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Abstract. We study quasilinear degenerate parabolic-hyperbolic stochastic partial differential
equations with general multiplicative noise within the framework of kinetic solutions. Our results

are twofold: First, we establish new regularity results based on averaging techniques. Second,

we prove the existence and uniqueness of solutions in a full L1 assuming no growth conditions
on the nonlinearities. In addition, we prove a comparison result and an L1-contraction property

for the solutions.

1. Introduction

We study the regularity and well-posedness of quasilinear degenerate parabolic-hyperbolic SPDE
of the form

du+ div(B(u))dt = div(A(u)∇u)dt+ Φ(x, u)dW, x ∈ TN , t ∈ (0, T ),

u(0) = u0,
(1.1)

where W is a cylindrical Wiener process, u0 ∈ L1(TN ), B ∈ C2(R,RN ), A ∈ C1(R,RN×N ) takes
values in the set of symmetric non-negative definite matrices and Φ(x, u) are Lipschitz continuous
diffusion coefficients.

Equations of this form arise in a wide range of applications including the convection-diffusion of
an ideal fluid in porous media. The addition of a stochastic noise is often used to account for
numerical, empirical or physical uncertainties. In view these applications, we aim to treat (1.1)
under general assumptions on the coefficient A,B and initial data u0. In particular, the coefficients
are not necessarily linear nor of linear growth and A is not necessarily strictly elliptic. Hence, in
particular, we include stochastic scalar conservation laws

du+ div(B(u))dt = Φ(x, u)dW

and stochastic porous media equations

du+ div(B(u))dt = ∆u[m]dt+ Φ(x, u)dW,

with m > 2 and u[m] := sgn(u)um.

One of the main points of this paper is to provide a full L1 approach to (1.1). That is, we prove
regularity estimates and well-posedness for (1.1) assuming no higher moments. More precisely, only
u0 ∈ L1(TN ) and no growth assumptions on the nonlinearities A,B are assumed. In particular,
no Lipschitz continuity (and thus linear growth) assumptions on A,B are supposed. This causes
severe difficulties: Firstly, the weak form of (1.1) is not necessarily well-defined since A(u), B(u)
are not necessarily in L1

loc(TN ) for u ∈ L1(TN ). Therefore, renormalized solutions have to be
considered (cf. [22, 9, 1]). Secondly, in order to prove the uniqueness of L1 entropy solutions an
equi-integrability condition or, equivalently, a decay condition for the entropy defect measure is
required (see a more detailed discussion below). The usual decay condition used in the deterministic
case is not applicable in the stochastic case and a new condition and proof has to be found. Thirdly,
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in the stochastic case, the usual proof of existence of entropy solutions relying on the Crandall-
Liggett theory of m-accretive operators in L1(TN ) cannot be applied (cf. [13, 12, 8]). Instead, the
construction of entropy solutions presented in this paper relies on new regularity estimates based on
averaging techniques. The application of averaging techniques and the resulting regularity results
are new for parabolic-hyperbolic SPDE of the type (1.1).
On the other hand, L1(TN ) is a natural space to consider the well-posedness for SPDE of the type
(1.1) since the operators div(B(·)), div(A(·)∇·) are accretive in L1(TN ) (cf. the discussion of the
e-property below). In addition, and in contrast to the deterministic case, restricting to bounded
solutions and hence, by localization, to Lipschitz continuous coefficients A,B in (1.1) does not
seem to be sensible in the stochastic case, since in general no uniform L∞ bound will be satisfied
by solutions to (1.1), due to the unboundedness of the driving noise W .

As a particular example, (1.1) contains stochastic porous media equations

(1.2) du = ∆u[m]dt+ Φ(x, u)dW, with m > 2.

Stochastic porous media equations have attracted a lot of interest in recent years (cf. e.g. [49, 48,
3, 50] and the references therein). All of these results rely on an H−1 approach, that is, on treating
∆(·)[m] as a monotone operator in H−1. In contrast to the deterministic case, an L1 approach to
stochastic porous media equations had not yet been developed, since an analog of the concept of
mild solutions in the Crandall-Liggett theory of m-accretive operators (cf. [55, 8]) could not be
found. However, the L1 framework offers several advantages: Firstly, more general classes of SPDE
may be treated, secondly, contractive properties in L1 norm are sometimes better than those in
H−1 norm. We next address these points in more detail.
Concerning the class of SPDE, informally speaking, the H−1 approach relies on applying (−∆)−1

to (1.2) which then allows to use the monotonicity of φ(u) := u[m] in order to prove the uniqueness
of solutions. While this works well for the operator ∆φ(·), the reader may easily check that this
approach fails in the presence of hyperbolic terms divB(u) as in (1.1) and can only be applied to
reaction diffusion equations

(1.3) du = ∆u[m]dt+ f(u)dt+ Φ(x, u)dW, with m > 2.

under unnecessarily strong assumptions on the reaction term f (cf. e.g. [14, 49] where (1.3) with f
satisfying rather restrictive assumptions has been considered). Roughly speaking, the problem is
that the Nemytskii operator u 7→ f(u) is not necessarily monotone in H−1 even if f is a monotone
function. This changes drastically in the L1 setting, since both u 7→ divB(u) and u 7→ f(u)
are accretive operators on L1 under relatively mild assumptions. In this paper, we resolve these
issues by establishing a full L1 approach to (1.1) based on entropy/kinetic methods. In particular,
this extends available results on stochastic porous media equations by allowing hyperbolic terms
divB(u) and our framework immediately1 extends to reaction terms u 7→ f(u) assuming only that
f is weakly monotone and C2.

We proceed by stating the main well-posedness result obtained in this paper, see Theorem 4.3,
Theorem 4.9 below. The precise framework will be given in Section 2 below and for specific
examples see Section 2.4.

Theorem 1.1. Let u0 ∈ L1(TN ) and assume that A
1
2 is γ-Hölder continuous for some γ > 1

2 .
Then, kinetic solutions to (1.1) are unique. Moreover, if u1, u2 are kinetic solutions to (1.1) with
initial data u1,0 and u2,0, respectively, then

ess sup
t∈[0,T ]

E‖(u1(t)− u2(t))+‖L1(TN ) ≤ ‖(u1,0 − u2,0)+‖L1(TN ).

Assume in addition that A,B satisfy a non-degeneracy assumption (cf. (2.3) below). Then there
exists a unique kinetic solution u to (1.1) satisfying u ∈ C([0, T ];L1(TN )), P-a.s., and for all

1We choose not to include the details on the treatment of reaction terms f(u) in this paper, since their treatment

is similar to the noise terms Φ(u)dW .
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p, q ∈ [1,∞) there exists a constant C > 0 such that

E ess sup
t∈[0,T ]

‖u(t)‖pqLp ≤ C(1 + ‖u0‖pqLp).

The second direction of advantages of the L1 approach lies in dynamical properties. A natural
question for stochastic porous media equations is their long-time behavior, that is, the existence
and uniqueness of invariant measures, mixing properties etc. If u, v are two solutions to (1.2) with
initial conditions u0, v0 respectively, then

(1.4) E‖u(t)− v(t)‖H−1 ≤ eCt‖u0 − v0‖H−1 ∀t ≥ 0,

for some constant C > 0. The constant C corresponds to the Lipschitz norm of u 7→ Φ(u) as a
map from H−1 to L2(U ;H−1). In particular, the dynamics induced by (1.2), in general, will not
be non-expanding in H−1. In contrast, we show that

E‖u(t)− v(t)‖L1 ≤ ‖u0 − v0‖L1 ∀t ≥ 0,

that is, in the L1 setting we can choose the constant C in (1.4) to be zero. In particular, this
implies the e-property (cf. [40]) for the associated Markovian semigroup Ptf(x) := Ef(Xx

t ) on
L1(TN ). The e-property has proven vital in the proof of existence and uniqueness of invariant
measures for SPDE with degenerate noise (cf. [31, 30, 24, 40]).

For x ∈ L1(TN ) let

Px := (ux· )∗P,
that is, Px is the law of ux· on C([0,∞);L1(TN )), where ux· denotes the kinetic solution to (1.1) with
initial condition x. We equip C([0,∞);L1(TN )) with the canonical filtration Gt and evaluation
maps πt(w) := w(t) for w ∈ C([0,∞);L1(TN )), t ≥ 0. As in [15], using Theorem 1.1, we obtain

Corollary 1.2. The family {Px}x∈L1 is a time-homogeneous Markov process on C([0,∞);L1(TN ))
with respect to Gt, i.e.

Ex(F (πt+s)|Gs) = Eπs(F (πt)) Px-a.s.

In addition, {Px}x∈L1(TN ) is Feller and satisfies the e-property (cf. [40]).

As mentioned above, we prove new regularity estimates for kinetic solutions to (1.1) of the type

u(t) ∈Wα,1(TN ) for a.e. (ω, t),

for some α > 0, based on stochastic velocity averaging lemmas. Even in the case of pure stochastic
porous medium equations (1.2) this extends previously available regularity results. For related
deterministic results, see [7, 23, 38, 52], for stochastic hyperbolic conservation laws see [17]. Our
approach is mainly based on [52], but substantial difficulties due to the stochastic integral have to be
overcome. Indeed, in most of the deterministic results (with the notable exception of [7]), the time
variable does not play a special role and is regarded as another space variable and, in particular,
space-time Fourier transforms are employed in the proofs. This changes in the stochastic case
due to the irregularity of the noise in time. Therefore, it was argued in [17] that these methods
are not suitable for the stochastic case and instead the approach of [7] which does not rely on
Fourier transforms in time was employed. In the present paper, we rely on different arguments:
We put forward averaging lemmas that rely on space-time Fourier transforms, Littlewood-Paley
decomposition and a careful analysis of each of the appearing terms. As a consequence, we are
able to estimate the stochastic integral as well as the kinetic measure term directly by averaging
techniques, without any additional damping (as compared to [7, 17]). Moreover, our averaging
lemmas apply to the case of nonhomogeneous equations, that is, PDEs with zero, first and second
order terms and multiplicative noise.

More precisely, as a corollary of our main regularity result for (1.1), see Theorem 3.1 and Corollary
3.3 below, we obtain



4 BENJAMIN GESS AND MARTINA HOFMANOVÁ

Theorem 1.3. Assume that A,B satisfy a non-degeneracy condition (cf. (2.3) below) and are of
polynomial growth of order p. Let u be a kinetic solution to (1.1). Then

E‖u‖L1([0,T ];W s,1(TN )) . ‖u0‖2p+3

L2p+3
x

+ 1,

for some s > 0.

We now proceed with the announced more detailed discussion of the comparison to the proof of
well-posedness of entropy solutions for deterministic parabolic-hyperbolic PDE (cf. [11])

(1.5) du+ div(B(u))dt = div(A(u)∇u)dt.

The inclusion of stochastic perturbation causes several additional difficulties. First, the proof of
existence of solutions in [11] relies on the (simple) proof of BV regularity of solutions to (1.5). Such
a BV estimate is not known in the stochastic case and does not seem to be easy to obtain (for a
discussion of the necessity of such estimates in the construction of a solution see Section 1.5 below).
Therefore, we instead rely on regularity obtained based on averaging techniques. Second, the equi-
integrability estimates encoded in the decay properties of the kinetic measure in the deterministic
situation, that is, in the assumption (cf. [11, Definition 2.2 (iv)])

lim
|ξ|→∞

∫
m(t, x, ξ)dtdx = 0

do not seem to be suitable in the stochastic case, since the multiplicative noise term Φ(x, u) is less
well behaved in terms of these estimates. Indeed, the corresponding proof of a-priori estimates
proceeds along different lines than in the deterministic case (cf. Proposition 4.7 below). Therefore,
we replace these decay estimates by the weaker decay condition

(1.6) lim
`→∞

1

2`
E
∫

1|ξ|≥2`m(t, x, ξ)dtdxdξ = 0

and prove the uniqueness of kinetic solutions under this weaker assumption.

The kinetic approach to (deterministic) scalar conservation laws was introduced by Lions, Perthame,
Tadmor in [45] and extended to parabolic-hyperbolic PDE in [11], including PDE of porous media
type. In the stochastic case, the well-posedness of such PDE had not previously been shown. Under
more restrictive assumptions, namely high moment bounds u0 ∈

⋂
p≥1 L

p(Ω;Lp(TN )), bounded-

ness of the diffusion matrix A and polynomial growth of B′′, the well-posedness was shown in [16].
In particular, neither porous media equations nor general L1 initial data could be handled. In
contrast, besides providing a full L1 well-posedness theory, we only assume A to be locally Hölder
continuous (cf. (2.2) below) and completely remove the growth assumptions on A,B.
Special cases of SPDE of the type (1.1) have attracted a lot of interest in recent years. For de-
terministic hyperbolic conservation laws, see [6, 37, 41, 44, 45, 46, 47]. Stochastic degenerate
parabolic equations were studied in [4, 16, 34] and stochastic conservation laws in [5, 10, 17, 18,
19, 25, 33, 36, 39, 51, 54]. Recently, also scalar conservation laws driven by rough paths have been
considered in [26, 35, 20]. Other types of stochastic scalar conservation laws, for which randomness
enters in form of a random flux have been considered in [42, 43, 29, 27]. Stochastic quasilinear
parabolic-hyperbolic SPDE with random flux have been considered in [28].

The paper is organized as follows. In Section 2, we introduce the precise framework and the concept
of kinetic solutions. Our main regularity result will be proven in Section 3. This is then used in
Section 4 to prove the well-posedness for kinetic solutions.

2. Preliminaries

2.1. Notation. In this paper, we use the brackets 〈·, ·〉 to denote the duality between the space of
distributions over TN ×R and C∞c (TN ×R) and the duality between Lp(TN ×R) and Lq(TN ×R).
If there is no danger of confusion, the same brackets will also denote the duality between Lp(TN )
and Lq(TN ). By M([0, T ] × TN × R) we denote the set of Radon measures on [0, T ] × TN × R
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and M+([0, T ] × TN × R) then contains nonnegative Radon measures and Mb([0, T ] × TN × R)
contains finite measures. We also use the notation

n(φ) =

∫
[0,T ]×TN×R

φ(t, x, ξ) dn(t, x, ξ), n ∈M([0, T ]× TN × R), φ ∈ Cc([0, T ]× TN × R).

In order to signify that n ∈ M([0, T ] × TN × R) is only considered on [0, T ] × TN × D for some
compact set D ⊂ R we write n1D. In particular,

‖n1D‖Mt,x,ξ
=

∫
[0,T ]×TN×D

d|n|(t, x, ξ).

The differential operators of gradient ∇, divergence div and Laplacian ∆ are always understood
with respect to the space variable x. For two matrices A,B of the same size we set

A : B :=
∑
ij

aijbij .

Throughout the paper, we use the term representative for an element of a class of equivalence.

Finally, we use the letter C to denote a generic constant that might change from one line to another.
We also employ the notation x . y if there exists a constant C independent of the variables under
consideration such that x ≤ Cy and we write x ∼ y if x . y and y . x.

2.2. Setting. We now give the precise assumptions on each of the terms appearing in the above
equation (1.1). We work on a finite-time interval [0, T ], T > 0, and consider periodic boundary
conditions: x ∈ TN where TN = RN |(2πZN ) is the N -dimensional torus. For the flux B we assume

(2.1) B = (B1, . . . , BN ) ∈ C2(R,RN )

and we set b = ∇B. The diffusion matrix A = (Aij)
N
i,j=1 ∈ C1(R;RN×N ) is assumed to be

symmetric, positive semidefinite and its square root σ := A
1
2 is assumed to be locally γ-Hölder

continuous for some γ > 1/2, that is, for all R > 0 there is a constant C = C(R) such that

(2.2) |σ(ξ)− σ(ζ)| ≤ C(R)|ξ − ζ|γ ∀ξ, ζ ∈ R, |ξ|, |ζ| ≤ R.
We will further require a non-degeneracy condition for the symbol L associated to the kinetic form
of (1.1)

L(iu, in, ξ) := i(u+ b(ξ) · n) + n∗A(ξ)n.

For J, δ > 0 and η ∈ C∞b (R) nonnegative let

ωηL(J ; δ) := sup
u∈R,n∈ZN
|n|∼J

|ΩηL(u, n; δ)|, ΩηL(u, n; δ) := {ξ ∈ supp η; |L(iu, in, ξ)| ≤ δ}

and Lξ := ∂ξL. We suppose that there exist α ∈ (0, 1), β > 0 and a measurable map ϑ ∈
L∞loc(R; [1,∞)) such that

ωηL(J ; δ) .η

(
δ

Jβ

)α
sup

u∈R,n∈ZN
|n|∼J

sup
ξ∈supp η

|Lξ(iu, in, ξ)|
ϑ(ξ)

.η J
β , ∀δ > 0, J & 1.

(2.3)

The requirement of a suitable non-degeneracy condition is classical in the theory of averaging
lemmas and therefore it will be essential for Theorem 3.1. The localization η and the weight ϑ
give two possibilities to control the growth of Lξ in ξ. In the proof of existence in Subsection
4.2.3, we employ (2.3) with ϑ ≡ 1 and η compactly supported which allows to obtain regularity
of the localized average

∫
R χu(ξ)η(ξ)dξ without any further integrability assumptions on u. On

the contrary, with a suitable choice of ϑ, we may consider η ≡ 1 to obtain regularity of u itself
provided it possesses certain additional integrability. We refer the reader to Subsection 2.4 for
further discussion of (2.3) as well as for application to particular examples.
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Regarding the stochastic term, let (Ω,F , (Ft)t≥0,P) be a stochastic basis with a complete, right-
continuous filtration. Let P denote the predictable σ-algebra on Ω× [0, T ] associated to (Ft)t≥0.
The initial datum u0 is F0-measurable and the process W is a cylindrical Wiener process, that
is, W (t) =

∑
k≥1 βk(t)ek with (βk)k≥1 being mutually independent real-valued standard Wiener

processes relative to (Ft)t≥0 and (ek)k≥1 a complete orthonormal system in a separable Hilbert
space U. In this setting we can assume without loss of generality that the σ-algebra F is countably
generated and (Ft)t≥0 is the filtration generated by the Wiener process and the initial condition.
For each z ∈ L2(TN ) we consider a mapping Φ(z) : U → L2(TN ) defined by Φ(z)ek = gk(·, z(·)).
We suppose that gk ∈ C(TN×R) and there exists a sequence (αk)k≥1 of positive numbers satisfying
D :=

∑
k≥1 α

2
k <∞ such that

|gk(x, 0)|+ |∇xgk(x, ξ)|+ |∂ξgk(x, ξ)| ≤ αk, ∀x ∈ TN , ξ ∈ R.(2.4)

Note that it follows from (2.4) that

(2.5) |gk(x, ξ)| ≤ αk(1 + |ξ|), ∀x ∈ TN , ξ ∈ R.

and

(2.6)
∑
k≥1

|gk(x, ξ)− gk(y, ζ)|2 ≤ C
(
|x− y|2 + |ξ − ζ|2

)
, ∀x, y ∈ TN , ξ, ζ ∈ R.

Consequently, denoting G2(x, ξ) =
∑
k≥1 |gk(x, ξ)|2 it holds

G2(x, ξ) ≤ 2D(1 + |ξ|2) ∀x ∈ TN , ξ ∈ R.

The conditions imposed on Φ, particularly assumption (2.4), imply that

Φ : L2(TN ) −→ L2(U;L2(TN )),

where L2(U;L2(TN )) denotes the collection of Hilbert-Schmidt operators from U to L2(TN ). Thus,

given a predictable process u ∈ L2(Ω;L2(0, T ;L2(TN ))), the stochastic integral t 7→
∫ t

0
Φ(u)dW is

a well defined process taking values in L2(TN ) (see [15] for a detailed construction).

Finally, we define the auxiliary space U0 ⊃ U via

U0 =

{
v =

∑
k≥1

αkek;
∑
k≥1

α2
k

k2
<∞

}
,

endowed with the norm

‖v‖2U0
=
∑
k≥1

α2
k

k2
, v =

∑
k≥1

αkek.

Note that the embedding U ↪→ U0 is Hilbert-Schmidt. Moreover, trajectories of W are P-a.s. in
C([0, T ];U0) (see [15]).

2.3. Kinetic solutions. Let us introduce the definition of kinetic solution as well as the related
definitions used throughout this paper. It is a generalization of the concept of kinetic solution
studied in [16], which is suited for establishing well-posedness in the L1-framework, that is, for
initial conditions in L1(Ω;L1(TN )). In that case, the corresponding kinetic measure is not finite
and one can only prove suitable decay at infinity.

Definition 2.1 (Kinetic measure). A mapping m from Ω to M+([0, T ] × TN × R), the set of
nonnegative Radon measures over [0, T ]× TN × R, is said to be a kinetic measure provided

(i) For all ψ ∈ Cc([0, T )× TN × R), the process∫
[0,t]×TN×R

ψ(s, x, ξ) dm(s, x, ξ)

is predictable.
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(ii) Decay of m for large ξ: it holds true that

lim
`→∞

1

2`
Em(A2`) = 0,

where

A2` = [0, T ]× TN × {ξ ∈ R; 2` ≤ |ξ| ≤ 2`+1},

Definition 2.2 (Kinetic solution). A map u ∈ L1(Ω× [0, T ],P,dP⊗dt;L1(TN )) is called a kinetic
solution to (1.1) with initial datum u0 if the following conditions are satisfied

(i) For all φ ∈ C∞c (R), φ ≥ 0,

div

∫ u

0

φ(ζ)σ(ζ) dζ ∈ L2(Ω× [0, T ]× TN ).

(ii) For all φ1, φ2 ∈ C∞c (R), φ1, φ2 ≥ 0, the following chain rule formula holds true

(2.7) div

∫ u

0

φ1(ζ)φ2(ζ)σ(ζ) dζ = φ1(u) div

∫ u

0

φ2(ζ)σ(ζ) dζ in L2(Ω× [0, T ]× TN ).

(iii) Let n1 : Ω→M+([0, T ]×TN ×R) be defined as follows: for all ϕ ∈ C∞c ([0, T ]×TN ×R),
ϕ ≥ 0,

(2.8) n1(ϕ) =

∫ T

0

∫
TN

∣∣∣∣div

∫ u

0

√
ϕ(t, x, ζ)σ(ζ) dζ

∣∣∣∣2dxdt.

There exists a kinetic measure m ≥ n1, P-a.s., such that the pair (f = 1u>ξ,m) satisfies,
for all ϕ ∈ C∞c ([0, T )× TN × R), P-a.s.,∫ T

0

〈
f(t), ∂tϕ(t)

〉
dt+

〈
f0, ϕ(0)

〉
+

∫ T

0

〈
f(t), b · ∇ϕ(t)

〉
dt+

∫ T

0

〈
f(t), A : D2ϕ(t)

〉
dt

=−
∑
k≥1

∫ T

0

∫
TN

gk
(
x, u(t, x)

)
ϕ
(
t, x, u(t, x)

)
dxdβk(t)

− 1

2

∫ T

0

∫
TN

G2
(
x, u(t, x)

)
∂ξϕ

(
t, x, u(t, x)

)
dx dt+m(∂ξϕ).

(2.9)

The definition of a kinetic solution given in Definition 2.2 generalizes the definition of kinetic
solutions given in [16, Definition 2.2] which applies to the case of high integrability, that is, for
u ∈ Lp(Ω;Lp([0, T ]× TN )) for all p ≥ 1.

Remark 2.3. Let u ∈ Lp(Ω;Lp([0, T ]× TN )) for all p ≥ 1. Then, u is a kinetic solution to (1.1) in
the sense of [16, Definition 2.2] if and only if u is a kinetic solution in the sense of Definition 2.2.

Remark 2.4. We emphasize that a kinetic solution is, in fact, a class of equivalence in L1(Ω ×
[0, T ];L1(TN )) so not necessarily a stochastic process in the usual sense. The term representative
is then used to denote an element of this class of equivalence.

Let us conclude this section with two related definitions.

Definition 2.5 (Young measure). Let (X,λ) be a finite measure space. A mapping ν from X to
the set of probability measures on R is said to be a Young measure if, for all ψ ∈ Cb(R), the map
z 7→ νz(ψ) from X into R is measurable. We say that a Young measure ν vanishes at infinity if,
for all p ≥ 1, ∫

X

∫
R
|ξ|pdνz(ξ) dλ(z) <∞.

Definition 2.6 (Kinetic function). Let (X,λ) be a finite measure space. A measurable function
f : X×R→ [0, 1] is said to be a kinetic function if there exists a Young measure ν on X vanishing
at infinity such that, for λ-a.e. z ∈ X, for all ξ ∈ R,

f(z, ξ) = νz(ξ,∞).
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Remark 2.7. Note, that if f is a kinetic function then ∂ξf = −ν for λ-a.e. z ∈ X. Similarly, let u
be a kinetic solution of (1.1) and consider f = 1u>ξ. We have ∂ξf = −δu=ξ, where ν = δu=ξ is a
Young measure on Ω × [0, T ] × TN . Throughout the paper, we will often write νt,x(ξ) instead of
δu(t,x)=ξ.

2.4. Applications. In this section we consider the model example of a convection-diffusion SPDE
with polynomial nonlinearities, that is, let N = 1 and consider

du+ ∂x

(
uk

k

)
dt = ∂x

(
|u|m−1∂xu

)
dt+ Φ(x, u)dW,

i.e. (1.1) with b(ξ) = B′(ξ) = ξk−1, A(ξ) = |ξ|m−1, for k ≥ 2, m > 2. Hence,

L(iu, in, ξ) = i(u+ ξk−1n) + |ξ|m−1n2,

and

(2.10) |Lξ(iu, in, ξ)| . |ξ|k−2|n|+ |ξ|m−2n2.

For η ∈ C∞b (R) and u ∈ R, n ∈ Z, |n| ∼ J we consider

ΩηL(u, n; δ) = {ξ ∈ supp η; |i(u+ ξk−1n) + |ξ|m−1n2| ≤ δ}

and observe

ΩηL(u, n; δ) ⊂ ΩA ∩ Ωb,

where

ΩA := {ξ ∈ supp η; |ξ|m−1|n|2 ≤ δ},

Ωb := {ξ ∈ supp η; |i(u+ ξk−1n)| ≤ δ}.

Note that the set ΩA is localized around 0 in the sense that

ΩA =

{
ξ ∈ supp η; |ξ| ≤

(
δ

J2

) 1
m−1

}
,

whereas the set Ωb is moving according to the value of u:

Ωb =

{
ξ ∈ supp η;

(
u− δ
J

) 1
k−1

≤ ξ ≤
(
u+ δ

J

) 1
k−1

}
.

In view of the second part of the condition (2.3) we choose β = 2 whenever a second order operator
is present. Therefore we set β = 2 and α = 1

m−1 , which yields the first part of (2.3) independently
of η

(2.11) ωηL(J ; δ) .

(
δ

J2

) 1
m−1

.

Regarding the second condition, it is necessary to control the ξ-growth in (2.10). Our formulation of
the nondegeneracy condition (2.3) offers two ways of doing so: either using a (compactly supported)
localization η or a weight ϑ. Using the first approach, Theorem 3.1 yields regularity of the localized
average η̄(u) =

∫
R χu(t,x)(ξ)η(ξ)dξ without any further integrability assumptions on the solution

u. On the other hand, the second approach allows to obtain regularity of the solution u itself, i.e.
setting η ≡ 1, but requires higher integrability of u. To be more precise, in the case of (2.10) we
set ϑ(ξ) = 1 + |ξ|k∨m−2 and assume that u ∈ Lp(Ω× [0, T ]× TN ) for p = 2(k ∨m− 2) + 3.

In the case of a purely hyperbolic equation with a polynomial nonlinearity b(ξ) = ξk−1, k ≥ 2, we
obtain

ΩηL(u, n; δ) =

{
ξ ∈ supp η;

u− δ
J
≤ ξk−1 ≤ u+ δ

J

}
,

which implies the first condition in (2.3) independently of η with α = 1
k−1 , β = 1. For the second

condition we proceed the same way as above.
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3. Regularity

In this section we establish a regularity result for solutions to (1.1), based on averaging techniques.
Throughout this section we use the following notation: for a kinetic solution u, let χ := χu =
1u>ξ − 10>ξ. Then we have, in the sense of distributions,

(3.1) ∂tχ+ b(ξ) · ∇χ−A(ξ) : D2χ = ∂ξq −
∞∑
k=1

(∂ξχ)gkβ̇k +

∞∑
k=1

δ0gkβ̇k,

where q = m− 1
2G

2δu=ξ. For η ∈ C∞b (R) let η̄ ∈ C∞ be such that η̄′ = η and η̄(0) = 0. We then
have

η̄(u) =

∫
R
χu(t,x)(ξ)η(ξ) dξ.

Theorem 3.1. Assume (2.1), (2.4). Let η ∈ C∞b (R;R+) and assume that there are α ∈ (0, 1),
β > 0 and a measurable map ϑ ∈ L∞loc(R; [1,∞)) such that (2.3) is satisfied. Let Θη : R → R+

such that Θ′η = (|ξ|2 + 1)ϑ2(ξ)(η(ξ) + |η′|(ξ)). If u is a kinetic solution to (1.1) then

η̄(u) =

∫
R
χu(t,x)(ξ)η(ξ) dξ ∈ Lr(Ω× [0, T ];W s,r(TN )), s <

α2β

6(1 + 2α)
.

with 1
r >

1−θ
2 + θ

1 , θ = α
4+α and

(3.2)
‖η̄(u)‖Lr(Ω×[0,T ];W s,r(TN )) .η‖η̄(|u0|)‖1/2L1

ω,x
+ ‖Θη(|u|)‖1/2

L1
ω,t,x

+ sup
0≤t≤T

‖η̄(|u|)‖L1
ω,x

+ ‖mϑ(η + |η′|)‖L1
ωMt,x,ξ

+ 1.

where the constant in the inequality depends on b and A via the constants appearing in (2.3) only
and on η only via its C1 norm.

Remark 3.2. If η is compactly supported, then we may always take ϑ ≡ 1 in (2.3). Furthermore,
in this case the right hand side in (3.2) is always finite.

In order to deduce regularity for u itself we choose η ≡ 1. If ϑ is a polynomial of order p, then Θη

is a polynomial of order 2p+ 3 and by Lemma 4.6 below we have ‖Θη(|u|)‖
1
2

L1
ω,t,x
. ‖u0‖

2p+3
2

L2p+3
ω,t,x

+ 1

and ‖mϑ‖L1
ωMt,x,ξ

. ‖u0‖p+2
Lp+2 + 1. In conclusion, we obtain

Corollary 3.3. Suppose (2.3) is satisfied for η ≡ 1 and ϑ being a polynomial of order p. Let u be
the kinetic solution2 to (1.1). Then

‖u‖Lr(Ω×[0,T ];W s,r(TN )) . ‖u0‖2p+3

L2p+3
ω,x

+ 1.

Proof of Theorem 3.1. The proof proceeds in several steps. In the first step, the solution χ = χu =
f − 10>ξ is decomposed into Littlewood-Paley blocks χJ and subsequently each Littlewood-Paley
block is decomposed according to the degeneracy of the symbol L(iu, in, ξ). This decomposition
of f serves as the basis of the following averaging techniques. In the second step, each part of the
decomposition is estimated separately, relying on the non-degeneracy condition (2.3). In the last
step, these estimates are combined and interpolated in order to deduce the regularity of f .

The principle idea of the above decomposition of f follows [52]. However, the stochastic integral in
(1.1) leads to additional difficulties and requires a different treatment of the time-variable. This is
resolved here by passing to the mild form (cf. (3.4) below) and then estimating all occurring terms
separately, interpolating the estimates in the end.

2Well-posedness of kinetic solutions to (1.1) is proved in Section 4 below.
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Decomposition of χ. We introduce a cut-off in time, that is, let φ = φλ ∈ C1([0,∞)) such that
0 ≤ φ ≤ 1, φ ≡ 1 on [0, T − λ], φ ≡ 0 on [T,∞) and |∂tφ| ≤ 1

λ for some λ ∈ (0, 1) to be eventually
sent to 0. For notational simplicity, we omit the superscript λ in the following computations and
let it only reappear at the end of the proof, where the passage to the limit in λ is discussed.

Then, χφ solves, in the sense of distributions,

(3.3) ∂t(χφ) + b(ξ) · ∇(χφ)−A(ξ) : D2(χφ) = ∂ξ(φq)−
∞∑
k=1

∂ξ(χφ)gkβ̇k +

∞∑
k=1

δ0φgkβ̇k + χ∂tφ.

Next, we decompose χ into Littlewood-Paley blocks χJ , such that the Fourier transform in space
χ̂J is supported by frequencies |n| ∼ J for J dyadic. This is achieved by taking a smooth partition
of unity 1 ≡ ϕ0(z) +

∑
J&1 ϕ(J−1z) such that ϕ0 is a bump function supported inside the ball

|z| ≤ 2 and ϕ is a bump function supported in the annulus 1
2 ≤ |z| ≤ 2, and setting

χ0(t, x, ξ) := F−1
x

[
ϕ0 (n) χ̂(t, n, ξ)

]
(x),

χJ(t, x, ξ) := F−1
x

[
ϕ
(n
J

)
χ̂(t, n, ξ)

]
(x), J & 1.

This leads to the decomposition

χ = χ0+
∑
J&1

χJ .

The regularity of χ0 being trivial, we only focus on the estimate of χJ for J & 1. Localizing (3.3)
in Littlewood-Paley blocks yields

∂t(χJφ) + b(ξ) · ∇(χJφ)−A(ξ) : D2(χJφ) =∂ξ(φqJ)−
∞∑
k=1

∂ξ(χφgk)J β̇k +

∞∑
k=1

(χφ∂ξgk)J β̇k

+

∞∑
k=1

δ0φ(gk)J β̇k + χJ∂tφ.

After a preliminary step of regularization, we may test by S∗(T − t)ϕ for ϕ ∈ C(TN ) in (3.1),
where S(t) denotes the solution semigroup to the linear operator

χ 7→ b(ξ) · ∇χ−A(ξ) : D2χ.

This leads to the mild form

(χJφ)(t) = S(t)χJ(0) +

∫ t

0

S(t− s)∂ξ(φqJ) ds−
∞∑
k=1

∫ t

0

S(t− s)∂ξ(gkχφ)J dβk(s)

+

∞∑
k=1

∫ t

0

S(t− s)((∂ξgk)χφ)J dβk(s) +

∞∑
k=1

∫ t

0

S(t− s)δ0φgk,J dβk(s)(3.4)

+

∫ t

0

S(t− s)χJ∂tφds,

where we have used

ϕ
(n
J

)
Fx
[ ∫ t

0

S(t− s)∂ξ(χφ) gk dβk(s)

]
(n)

= ϕ
(n
J

)∫ t

0

e−(ib(ξ)·n+n∗A(ξ)n)(t−s)∂ξFx(gkχφ)(s, n, ξ) dβk(s)

− ϕ
(n
J

)∫ t

0

e−(ib(ξ)·n+n∗A(ξ)n)(t−s)Fx((∂ξgk)χφ)(s, n, ξ) dβk(s)

=

∫ t

0

e−(ib(ξ)·n+n∗A(ξ)n)(t−s)∂ξFx(gkχφ)J(s, n, ξ) dβk(s)

−
∫ t

0

e−(ib(ξ)·n+n∗A(ξ)n)(t−s)Fx((∂ξgk)χφ)J(s, n, ξ) dβk(s)
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and

ϕ
(n
J

)
Fx
[ ∫ t

0

S(t− s)δ0φgk dβk(s)

]
(n)

= ϕ
(n
J

)∫ t

0

e−(ib(ξ)·n+n∗A(ξ)n)(t−s)δ0φĝk(n, ξ) dβk(s)

=

∫ t

0

e−(ib(ξ)·n+n∗A(ξ)n)(t−s)δ0φĝk,J(n, ξ) dβk(s).

For J & 1 fixed, we next decompose the action in ξ-variable according to the degeneracy of the
operator L(iu, in, ξ). Namely, for K dyadic, let 1 ≡ ψ0(z)+

∑
K&1 ψ1(K−1z) be a smooth partition

of unity such that ψ0 is a bump function supported inside the ball |z| ≤ 2 and ψ1 is a bump function
supported in the annulus 1

2 ≤ |z| ≤ 2, and write

10≤t(χJφ)(t, x, ξ) = F−1
tx

[
ψ0

(
L(iu, in, ξ)

δ

)
Ftx
[
10≤t(χJφ)

]
(u, n, ξ)

]
(t, x)

+
∑
K&1

F−1
tx

[
ψ1

(
L(iu, in, ξ)

δK

)
Ftx
[
10≤t(χJφ)

]
(u, n, ξ)

]
(t, x)

=: χ
(0)
J (t, x, ξ) +

∑
K&1

χ
(K)
J (t, x, ξ).

Hence, we consider the decomposition

10≤tχφ = 10≤t

(
χ0 +

∑
J&1

χJ

)
φ = 10≤tχ0φ+

∑
J&1

χ(0)
J (t, x, ξ) +

∑
K&1

χ
(K)
J (t, x, ξ)

 .

Since ψ0 is supported at the degeneracy, we will apply a trivial estimate. However, ψ1 is sup-
ported away from the degeneracy and therefore we may use the equation and the non-degeneracy
assumption (2.3). From (3.4) we obtain

χ
(K)
J (t, x, ξ) = F−1

tx ψ1

(
L(iu, in, ξ)

δK

)
Ftx
[
10≤tS(t)χ0,J + 10≤t

∫ t

0

S(t− s)∂ξ(φqJ) ds

− 10≤t

∞∑
k=1

∫ t

0

S(t− s)∂ξ(gkχφ)J dβk(s) + 10≤t

∞∑
k=1

∫ t

0

S(t− s)((∂ξgk)χφ)J dβk(s)

+ 10≤t

∞∑
k=1

∫ t

0

S(t− s)δ0φgk,J dβk(s) + 10≤t

∫ t

0

S(t− s)χJ∂tφds

]
(t, x).

Multiplying the above by η ∈ C∞b (R) and integrating over ξ ∈ R, we set

∫
R
χ

(K)
J (t, x, ξ)η(ξ)dξ =: I1 + I2 − I3 + I4 + I5 + I6
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and we estimate the right hand side term by term below. Note that since

Ftx
[
10≤t

∫ t

0

S(t− s)∂ξ(gkχφ)J dβk(s)

]
= Ft

[
10≤t

∫ t

0

e−(ib(ξ)·n+n∗A(ξ)n)(t−s)∂ξ (̂gkχφ)J(s, ξ, n) dβk(s)

]
=

1

(2π)1/2

∫ ∫
10≤s≤t e−(ib(ξ)·n+n∗A(ξ)n)(t−s)∂ξ (̂gkχφ)J dβk(s) e−itudt

=
1

(2π)1/2

∫ ∫
1t−s≥0 e−(ib(ξ)·n+n∗A(ξ)n)(t−s) e−itudt10≤s ∂ξ (̂gkχφ)J(s, ξ, n) dβk(s)

=

∫
1r≥0 e−(ib(ξ)·n+n∗A(ξ)n)r e−irudr

1

(2π)1/2

∫ ∞
0

∂ξ (̂gkχφ)J(s, ξ, n)e−isu dβk(s)

=
1

i(u+ b(ξ) · n) + n∗A(ξ)n

1

(2π)1/2

∫ ∞
0

∂ξ (̂gkχφ)J(s, ξ, n)e−isu dβk(s),

we have

I3 =
1

(2π)1/2

1

(δK)

∫
R
F−1
tx

[
ψ̃

(
L(iu, in, ξ)

δK

) ∞∑
k=1

∫ ∞
0

e−isu∂ξ (̂gkχφ)J(s, ξ, n) dβk(s)

]
η(ξ)dξ,

where

ψ̃(z) := ψ1(z)/z.

We argue similarly for the remaining terms Ii, e.g. for I2 we note that

Ftx
[
10≤t

∫ t

0

S(t− s)∂ξ(φqJ) ds

]
=

1

i(u+ b(ξ) · n) + n∗A(ξ)n
Ftx[10≤t∂ξ(φqJ)]

Estimating Ii, i = 1, . . . , 6.

Estimate of I1. Using Plancherel and Hölder’s inequality we observe

‖I1‖2L2
t,x

=
1

2π(δK)2

∥∥∥∥∫
R
F−1
tx

[
ψ̃

(
L(iu, in, ξ)

δK

)
χ̂J(0, n, ξ)

]
η(ξ)dξ

∥∥∥∥2

L2
t,x

=
1

2π(δK)2

∫
u

∑
n

∣∣∣∣ ∫
R
ψ̃

(
L(iu, in, ξ)

δK

)
χ̂J(0, n, ξ)η(ξ)dξ

∣∣∣∣2du

≤ 1

2π(δK)2

∫
u

∑
n

∫
R

∣∣∣∣ψ̃(L(iu, in, ξ)

δK

)∣∣∣∣21supp ηdξ

×
∫
R

1{|u+b(ξ)·n|2+|n∗A(ξ)n|2<(2δK)2}
∣∣χ̂J(0, n, ξ)

∣∣2η2(ξ)dξdu.

Then using (2.3) and∫
u

1{|u+b(ξ)·n|2+|n∗A(ξ)n|2<(2δK)2}du ≤
∫
u

1{|u|2<(2δK)2}du . δK(3.5)

we obtain

‖I1‖2L2
t,x
.

1

δK

(
δK

Jβ

)α
‖χJ(0)η‖2L2

x,ξ
.(3.6)
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Estimate of I2. First, we integrate by parts to obtain

‖I2‖L1
tW
−ε,qε
x

=
1

δK

∥∥∥∥ ∫
R
F−1
tx

[
ψ̃

(
L(iu, in, ξ)

δK

)
Ftx(10≤tφ∂ξqJ)

]
η(ξ)dξ

∥∥∥∥
L1
tW
−ε,qε
x

≤ 1

(δK)2

∥∥∥∥ ∫
R
F−1
tx

[
ψ̃′
(
L(iu, in, ξ)

δK

)
Lξ(iu, in, ξ)

ϑ(ξ)
Ftx(10≤tφϑqJ)(u, ξ, n)

]
η(ξ)dξ

∥∥∥∥
L1
tW
−ε,qε
x

+
1

(δK)2

∥∥∥∥∫
R
F−1
tx

[
ψ̃

(
L(iu, in, ξ)

δK

)
Ftx(10≤tφqJ)(u, ξ, n)

]
η′(ξ)dξ

∥∥∥∥
L1
tW
−ε,qε
x

We apply Corollary A.4 to estimate the second term on the right hand side. For the first one, we
first note that (2.3) implies that (for simplicity restricting to the case β = 2 while β = 1 can be
handled analogously)

|b′i(ξ)|
ϑ(ξ)

.η |n|,
|A′ij(ξ)|
ϑ(ξ)

.η 1, i, j ∈ {1, . . . , N}.

Since Lξ(iu, in, ξ) is a polynomial in n, we may apply [2, Lemma 2.2] to deduce that

m(n, ξ) :=
Lξ(iu, in, ξ)

ϑ(ξ)
=
ib′(ξ) · n+ n∗A′(ξ)n

ϑ(ξ)

localized to |n| ∼ J , ξ ∈ supp η, is an L1-Fourier multiplier with norm bounded by Jβ . Revis-

iting the proofs of Lemma A.3 and Corollary A.4 with the multiplier ψ
(
m(u,n,ξ)

δ

)
replaced by

ψ
(
m(u,n,ξ)

δ

)
m(n, ξ) then allows to estimate the first term on the right hand side to obtain

‖I2‖L1
tW
−ε,qε
x

.
1

(δK)2
Jβ‖φϑqJη‖Mt,x,ξ

+
1

(δK)2
‖φqJη′‖Mt,x,ξ

.
1

(δK)2
Jβ‖φϑqJ(η + |η′|)‖Mt,x,ξ

,

where

N

q′ε
< ε < 1 < qε <

N

N − ε

and ε is chosen sufficiently small. Consequently,

‖I2‖L1
t,x
.

1

(δK)2
Jβ+ε‖φϑqJ(η + |η′|)‖Mt,x,ξ

.(3.7)

Estimate of I3. Using Plancherel and Itô’s formula, we note that

E‖I3‖2L2
t,x

=
1

2π(δK)2
E
∥∥∥∥∫

R
F−1
tx

[
ψ̃

(
L(iu, in, ξ)

δK

) ∞∑
k=1

∫ ∞
0

e−isu∂ξ (̂gkχφ)J(s, ξ, n) dβk(s)

]
η(ξ)dξ

∥∥∥∥2

L2
t,x

=
1

2π(δK)2

∫
u

∑
n

E
∣∣∣∣ ∞∑
k=1

∫ ∞
0

∫
R
ψ̃

(
L(iu, in, ξ)

δK

)
e−isu∂ξ (̂gkχφ)J(s, ξ, n)η(ξ)dξ dβk(s)

∣∣∣∣2du

=
1

2π(δK)2

∫
u

∑
n

E
∫ ∞

0

∞∑
k=1

∣∣∣∣ ∫
R
ψ̃

(
L(iu, in, ξ)

δK

)
e−isu∂ξ (̂gkχφ)J(s, ξ, n)η(ξ)dξ

∣∣∣∣2dsdu

.
1

(δK)4

∫
u

∑
n

E
∫ ∞

0

∞∑
k=1

∣∣∣∣ ∫
R
ψ̃′
(
L(iu, in, ξ)

δK

)
Lξ(iu, in, ξ)

ϑ(ξ)
̂(gkχϑφ)J(s, ξ, n)η(ξ)dξ

∣∣∣∣2dsdu

+
1

(δK)4

∫
u

∑
n

E
∫ ∞

0

∞∑
k=1

∣∣∣∣ ∫
R
ψ̃

(
L(iu, in, ξ)

δK

)
(̂gkχφ)J(s, ξ, n)η′(ξ)dξ

∣∣∣∣2dsdu
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Hence, by (2.3) it follows that

E‖I3‖2L2
t,x

.
1

(δK)4
E
∫ ∞

0

∫
u

∑
n

∫
R

∣∣∣∣ψ̃′(L(iu, in, ξ)

δK

)
Lξ(iu, in, ξ)

ϑ(ξ)

∣∣∣∣21supp ηdξ

×
∫
R

1{|u+b(ξ)·n|2+|n∗A(ξ)n|2<(2δK)2}
∞∑
k=1

∣∣ ̂(gkχϑφ)J(s, ξ, n)
∣∣2η2(ξ)dξduds

+
1

(δK)4
E
∫ ∞

0

∫
u

∑
n

∫
R

∣∣∣∣ψ̃(L(iu, in, ξ)

δK

) ∣∣∣∣21supp ηdξ

×
∫
R

1{|u+b(ξ)·n|2+|n∗A(ξ)n|2<(2δK)2}
∞∑
k=1

∣∣ ̂(gkχϑφ)J(s, ξ, n)
∣∣2|η′(ξ)|2dξduds

.
1

(δK)4

(
δK

Jβ

)α
J2β

× E
∫ ∞

0

∫
u

∑
n

∫
R

1{|u+b(ξ)·n|2+|n∗A(ξ)n|2<(2δK)2}

∞∑
k=1

∣∣ ̂(gkχϑφ)J(s, ξ, n)
∣∣2η2(ξ)dξduds

+
1

(δK)4

(
δK

Jβ

)α
× E

∫ ∞
0

∫
u

∑
n

∫
R

1{|u+b(ξ)·n|2+|n∗A(ξ)n|2<(2δK)2}

∞∑
k=1

∣∣ ̂(gkχϑφ)J(s, ξ, n)
∣∣2|η′(ξ)|2dξduds

and due to (3.5) we obtain

E‖I3‖2L2
t,x
.

1

(δK)3

(
δK

Jβ

)α
J2β E

∫ ∞
0

∑
n

∫
R

∞∑
k=1

∣∣ ̂(gkχϑφ)J(s, ξ, n)
∣∣2(η2 + |η′|2) dξds

≤ 1

(δK)3

(
δK

Jβ

)α
J2β

∞∑
k=1

E‖(gkχϑφ)J(η + |η′|)‖2L2
t,x,ξ

.

(3.8)

Estimate of I4. By Plancherel and Itô’s formula we have

E‖I4‖2L2
t,x

=
1

2π(δK)2
E
∥∥∥∥ ∫

R
F−1
tx

[
ψ̃

(
L(iu, in, ξ)

δK

) ∞∑
k=1

∫ ∞
0

e−isuFx((∂ξgk)χφ)J(s, ξ, n) dβk(s)

]
η(ξ)dξ

∥∥∥∥2

L2
t,x

=
1

2π(δK)2

∫
u

∑
n

E
∣∣∣∣ ∞∑
k=1

∫ ∞
0

∫
R
ψ̃

(
L(iu, in, ξ)

δK

)
e−isuFx((∂ξgk)χφ)J(s, ξ, n)η(ξ)dξ dβk(s)

∣∣∣∣2du

=
1

2π(δK)2

∫
u

∑
n

E
∫ ∞

0

∞∑
k=1

∣∣∣∣ ∫
R
ψ̃

(
L(iu, in, ξ)

δK

)
e−isuFx((∂ξgk)χφ)J(s, ξ, n)η(ξ)dξ

∣∣∣∣2dsdu
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Thus, it follows from (2.3), (3.5) and (2.4) that

E‖I4‖2L2
t,x

≤ 1

(δK)2

∫
u

∑
n

∫
R

∣∣∣∣ψ̃(L(iu, in, ξ)

δK

)∣∣∣∣21supp ηdξ

× E
∫ ∞

0

∫
R

1{|u+b(ξ)·n|2+|n∗A(ξ)n|2<(2δK)2}

∞∑
k=1

∣∣Fx((∂ξgk)χφ)J(s, ξ, n)
∣∣2η2(ξ)dξ dsdu

.
1

δK

(
δK

Jβ

)α ∞∑
k=1

E‖(∂ξgk)χηφ)J‖
2
L2
t,x,ξ

.

(3.9)

Estimate of I5. We have

E‖I5‖2L2
t,x

=
1

2π(δK)2
E
∥∥∥∥∫

R
F−1
tx

[
ψ̃

(
L(iu, in, ξ)

δK

) ∞∑
k=1

∫ ∞
0

e−isuδ0φĝk,J(n, ξ) dβk(s)

]
η(ξ)dξ

∥∥∥∥2

L2
t,x

=
1

2π(δK)2
E
∥∥∥∥∫

R
ψ̃

(
L(iu, in, ξ)

δK

) ∞∑
k=1

∫ ∞
0

e−isuδ0φĝk,J(n, ξ) dβk(s)η(ξ)dξ

∥∥∥∥2

L2
u,n

=
η(0)2

2π(δK)2

∫
u

∑
n

E
∣∣∣∣ ∞∑
k=1

∫ ∞
0

ψ̃

(
L(iu, in, 0)

δK

)
e−isuφĝk,J(n, 0) dβk(s)

∣∣∣∣2du

=
η(0)2

2π(δK)2

∫
u

∑
n

∫ ∞
0

∞∑
k=1

∣∣∣∣ψ̃(L(iu, in, 0)

δK

)
φĝk,J(n, 0)

∣∣∣∣2dsdu

.η
1

δK

∞∑
k=1

‖gk,J(·, 0)‖2L2
x
,

(3.10)

where we also used (3.5).

Estimate of I6. It holds

‖I6‖L1
t,x
.

1

δK

∥∥∥∥ ∫
R
F−1
tx

[
ψ̃

(
L(iu, in, ξ)

δK

)
Ftx(10≤tχJ∂tφ)

]
η(ξ)dξ

∥∥∥∥
L1
t,x

.
1

δK
‖∂tφχJη‖L1

t,x,ξ
.

(3.11)
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Estimating χ
(K)
J . Using the above estimates (3.6), (3.7), (3.8), (3.9), (3.10), (3.11) we deduce∥∥∥∥∫

R
χ

(K)
J η dξ

∥∥∥∥
L1
ω,t,x

= sup
ϕ∈L∞ω,t,x
‖ϕ‖L∞ω,t,x≤1

E
〈∫

R
χ

(K)
J η dξ, ϕ

〉

.η

(
1

δK

) 1
2
(
δK

Jβ

)α
2

‖χJ(0)η‖L2
ω,x,ξ

+
1

(δK)2
Jβ+ε‖φϑqJ(η + |η′|)‖L1

ωMt,x,ξ

+

(
1

(δK)3

) 1
2
(
δK

Jβ

)α
2

Jβ

( ∞∑
k=1

‖(gkχϑφ)J(η + |η′|)‖2L2
ω,t,x,ξ

)1/2

+

(
1

δK

) 1
2
(
δK

Jβ

)α
2

( ∞∑
k=1

‖((∂ξgk)χηφ)J‖
2
L2
ω,t,x,ξ

)1/2

+

(
1

δK

) 1
2

( ∞∑
k=1

‖gk,J(·, 0)‖2L2
x

)1/2

+
1

δK
‖∂tφχJη‖L1

ω,t,x,ξ
.

Hence,∑
K&1

∥∥∥∥ ∫
R
χ

(K)
J η dξ

∥∥∥∥
L1
ω,t,x

. δ
1
2 (α−1)J−

βα
2 ‖χJ(0)η‖L2

ω,x,ξ

∑
K&1

K
1
2 (α−1)

+ δ−2Jβ+ε‖φϑqJ(η + |η′|)‖L1
ωMt,x,ξ

∑
K&1

K−2

+ δ−
3−α
2 J

2−α
2 β

( ∞∑
k=1

‖(gkχϑφ)J(η + |η′|)‖2L2
ω,t,x,ξ

)1/2 ∑
K&1

K−
3−α
2

+ δ−
1
2 (1−α)J−

βα
2

( ∞∑
k=1

‖((∂ξgk)χηφ)J‖
2
L2
ω,t,x,ξ

)1/2 ∑
K&1

K
1
2 (α−1)

+ δ−
1
2

( ∞∑
k=1

‖gk,J(·, 0)‖2L2
x

)1/2 ∑
K&1

K−
1
2 + δ−1‖∂tφχJη‖L1

ω,t,x,ξ

∑
K&1

K−1.

Recall that the parameter K was chosen dyadic. Therefore, since all the powers of K appearing
on the right hand side are negative, we deduce∑

K&1

∥∥∥∥∫
R
χ

(K)
J η dξ

∥∥∥∥
L1
ω,t,x

. δ
1
2 (α−1)J−

βα
2 ‖χJ(0)η‖L2

ω,x,ξ
+ δ−2Jβ+ε‖φϑqJ(η + |η′|)‖L1

ωMt,x,ξ

+ δ−
3−α
2 J

2−α
2 β

( ∞∑
k=1

‖(gkχϑφ)J(η + |η′|)‖2L2
ω,t,x,ξ

)1/2

+ δ−
1
2 (1−α)J−

βα
2

( ∞∑
k=1

‖((∂ξgk)χηφ)J‖
2
L2
ω,t,x,ξ

)1/2

+ δ−
1
2

( ∞∑
k=1

‖gk,J(·, 0)‖2L2
x

)1/2

+ δ−1‖∂tφχJη‖L1
ω,t,x,ξ

Estimating χJ . We let

χJφ η :=

∫
R
χJφ η dξ
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and write

K(r, χJφ η) := inf
F 0
J∈L

2
ω,t,x,F

1
J∈L

1
ω,t,x

χJφ η=F 0
J+F 1

J

(
‖F 0

J‖L2
ω,t,x

+ r‖F 1
J‖L1

ω,t,x

)
, r > 0,

where χJφ η = F 0
J + F 1

J with

F 0
J :=

∫
R
χ

(0)
J η dξ, F 1

J :=
∑
K&1

∫
R
χ

(K)
J η dξ.

By Lemma A.3 and (2.3) we have

‖F 0
J‖2L2

t,x
=

∥∥∥∥∫
R
F−1
tx

[
ψ0

(
L(iu, in, ξ)

δ

)
Ftx(χJφ)(u, n, ξ)

]
η(ξ)dξ

∥∥∥∥2

L2
t,x

.

(
δ

Jβ

)α
‖χJηφ‖2L2

t,x,ξ
.

Hence, we obtain

K(r, χJφ η) . δ
α
2 J−

βα
2 ‖χJηφ‖L2

ω,t,x,ξ

+ rδ
1
2 (α−1)J−

βα
2

‖χJ(0)η‖L2
ω,x,ξ

+

( ∞∑
k=1

‖((∂ξgk)χηφ)J‖
2
L2
ω,t,x,ξ

)1/2


+ rδ−2Jβ+ε‖φϑqJ(η + |η′|)‖L1
ωMt,x,ξ

+ rδ−
3−α
2 J

2−α
2 β

( ∞∑
k=1

‖(gkχϑφ)J(η + |η′|)‖2L2
ω,t,x,ξ

)1/2

+ rδ−
1
2

( ∞∑
k=1

‖gk,J(·, 0)‖2L2
x

)1/2

+ rδ−1‖∂tφχJη‖L1
ω,t,x,ξ

and we intend to choose r to equilibrate these bounds. To do so, let τ, κ > 0 to be chosen later
and set

δ = rτJκ

which yields,

r−τ
α
2 K(r, χJφ η) . Jα

κ−β
2 ‖χJηφ‖L2

ω,t,x,ξ

+ r1− τ2 J
−κ(1−α)−βα

2

‖χJ(0)η‖L2
ω,x,ξ

+

( ∞∑
k=1

‖((∂ξgk)χηφ)J‖
2
L2
ω,t,x,ξ

)1/2


+ r1−τ( 4+α
2 )J−2κ+β+ε‖φϑqJ(η + |η′|)‖L1

ωMt,x,ξ

+ r1− 3
2 τJ−

3−α
2 κ+ 2−α

2 β

( ∞∑
k=1

‖(gkχϑφ)J(η + |η′|)‖2L2
ω,t,x,ξ

)1/2

+ r1−τ( 1+α
2 )J−

1
2κ

( ∞∑
k=1

‖gk,J(·, 0)‖2L2
x

)1/2

+ r1−τ( 2+α
2 )J−κ‖∂tφχJη‖L1

ω,t,x,ξ
.

Optimizing in τ, κ yields

κ =
2

3
β, τ =

2

4 + α
.
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which obviously can be satisfied. Hence, with θ := α
4−α ,

J
αβ
6 rθK(r, χJφ η) . ‖χJηφ‖L2

ω,t,x,ξ

+ r
3+α
4+α J−

1
3β

‖χJ(0)η‖L2
ω,x,ξ

+

( ∞∑
k=1

‖((∂ξgk)χηφ)J‖
2
L2
ω,t,x,ξ

)1/2


+ J−
2−α
6 β+ε‖φϑqJ(η + |η′|)‖L1

ωMt,x,ξ

+ r
1+α
4+α

( ∞∑
k=1

‖(gkχϑφ)J(η + |η′|)‖2L2
ω,t,x,ξ

)1/2

+ r
3

4+α J−
2−α
6 β

( ∞∑
k=1

‖gk,J(·, 0)‖2L2
x

)1/2

+ r
2

4+α J−
4−α
6 β‖∂tφχJη‖L1

ω,t,x,ξ
.

Finally, since for r large we have the elementary estimate

K(r, χJφ η) ≤ ‖χJφ η‖L2
ω,t,x

,

we apply the K-method of real interpolation to deduce

J
αβ
6 ‖χJφ η‖(L2

ω,t,x,L
1
ω,t,x)θ,∞

≤ J
αβ
6 ‖r−θK(r, χJφ η)‖L∞r

≤ J
αβ
6 ‖r−θK(r, χJφ η)1r≤R‖L∞r + J

αβ
6 ‖r−θK(r, χJφ η)1r≥R‖L∞r

. ‖χJφη‖L2
ω,t,x,ξ

+R
3+α
4+α J−

1
3β

‖χJ(0)η‖L2
ω,x,ξ

+

( ∞∑
k=1

‖((∂ξgk)χηφ)J‖
2
L2
ω,t,x,ξ

)1/2


+ J−
2−α
6 β+ε‖φϑqJ(η + |η′|)‖L1

ωMt,x,ξ
+R

1+α
4+α

( ∞∑
k=1

‖(gkχϑφ)J(η + |η′|)‖2L2
ω,t,x,ξ

)1/2

+R
3

4+α J−
2−α
6 β

( ∞∑
k=1

‖gk,J(·, 0)‖2L2
x

)1/2

+R
2

4+α J−
4−α
6 β‖∂tφχJη‖L1

ω,t,x,ξ

+ J
αβ
6 R−θ‖χJφ η‖L2

ω,t,x
.

Let us take R = Jτ for some τ > 0 to be chosen below. Then

(3.12)

J
αβ
6 ‖χJφ η‖(L2

ω,t,x,L
1
ω,t,x)θ,∞

. ‖χJφη‖L2
ω,t,x,ξ

+ (Jτ )
3+α
4+α J−

1
3β

‖χJ(0)η‖L2
ω,x,ξ

+

( ∞∑
k=1

‖((∂ξgk)χηφ)J‖
2
L2
ω,t,x,ξ

)1/2


+ J−
2−α
6 β+ε‖φϑqJ(η + |η′|)‖L1

ωMt,x,ξ
+ (Jτ )

1+α
4+α

( ∞∑
k=1

‖(gkχϑφ)J(η + |η′|)‖2L2
ω,t,x,ξ

)1/2

+ (Jτ )
3

4+α J−
2−α
6 β

( ∞∑
k=1

‖gk,J(·, 0)‖2L2
x

)1/2

+ (Jτ )
2

4+α J−
4−α
6 β‖∂tφχJη‖L1

ω,t,x,ξ

+ J
αβ
6 (Jτ )−θ‖χJφ η‖L2

ω,t,x
.

Now we aim to choose τ in order to minimize the maximum of the exponents of J occurring on
the right hand side in the previous inequality. Optimizing for τ the terms

3 + α

4 + α
τ − β

3
,

1 + α

4 + α
τ,

3

4 + α
τ − 2− α

6
β,

2

4 + α
τ − 4− α

6
β, − α

4 + α
τ +

αβ

6
.
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yields the choice

τ =
βα(4 + α)

6(1 + 2α)
.

With this choice, all the exponents in the right hand side of (3.12) are of order less than αβ
6 .

Multiplication with J
−αβ

6 thus leads to negative powers of J on the right hand side, the worst (i.e.
the maximal) one being

− α2β

6(1 + 2α)
.

Therefore, since ε was chosen small, we obtain that

‖χJφ η‖(L2
ω,t,x,L

1
ω,t,x)θ,∞ . J

− α2β
6(1+2α)

[
‖χJφη‖L2

ω,t,x,ξ
+ ‖χJ(0)η‖L2

ω,x,ξ

+

( ∞∑
k=1

‖((∂ξgk)χηφ)J‖
2
L2
ω,t,x,ξ

)1/2

+

( ∞∑
k=1

‖(gkχϑφ)J(η + |η′|)‖2L2
ω,t,x,ξ

)1/2

+

( ∞∑
k=1

‖gk,J(·, 0)‖2L2
x

)1/2

+ ‖φqJϑ(η + |η′|)‖L1
ωMt,x,ξ

+ ‖∂tφχJη‖L1
ω,t,x,ξ

+ ‖χJφ η‖L2
ω,t,x

]
.

Note that although all the above norms are global in time, i.e. t ∈ (−∞,∞), the integrands are
localized on [0, T ] due to the cut-off φ = φλ.

Conclusion. The real interpolation of two Lebesgue spaces is given by a Lorentz space (see [53,
Subsection 1.18.6, Theorem 1], namely,

(L2
ω,t,x, L

1
ω,t,x)θ,∞ = Lr̃,∞ω,t,x,

1

r̃
=

1− θ
2

+
θ

1
.

In the case of a bounded domain, Lr̃,∞ω,t,x is embedded in the Lebesgue space Lrω,t,x whenever r̃ > r,
see [32, Exercise 1.1.11]

(L2
ω,t,x, L

1
ω,t,x)θ,∞ ↪→ Lrω,t,x,

1

r
>

1− θ
2

+
θ

1
.

Thus letting

s <
α2β

6(1 + 2α)

we deduce

(3.13)

‖χφη‖Lr(Ω×[0,T ];W s,r(TN ))

. ‖χφη‖L2
ω,t,x,ξ

+ ‖χ(0)η‖L2
ω,x,ξ

+

( ∞∑
k=1

‖((∂ξgk)χηφ)‖2L2
ω,t,x,ξ

)1/2

+

( ∞∑
k=1

‖gkχϑφ(η + |η′|)‖2L2
ω,t,x,ξ

)1/2

+

( ∞∑
k=1

‖gk(·, 0)‖2L2
x

)1/2

+ ‖φϑq(η + |η′|)‖L1
ωMt,x,ξ

+ ‖∂tφχη‖L1
ω,t,x,ξ

+ ‖χφ η‖L2
ω,t,x

.

Since the constant in inequality (3.13) is independent of λ, we may send λ→ 0. First, we observe
that

lim sup
λ→0

‖∂tφλχη‖L1
ω,t,x,ξ

. sup
0≤t≤T

‖χη‖L1
ω,x,ξ

.
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Using the dominated convergence theorem for the remaining terms, we obtain the following estimate
for uη = χη

‖uη‖Lr(Ω×[0,T ];W s,r(TN )) . ‖χη‖L2
ω,t,x,ξ

+ ‖χ(0)η‖L2
ω,x,ξ

+

( ∞∑
k=1

‖(∂ξgk)χη‖2L2
ω,t,x,ξ

)1/2

+

( ∞∑
k=1

‖gkχϑ(η + |η′|)‖2L2
ω,t,x,ξ

)1/2

+

( ∞∑
k=1

‖gk(·, 0)‖2L2
x

)1/2

+ ‖qϑ(η + |η′|)‖L1
ωMt,x,ξ

+ sup
0≤t≤T

‖χη‖L1
ω,x,ξ

+ ‖χη‖L2
ω,t,x

.

It remains to estimate the right hand side in terms of the available bounds for the kinetic solution u
and the corresponding kinetic measure m. Note that this estimate will depend on the localization
η. First, due to the definition of the equilibrium function χ, it follows immediately that

‖χη‖L2
ω,t,x,ξ

.η ‖uη‖1/2L1
ω,t,x

, ‖χ(0)η‖L2
ω,x,ξ

.η ‖uη0‖
1/2
L1
ω,x
,

sup
0≤t≤T

‖χη‖L1
ω,x,ξ

= sup
0≤t≤T

‖uη‖L1
ω,x
, ‖χη‖L2

ω,t,x
.η ‖uη‖1/2L1

ω,t,x
.

Second, similarly and due to (2.4) we have with Θη such that Θ′η = (|ξ|2 + 1)ϑ2(ξ)(η(ξ) + |η′|(ξ)),( ∞∑
k=1

‖(∂ξgk)χη‖2L2
ω,t,x,ξ

)1/2

+

( ∞∑
k=1

‖gkχϑ(η + |η′|)‖2L2
ω,t,x,ξ

)1/2

+

( ∞∑
k=1

‖gk(·, 0)‖2L2
x

)1/2

.η ‖Θη(u)‖1/2
L1
ω,t,x

+ 1.

Finally, since q = m− 1
2G

2δu=ξ, we deduce

‖qϑ(η + |η′|)‖L1
ωMt,x,ξ

.η ‖mϑ(η + |η′|)‖L1
ωMt,x,ξ

+ 1.

At this point it is worth noticing that all estimates were uniform in η up to constants depending
on ‖η‖C1 and (2.3). Since Θη(u) ≥ uη we conclude

‖η̄(u)‖Lr(Ω×[0,T ];W s,r(TN )) .η‖η̄(|u0|)‖1/2L1
ω,x

+ ‖Θη(|u|)‖1/2
L1
ω,t,x

+ sup
0≤t≤T

‖η̄(|u|)‖L1
ω,x

+ ‖mϑ(η + |η′|)‖L1
ωMt,x,ξ

+ 1.

with

1

r
>

1− θ
2

+
θ

1
and s <

α2β

6(1 + 2α)

which completes the proof. �

4. Well-posedness

In this section we present the proof of the main well-posedness result Theorem 1.1. The uniqueness
part of Theorem 1.1 will be proved in Theorem 4.3 below, the existence in Theorem 4.9 below.

4.1. Uniqueness. In this section we prove a comparison results and thus uniqueness for kinetic
solutions to (1.1). We emphasize that we do not assume any higher Lp estimates for the kinetic
solutions, thus providing a proof of uniqueness in the general L1 setting. In addition, we only
assume that σ is locally Hölder continuous and b′ is locally bounded. In particular, no polynomial
growth condition for b′ is required. This generalizes previous related uniqueness results given in
[16, Section 3]. The additional difficulties are resolved here by introducing an additional cutoff
argument.

Analogously to [16, Proposition 3.1], [34, Proposition 3.1] and [19, Proposition 10] one may prove
the existence of left and right continuous representatives for kinetic solutions.
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Proposition 4.1. Let u be a kinetic solution to (1.1). Then, f = 1u>ξ admits representatives
f− and f+ which are almost surely left- and right-continuous, respectively, at all points t∗ ∈ [0, T ]
in the sense of distributions over TN × R. More precisely, for all t∗ ∈ [0, T ] there exist kinetic
functions f∗,± on Ω × TN × R such that setting f±(t∗) = f∗,± yields f± = f almost everywhere
and 〈

f±(t∗ ± ε), ψ
〉
→
〈
f±(t∗), ψ

〉
ε ↓ 0, ∀ψ ∈ C2

c (TN × R), P-a.s.,

where the zero set does not depend on ψ nor t∗. Moreover, there is a countable set Q ⊆ [0, T ] such
that P-a.s. for all t∗ ∈ [0, T ] \Q we have f+(t∗) = f−(t∗).

Regarding the doubling of the variables [16, Proposition 3.2] we make use of the following version,
Proposition 4.2 below, which is more suitable for the L1-setting.

Let (%ε), (ψδ) be standard Dirac sequences on TN and R, respectively. That is, let ψ ∈ C∞c (R) be
symmetric nonnegative function such that

∫
R ψ = 1, suppψ ⊂ [−1, 1] and set

ψδ(ξ) =
1

δ
ψ
(ξ
δ

)
.

To define (%ε), consider a nonnegative symmetric function %̃ ∈ C∞c (RN ) satisfying
∫
RN %̃ = 1,

supp % ⊂ B(0, π) and let % denote its 2πZN -periodic modification. Then let

%ε(x) =
1

εN
%
(x
ε

)
.

Let us now define a sequence of smooth cut-off functions (K`) as follows: Let K ∈ C∞(R) be such
that 0 ≤ K(ξ) ≤ 1, K ≡ 1 if |ξ| ≤ 1, K ≡ 0 if |ξ| ≥ 2, and |K ′(ξ)| ≤ 1. Define

K`(ξ) := K
( ξ

2`

)
, ` ∈ N.

Then, clearly,

|K ′`(ξ)| ≤
1

2`
12`≤|ξ|≤2`+1 .

Proposition 4.2 (Doubling of variables). Let u1, u2 be kinetic solutions to (1.1). Denote f1 =
1u1>ξ, f2 = 1u2>ξ with the corresponding Young measures ν1 = δu1 , ν2 = δu2 , respectively. Then
for all t ∈ [0, T ] we have

E
∫

(TN )2

∫
R3

%ε(x− y)K`(η)ψδ(η − ξ)ψδ(η − ζ)f±1 (x, t, ξ)f̄±2 (y, t, ζ) dξ dζ dxdy dη

≤ E
∫

(TN )2

∫
R3

%ε(x− y)K`(η)ψδ(η − ξ)ψδ(η − ζ)f1,0(x, ξ)f̄2,0(y, ζ) dξ dζ dx dy dη

+ I + J + K + L(δ, `),

where

I = E
∫ t

0

∫
(TN )2

∫
R3

f1f̄2

(
b(ξ)− b(ζ)

)
· ∇x%ε(x− y)K`(η)ψδ(η − ξ)ψδ(η − ζ) dξ dζ dx dy dη ds,

J = E
∫ t

0

∫
(TN )2

∫
R3

f1f̄2

(
A(ξ) +A(ζ)

)
: D2

x%ε(x− y)K`(η)ψδ(η − ξ)ψδ(η − ζ) dξ dζ dx dy dη ds

− E
∫ t

0

∫
(TN )2

∫
R3

%ε(x− y)K`(η)ψδ(η − ξ)ψδ(η − ζ) dν1
x,s(ξ) dx dn2,1(y, s, ζ) dη

− E
∫ t

0

∫
(TN )2

∫
R3

%ε(x− y)K`(η)ψδ(η − ξ)ψδ(η − ζ) dν2
y,s(ζ) dy dn1,1(x, s, ξ) dη,

K =
1

2
E
∫ t

0

∫
(TN )2

∫
R3

%ε(x−y)K`(η)ψδ(η−ξ)ψδ(η−ζ)
∑
k≥1

∣∣gk(x, ξ)−gk(y, ζ)
∣∣2dν1

x,s(ξ)dν
2
y,s(ζ)dxdy dη ds,

lim
`→∞

lim
δ→0

L(δ, `) = 0.
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Proof. A similar approach as in [34, Proposition 3.2] and [18, Proposition 9] yields for

α(x, ξ, y, ζ, η) := %ε(x− y)K`(η)ψδ(η − ξ)ψδ(η − ζ)

that

E
∫

(TN )2

∫
R3

f+
1 (t)f̄+

2 (t)α dξ dζ dx dy dη = E
∫

(TN )2

∫
R3

f1,0f̄2,0α dξ dζ dxdy dη

+ E
∫ t

0

∫
(TN )2

∫
R3

f1f̄2

(
b(ξ)− b(ζ)

)
· ∇xα dξ dζ dxdy dη ds

+ E
∫ t

0

∫
(TN )2

∫
R3

f1f̄2A(ζ) : D2
yα dξ dζ dxdy dη ds

+ E
∫ t

0

∫
(TN )2

∫
R3

f1f̄2A(ξ) : D2
xα dξ dζ dxdy dη ds

+
1

2
E
∫ t

0

∫
(TN )3

∫
R2

f̄2∂ξαG
2
1 dν1

x,s(ξ) dζ dy dxdη ds

− 1

2
E
∫ t

0

∫
(TN )3

∫
R2

f1∂ζαG
2
2 dν2

y,s(ζ) dξ dy dx dη ds

− E
∫ t

0

∫
(TN )2

∫
R3

G1,2α dν1
x,s(ξ) dν2

y,s(ζ) dx dy dη ds

− E
∫ t

0

∫
(TN )2

∫
R3

f̄−2 ∂ξα dm1(x, s, ξ) dζ dη dy

+ E
∫ t

0

∫
(TN )2

∫
R3

f+
1 ∂ζα dm2(y, s, ζ) dξ dxdη =: I1 + · · ·+ I9.

We need to treat the last five terms I5, . . . , I9. Using the fact that∫
R
ψδ(η − ξ)∂ζψδ(η − ζ)K`(η) dη

= −
∫
R
ψδ(η − ξ)∂ξψδ(η − ζ) dη +

∫
R
ψδ(η − ξ)ψδ(η − ζ)K ′`(η) dη

it follows

I9 = −E
∫ t

0

∫
(TN )2

∫
R3

α dν1
x,s(ξ) dxdn2,1(y, s, ζ) dη

− E
∫ t

0

∫
(TN )2

∫
R3

α dν1
x,s(ξ) dx dn2,2(y, s, ζ) dη

+ E
∫ t

0

∫
(TN )2

∫
R3

f+
1 %ε(x− y)ψδ(η − ξ)ψδ(η − ζ)K ′`(η) dm2(y, s, ζ) dξ dxdη

≤ −E
∫ t

0

∫
(TN )2

∫
R3

α dν1
x,s(ξ) dxdn2,1(y, s, ζ) dη

+
1

2`
E
∫ t

0

∫
TN

∫
R

12`−δ≤|ζ|≤2`+1+δ dm2(y, s, ζ),

where, according to Proposition 4.7, the second term on the right hand side vanishes if we let
δ → 0 and then n→∞. By symmetry

I8 ≤ −E
∫ t

0

∫
(TN )2

∫
R3

α dν2
y,s(ζ) dy dn1,1(x, s, ξ) dη

+
1

2`
E
∫ t

0

∫
TN

∫
R

12`−δ≤|ξ|≤2`+1+δ dm1(x, s, ξ).
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Next, we have

I5 + I6 + I7 = K

+
1

2
E
∫ t

0

∫
(TN )2

∫
R3

f̄2%ε(x− y)ψδ(η − ξ)ψδ(η − ζ)K ′`(η)G2
1 dν1

s,x(ξ) dxdζ dy dη ds

− 1

2
E
∫ t

0

∫
(TN )2

∫
R3

f1 %ε(x− y)ψδ(η − ξ)ψδ(η − ζ)K ′`(η)G2
2 dν2

y,s(ζ) dξ dy dxdη ds

=: K + I51 + I61

and due to (2.4)

I51 ≤
D

2`
E
∫ t

0

∫
(TN )2

∫
R3

%ε(x− y)ψδ(η − ξ)ψδ(η − ζ)12`−δ≤|ξ|≤2`+1+δ dν1
s,x(ξ) dx dζ dy dη ds

+
D

2`
E
∫ t

0

∫
(TN )2

∫
R3

%ε(x− y)ψδ(η − ξ)ψδ(η − ζ)12`−δ≤|ξ|≤2`+1+δ|ξ|2 dν1
s,x(ξ) dx dζ dy dη ds

≤ D

2`
E
∫ t

0

∫
TN

∫
R

12`−δ≤|ξ|≤2`+1+δ dν1
s,x(ξ) dxds

+
D

2`
E
∫ t

0

∫
TN

∫
R

12`−δ≤|ξ|≤2`+1+δ|ξ|2 dν1
s,x(ξ) dxds.

We further note that

D

2`
E
∫ t

0

∫
TN

∫
R

12`−δ≤|ξ|≤2`+1+δ|ξ|2 dν1
s,x(ξ) dx ds

≤ D2`+1 + δ

2`
E
∫ t

0

∫
TN

∫
R

12`−δ≤|ξ|≤2`+1+δ|ξ|dν1
s,x(ξ) dxds

≤ D2`+1 + δ

2`
E
∫ t

0

∫
TN

12`−δ≤|u1(s,x)||u1(s, x)|dxds.

Hence,

lim sup
δ→0

I51 ≤
D

2`
t+DE

∫ t

0

∫
TN

12`≤|u1(s,x)||u1(s, x)|dxds.

By dominated convergence this implies that

lim
`→∞

lim
δ→0

I51 = 0

and I61 may be treated analogously, which completes the proof. �

Finally, we have all in hand to prove the comparison principle leading to the proof of uniqueness
as well as continuous dependence on the initial condition.

Theorem 4.3 (Comparison principle). Let u be a kinetic solution to (1.1). Then there exist u+

and u−, representatives of u, such that, for all t ∈ [0, T ], f±(t, x, ξ) = 1u±(t,x)>ξ for a.e. (ω, x, ξ),

where f± are as in Proposition 4.1.

Moreover, if u1, u2 are kinetic solutions to (1.1) with initial data u1,0, u2,0, respectively, then,

(4.1) sup
t∈[0,T ]

E‖(u±1 (t)− u±2 (t))+‖L1(TN ) ≤ E‖(u1,0 − u2,0)+‖L1(TN ).
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Proof. Using Proposition 4.2 we have

E
∫
TN

∫
R
f±1 (x, t, ξ)f̄±2 (x, t, ξ) dξ dx

= E
∫

(TN )2

∫
R3

%ε(x− y)K`(η)ψδ(η − ξ)ψδ(η − ζ)f±1 (x, t, ξ)f̄±2 (y, t, ζ) dξ dζ dxdy + ηt(ε, δ, `)

≤ E
∫

(TN )2

∫
R3

%ε(x− y)K`(η)ψδ(η − ξ)ψδ(η − ζ)f1,0(x, ξ)f̄2,0(y, ζ) dξ dζ dx dy dη

+ I + J + K + L(δ, `) + ηt(ε, δ, `),

with I, J, K as in Proposition 4.2 and

lim
`→∞

lim
ε,δ→0

ηt(ε, δ, `) = 0.

We aim to find suitable bounds for the terms I, J, K.

Since b′ is locally bounded, setting ‖b′‖∞,δ,` := ‖b′‖L∞(−2`+1−δ,2`+1+δ), we have

|I| ≤ ‖b′‖∞,δ,`E
∫ t

0

∫
(TN )2

∫
R3

f1f̄2|ξ − ζ|ψδ(η − ζ)ψδ(η − ξ)K`(η) dξ dζ
∣∣∇x%ε(x− y)

∣∣dxdy dη ds

≤ 2δ‖b′‖∞,δ,`E
∫ t

0

∫
(TN )2

∫
R3

ψδ(η − ζ)ψδ(η − ξ)K`(η) dξ dζ
∣∣∇x%ε(x− y)

∣∣dxdy dη ds

≤ 8 2`|TN |2ε−1δ‖b′‖∞,δ,`t.

In order to estimate the term J, we observe that

J = E
∫ t

0

∫
(TN )2

∫
R3

f1f̄2

(
σ(ξ)− σ(ζ)

)2
: D2

x%ε(x− y)K`(η)ψδ(η − ξ)ψδ(η − ζ) dξ dζ dx dy dη ds

+ 2E
∫ t

0

∫
(TN )2

∫
R3

f1f̄2 σ(ξ)σ(ζ) : D2
x%ε(x− y)K`(η)ψδ(η − ξ)ψδ(η − ζ) dξ dζ dx dy dη ds

− E
∫ t

0

∫
(TN )2

∫
R3

%ε(x− y)K`(η)ψδ(η − ξ)ψδ(η − ζ) dν1
x,s(ξ) dxdn2,1(y, s, ζ) dη

− E
∫ t

0

∫
(TN )2

∫
R3

%ε(x− y)K`(η)ψδ(η − ξ)ψδ(η − ζ) dν2
y,s(ζ) dy dn1,1(x, s, ξ) dη

= J1 + J2 + J3 + J4.

Since σ is locally γ-Hölder continuous due to (2.2), it holds

|J1| ≤ Ctδ2γε−2‖σ‖Cγ([−2`+1−δ,2`+1+δ]).

Next, we will show that

(4.2) J2 + J3 + J4 ≤ 0
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From the definition of the parabolic dissipation measure in Definition 2.2, we have

J3 + J4 = −E
∫ t

0

∫
(TN )2

∫
R
%ε(x− y)K`(η)ψδ(η − u1)

∣∣∣∣ divy

∫ u2

0

√
ψδ(η − ζ)σ(ζ) dζ

∣∣∣∣2dxdy dη ds

− E
∫ t

0

∫
(TN )2

∫
R
%ε(x− y)K`(η)ψδ(η − u2)

∣∣∣∣divx

∫ u1

0

√
ψδ(η − ξ)σ(ξ) dξ

∣∣∣∣2dx dy dη ds

≤ −2E
∫ t

0

∫
(TN )2

∫
R
%ε(x− y)K`(η)

√
ψδ(η − u1)

√
ψδ(η − u2)

× divx

∫ u1

0

√
ψδ(η − ξ)σ(ξ) dξ · divy

∫ u2

0

√
ψδ(η − ζ)σ(ζ) dζdx dy dη ds

= −2E
∫ t

0

∫
(TN )2

∫
R
%ε(x− y)K`(η)

× divx

∫ u1

0

ψδ(η − ξ)σ(ξ) dξ · divy

∫ u2

0

ψδ(η − ζ)σ(ζ) dζdx dy dη ds,

where we used the chain rule formula (2.7), i.e.√
ψδ(η − ξ) divx

∫ u1

0

√
ψδ(η − ξ)σ(ξ) dξ = divx

∫ u1

0

ψδ(η − ξ)σ(ξ) dξ.

Furthermore, it holds

J2 = 2E
∫ t

0

∫
(TN )2

∫
R
%ε(x− y)K`(η) divy

∫ u2

0

σ(ζ)ψδ(η − ζ) dζ · divx

∫ u1

0

σ(ξ)ψδ(η − ξ) dξ dxdy dη ds

≤ −J3 − J4

so (4.2) follows.

The last term is, due to (2.6), bounded as follows

K ≤ C E
∫ t

0

∫
(TN )2

%ε(x− y)|x− y|2
∫
R3

ψδ(η − ζ)ψδ(η − ξ)K`(η) dν1
x,s(ξ) dν2

y,s(ζ) dxdy dη ds

+ C E
∫ t

0

∫
(TN )2

%ε(x− y)

∫
R3

ψδ(η − ζ)ψδ(η − ξ)K`(η)|ξ − ζ|2 dν1
x,s(ξ) dν2

y,s(ζ) dxdy dη ds

≤ Ctδ−1ε2 + Ctδ.

As a consequence, we deduce, for all t ∈ [0, T ],

E
∫
TN

∫
R
f±1 (x, t, ξ)f̄±2 (x, t, ξ) dξ dx

≤
∫

(TN )2

∫
R3

%ε(x− y)K`(η)ψδ(η − ξ)ψδ(η − ζ)f1,0(x, ξ)f̄2,0(y, ζ) dξ dζ dx dy dη

+ Cε−1δ2`‖b′‖∞,δ,`t+ Ctδ2γε−2‖σ‖Cγ([−2`+1−δ,2`+1+δ]) + Ctδ−1ε2

+ Ctδ + L(δ, `) + ηt(ε, δ, `)

Taking δ = εβ with β ∈ (1/γ, 2) and letting ε→ 0 yields

E
∫
TN

∫
R
f±1 (x, t, ξ)f̄±2 (x, t, ξ) dξ dx ≤ E

∫
(TN )2

∫
R3

K`(η)f1,0(x, η)f̄2,0(x, η) dxdη

+ lim
δ→0

L(εβ , `) + lim
ε→0

ηt(ε, ε
β , `).

Taking `→∞ we conclude

E
∫
TN

∫
R
f±1 (x, t, ξ)f̄±2 (x, t, ξ) dξ dx ≤ E

∫
(TN )2

∫
R3

f1,0(x, η)f̄2,0(x, η) dxdη.

Let us now consider f1 = f2 = f . Since f0 = 1u0>ξ we have the identity f0f̄0 = 0 and therefore
f±(1 − f±) = 0 a.e. (ω, x, ξ) and for all t. The fact that f± is a kinetic function and Fubini’s
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theorem then imply that, for any t ∈ [0, T ], there exists a set Σt ⊂ Ω×TN of full measure such that,
for (ω, x) ∈ Σt, f

±(ω, x, t, ξ) ∈ {0, 1} for a.e. ξ ∈ R. Therefore, there exist u± : Ω×TN×[0, T ]→ R
such that f± = 1u±>ξ for a.e (ω, x, ξ) and all t. In particular, u± =

∫
R(f± − 10>ξ) dξ for a.e.

(ω, x) and all t. It follows now from Proposition 4.1 and the identity

|α− β| =
∫
R
|1α>ξ − 1β>ξ|dξ, α, β ∈ R,

that u+ = u− = u for a.e. t ∈ [0, T ]. Since∫
R

1u±1 >ξ
1u±2 >ξ

dξ = (u±1 − u
±
2 )+

we obtain the comparison principle (4.1). �

4.2. Existence. In this section we prove the existence of kinetic solutions. The proof of exis-
tence is based on a three level approximation procedure. One of which is a vanishing viscosity
approximation. One difficulty in the construction of a kinetic solution to (1.1) is the verification
of the chain-rule in Definition 2.2, (ii). In contrast to the other conditions, the chain-rule is not
necessarily preserved under taking weak limits, so that strong convergence of the approximating
solutions is needed. This strong convergence is particularly hard to obtain in the vanishing viscos-
ity approximation. We resolve this obstacle by employing the regularity estimates established in
Section 3.

As mentioned above, the proof of existence proceeds in three steps, corresponding to three layers
of approximation. In the first step, we replace the initial condition u0 by a smooth, bounded
approximation uκ0 ∈ L∞(Ω× TN ) such that uκ0 ∈ C∞c (TN ) P-a.s. and

uκ0 → u0 in L1(Ω;L1(TN )).

We also replace the diffusion matrix A by a symmetric, positive definite matrix Aκ given by

Aκ(ξ) := κId+A(ξ), ξ ∈ R.

In the second step, we replace Aκ by a bounded, symmetric and positive definite matrix Aκ,τ given
by its square root

σκ,τij (ξ) =
√
κδij +

{
σij(ξ), if |ξ| ≤ 1

τ ,

σij(
sgn(ξ)
τ ), if |ξ| > 1

τ ,

and we further approximate the flux B by Bτ , defined by setting

(bτ )′(ξ) :=

{
b′(ξ), if |ξ| ≤ 1

τ

b′( sgn(ξ)
τ ), if |ξ| > 1

τ .

Since σ and b′ are locally bounded, σκ,τ and (bτ )′ are bounded for each κ, τ > 0 fixed and Bτ is
of sub-quadratic growth. Moreover,

Aκ,τ (ξ) = κId+A(ξ), ∀|ξ| ≤ 1

τ
,

Bτ (ξ) = B(ξ), ∀|ξ| ≤ 1

τ
,

and thus Aκ,τ → A locally uniformly. Hence, we consider

duκ,τ + div(Bτ (uκ,τ ))dt = div(Aκ,τ (uκ,τ )∇uκ,τ )dt+ Φ(uκ,τ )dW, x ∈ TN , t ∈ (0, T ),

uκ,τ (0) = uκ0 .
(4.3)

In the case of (4.3), the results from [16, Section 4] are applicable, which yields the existence and
uniqueness of a weak solution to (4.3) and appropriate bounds. We will then pass to the limit, first
employing the compactness method from [34, Subsection 4.3] for the limit τ → 0, then proving the
strong convergence in L1 as κ→ 0 directly using the regularity properties established in Section 3.
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In the following subsection we establish uniform Lp bounds on the approximating solutions. Next,
in Subsection 4.2.2 we prove uniform bounds on the corresponding kinetic dissipation measures
and we conclude the proof of existence in Subsection 4.2.3.

4.2.1. Lp-estimates. Let us start with an a-priori Lp-estimate for solutions to (1.1).

Proposition 4.4. Let u be a kinetic solution to (1.1). Then for all p, q ∈ [1,∞)

(4.4) E ess sup
0≤t≤T

‖u(t)‖pqLp ≤ CT,p,q(1 + E‖u0‖pqLp),

for some constant CT,p,q > 0.

Proof. The proof relies on the Itô formula applied to (1.1) and the function

u 7→
∫
TN

(1 + |u|2)
p
2 dx =

∥∥∥(1 + |u|2)
p
4

∥∥∥2

L2
.

In order to make the following calculations rigorous, one works on the level of the approximations
uκ,τ introduced above. This leads a uniform estimate which implies (4.4) for the (unique) limiting
kinetic solution u by lower-semicontinuity of the norm. Since this limiting procedure is standard
we restrict to presenting the main, informal arguments here.

Itô’s formula yields

∥∥∥(1 + |u(t)|2)
p
4

∥∥∥2

L2
=
∥∥∥(1 + |u0|2)

p
4

∥∥∥2

L2
− p

∫ t

0

∫
TN

(1 + |u|2)
p
2−1udiv(B(u))dxds

+ p

∫ t

0

∫
TN

(1 + |u|2)
p
2−1udiv(A(u)∇u)dxds

+ p
∑
k≥1

∫ t

0

∫
TN

(1 + |u|2)
p
2−1u gk(x, u)dxdβk

+
p

2

∫ t

0

∫
TN

(1 + |u|2)
p
2−2
(
1 + (p− 1)|u|2

)
G2(x, u)dxds.

Due to the periodic boundary conditions, the second term on the right hand side vanishes after
an integration by parts. The third term can be rewritten using integration by parts and positive
semidefinitness of A as

p

∫ t

0

∫
TN

(1 + |u|2)
p
2−1udiv(A(u)∇u)dxds

= −p
∫ t

0

∫
TN

(1 + |u|2)
p
2−2
(
1 + (p− 1)|u|2

)
(∇u)∗A(u)(∇u)dxds ≤ 0.

The fourth my be estimated, using (2.5), by∣∣∣∣p2
∫ t

0

∫
TN

(1 + |u|2)
p
2−2
(
1 + (p− 1)|u|2

)
G2(x, u)dxds

∣∣∣∣ ≤ C ∫ t

0

∫
TN

(1 + |u|2)
p
2 dxds

= C

∫ t

0

∥∥∥(1 + |u(s)|2)
p
4

∥∥∥2

L2
ds.
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Finally, for the stochastic integral, taking the supremum, the qth power and the expectation, we
have by Burkholder-Davis-Gundy’s inequality, (2.5) and Young’s inequality

E sup
0≤t≤T

∣∣∣∣∣∣p
∑
k≥1

∫ t

0

∫
TN

(1 + |u|2)
p
2−1u gk(x, u)dxdβk

∣∣∣∣∣∣
q

≤ CE
(∫ T

0

∑
k≥1

(∫
TN

(1 + |u|2)
p
2−1u gk(x, u)dx

)2

dt

) q
2

≤ CE
(∫ T

0

∥∥∥(1 + |u|2)
p
4

∥∥∥2

L2

∑
k≥1

∥∥∥(1 + |u|2)
p
4−

1
2 |gk(u)|

∥∥∥2

L2
dt

) q
2

≤ CE
(

sup
0≤t≤T

∥∥∥(1 + |u|2)
p
4

∥∥∥2

L2

∫ T

0

∥∥∥(1 + |u|2)
p
4

∥∥∥2

L2
dt

) q
2

≤ 1

2
sup

0≤t≤T

∥∥∥(1 + |u|2)
p
4

∥∥∥2q

L2
+ CTE

∫ T

0

∥∥∥(1 + |u|2)
p
4

∥∥∥2q

L2
dt.

In conclusion, we obtain

E sup
0≤t≤T

∥∥∥(1 + |u(t)|2)
p
4

∥∥∥2q

L2
≤E

∥∥∥(1 + |u0|2)
p
4

∥∥∥2q

L2
+ CT,qE

∫ T

0

∥∥∥(1 + |u|2)
p
4

∥∥∥2q

L2
dt.

Thus, Gronwall’s lemma yields

E sup
0≤t≤T

∥∥∥(1 + |u|2)
p
4

∥∥∥2q

L2
≤ CT,q

∥∥∥(1 + |u0|2)
p
4

∥∥∥2q

L2
.

Since

‖u‖pqLp ≤
∥∥∥(1 + |u|2)

p
4

∥∥∥2q

L2
≤ Cp,q

(
1 + ‖u‖pqLp

)
,

this concludes the proof. �

4.2.2. Decay of the kinetic measure. To appreciate the difficulty and methods introduced in the
following we recall that in the deterministic case

∂tf(t) + b(ξ) · ∇f(t) +A(ξ) : D2f(t) = ∂ξm.

bounds on the kinetic measure m are easily derived (informally) by testing with 1[k,∞)(ξ) and
integrating in t, x, ξ, which corresponds to computing the derivative ∂t(u− k)+ via the chain-rule.
In the stochastic case, this has to be replaced by the Itô formula informally leading to terms of the
form

∫
g2
k(x, u)δu=kdξdxdt which are not easy to control. Therefore, new techniques are needed in

the stochastic case and a less restrictive decay assumption on the kinetic measure is used (cf. the
discussion before (1.6)).

Lemma 4.5. Let u0 ∈ Lr(Ω;L1(TN )) for some r ∈ [1,∞) and let u be a kinetic solution to (1.1).
Then, for all k ∈ N,

E|m([0, T ]× TN × [−k, k])|r ≤ C(r, k, T,E‖u0‖rL1),

for some C > 0 depending on D only.

Proof. Step 1: For k > 0, set

θk(u) = 1[−k,k](u), Θk(u) =

∫ u

−k

∫ r

−k
θk(s) dsdr.
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Let γ ∈ C1
c ([0, T )) be nonnegative such that γ(0) = 1, γ′ ≤ 0. Then after a preliminary step of

regularization we may take ϕ(t, x, ξ) = γ(t)Θ′k(ξ) in (2.9) to get

E
∣∣∣∣ ∫ T

0

∫
TN

Θk(u(t, x))|γ′(t)|dxdt

∣∣∣∣r + E
∣∣∣∣ ∫
A+
k

γ(t) dm(t, x, ξ)

∣∣∣∣r
. E

∣∣∣∣ ∫ T

0

∫
TN

γ(t)G2(x, u(t, x))θk(u(t, x)) dxdt

∣∣∣∣r
+ E

∣∣∣∣∑
j≥1

∫ T

0

∫
TN

gj(x, u(t, x))Θ′k(u(t, x))γ(t)dxdβk(t)

∣∣∣∣r + E
∣∣∣∣ ∫

TN
Θk(u0(x)) dx

∣∣∣∣r
where A+

k = [0, T ]× TN × [−k, k]. Since 0 ≤ Θk(u) ≤ 2k(k + |u|) and, due to (2.5),

1

2
G2(x, u)θk(u) ≤ 1

2
D(1 + |u|)21[−k,k](u) ≤ D(1 + k2).

Since 0 ≤ Θ′k(u) ≤ 2k1−k≤u we may estimate the stochastic integral using the Burkholder-Davis-
Gundy inequality, the Minkowski integral inequality, (2.5) and the Young inequality as follows

E
∣∣∣∣∑
j≥1

∫ T

0

∫
TN

gj(x, u(t, x))Θ′k(u(t, x))γ(t)dxdβj(t)

∣∣∣∣r

. E
(∫ T

0

∑
j≥1

(∫
TN

gj(x, u)Θ′k(u)dx

)2

dt

) r
2

≤ 2kr E
(∫ T

0

(∫
TN

(∑
j≥1

|gj(x, u)|2
) 1

2

dx

)2

dt

) r
2

. 2Dkr E
(∫ T

0

(∫
TN

(1 + |u|) dx

)2

dt

) r
2

≤ 2Dkr E
(

sup
0≤t≤T

‖1 + u‖L1

∫ T

0

‖1 + u‖L1dt

) r
2

≤ Dkr E sup
0≤t≤T

‖1 + u‖rL1 +Dkr E
(∫ T

0

‖1 + u‖L1dt

)r
≤ Dkr(1 + T r) +Dkr(1 + T r)E sup

0≤t≤T
‖u‖rL1

≤ C(D, kr, T r,E‖u0‖rL1),

where we also used Proposition 4.4 with p = 1, q = r for the last step. The claim follows. �

Lemma 4.6. Let u0 ∈ L1(Ω;L1(TN )), u be a kinetic solution to (1.1) and Θ ∈ C2(R) be nonneg-
ative, convex such that Θ′′(ξ)(1 + |ξ|2) ≤ CΘ(1 + Θ(ξ)) for some constant CΘ > 0. Then,

sup
t∈[0,T ]

E
∫
TN

Θ(u(t, x)) dx+ E
∫ T

0

∫
Θ′′(ξ) dm(t, x, ξ) ≤ C

(
E
∫
TN

Θ(u0(x)) dx+ 1

)
for some C > 0 depending on D,CΘ only.

Proof. Let Θ be as in the statement and γ ∈ C1
c ([0, T )) be nonnegative such that γ(0) = 1, γ′ ≤ 0.

After a preliminary step of regularization we may take ϕ(t, x, ξ) = γ(t)Θ′(ξ) in (2.9) to get

E
∫ T

0

∫
TN

Θ(u(t, x))|γ′(t)|dxdt+ E
∫

Θ′′(ξ)γ(t) dm(t, x, ξ)

. E
∫ T

0

∫
TN

γ(t)G2(x, u(t, x))Θ′′(u(t, x)) dxdt+ E
∫
TN

Θ(u0(x)) dx

(4.5)

By assumption
1

2
G2(x, u)Θ′′(u) ≤ D(1 + |u|2)Θ′′(u) ≤ C(1 + Θ(u)).
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Letting now γ → 1[0,t] an application of Gronwall’s Lemma finishes the proof. �

We proceed with an estimate which is a modification of [17, Proposition 16] and applies to the
case multiplicative noise.

Proposition 4.7. Let u0 ∈ L1(Ω;L1(TN )) and let u be an kinetic solution to (1.1). Then

ess sup
0≤t≤T

E‖(u(t)− 2n)+‖L1
x

+ ess sup
0≤t≤T

E‖(u(t) + 2n)−‖L1
x

+
1

2n
Em(A2n)

≤ C
(
T,E‖u0‖L1

x

)
δ(n), ∀n ∈ N0,

where

A2n = [0, T ]× TN × {ξ ∈ R; 2n ≤ |ξ| ≤ 2n+1}
and δ(n) depends only on D and on the functions

R 7→ E‖(u0 −R)+‖L1
x
, R 7→ E‖(u0 +R)−‖L1

x
,

and satisfies limn→∞ δ(n) = 0.

Furthermore,

E
(

ess sup
0≤t≤T

‖(u(t)− 2n)+‖L1
x

)
+ E

(
ess sup
0≤t≤T

‖(u(t) + 2n)−‖L1
x

)
≤ C

(
T,D,E‖u0‖L1

x

)[
δ(n) + δ

1
2 (n)

]
,

(4.6)

where δ(n) is as above, in addition possibly depending on the function

R 7→ E‖(1 + |u|)1R≤|u|‖L1
x,t
.

Proof. Step 1: For k > 0, set

θk(u) =
1

k
1k≤u≤2k, Θk(u) =

∫ u

0

∫ r

0

θk(s) dsdr.

Let η = (21D) ∨ 1, γ ∈ C1
c ([0, ηT )) be nonnegative such that γ(0) = 1, γ′ ≤ 0. Then, after a

preliminary step of regularization, we may take ϕ(t, x, ξ) = γ(ηt)Θ′k(ξ) in (2.9) to get

ηE
∫ T

0

∫
TN

Θk(u(t, x))|γ′(ηt)|dxdt+
1

k
E
∫
A+
k

γ(ηt) dm(t, x, ξ)

=
1

2
E
∫ T

0

∫
TN

γ(ηt)G2(x, u(t, x))θk(u(t, x)) dx dt+ E
∫
TN

Θk(u0(x)) dx

(4.7)

where A+
k = [0, T ]× TN × {ξ ∈ R; k ≤ ξ ≤ 2k}. Note that(

u− 3

2
k

)+

≤ Θk(u) ≤ (u− k)+,

and, using (2.5),

(4.8)
1

2η
G2(x, u)θk(u) ≤ D1 + |u|2

ηk
1k≤u≤2k ≤ D

1 + 4k2

ηk

(u− l)+

k − l
for all k > l ≥ 0, u ∈ R. We choose l = 3

4k and observe, by choice of η and for k ≥ 1,

(4.9) α := D
1 + 4k2

ηk(k − l)
= 4D

1 + 4k2

ηk2
< 1.

Consequently, we deduce from (4.7) that

E
∫ T

0

∫
TN

(u(t, x)− 2l)+|γ′(ηt)|dxdt

≤ αE
∫ T

0

∫
TN

(u(t, x)− l)+γ(ηt) dxdt+ E
∫
TN

(u0(x)− l)+ dx.

(4.10)
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We can now iterate the above procedure by replacing k by 2k. To do so, we need to check that
applying (4.7) to k̃ = 2k, the chosen constant α appearing in (4.10) is the same as before. The
condition (4.9) now reads

4D
1 + 4(2k)2

4ηk2
< 1,

which holds true due to (4.9). We deduce that

E
∫ T

0

∫
TN

(u(t, x)− 4l)+|γ′(ηt)|dx dt

≤ αE
∫ T

0

∫
TN

(u(t, x)− 2l)+γ(ηt) dxdt+ E
∫
TN

(u0(x)− 2l)+ dx.

Since the same argument can be applied to k̃ = 2nk, l̃ = 2nl for any n ∈ N, we set

ψn(t) := E
∫
TN

(u(t, x)− 2nl)+ dx

and after letting γ approximate 1[0,ηt] we finally obtain

ψn+1(t) ≤ α
∫ t

0

ψn(s) ds+ ψn(0).

Now we proceed similarly as in [17, Proposition 16]. Since (u− l)+ 6 (u− 2l)+ + l we have

ψ0(t) = E
∫
TN

(u(t, x)− l)+dx 6 E
∫
TN

(u(t, x)− 2l)+dx+ l = ψ1(t) + l

so

ψ1(t) 6 α
∫ t

0

ψ0(s)ds+ ψ0(0) 6 α
∫ t

0

ψ1(s)ds+ αlt+ ψ0(0)

and Gronwall’s lemma implies

ψ0(t) 6M := C(T, ‖u0‖L1).

Thus we deduce

ψ1(t) 6 αtM + ψ0(0), ψ2(t) 6 α2 t
2

2
M + αtψ0(0) + ψ1(0),

and generally

ψn+1(t) 6 αn+1 tn+1

n+ 1!
M +

n∑
k=0

αk
tk

k!
ψn−k(0).

Let

δ(n) = αn +

n−1∑
k=0

αkψn−1−k(0),

which satisfies δ(n)→ 0 as n→∞ due to the assumption on u0. Therefore, it follows that

ψn+1(t) 6 (M + 1)eT δ(n+ 1)

and consequently

ess sup
0≤t≤T

E
∫
TN

(u(t, x)− 2n+1l)+ dx ≤ C
(
T,E‖u0‖L1

x

)
δ(n+ 1).

Thus, as a consequence of (4.7), (4.8) and the fact that k > l we get

ess sup
0≤t≤T

E
∫
TN

(u(t, x)− 2nk)+ dx+
1

2nkη
E
∫
A+

2nk

dm(t, x, ξ) ≤ C(T,E‖u0‖L1
x
)δ(n).

Choosing k = 1 finishes the proof.
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Step 2: To prove (4.6) we start similarly as in Step 1 but take the supremum in time before taking
the expectation. The iterative inequality then reads

E ess sup
0≤t≤T

∫
TN

(u(t, x)− 2n+1l)+ dxdt

≤αE
∫ T

0

∫
TN

(u(t, x)− 2nl)+ dxdt+ E
∫
TN

(u0(x)− 2nl)+ dx

+ E sup
0≤t≤T

∣∣∣∣∑
j≥1

∫ t

0

∫
TN

gj(x, u(t, x))Θ′2nk(u(t, x)) dxdβj(t)

∣∣∣∣
≤C
(
T, α,E‖u0‖L1

x

)
δ(n) + C E

(∫ T

0

∫
TN

G2(x, u(t, x))|Θ′2nk(u(t, x))|2 dxdt

) 1
2

.

Using (2.5) we estimate

E sup
0≤t≤T

∣∣∣∣∑
j≥1

∫ t

0

∫
TN

gj(x, u(t, x))Θ′2nk(u(t, x)) dxdβj(t)

∣∣∣∣
. E

(∫ T

0

∑
j

(∫
TN

gj(u)Θ′2nk(u) dx

)2

dt

) 1
2

. E
(∫ T

0

(∫
TN

(1 + |u|)12nk≤u dx

)2

dt

) 1
2

≤ E
(

sup
0≤t≤T

‖1 + |u|‖L1
x

∫ T

0

∫
TN

(1 + |u|)12nk≤udx dt

) 1
2

≤
(
E sup

0≤t≤T
‖1 + |u|‖L1

x

) 1
2

(
E
∫ T

0

∫
TN

(1 + |u|)12nk≤u dxdt

) 1
2

.

The right hand side converges to 0 as n→∞ due to the dominated convergence theorem. Hence
the estimate (4.6) follows using Proposition 4.4. �

Based on the equiintegrability estimate (4.6) we can deduce that kinetic solutions have continuous
paths in L1(TN ) a.s.

Corollary 4.8 (Continuity in time). Let u0 ∈ L1(Ω;L1(TN )) and let u be a kinetic solution to
(1.1). Then there exists a representative of u with almost surely continuous trajectories in L1(TN ).

Proof. Based on Proposition 4.1, Theorem 4.3 and (4.6) we are in a position to apply [17, Lemma
17] which implies the continuity in L1. Indeed, let us first show that u+ constructed in Theorem
4.3 is P-a.s. right-continuous in L1(TN ). Due to Proposition 4.1, we have that f+(t+ ε) ⇀∗ f+(t)
in L∞(TN × R) P-a.s. as ε→ 0. Due to Theorem 4.3, for all t ∈ [0, T ) the kinetic function f+(t)
is at equilibrium, that is, f+(t, x, ξ) = 1u+(t,x)>ξ for a.e. (ω, x, ξ). Finally, (4.6) implies

lim
n→∞

E sup
t∈[0,T ]

‖(u+(t)− 2n)±‖L1
x

= 0.

Hence, there exists a subsequence (not relabeled) which converges P-a.s., that is, P-a.s.

lim
n→∞

sup
t∈[0,T ]

‖(u+(t)− 2n)±‖L1
x

= 0.

Consequently, [17, Lemma 17] applies and yields the convergence

u+(t+ ε)→ u+(t) in L1(TN ) as ε→ 0.

The same arguments show that u− constructed in Theorem 4.3 is P-a.s. left-continuous in L1(TN ).
Finally, the fact that u+(t) = u−(t) for all t ∈ [0, T ] can be proved as in [18, Corollary 12]. �
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4.2.3. The proof of existence.

Theorem 4.9. Let u0 ∈ Lr(Ω;L1(TN )) for some r > 1 and assume (2.5). Then there exists a
kinetic solution u to (1.1) satisfying u ∈ C([0, T ];L1(TN )), P-a.s. and for all p, q ∈ [1,∞) there
exists a constant C > 0 such that

E ess sup
t∈[0,T ]

‖u(t)‖pqLp ≤ C(1 + E‖u0‖pqLp).

Proof. Step 1: According to [16, Section 4], there exists a unique kinetic solution uκ,τ to (4.3).
Let us denote the corresponding kinetic measure by mκ,τ and observe that it consists of only the
parabolic dissipation measure, that is,

mκ,τ (dt, dx,dξ) = |σκ,τ (ξ)∇uκ,τ |2 dδuκ,τ (t,x)(ξ) dxdt.

By [16, Theorem 5.2] that for all p ∈ [2,∞), uniformly in κ, τ ,

E sup
0≤t≤T

‖uκ,τ (t)‖p
Lpx

+ p(p− 1)E
∫ T

0

∫
TN
|uκ,τ |p−2|σκ,τ (uκ,τ )∇uκ,τ |2dx dt

≤ C
(
1 + E‖uκ0‖

p
Lpx

)
,

and consequently

E
∣∣mκ,τ ([0, T ]× TN × R)

∣∣ ≤ C(1 + E‖uκ0‖2L2
x
)

with a constant C independent of κ, τ . Moreover, since σκ,τ ≥
√
κId the following space regularity

holds true uniformly in τ

(4.11) E
∫ T

0

∫
TN
|∇uκ,τ |2dxdt ≤ C

κ
(1 + E‖uκ0‖2L2

x
).

Now, we have all in hand to apply the compactness method developed in [34, Subection 4.3]. To
be more precise, we replace the result of [34, Theorem 4.4] with the estimate (4.11), then all of the
bounds from [34, Corollary 4.5, Lemma 4.6, Corollary 4.7, Corollary 4.8] hold true uniformly in τ
and therefore we obtain the results of [34, Theorem 4.9, Proposition 4.10] as well. Namely, there

exists a probability space (Ω̃, F̃ , P̃) with a sequence of random variables (ũκ,τ , W̃ τ ) and (ũκ, W̃ )
such that

(i) the laws of (ũκ,τ , W̃ τ ) and (uκ,τ ,W ) coincide,
(ii) ũκ,τ → ũκ in L2(0, T ;L2(TN )) ∩ C([0, T ];H−1(TN )) a.s.,
(iii) ũκ,τ (0)→ ũκ(0) in L2(TN ) a.s.,

(iv) W̃ τ → W̃ in C([0, T ];U0) a.s.

Finally, we obtain the result [34, Lemma 4.12] (with the corresponding expression of the parabolic
dissipative measure, cf. [16, Theorem 6.4]). To be more precise, denoting

dm̃κ,τ (t, x, ξ) = |σκ,τ (ũκ,τ )∇ũκ,τ |2 dδũκ,τ (t,x)(ξ) dtdx,

it holds true that

(i) there exists a set of full Lebesgue measure D ⊂ [0, T ] which contains t = 0 such that

1ũκ,τ>ξ ⇀
∗ 1ũ>ξ in L∞(Ω̃× TN × R) ∀t ∈ [0, T ],

(ii) there exists a kinetic measure m̃κ such that3

m̃κ,τ ⇀∗ m̃κ in L2
w(Ω̃;Mb([0, T ]× TN × R)).

Moreover, m̃κ can be written as ñκ1 + ñκ2 , where

dñκ1 (t, x, ξ) =

∣∣∣∣ div

∫ ũκ

0

σκ(ζ) dζ

∣∣∣∣2 dδũκ(t,x)(ξ) dtdx,

3The space L2
w(Ω̃;Mb([0, T ]×TN×R)) contains all weak-star-measurable mappings n : Ω̃→Mb([0, T ]×TN×R)

such that E‖n‖2Mb
<∞.



34 BENJAMIN GESS AND MARTINA HOFMANOVÁ

and ñκ2 is a.s. a nonnegative measure on [0, T ]× TN × R.

As a consequence, we deduce that (ũκ, m̃κ, W̃ ) is a martingale kinetic solution to

duκ + div(B(uκ))dt = div(Aκ(uκ)∇uκ)dt+ Φ(uκ)dW, x ∈ TN , t ∈ (0, T ),

uκ(0) = uκ0 .
(4.12)

Therefore, in view of pathwise uniqueness, the same Yamada-Watanabe type argument as in [34,
Subsection 4.5] applies and yields the existence of a unique (pathwise) kinetic solution uκ to
(4.12) in the sense of [16, Definition 2.2]. This solution is defined on the original stochastic basis
(Ω,F , (Ft),P) and satisfies the equation with the original Wiener process W .

Step 2: First, we observe that the assumptions of Theorem 3.1, namely, (2.3) is satisfied uniformly
in κ. Indeed, let

Lκ(iu, in, ξ) := i(u+ b(ξ) · n) + n∗Aκ(ξ)n.

Then

Lκ(iu, in, ξ) = L(iu, in, ξ) + κ|n|2

hence, for some constant C > 0,

{ξ ∈ R; |Lκ(iu, in, ξ)| ≤ δ} = {ξ ∈ R; |L(iu, in, ξ)| ≤ C(δ − κ|n|2)} ⊂ {ξ ∈ R; |L(iu, in, ξ)| ≤ Cδ}
which implies for all φ ∈ C∞c (R)

ωφLκ(J ; δ) ≤ ωφL(J ;Cδ) .φ

(
δ

Jβ

)α
∀δ > 0, ∀J & 1.

Moreover,

Lκξ (iu, in, ξ) = Lξ(iu, in, ξ)
and thus

sup
u∈R,n∈ZN
|n|∼J

sup
ξ∈supp η

|Lκξ (iu, in, ξ)| ≤ sup
u∈R,n∈ZN
|n|∼J

sup
ξ∈supp η

|Lξ(iu, in, ξ)| .φ Jβ .

Consequently, Theorem 3.1 applies and we obtain the estimate for (uκ)φ =
∫
R χuκ φdξ(

E
∫ T

0

‖(uκ)φ(t)‖rW s,r
x

dt

)1/r

.φ ‖uκ0‖
1/2
L1
ω,x

+ ‖uκ‖1/2
L1
ω,t,x

+ sup
0≤t≤T

‖uκ(t)‖L1
ω,x

+ ‖mκ1suppφ‖L1
ωMt,x,ξ

+ 1

for some r > 1 and s > 0. In view of Proposition 4.4 and Lemma 4.5 the right hand side can be
further estimated uniformly in κ as follows(

E
∫ T

0

‖(uκ)φ(t)‖rW s,r
x

dt

)1/r

.φ ‖u0‖L1
ω,x

+ 1.(4.13)

As the next step, we prove that (uκ) is Cauchy in L1(Ω × [0, T ],P,dP ⊗ dt;L1(TN )). This is
based on computations similar to section 4.1. Accordingly, let us again fix the two standard Dirac
sequences (%ε) and (ψδ). Let us also define a cut-off function (K`) as follows: Let K ∈ C∞(R) be
such that 0 ≤ K(ξ) ≤ 1, K ≡ 1 if |ξ| ≤ 1, K ≡ 0 if |ξ| ≥ 2, and |K ′(ξ)| ≤ 1, and define

K`(ξ) := K
( ξ

2`

)
, ` ∈ N.

For any two approximate solutions uκ1 , uκ2 we have

E
∫
TN

(
uκ1(t)− uκ2(t)

)+
dx = E

∫
TN

∫
R
fκ1(x, t, ξ)f̄κ2(x, t, ξ) dξ dx

= E
∫

(TN )2

∫
R3

fκ1(x, t, ξ)f̄κ2(y, t, ζ)K`(η)%ε(x− y)ψδ(η − ζ)ψδ(η − ξ) dξ dζ dη dxdy

+ ηt(κ1, κ2, ε, δ, `),

(4.14)
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where ε, δ and ` are chosen arbitrarily and their value will be fixed later. The idea now is to show
that the mollification error ηt(κ1, κ2, ε, δ, `) can be made arbitrarily small uniformly in κ1, κ2,
which will rely on the equi-integrability estimate, Proposition 4.7, as well as (4.13) based on the
averaging lemma, Theorem 3.1, the a priori Lp-estimates, Proposition 4.4, and the bound for the
kinetic measure from Lemma 4.5. Indeed, we write

ηt(κ1, κ2, ε, δ, `) = E
∫
TN

∫
R
fκ1(x, t, η)f̄κ2(x, t, η) dη dx

− E
∫

(TN )2

∫
R3

fκ1(x, t, ξ)f̄κ2(y, t, ζ)K`(η)%ε(x− y)ψδ(η − ζ)ψδ(η − ξ) dξ dζ dη dxdy

= E
∫
TN

∫
R
fκ1(x, t, η)f̄κ2(x, t, η)

(
1−K`(η)

)
dη dx

+

(
E
∫
TN

∫
R
fκ1(x, t, η)f̄κ2(x, t, η)K`(η) dη dx

− E
∫

(TN )2

∫
R
fκ1(x, t, η)f̄κ2(y, t, η)K`(η)%ε(x− y) dη dxdy

)
+

(
E
∫

(TN )2

∫
R
fκ1(x, t, η)f̄κ2(y, t, η)K`(η)%ε(x− y) dη dxdy

− E
∫

(TN )2

∫
R2

fκ1(x, t, η)f̄κ2(y, t, ζ)K`(η)%ε(x− y)ψδ(η − ζ) dη dζ dx dy

)
+

(
E
∫

(TN )2

∫
R2

fκ1(x, t, η)f̄κ2(y, t, ζ)K`(η)%ε(x− y)ψδ(η − ζ) dη dζ dx dy

− E
∫

(TN )2

∫
R3

fκ1(x, t, ξ)f̄κ2(y, t, ζ)K`(η)%ε(x− y)ψδ(η − ξ)ψδ(η − ζ) dξ dζ dη dxdy

)
= H1 + H2 + H3 + H4

and estimate each of the error terms on the right hand side separately using the above mentioned
results. First,

|H1| ≤ E
∫
TN

1uκ1 (t,x)>uκ2 (t,x)

∫ uκ1 (t,x)

uκ2 (t,x)

1|η|≥2` dη dx

≤ E
∫
TN

(uκ1(t, x)− 2`)+ dx+ E
∫
TN

(−2` − uκ2(t, x))+ dx.

Now we observe that the result of Proposition 4.7 holds true for the approximate solutions uκ1 , uκ2

uniformly in κ1, κ2. Consequently,

|H1| ≤ δ(`),

where δ(`) was defined in Proposition 4.7, and

lim
`→∞

sup
0≤t≤T

|H1| = 0 uniformly in κ1, κ2, ε, δ.

Second, in order to estimate

|H2| =
∣∣∣∣E∫

(TN )2
%ε(x− y)

∫
R
K`(η)1uκ1 (t,x)>η

[
1uκ2 (t,x)≤η − 1uκ2 (t,y)≤η

]
dη dx dy

∣∣∣∣,
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we write ∣∣∣∣ ∫
R
K`(η)1uκ1 (x)>η

[
1uκ2 (x)≤η − 1uκ2 (y)≤η

]
dη

∣∣∣∣
=

∣∣∣∣ ∫
R
K`(η)1uκ1 (t,x)>η

[
1η∈[uκ2 (x),uκ2 (y)) − 1η∈[uκ2 (y),uκ2 (x))

]
dη

∣∣∣∣
=

∫
R
K`(η)1uκ1 (t,x)>η

[
1η∈[uκ2 (x),uκ2 (y)) + 1η∈[uκ2 (y),uκ2 (x))

]
dη

≤ 1uκ2 (x)<uκ2 (y)

∫
R
K`(η)

[
1uκ2 (x)≤η − 1uκ2 (y)≤η

]
dη

+ 1uκ2 (y)<uκ2 (x)

∫
R
K`(η)

[
1uκ2 (y)≤η − 1uκ2 (x)≤η

]
dη

= 1uκ2 (x)<uκ2 (y)

∫
R
K`(η)

[
χuκ2 (x)(η)− χuκ2 (y)(η)

]
dη

+ 1uκ2 (y)<uκ2 (x)

∫
R
K`(η)

[
χuκ2 (y)(η)− χuκ2 (x)(η)

]
dη.

Thus using (4.13)

|H2| ≤ E
∫

(TN )2
%ε(x− y)

∣∣(uκ2)K`(t, x)− (uκ2)K`(t, y)
∣∣dxdy,

≤ C`εs.

Thus, for all ` ∈ N,

lim
ε→0

∫ T

0

|H2|dt = 0 uniformly in κ1, κ2, δ.

Third,

|H3| =
∣∣∣∣E∫

(TN )2
%ε(x− y)

∫
R
K`(η)1uκ1 (t,x)>η

∫
R
ψδ(η − ζ)

[
1uκ1 (t,y)≤η − 1uκ1 (t,y)≤ζ

]
dζdηdxdy

∣∣∣∣
≤E

∫
(TN )2

∫
R
%ε(x− y) 1uκ1 (t,x)>η

∫ η

η−δ
ψδ(η − ζ) 1ζ<uκ1 (t,y)≤η dζ dη dxdy

+ E
∫

(TN )2

∫
R
%ε(x− y) 1uκ1 (t,x)>η

∫ η+δ

η

ψδ(η − ζ) 1η<uκ1 (t,y)≤ζ dζ dη dxdy

≤1

2
E
∫

(TN )2
%ε(x− y)

∫ min{uκ1 (t,x),uκ1 (t,y)+δ}

uκ1 (t,y)

dη dxdy

+
1

2
E
∫

(TN )2
%ε(x− y)

∫ min{uκ1 (t,x),uκ1 (t,y)}

uκ1 (t,y)−δ
dη dxdy

≤Cδ

hence

lim
δ→0

sup
0≤t≤T

|H3| = 0 uniformly in κ1, κ2, ε, `.
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And finally

|H4| =
∣∣∣∣E ∫

(TN )2
%ε(x− y)

∫
R2

1uκ2 (t,y)≤ζK`(η)ψδ(η − ζ)dζ

×
∫
R

[
1uκ1 (t,x)>η − 1uκ1 (t,x)>ξ

]
ψδ(η − ξ) dξ dη dx dy

∣∣∣∣
≤ E

∫
(TN )2

%ε(x− y)

∫
R2

1uκ2 (t,y)≤ζψδ(η − ζ)

∫ η+δ

η

1η<uκ1 (t,x)≤ξ ψδ(η − ξ) dξ dζ dη dxdy

+ E
∫

(TN )2
%ε(x− y)

∫
R2

1uκ2 (t,y)≤ζψδ(η − ζ)

∫ η

η−δ
1ξ<uκ1 (t,x)≤η ψδ(η − ξ) dξ dζ dη dx dy

≤ E
∫

(TN )2
%ε(x− y)

∫ ∞
uκ2 (t,y)

∫ uκ1 (t,x)

uκ1 (t,x)−δ
ψδ(η − ζ) dζ dη dxdy

+ E
∫

(TN )2
%ε(x− y)

∫ ∞
uκ2 (t,y)

∫ uκ1 (t,x)+δ

uκ1 (t,x)

ψδ(η − ζ) dζ dη dxdy ≤ δ

and therefore

lim
δ→0

sup
0≤t≤T

|H4| = 0 uniformly in κ1, κ2, ε, `.

Heading back to (4.14) and using the same calculations as in Proposition 4.2, we deduce that

E
∫
TN

(
uκ1(t)− uκ2(t)

)+
dx ≤ ηt(κ1, κ2, ε, δ, `) + η0(κ1, κ2, ε, δ, `) + I + J + J# + K + L(δ, `),

where, with δ(`) as in Proposition 4.7,

lim
`→∞

sup
0≤t≤T

L(δ, `) = lim
`→∞

δ(`) = 0 uniformly in κ1, κ2, ε, δ.

The terms I, J, K are defined and can be dealt with exactly as in Proposition 4.2 and Theorem
4.3. The term J# is defined as

J# =(τ + σ)E
∫ t

0

∫
(TN )2

∫
R3

fκ1 f̄n,κ2∆x%ε(x− y)K`(η)ψδ(η − ξ)ψδ(η − ζ) dξ dζ dxdy ds

− E
∫ t

0

∫
(TN )2

∫
R3

%ε(x− y)K`(η)ψδ(η − ξ)ψδ(η − ζ) dνn,κ1
x,s (ξ) dx dnn,κ2

2 (y, s, ζ)

− E
∫ t

0

∫
(TN )2

∫
R3

%ε(x− y)K`(η)ψδ(η − ξ)ψδ(η − ζ) dνκ2
y,s(ζ) dy dnn,κ1

2 (x, s, ξ),

where we used the notation νκ1
x,s(ξ) = δuκ1 (s,x)(ξ) and similarly for νκ2

y,s(ζ). Thus,

J# =(κ1 + κ2)E
∫ t

0

∫
(TN )2

∫
R
%ε(x− y)K`(η)ψδ(η − uκ1)ψδ(η − uκ2)∇xuκ1 · ∇yuκ2dηdxdyds

− κ1 E
∫ t

0

∫
(TN )2

∫
R
%ε(x− y)K`(η)ψδ(η − uκ1)ψδ(η − uκ2)|∇xuκ1 |2dηdxdyds

− κ2 E
∫ t

0

∫
(TN )2

∫
R
%ε(x− y)K`(η)ψδ(η − uκ1)ψδ(η − uκ2)|∇yuκ2 |2dηdxdyds

=− E
∫ t

0

∫
(TN )2

∫
R
%ε(x− y)K`(η)ψδ(η − uκ1)ψδ(η − uκ2)

∣∣√κ1∇xuκ1 −
√
κ2∇yuκ2

∣∣2dηdxdyds

+ (
√
κ1 −

√
κ2 )2 E

∫ t

0

∫
(TN )2

∫
R
%ε(x− y)K`(η)ψδ(η − uκ1)ψδ(η − uκ2)∇xuκ1 · ∇yuκ2dηdxdyds

=J#
1 + J#

2 .
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The first term on the right hand side is nonpositive, for the second one we have∣∣J#
2

∣∣ ≤ (
√
κ1 −

√
κ2 )2 E

∫ t

0

∫
(TN )2

∫
R3

fκ1 f̄κ2K`(η)ψδ(η − ξ)ψδ(η − ζ)
∣∣∆x%ε(x− y)

∣∣dη dξdζdxdyds

and proceeding similarly as for I we get∣∣J#
2

∣∣ ≤ C(
√
κ1 −

√
κ2 )2ε−22`.

Consequently, we see that

E
∫ T

0

∫
TN

(
uκ1(t)− uκ2(t)

)+
dx dt .T δ(`)

+ C`ε
s + δ + ε−1δ2`‖b′‖L∞(−2`−δ,2`+δ)t+ δ2γε−2‖σ‖Cγ([−`−δ,`+δ]) + δ−1ε2 + δ

+ (κ1 + κ2) ε−22`.

Therefore, given ϑ > 0 one can fix ` sufficiently large so that the first term on the right hand side
is estimated by ϑ/3, then fix ε and δ small enough so that the second line also estimated by ϑ/3
and then find ι > 0 such that the third line is estimated by ϑ/3 for any κ1, κ2 < ι. Thus, we have
shown that the set of approximate solutions (uκ) is Cauchy in L1(Ω× [0, T ],P,dP⊗ dt;L1(TN )),
as κ→ 0. Hence there exists u ∈ L1(Ω× [0, T ],P,dP⊗ dt;L1(TN )) such that

(4.15) uκ → u in L1(Ω× [0, T ],P,dP⊗ dt;L1(TN )).

Since u0 ∈ Lr(Ω;L1(TN )) for some r > 1, we can choose (uκ0 ) uniformly bounded in Lr(Ω;L1(TN )).
By Lemma 4.5, we obtain that for each k > 0

(4.16) sup
κ

E|mκ(Bk)|r ≤ Ck,

where Bk := [0, T ]×TN × [−k, k]. Consequently, the sequence (mκ) is bounded in Lr(Ω;M(Bk)).
Following the same arguments as [17, proof of Theorem 20], we extract a subsequence (not re-
labeled) and a random Borel measure m on [0, T ] × TN × R such that mκ ⇀∗ m weakly∗ in
Lr(Ω;M(Bk)) for every k ∈ N.

Since the estimates derived in Proposition 4.7 are uniform with respect to κ, the limit m satisfies
Definition 2.1, (ii). We further note that m satisfies Definition 2.1, (i), (iii) since both properties
are stable with respect to weak limits. Hence, m is a kinetic measure.

We next check that (u,m) is a kinetic solution to (1.1) in the sense of Definition 2.2. Let φ ∈ C∞c (R)
be nonnegative and denote by Φ a function satisfying Φ′′ = φ and Φ ≥ 0. Then, similarly to (4.5),
we obtain

E
∫

[0,T ]×TN×R
φ(ξ) dmκ(t, x, ξ)

≤ 1

2
E
∫ T

0

∫
TN

G2(x, uκ(t, x))φ(uκ(t, x)) dxdt+ E
∫
TN

Φ(uκ0 (x)) dx.

Hence, due to (2.5) and since

E
∫

[0,T ]×TN×R
φ(ξ) dnκ1 (t, x, ξ) = E

∫ T

0

∫
TN

∣∣∣∣ div

∫ uκ

0

√
φ(ζ)

[√
κId+ σ(ζ)

]
dζ

∣∣∣∣2dxdt,

we obtain that

E
∫ T

0

∫
TN

∣∣∣∣ div

∫ uκ

0

√
φ(ζ)

[√
κId+ σ(ζ)

]
dζ

∣∣∣∣2dx dt ≤ C
(
T, ‖φ‖L∞ , suppφ,E‖u0‖L1

x

)
.(4.17)
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From the strong convergence (4.15) and the fact that
√
φσ ∈ Cc(R), we conclude using integration

by parts, for all η ∈ L2(0, T ;C1(TN )), ψ ∈ L∞(Ω),

Eψ
∫ T

0

∫
TN

(
div

∫ uκ

0

√
φ(ζ)

[√
κId+ σ(ζ)

]
dζ

)
η(t, x) dxdt

→ Eψ
∫ T

0

∫
TN

(
div

∫ u

0

√
φ(ζ)σ(ζ) dζ

)
η(t, x) dx dt,

and therefore, using (4.17),

(4.18) div

∫ uκ

0

√
φ(ζ)

[√
κId+ σ(ζ)

]
dζ ⇀ div

∫ u

0

√
φ(ζ)σ(ζ) dζ in L2(Ω× [0, T ]× TN ).

Hence, Definition 2.2, (i) is satisfied.

Concerning the chain rule formula (2.7), we observe that the corresponding version holds true for
all uκ, since uκ is a kinetic solution, i.e. for any φ1, φ2 ∈ Cc(R), φ1, φ2 ≥ 0,

(4.19) div

∫ uκ

0

φ1(ζ)φ2(ζ)
[√
κId+ σ(ζ)

]
dζ = φ1(uκ) div

∫ uκ

0

φ2(ζ)
[√
κId+ σ(ζ)

]
dζ

holds true as an equality in L2(Ω× [0, T ]×TN ). Due to (4.18) we can pass to the limit on the left
hand side and, making use of the strong-weak convergence, also on the right hand side of (4.19).
In conclusion, Definition 2.2, (ii) holds.

Let now n1 be defined as in Definition 2.2, (iii). Since uκ is a kinetic solution, (uκ,mκ) satisfy
(2.9) with the corresponding diffusion matrix Aκ. Passing to the limit κ → 0 yields (2.9) for
(u,m) with the original diffusion matrix A. It remains to prove m ≥ n1 P-a.s. Since each mκ

can be decomposed into the sum of the parabolic dissipation measure nκ1 and the corresponding
(nonnegative) entropy dissipation measure nκ2 , that is mκ = nκ1 + nκ2 , from (4.16) it follows that

sup
κ

E|nκ1 (Bk)|r ≤ Ck.

By the same argument as above, we extract a subsequence (not relabeled) and a random measure
o1 such that nκ1 ⇀∗ o1 weakly∗ in Lr(Ω;M(Bk)) for all k ∈ N. Since mκ ≥ nκ1 P-a.s. we have
m ≥ o1, P-a.s. Moreover, since any norm is weakly sequentially lower semicontinuous, it follows
for all ϕ ∈ L∞([0, T ]× TN ), ψ ∈ L∞(Ω), P-a.s.,

Eψn1(φϕ2) = Eψ
∫ T

0

∫
TN

∣∣∣∣div

∫ u

0

√
φ(ζ)σ(ζ) dζ

∣∣∣∣2ϕ2(t, x) dxdt

≤ lim inf
κ→0

Eψ
∫ T

0

∫
TN

∣∣∣∣ div

∫ uκ

0

√
φ(ζ)

[√
κId+ σ(ζ)

]
dζ

∣∣∣∣2ϕ2(t, x) dxdt = Eψo1(φϕ2).

and, thus, n1 given by (2.8) satisfies n1 ≤ o1, P-a.s. which completes the proof. �

Appendix A. Multiplier lemmas

In this section we establish various auxiliary results concerning Fourier multipliers used in Section
3.

We employ the following definition of the Fourier and inverse Fourier transform on TN = [0, 2π]N

Fxv(n) =
1

(2π)N/2

∫
TN

v(x)e−in·x dx, n ∈ ZN , v ∈ L1(TN ),

F−1
x w(x) =

1

(2π)N/2

∑
n∈ZN

w(n)ein·x, x ∈ TN , w ∈ L1(ZN ).

and correspondingly on the whole space RN or with respect to time.

We start with a result that will be useful in the sequel.
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Lemma A.1 (Truncation property). Let m(n, ξ) = ib(ξ) · n + n∗A(ξ)n. Then m satisfies the
truncation property in L1 uniformly in ξ ∈ R, i.e. for every bump function ψ and δ > 0 it holds
true ∥∥∥∥F−1

x ψ

(
m(n, ξ)

δ

)
f̂(n)

∥∥∥∥
L1
x

≤ C‖f‖L1
x
,

where the constant C is independent of δ and ξ.

Proof. Step 1: First, we observe that it is enough to prove the claim for each of the (real) multipliers
m1(n, ξ) = b(ξ) · n and m2(n, ξ) = n∗A(ξ)n separately. Indeed, using Fourier series we can write

ψ

(
m(n, ξ)

δ

)
= F−1

z Fzψ
(
m(n, ξ)

δ

)
=
∑
j,k∈Z

ψ̂(j, k) e2πij
m1(n,ξ)

δ e2πik
m2(n,ξ)

δ .

Let ψ̃ be a bump function that equals to 1 in a ball containing the one-dimensional projections of
the support of ψ. Then

ψ

(
m(n, ξ)

δ

)
=
∑
j,k∈Z

ψ̂(j, k) e2πij
m1(n,ξ)

δ ψ̃

(
m1(n, ξ)

δ

)
e2πik

m2(n,ξ)
δ ψ̃

(
m2(n, ξ)

δ

)

=
∑
j,k∈Z

ψ̂(j, k)ψ̃j

(
m1(n, ξ)

δ

)
ψ̃k

(
m2(n, ξ)

δ

)
,

where ψ̃j(x) := e2πijxψ̃(x). Since ψ̂(j, k) decays rapidly in j and k and the Cl-norm of ψ̃j grows
at most polynomially in j, the conclusion follows from the fact that a product of L1-multipliers is
an L1-multiplier with the norm given by the product of the corresponding norms.

Step 2: Let us consider m2 and assume in addition that A(ξ) positive definite, that is σ(ξ) is
invertible. It is well-known that the set of L1-Fourier multipliers coincides with the set of Fourier
transforms of finite Borel measures and the norm is given by the total variation of the corresponding
measure, see [32, Theorem 2.5.8]. Therefore we need to estimate∥∥∥∥F−1

x ψ

(
m2(n, ξ)

δ

)∥∥∥∥
L1
x

by a constant independent of δ and ξ. To this end, we study the continuous version of the above
norm first and then make use of the Poisson summation formula. We have∥∥∥∥F−1ψ

(
z∗A(ξ)z

δ

)∥∥∥∥
L1
y

=
1

(2π)N/2

∫
RN

∣∣∣∣ ∫
RN

ψ

(
z∗A(ξ)z

δ

)
eiy·z dz

∣∣∣∣dy
=

1

(2π)N/2
δN/2

|detσ(ξ)|

∫
RN

∣∣∣∣ ∫
RN

ψ
(
|z|2
)

eiy·
√
δσ(ξ)−1z dz

∣∣∣∣dy
=

δN/2

|detσ(ξ)|

∫
RN

∣∣∣F−1
[
ψ
(
| · |2

)](√
δσ(ξ)−1y

)∣∣∣dy
=

∫
RN

∣∣∣F−1
[
ψ
(
| · |2

)]
(y)
∣∣∣dy.

(A.1)

Since ψ(| · |2) is a bump function, it is a Fourier transform of some function, say ϕ, from the
Schwartz space hence ∥∥∥∥F−1ψ

(
z∗A(ξ)z

δ

)∥∥∥∥
L1
y

= ‖ϕ‖L1
y
.

In other words, uniformly in δ and ξ,

ψ

(
z∗A(ξ)z

δ

)
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is a Fourier transform of a finite Borel measure ϕ hence it is an L1-multiplier on the continuous
space RN . Let us now define

ϕper(x) :=
∑
l∈ZN

ϕ(x+ l).

Then

‖ϕper‖L1(TN ) ≤ ‖ϕ‖L1(RN )

and

FTNϕ
per(n) =

1

(2π)N/2

∫
TN

∑
l∈ZN

ϕ(x+ l)e−in·xdx =
1

(2π)N/2

∫
TN

∑
l∈ZN

ϕ(x+ l)e−in·(x+l)dx

=
1

(2π)N/2

∫
RN

ϕ(x)e−in·xdx = FRNϕ(n) = ψ

(
n∗A(ξ)n

δ

)
so we deduce that, uniformly in δ and ξ,

ψ

(
n∗A(ξ)n

δ

)
is an L1-multiplier on TN .

Step 3: Let us now assume that A(ξ) is degenerate. If A(ξ) = 0 then clearly∥∥∥∥F−1
x ψ

(
m2(n, ξ)

δ

)
f̂(n)

∥∥∥∥
L1
x

= ψ(0)‖f‖L1
x
.

Let A(ξ) be a matrix with rank K. It was seen in (A.1) that the desired multiplier norm is invariant
under invertible linear transformations and therefore we may assume without loss of generality
that A(ξ) is diagonal with all the eigenvalues equal to 1. Then we denote by zK = (z1, . . . , zJ),
zN−K = (zK+1, . . . , zN ) and proceed as above to obtain∥∥∥∥F−1ψ

(
|zK |2

δ

)∥∥∥∥
L1
y

=
1

(2π)N/2

∫
RN

∣∣∣∣ ∫
RN−K

eiy
N−K ·zN−K

∫
RK

ψ

(
|zK |2

δ

)
eiy

K ·zK dzK dzN−K
∣∣∣∣ dy

=
1

(2π)N/2
δK/2

∫
RN

∣∣∣∣ ∫
RN−K

eiy
N−K ·zN−K dzN−K F−1

yK

[
ψ
(
| · |2

)](√
δyK

)∣∣∣∣ dy
= δK/2

∫
RK

∣∣∣F−1
yK

[
ψ
(
| · |2

)](√
δyK

)∣∣∣ dyK
=

∫
RK

∣∣∣F−1
yK

[
ψ
(
| · |2

)]
(yK)

∣∣∣dyK .
Since ψ(| · |2) is a bump function on RK there exists ϕ from the Schwartz space S(RK) such that
F−1
yK
ψ(| · |2) = ϕ(·). Hence∥∥∥∥F−1ψ

(
|zK |2

δ

)∥∥∥∥
L1
y

=
∥∥F−1

yK
ψ(| · |2)

∥∥
L1
yK

= ‖ϕ‖L1
yK

so, uniformly in δ,

ψ

(
|zK |2

δ

)
is an L1-multiplier on the continuous space RN . The proof for the discreet multiplier

ψ

(
|nK |2

δ

)
follows the reasoning of Step 2 by including only minor modifications.

Step 4: The same calculations lead to the desired estimate for the case of m1. �
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Corollary A.2. Let m(u, n, ξ) = i(u+b(ξ)·n)+n∗A(ξ)n. Then m satisfies the truncation property
in L1

t,x uniformly in ξ ∈ R, i.e. for every bump function ψ and δ > 0 it holds true∥∥∥∥F−1
tx ψ

(
m(u, n, ξ)

δ

)
Ftxf(u, n)

∥∥∥∥
L1
t,x

≤ C‖f‖L1
t,x
,

where the constant C is independent of δ and ξ.

Proof. Let ψ̃ be a bump function that equals to 1 in a ball containing the one-dimensional projec-
tions of the support of ψ. We proceed similarly as in Lemma A.1 and write

ψ

(
m(u, n, ξ)

δ

)
=
∑
j,k∈Z

ψ̂(j, k)ψ̃j

(
u

δ

)
ψ̃j

(
m1(n, ξ)

δ

)
ψ̃k

(
m2(n, ξ)

δ

)
,(A.2)

where ψ̃j(x) := e2πijxψ̃(x). Due to Lemma A.1∥∥∥∥F−1
tx ψ̃j

(
m1(n, ξ)

δ

)
Ftxf(u, n)

∥∥∥∥
L1
t,x

=

∥∥∥∥F−1
x ψ̃j

(
m1(n, ξ)

δ

)
Fxf(t, n)

∥∥∥∥
L1
t,x

≤ C(j)‖f‖L1
t,x
,

where the dependence on j is at most polynomial. Similar estimate holds true for the multiplier

ψ̃k

(
m2(n, ξ)

δ

)
and for the remaining one we have∥∥∥∥F−1

t ψ̃j

(
u

δ

)∥∥∥∥
L1
t

=
1

(2π)1/2

∫
R

∣∣∣∣ ∫
R
ψ̃j

(
u

δ

)
eiut du

∣∣∣∣dt =
δ

(2π)1/2

∫
R

∣∣∣∣ ∫
R
ψ̃j(u)eiδut du

∣∣∣∣ dt
= δ

∫
R

∣∣F−1
t ψ̃j(δt)

∣∣dt =

∫
R

∣∣F−1
t ψ̃j(t)

∣∣dt
so we deduce that

ψ̃j

(
u

δ

)
is an L1-multiplier on R. Therefore∥∥∥∥F−1

tx ψ̃j

(
u

δ

)
Ftxf(u, n)

∥∥∥∥
L1
t,x

=

∥∥∥∥F−1
t ψ̃j

(
u

δ

)
Ftf(u, x)

∥∥∥∥
L1
t,x

≤ C(j)‖f‖L1
t,x
,

which completes the proof. �

Lemma A.3 (Multiplier Lemma). Let ψ be a bump function and let m(u, n, ξ) satisfy the trun-
cation property in L1

t,x uniformly in ξ ∈ R. For each ξ ∈ R and δ > 0 let Ω(u, n; δ) ⊂ R be the
velocity set

Ω(u, n; δ) :=

{
ξ ∈ R;

m(u, n, ξ)

δ
∈ suppψ

}
.

Consider the velocity-averaged multiplier operator

Mψf(t, x) :=

∫
R
Mψf(t, x, ξ) dξ =

∫
R
F−1
tx ψ

(
m(u, n, ξ)

δ

)
Ftxf(u, n, ξ) dξ,

then for every p ∈ [1, 2] we have the estimate

‖Mψf‖Lpt,x ≤ C sup
u,n
|Ω(u, n; δ)|1/p

′
‖f‖Lpt,x,ξ .



WELL-POSEDNESS AND REGULARITY FOR QUASILINEAR SPDE 43

Proof. Let p = 2. Then due to Plancherel’s theorem, Hölder’s inequality and the fact that ψ is
compactly supported, we obtain

‖Mψf‖2L2
t,x

=

∥∥∥∥∫
R
ψ

(
m(u, n, ξ)

δ

)
Ftxf(u, n, ξ) dξ

∥∥∥∥2

L2
u,n

≤
∑
n∈ZN

∫
R

∫
R

∣∣∣∣ψ(m(u, n, ξ)

δ

)∣∣∣∣2 dξ

∫
R
|Ftxf(u, n, ξ)|2 dξ du

≤ C sup
u,n
|Ω(u, n; δ)|‖f‖2L2

t,x,ξ
.

Let p = 1. Then we observe that due to the truncation property

‖Mψf‖L1
t,x
≤
∫
R

∥∥∥∥F−1
t,xψ

(
m(u, n, ξ)

δ

)
Ftxf(u, n, ξ)

∥∥∥∥
L1
t,x

dξ ≤ C
∫
R
‖f(ξ)‖L1

t,x
dξ = C‖f‖L1

t,x,ξ
.

Let p ∈ (1, 2). Then by Riesz-Thorin interpolation result we get for θ = 2p−1
p that

‖Mψ‖Lpt,x→Lpt,x ≤ ‖Mψ‖1−θL1
t,x→L1

t,x
‖Mψ‖θL2

t,x→L2
t,x
≤ C sup

u,n
|Ω(u, n; δ)|θ/2 = C sup

u,n
|Ω(u, n; δ)|1/p

′

and the proof is complete. �

Corollary A.4. Let m(u, n, ξ) = i(u+ b(ξ) · n) + n∗A(ξ)n. Then for every bump function ψ and
every pair (ε, qε) satisfying

N

q′ε
< ε < 1 < qε <

N

N − ε
,

where q′ε is the conjugate exponent to qε, it holds true that

‖Mψf‖L1
tW
−ε,qε
x

≤ C‖f‖Mt,x,ξ
.

Proof. Let (%ε) be an approximation to the identity on Rt×TNx ×Rξ. If f ∈M(R×TN ×R) then
fε = f ∗ %ε satisfies

‖fε‖L1
t,x,ξ
≤ ‖f‖Mt,x,ξ

,

hence Lemma A.3 yields

‖Mψfε‖L1
t,x
≤ C‖fε‖L1

t,x,ξ
≤ C‖f‖Mt,x,ξ

,(A.3)

where the constant C is independent of δ, ξ and ε. Besides, due to the Banach-Alaoglu theorem,
the sequence (fε) converges weak* inM(R×TN ×R) and the limit is necessarily f . Consequently,
we may apply lower semicontinuity to the left hand side (A.3) to deduce

‖Mψf‖Mt,x ≤ C‖f‖Mt,x,ξ
.

As the next step, we will prove that the measure Mψf is absolutely continuous with respect to the
Lebesgue measure in time. Indeed, using the decomposition (A.2), it was shown in Corollary A.2
that the multiplier operator

f 7→ F−1
t,xψ

(
m(u, n, ξ)

δ

)
Ft,xf(u, n)

rewrites as a (weighted) sum of multiplier operators of the form

f 7→ F−1
t,x ψ̃j

(u
δ

)
ψ̃j

(
m1(n, ξ)

δ

)
ψ̃k

(
m2(n, ξ)

δ

)
Ft,xf(u, n)

=
[
F−1
t,x ψ̃j

(u
δ

)]
∗
[
F−1
t,x ψ̃j

(
m1(n, ξ)

δ

)
ψ̃k

(
m2(n, ξ)

δ

)
Ft,xf(u, n)

]
.

Now, it is enough to observe (cf. Lemma A.1) that the measure

F−1
t,x ψ̃j

(u
δ

)
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is absolutely continuous with respect to the Lebesgue measure in time, i.e. in time is is an L1

function. Due to possible degeneracies in the remaining multipliers given by we cannot argue
similarly in the space variable. Indeed, the diffusion matrix A can only have partial rank and
still satisfy the nondegeneracy assumption (2.3), cf. [52, Corollary 4.2]. To be more precise, with
respect to the space variable, the corresponding multiplier operators are given as convolutions
with finite Borel measures and not L1-functions. The claim now follows since for two measures
µ, ν ∈M(R×TN ), where µ is absolutely continuous with respect to the Lebesgue measure in time,
the convolution µ ∗ ν is also absolutely continuous with respect to the Lebesgue measure in time.
Indeed, we obtain that

F−1
t,xψ

(
m(u, n, ξ)

δ

)
Ft,xf(u, n)

and hence Mψf is absolutely continuous with respect to the Lebesgue measure in time.

Finally, due to the Sobolev embedding the space of finite Borel measures on TN is embedded into
W−ε,qε(TN ) for all (ε, qε) satisfying

N

q′ε
< ε < 1 < qε <

N

N − ε
,

where q′ε is the conjugate exponent to qε. The proof is complete. �
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[3] V. Barbu, G. Da Prato, and M. Röckner. Existence and uniqueness of nonnegative solutions to the stochastic

porous media equation. Indiana Univ. Math. J., 57(1):187–211, 2008.
[4] C. Bauzet, G. Vallet, P. Wittbold, A degenerate parabolic-hyperbolic Cauchy problem with a stochastic force,

Journal of Hyp. Diff. Eq. 12 (3) (2015) 501-533.
[5] C. Bauzet, G. Vallet, P. Wittbold, The Cauchy problem for conservation laws with a multiplicative noise,

Journal of Hyp. Diff. Eq. 9 (4) (2012) 661-709.

[6] F. Berthelin, J. Vovelle, A BGK approximation to scalar conservation laws with discontinuous flux, Proc. of
the Royal Society of Edinburgh A 140 (5) (2010) 953-972.

[7] F. Bouchut, L. Desvillettes, Averaging lemmas without time Fourier transform and application to discretized

kinetic equations, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 1, 19-36.
[8] J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Rational Mech. Anal. 147 (1999)

269-361.

[9] J. Carrillo, P. Wittbold, Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems, J.
Differential Equations 156 (1999), no. 1, 93121.

[10] C.Q. Chen, Q. Ding, K.H. Karlsen, On nonlinear stochastic balance laws, Arch. Rational Mech. Anal. 204

(2012) 707-743.
[11] G. Q. Chen, B. Perthame, Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations, Ann.
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[49] J. Ren, M. Röckner, and F.-Y. Wang. Stochastic generalized porous media and fast diffusion equations. J.

Differential Equations, 238(1):118–152, 2007.
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