may be due to increased maternal CORT because 

artificially increasing maternal circulating CORT reduced offspring growth in Japanese quail 

(Hayward and Wingfield, 2004). The maternal social environment and maternal hormones 

can also have sex-specific effects on offspring growth and survival. In guinea pigs (Cavia 

aperea), housing females individually during pregnancy decreased growth of daughters 

compared to daughters of group-housed females, whereas growth of sons was non-

significantly increased (von Engelhardt et al., 2015). Artificially increasing maternal 

circulating testosterone in zebra finches (Taeniopygia guttata) reduced the hatching 

success of sons and increased the post-hatching survival of daughters (Rutkowska and 

Cichoń, 2006). Experimental elevation of maternal CORT in European starlings (Sturnus 

vulgaris) increased the mortality of male embryos, led to a female-biased sex ratio at 

hatching, and reduced early growth in males (Love et al., 2005). 

Maternal effects on offspring growth and survival may be attributed to (sex-

specific) modulation of offspring endocrine physiology (Groothuis et al., 2005; Groothuis 

and Schwabl, 2008; Kaiser and Sachser, 2005) since both growth and survival can relate to 

circulating hormone levels (e.g. Braasch et al., 2011; Brown et al., 2005; Goodship and 

Buchanan, 2006; Goutte et al., 2010; Groothuis and Ros, 2005; Hull et al., 2007; Müller et 

al., 2009; Ros, 1999; Wada and Breuner, 2008). Studies on transgenerational effects of the 

maternal social environment on offspring physiology are scarce, especially in birds. 

However, in Japanese quail, maternal social instability increases the offspring’s emotional 

reactivity scored in different behavioural tests, suggesting possible effects on the 

hypothalamic–pituitary–adrenal axis (HPA-axis) regulating the release of CORT (Guibert et 

al., 2010). This assumption is corroborated by studies on guinea pigs, which even find sex-

specific effects of the maternal social environment on the HPA-axis in the offspring (Kaiser 

and Sachser, 2001; von Engelhardt et al., 2015). 

In our previous study on Japanese quail, we have shown that the social 

environment during breeding affects female physiology (Langen et al., 2017). Females 

housed in pairs (one male, one female) had higher plasma androgen concentrations and 

tended to have higher plasma CORT concentrations than females housed in groups (one 

male, three females; see Langen et al. 2017 for more details). Here, we examined the 

offspring of those females to investigate whether the maternal social environment affects 

offspring sex ratio and has sex-specific effects on mortality, growth and endocrine 

physiology. We expected overall positive effects on daughters of pair-housed females, i.e., 

a bias towards female offspring because higher maternal androgen (Correa et al., 2011) and 

CORT levels (Pike and Petrie, 2006) have been linked to a female-biased offspring sex ratio 
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in Japanese quail. Furthermore, we expected increased growth and decreased mortality in 

daughters of pair-housed mothers because elevated maternal plasma androgen or CORT 

levels had positive effects on daughters and negative effects on sons in other avian species 

(Love et al., 2005, Rutkowska and Cichoń, 2006). In contrast to female-biased reproductive 

investment of pair-housed mothers, we expected a potentially male-biased offspring sex 

ratio, increased growth and decreased mortality in sons of group-housed mothers. We also 

investigated whether offspring from pair-housed and group-housed mothers differ in their 

circulating androgen levels and the sensitivity of the HPA-axis. 

 

3.2. Materials and methods 

3.2.1. Ethics statement 
All experimental procedures and humane endpoints for minimizing suffering were 

approved by the North Rhine-Westphalia State Agency for Nature, Environment and 

Consumer Protection (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-

Westfalen), Recklinghausen, Germany (licence number 84-02.04.2013-A127). Animal 

facilities were approved for keeping and breeding Japanese quail for research purposes by 

the local government authority responsible for health, veterinary and food monitoring 

(Gesundheits-, Veterinär- und Lebensmittelüberwachungsamt Bielefeld, Germany). 

 

3.2.2. Parental generation 
The parental generation originated from eggs generously provided by the INRA in Nouzilly, 

France (Experimental unit 1295 (UE PEAT) and UMR 85, Physiologie de la Reproduction et 

des Comportements, INRA-CNRS-IFCE-Université de Tours, Val de Loire Center, Nouzilly, 

France). These eggs were produced by females from a non-selected control line, bred next 

to quail lines selected for low or high social reinstatement (Mills and Faure, 1991). They 

were incubated and reared at Bielefeld University (Germany) and placed into their social 

treatments at 29 days of age. The social treatment was either pair-housing or group-

housing, with groups (n=12) consisting of three females and one male, pairs (n=24) of one 

female and one male. Siblings or half siblings were never housed in the same cage. The 

birds were kept indoors, in two adjacent rooms with artificial lighting and no natural 

daylight. The light-dark cycle was 14:10h, and the temperature was set to 20°C. Pair cages 

measured 75 x 80 x 40 cm, group cages 150 x 80 x 40 cm. The distribution of the cages 

across and within rooms was balanced across treatments. The birds were kept on wood 

shavings, and all cages contained a sand bath and one shelter hut per female. Food 

(GoldDott Hennenmehl, Derby Spezialfutter GmbH, Münster, Germany) and water was 

provided ad libitum. On a weekly basis, the standard diet was supplemented with 

mealworms and shell grit. After collecting eggs for breeding the next generation, the 

parental females were tested for their hormonal response to a stressor (at 66-67 days of 

age; see Figure 3.1) and to an injection with gonadotropin releasing hormone (at 72 days of 

age; see Figure 3.1), and we measured growth, reproductive output, and egg yolk 

testosterone concentrations (Langen et al., 2017). 
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Figure 3.1. Timeline of experimental procedures. Procedures marked with * are behavioural tests which are not 

reported here. 

 

3.2.3. Egg incubation and hatching 
After the parental generation had been housed in their treatment groups for 27 days (at 8 

weeks of age), eggs (124 eggs from pair-housed females and 155 eggs from group-housed 

females) were collected over the course of one week, weighed to the nearest 0.1 g, and 

incubated to produce the offspring generation. Eggs were incubated in a HEKA-Euro-Lux II 

incubator (HEKA-Brutgeräte, Rietberg, Germany) in complete darkness to avoid the effects 

of light on development and because it more likely reflects the situation during natural 

incubation (Archer and Mench 2014). Until incubation day 14, the temperature was set at 

37.8°C, humidity to 55%, and the eggs were turned every 2 hours. After 9 days of 

incubation, the eggs were candled to identify embryonic development and non-fertilized 

eggs were removed (remaining eggs: 107 eggs from pair-housed females and 121 eggs from 

group-housed females, Table 3.1). On day 15 of incubation, eggs were moved to hatching 

trays, the incubation temperature was set to 37.5°C, the humidity to 75%, and the eggs 

were no longer turned. The hatching trays were divided into separate compartments (5.5 x 

5.5 x 5 cm) for each individual egg so that we could identify which chick hatched from 

which egg. The compartment walls were made of transparent Plexiglas and the bottom of 

each hatching tray was made of mesh wire, allowing air flow and olfactory and acoustic 

communication between the chicks. The offspring hatched after 17 ± 1 days of incubation. 

Some hatchlings were excluded from the experiment because they had birth defects (two 

male offspring from two pair-housed mothers, one female offspring from one group-

housed mother). In addition, some offspring originated from cages in which birds had to be 

separated before or during egg collection due to aggression (two male and one female 

offspring from two mothers housed in the same group and six male and six female offspring 

from two of five separated pairs; see Langen et al., 2017 for more information). These 

offspring from separated parental cages were not included as subjects in the present study 

but used as cage mates. A total of 35 male and 29 female offspring from pair-housed 
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mothers, and 34 male and 33 female offspring, and one hatchling of unidentified sex from 

group-housed mothers remained (Table 1). 

Birds were removed from the incubator once their feathers had dried (ca. 2 hours 

after hatching), weighed to the nearest 0.1 g and their tarsus was measured to the nearest 

mm using a digital caliper. To measure circulating androgen levels at hatching and to assign 

genetic sex and parentage, a small blood sample (max. 50 µl, or about 0.7% of body weight 

which does not appear to have long-term effects on adult or developing birds; Sheldon et 

al. 2008) was taken by piercing the jugular vein with a sterile 27 gauge needle and collecting 

the blood in heparinized capillaries (BRAND GMBH + CO KG, Wertheim, Germany). As we 

were unable to retrieve blood from 25 out of 132 chicks, a piece of egg shell membrane (ca. 

2 x 2 mm) containing blood vessels was collected for genetic sex and parentage assignment. 

From the remaining 107 chicks, we were able to retrieve at least a small amount of blood 

for DNA extraction, and 53 of these samples were further used for androgen measurements 

(Table 1). 

After 19 days of incubation, all eggs that had not hatched were removed from the 

incubator and a tissue sample was taken from dead embryos for genetic sex determination.  

 

3.2.4. Offspring husbandry 
After weighing and measuring, the offspring were all kept together for the first night in a 

100 x 80 x 80 cm cage on waved cardboard and with two heating lamps and food (ground 

pellets: GoldDott Enten-Gänsestarter - no coccidiostat, Derby Spezialfutter GmbH, Münster, 

Germany) and water provided ad libitum. Lights remained on for the first night. The next 

day, the birds were placed into smaller groups of five to six unrelated individuals (all from 

the same parental treatment, n = 14 cages of pair offspring, n = 12 cages of group 

offspring). At that time, the offsprings’ sexes were still unknown, therefore the chicks were 

randomly allocated across groups. Offspring cages measured 75 x 80 x 40 cm, contained 

heating pads partially covered by a small hut (15 x 13 x 13 cm), and ad libitum water and 

food. The main lights were set to a 14:10h light-dark cycle (lights on at 5 am), but small 

night lights were placed approximately 1 m in front of the cages to make sure the birds 

were able to find food and water during the night. Birds were kept on waved cardboard 

until 8 days post-hatching, after which they were kept on wood shavings. 

All cages were checked daily, and we recorded whether any of the birds had died to 

be able to measure differences in mortality between offspring from the two maternal 

treatments. To analyse offspring growth, all birds were weighed to the nearest 0.1 g on the 

day of hatching, and on post-hatching days 9 and 19. Between the day of hatching and day 

23, the offspring underwent several behavioural tests, the results of which will be described 

elsewhere (Langen et al. in prep). On post-hatch day 20-21, we assessed the birds’ CORT 

response to an injection with adrenocorticotropic hormone. For a timeline of all 

experimental procedures, see Figure 3.1. Sample sizes per measure vary (Table 3.1) since 

some of the offspring died in the first few weeks or because we were unable to get enough 

plasma for the physiological measurements. 
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Table 3.1. Samples sizes for each measurement. 

 Offspring from pair-housed mothers Offspring from group-housed mothers 

Measure Total Sons Daughters Mothers Total Sons Daughters 
Mothers 

(groups) 

Sex ratio         

Primary 1071 49 47 18 1211 53 56 - 2 (8) 

At hatching 64 35 29 17 681 34 33 20 (8) 

Correlation with 

maternal 

androgens 

59 33 26 15 49 27 22 15 (6) 

Correlation with 

maternal CORT 
47 23 24 12 491 25 23 16 (7) 

At day 23 54 27 27 16 56 28 28 17 (7) 

Mortality         

Overall 64 35 29 17 681 34 33 20 (8) 

Correlation with 

maternal 

androgens 

59 33 26 15 49 27 22 15 (6) 

Correlation with 

maternal CORT 
47 23 24 12 491 25 23 16 (7) 

Egg mass 64 35 29 17 681 34 33 20 (8) 

Mass at hatching 64 35 29 17 681 34 33 20 (8) 

Mass at day 9 56 28 28 17 57 28 29 19 (8) 

Mass at day 19 54 27 27 16 56 28 28 17 (7) 

Hatchling 

androgens 
        

Individual samples 17 13 4 16 12 5 7 13 (7) 

Pools 7 4 (8)3 3 (7)3 16 4 2 (4)3 2 (5)3 13 (7) 

ACTH challenge         

Baseline 384 224 164 154 484 264 224 16 (8)4 

Response 374 224 154 154 474 264 214 16 (8)4 

1 Sexing was unsuccessful in 23 embryos and 1 hatchling. 2 In groups, mothers of embryos were not identified. 3 

Number of individuals included in the plasma pool. 4 Reduced sample sizes due to insufficient plasma for the 

CORT analysis 
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3.2.5. ACTH challenge 
In order to test the offspring’s HPA-axis sensitivity, we measured the plasma CORT increase 

following an injection of adrenocorticotropic hormone (ACTH, which stimulates 

glucocorticoid production in the adrenal glands and is normally released by the pituitary in 

response to corticotrophin-releasing hormone from the hypothalamus) on post-hatch day 

20-21. All birds were tested between 09:00 am and 1:00 pm, and plasma CORT levels did 

not change significantly during that period (χ2
(1): 1.55, p = 0.21). 

For the ACTH challenge, all birds from one cage were caught and transported to the 

experimental room in a transport box (40 x 30 x 40 cm). A blood sample was taken to 

determine baseline plasma CORT concentrations by puncturing the ulnar vein with a sterile 

27 gauge needle and collecting 200-300 µl blood in heparinised capillaries (BRAND GMBH + 

CO KG, Wertheim, Germany). We recorded the time between opening the cages and taking 

the baseline blood sample (range: 71-287 seconds, mean ± SEM: 155 ± 6 seconds). 

 After the baseline blood sample was taken, the birds were injected in the pectoral 

muscle with 0.8 µg ACTH (H-1150.0001, Bachem, Bubendorf, Switzerland) dissolved in 50 µl 

PBS (average dosage ca. 10 µg/kg) and placed back in the transport box. 10 minutes post 

injection, the birds were caught again, and a second blood sample was taken to determine 

the CORT response to ACTH. 

 

3.2.6. Hormone analysis 
After blood samples were taken to determine androgen (at the day of hatching) and CORT 

levels (in the ACTH challenge), samples were kept on ice for a maximum of two hours and 

then centrifuged for 10 minutes at 2000 x g. The plasma was then collected and frozen at -

20°C for future use. 

We used a commercial testosterone ELISA Kit (Demeditec Diagnostics GmbH, Kiel, 

Germany, cat. no. DES6622) to determine plasma androgen concentrations. Cross reactivity 

of the kit antibody, as reported by the manufacturer, was 23.3% for 5α-

Dihydrotestosterone, 1.6% for Androstenedione, and less than 0.1% for other steroids. 

Samples were distributed over two assays, balanced for maternal treatment. The inter-

assay coefficient of variation (CV) was 1.64% (based on two quail plasma pools measured in 

each assay). Since we were unable to get sufficient plasma from 24 out of 53 chicks, the 24 

samples were pooled by combining samples from two to three hatchlings in each pool, 

resulting in 11 plasma pools. We pooled plasma samples from hatchlings within the same 

sex and maternal treatment and, where possible, pools consisted of samples from full 

siblings. In total, 40 samples were measured in the androgen assay (29 single plasma 

samples and 11 plasma pools; Table 3.1). In four out of the 40 samples (two from sons of 

pair-housed mothers, two from daughters of group-housed mothers), androgen 

concentrations were below the range that could be estimated using the standard curve and 

were therefore assigned the lowest measured value (28.2 pg/ml), as a conservative 

estimate. 
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Plasma CORT concentrations in the ACTH challenge were determined using a commercial 

Corticosterone RIA Kit (MP Biomedicals, Orangeburg, USA, cat. no. 07-102102). Cross 

reactivity of the kit antibody, as reported by the manufacturer, was 0.34% for 

Desoxycorticosterone, 0.1% for Testosterone, and less than 0.1% for other steroids. 

Samples were measured together with quail plasma samples from other experiments and 

distributed over 11 assays, balanced for treatment. The intra-assay CV was 4.51%, the inter-

assay CV was 13.86% (based on a chicken plasma pool and two kit controls measured in 

each assay). 170 samples were measured in the CORT assay (86 baseline, 84 post-ACTH; 

Table 3.1), and in 15 cases the CORT values were above the highest assay standard (all post-

ACTH samples, from eight sons of pair-housed mothers and seven sons of group-housed 

mothers). As we were unable to repeat measurements at a higher dilution these samples 

were assigned a value of 35 ng/ml (based on the value of the highest assay standard) as a 

conservative estimate. 

 

3.2.7. Genetic sex and parentage assignment 
We used molecular methods to determine offspring sex and to assign parentage of all 

hatched offspring to one of the three potential mothers in the group treatment. The 

concentrated blood cells left over after centrifuging blood for hormone measurements 

were diluted 1:2 with phosphate buffer saline (10 mM PBS+6 mM EDTA, pH 7.4) and stored 

at -20°C. Similarly, tissue samples from non-hatched embryos were frozen at -20°C for 

future use. Genomic DNA was obtained by a phenol/chloroform or Chelex extraction 

(Walsh et al., 1991). Genetic sex determination was then performed using primers 2550f 

and 2718r (Fridolfsson and Ellegren, 1999). 

We genotyped offspring and parents at 22 microsatellite loci using fluorescently 

labelled primers, as described previously (Langen et al., 2017). Parentage was then 

manually assigned by identifying which genotype of the three potential mothers in a cage 

best matched the offspring genotype. 

 

3.2.8. Statistics 
All statistical analyses were done using the lme4 package (Bates et al., 2015) of R 3.2.3 (R 

Core Team, 2015). 

To analyse the effect of the maternal social environment and maternal hormones 

on offspring sex ratio and mortality, generalized linear mixed models with a binomial 

distribution and logit link function were fitted. Models included the maternal social 

environment as a fixed effect. Additionally, models of offspring mortality included a fixed 

effect of offspring sex and its interaction with the maternal social environment. We tested 

for a sex-ratio bias in each of the maternal social environments, where a significant effect 

of the intercept on the logit scale indicates a deviation from parity. Finally, we tested for 

non-random (extra-binomial) variance of sex-ratios using simulations (see Postma et al. 

2011). We generated a distribution of 1000 expected clutch sex ratios based on the 

observed mean sex ratio and the number of offspring from each mother or each maternal 
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cage (for embryos whose parentage was not assigned) and compared whether the 

observed variance in sex-ratios fell outside the upper confidence interval (overdispersion) 

or lower confidence interval (underdispersion) of the simulated data. We then analysed the 

effects of maternal hormones on offspring sex ratio and mortality using separate models, 

either with maternal baseline plasma androgen or with baseline plasma CORT levels as 

fixed effects. Maternal treatment was not included in these models to avoid 

multicollinearity because maternal hormones differed according to maternal treatment. 

General linear mixed models were used to analyse the effect of the maternal social 

environment and offspring sex on egg mass, offspring mass and offspring circulating 

hormone levels (androgens at hatching and CORT during the ACTH challenge). Normality of 

the residuals from all general linear mixed models was assessed visually using histograms 

and Q-Q plots. To achieve normality and equal variances, we transformed values for 

offspring plasma CORT levels (square root) and body mass (natural log). Again, fixed effects 

included the maternal social environment, offspring sex, and their interactions. In addition, 

models of offspring growth included a categorical fixed effect of age (in days) to model the 

increase in weight with age. The models also included all two-way and three-way 

interactions of age with the maternal social environment and sex to test whether the 

weight increase with age differed between treatments and sexes. Age was treated as a 

categorical fixed effect because offspring mass was measured at only three time points (day 

0, day 9 and day 19). Models analysing effects on plasma CORT during the ACTH challenge 

included a fixed effect of sample (pre or post-challenge) to test whether CORT increased in 

response to the challenge. The models also included all two-way and three-way interactions 

of sample with the maternal social environment and offspring sex to test whether the 

response to the challenge differed between treatments and sexes. In addition, the models 

on plasma CORT included as a covariate the time it took to collect the first sample after the 

initial disturbance of opening the cage. 

Maternal cage was included as a random effect in all models, to control for 

potential non-independence of mothers from the same cage. In addition, models included a 

random effect of maternal ID nested within maternal cage, except for the models of 

primary sex ratio (because parentage was only assigned for hatchlings, not for embryos). 

Models analysing offspring data collected after the day of hatching also included a random 

effect of offspring cage. When analysing offspring mortality, models did not converge if 

both maternal ID and offspring cage were included as random effects, even when 

increasing iterations to 2*109 and trying a number of different optimizers. Offspring cage 

was therefore removed from these models because it had a smaller effect than maternal ID 

within maternal cage (see Supplementary Table 8 in Supplementary Data 3.2). When a 

random effect of offspring cage was used in the models instead of the random effect of 

maternal ID, the main effect of sex was no longer significant, suggesting that controlling for 

maternal ID increased the sensitivity to detect intrinsic sex-differences in mortality. For the 

analysis of growth and the ACTH challenge, we included the additional random effects of 

offspring ID nested within offspring cage and offspring ID nested within maternal ID nested 

within maternal cage. 
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We always started with the full model and stepwise excluded all non-significant (p > 0.05) 

interactions and main effects, apart from the main factors of interest: the maternal social 

environment and offspring sex. Interactions were always excluded before the main effects 

involved in the interaction. We determined the significance of fixed effects using likelihood 

ratio tests comparing the models with and without the factor of interest. The results of all 

models are reported in Supplementary Data 3.2.  

 

3.3. Results 

3.3.1. Offspring sex ratio and mortality 
The maternal social environment did not affect primary sex ratio (χ2

(1): 0.12, p = 0.73; Figure 

3.2), sex ratio at hatching (χ2
(1): 0.20, p = 0.65; Figure 3.2) or sex ratio at day 23 (χ2

(1) < 0.01, 

p = 0.99; Figure 3.2). Sex ratios did not differ significantly from parity at any stage in either 

social environment (all z values < 0.75, all p values > 0.45; Supplementary Table 1 in 

Supplementary Data 3.2), nor was there any evidence of over or underdispersion in sex 

ratio at any stage (Supplementary Table 2 in Supplementary Data 3.2). In addition, maternal 

baseline plasma hormone levels did not predict offspring sex ratio at hatching (effect of 

maternal baseline androgens: χ2
(1): 1.53, p = 0.22; effect of maternal baseline CORT: χ2

(1): 

0.36, p = 0.55; Supplementary Figure 3.1). 

 

 
Figure 3.2. Offspring sex ratio at the embryonic stage, at hatching and at day 23. Data shown are the estimated 

means ± 1 SEM (back-transformed from logit). 

 

The maternal social environment did not have sex-specific effects on offspring mortality 

(effect of maternal social environment * offspring sex: χ2
(1): 1.80, p = 0.18; Figure 3.3), nor 

was there an overall effect of the maternal social environment on mortality (χ2
(1): 0.20, p = 

0.66; Figure 3.3). However, mortality did differ between the sexes: significantly more male 

offspring than female offspring died before day 23 (χ2
(1): 4.48, p = 0.03; Figure 3.3). This 

effect disappeared when the random effect of maternal ID was removed and offspring cage 

was included, which had a weaker effect but could not be estimated together with 
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maternal ID in the same model (see methods), suggesting that cage differences in mortality 

make it difficult to detect sex-differences when effects of maternal ID is not accounted for. 

Maternal baseline plasma hormone levels did not predict offspring mortality (effect of 

maternal baseline androgens: χ2
(1): 1.46, p = 0.23; effect of maternal baseline CORT: χ2

(1): 

0.65, p = 0.42; Supplementary Figure 3.1). 

 

 
Figure 3.3. The proportion of offspring that died before day 23. Data shown are the estimated means ± 1 SEM 

(back-transformed from logit). 

 

3.3.2. Egg mass and growth 
The maternal social environment had no overall (χ2

(1): 0.27, p = 0.60; Figure 3.4A) or sex-

specific effect on egg weight (effect of maternal social environment * offspring sex: χ2
(1): 

0.02, p = 0.89; Figure 3.4A), nor did egg weight differ between the sexes (χ2
(1): 0.25, p = 

0.62; Figure 3.4A). 

 All birds increased weight significantly over the course of the experiment (effect of 

age: χ2
(2): 1531.30, p < 0.001; Figure 3.4B). The changes in weight with age did not differ 

between the maternal social environments (effect of maternal social environment * age: 

χ2
(2): 0.49, p = 0.78; Figure 3.4B) nor between males and females (effect of offspring sex * 

age: χ2
(2): 1.43, p = 0.49; Figure 3.4B) or depending upon the interaction between maternal 

social environment and offspring sex (effect of maternal social environment * age * 

offspring sex: χ2
(2): 4.63, p = 0.10; Figure 3.4B). There was no difference in average offspring 

mass according to the maternal social environment, offspring sex, or their interaction (the 

model included the significant effect of age; all χ2
(1) < 1.64, all p values > 0.20). 
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Figure 3.4. A: egg mass. B: offspring growth (back-transformed from natural log). Data shown are the estimated 

means ± 1 SEM. 

 

3.3.3. Offspring physiology 
The maternal social environment had no sex-specific effects on offspring plasma androgen 

concentrations at hatching (effect of maternal social environment * offspring sex: χ2
(1): 0.02, 

p = 0.89; Figure 3.5A). Average androgen concentrations also did not differ between 

offspring of pair-housed and group-housed mothers (χ2
(1): 0.45, p = 0.50; Figure 3.5A), nor 

between males and females (χ2
(1): 1.92, p = 0.17; Figure 3.5A). 

The maternal social environment did not affect the CORT response to an injection 

with ACTH on post hatch day 20-21 (effect of maternal social environment * sample: χ2
(1): 

0.58, p = 0.45; Fig. 3.5B). Male and female offspring differed in their CORT response (effect 

of offspring sex * sample: χ2
(1): 7.11, p < 0.01; Figure 3.5B) but the sex difference in the 

CORT response was not affected by the maternal social environment (effect of sample * 

maternal social environment * offspring sex: χ2
(1): 2.62, p = 0.11). The time between the 

initial disturbance of opening the cage and the collection of the baseline sample was 

included as a covariate in all models analysing the effects on ACTH because it significantly 

affected CORT levels (χ2
(1): 8.34, p < 0.01). This effect did not differ between offspring from 

the different maternal social environments (χ2
(1): 0.19, p = 0.66). Removing the factor “time 

until the first sample” from these models did not change the significance or interpretation 

of the main effects. When analysing CORT baseline and response levels separately, male 

and female offspring did not differ in baseline CORT concentrations (χ2
(1) = 0.02, p = 0.89; 

Figure 3.5B), but males had significantly higher CORT concentrations after the ACTH 

injection (χ2
(1): 16.33, p < 0.001; Figure 3.5B). CORT concentrations increased significantly in 

both sexes after the ACTH injection (males: χ2
(1): 146.79, p < 0.001; females: χ2

(1): 86.44, p < 

0.001; Figure 3.5B).  
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Figure 3.5. A: offspring plasma androgen concentrations (pg/ml) at hatching. B: offspring plasma CORT 

concentrations (ng/ml) before and 10 minutes after the ACTH injection (back-transformed from square root). 

Data shown are the estimated means ± 1 SEM. 

 

3.4. Discussion 
The social environment a female is exposed to during reproduction has been reported to 

induce variation in offspring sex-ratio, mortality, development, and endocrine physiology in 

a number of vertebrate species (Dantzer et al., 2013; Guibert et al., 2010; Kaiser and 

Sachser, 2009, 2005; Michler et al., 2013; Minias et al., 2014; von Engelhardt et al., 2015). 

Maternal hormones are candidate signals involved in such transgenerational effects 

(Dantzer et al., 2013; Guibert et al., 2010; Hayward and Wingfield, 2004; Henriksen et al., 

2013), and they are thought to represent important proximate mechanisms in adaptive sex 

allocation (Navara, 2013a, 2013b), also by affecting secondary offspring sex ratios (Love et 

al., 2005; Rutkowska et al., 2007; Rutkowska and Cichoń, 2006).  

We did not find evidence that the maternal social environment (pair versus group 

housing) affects offspring sex ratio in Japanese quail, even though pair-housed females had 

increased circulating androgen levels and a non-significant trend of higher cortisol levels 

compared to group-housed females, as reported in our previous study (Langen et al., 2017). 

We had predicted that pair-housed females would produce a female-biased offspring sex-

ratio because increased androgen and CORT levels were associated with a female-biased 

sex-ratio in other studies on Japanese quail (Correa et al., 2011, Pike and Petrie, 2006). 

Offspring from pair-housed mothers and offspring from group-housed mothers also did not 

differ in growth, mortality, circulating androgen levels or circulating CORT levels. Moreover, 

maternal circulating levels of androgens and CORT did not correlate with offspring sex ratio 

and mortality. 

Our results contradict the general pattern in avian species which suggests that 

higher maternal androgens lead to a male-biased offspring sex ratio (Goerlich et al., 2009; 

Navara, 2013a, 2013b), but we corroborate earlier findings in Japanese quail showing no 

such relationship (Pike and Petrie, 2006). However, in Japanese quail, higher maternal 

androgens have also been linked to female-biased sex ratios (Correa et al., 2011), indicating 
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that the effect of maternal androgens on offspring sex ratio is still unclear. Our results also 

do not confirm earlier reports that higher maternal CORT levels are linked to a female-

biased offspring sex ratio in avian species (Navara, 2013a, 2013b), including Japanese quail 

(Pike and Petrie, 2006). Studies investigating the relationship between maternal plasma 

hormone levels and offspring sex ratio differ substantially regarding methods of hormone 

manipulation or quantification which might explain differing results between studies. For 

example, Correa et al. (2011) found the temporary peak in circulating androgen levels 

following mating to be correlated with a female-biased sex ratio. On the other hand, Pike 

and Petrie (2006), who found no relationship between offspring sex ratio and androgens, 

analysed faecal androgen metabolite concentrations, which do not reflect short-term 

fluctuations but an integrated measure of androgen concentrations over several hours. 

They also found no effect of treating females with androgen implants, which likely affected 

circulating androgen levels over a longer time period. In addition, multiple steroid 

hormones are thought to be involved in sex ratio adjustment, and their effects may interact 

(Navara, 2013a). In the present study, the opposing effects of higher maternal androgens 

and higher CORT on offspring sex ratio may have cancelled each other out, explaining why 

the offspring sex ratio of pair-housed mothers did not differ from parity nor from that of 

group-housed females. Moreover, the elevation in maternal plasma androgen and CORT 

levels in pair-housed females may not have been large enough to induce a shift in offspring 

sex ratio. Finally, it has been suggested that effects on primary sex ratios may be largely 

due to variation in levels of progesterone during meiosis, which is the main follicular steroid 

produced during this phase (Correa et al. 2005) but was not measured in our study. 

 The lack of an effect of the maternal social environment on offspring growth, 

mortality or physiology might partly be explained by the fact that the maternal social 

environment did not induce differences in yolk androgens, as shown in our previous study 

(Langen et al., 2017), or in egg mass, as shown here. Yolk hormones are considered a key 

mechanism in transferring the effects of the maternal social environment to offspring (Gil, 

2008; Rutkowska and Cichoń, 2006; von Engelhardt et al., 2006; von Engelhardt and 

Groothuis, 2011), and differences in the maternal social environment and physiology alone 

may not suffice to induce changes in the prenatal environment. The fact that we found no 

effects on egg mass can also explain why offspring growth and mortality did not differ, egg 

size being another important mediator of maternal effects (Cunningham & Russell 2000; 

Hadfield et al. 2013; Krist, 2011; Pick et al. 2016; Williams, 1994). We also found no sex 

differences in egg mass, confirming previous suggestions that there is little evidence overall 

for sexual size dimorphism in eggs across avian species (Rutkowska et al. 2014). 

We did find a difference in the physiological stress response (increase in CORT) 

after an ACTH injection between male and female offspring, irrespective of the maternal 

social environment. While baseline CORT concentrations did not differ between males and 

females, males showed a higher CORT response, suggesting increased sensitivity of their 

HPA axis. This is in line with many studies in birds, including Japanese quail, that report a 

stronger stress response in males compared to females (Astheimer et al., 1994; Goerlich et 

al., 2012; Hayward et al., 2006; Hazard et al., 2008; Krause et al., 2015; Madison et al., 
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2008; Romero et al., 2006; Schmeling and Nockels, 1978). Other studies, however, report 

no differences (Dufty Jr. and Belthoff, 1997; Hazard et al., 2008; Satterlee and Johnson, 

1988; Sockman and Schwabl, 2001). In addition to having a higher stress response, 

significantly more male offspring died before day 23 than female offspring. Similar patterns 

in juvenile mortality are reported in a large number of species (reviewed by Clutton-Brock, 

1991), suggesting that males are more vulnerable to environmental challenges. However, it 

is still unclear what the underlying mechanisms are (Jones et al., 2009). Interestingly the 

sex-difference in mortality was only detected when controlling for maternal ID, not when 

controlling for offspring cage. This made it harder to estimate intrinsic sex-differences in 

mortality because offspring from the same mother were allocated to different offspring 

cages so that the sex-differences in mortality could be attributed to cage effects. While 

perhaps not surprising, this also suggests that it is important to consider how the genetic 

effects, maternal environmental effects and the posthatching environment may interact in 

affecting sex-specific mortality. 

Overall, contradictory findings regarding the effects of maternal physiology and 

maternal social environment on offspring sex ratio and phenotypes indicate that the 

mechanisms underlying such maternal effects are still insufficiently understood. An 

important factor explaining differences between studies, including our own and previous 

research, might be the timing of manipulations and measurements of the social 

environment and the endocrine system. Effects of the maternal environment and 

physiology on developing follicles and offspring may occur only during critical windows 

(Okuliarova et al., 2017). For example, for sex ratio adjustment, an influence of maternal 

steroids on the segregation of the sex chromosomes during the first meiotic division has 

been proposed (Correa et al., 2005; Goerlich-Jansson et al., 2013; Navara, 2013a, 2013b; 

Pinson et al., 2011; Rutkowska and Badyaev, 2008). Also, circulating hormone levels differ 

between life stages and seasons and can change significantly during a single day, even 

within minutes, in response to the environment, such as social stimuli (Adkins-Regan, 2005; 

Creel et al., 2013; Hazard et al., 2005; Oliveira, 2004; Ottinger et al., 2001). A single 

measurement of physiological status does not take such fluctuations into account and 

might reduce the chance of detecting maternal effects. We may have also missed important 

effects by not measuring maternal hormones during the time window during which genetic 

sex determination takes place (meiosis I) and by only measuring maternal androgens and 

corticosterone, not other steroids such as progesterone (Correa et al., 2005). 

Finally, differences between the social stimuli investigated may explain the 

contradictory results between studies. Social factors such as maternal social instability 

(Guibert et al., 2010; Kaiser and Sachser, 2009), social density (Dantzer et al., 2013; Minias 

et al., 2014; von Engelhardt et al., 2015), mate attractiveness (Kölliker et al., 1999; Korsten 

et al., 2006; Rutstein et al., 2005; Sheldon et al., 1999; Svensson and Nilsson, 1996), pair 

bonding (Hirschenhauser, 2012; Le Bot et al., 2014; Schweitzer et al., 2014), and social 

status (Dloniak et al., 2006) are likely to differ in their functional significance and therefore 

also in their effects on offspring phenotypes and sex ratio. To gain a better understanding 

of the underlying mechanisms and the function of maternal effects of the social 
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environment, it is therefore necessary to establish which social stimuli are most important 

for offspring, and at which time maternal effects manifest in relation to the prenatal and 

postnatal developmental stages. 
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Supplementary material 
 

 
Supplementary Figure 3.1. Relationship between maternal hormones and offspring sex ratio at hatching and 

mortality. A: maternal androgens and offspring sex ratio at hatching, B: maternal CORT and offspring sex ratio at 

hatching, C: maternal androgens and offspring mortality, D: maternal CORT and offspring mortality. 

 

Supplementary Data 3.1. Raw dataset; available at 

https://doi.org/10.1016/j.ygcen.2018.04.015 

 

Supplementary Data 3.2. Supplementary tables, including summaries of all model outputs; 

available at https://doi.org/10.1016/j.ygcen.2018.04.015 



 
 

 
 

 



 
 

 
 

 

 

Chapter 4 
 

 

Effects of the maternal and current social 

environment on female body mass and 

reproductive traits in Japanese quail (Coturnix 

japonica) 
Esther MA Langen, Vivian C Goerlich-Jansson, Nikolaus von Engelhardt 

 

 

 

 

 

 

 

 

 

 

 

 

Submitted to Journal of Experimental Biology 

  



Chapter 4 

72 
 

Abstract 
The social environment can affect the phenotype of breeding females and their offspring. 

Using Japanese quail (Coturnix japonica), we studied maternal effects of the social 

environment on female offspring housed under matched and mismatched conditions with 

respect to group size (pairs of two vs. groups of four birds). We measured F1 growth, 

reproduction and plasma levels of androgens and corticosterone and found a match-

mismatch effect on F1 body mass but not on other traits. F1 group housing led to faster 

growth, but had an additional positive effect on weight only in daughters of pair-housed 

females. At the time of egg collection for the F2 generation, F1 group females were heavier, 

irrespective of the P0 treatment. This resulted in a maternal effect on F2 offspring with 

females in groups laying heavier eggs with a higher hatching success and producing heavier 

offspring. Neither the P0 nor the F1 social environment affected F1 plasma androgen or 

corticosterone levels, suggesting effects on growth and reproduction are not necessarily 

reflected in hormonal differences. The effects of social environment on females and their 

offspring differed between the P0 (reported previously) and F1, most likely because of 

different sex ratios in the social treatment groups. The fitness consequences of the 

observed maternal effect and the role of different social influences, such as group size and 

sex ratio on offspring, require further study to understand their adaptive significance and 

physiological mechanisms. 
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4.1. Introduction 
Effects of the maternal social environment on female physiology, reproduction and 

offspring phenotype have been described in various species, including birds and mammals 

(Groothuis et al., 2005; Guibert et al., 2010; Kaiser and Sachser, 2009, 2005). Maternal 

effects can act as mechanisms of adaptive transgenerational plasticity to optimally prepare 

offspring phenotype for their future environment. This can be tested by studying the 

consequences for offspring experiencing an environment that matches or mismatches the 

maternal environment (Burgess and Marshall, 2014; Marshall and Uller, 2007; Uller et al., 

2013). This study investigates the transgenerational effects of maternal social group size on 

offspring housed under either matched or mismatched social conditions in an avian species, 

the Japanese quail (Coturnix japonica). 

Behaviour, physiology and reproduction can be affected by the social environment, 

such as density, group size, social rank, mate attractiveness or adult/operational sex ratio 

(Alonso-Alvarez et al., 2012; Asghar Saki et al., 2012; Benyi et al., 2006; Both, 1998; Both et 

al., 2000; Clutton-Brock and Huchard, 2013; Cunningham and Russell, 2000; Dewsbury, 

1982; Ellis, 1995; Fowler, 1981; Rodenhouse et al., 2003; Schubert et al., 2007; Sillett et al., 

2004; Stockley and Bro-Jørgensen, 2011; Székely et al., 2014; Uller et al., 2005). Effects of 

the social environment on female endocrine physiology and body mass (Bonenfant et al., 

2009; DeVries et al., 2003; Eisenegger et al., 2011) provide proximate mechanisms through 

which reproduction and offspring can be affected. In birds, increasing group size, for 

example, is thought to exacerbate intraspecific competition which can affect body mass 

(Asghar Saki et al., 2012; Keeling et al., 2003; Onbaşılar and Aksoy, 2005) and circulating 

levels of steroid hormones such as corticosterone and androgens (Cantarero et al., 2015; 

Cunningham et al., 1987; Koelkebeck and Cain, 1984; Langmore et al., 2002; Mazuc et al., 

2003; Onbaşılar and Aksoy, 2005; Raouf et al., 2006; Smith et al., 2005). In Japanese quail, 

frequent changes in the group composition of breeding females are thought to reflect 

increased social densities and lead to elevated plasma corticosterone concentrations 

(Guibert et al., 2010). In contrast, Japanese quail females housed in pairs had higher 

circulating androgen levels and tended to have higher circulating corticosterone levels than 

group-housed females (Langen et al., 2017). Such effects of the social environment on 

female physiology and body mass and condition may affect their ability to invest in 

reproduction, resulting in changes in the quality or quantity of eggs produced or the quality 

or quantity of the offspring (Christians, 2002; Drent and Daan, 1980; Lim et al., 2014; 

Ronget et al., 2018; Sockman et al., 2006). Studies have reported both positive and negative 

correlations between measures of reproduction and circulating androgens (positive: Cain 

and Ketterson, 2012; Langmore et al., 2002; Sandell, 2007; negative: de Jong et al., 2016; 

López-Rull and Gil, 2009; Rutkowska et al., 2005; Rutkowska and Cichoń, 2006; Veiga and 

Polo, 2008) and glucocorticoids (positive: Bonier et al., 2009b; Burtka et al., 2016; Ouyang 

et al., 2013, 2011; negative: Angelier et al., 2010; Bonier et al., 2009b; Ouyang et al., 2013, 

2011; Silverin, 1986; Vitousek et al., 2014).  

Effects of the social environment on female physiology and reproductive 

investment can lead to effects on offspring development and fitness. Kaiser et al. (2003) 
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found in guinea pigs (Cavia aperea), for instance, that maternal social instability resulted in 

decreased maternal plasma androgen concentrations and affected offspring behaviour and 

physiology. Daughters of unstable mothers were masculinized in their behaviour and had 

increased plasma androgen concentrations during adulthood, whereas sons were 

infantilized. In American red squirrels (Tamiasciurus hudsonicus), higher maternal social 

densities increased maternal corticosterone and offspring growth rates (Dantzer et al., 

2013). In Japanese quail (Coturnix japonica), maternal social instability reduced offspring 

growth during the first weeks of life (Guibert et al., 2010). Maternal effects on growth and 

physiology may influence offsprings’ future reproduction since an individual’s reproductive 

performance often depends on its body condition and/or endocrine status (Burtka et al., 

2016; Correa et al., 2011; de Jong et al., 2016; Devries et al., 2008; Festa‐Bianchet et al., 

1998; López-Rull and Gil, 2009; Milenkaya et al., 2015; Ouyang et al., 2013, 2011; 

Rutkowska et al., 2005; Veiga and Polo, 2008). However, the adaptive significance of 

maternal effects induced by social stimuli is still insufficiently understood. 

In the present study we investigate the potential interactive effects of the maternal 

and offspring social environment. Females of the parental (P0) generation were housed in 

pairs (one female and one male) or in groups (three females and one male) and allowed to 

reproduce (Langen et al. 2017). The females of the offspring (F1) generation were similarly 

housed in either pairs of two females or groups of four females, with daughters from the 

two maternal conditions evenly allocated to the two F1 social conditions. This allowed us to 

investigate the effects of the P0 social environment, the F1 female’s own social 

environment, and their interaction on physiology (growth and circulating levels of 

corticosterone and androgens) and reproduction (egg production, egg mass, fertilization 

rates, hatching success, and offspring mass). We assessed the sensitivity of the F1 female’s 

hypothalamic-pituitary-adrenal (HPA) axis using a standardized restraint stress challenge 

(Wingfield et al., 1995) and assessed the responsiveness of the hypothalamic-pituitary-

gonadal (HPG) axis using a gonadotrophin-releasing hormone (GnRH) challenge (Jawor et 

al., 2006; Peluc et al., 2012). This enabled us to investigate whether effects on reproductive 

performance reflect physiological changes during reproduction (e.g., Angelier et al., 2010; 

Bonier et al. 2009b, Burtka et al., 2016, Cunningham et al., 1987, Ouyang et al., 2011, 

2013). 

Adaptive effects of the maternal social environment should prepare their offspring 

for the social environment anticipated by the mother’s social experience. We therefore 

expected F1 female offspring to show better growth and reproduction under social 

conditions matching the maternal environment compared to the female offspring housed 

under mismatched social conditions. 
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4.2. Materials and methods 
 

 
Figure 4.1. Timeline of experimental procedures. Measurements in grey are not presented here, but some of 

these are published elsewhere (see Langen et al., 2017, 2018 for more information). Scale symbols indicate 

when animals were weighed. ♂ indicates when females and males were brought together for mating. 

 

4.2.1. Ethics statement 
All experimental procedures were approved by the North Rhine-Westphalia State Agency 

for Nature, Environment and Consumer Protection (Landesamt für Natur, Umwelt und 

Verbraucherschutz Nordrhein-Westfalen), Recklinghausen, Germany (licence number 84-

02.04.2013-A127). Animal facilities were approved for keeping and breeding Japanese quail 

for research purposes by the local government authority responsible for health, veterinary 

and food monitoring (Gesundheits-, Veterinär- und Lebensmittelüberwachungsamt 

Bielefeld, Germany). 

 

4.2.2. Origin of the parental generation 
The eggs from which the parental generation hatched were provided by the INRA in 

Nouzilly, France (Experimental unit 1295 (UE PEAT) and UMR 85, Physiologie de la 

Reproduction et des Comportements, INRA-CNRS-IFCE-Université de Tours, Val de Loire 



Chapter 4 

76 
 

Center, Nouzilly, France). The eggs were laid by females from a non-selected control line, 

bred next to quail lines selected for low or high social reinstatement (Mills and Faure, 

1991). 

 

4.2.3. Social environments 
Females were housed under two different social conditions shortly before sexual maturity: 

P0 females were housed in pairs (one female with one male) or in groups (three females 

with one male) and F1 females were housed in pairs (two females, one offspring from each 

of the P0 treatments) or in groups (four females, two offspring from each of the P0 

treatment). The birds were placed in the experimental social conditions at the age of 29 

days in the P0 generation (Langen et al., 2017) and 24 days in the F1 generation, about two 

weeks before the onset of egg laying. At that time the birds were still unfamiliar with each 

other. Siblings and half-siblings (in the P0) or cousins (in the F1) were never housed in the 

same cage. F1 males (n=15, all offspring from the P0 pair treatment) were housed in single 

cages and only encountered females for mating. Males were not housed with females in 

the F1 generation to avoid injury to the females which could result from high copulation 

frequency when housed in pairs (see Langen et al., 2017).  

In the P0 generation, 17 pair-housed females and 20 group-housed females 

produced F1 offspring (Langen et al., 2017). Thirteen of the pair-housed females and 13 of 

the group-housed females produced the 53 daughters used in the current experiment. 

These F1 females were evenly allocated to 16 pairs and 7 groups, balanced with respect to 

maternal treatment. We thus created four different treatments in the F1 generation, 

representing all combinations of the P0 and F1 social conditions: daughters from pair-

housed mothers housed in pairs (PP0PF1, n=16), daughters from pair-housed mothers 

housed in groups (PP0GF1, n=11), daughters from group-housed mothers housed in groups 

(GP0GF1, n=13), and daughters from group-housed mothers housed in pairs (GP0PF1, n=13). 

Three pair cages and three group cages contained females that were not used for the 

experimental tests, but served as cage mates for the experimental birds (see also Appendix 

B). These seven females were the offspring of P0 birds that had been excluded from the 

experiments due to aggression (for more information, see Langen et al., 2017). For details 

on sample sizes, see Table 4.1.  

Due to aggression, we had to separate 11 pairs and 4 groups in the F1 generation 

over the course of the experiment. Of the 11, 10 pairs were separated using a wire mesh so 

that visual, acoustic and limited tactile interaction was still possible, and they were kept in 

our experiment. One pair was completely separated and removed from the experiment 

because one of the females had wounds that were unlikely to heal within a few days, 

constituting a humane endpoint. The four groups had to be fully separated because it was 

not possible to use a wire mesh in their cage to keep them apart and allow visual, acoustic 

and tactile interaction. The study included only data from before the separation of the one 

pair and the four groups. Therefore each measurement had a different sample size (for 

exact sample sizes, see Tables 4.1-4.2 and Figures 4.2-4.4). For more details on when the 

birds were separated, see Supplementary Data 4.1. 
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Table 4.1. Experimental groups and sample sizes (number of females in the two 
P0 social treatments and in the four combinations of F1 social treatments): 
ahoused in 16 F1 pair cages; bhoused in 7 F1 group cages; c7 P0 pair-housed 
mothers contribute to both F1 pairs and F1 groups; d6 P0 group-housed mothers 
contribute to both F1 pairs and F1 groups. 

 

Maternal social 

environment 
P0 females 

Own social 

environment 

F1 Females (P0 

mothers) 

PP0 13 
PF1

a 16 (11c) 

GF1
b 11 (9c) 

GP0 13 
PF1

a 13 (10d) 

GF1
b 13 (9d) 

 

4.2.4. Animal husbandry 
All birds were housed in two adjacent rooms in the P0 generation (Langen et al., 2017) and 

three adjacent rooms in the F1 generation (two rooms for the females and one room for 

the males). All rooms had artificial lighting and ambient temperature, with a minimum 

temperature of 20˚C. Main lights were set to a 14:10h light-dark cycle (lights on at 5 am), 

except for the first day and night after hatching when lights remained on for 24 hours. 

Cages never faced each other to prevent visual contact between birds from different cages, 

but acoustic and olfactory communication was possible. 

In the P0 generation, pairs were kept in cages measuring 75 x 80 x 40 cm, groups in 

cages measuring 150 x 80 x 40 cm. The adult F1 females were all kept in cages measuring 

150 x 80 x 40 cm, irrespective of their social conditions. Males were housed in cages 

measuring 75 x 80 x 40 cm. Birds were kept on wood shavings, and all cages contained a 

sand bath and one shelter hut per bird. Food (GoldDott Hennenmehl, Derby Spezialfutter 

GmbH, Münster, Germany) and water was provided ad libitum. On a weekly basis, the 

standard diet was supplemented with mealworms and shell grit. 

Females were weighed before they were housed in their adult social condition on 

day 24, and on days 30, 37, 44, 61, 90 and 97. 

 

4.2.5. Mating 
Females of the F1 generation were housed in single-sex groups but had temporary access 

to males for mating (see Figure 4.1). In each mating session, males and females were 

together for 20 minutes. Fifteen males, all sons of pair-housed females, were used in total, 

and females were always paired with the same unrelated male (not sharing the same 

grandparents). Each male was paired with four different females, one from each 

combination of the P0 and F1 social conditions, except for one male who was only paired to 

PP0PF1 females. On days 55-56 males were introduced into the home cages of the females 

and allowed to mate for 20 minutes. Since the male was unable to copulate with the two or 

four females in a cage within such a short time period, we subsequently paired him with 

one female at a time in the next mating sessions. Each female was paired twice a week and 

each male was paired with the same two females per day, but in alternating order. 
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Furthermore, we started the mating sessions with a different male and female every day so 

that the pairing order was randomised for males as well as females. On days 57-58 and 61-

64, females and males were paired in a neutral mating cage between 08:00 and 17:00. 

Thereafter, on days 68-69, 70-71, 76-77, 78-79 and 82-83 females were introduced to the 

male’s home cages between 10:00-12:30.  

 

4.2.6. Egg collection for the F2 generation, incubation and 

hatching 
Eggs for the F2 generation were collected on days 80 - 87. All eggs were stored at 16°C until 

the end of the collection period (storage time ranging between 1 - 7 days) when incubation 

started. All eggs were incubated at the same time in a HEKA-Euro-Lux II incubator (HEKA-

Brutgeräte, Rietberg, Germany). Incubation was done in complete darkness to avoid the 

effects of light on development and because it more likely reflected the situation during 

natural incubation (Archer and Mench, 2014). From incubation day 1 to day 14, the 

temperature was set at 37.8°C, humidity at 55%, and the eggs were turned every 2 hours. 

Eggs were candled after 9 days of incubation to identify embryonic development. Non-

fertilized eggs were removed (see Table 5 for number of eggs and fertilization). From day 15 

onwards, the incubation temperature was set at 37.5°C, the humidity at 75%, and the eggs 

were no longer turned. After 15 days of incubation, eggs were placed in separate 

compartments (5.5 x 5.5 x 5 cm) on hatching trays. The individual compartments allowed us 

to identify which chick hatched from which egg. The compartment walls were made of 

transparent Plexiglas and the bottom of each hatching tray was made of mesh wire, 

allowing air flow and olfactory and acoustic communication between the chicks. 

All eggs hatched after 17 ± 1 days of incubation. Hatchlings were removed from the 

incubator once their feathers had dried (ca. 2 hours after hatching) and weighed to the 

nearest 0.1 g. A blood sample (max. 50 µl or about 0.5% of body weight; <0.8% does not 

appear to have long-term effects on adult or developing birds; Sheldon et al. 2008) was 

taken for assignment of parentage. Blood sampling was done by piercing the jugular vein 

with a sterile 27-gauge needle and collecting the blood in heparinized capillaries (BRAND 

GMBH + CO KG, Wertheim, Germany). 

 

4.2.7. Parentage assignment 
F2 hatchling blood was centrifuged for 10 minutes at 2000 x g. Blood cells were diluted 1:2 

with phosphate buffer saline (10 mM PBS+6 mM EDTA, pH 7.4) and stored at -20°C. We 

used a small sample of blood from the stress protocol or GnRH challenge from the adult F1 

females. Genomic DNA was obtained by a phenol/chloroform or Chelex extraction (Walsh 

et al., 1991). Parentage was manually assigned after genotyping all parents and offspring at 

22 microsatellite loci using fluorescently labelled primers, as described previously (Langen 

et al., 2017). 
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4.2.8. Stress protocol and GnRH challenge 
The stress protocol and the GnRH challenge were performed after collecting the F2 

generation eggs to exclude effects on reproduction. The stress protocol took place on days 

90 - 91. All birds were tested between 09:20 am - 12:30 pm and corticosterone levels did 

not change significantly during that period (χ2
(1) = 0.30, p = 0.58). After catching the birds 

from their home cages, a blood sample was taken within 3 minutes to determine baseline 

plasma corticosterone concentrations by puncturing the ulnar vein with a sterile needle and 

collecting 200 - 300 µl blood in heparinised capillaries (BRAND GMBH + CO KG, Wertheim, 

Germany). After taking the baseline sample, the birds were restrained for 10 minutes by 

placing them in a cotton bag (Ecotone, 25 x 30 cm). A second blood sample was taken after 

the 10-minute restraint period to determine the female’s corticosterone response (in total, 

2 x 200 - 300 µl blood was collected on the days of the stress protocol and the GnRH 

challenge, or about 0.18% - 0.28% of body weight at those ages; <0.8% does not appear to 

have long-term effects on adult or developing birds; Sheldon et al., 2008). 

The GnRH challenge took place on days 96 - 97 while all females were laying eggs 

and thus assumed to be responsive to GnRH (Jawor et al., 2006; Peluc et al., 2012). All birds 

were tested between 09:25 am - 12:30 pm. As in the stress protocol, birds were caught, and 

a blood sample was taken from the ulnar vein within 3 minutes to determine baseline 

plasma androgen concentrations. After the baseline sample was taken, the females were 

injected in the pectoral muscle with 5 µg chicken GnRH-I (H-3106, APC number 54-8-23, 

CAS No: 47922-48-5, Bachem, Bubendorf, Switzerland, formerly also sold as Sigma-L0637) 

dissolved in 50 µl PBS, and returned to their home cages. Thirty minutes post injection, the 

birds were caught again, and a second blood sample was taken to determine the female’s 

plasma androgen concentration in response to GnRH. 

 

4.2.9. Hormone analysis 
Blood samples from the stress protocol and the GnRH challenge were kept on ice for a 

maximum of two hours after sampling and then centrifuged for 10 minutes at 2000 x g. 

Following centrifugation, plasma was collected and frozen at -20°C. 

Plasma corticosterone concentrations were determined using a commercial 

corticosterone radioimmunoassay kit (MP Biomedicals, Orangeburg, USA, cat. no. 07-

102102). Cross-reactivity of the kit antibody was 0.34% for desoxycorticosterone, 0.1% for 

testosterone, and less than 0.1% for all other steroids tested (as reported by the 

manufacturer). Samples were measured together with quail plasma samples from other 

experiments and were distributed over 10 assays with an average intra-assay coefficient of 

variation (CV) of 4.78%, and an inter-assay CV of 7.13% (based on a chicken plasma pool 

and 2 kit controls measured in duplicate in each assay). Across assays, samples were 

balanced for treatment. 

Plasma androgen concentrations were determined using a commercial T enzyme 

immunoassay kit (Demeditec Diagnostics GmbH, Kiel, Germany, cat. no. DES6622). Cross-

reactivity of the kit antibody was 23.3% for 5α-dihydrotestosterone, 1.6% for 
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androstenedione, and less than 0.1% for other tested steroids (as reported by the 

manufacturer). Samples were measured together with quail plasma samples from other 

experiments and were distributed over 9 assays with an average intra-assay coefficient of 

variation (CV) of 4.38% (based on all plasma samples measured in duplicate), and an inter-

assay CV of 13.82% (based on 2 control plasma pools measured in each of the 9 assays). 

Across assays, samples were balanced for treatment. 

 

4.2.10. Statistical analysis 
Data were analysed using R 3.4.3 (R Core Team, 2017), package lme4 (Bates et al., 2015). 

General linear mixed models were fitted for growth, mass around egg collection, egg mass, 

F2 mass at hatching and plasma hormones. Analysis of egg laying, fertilization and hatching 

success was done using generalised linear mixed models with a binomial error distribution 

and logit link function. To control for the non-independence of F1 offspring from the same 

P0 mother, we always included P0 mother as a random effect. We also included a random 

effect of F1 female nested within P0 mother for repeated measurements from the same F1 

female (growth, egg laying rate, fertilization and hatching success and plasma hormones). 

All models included P0 social environment, F1 social environment and their 

interaction as fixed effects. Models analysing plasma hormones included an additional fixed 

effect of sample, and its two-way and three-way interaction with the P0 and F1 social 

environment. Models analysing growth included a linear, quadratic and cubic effect of age 

in days (day + day2 + day3) to model the non-linear relationship between age and mass. In 

addition, the two-way and three-way interactions between (day + day2 + day3) and the P0 

and F1 social environment were included. The female’s age in days was centered around 

the mean age within our dataset by subtracting 45 from each age. The intercept and main 

effects of the models therefore represent the estimated weight at day 45.  

We tested whether effects on F1 female mass could explain differences in F2 egg 

mass by including F1 females mass at day 90 (close to the period of egg collection) as a 

covariate in the model. Similarly, we included egg mass as a covariate in models testing 

effects on F2 mass at hatching. 

We started out with the full models, including all interactions, and then stepwise 

excluded all non-significant predictors or interactions (p > 0.05), except for the main 

parameters of interest, i.e. social treatment, age in days (day + day2 + day3; for growth) and 

sample number (for hormonal responses). Interactions were always excluded before the 

main effects involved in the interaction. We determined the significance of fixed effects 

using likelihood ratio tests, comparing the models with and without the parameter of 

interest. Distributions of model residuals were visually assessed for normality and 

homoscedasticity using histograms and Q-Q plots. Plasma corticosterone concentrations 

were log10-transformed to achieve normality. The results of all models are reported in 

Supplementary Data 4.1, and the dataset used for analyses is reported in Supplementary 

Data 4.2. 
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4.3. Results 

4.3.1. Growth, mass around egg collection, egg mass and 

offspring mass 
 

 
Figure 4.2. A: Female growth. Females housed in groups in the F1 (triangles and dashed lines) grew faster than 

F1 females housed in pairs (circles and solid lines). In addition, F1 group housing had a positive effect on weight, 

but only in daughters of pair-housed females, not of group-housed females. B: average female mass around egg 

collection (day 90). Females housed in groups were significantly heavier than females housed in pairs. There 

was no effect of the maternal social environment or its interaction with the female’s own social environment. C: 

egg mass. Females housed in groups laid significantly heavier eggs than females housed in pairs. There was no 

effect of the maternal social environment or its interaction with the female’s own social environment. D: F2 

offspring mass. Females housed in groups had significantly heavier F2 offspring than females housed in pairs. 

There was no effect of the maternal social environment or its interaction with the female’s own social 

environment. Data shown in figure 4.2A are the raw means ± 1 SEM, with lines indicating model predictions. 

Data shown in figure 4.2B, C and D are the estimated means ± 1 SEM. Numbers between brackets indicate the 

number of F1 females included (for number of F2 offspring, see Table 4.2). 

 

Females housed in groups grew faster than females housed in pairs (own social 

environment*(day + day² + day³): χ2
(3) = 21.94, p < 0.001; Figure 4.2A). In addition, there 

was a significant effect of the interaction between the P0 maternal social environment and 

F1 own social environment on female mass (χ2
(1) = 4.14, p = 0.04). The dataset was split 

according to maternal social environment for further post-hoc testing. This analysis 

revealed that F1 group housing had a positive effect on growth in daughters of pair-housed 
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mothers and no effect on growth in daughters of group-housed mothers (see 

Supplementary Data 4.1 for more details). At day 90, close to the period of egg collection 

for the F2 generation, females housed in groups were significantly heavier than females 

housed in pairs (χ2
(1) = 6.44, p = 0.011; Figure 4.2B) and there was no longer an effect of the 

interaction with the P0 treatment (χ2
(1) = 0.34, p = 0.56). Additionally, females housed in 

groups laid heavier eggs than females housed in pairs (χ2
(1) = 6.02, p = 0.014; Figure 4.2C) 

and the F2 offspring of females housed in groups were heavier at hatching than offspring of 

females housed in pairs (χ2
(1) = 12.53, p < 0.001, Figure 4.2D). The P0 social environment did 

not affect growth, mass at day 90, egg mass, or F2 mass at hatching, and did not interact 

with the effects of the F1 social environment (all χ2
(1) values < 1.36, all p-values > 0.24, all 

χ2
(3) values < 4.51, all p-values > 0.21; Supplementary Data 4.1). 

Egg mass was significantly positively correlated with F1 female mass at day 90 (χ2
(1) 

= 5.59, p = 0.02; Supplementary Figure 4.1A). When controlling for female mass at day 90, 

the effect of the female’s own social environment on egg mass was no longer significant 

(χ2
(1) = 2.45, p = 0.12), suggesting that the effect of the F1 social environment on egg mass 

was mediated by effects on female body mass. Similarly, F2 mass at hatching was 

significantly positively correlated with egg mass (χ2
(1) =135.61, p < 0.001; Supplementary 

Figure 4.1B), and when controlling for egg mass, the effect of the female’s own social 

environment on F2 mass at hatching was no longer significant (χ2
(1) = 1.39, p = 0.24). This 

suggests that the effect of the F1 social environment on F2 mass at hatching was mediated 

by the effects on egg mass. 

 

4.3.2. Stress protocol and GnRH challenge 
 

 
Figure 4.3. A: plasma corticosterone concentrations of F1 females 90-91 days old before and after being 

restrained for 10 minutes (back-transformed from log10). 10 minutes of restraint significantly increased plasma 

corticosterone concentrations, but there was no effect of the maternal or own social environment or their 

interaction on the increase, or on average plasma corticosterone concentrations. B: plasma androgen 

concentrations of F1 females 96-97 days old before and after an injection with 5 µg GnRH. Androgen 

concentrations increased significantly in response to the GnRH injection, but there was no effect of the 

maternal or own social environment or their interaction on the increase, or on average plasma androgen 

concentrations. Data shown are the estimated means ± 1 SEM. Numbers between brackets indicate sample 

sizes. *: insufficient plasma for one GP0GF1 female in the response sample. 
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Females responded to the 10 minutes of restraint with a significant increase in plasma 

corticosterone concentrations (χ2
(1) = 53.24, p < 0.001; Figure 4.3A), but the corticosterone 

response did not differ between females from different maternal or own social 

environments (maternal social environment * sample: χ2
(1) = 1.69, p = 0.19; own social 

environment * sample: χ2
(1) = 1.69, p = 0.19; Figure 4.3A). There was also no effect of the 

interaction between the maternal and own social environment on the female’s stress 

response (maternal social environment * own social environment * sample: χ2
(1) = 2.33, p = 

0.13; Figure 4.3A). Average plasma corticosterone concentrations were not affected by the 

female’s own social environment, the maternal social environment, or their interaction (all 

χ2
(1) values < 0.64, all p values > 0.43 Figure 4.3A; Supplementary Table 5 in Supplementary 

Data 4.1). 

 GnRH injections resulted in a significant increase in plasma androgen 

concentrations (χ2
(1) = 26.43, p < 0.001; Figure 4.3B), but the androgen response to the 

GnRH challenge did not differ between females from different maternal or own social 

environments (maternal social environment * sample: χ2
(1) = 0.22, p = 0.64; own social 

environment * sample: χ2
(1) = 0.96, p = 0.33; Figure 4.3B). The female’s androgen response 

to GnRH was not affected by the interaction between the maternal and own social 

environment (maternal social environment * own social environment * sample: χ2
(1) = 0.72, 

p = 0.40; Figure 4.3B). Average plasma androgen concentrations were not affected by the 

female’s own social environment, the maternal social environment, or their interaction (all 

χ2
(1) values < 0.55, all p values > 0.46; Figure 4.3B; Supplementary Table 6 in Supplementary 

Data 4.1). 

 

4.3.3. Reproduction 
 

 
Figure 4.4. A: number of eggs laid per female per day. Egg laying rates were not affected by the maternal or 

own social environment or their interaction. B: proportion of eggs fertilized. There was a small nonsignificant 

effect of the maternal social environment, with offspring from pair-housed mothers laying slightly more 

fertilized eggs than offspring from group-housed mothers. Fertilization success was not affected by the own 

social environment or the interaction between the maternal and own social environment. C: hatching success of 

fertilized eggs. Hatching success was higher for females housed in groups compared to females housed in pairs. 

Hatching success was not affected by the maternal social environment or its interaction with the female’s own 

social environment. Data shown are the estimated means ± 1 SEM (back-transformed from logit). Numbers 

between brackets indicate the number of F1 females included (for number of eggs, see Table 2). 
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Table 4.2. Sample sizes for F1 egg laying rates, egg mass, fertilization, hatching success and F2 offspring mass at 
hatching. a due to an oversight only 77 eggs were weighed. b 21 chicks hatched, but one chick was excluded 
from the mass measurements because of birth defects. 

Maternal and own 

social environment 

F1 females 

contributing to 

egg data 

Eggs 

laid 

Eggs 

fertilized 

Eggs 

hatched 

F1 females with F2 

offspring hatching 
F2 offspring 

PP0PF1 15 93 73 24 13 24 

GP0PF1 12 79a 48 21 8 20b 

GP0GF1 6 38 23 15 5 15 

PP0GF1 6 36 23 11 4 11 

 

Egg laying rates were not affected by the maternal social environment (χ2
(1) = 0.89, p = 0.35; 

Figure 4.4A), the F1 female’s own social environment (χ2
(1) = 0.11, p = 0.75; Figure 4.4A), or 

the interaction between the maternal and own social environment (χ2
(1) = 0.01, p = 0.92; 

Figure 4.4A). Offspring from pair-housed mothers laid slightly more fertilized eggs than 

offspring from group-housed mothers, but the difference did not reach statistical 

significance (χ2
(1) = 2.89, p = 0.09; Figure 4.4B). There was no effect of the F1 female’s own 

social environment (χ2
(1) = 1.08, p = 0.30; Figure 4.4B) or of the interaction between the 

maternal and own social environment on fertilization success (χ2
(1) = 0.77, p = 0.38; Figure 

4.4B). 

 The hatching success of fertilized eggs was higher for females housed in groups 

compared to females housed in pairs (χ2
(1) = 4.07, p = 0.04; Figure 4.4C). The maternal social 

environment and its interaction with the female’s own social environment did not affect 

hatching success of fertilized eggs (χ2
(1) = 2.63, p = 0.11 and χ2

(1) = 0.13, p = 0.72, 

respectively; Figure 4.4C). Overall hatching rates (the proportion of all eggs collected for the 

F2 generation that hatched, i.e. including non-fertilized eggs) were not affected by the 

female’s own social environment, the maternal social environment, or their interaction (all 

χ2
(1) values < 1.88, all p values > 0.17; Supplementary Table 10 in Supplementary Data 4.1). 

 

4.4. Discussion 
This study is the first to our knowledge to test for evidence of adaptive maternal effects and 

the underlying mechanisms in relation to social group size in a match-mismatch experiment 

across two generations in Japanese quail. Growth of the F1 females was affected mainly by 

their own social environment, as females housed in groups grew faster and ended up 

heavier compared to pair-housed females. Notably, however, mass of the F1 females also 

depended on the interaction between the maternal and own social environment, which 

was reflected in the positive effect of group housing on female mass only in daughters of P0 

pair-housed females. This positive effect on offspring body mass in the mismatched 

environment, at least for offspring of pair-housed females, contradicts the adaptive 

hypothesis and suggests a potential silver spoon effect that benefits offspring of pair-

housed mothers in the more competitive group environment (Marshall and Uller, 2007; 

Uller et al., 2013). There was no effect of the P0 social environment on F1 mass before the 

F1 social treatment started (see also Langen et al., 2018).The fact that an effect of the P0 
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treatment was only observed in the F1 group environment supports the idea that more 

competitive or otherwise challenging conditions may be required to detect maternal effects 

on offspring phenotype (Benowitz-Fredericks et al., 2015; Verboven et al., 2003). On the 

other hand, the results could be consistent with an adaptive effect if the smaller body mass 

observed in the matched environments had fitness benefits that were not detected in our 

experiment (increased growth is not always beneficial; Emmerson, 1997; Metcalfe and 

Monaghan, 2003; Ringsby et al., 2015; Stamps, 2007). At any rate, our results emphasize 

the importance of investigating maternal effects under different environmental conditions 

in the offspring.  

The interaction effect of the P0 and the F1 social environment on female mass 

disappeared by the time eggs for the F2 were collected and, at that point only the positive 

effect of the current group size on female mass remained. This effect can explain the larger 

egg size and hatching success and a positive maternal effect on F2 hatchling mass for 

group-housed females. The positive effects of group-housing on egg mass and offspring 

mass at hatching can ultimately have important fitness consequences because both are 

important predictors of offspring growth and survival (Krist, 2011; Williams, 1994). Our 

results thus strongly suggest that there is additional scope for adaptive maternal effects in 

relation to group size in Japanese quail and that the observed effects of the social 

environment on growth have important consequences for egg and offspring quality. 

 

The effects of pair-housing versus group-housing on females and their offspring differed 

between the P0 and F1 generations. In the P0 generation (Langen et al. 2017), female 

endocrine physiology was affected but there were no effects on growth, reproduction or F1 

offspring mass at hatching. In contrast, the social environment of the F1 females affected 

growth, reproduction, and F2 offspring mass, but not endocrine physiology. A possible 

explanation for these differences could be that the sex ratios within pairs and groups 

differed between the generations. Whereas males were continuously present in the 

female’s social environment in the P0 generation, they were housed separately from the 

females in the F1 generation, and male-female interaction was only possible during the 

mating sessions. Pair-housing in the P0 generation likely resulted in more social stimulation 

by the male, leading to elevated female plasma androgen levels and a trend of higher 

plasma corticosterone (Langen et al., 2017). This effect by the male might have been 

diluted in the P0 group environment. In the F1 generation, female exposure to the male 

was standardized, explaining the absence of a treatment difference in endocrine 

parameters and a stronger effect of group size on female mass. The contrasting effects of 

the P0 and the F1 social treatments may not only have been caused by the differences in 

sex ratio, but also by slight differences in timing between the P0 and F1 generation in the 

onset of the social treatments (day 29 in the P0 generation vs. day 24 in the F1 generation), 

the age at which females were first mated, the timing of sampling (for details see Figure 

4.1) and the number of females present. 

F1 females that were housed in groups grew faster than pair-housed females and 

were heavier around the time of egg collection. This was unexpected since a negative 
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correlation between group size or social density and growth has been reported in many 

animal species, including Japanese quail, likely due to increased competition for resources 

(Asghar Saki et al., 2012; Keeling et al., 2003; Onbaşılar and Aksoy, 2005). However, 

increased social stimulation can also lead to increased body mass, as demonstrated in 

European starlings (Sturnus vulgaris; Witter and Goldsmith, 1997), potentially because 

higher levels of social stimulation can increase food intake rates (Beauchamp, 1998; Hoppitt 

and Laland, 2008; Tolman, 1964). Increased growth is generally expected to be beneficial 

under higher social densities because it may increase female competitive abilities (Clutton-

Brock and Huchard, 2013; Stockley and Bro-Jørgensen, 2011), and our results indicate that 

it can lead to increased reproductive investment, in line with previous findings (Christians, 

2002; Drent and Daan, 1980; Lim et al., 2014; Ronget et al., 2018; Sockman et al., 2006). 

 Egg laying rates were not affected by the maternal or the own social environment 

and fertilization success was not affected by the own social environment, but daughters 

from pair-housed mothers had a non-significantly higher proportion of fertilized eggs than 

daughters from group-housed mothers. This effect was small and did not reach statistical 

significance, but a similar trend to higher fertility of pair-housed mothers was seen in the 

P0 generation. This suggests a genetic or non-genetic maternal effect on fertility which 

should be further investigated as it is a core fitness component.  

Effects on female mass and reproduction in the F1 generation did not correspond 

with changes in female endocrine parameters, suggesting that effects of the social 

environment on female mass and reproduction were not mediated by differences in female 

plasma androgens and corticosterone in our experiments. Vice versa, in the P0, hormone 

differences did not lead to reproductive differences. Other studies report non-significant, 

positive, and negative correlations between circulating androgens or glucocorticoids and 

measures of reproduction (e.g. egg production: Gerlach and Ketterson, 2013; Veiga and 

Polo, 2008, hatching success: de Jong et al., 2016; Schmidt et al. 2009, number of fledglings: 

Burtka et al 2016; O’neal et al. 2008; Ouyang et al., 2011), suggesting that the relationships 

are non-linear and can change across contexts and over time (Bonier et al., 2009a; Hau and 

Goymann, 2015; Ouyang et al., 2013, 2011). Moreover, it is important to note that due to 

the exclusion of some groups as a result of aggression the sample size of group-housed 

females for the endocrine measurements became rather small at the end of the study 

when hormone measurements were taken (ranging from four to seven females). 

 

4.5. Conclusions 
We have shown that maternal effects of the social environment can depend on the 

offspring environment, suggestive of either silver spoon or adaptive anticipatory effects in 

relation to group size. Group housing – most likely the more competitive environment - 

revealed the effects of the maternal social environment on female body mass, whereas no 

differences were seen in the presumably less competitive pair environment. The effects of 

the maternal social environment disappeared over time to be replaced by the effects of the 

F1 own social environment, which resulted in a maternal effect on the F2 generation that 

was independent of the P0 social environment. The observed changes in mass in the F1 and 
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F2 generations are likely to have important consequences for performance and fitness, but 

their adaptive significance remains unclear. Effects of social group size on female 

physiology and reproduction differed between the P0 and the F1 generation most likely 

because the adult sex ratio did not remain constant over the generations. This might have 

led to differences in social stimulation between pairs and groups of both generations, 

potentially explaining why the effects of the matched and mismatched social conditions 

were less clear than expected. Future studies of the adaptive maternal effects of the social 

environment and the underlying proximate mechanisms should assess the fitness 

consequences for offspring in more depth. Furthermore, the importance of the type of 

social stimuli experienced (e.g. group size, adult sex ratio, intrasexual and intersexual 

interactions) should be investigated in more detail.  
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5.1. Introduction 
An individual’s physical appearance, behaviour, and physiology is not only shaped by genes 

passed on by its parents, but to a large extent also by environmental factors. Environmental 

influences on phenotypic characteristics of breeding females can even be transferred to the 

offspring. These non-genetic maternal effects can have important evolutionary 

consequences, as they affect fitness across generations (Mousseau and Fox, 1998). The 

social environment, including density, group size and a range of social stimuli, such as 

agonistic, socio-positive and sexual interactions, constitutes an important environmental 

factor that can affect breeding females, with consequences for offspring phenotypes, yet 

the underlying proximate and ultimate mechanisms remain unclear. In addition, whether 

the social environment may induce anticipatory maternal effects, thus adaptively shape 

offspring phenotypes with respect to their future environment, lacks scientific evidence 

(Uller et al., 2013). 

This thesis investigated the effects of an important aspect of the social 

environment – group size, manipulated by housing females in pairs or groups of four – on 

females and their offspring in a precocial avian species, the Japanese quail (Coturnix 

japonica). Our experiments revealed that the social environment affects female physiology 

and reproduction, and offspring phenotype (chapters 2 and 4). Furthermore, we show that 

the maternal and offspring social environments can have interacting effects, which may be 

an indication for adaptive anticipatory maternal effects (chapter 4). However, the effects of 

the social treatments on females and their offspring differed between the maternal 

(chapters 2 and 3) and offspring (chapter 4) generation, and the direction of effects ran 

counter to our expectations. 

Differences in the types of social stimuli used might explain why results vary 

between studies, including the ones described in this thesis. Furthermore, the timing of 

measurements and manipulations of the social environment and phenotypic aspects, both 

in mothers and their offspring is likely to affect the outcome of studies investigating 

maternal effects of the social environment. This chapter will expand upon these ideas and 

provide an integrative discussion of the main findings of this thesis. 

 

5.2. Effects of the social environment on female 

physiology and reproduction 
In the parental generation (P0, chapter 2), we expected group housing to lead to higher 

plasma androgen and corticosterone levels, based on previous studies on the effects of 

increasing social densities and social challenges (Cain and Ketterson, 2012; Guibert et al., 

2010; Ketterson et al., 2005; Langmore et al., 2002; Mazuc et al., 2003; Nephew and 

Romero, 2003; Rutkowska et al., 2011; Smith et al., 2005). However, while the social 

environment indeed affected P0 female endocrine physiology, the direction of the effects 

ran counter to our expectation as in our study, pair-housed females had elevated plasma 
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androgen (testosterone and 5-α-dihydrotestosterone) and tended to have higher plasma 

corticosterone concentrations during reproduction compared to group-housed females.  

 We hypothesized that the lower male to female ratio in groups compared to pairs 

could explain the effect on female plasma hormone levels (chapter 2). Pair-housed females 

were likely exposed to increased stimulation by the male, which might have caused the 

higher levels of circulating androgens and corticosteroids compared to group-housed 

females. Several studies suggest that intersexual interactions can have profound effects on 

female endocrine physiology, causing increases in circulating androgens or glucocorticoids 

(e.g. Correa et al., 2011; Marshall et al., 2005; Rutkowska et al., 2011). Male Japanese quail 

are known for a high drive to copulate, at least in captivity, and forced copulation has been 

suggested as a source of stress for the females (Adkins-Regan, 2015, 1995; Galef Jr., 2008; 

Rutkowska et al., 2011), which may explain increases of female plasma corticosterone 

concentrations in response to copulation (Correa et al., 2011). In addition, increased levels 

of circulating androgens in response to copulation have been reported, which also strongly 

depends on male body condition and the intensity of male copulatory behaviour (the 

number of times a male mounts the female; Correa et al., 2011). Though we were not able 

to disentangle the effects of group size and male-female interactions, our hypothesis that 

the amount of stimulation by the male caused the reported differences in female endocrine 

physiology was further supported by the finding that more bald females (baldness is caused 

by repeated copulation with the male: Kovach, 1974; Mills et al., 1997; chapter 2), had 

higher baseline plasma androgen and corticosterone levels. Additional support comes from 

the result that the social treatment of the adult F1 females, where pairs and groups 

consisted of only females, did not induce differences in female androgen and 

corticosterone levels (chapter 4). Instead, the differences in the number of conspecific 

females in a cage affected female growth and reproductive investment. Females from both 

F1 social environments received similar amounts of stimulation from the males during the 

mating sessions, and by mating females from the four P0-F1 treatment combinations with 

the same male, potential differential effects of individual males on females and offspring 

investment (e.g. Alonso-Alvarez et al., 2012; Correa et al., 2011; Cunningham and Russell, 

2000; Petrie and Williams, 1993; Uller et al., 2005) were largely controlled for. 

 

Despite the elevated hormone levels in P0 pair-housed females, the endocrine response to 

standardized challenges (restraint stress protocol and GnRH challenge) did not differ 

between pair-housed and group-housed females (chapter 2), suggesting that the sensitivity 

of the hypothalamic-pituitary-adrenal (HPA) and the hypothalamic-pituitary-gonadal (HPG) 

axis were not affected. Also in the F1 generation, we found no indication for an effect of 

the social environment on the responsiveness of the HPA and HPG axis (chapter 4). Thus, 

while previous studies have shown that social stimuli may affect the stress response (HPA; 

DeVries et al., 2003; Scheiber et al., 2009) and thereby reproduction (HPG), our results do 

not confirm these findings. However, both the HPA and HPG axis are complex 

endocrinological systems, and changes could occur on several levels, which were not 

investigated in our studies, including regulation of brain receptors (Canoine et al., 2007; 
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Harris et al., 2013), carrier proteins (Deviche et al., 2001; Malisch and Breuner, 2010; 

Schoech et al., 2013), clearance rate/recovery to baseline (Breuner et al., 1999; Ericsson et 

al., 2014; Zimmer et al., 2013), and behaviour (Careau et al., 2014).  

 

In the P0 generation, female endocrine physiology was affected by the social environment, 

with no significant effects on reproduction (chapter 2), whereas the social environment of 

the F1 females affected reproductive investment, but not endocrine physiology (chapter 4; 

see Table 5.1 for an overview of the differences in effects). Thus, although steroids are 

important regulators of reproduction, effects of the social environment on female 

reproduction were not likely to be caused by differences in female plasma androgens and 

corticosterone in our experiments. However, as described in chapter 1, the effects of 

increasing hormone concentrations may be highly time- and context-dependent and non-

linear (Bonier et al., 2009; Hau and Goymann, 2015; Ouyang et al., 2013, 2011). Negative 

relationships between circulating androgen and corticosterone concentrations and 

reproduction might only show at the more extreme ends of the physiological range (either 

very low or very high levels may compromise reproduction) and intermediate changes in 

circulating hormone concentrations in the P0 females might not have been sufficient to 

affect reproduction. Nevertheless, since many more physiological parameters that we did 

not measure could be of importance, we cannot exclude that the changes in plasma 

hormones may have, in the long term, affected lifetime reproductive success.  

 
Table 5.1. Overview of effects of the female’s own social environment in the P0 (chapter 2) and F1 (chapter 4) 

generation. Arrows indicate the direction of effects (arrows in between brackets indicate a nonsignificant trend; 

p = 0.05-0.1) 

 Generation 

Measure P0 F1 

Growth Pair = Group Pair < Group 

Egg production (eggs/female/day) Pair (>) Group Pair = Group 

Fertilization success Pair (>) Group Pair (>) Group 

% all eggs hatched = = 

% fertilized eggs hatched na Pair < Group 

Egg mass = Pair < Group 

Hatchling mass = Pair < Group 

Plasma corticosterone concentrations   

Baseline Pair (>) Group Pair = Group 

Post-challenge Pair (>) Group Pair = Group 

Plasma androgen concentrations   

Baseline Pair > Group Pair = Group 

Post-challenge Pair > Group Pair = Group 

 

While the social environment of the adult F1 females did not affect their circulating 

androgen and corticosterone levels, there were significant effects on their growth and 

reproductive investment (chapter 4). Despite ad libitum feeding in both social 
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environments, group-housed F1 females grew faster than pair-housed females, were 

heavier around the time of egg laying, produced heavier eggs with a higher hatching 

success, and had heavier F2 offspring hatching. At first view, the fact that group-housing 

caused increased growth might be counter-intuitive, as in many animal species, including 

Japanese quail, a negative correlation between group size or social density and growth has 

been reported, likely due to increased competition for resources (Asghar Saki et al., 2012; 

Bonenfant et al., 2009; Keeling et al., 2003; Onbaşılar and Aksoy, 2005). However, it may be 

that the relationship between group size and growth is non-linear, being positive for 

smaller group sizes, while turning negative when group size becomes too large. Our results 

are in line with findings in European starlings (Sturnus vulgaris), where increased social 

stimulation can also led to increased body mass (Witter and Goldsmith, 1997). In F1 groups, 

growth might have been increased due to social facilitation of feeding behaviour 

(Beauchamp, 1998; Hoppitt and Laland, 2008; Tolman, 1964) or changes in activity patterns 

(Leone and Estevez, 2008), affecting the female’s metabolism. 

 Ultimately, increased growth can be beneficial under higher social densities as it 

could increase the competitive abilities of an individual (Clutton-Brock and Huchard, 2013; 

Stockley and Bro-Jørgensen, 2011). Furthermore, increased growth could have important 

reproductive benefits as heavier females may be able to invest more in reproduction 

(Christians, 2002; Drent and Daan, 1980; Lim et al., 2014; Ronget et al., 2018; Sockman et 

al., 2006). Indeed, the fact that group-housed females were not only heavier, but also 

produced heavier eggs with a higher hatching success and had heavier F2 offspring hatching 

indicates that the effects of the F1 social environment on growth can have consequences 

for offspring investment. 

The morphological effects on the F1 females were transmitted to their offspring, 

with effects lasting at least until the hatchling stage. The next sections will focus on some of 

the potential pathways through which prenatal maternal effects are mediated. 

 

5.3. Effects of the social environment on egg 

composition and offspring phenotype 
A main pathway of maternal effects is the transmission of resources to the developing 

offspring. The amount and quality of resources provided by the mother depends to large 

extent on her physiology (e.g. circulating hormone levels) and morphology (e.g. body mass), 

factors that can be affected by variation in the social environment, as we have also shown 

in chapters 2 and 4. During breeding, changes in the maternal phenotype in response to 

social stimuli are therefore likely to result in maternal effects on egg composition, with 

consequences for offspring phenotype. 

 

5.3.1 Egg mass 
In both the P0 and F1 generation, we investigated the effects of the social environment on 

egg mass, being an indicator of maternal nutrient provisioning, and an important predictor 
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of offspring size and/or survival (Bernardo, 1996; Krist, 2011; Williams, 1994). In the P0 

generation, eggs from pair-housed versus group-housed females did not differ in mass, 

potentially explained by the fact that the social environment did not affect female mass in 

the P0 generation (chapter 2). Reproductive investment is often positively correlated with 

female mass or size (Christians, 2002; Drent and Daan, 1980; Lim et al., 2014; Ronget et al., 

2018; Sockman et al., 2006; Verboven et al., 2003), as was also shown in the F1 generation, 

where the increased growth and body mass of group-housed females corresponded with 

heavier egg mass and subsequently F2 offspring mass at hatching (chapter 4). Since egg 

mass and hatch mass are often a positive predictor of subsequent offspring growth and 

survival, the effects reported in the F1 generation could have important fitness 

consequences (Bernardo, 1996; Krist, 2011; Williams, 1994). Follow-up studies on the F2 

generation should investigate whether the higher hatchling mass of F2 offspring from F1 

females housed in groups indeed results in increased growth and survival, and whether this 

positively affects their future reproductive output (Langen et al., in prep). 

 

5.3.2 Yolk testosterone 
Next to egg mass, another important mediator of maternal effects is prenatal exposure to 

maternally derived hormones (Groothuis et al., 2005). Against our predictions and despite 

differences in plasma steroid levels, we did not find effects of pair-housing versus group-

housing on yolk testosterone levels in the P0 generation. In a range of avian species, the 

amount of social stimulation (e.g. breeding density, social instability or female-female 

competition) has been positively correlated with yolk androgen concentrations and yolk 

testosterone in particular (Bentz et al., 2018, 2016, 2013; Eising et al., 2008; Guibert et al., 

2010; Hargitai et al., 2009; Mazuc et al., 2003; Pilz and Smith, 2004; Reed and Vleck, 2001; 

Schwabl, 1997; Whittingham and Schwabl, 2002). However, contrasting results have also 

been reported, finding no or negative correlations between social competition and yolk 

testosterone levels, indicating that interspecific variation is high (Bentz et al., 2016). 

Furthermore, differences between studies in the type of social stimuli used could again 

explain why results differ. For example, while social instability has been shown to increase 

yolk testosterone deposition in Japanese quail (Guibert et al., 2010), our results indicate 

that differences in social group size have no effects (chapter 2).  

 Moreover, we cannot exclude effects of the social environment on other egg 

components, which likely did occur as the P0 social environment affected F1 female growth 

at later ages (after day 24; chapter 4). While this thesis focuses predominantly on yolk 

testosterone as an endocrine mediator of maternal effects, yolk contains many more 

hormones, including androstenedione, dihydrotestosterone, progesterone, estradiol and 

corticosterone (Almasi et al., 2012; Rettenbacher et al., 2009; Schwabl, 1993; von 

Engelhardt and Groothuis, 2011). In addition to steroids, also thyroid hormones (Ruuskanen 

et al., 2016; Ruuskanen and Hsu, 2018), antioxidants (Blount et al., 2000; Surai et al., 2001, 

1998; Surai and Speake, 1998) or immune substances (Buxton, 1952; Hasselquist and 

Nilsson, 2009; Kowalczyk et al., 1985) are deposited in the yolk of the developing egg. Not 

only are these different egg traits likely to affect offspring development in different ways, 
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their effects may also interact (Giraudeau et al., 2017). In order to gain better 

understanding of what mediates maternal effects, the relative importance of factors such 

as egg size, yolk hormones, immune substances or antioxidants for offspring development 

should be further investigated. 

 

Several studies have suggested that yolk and maternal plasma androgen concentrations are 

independently regulated (reviewed in Groothuis and Schwabl, 2008), and that yolk 

testosterone predominantly originates from the follicular walls surrounding developing 

oocytes (Hackl et al., 2003; Okuliarová et al., 2010). Androgen production in the cells of the 

follicular walls can be stimulated by GnRH (via luteinizing hormone – LH – and follicle 

stimulating hormone - FSH). The magnitude of the androgen response to GnRH has been 

suggested as a better predictor of yolk testosterone deposition than baseline plasma 

concentrations (Jawor et al., 2007; Müller et al., 2011; Peluc et al., 2012). In the P0 

generation, however, the androgen response to GnRH did not predict yolk testosterone 

levels, neither did baseline plasma androgen levels (chapter 2). Our results thus support the 

independent regulation hypothesis, though the timing of yolk testosterone measurements 

and the GnRH challenge could explain differences between our study and others. Studies 

that found a correlation between GnRH responsiveness and yolk testosterone, measured 

yolk testosterone in subsequently laid eggs, whereas we challenged our P0 females with 

GnRH after the eggs for yolk hormone measurement were collected. Furthermore, the 

female’s GnRH response was smaller than previously reported for Japanese quail, in 

response to a similar dosage of GnRH (chicken GnRH-I; Peluc et al., 2012). A low response 

to GnRH may not be reflected in yolk testosterone levels, as opposed to a high GnRH 

response. Finally, a recent study by (Okuliarova et al., 2018) suggested that the peak in LH 

before ovulation is related to yolk testosterone deposition. Here, females that were 

selected for high yolk testosterone concentrations showed a higher LH peak than females 

selected for low yolk testosterone concentrations, but the selection lines did not differ in 

their plasma testosterone levels or their LH or androgen response to GnRH. While this again 

suggests that yolk testosterone deposition is reflected in the activity of the HPG axis, it also 

suggests that differences in HPG axis activity are not necessarily accompanied by an 

increased LH or androgen responsiveness to GnRH. 

 

5.3.3 Offspring phenotype 
We have shown that the effects of the social environment on female mass in the F1 

resulted in maternal effects on egg mass and F2 offspring mass at hatching. This indicates 

that social influences on female body mass can be transmitted to the offspring, egg mass 

being an important mediator of this effect. 

 The social environment of the P0 females did not induce maternal effects on F1 

juvenile growth, survival and plasma concentrations of androgens and corticosterone 

(chapter 3). This is perhaps not surprising given that the P0 social environment did also not 

affect yolk testosterone, yolk mass and egg mass, all important mediators of effects on 

offspring growth and survival (Matson et al., 2016; Müller et al., 2007; Navara et al., 2005, 
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2006; Okuliarova et al., 2011; Possenti et al., 2016; Schwabl, 1996b; Sockman and Schwabl, 

2000) or physiology (Daisley et al., 2005; Müller et al., 2007; Pfannkuche et al., 2011). Along 

these lines, we also did not find any significant effects of the P0 social environment on F1 

juvenile tonic immobility (TI) or emergence behaviour (Langen et al., in prep; see Box 1), 

which have previously been show to correspond with changes in yolk testosterone levels 

(Daisley et al., 2005; Guibert et al., 2010; Okuliarová et al., 2007). Our results suggest again 

that differences in the type of social stimuli can lead to different effects on egg composition 

and offspring phenotype, as the effects of maternal social group size in our experiments 

differed from the effects of maternal social instability described in an earlier study on 

Japanese quail (Guibert et al., 2010). Here, offspring from mothers in an unstable social 

environment were slower to emerge than offspring from mothers in a stable social 

environment. 

While we did not detect maternal effects on F1 juvenile phenotypes, effects of the 

social environments emerged after adult F1 females entered their own social treatment 

(chapter 4). Adult body mass of the F1 females was affected by the interaction between the 

maternal and own social environment: group-housed daughters of pair-housed mothers 

were heavier females with a different P0-F1 treatment combination. The maternal effects 

on F1 body mass only emerged when offspring were exposed to their adult social 

environments, and only in F1 groups. Since the F1 juveniles were also kept in groups, one 

could wonder why the effects of maternal pair housing on F1 mass did not emerge sooner. 

Likely, juvenile groups comprise very different social stimuli than adult groups, as social 

behaviour develops and changes during maturation (François et al., 1998). Furthermore, 

effects on growth and body mass might only emerge at certain ages (Monaghan, 2008) due 

to age-specific differences in genes regulating these traits (Johnsson et al., 2018).  

 

5.3.4 Offspring sex allocation 
Apart from shaping offspring phenotype, changes in maternal hormones may even lead to 

skews in offspring sex ratio - the proportion of sons and daughters (Alonso-Alvarez, 2006; 

James, 2008; Krackow, 1995; Navara, 2013a; Pike and Petrie, 2003). However, we found no 

indication that the effects of the social environment on female physiology in the parental 

generation resulted in changes in offspring sex ratio at any stage (embryonic, at hatching 

and at 23 days of age, chapter 3). Previous studies in avian species have suggested a 

general pattern that increased maternal androgen levels lead to male-biased offspring sex 

ratios (Goerlich-Jansson et al., 2013; Goerlich et al., 2009; Pike and Petrie, 2005; Rutkowska 

and Cichoń, 2006; Veiga et al., 2004) while elevated maternal corticosterone levels lead to 

female-biased offspring sex ratios (Bonier et al., 2007; Goerlich-Jansson et al., 2013; Love et 

al., 2005; Pike and Petrie, 2006, 2005). In Japanese quail, increased maternal corticosterone 

has been linked to a female-biased offspring sex ratio (Pike and Petrie, 2006), while for 

maternal androgens, various directions of effects have been reported, as they have been 

linked to both a female-biased (Correa et al., 2011) as well as an unbiased offspring sex 

ratio (Pike and Petrie, 2006). The variability of outcomes demonstrate that we still lack 
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knowledge on the mechanisms underlying sex ratio adjustment, warranting further 

research. 

 As described in chapter 3, differences between studies that might explain 

contrasting results include the timing of measurements and manipulation of both 

endocrine and social parameters. Influences of the maternal environment and physiology 

on developing offspring may only occur during critical windows (Okuliarova et al., 2018), 

which has already been suggested for sex ratio adjustment, where maternal steroids may 

influence the segregation of the sex chromosomes only during the first meiotic division 

(Correa et al., 2005; Goerlich-Jansson et al., 2013; Navara, 2013a, 2013b; Pinson et al., 

2011; Rutkowska and Badyaev, 2008). The lack of significant patterns in our study may be 

explained by not measuring maternal hormones during the time window during which 

genetic sex determination takes place (meiosis I). Furthermore, other steroids than 

maternal androgens and glucocorticoids may be involved in biasing offspring sex ratio (e.g. 

progesterone (Correa et al., 2005). 

 

5.4. Timing of maternal effects 
As mentioned in section 5.3, there are many different pathways through which prenatal 

maternal effects can be established and different factors can have interacting effects. Next 

to investigating what mediates maternal effects by studying the relative importance of 

factors such as egg size, yolk hormones, immune substances or antioxidants for offspring 

development, it is important to investigate at which times maternal effects are likely to 

manifest. Maternal influences on the egg or offspring phenotype might only take place 

during sensitive windows. In section 5.3, as well as in chapter 3, we have already discussed 

that effects of maternal hormones on offspring sex ratio might only take place during the 

first meiotic division. Another example of a sensitive window for maternal effects is the 

phase of rapid yolk deposition, a period during which maternal effects on yolk composition 

are likely the strongest (Groothuis et al., 2005; Groothuis and von Engelhardt, 2005). 

Measuring or manipulating the maternal environment or physiology during these sensitive 

windows can be crucial for finding an effect. Not only when, but also how long and how 

often measurements and manipulations take place are important factors to consider. In 

some cases, investigating maternal effects on eggs or offspring phenotype might require 

integrated measure of maternal hormones over a longer time period (for example, during 

the phase of rapid yolk deposition which spans across multiple days). Also in the offspring, 

the timing of physiological measures can have a strong impact on results. Circulating 

hormone levels change during the maturation of the endocrine axis and variation can be 

very high at certain ages, which complicates finding any effect of maternal influences 

(Hazard et al., 2005; Ottinger et al., 2001). 

As discussed in chapter 4, we cannot rule out the possibility that differences 

between the P0 and F1 generation in the effects of pair-housing versus group-housing were 

caused by slight differences in the onset of the social treatments (at the age of 29 days in 

the P0 generation, versus 24 days in the F1 generation), the age at which adult females first 

encountered a male (at 29 days of age, before reaching sexual maturity in the P0 
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generation, or at 55 days of age in the F1 generation), or the timing of sampling (see 

chapter 4, Figure 4.1 for details). The influence of social stimuli on an individual’s 

phenotypic development likely vary across life stages, and, like maternal influences might 

depend on sensitive windows (e.g. early life: Naguib et al., 2011, or adolescence: Bölting 

and von Engelhardt, 2017; Ruploh, 2014). 

 

5.5. The adaptive significance of maternal effects of 

the social environment 
In chapter 4, adult F1 females were housed under social conditions that either matched or 

mismatched their maternal social conditions with respect to group size (pairs of two 

females and groups of four females). The maternal social environment affected F1 female 

mass in a context-dependent way, indicating a match/mismatch effect: offspring from pair-

housed mothers were heavier when they were housed in groups themselves, compared to 

pair-offspring housed in pairs. Together with other studies reporting context-dependent 

maternal effects (e.g. Benowitz-Fredericks et al., 2015; Giordano et al., 2014; LaMontagne 

and McCauley, 2001; Plaistow and Benton, 2009; Plaistow et al., 2006), our results 

emphasise once more the importance of investigating maternal effects under different 

environmental conditions in the offspring. 

The result that ‘mismatched’ group-housed daughters from pair-housed mothers 

were heaviest on average contradicted our initial expectations. Offspring housed under 

social conditions that were matched to their maternal social conditions (with respect to 

group size) were expected to perform better than offspring housed under mismatching 

social conditions, and we therefore predicted increased growth and fecundity. As discussed 

in section 5.2, variation in the adult sex ratios between pairs and groups of the P0 and F1 

generation likely affected the amount and type of social stimulation that individual females 

received in groups or pairs. This could have affected the degree to which the offspring 

environments could match the maternal social environments. Whereas in the P0 

generation, the pair environment might have resulted in more stimulation (by the male), in 

the F1 it is likely the group environment where social stimulation was increased (by the 

higher number of females compared to pairs). Pair-housed mothers, experiencing high 

levels of sexual stimulation by the male, might have prepared their female offspring for a 

similar environment by increasing female offspring body mass (in Japanese quail, larger 

females have been suggested to have more control over intersexual interactions; Correa et 

al., 2011). However, since in the F1 generation, the more stimulating environment was 

likely the group environment, daughters from pair-housed mothers might have benefited 

more from the maternal effects in the group environment compared to the pair 

environment, revealing the effects of maternal pair-housing only in groups. This idea that 

maternal effects on offspring phenotype may only be revealed under more competitive or 

otherwise challenging conditions, has also been suggested in previous studies (Benowitz-

Fredericks et al., 2015; Verboven et al., 2003). For example, in common murres (Uria 

aalge), prenatal exposure to glucocorticoids positively correlated with juvenile circulating 
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glucocorticoid levels, but only after imposing the challenge of food restriction (Benowitz-

Fredericks et al., 2015). In great tits, maternal food restriction reduced offspring body mass 

and tarsus length, but only under food restricted conditions, and under non-restricted 

conditions, maternal food restriction tended to increase offspring size (Giordano et al., 

2014). To test the hypothesis that the effects of P0 pair-housing were revealed in F1 groups 

due to increased competition, future studies could benefit from more detailed observations 

of social relationships within pairs or groups, which could provide important information 

regarding the amount and type of social stimulation. 

Notably, increased growth may also have detrimental effects on for example 

telomere length (Ringsby et al., 2015) and may negatively affect survival (Metcalfe and 

Monaghan, 2003; Stamps, 2007). Thus, even though increased growth led to an increase in 

reproductive investment and heavier F2 offspring (chapter 4), there may be negative 

effects on the female’s lifetime reproductive success, which was not measured in our 

studies. 

The adaptive benefits of the context-dependent effects of maternal pair-housing 

remain unclear, especially because the effects of the maternal social environment appeared 

to be overridden by the effects of the F1 own social environment. Only the effects of the 

own social environment on mass were detectable at day 90, and only the own social 

environment affected egg mass, hatching success and F2 offspring mass at hatching. These 

effects of the F1 social environment on F2 mass at hatching could be adaptive, since 

heavier offspring from group-housed F1 females are likely better prepared for a more 

competitive environment (Clutton-Brock and Huchard, 2013; Stockley and Bro-Jørgensen, 

2011) and might have increased survival and growth (Krist, 2011; Williams, 1994). These 

assumptions remain to be investigated by studying the development, growth, survival and 

reproductive output of the F2 offspring (Langen et al., in prep). 

 

5.6. Concluding remarks and future perspectives 
The results from this thesis show that variation in group size can affect female endocrine 

physiology, growth and reproductive investment. Furthermore, our results show that there 

can be interacting effects of the maternal and offspring social environment. However, the 

effects of the social environment on females and their offspring differs strongly between 

studies, including the studies described in this thesis. Different types of social stimuli likely 

differ in their effects on female physiology, reproduction, and offspring phenotype. To gain 

a better understanding of the underlying mechanisms and the function of maternal effects 

of the social environment, it is therefore important to establish which social stimuli are 

most important for which effects, and how they interact with each other. The studies 

described in this thesis point towards a number of factors that should be further 

investigated, in particular the effects of different adult sex ratios on females and their 

offspring. Furthermore, more detailed observations of social relationships within pairs or 

groups could provide important information regarding the amount and type of social 

stimulation and their effects. 
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We cannot be certain what caused the context-dependent effects of maternal pair-

housing on the F1 females, and the effects eventually appeared to be overridden by the 

effects of the F1 own social environment. It therefore remains to be determined whether 

the observed maternal effects represent adaptations. The social environment in the F1 

generation affected F2 offspring’s mass at hatching, which could be adaptive, but this 

requires further investigation. Follow-up experiments should test the performance (e.g. 

growth, survival and reproductive success) of the F2 offspring. 

Finally, to understand the mechanisms of maternal effects it is important to gain 

better understanding of how they are mediated and at which time they manifest. Taking 

detailed and integrative measures of maternal physiology over time, and correlating them 

with measures of egg composition or offspring phenotype could provide valuable 

information regarding the effects of maternal environmental factors and the sensitive time 

windows during which they can occur. This includes studying how resources accumulate in 

the yolk, and how environmental factors can influence these processes. In addition, 

focusing on the effects of a range of egg qualities such as size, various yolk hormones (e.g. 

progesterone, androstenedione and estradiol; Langen et al. in prep), immune substances or 

antioxidants simultaneously could give some insight into their relative importance for 

offspring phenotype. 
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Box 1. Effects of the maternal social environment on F1 behaviour. 

 

 
 

F1 offspring from pair-housed and group-housed mothers were tested for their tonic immobility (TI) 

response at the age of 16-17 days and their latency to emerge from a box into a novel environment at the 

age of 22 days. The TI response is thought to be an adaptive anti-predator response, and is used as a 

measure of fearfulness, with more fearful animals staying in a state of TI for a longer time than less fearful 

animals (Mills and Faure, 1991; Thompson et al., 1981). The latency to emerge into an open arena is a 

measure of fearfulness or explorativeness. More fearful birds will take longer to emerge, whereas more 

explorative chicks will have shorter latencies to emerge (Archer, 1973; Jones et al., 1982). 

For both tests, one chick at a time was removed from its home cage and transported to the 

experimental room in a cardboard box. Chicks from the same cage were never tested directly after each 

other. 

TI was induced by placing birds on their back in a u-shaped cradle, and restraining them by placing 

a hand over the chicks’ sternum for 10 seconds. We noted the number of induction attempts needed to 

achieve TI, and subsequently measured the duration of TI for a maximum of 10 minutes. Chicks that did not 

get induced within 3 TI induction attempts were considered not inducible and got a score of 0 seconds. 

Chicks that did not come out of TI within 10 minutes got a maximum score of 600 seconds. 

For the emergence test, birds were placed in a closed box (13 × 13 × 15 cm) and left to acclimatize 

for 30 seconds. After acclimatization, a door at the front of the box was opened, facing an open arena (85 x 

80 cm; floor covered with waved cardboard). We recorded the latency to leave the box for a maximum of 

10 minutes. Chicks that did not leave the box within 10 minutes got a maximum score of 600 seconds. 

The maternal social environment did not affect offspring TI duration (LMM with a fixed effect of 

the maternal social environment and random effects of maternal cage and mother within maternal cage; 

χ2
(1) = 0.21, p = 0.65; figure A). There was a nonsignificant trend for offspring emergence latency to be 

affected by the maternal social environment, with offspring form pair-housed mothers taking longer to 

emerge (LMM with a fixed effect of the maternal social environment and random effects of maternal cage 

and mother within maternal cage; χ2
(1) = 3.01, p = 0.08; figure B). Data shown are the estimated means ± 1 

SEM (back-transformed from natural log). 
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